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Abstract— The deployment of robots for Gas Source Lo-
calization (GSL) tasks in hazardous scenarios significantly
reduces the risk to humans and animals. Gas sensing using
mobile robots focuses primarily on simplified scenarios, due
to the complexity of gas dispersion, with a current trend
towards tackling more complex environments. However, most
state-of-art GSL algorithms for environments with obstacles
only depend on local information, leading to low efficiency
in large and more structured spaces. The efficiency of GSL
can be improved dramatically by coupling it with a global
knowledge of gas distribution in the environment. However,
since gas dispersion in a built environment is difficult to model
analytically, most previous work incorporating a gas dispersion
model was tested under simplified assumptions, which do not
take into consideration the impact of the presence of obstacles
to the airflow and gas plume. In this paper, we propose
a probabilistic algorithm that enables a robot to efficiently
localize gas sources in built environments, by combining a state-
of-the-art probabilistic GSL algorithm, Source Term Estimation
(STE) with a learned plume model. The pipeline of generating
gas dispersion datasets from realistic simulations, the training
and validation of the model, as well as the integration of
the learned model with the STE framework are presented.
The performance of the algorithm is validated both in high-
fidelity simulations and real experiments, with promising results
obtained under various obstacle configurations.

I. INTRODUCTION

Finding the source of a gaseous chemical leak released
in the air and mapping its spatial distribution have several
applications in various, often critical, situations [1]. Mobile
robots provide an excellent platform for chemical sensing,
mainly due to their autonomous nature. However, the chaotic
and unpredictable nature of gas dispersion, which is further
influenced by the environment, makes Gas Source Localiza-
tion (GSL) operations challenging tasks.

Particularly, efficient robotic chemical sensing algorithms
often rely on knowledge of the gas dispersion phenomenon
to interpret the data sensed in motion and to make informed
navigation decisions [2]. Gas dispersion is a combination
of advection due to airflow, which carries the molecules
in its direction, turbulent diffusion, which diffuses the gas
by turbulent kinetics, and molecular diffusion, which moves
molecules randomly [3]. This inherent complexity makes the
phenomenon hard to model, which has prompted much of the
research in robotic chemical sensing to focus on simplified
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Fig. 1: Gas dispersion in a built environment reproduced
in simulation: the obstacles in the environment shapes the
airflow and therefore affects the gas plume.

environments, with a steady wind applied to an obstacle-free
environment. This simplification allows the shape of the gas
plume to be approximated by analytical models, such as the
pseudo-Gaussian model [4] or particle differential equations
[5], which are computationally inexpensive and efficient in
simple environments. Conversely, they do not consider the
effect of the environment and the surrounding airflow on
the plume [6], as shown in Figure 1. A commentary on the
importance of accurate plume modeling is offered in [7] and
[5], where the authors evaluated the performance of GSL
algorithms under inaccurate modeling of the environments
and showed that the success rate drops quickly if the model
does not match the higher complexity of the dispersion.
Computational Fluid Dynamics (CFD) is a powerful tool to
model turbulent airflow which shapes the gas plume due to
advection. However, CFD simulations are too computation-
ally expensive to run in real-time on a resource-constrained
mobile robot.

Most state-of-the-art GSL algorithms used in cluttered
environments are either reactive methods [8] [9], which
are too simplistic and fragile to cope with complex en-
vironments, or map-based methods [10] [11]. Map-based
algorithms first create a map of the gas distribution in a
given environment and then extract the source location from
the map through analytical features, such as variance [12].
Generally, map-based algorithms do not rely on assumptions
about the plume, and can therefore be easily extended to
built or even cluttered environments. The lack of global
knowledge of gas dispersion prevents the inference of the
source position from scattered measurements. Therefore, an
exhaustive exploration of the environment is necessary to
have the measurements in the proximity of the source [13],
often resulting in a decrease in time efficiency and localiza-
tion accuracy in large environments.

Another main class of GSL algorithms is probabilistic al-
gorithms, which are able to reflect uncertain conditions in the
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measurements and underlying models by designing a likeli-
hood function [14]. Thus, they are able to leverage a plume
model combined with samples of gas acquired in motion to
produce an estimation of the location of the gas source [15].
They generate a belief of the gas source location without
necessarily having to reach its proximity. One of the main
algorithms in this category is called Infotaxis [16], which
guides the robots to the target that yields the smallest entropy.
Another widely used method is Source Term Estimation
(STE) [17], which is based on an underlying plume model
and estimates model parameters, using the measurements
collected by a mobile robot. After each new observation,
the probability distribution map of the gas source location is
updated by a recursive Bayesian estimation. In [18] [19], the
authors successfully conducted the GSL tasks using a mobile
ground robot based on the STE framework. A combination
of map-based and probabilistic algorithms for simultaneous
GSL and gas distribution mapping is proposed in [20], which
exploits the synergies between the STE framework and a
state-of-the-art mapping algorithm. Most of the contributions
that use STE for GSL rely on the pseudo-Gaussian model
with strong assumptions on the environment, which prevents
their application to more realistic scenarios. In [21], the STE
is applied to a cluttered environment. However, the plume
model used is a simple isotropic model, since the obstacles
employed in this work are small enough to neglect their
effects on the airflow. Another existing alternative solution
is to update the belief of the estimation only based on local
measurement. In [22], the authors use the wind direction and
the direction between a hit and miss position to update the
probability of the surrounding cells to contain the source for
each measurement. However, given the exclusive dependence
on local information and the lack of global information to
guide the robot exploration, the efficiency of the algorithm
can be low in a large space where lots of misses are sensed.

In this work we propose a GSL method that extends state-
of-the-art probabilistic algorithms to gas sensing applications
in built environments by exploiting a Data-Driven Plume
Model (DDPM). This algorithm enables a ground robot
to perform GSL tasks in various built environments where
large obstacles are present. A DDPM is initially generated
by feeding realistic gas dispersion simulation data to a
Deep Convolutional Neural Network (CNN). Once the plume
model is produced and validated, it is integrated into the STE
framework to estimate the source of the gas. This algorithm is
tested in high-fidelity simulation and real experiments, with
the assumption that the geometry feature and the boundary
conditions of the environment are known. The following
contributions are presented in this paper:

• A pipeline to generate a gas dispersion dataset and the
subsequent training to produce a novel DDPM.

• An extension of the STE framework to built environ-
ments by replacing the analytical model with DDPM.

• A thorough evaluation of the proposed algorithm with
a high-fidelity simulator and physical experiments.

The proposed method is introduced in Section II. The

Fig. 2: Overview of the STE with a DDPM

performance evaluation of the system, in both simulation
and physical experiments, is reported in Section III. Lastly,
a discussion of the outcome and the outlook for this work
are presented in Section IV.

II. METHODS

In this section, the pipeline of generating the dataset
as well as the training of the DDPM is presented. Next,
the integration of the DDPM to the STE framework is
introduced.

A. Overview

The gas dispersion phenomenon can be modeled as a
function of several variables that describe source terms, such
as the release rate, the wind speed, and the location of the gas
source. STE is a well-known inverse modeling technique that
estimates these source terms [17]. It relies on a steady-state
plume model and gas observations from the environment
to update the probabilistic distribution of estimated source
terms. In most STE implementations in the literature, the
leveraged model, such as pseudo-Gaussian model [?] and
isotropic model [23], is successful in (almost) uncluttered
environments, where the plume is not affected. The extension
of the STE framework to cluttered environments requires
the estimation to be based on a more sophisticated plume
model than the ones mentioned above, which takes into
consideration the characteristics of the environment and the
source. Many mathematical plume models exist for gas
dispersion in a time-dependent fashion, such as the filament-
based model [24] or the SCIPUFF model [25]. These models
can faithfully simulate the dispersion of a known gas release
in any environment and are usually used for gas dispersion
simulations, but are too computationally expensive to be
integrated in the STE framework. Therefore, in this work,
we propose to leverage a DDPM generated with machine
learning techniques for gas concentration prediction using
simulated gas dispersion data. A global schematics of this
approach is shown in Figure 2.

B. Data-Driven Plume Model

A DDPM is a surrogate plume model that predicts the
gas concentration based on previously seen and learned
samples. In our case, the surrogate model should take the
environmental map and the estimated location of the gas
source as input, and produce the gas dispersion map as
output.



a) Dataset Generation: A diverse dataset that repre-
sents several factors influencing the gas dispersion needs
to be gathered to train the DDPM. Due to the nature of
the gas dispersion phenomenon, ground truth acquisition for
each environment in real world would be a cumbersome and
time-consuming task. A calibrated simulation is an alterna-
tive tool to generate the training dataset. For this purpose,
we used OpenFOAM, an open-source CFD simulator, and
Webots [26], a open-source high-fidelity robotic simulator
equipped with a gas dispersion plugin [27]. The basic steps
to synthesize the dataset are the following:

1) Generate environment maps with obstacles of random-
ized rectilinear shapes and locations;

2) Simulate wind flow in the environment maps in Open-
FOAM and obtain the associated wind maps;

3) Load the wind maps into Webots and place the gas
source at different randomized locations to gather the
gas dispersion results;

4) Produce the feature maps for neural network training.

Two hundred environments with randomly placed obstacles
have been prepared. On each map, there could be one
rectangle, two separated rectangles, as well as L-shaped
and U-shaped obstacles. The size of the obstacles was also
randomly set on length and width. The height, however, was
fixed for all the cases at 1 m. For each environment, a wind
map with a fixed wind speed is generated. For each wind
map, 20 gas dispersion simulations are conducted with the
gas source placed randomly outside the obstacles, with a
fixed release rate. In total, the training dataset is composed
of 4000 dispersion maps.

OpenFOAM Simulation: OpenFOAM [28] is an open-
source CFD software with a wide range of applications for
simulating complex flows. The type of solver, the proper-
ties of the simulated fluid, the boundary conditions, and
the solver parameters are important factors for obtaining
simulation results that are faithful to reality. In our case,
for a steady-state simulation of airflow around obstacles, the
simpleFoam solver was initially chosen, which is designed
for steady-state simulations of incompressible, turbulent flow.
However, the existence of the Karman Vortex, caused by
obstacles, makes the environment highly transient, making
the steady state solutions unsteady, and thus preventing the
convergence of an iterative solver. Therefore, to find promis-
ing results under different scenarios, we approximated the
steady-state solution by averaging the results of several time
steps from a transient solver, pimpleFoam. The boundary
conditions, the inlet and outlet positions, as well as the shape
of the area (14×4×2 m3) are identical for all training data
to emulate the conditions of our experimental facility. For
the inlet, a constant velocity of 0.75 m/s is set according
to the real experimental conditions. For the outlet, the zero-
gradient condition is set to simulate the free exit. The no-slip
boundary is set for walls and obstacles.

Webots Simulation: Webots is a flexible open-source high-
fidelity robotic simulator. A gas dispersion simulator plugin
[27] based on the filament gas dispersion model [24] has
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Fig. 3: An example of the feature maps (a) and concentration
map (b) for the same simulation environment.
been successfully developed which allows importing wind
flow simulation results from OpenFOAM. For each randomly
generated environment, a gas concentration map was gener-
ated by recording the gas measurements using a static sensor
network placed on a 64×64 grid. Since we focus on 2D, the
height of the sensor network is the same as that of the robot,
at 10 cm. Each sensor gathers 5 s of the gas concentration
data with a sampling rate of 10 Hz, and then both the average
reading and the standard deviation are logged, together with
the location of the sensors.

Feature Maps: The plume model is required to take, as
input, the source position as well as the environment map
and generate, as output, a map corresponding to the average
gas concentration. To increase the efficiency of the learning
process, for each environment map, we create three feature
maps, inspired by [29] and [30]. The geometry of the envi-
ronment is the most important factor in shaping the steady-
state flow which, in turn, shapes the plume. A steady-state
flow is mostly defined by the boundary conditions, which
include the properties of each region in the map. Therefore,
the first feature map is dedicated to labeling each region of
the map according to its flow properties. For instance, the
free space is labeled 1, the walls 2, the inlet 3, the outlet
4, and the cells inside obstacles 0. Additionally, a second
feature map is designed to reflect the geometry of the map,
namely the position of obstacles, where a Signed Distance
Function (SDF) [30], is used to represent the distance from
each cell in the environment to a surface. Moreover, points
that are inside an obstacle are given negative values to make
the distinction between different cells inside and outside of
the obstacle. Finally, the position of the source is required
to shape the plume. Therefore, the last feature map gives
the inverse Euclidean distance from the source position for
every cell. An example of the three feature maps is shown in
Figure 3(a). To match the size of the gas concentration maps
collected in Webots, we also contained the feature maps in
64× 64 cells.

Test Dataset: Eight test maps, shown in Figure 4, are
designed with different complexity levels to evaluate the
DDPM. The shape and size of each obstacle were chosen
in such a way that the obstacle is large enough to have a
significant effect on the plume shape, while leaving enough
space for the plume to disperse in the room. Depending on
the source position with respect to the obstacles, different
plume shapes can be seen for a given map. Similarly to the
training set, for each test map, the gas dispersion maps with
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Fig. 4: The schematics of the 8 test maps.

20 random source positions are gathered as ground truth and
used for the validation of DDPM.

b) Neural Network Architecture: Since the nature of the
phenomenon that we seek to learn depends on the geometry
of maps, a CNN [31] is leveraged, which has been widely
tested for tasks that have strong spatial and/or temporal
dependencies. In recent works on fluid dynamics surrogate
models, such as [29] [30] [32], CNNs drastically improve
computational time compared to traditional CFD simulations,
while resulting in high accuracy. In this work, the desired
output of the network, as shown in Figure 3(b), is a spatial
gas concentration map composed of 64×64 cells, where each
cell represents the average gas concentration in a steady-
state flow. Since both the input features and the desired
output of the network are maps, the architecture of the
employed CNN requires an encoder-decoder function. We
adapted the network architecture from [29], where a U-Net
architecture is used to predict wind velocity and pressure
based on the geometry of the map of the environment. The
resulting architecture is composed of a four-block encoder-
decoder, where each block contains three convolution layers
followed by a max pooling and a ReLU layer. The kernel
size of five was chosen, and the number of filters for the
four blocks are 8, 16, 32, 32 for the encoder blocks, and
the same, but in the opposite order for the decoder blocks.
The optimizer is chosen to be AdamW with a learning rate
of 0.001, weight decay of 0.005, and without batch and
weight normalization. Since the architecture used in [29] was
well-investigated and the application domain is close to our
case, we have conducted the learning process with the same
network and parameters along with the provided open-source
code. The model is trained in 1000 epochs with the 4000
samples, divided into 90% as the training set and 10% as
the validation set.

C. Source Term Estimation

To estimate the gas source, the robot autonomously navi-
gates in the room, collects the gas concentrations D1:k =
{d1...dk} at discrete time iteration 1...k and at known
position P1:k = {p1...pk}. In our case, since the underlying
gas dispersion model simulates the steady state, the robot
stops at each measurement point for 5 s while sampling at
10 Hz and the mean concentration value is used as the point
measurement. At each iteration k, the probability distribution
p(Θ|D1:k) of the estimations of source term Θ is updated.
The next goal position pk+1 is calculated based on the
current estimation of the source term. The robot navigates
toward the next goal position and starts the next iteration of
the algorithm loop. In this work, we extend our previous STE
[15] by replacing the pseudo-Gaussian plume model with a

DDPM. For more details about the STE algorithm employed
in this work, please refer to [18].

a) Inference Engine: The Bayesian framework is used
to update the posterior probability distribution p (Θ | D1:k)
of an estimated source term Θ when a new measurement dk
is available. In our case, the parameters that we seek are the
source position coordinates, thus Θ = {Sx, Sy}.

p (Θ | D1:k) =
p (D1:k | Θ) p (Θ)

p(D1:k)
(1)

We consider the evidence p(D1:k) to be a normalization
factor and the prior p(Θ) a uniform distribution in between
each parameter limit. Therefore, the posterior p(Θ | D1:k) is
proportional to the likelihood p(D1:k | Θ) in the parameters
limit. Outside of this limit and inside the obstacle regions it
is equal to 0.

b) Likelihood: The likelihood, presented in Equation 2,
defines the probability of collecting an observation dk, given
the predicted concentration value ck by the plume model,
based on a set of source terms Θ. In our previous works,
ck was obtained from a pseudo-Gaussian plume model, but
in this work, it is replaced by our novel DDPM. σM and
σD represent standard deviations of model and measurement
errors, respectively.

p(D1:k|Θ) ∝ exp

(
− 1

2

N∑
k=0

(dk − ck(Θ))2

σ2
M + σ2

D

)
(2)

c) Navigation: The navigation strategy, based on our
previous work [15] uses a navigation vector that encompasses
the exploration-exploitation trade-off through the weighted
sum of two components. The exploration component points
to the most informative point, obtained using the Kullback-
Leibler divergence [33]. The exploitation component points
to the location that strikes a balance between having the
highest potential of containing the source and being close
to the current robot position. This prevents the robot from
traveling far distances when the uncertainty on the source
location is still high. On top of the previous navigation
strategy, the robot needs to plan its trajectory with collision
avoidance. Since the environment map is known, a state-
of-the-art path planning algorithm, Visibility Graph (VG)
[34] algorithm is leveraged, which allows the robot to travel
around the edges of the obstacles to reach its goal position.

d) End of Algorithm: The entropy on the posterior
probability function of the source position, which reflects the
uncertainty of the estimation, is used as the main criterion to
stop the algorithm. When it goes below a certain threshold,
the algorithm starts the source declaration procedure. Addi-
tionally, a timeout stops the algorithm when the estimation
exceeds a predefined number of iterations.

III. PERFORMANCE EVALUATION

This section presents the evaluation of our STE algorithm
coupled with the DDPM, performing the GSL tasks in 2D in
both high-fidelity simulation and real physical experiments.
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Fig. 5: An illustration of the model validation result. Left: the gas dispersion ground truth gathered by a sensor network
simulated in Webots by importing the wind map from OpenFoam; middle: the gas dispersion predicted by using DDPM;
right: the physical gas scan with a Khepera IV in the wind tunnel.
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Fig. 6: The comparison of the simulation results of STE with the DDPM and the pseudo-Gaussian model.

A. Evaluation of DDPM

The accuracy of the model was evaluated by comparing the
concentration map predicted by the model and the simulated
one in Webots, used as ground truth. Additionally, we
evaluate the DDPM against real gas dispersion data captured
in our testbed through a lawnmower scan with the robotic
platform. Once the model was validated, it was exported and
used as the plume model in our STE framework for the GSL
task. An example of the DDPM validation using Test Map
2, with the source located at Sx =10 m and Sy =1.5 m, can
be seen in Figure 5.

B. STE Evaluation: Simulation

Webots is employed for the simulation evaluation of the
STE algorithm. The test maps, shown in Figure 4, are
recreated in Webots, and the algorithm is evaluated 10 times
in each of them. A simulated Khepera IV robot equipped
with gas and wind sensors runs the algorithm. A view of the
simulated environment can be seen in Figure 1.

For a challenging and fair performance evaluation, the
initial position of the robot is randomized within the entire
arena. Similarly for the source position, the x coordinate
remains in an upwind direction, close to the inlet, and the y
coordinate is set randomly.

The performance of STE with DDPM as the underlying
model is compared to the same algorithm exploiting the tra-
ditionally used pseudo-Gaussian plume model. We consider
a run successful if the estimated source position is within 1
m of the true source position on the X-axis and 0.5 m on the

Y-axis. From the results in Figure 6, we can conclude that
STE with DDPM outperforms the pseudo-Gaussian model in
most of the cases, with a higher success rate, smaller errors in
the source position estimation, and fewer required iterations
for convergence. When the gas source is not occluded by
obstacles, the plume maintains a Gaussian-like shape and
yields good results also for the traditional model-based STE
(e.g., Test Map 1). However, when the gas source is not in
line-of-sight of the robot, the DDPM clearly outperform the
pseudo-Gaussian model by encouraging the robot to explore
the region close to the obstacle(s).

C. STE Evaluation: Physical Experiments

Physical experiments were conducted in our wind tunnel,
which facilitates the evaluation of the system in a repeat-
able fashion with controllable wind. The wind tunnel has
a volume of 18 × 4 × 1.9 m3 and is equipped with a
Motion Capture System (MCS) that provides localization
to the robot. A Khepera IV robot, equipped with a wind
sensor board [35] and a gas sensor module sampling at 10
Hz, which is composed of a MiCS-5521 gas sensor and a
mini active sniffing pump, is used as robotic platform. The
gas source is represented by an electric pump vaporizing
ethanol. Due to the limited computational resources of the
robot, the estimation part currently runs on an external laptop
and the goal positions are sent to the robot. The robot
navigates and sends the measurements in return. The Test
Maps {1,2,3,5} were selected to be reproduced in reality,
as representative examples with different obstacle sizes and



Fig. 7: A view of the experimental setup in the wind tunnel:
Khepera IV robot, the obstacles, the gas source, as well as
the MCS cameras.

locations. Similarly to the simulation, the x position of the
source is maintained to a fixed upwind location, while the y
position is selected within a predefined set, namely Sy ={1
m, 2 m, 3 m} to roughly cover the Y-axis. For each setup,
two experiments were conducted, totaling 24 experiments,
with the results shown in Figure 9. An example of the robot
trajectory of a successful run is shown in Figure 8(a).

The localization results are satisfying in most scenarios,
despite the degradation in performance compared to simula-
tion due to the non-negligible reaction and recovery time of
the MOX sensor [36], which is not simulated in simulation,
as well as the highly intermittent nature of gas dispersion.
An example of a stark discrepancy between simulation and
reality was noted in Test Map 3, where the gas leaks towards
the center of the U obstacle, as shown in Figure 8(b). In this
scenario, the gas will accumulate inside the U region during
physical experiments, generating a locally high concentration
that misleads the system, eventually resulting in a high
estimation error in the x direction. Since the model used
in our work is trained by time-averaged gas concentration
maps, the artifact of local gas accumulation is not captured
by it. Moreover, most runs failed for Test Map 5, where
an obstacle is in the middle of the airflow, which gets split
into two parts. The presence of the Karman Vortex in this
particular case makes the airflow behind the obstacle highly
dynamic, scattering the gas further. The dynamic wind flow
exacerbates the intermittent properties of the gas, adding
noise to the gas concentration measurements.

IV. CONCLUSION AND OUTLOOK

In this work, we presented a novel data-driven surrogate
plume model that allows for a real-time application of a
well-known probabilistic algorithmic framework to estimate
the source position efficiently in realistic built indoor en-
vironments. The size of the obstacles in the environment
was chosen to significantly affect the shape of the plume,
therefore hindering the reliance on classical plume models.
We generated the dataset of the gas dispersion maps by
leveraging open-source simulation tools for the fluid dynamic
and robotic aspects, and used them to train the DDPM based
on a CNN. By integrating the learned CFD-based model
into our previously developed and validated STE framework,

Fig. 8: Trajectory examples, from real experiments, per-
formed by a Khepera IV carrying out GSL with a DDPM. (a)
a successful run and (b) a failed run due to gas accumulation
in the cavity of the U-shape obstacle.

Fig. 9: Results of real experiments in the wind tunnel.

the resulting algorithm shows promising results in both
simulation and physical reality characterized by various built
environments.

In the future, the capacity of the algorithm to estimate
additional source terms can be obtained by extending our
dataset, in particular by including data gathered under differ-
ent conditions (e.g., wind speed and source release rate). The
simulation-to-reality gap of the gas dispersion phenomenon
in cluttered environments will also be among the key topic
to be investigated in the future. Other features of gas
detection could be exploited, such as the variance of the
concentration [12] or the gas hit frequency [37], since the
absolute gas concentration is tricky to be modeled in different
scenarios. Additionally, the integration of information about
obstacle placement and geometric dimensions, as well as
fluid dynamic considerations will be explored to improve
the efficiency of the robotic sensing system.
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