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Abstract 

Large omics datasets are nowadays routinely generated to provide insights into cellular processes. 

Nevertheless, making sense of omics data and determining intracellular metabolic states remains 
challenging. Kinetic models of metabolism are crucial for integrating and consolidating omics data 

because they explicitly link metabolite concentrations, metabolic fluxes, and enzyme levels. However, 

the difficulties in determining kinetic parameters that govern cellular physiology prevent the broader 

adoption of these models by the research community. We present RENAISSANCE (REconstruction of 

dyNAmIc models through Stratified Sampling using Artificial Neural networks and Concepts of 

Evolution strategies), a generative machine learning framework for efficiently parameterizing large-

scale kinetic models with dynamic properties matching experimental observations. We showcase 

RENAISSANCE’s capabilities through three applications: generation of kinetic models of E. coli 

metabolism, characterization of intracellular metabolic states, and assimilation and reconciliation of 

experimental kinetic data. We provide the open-access code to facilitate experimentalists and 

modelers applying this framework to diverse metabolic systems and integrating a broad range of 

available data. We anticipate that the proposed framework will be invaluable for researchers who 

seek to analyze metabolic variations involving changes in metabolite and enzyme levels and enzyme 

activity in health and biotechnological studies. 
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Advancement in biotechnology and health sciences hinges heavily on our capability to integrate 

different varieties of data produced by high-throughput techniques and obtain coherent insights into 

cellular processes1–3. Considerable effort has been invested in using genome-scale models, 

mathematical representations of metabolic information about living organisms, to reconcile and make 
sense of such constantly growing disparate datasets4,5. Genome-scale models integrate omics data 

by considering constraints imposed by genetics and physicochemical laws6–10. For instance, 

researchers use inequality constraints stemming from the second law of thermodynamics to relate 

metabolic fluxes (fluxome) to metabolite profiles (metabolome)11–14. However, data integration using 

such inequality constraints results in significant uncertainty about intracellular metabolic states15. 

Consequently, despite the availability of large omics datasets, determining the exact intracellular 

levels of metabolite profiles and metabolic reaction rates with these constraint-based models remains 

elusive. 

Kinetic models of metabolism can address these issues by consolidating several types of omics data, 

such as metabolomics, fluxomics, transcriptomics, and proteomics, within a common and coherent 

mathematical framework16. Indeed, these models contain information about enzyme kinetics and 

metabolic regulation, allowing them to explicitly couple metabolite concentrations, metabolic reaction 
rates, and enzyme levels through mechanistic relations. Additionally, unlike constraint-based models, 

kinetic models capture time-dependent responses of cellular metabolism. Taken altogether, these 

models show great promise for addressing complex phenomena in biomedical sciences and 

biotechnology, such as metabolic reprogramming in the tumor microenvironment and disease17–19, 

relationships between cancer, metabolism, and circadian rhythms20, dynamics of drug absorption and 

drug metabolism21, and engineering and modulating cell phenotypes22–24. 

Despite the capacity of kinetic models to reconcile data and identify metabolic features associated 

with phenotype, the application of these models is somewhat limited16,25–30.The major challenge in 

developing kinetic models is the lack of knowledge about the characteristic kinetic parameter values 

that govern the cellular physiology of the studied organism in vivo. Overcoming this requires 

employing intricate computational procedures and the extensive expertise of researchers, and it is 
often impractical to build and use these models for studying multiple physiological conditions and 

large cohorts31. Therefore, there is a need for accelerated approaches for parameterizing kinetic 

models that would allow the broader research community access to these models. 

Recent efforts employing new tailor-made parametrization27 and machine learning32–34 improved the 
efficiency of constructing near-genome-scale kinetic models. Nevertheless, challenges remain 

regarding extensive computational time27 and the need for training data from traditional kinetic 

modeling approaches32–34. Here, we present RENAISSANCE (REconstruction of dyNAmIc models 

through Stratified Sampling using Artificial Neural networks and Concepts of Evolution strategies), a 

machine learning framework that efficiently parameterizes biologically relevant kinetic models of 

metabolism without requiring training data. RENAISSANCE uses Natural Evolutionary Strategies 

(NES)35,36 to optimize a feed-forward neural network for parameterizing kinetic models with desired 

properties (Figure 1a). This way, it dramatically reduces the extensive computation time required by 
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traditional kinetic modeling methods, thus allowing its broad utilization for high-throughput dynamical 

studies of metabolism. We showcase this framework through three studies: (i) generating a population 

of large-scale dynamic models of E. coli metabolism, (ii) characterizing intracellular metabolic states in 

the E. coli metabolic network accurately, and (iii) integrating and reconciling available experimental 
data.  

 

RENAISSANCE for parameterization of biologically relevant kinetic models 

In its conception, RENAISSANCE can parameterize kinetic models to satisfy a broad range of 

biochemical properties or physiological conditions. For example, it can parameterize models 

reproducing experimentally observed fermentation curves or drug adsorption patterns. Herein, we use 

RENAISSANCE to parameterize kinetic models to be consistent with an experimentally observed 

steady-state. This approach to model construction was introduced within the ORACLE conceptual 

framework15,28,34,37–40, which parameterizes kinetic models by unbiased sampling. In contrast, in 

RENAISSANCE, we leverage machine learning to perform stratified sampling biased toward kinetic 

models producing metabolic responses over time with timescales41 matching experimental 
observations of studied organisms. Due to its capability to bias parameter sampling toward desired 

model properties, the proposed framework substantially improves model construction efficiency, 

enabling comprehensive studies of multiple physiological conditions.  

In this context, before using RENAISSANCE, we compute a steady-state profile of metabolite 

concentrations and metabolic fluxes that will be used for parameterization (Methods). To this end, we 

integrate information about the structural properties of the metabolic network (stoichiometry, 

regulatory structure, rate laws) as well as available data (metabolomics, fluxomics, thermodynamics, 
proteomics, and transcriptomics) into the model (Figure 1b, c, Methods). A parameterized kinetic 

model exhibits highly nonlinear but deterministic responses that depend on the intracellular state 

determined by the network topology and the integrated data. To capture this nonlinear behavior and 

determine kinetic parameters, we require function approximators with similar complexity, such as 

neural networks32. In RENAISSANCE, we iteratively optimize the weights of feed-forward neural 

networks (generators) using NES (Figure 1a) to obtain kinetic parameters leading to biologically 

relevant kinetic models, meaning that the metabolic responses obtained from these models have 

experimentally observed dynamics (Methods).  

An NES algorithm produces a population of candidate solutions to an optimization problem and 

assigns a fitness score to each candidate solution (Figure 1a). The algorithm uses the fitness scores 

of the current solutions to generate the next generation of candidate solutions, which are likely to 

have better fitness scores than the current generation. The iterative procedure stops as soon as the 

obtained solutions are satisfactory. Unlike traditional gradient-based deep learning methods that 

require data to train a neural network, NES requires only a scoring function. 

The iterative process in RENAISSANCE consists of four steps (Figure 1d). We start by initializing a 

population of generators with random weights (step I). We select one generator at a time and, using 
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multivariate Gaussian noise as input, generate a batch of kinetic parameters consistent with the 

network structure and integrated data. We then parameterize the kinetic structure of the metabolic 

network (step II). Next, we evaluate the dynamics of each parameterized model by computing the 

eigenvalues of its Jacobian and the corresponding dominant time constants (Methods). These 
quantities allow us to assess if the generated kinetic models have dynamic responses corresponding 

to experimental observations (valid models) or not (invalid models). Based on this evaluation, we 

assign a reward to the generator (step III). NES repeats steps II and III for every generator in the 
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Figure 1 | Overview and applications of the RENAISSANCE framework a): Conceptual representation of the 

steps of Natural Evolutionary Strategy (NES), an optimization algorithm used in RENAISSANCE. b) Context-
specific structural properties of the metabolic networks are established and incorporated into the model. c) Once 

the model structure is fixed, available omics data are integrated into the model. d) Generators for parameterizing 

biologically relevant (valid) kinetic models are optimized iteratively in four steps to meet the design objective: a 
population of generators is randomly initialized (step I); generators produce parameters needed to parameterize 

kinetic models (step II); the fitness of the kinetic models (circles and bars in shades of red) is assessed based on 

the largest eigenvalues of the Jacobian (red and grey crosses) corresponding to the dominant time constants of 
the model responses (Methods); the generator is assigned a score based on this performance (step III); the 

rewards for each generator are fed back to NES to find the best-performing generator (step IV); the best-

performing generator is then perturbed to obtain the next generation of generators (step I). e) A few applications 

of RENAISSANCE-generated models presented in this paper. 

population and uses the rewards of the entire population to estimate the local gradient landscape and 

find the weights of the generator that improve the design objective (step IV). Then, we mutate the 

obtained generator by injecting random noise in its weights and recreate the new population of 

generators (step I). We iterate steps I-IV until we obtain a generator that meets the design objective, 

i.e., it can generate biologically relevant kinetic models (Methods). 

The generated kinetic models are applicable to a broad range of metabolism studies. Here, we 
present a few of these (Figure 1e).  

 

Results	

Generating large-scale kinetic models of E. coli metabolism  
To test and validate RENAISSANCE, we generated biologically relevant kinetic parameter sets for 

central carbon pathways of E. coli metabolism (Methods, Supplementary Note 2). The objective was 

to find kinetic parameters resulting in dynamic models consistent with an experimentally observed 

doubling time of 134 minutes for the studied E. coli strain42. A valid kinetic model satisfying this 

requirement should produce metabolic responses with the dominant time constant of 24 mins, which 

corresponds to having the largest eigenvalue 𝜆!"# < −2.5 (Methods). The model structure consisted 

of 113 nonlinear ordinary differential equations (ODEs) parameterized by 502 kinetic parameters, 

including 384 Michaelis constants, 𝐾!𝑠 (Methods, Supplementary Figure 4). To integrate the 

experimental data42 and compute a steady-state profile of metabolite concentrations and fluxes, we 

used Thermodynamically-based flux balance analysis13 (Methods). 

We ran RENAISSANCE for 50 evolution generations. We repeated the optimization process 10 times 
with a randomly initialized generator population to obtain statistical replicates. At every generation, we 

generated 100 kinetic parameter sets for every generator in the population and computed the 

maximum eigenvalue, 𝜆!"#, for each parameter set. To evaluate the generators, we used the 

incidence of valid models, defined as the proportion of the generated models that are valid (with 

𝜆!"# < −2.5, Methods). We observed that the incidence of valid models steadily increases with the 

number of generations, with the mean incidence converging around 92% after 50 generations (Figure 
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2a, thick black line). For some repeats, we could achieve incidence up to 100% (Figure 2a, green-

shaded region).  

For further analysis of the generated models, we selected a statistical repeat with fast convergence 

(Figure 2a, dashed line) and chose 10 generators from that repeat with monotonically increasing 
incidence over generations (Figure 2a, black diamonds). For each of the 10 chosen generators, we 

generated 500 kinetic parameter sets and examined the distribution of the resulting maximum 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2023. ; https://doi.org/10.1101/2023.02.21.529387doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529387
http://creativecommons.org/licenses/by/4.0/


Fig. 2 | Generation, validation, and application of RENAISSANCE-parameterized kinetic models. a) The 

incidence of models with desired dynamic properties increases with the number of generations, as indicated by 
the mean incidence (black line) and the maximum and minimum incidence (green-shaded region) observed over 

10 statistical repeats for every generation. The dashed line indicates the incidence for a repeat with a fast 

convergence. The black diamonds indicate the generators selected for subsequent analysis from that repeat. b) 
The distribution of the maximum eigenvalues (𝜆!"#) for the generated models over generations. The vertical 

dashed lines indicate 𝜆!"# = −2.5 (left) and 𝜆!"# = 0 (right). Robustness analysis: c) The time evolution of the 

normalized perturbed biomass, 𝑣(𝑡)/𝑣$%&, (upper left) and concentrations, (𝑋(𝑡) − 𝑋$%&)/𝑋$%&, Nicotinamide 

adenine dinucleotide reduced, NADH (upper right), Adenosine triphosphate, ATP (lower left), and Nicotinamide 

adenine dinucleotide phosphate reduced, NADPH (lower right), respectively: the mean response (dashed black 
line), the 25th-75th percentile (dark orange region), and the 5th-95th percentile (light orange region) of the 

ensemble of responses. The vertical dashed line corresponds to 𝑡 = 24	𝑚𝑖𝑛𝑠. Bioreactor simulations: d) The 

time evolution of the biomass (left), glucose concentration (middle), and anthranilate concentration (right) in the 

bioreactor runs: the mean response (dashed black line), the 25th-75th percentile (dark cyan region), and the 5th-
95th percentile (light cyan region) of the ensemble of responses.  

eigenvalues (Figure 2b). Remarkably, the generated models gradually shifted over the optimization 

process from having slow dynamics (𝜆!"# > −2.5) to having fast dynamics, with the metabolic 

processes settling before the subsequent cell division, indicating that RENAISSANCE-generated 

models could capture the experimentally observed dynamics.   

Since cellular organisms maintain phenotypic stability when faced with perturbations43, the generated 

models that describe cellular metabolism should possess the same property. To test the robustness 
of the models, we perturbed the steady-state metabolite concentrations up to ±50% and verified if the 

perturbed system returned to the steady state. To this end, we generated 1000 relevant kinetic 

models using the last of 10 selected generators (Figure 2a, generation 45). Inspection of the time 

evolution of the normalized biomass showed that the biomass came back to the reference steady 

state (𝑣(𝑡)/𝑣$%& = 1) within 24 minutes for 100% of the perturbed models (Figure 2c). Similarly, the 

perturbed time responses of a few critical metabolites, namely, NADH, ATP, and NADPH, returned to 

their steady-state values within 24 minutes for 99.9%, 99.9%, and 100% of the 1000 generated kinetic 

models, respectively (Figure 2c). Examining every cytosolic metabolite collectively revealed that 

75.4% of the models returned to the steady state within 24 minutes and 93.1% returned within 34 

mins, demonstrating that the generated kinetic models are robust and obey imposed context-specific 
observable biophysical timescale constraints. 

Next, we tested the generated models in nonlinear dynamic bioreactor simulations closely mimicking 

real-world experimental conditions42,44. The temporal evolution of biomass production showed similar 

trends as typical experimental observations with clear exponential and stationary phases of E. coli 

growth (Figure 2d, Supplementary Figure 5). Similarly, glucose uptake and anthranilate production 

also reproduce trends observed in experiments with glucose completely consumed and anthranilate 

production saturated around 20 hours29,30. This study indicates that the RENAISSANCE models can 

accurately reproduce the physiologically observable and emergent properties of cellular metabolism, 
even without implicit training to reproduce fermentation experiments. 
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Characterizing the intracellular states of E. coli metabolism 

Accurately determining the intracellular levels of metabolite profiles and metabolic reaction rates is 
crucial for associating metabolic signatures with phenotype. Yet, our capabilities to establish the 

intracellular metabolic state are limited. Notwithstanding the ever-increasing availability of 

physiological and omics data, a significant amount of uncertainty in the intracellular states remains. 

To reduce this uncertainty, we propose using kinetic models because of their explicit coupling of 

enzyme levels, metabolite concentrations and metabolic fluxes. Moreover, kinetic models allow us to 

consider dynamic constraints in addition to steady-state data, thus allowing us further uncertainty 

reduction.  

After integrating available physiology and omics data42,45–47 using the constraint-based 

thermodynamics-based flux balance analysis13, significant uncertainty was present in the intracellular 

metabolic state as indicated by the wide ranges of metabolite concentrations and metabolic fluxes. 

We sampled 5000 steady-state profiles of metabolite concentrations and metabolic fluxes from this 
uncertain space and deployed RENAISSANCE to find the fastest possible dynamics (maximum 

negative eigenvalues, 𝜆!"#) for each steady state (Methods, Supplementary figure 6). We visualized 

the steady-state profiles by performing dimension reduction with Principal Component Analysis 
(PCA)48 and t-Distributed Stochastic Neighbor Embedding (t-SNE)49 (Methods) and colored each 

steady-state profile according to the obtained 𝜆!"# (Figure 3a). We observed a high variation in the 

dynamics (𝜆!"#) of the studied steady-state profiles (Figure 3c, blue distribution). Out of 5000 steady-

state profiles, 918 (18.4%) had 𝜆!"# larger than -2.5, meaning that these intracellular metabolic states 

could not correspond to the experimental observations. Indeed, the dynamic responses 

corresponding to these states are with a time constant superior to 24 mins, i.e., slower than the 

experimental observations.   

Inspection of the intracellular steady state space suggested that the steady-state profiles 

corresponding to slow (Figure 3a, yellow dots) and fast (Figure 3a, blue dots) are locally clustered. 

From this observation, we hypothesized that distinct subregions corresponding to the experimental 
observations exist and that steady-state profiles sampled in the vicinity of the chosen local cluster 

would likely satisfy dynamic requirements.  

To test this hypothesis, we selected one of these local clusters (Figure 3b), which contained 22 

steady states with fast dynamics with −3.8 ≤ 𝜆!"# ≤ −8.5 (Figure 3c, green distribution), and 

analyzed its neighborhood (Figure 3d, left). We sampled 90 additional steady states within this 

neighborhood from the Gaussian distribution with a mean and standard deviation estimated on the 

initial 22 steady states. The sampled steady states allowed us to improve the resolution of the initial 

dynamic landscape (Figure 3d, right, circles). Crucially, the sampled steady states had linearized 

dynamics in the same range as the initial 22 states (Figure 3d, e), confirming our hypothesis. Indeed, 

RENAISSANCE allows us to select subsets of intracellular states consistent with experimentally  
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Fig. 3 | Dynamic characterization reduces uncertainty in intracellular metabolic states. a) The two-
dimensional representation of the fastest linearized dynamic modes (corresponding to the maximum eigenvalue 

𝜆!"#) of 5000 intracellular steady states (reaction fluxes and metabolite concentrations) obtained with Principal 

Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)49 (Methods). Each point 

represents a steady state colored according to 𝜆!"# computed by RENAISSANCE for that steady state. b) 
Magnified view of 22 neighboring steady states with fast dynamics (−3.8 ≤ 𝜆!"# ≤ −8.5). Color scheme is the 
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same as 3a. c) Distributions of the fastest linearized dynamic (𝜆!"#) for all 5000 steady states (blue) and for the 

22 steady states shown in 3b (green). d) Left: the linearized dynamics landscape of the 22 fast steady states in 

the reduced space (Methods). The triangles represent the location of the steady states in the landscape. Right: 
The landscape on the left is enhanced by sampling 90 additional steady states in the neighborhood of the initial 

22 steady states. The circles represent the location of the newly sampled steady states in the same landscape as 

on the left. e) Distributions of the fastest linearized dynamic (𝜆!"#) for all steady states (blue) and for 90 steady 

states sampled in 3d (pink). f) Left: concentration of 3-Phosphoglyceric acid (mM) vs. the fastest linearized 
dynamic in every steady state. Color scheme is the same as that in 3a. The horizontal black line indicates the 

cutoff for valid models (𝜆!"# = −2.5). The peach shaded region indicates the range of 3-Phosphoglyceric acid 

concentration that does not allow fast dynamics. Right: the dynamic landscape of 40 steady states sampled by 

constraining the metabolite concentrations of 30 metabolites to ranges that do not support fast dynamics. The 

diamonds represent the location of the steady states. g) Distributions of the fastest linearized dynamic (𝜆!"#) for 

the 40 steady states sampled in 3f (peach), compared to all steady states (blue) and those sampled in 3d (pink).  

observed dynamics and generate additional ones with the same characteristics. Moreover, it allows 

us to discard subregions with experimentally inconsistent states, thus reducing uncertainty.  

We next examined individual metabolite concentrations of the 5000 steady-state profiles to identify 

patterns corresponding to the experimentally observed phenotype. We observed a clear bias in the 

dynamics depending on the concentrations for some of the metabolites (Figure 3f, Supplementary 

Figure 7). For example, in the case of 3-Phosphoglyceric acid (3pg), we obtain models with relevant 

dynamics only when the concentration of this metabolite is less than ∼ 0.002	𝑚𝑀. In contrast, steady-

state profiles with 3pg concentrations between 0.002 − 0.003	𝑚𝑀	do not have relevant dynamics 

(Figure 3f). To investigate this further, we identified 30 cytosolic metabolites that showed such 

concentration biases by visual inspection (Supplementary Figure 7) and sampled 40 new steady 

states from the same Gaussian distribution as before (Figure 3d, left) but constrained the selected 30 

metabolites to concentration ranges that do not support relevant dynamics (e.g., peach shaded region 

in Figure 3f). As expected, almost all of these new intracellular states did not yield models with 

relevant dynamics (Figure 3f, right and 3g). This result demonstrates that information stemming from 
the dynamic responses can be used to constrain values of intracellular metabolites to specific ranges.  

Overall, dynamic characterization of a broad range of intracellular states allows us to reduce 

uncertainty at the level of steady-state profiles and individual metabolite concentrations and metabolic 

fluxes.  

  

Integration and reconciliation of experimental information 

Experimentally measured Michaelis constants, 𝐾's, are curated in comprehensive databases like 

BRENDA50. Integrating experimental results from in vivo and in vitro studies, despite the disparities in 

their parameter values, can help further constrain uncertainty and lead to a more accurate description 

of intracellular metabolic states. To this end, we retrieved from BRENDA experimentally measured 

values for 108 out of 384 𝐾's in our model (Methods).  
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Fig. 4 | Integrated experimentally measured data improve estimates of kinetic parameters. a) 
RENAISSANCE allows direct integration of 𝐾' values from literature and reconciling them with unknown 
parameters that collectively lead to valid kinetic models. b) Propagation of the integrated 𝐾' experimental data 
around ACONTa and ACONTb through the metabolic network. Comparison of RENAISSANCE generated values 
for:  𝐾',")*+,-	/-012" vs 𝑣!"#/-012" (upper left), 𝑣!"#	

3-456$vs 𝑣!"#/-012" (upper right), 𝑣!"#	
3-456$ vs 𝐾',"78	

3-456$(lower right), and 
𝐾',9:))*"	/;<45  vs 𝐾',"78	

3-456$ (lower lef) when (i) no kinetic parameters (grey circles) (ii) 4 parameters are integrated 
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(orange circles, Methods). Abbreviations: ACONTa: Aconitate A, ICDHyr: Isocitrate dehydrogenase, AKGDH: 2-
Oxoglutarate dehydrogenase, acon-C: Cis-Aconitate, akg: 2-Oxoglutarate, succoa: Succinyl Coenzyme-A. c) The 
integrated 𝐾' experimental data from the BRENDA database improves the RENAISSANCE predictions of not 
integrated parameters. Overlap Score (OS) for a kinetic parameter is calculated as the percentage overlap of the 
RENAISSANCE predicted range (x) with the experimentally observed range (yellow) by the total predicted range 
(blue, y) (right bottom). Percentage of known 𝐾's with an overlap score of >50% for different amounts of data (0, 
17, 28, 48 and 94 Kms) integrated (right top). Percentage of known 𝐾's with an overlap score of >10% to >90% 
for different amounts of data integrated (left). Dark blue box represents the exhibited right top case.   

To investigate how the integrated kinetic data constrain unknown kinetic parameters, we started by 

integrating 4 𝐾's of Aconitate hydratase from the citric acid cycle (Figure 4a, ACONTa, b, Methods), 

trained a generator with a high incidence of valid models (>99%), and generated 500 valid kinetic 

models (Supplementary Figure 8). To quantify the effect of integrating one experimental 𝐾' value on 

the generated values of the other kinetic parameters, we compared the estimates of the other 𝐾's 

and maximum velocities, 𝑣!"#, with ones obtained when no kinetic parameters were integrated. 

Integration of 𝐾' values of ACONTa at a reaction level restricted the maximum velocity estimates of 

that reaction, 𝑣!"#()*+," (Figure 4b, upper left). Due to the correlation in the 𝑣!"# values throughout the 

network, restricting 𝑣!"#()*+," estimates through 𝐾' integration constrained the estimated ranges of 

other maximal velocities, such as 𝑣!"#
-)./0$ (Figure 4b, upper right). This restriction further affected 

downstream 𝐾' values in the network, such as 𝐾!,"23
-)./0$ and 𝐾',45667"(89./  (Figure 4b, bottom left and 

right). These results suggest that integrating only a small amount of experimental data, localized to 

one enzyme (ACONTa, b), propagates throughout the whole metabolic network and significantly 
alters the rest of the kinetic parameters.  

We next enquired if RENAISSANCE improves its 𝐾' estimates as the number of integrated 

experimental 𝐾' values increases. To this end, we integrated 17 out of 108 experimentally measured 

𝐾'	values and generated 500 valid kinetic models (Methods). Then, for the remaining 91 experimental 

𝐾'	values, we calculated the overlap of the distributions of the generated kinetic parameters with the 

experimentally known range for each parameter (Fig. 4c, bottom right). We repeated this procedure 

by integrating 28, 48, and 94 experimentally measured 𝐾'	values and calculated the overlaps for the 

remaining 80, 60, and 14 𝐾'	values, respectively. The overlap of the estimated distributions and 

experimentally measured ranges increased as we integrated more experimental information. Indeed, 

the number of parameters with an overlap score (OS) of more than 50% increased with the number of 

integrated 𝐾'	values (Fig. 3c, top right). The statistics for a range of overlap scores, OS > 10% to OS 

> 90%, showed the same trend (Figure 4c, left). Overlap scores were low when only a few parameters 

were integrated (e.g., light green, 0%-2% of parameters with OS>90%) but increased with more 

integrated parameters (e.g., dark green, 15% of parameters with OS>90%). These results suggest 

that RENAISSANCE estimates improve by incorporating experimental kinetic information from 

literature and that this framework can make informed predictions about the unknown values of 

parameters. As more experimental measurements become available, we foresee that it will further 
reduce uncertainties in not yet measured parameter values. 
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Discussion  

Metabolism plays a defining role in shaping the overall health of living organisms. A reprogrammed or 
altered metabolism is not only associated with the most common causes of death in humans – 

cancer, stroke, diabetes, heart disease, and others – but is also related to many congenital 

diseases51. Thus, a better understanding of metabolic processes is crucial to accelerate the 

development of new drugs, personalized therapies, and nutrition. Biotechnological advances like the 
bioproduction of industrially important compounds and environmental bioremediation also hinge on 

our ability to describe cellular metabolism accurately.  

Kinetic models provide the most thorough mathematical representation of metabolism. The efficient 

construction of these models will open new possibilities for various biomedical and biotechnological 
applications. However, acquiring the parameters of these models with traditional kinetic modeling 

approaches is computationally expensive and arduous15,32. To improve the efficiency of generating 

kinetic models, we have recently proposed REKINDLE32. This unsupervised deep-learning method 

uses generative adversarial networks (GANs)52 for this task. While REKINDLE offered several orders 

of magnitude improvement in model generation efficiency, it required existing kinetic modelling 

approaches to create the data required for the GAN training. Herein proposed RENAISSANCE retains 

the model generation efficiency of REKINDLE without requiring training data. 

RENAISSANCE can achieve more than 90% incidence of valid models within 10 to 20 minutes of 

computational time on a standard workstation. Once trained, the generators generate valid models 

with a rate of ~1 million valid models in 18 seconds, making it 150-200 times faster than traditional 

sampling based kinetic frameworks. RENAISSANCE also does not require specialized hardware to 
execute. The proof-of-concept applications shown here demonstrate RENAISSANCE’s applicability to 

a broad range of studies. In this work, we deployed RENAISSANCE to parameterize valid models of 

metabolism consistent with an experimentally observed steady-state, with validity being characterized 

by the biological relevance of their timescales. However, conceptually, any other requirement can be 

imposed or data used, such as consistency with knockout studies or time series from drug absorption 

trials.  

As RENAISSANCE is agnostic to the nature, range, and number of the parameters it needs to 

generate, it is straightforward to adjust them to the requirements the models need to satisfy. These 

parameters are not restricted to kinetic parameters only and can include other unknown quantities in 

the studied system such as metabolite concentrations. 

Crucially, given proteomic data, RENAISSANCE can predict unknown enzyme turnover number, 𝑘6":, 

values and consolidate them with the experimentally measured  𝑘6": values from databases such as 

BRENDA and SABIO-RK53. As such, it represents a valuable complement to current machine learning 

methods that estimate 𝑘6": values directly54–56. 
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In summary, we provide a fast and efficient framework that leverages machine learning to generate 

biologically relevant kinetic models. The open-access code of RENAISSANCE will facilitate 

experimentalists and modelers to apply this framework to their metabolic system of choice and 

integrate a broad range of available data.  

 

Methods 

E. coli model structure and data integration 
The studied metabolic network included central carbon pathways of E. coli such as glycolysis, pentose phosphate 
pathway (PPP), tricarboxylic cycle (TCA), anaplerotic reactions, the shikimate pathway, glutamine synthesis, and 
had a lumped reaction for growth generated using lumpGEM57. The resulting model structure had 113 mass 
balances, including one for biomass accumulation, involving 123 reactions. The kinetic mechanism for each 
reaction was assigned based on the reaction stoichiometry. The overall model was characterized by 507 kinetic 
parameters consisting of 384 𝐾'𝑠 and 123 𝑣!"#𝑠	(Supplementary Figure 4).  

We integrated different data types into the model to create a context-specific model. We integrated exo-fluxomics 
and exometabolomics data, such as the growth rate, uptake rates, and extracellular concentrations of different 
medium components from an earlier experimental study42. We used data from other experimental works to 
impose constraints on the ranges of intracellular concentrations for different metabolites in E. coli47. Additionally, 
we imposed constraints on thermodynamic variables calculated using the Group Contribution Method45,46 to 
ensure that any sampled flux directionalities and metabolite concentrations were consistent with the second law 
of thermodynamics. 

After defining the model structure, and integrating the available data, we then sampled 5000 sets of steady-state 
profiles consistent with the integrated data using thermodynamics-based flux balance analysis implemented in 
the pyTFA tool58. Each steady-state profile consists of metabolite concentrations, metabolic fluxes, and 
thermodynamic variables. Once these profiles are available, we can generate kinetic models around these 
steady-states15,28,34,37–40 using the RENAISSANCE framework.  

Determining validity of kinetic models 
Herein, we consider a kinetic model valid (biologically relevant) if all time constants of the aperiodic model 
response are consistent with the experimental observations of the studied organism. The time constant defines 
the time required for the system response to decay to =

%
≈ 36.8% of its initial value. To test the model’s time 

constants, we compute the Jacobian of the dynamic system formed by the model37. The dominant time constant 
of the linearized system is defined as the inverse of the real part of the largest eigenvalue of the Jacobian. The 
dominant time constants allow us to characterize the model dynamics - fast metabolic processes such as 
electron transport chain and glycolysis are characterized by small time constants. In contrast, the slower 
timescale emerges from biosynthetic processes. Additionally, the sign of the Jacobian eigenvalues provides us 
information on the local stability of the generated models, where a model is locally stable if the real parts of all 
eigenvalues are negative. 
We consider that the dominant time constants of aperiodic model response should be five times faster than the 
cell’s doubling time. This way, a perturbation of the metabolic processes settles within 1% of the steady state 
before the cell division. The biochemical response should also have a characteristic time slower than the 
timescale of proton diffusion within the cell32. With these properties, models can reliably describe the 
experimentally measured metabolic responses.  
The doubling time of the E. coli strain used in this study is 𝑡>*:?@A+8 = 134	𝑚𝑖𝑛𝑠, which corresponds to a growth 
rate of 𝑙𝑛2 ∙ BC

D!"#$%&'(
= 0.31 =

E
. Therefore, the dominant time constant of the model’s responses should be smaller 

than one-fifth of the doubling time (26.8	𝑚𝑖𝑛𝑠). Here, we imposed a stricter dominant time constant of 24 minutes, 
corresponding to an upper limit of 𝑅𝑒(𝜆A) < −2.5	(or −60/24), on the real parts of the eigenvalues, 𝜆A, of the 
Jacobian. All kinetic parameter sets that result in the model obeying this constraint are labelled valid and the rest 
are labelled invalid. 

Assigning rewards to determine fitness in RENAISSANCE. 

RENAISSANCE uses Natural Evolution Strategy, NES, (Supplementary Note 1) to optimize the weights of the 
generator network. However, in order to calculate the local gradient estimate NES also requires an objective 
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function, 𝐹, to evaluate the fitness of each generator network, 𝐺. In our study, we use the incidence of the 
generator,	𝐼(𝐺), as the objective function, which is defined as the fraction of the generated models that are 
relevant (0 ≤ 𝐼(𝐺) ≤ 1). Thus, generator networks that have a higher incidence of relevant models are ‘fitter’ than 
those with low incidence and have higher weight in determining the parameters of the seed generator network for 
the next generation. In many cases, we observed that initially the generator neural networks do not generate any 
relevant models (𝐼(𝐺) = 0) and thus the optimisation does not proceed as the fitness is always 0. To mitigate 
this, we added an additional sigmoidal term defined as follows,   

𝑟 =
0.01

1 +	𝑒(G)*+,-+,,G.*/,&,&"')
 

where, 𝜆&"9D%9D corresponds to smallest maximal eigenvalue of the generated models and 𝜆I"$DADA*+ is the 
maximal eigenvalue partition that determines relevancy of the kinetic model. In this study, 𝜆I"$DADA*+ = −2.5 (see 
previous section). This term rewards generators that generate models with dynamics closer to the relevant range 
more than those which generate models with slower, irrelevant or unstable dynamics. This effectively pushes the 
optimisation process towards finding generators that generate relevant models. So, the overall reward, 𝑅, for a 
generator, 𝐺, can be summarized as, 

𝑅(𝐺) = F
𝑟, 𝐼(𝐺) = 0

𝐼(𝐺), 𝐼(𝐺) > 0 

For the large-scale analysis of intracellular states (Fig. 3), the fitness for NES was no longer the incidence of the 
generators but the fastest dynamic possible of the models generated by a given generator. Thus, the reward was 
changed suitably as follows, 

𝑟 = 0.5𝑒,C.=
G0-*'
K  

where 𝜆!%"+ is the mean of the 10 fastest maximum eigenvalues (Supplementary figure 6) generated by a 
generator (out of 100 for this case study). This reward function ensured that the generators which generated 
models with more negative maximum eigenvalues (faster linearized dynamics, λ"#$) are rewarded more than 
the others. 

Hyperparameter tuning of RENAISSANCE. 

RENAISSANCE has several hyperparameters that can be tuned to achieve the desired objective (Supplementary 
Notes 3 and 4). In this study the hyperparameters used are as follows: the population size of the generator 
networks, 𝑛 = 20, noise level in generating the agent population from the mean optimal weights in each 
generation, 𝜎 = 10,K, learning rate of the gradient step, 𝛼 = 10,L, and the decay rate of learning, 𝑑 = 5%. In 
addition, the generated 𝐾!s were constrained strictly between {1.3 × 10,==, 20} to accurately represent 
experimentally measured 𝐾! values as curated in the BRENDA database50. The hyperparameters of the neural 
networks are listed below.  

Neural network implementation. 

All software programs were implemented in Python (v3.8.3). Neural networks were implemented using 
TensorFlow library59 (v2.3.0). The generator neural networks were composed of three layers that have a total of 
1,076,352  parameters: layer 1, Dense with 256 units, BatchNormalization, Dropout (0.5); layer 2, Dense with 512 
units, BatchNormalization, Dropout (0.5); layer 3, Dense with 1024 units, BatchNormalization, Dropout (0.5). 

Dimension reduction and visualization of steady states 

For generating Fig. 3 a, d, f (left) the following steps were followed: I) the steady state matrix (consisting of 1127 
features) was subjected to principal component analysis (PCA)48. II) The components of PCA which contributed 
to over 99% of the total expected variance were reduced to 2 dimensions using t-SNE49. III) The t-SNE 
components {𝑥M , 𝑥I} were then subjected to polar coordinate transformation as follows, 

𝑥= =	P𝑥IK + 𝑥MK 
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𝑥K = 𝑎𝑟𝑐𝑡𝑎𝑛2S𝑥M , 𝑥IT. 

{𝑥=, 𝑥K} were then plotted to generate the figures.  

Curation of experimentally kinetic parameters of E. coli from BRENDA 

Out of the 384 KMs in the metabolic model used in this study, 108 had associated experimentally measured 
values for E. coli in BRENDA database. They belong to the following metabolic subsystems: i) Pyruvate 
metabolism (9), ii) Citric acid cycle (17), iii) Nucleotide salvage pathway (3), iv) Tyrosine, Tryptophan and 
Phenylalanine metabolism (22), v) Glycolsis (14), vi) Glutamate metabolism (6), vii) Pentose phosphate pathway 
(11), viii) Anaplerotic reactions (15), ix) Glycine & Serine metabolism (3), x) Histidine metabolism (3), xi) 
Oxidative phosphorylation (2), xii) Not assigned (3). For the studies in Figure 3, they were integrated in 
RENAISSANCE as follows, Case 1: 𝐾',")*+,-	/-012" , 𝐾',)AD	/-012",	𝐾',")*+,-	/-012? , 𝐾',A)AD	/-012? (total 4) Case 2:  subsystem ii (total 
17), Case 3:  subsystem ii, vii (total 28), Case 4: subsystem ii, vii, i, viii (Total 48), Case 5: subsystem ii, vii, i, 
viii, v, vi, iv (Total 94). The integrated data is available in the provided supplementary data.  

Integrating known kinetic parameters in BRENDA 

If there were multiple experimentally measured values for a single KM in BRENDA, we took the geometric mean 
(KM,exp) of the different values and added an experimental error rate of ± 20% to KM,exp. The same error rate was 
applied if there was only 1 recorded experimental value, KM,exp. Then the value of an integrated KM was sampled 
uniformly from the range KM,exp ± 20% when integrated into RENAISSANCE for the training process and for 
generation.  

 

Data availability: 

The data that support the findings of this study are publicly available in the Zenodo repository 
(https://doi.org/10.5281/zenodo.7628650 and the links therein).  

 

Code availability: 

A Python implementation of the RENAISSANCE workflow is publicly available at 

https://github.com/EPFL-LCSB/renaissance and https://gitlab.com/EPFL-LCSB/renaissance. The 

ORACLE framework is implemented in the SKimPy (Symbolic Kinetic models in Python)60 toolbox, 

available at https://github.com/EPFL-LCSB/skimpy.	
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