
Multi-Robot 3D Gas Distribution Mapping: Coordination, Information
Sharing and Environmental Knowledge

Chiara Ercolani, Shashank Mahendra Deshmukh, Thomas Laurent Peeters and Alcherio Martinoli

Abstract— Environmental monitoring and mapping opera-
tions are an essential tool to combat climate change. An
important branch of this domain concerns the construction of
reliable gas maps. Adaptive navigation strategies coupled with
multi-robot systems improve the outcome of an environmental
mapping mission by focusing more efficiently on informative
areas. This direction is yet to be explored in the context of
gas mapping, which presents peculiar challenges due to the
hard-to-sense and expensive-to-model nature of the underlying
phenomenon. In this paper, we introduce the application of a
multi-robot system to a gas mission with severe time constraints.
We study the impact of information-based navigation strategies,
coupled with increasing levels of coordination among the robots,
on information gathering and consequent map reconstruction
performance. We also focus on proposing solutions that inject
additional knowledge into the system to enhance the final
mapping outcome. We tested the strategies through extensive
high-fidelity simulation experiments, and we compared the
proposed approaches to three relevant baseline methods.

I. INTRODUCTION

Environmental monitoring and mapping missions are an
essential tool to combat climate change. In recent years,
robots have been employed for these tasks, increasing their
efficiency and reducing the threat to human and animal lives
in hazardous regions. Environmental mapping tasks span
from methods relying on images, such as mapping of weeds
for agriculture [1], to approaches that rely on scarcer data,
such as mapping chemical components in water [2] or in
the air [3]. Navigation methods for environmental mapping
aim at improving the quality of the final map by focusing
on areas of interest, while taking into account the time
and energy constraints of the robotic platform. To this end,
adaptive sampling techniques are currently one of the main
topics tackled by the research community in these fields.
Another interesting direction for environmental mapping
algorithms is the employment of multi-robot systems, whose
architecture can be exploited to improve the information
gathering procedure. In this paper, we explore multi-robot
adaptive sampling techniques for gas mapping, an application
characterized by an underlying phenomenon that is hard to
sense and model, and for which only punctual data points
can be retrieved.

Gas Distribution Mapping (GDM) is the field concerned
with producing a reliable map of a gas distribution in a
given environment. Ideal platforms to perform this and other
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ing, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland. This work was funded by the Swiss National Science Founda-
tion under grant 200020 175809. Additional information about the research
can be found here: https://www.epfl.ch/labs/disal/research/3dodorsensing/

gas detection tasks in indoor or GNSS-denied spaces are
Nano Aerial Vehicles (NAVs). Their movement range can
capture the tridimensionality of the gas dispersion, and their
propellers cause a smaller perturbation compared to bigger
drones, preserving their sensing capabilities [4]–[6]. Gas data
is collected by mounting a gas sensor on the NAV, sampling
usually at a frequency in the range of 1-10 Hz, and obtaining
a punctual measurement of the distribution. A prominent
estimation approach for the underlying gas distribution is the
Kernel DM+V method, presented in [7] and extended to 3D
in [8]. This method provides the mean and variance of the
gas distribution by interpolating the sensed gas values using
a Gaussian kernel. The kernel interpolation allows to infer
the gas distribution of an area of a few tens of centimeters
around where the measurement was taken. The method was
successfully used for gas mapping missions with one flying
vehicle in 2D [9], [10] and in 3D [4].

In the field of GDM, navigation is largely achieved using
the lawnmower movement, a non adaptive strategy consisting
of a preplanned trajectory with lengthy stops at measurement
locations [5], [9]. The resolution of the lawnmower scan
is highly impacted by the time budget allocated for the
exploration of the affected volume, leading to coarser scans
when time is limited. Informative Path Planning (IPP) uses
informative quantities, such as entropy, to guide navigation
towards areas of high information content. This technique is
used often for navigation during environmental monitoring
operations [11], such as temperature field estimation [12] or
weed monitoring [1]. The stochastic and time variant nature
of the gas dispersion phenomenon makes the employment
of IPP strategies for robotic gas detection challenging. In
particular, sensing capabilities are degraded by the wake
of the propellers when employing a UAV, providing less
precise information to the IPP algorithm. Limitations in
flight time also impact the amount of information that the
robot can gather during a mission. Nonetheless, there are
a few examples of IPP strategies being applied to GDM
successfully, showing improved performance with respect to
preplanned trajectories [4], [10], [13]. Most of the work on
GDM only exploits locally interpolated information.

Environmental mapping missions can benefit from the
employment of a Multi-Robot System (MRS) architecture
coupled with IPP. There are several perks to this: in a
given time-frame, more information about the phenomenon
of interest is gathered, the system benefits from increased
robustness, both for hardware failure and redundancy in
sensing, and the mapping mission can be conducted in less
time or achieve larger coverage. A majority of approaches



in this field is concerned with obtaining exhaustive coverage
of the concerned volume [14]. In the scope of this work, we
consider that our mission is time-sensitive. Therefore, while
we want to cover as much volume as possible, we want the
robots to focus on informative areas.

Multi-robot system mapping approaches often couple
adaptive sampling strategies with additional measures to
improve the mapping outcome. Several approaches allocate
optimally a set of predetermined locations to the robot’s
team, usually based on information content and location
[15]. Other approaches exploit prior knowledge of the phe-
nomenon to make informative decisions [16], or rely on a
large amount of data, often coming from cameras [17], [18].
Moreover, global knowledge can be injected in the planning
in the form of attractor landmarks [17] or by exploiting an
underlying model of the phenomenon [19]. These techniques
are coupled with different levels of coordination and data
sharing between the agents. Reliance on prior data, on a
model or on predefined targets indicates that these methods
not only exploit the sensed input data, but need additional
elements to effectively guide the exploration. In the scope
of gas mapping, data is particularly scarce and punctual
compared to other fields, this makes the employment of non-
myopic approaches difficult, even in the context of a MRS.
Additionally, prior knowledge of the dispersion phenomenon
is rarely available. Finally, the stochastic and time-variant
nature of gas dispersion makes it hard and environment-
dependent to model, making the integration of additional
information into the navigation algorithm difficult.

Multi-robot systems have rarely been employed in the
GDM domain. A mapping method based on Gaussian kernels
that uses a MRS composed of UAVs is presented in [20].
However, the navigation strategy used is the preplanned
lawnmower movement in 2D, with 1/3 of the area allocated
to each of the three drones. An informative path planning
based approach for GDM is proposed in [21]. The authors
show that IPP strategies outperform random walk navigation,
but the method is constrained to 2D maps with robots moving
very slowly, at 2 m/min. Multi-robot architectures have
been more frequently explored for Gas Source Localization
(GSL) applications, which differ from GDM in terms of their
objective but not for the amount of available data. In [22], the
source localization is improved by exploiting coordination
strategies among robots, while in [19], IPP planning coupled
with a model of the gas distribution is used for source
localization by a team of robots.

In this paper, we investigate the effects of information
sharing, coordination and environmental knowledge for a
MRS performing a gas mapping mission in 3D. The con-
tributions of the paper are:

• Inspired by [22], we propose coordination strategies for
a MRS performing a GDM mission.

• We assess the impact of the addition of a spatial
clustering strategy.

• We assess the impact of a model-based navigation
strategy, taken from [23], that injects global knowledge
in the system.

• We compare our approaches to three baselines: multi-
robot preplanned trajectory, single robot model-free
navigation with clusters and single robot model-based
navigation.

For all approaches, the 3D Kernel DM+V/W was cho-
sen to estimate the gas distribution because of its light
computational requirements. The gas mapping mission is
conducted by NAVs moving continuously, to maximize the
amount of information gathered within the time constraints.
The methods presented in this work take into account the
limitations of the target hardware platform and are tested in
a high-fidelity simulator.

II. METHODOLOGY

This section outlines the methodology adopted for this
paper. It starts with a brief overview of the gas distribution
estimation algorithm, followed by a discussion about the
information-based navigation strategy employed during this
work. Then, the coordination strategies employed for the
MRS are introduced. Finally, an overview of the model-
based strategy, as well as the underlying collision avoidance
strategy, are presented. With model-based, we refer to strate-
gies that employ an underlying model of the gas distribution
for navigation, in contrast with model-free, where such
knowledge is not available. For the purpose of tractability,
the experimental volume is divided in N cells, of size
10∗10∗10cm3. The methods are presented in a generalized
way for a system of r robots.

A. Gas Map Estimation

We use the 3D Kernel DM+V/W algorithm, presented in
[8] to estimate the gas distribution in the explored volume.
This algorithm builds a 3D map of the gas dispersion by
weighting the collected gas samples with a multivariate
Gaussian function. The wind information, retrieved, for ex-
ample, with an on board anemometer, can also be included in
the estimation. However, in the scope of this work we assume
that the wind intensity and direction are constant and known
throughout the experiment. For each new sample, the corre-
sponding weight is found by evaluating a Gaussian kernel
at the distance between the location of the measurement and
the center of cell. The shape of the kernel is controlled by the
covariance matrix and depends on the kernel width, which
encodes the amount of extrapolation on individual readings.
We selected the parameters of this algorithm in accordance
with previous work [4], [23].

The gas estimation inside each cell is associated to a
confidence value α(k):

α(k)(σ0) = 1− e
−Ω(k)(σ0)

σ2
Ω (1)

where Ω(k)(σ0) is the integrated weight map and σΩ is
a scaling parameter. The confidence map attributes higher
confidence to cells for which more gas values were gathered.
In previous work, we kept the confidence always equal to 1,
in order to compensate for the continuous movement of the
robot. However, we decided to reintroduce this value in this



work because of the degradation in performance we observed
for the lawnmower movement from simulation to reality in
[4], which was due also to the fact that the lawnmower was
not gathering a lot of values for each cell. We therefore
believe that, by using the confidence map in simulation, we
can obtain results closer to the real world.

B. Navigation

The adaptive IPP strategy employed to select the next
goal positions for model-free strategies uses the Kullback-
Leibler Divergence (KLD) [24] to maximize the information
gathered during navigation. This quantity has been success-
fully used in our previous work on GDM and GDM+GSL
[4], [23]. The KLD quantifies the difference between two
probability distributions and is computed as:

DKL(P ||Q) =
∑
i

P (i)log2

(
P (i)

Q(i)

)
(2)

where P is the current probability distribution of the gas
samples in each cell and Q is the estimated next step prob-
ability distribution, obtained by adding one virtual sample,
corresponding to the expected value of the distribution, to
P . A higher value of KLD indicates discrepancies between
P and Q and suggests that more exploration is needed to
increase the confidence of the gas estimation in a cell.

C. Coordination Strategies

A MRS can present varying levels of coordination be-
tween its agents, which impact, for example, the amount
of resources shared or the navigation decisions. Here, we
discuss the coordination strategies employed in this paper.

1) Individualist Strategy: The robots independently build
their own gas distribution map based on the samples that
they acquire within the time limits. The robots can only use
their own map to select the next goal positions, making the
selection entirely reliant on local estimation. When the time
budget elapses, a final gas map, built by combining the r
maps produced by the agents, is delivered and evaluated.
This strategy is the easiest to deploy on real hardware, since
it does not require communication among the agents.

Since an estimation of the gas value can be provided by
more than one robot for each cell, we propose to use three
quantities to select a single gas value among the estimation
guesses provided by different robots. For each cell, we select
the gas value with the lowest associated variance, the highest
number of samples gathered by the robots in the cell, or the
highest confidence value α(k), computed as part of the 3D
Kernel DM+V/W algorithm.

2) Cooperative Strategy: In this strategy, the robots con-
tribute to a unique gas map that is shared with all the mem-
bers of the system. Concretely, this translates to updating
the gas distribution map estimation using the 3D Kernel
DM+V/W algorithm for each new gas sample, regardless
of which robot it comes from. This strategy still relies
exclusively on local estimation, but the robots have access
to the information gathered by the entire fleet. As a first step
in the implementation with real robots, we will carry out the

mapping computation on a central base station, but future
steps could exploit effectively the communication among
agents to deploy this method in a distributed fashion.

During the navigation phase, each robot uses the shared
map to select the next goal position. The advantage of this
strategy compared to the individualist one lies in the higher
amount of information that can be used by all robots to take
more informative next steps.

3) Collaborative Strategy: Collaboration adds movement
coordination to the cooperative strategy. Movement coordina-
tion allows the agents to improve the allocation of their goal
positions. We propose two movement allocation strategies
that we named Swap and Replan.

In the Swap strategy, when a robot reaches its goal
position, it will identify a new goal position using the IPP-
based navigation criterion and make sure that it falls beyond
a safe distance ds from the other robots’ goals. The new goal
position and the current goal positions of the other robots
are optimally allocated by minimizing the total distance
travelled, using the Hungarian algorithm [25]. This strategy
pushes the robots to explore away from each other and,
by keeping them apart, decreases the interference of the
propellers among the drones during physical experiments.
The effect of the ds parameter is also studied.

In the Replan strategy, when a robot reaches a goal
position, it will find r possible next goals. The goals are
selected with a greedy method that maximizes the navigation
criterion, explained in Section II-B, and are at a safe distance
ds from each other. The goals are then allocated to the robots
based on the shortest distance covered, using the Hungarian
algorithm. All the robots immediately switch to their new
goal position. The rationale behind this strategy is that a
robot replans for all members of the system based on the
newly acquired information since the last replanning, which
could offer more insights on where to go next.

In our previous work [4], we showed the benefits of
coupling IPP strategies with a spatial clustering method.
Consequently, we decided to apply the same method to the
Swap and Replan strategies. The method consists in dividing
the volume in K clusters using the K-means algorithm,
and explore all the clusters sequentially. The number of
clusters chosen for this work was set to four. We chose
to have clusters that are big enough to avoid excessive
interference among the drones, and to avoid biasing the
mission to achieve high volume coverage, instead of trying
to focus primarily on the plume. Although the addition of
clusters does not change the reliance on local data only,
the system now can count on a more spatially constrained
navigation, which pushes for exploration. The cluster method
corresponds to a less spatially constrained version of visiting
predefined waypoints.

D. Model-Based Navigation

GaSLAM [23] is an algorithm for simultaneous gas map-
ping and source localization. It organically combines two
state of the art methods, 3D Kernel DM+V/W for mapping
and Source Term Estimation (STE) [26] for localization, to



produce a reliable gas map and localize the gas source within
it. The sensed gas data is interpolated using the 3D Kernel
DM+V/W algorithm, and the resulting map is used by the
STE to create a belief of the source location. Since STE is a
model-based algorithm, we effectively have two maps of the
environment at all times: one is the map generated by the
Kernel algorithm (Kernel Map), which only contains locally
sensed data, and one is the map given by the STE model
(STE Map), which uses the belief on the STE parameters to
guess the gas distribution in the whole environment.

Navigation is vector based. In the initial exploratory phase,
the navigation vector is the sum of a vector pointing to the
highest KLD and a vector pointing to the belief of the source.
The following exploitative phase, which starts when the
belief of the source location position is deemed good enough,
focuses on exploring areas where the difference between the
Kernel Map and the STE Map is high. In this work, if the
source location prediction converges to a good belief, the
final map is considered to be the STE Map, otherwise the
Kernel Map is used. For more details, see [23].

In this paper, we apply the best performing coordination
strategy to a MRS running GaSLAM to observe the effects of
the injection of global knowledge. Global knowledge comes
from the gas dispersion model used by the STE, which, in
this case, is the Pseudo-Gaussian model [27].

E. Baselines
Three baseline methods are used in the evaluation of the

multi-robot GDM algorithms proposed. The first one is the
lawnmower method, which is a non-adaptive path planning
strategy consisting of a zig-zag motion. The total volume is
divided in r zones and each robot is allocated to one zone, in
which it will perform the scan, similarly to [20]. The second
baseline is a single-robot method, where navigation uses IPP
and clusters, similarly to [4]. The number of clusters is set to
four, to keep consistency with the division in clusters of the
multi-robot methods. The final baseline consists of a single
robot running the model-based GaSLAM algorithm [23].

F. Collision Avoidance
The collision avoidance method is straightforward and

computationally light. It relies on the premise of a centralized
architecture due to the lack of on-board obstacle detection
capabilities on the target platform. At each step of the
algorithm, if the distance between each pair of robots falls
below a threshold, the robots are given new goal positions
located in the opposite direction of their current distance
vector. The new waypoints w are calculated as follows:

wn = xn − d12 ∗ xth n ∈ {1,2} (3)

where x1 and x2 are the current 3D positions of the robots,
d12 is the normalized distance between the robots and xth is
the threshold. Once the new waypoint is reached, the robots
will carry on the exploration based on IPP navigation.

III. PERFORMANCE EVALUATION

In this section, the simulation setup and the evaluation
metrics used in this work are presented.

Fig. 1: View of the simulation experiments carried out in
Webots. The gas source and Crazyflie robots positions are
highlighted with red circles. The coordinate system used
throughout the paper is also pictured.

A. Simulation Setup

The simulation experiments were carried out using Webots
[28], a high-fidelity open-source simulator. A realistic model
of the gas dispersion is simulated using a gas dispersion
plugin [29]. The NAV fleet is composed of two simulated
Crazyflie robots equipped with gas sensors and moving at
a constant speed of 0.15 m/s. The fleet size is fixed to
two robots because, before discussing scalability, we would
like to carefully validate our methods in the real-world. In
fact, we expect the scalability of these methods to be tightly
tied with the environment and gas plume configuration. In
past physical experiments we showed that the Crazyflie is
a suitable platform for gas detection in indoor spaces [30].
The experimental volume is 7x2x0.5 m2. Since the objective
of this paper is to evaluate the performance of coordination
strategies in missions with severe flight time constraints and
where full coverage of the volume cannot be achieved using
a lawnmower scan, we decided to halve the flight time budget
of the NAV to 2 minutes and 15 seconds. We opted to halve
the time instead of doubling the volume in order to be able
to compare our simulation results to physical results in the
future. To be consistent with reality, where all robots have the
same time budget, single robot experiments are carried out
with the same time limitations as multi-robot experiments.
The experiments were repeated ten times for each strategy,
and the robots starting positions were randomized on one
edge of the volume (corresponding to the Y-axis). A picture
portraying the simulation setup and clarifying the coordinate
system can be seen in Figure 1.

The biggest drawback of our simulation setup is that it
does not take into account the effect that NAVs have on the
gas plume. In particular, in past experiments, we observed
a significant degradation in performance for the lawnmower
movement in the real world, not present for informative path
planning techniques [4]. We tried to mitigate this effect by
reintroducing the confidence map, as explained in Section II-
A. In the scope of a multi-robot setup, the presence of several
vehicles could worsen the sensing conditions. To this end, we
try and draw conclusions about how far apart we can keep
the robots in our algorithm while still obtaining satisfactory
performance.



Fig. 2: Impact of the safe distance ds on the performance of
the Swap and Replan collaborative strategies.

B. Evaluation Metrics

We evaluate the navigation strategies with plume coverage
and Root Mean Square Error (RMSE). In this work, we do
not use volume coverage or shape coverage as evaluation
metrics because the objective of the mapping mission is to
capture details of the gas dispersion.

Plume coverage indicates the percentage of the gas plume
that is detected in the final gas map. It is computed as:

PC = p(di ≥ Th|gi ≥ Th) ∀i ∈ N (4)

where di are cells belonging to the final gas map, gi are
ground truth cells and Th is the threshold that determines the
presence of gas. In simulation this threshold is determined a
priori and it is static. RMSE computes the difference between
the final gas map and the ground truth map for the cells that
have been updated.

In order to facilitate comparisons among the strategies, the
metrics are combined in an overall metric M :

M = (PC ∗ |1−RMSE|) (5)

The ground truth distribution is easily acquired in simula-
tion.

IV. RESULTS

This section presents the results of the experimental eval-
uation. The comparison between map merging strategies for
the individualist method, the effect of the ds parameter
on collaborative strategies and a comparison between all
approaches are presented.

A 1-way ANOVA test showed no significant difference
between maps constructed with different merging criteria
(p=0.9149). We chose to keep the variance merging method
for further evaluations.

We carefully study the impact of the ds parameter, which
identifies the safe distance between goal positions in col-
laborative strategies. We want to keep goals far from each
other to increase exploration and decrease interference in
real experiments. However, goals that are too far away could
reduce the exploitation of information regarding the presence
of the plume, leading to a less informative final map. A
plot showing the impact of ds is presented in Figure 2.

The graph shows that performance for the Swap strategy
increases when the ds increases, until ds = 0.4m, where
we can observe the highest performance. For ds = 0.5m we
notice a sharp drop in performance, which is due to the lack
of exploitation of information because of the high distance
kept between drones. Interestingly, the Replan strategy seems
to be less affected by the choice of ds, with similar average
M value for all ds > 0.1. This can be explained by the
fact that all the goals are replanned considering the full
amount of information available, allowing for the selection of
informative steps even at a distance from each other. Based
on this performance evaluation, we decided to pick a value
of ds = 0.4m for the Swap strategy and of ds = 0.2m for
the Replan strategy.

The comparison between all strategies is presented in
Figure 3. All multi-robot strategies outperform the single
robot model-free strategy. The addition of cooperation and
information sharing between the robots improves slightly
on the individualist strategy, but still performs worse than
lawnmower. The collaborative strategies, with and without
spatial clustering, outperform the lawnmower in the overall
metric, with the addition of clusters achieving a boost in
performance. Moreover, only the addition of the clustering
method allows to obtain comparable RMSE values to the
lawnmower. Additionally, the variance of the collaborative
methods is relatively low and comparable to the lawnmower’s
one, while the individualist and cooperative strategies present
high variance. These results show the benefits of the cou-
pling of information sharing and movement coordination
for a multi-robot gas mapping mission under severe time
constraints. Interestingly, the Swap strategy outperforms the
Replan strategy significantly when clustering is applied. This
seems to indicate that planning one goal at a time, coupled
with task allocation based on distance, is preferred in the
reduced volume of the cluster.

We applied the Swap collaborative strategy to a team
of two robots performing GaSLAM. Figure 3 shows that
the model-based strategy is able to capture the plume very
well. The outliers in the Plume Coverage plot correspond
to two experiments where the robots could not converge to
a good belief of the source on time, decreasing the overall
performance. The single-robot GaSLAM strategy presents a
huge variance in results. This is due to the underlying model
converging less frequently to a good belief of the source
location with only one robot. The RMSE of the model-based
approaches, both with single and multi-robot architectures,
presents a very high variance, highlighting the drawback of
relying on modelled data instead of directly sensed ones.

A slice of the resulting gas maps for the best runs
of several strategies, together with the ground truth, are
presented in Figure 4. The plot highlights the limitations of
the non-adaptive strategy of the lawnmower, which delivers a
patchy map of the environment. The map of the individualist
strategy shows that this is the one with the lowest exploration
component, and significant improvement on this front is
visible in the Swap map. The injection of additional elements,
in the form of spatial division through clustering and with the



Fig. 3: Performance comparison between all strategies. Single-robot strategies are on the left side of each plot. Blue plots
correspond to model-free navigation strategies, red plots to model-based navigation strategies and black plots to the results
coming from the lawnmower. Higher values are better for plume coverage and metric, lower values are better for RMSE.

Fig. 4: Resulting gas distribution maps for some of the proposed strategies. The red circle represents the gas source position.
Note that the Z-axis is omitted to simplify the visualization. The coordinate origin is in a corner of the simulated wind
tunnel, which is reflected by the fact that X and Y-axis do not start from 0 in the figure.

model-based approach, significantly increase the quality of
the final maps, which are able to capture almost the entirety
of the plume. It must be noted that, while the GaSLAM
map closely resembles the ground truth, reliance of a model
makes it hard to use this methods in all scenarios where the
model does not hold, for example in the presence of obstacles
or of multiple gas sources.

V. CONCLUSION

In this paper, we study the effects of information sharing,
coordination, and environmental knowledge on a multi-robot
system performing a gas mapping mission. We show the
impact of a multi-robot architecture, which significantly
improves the final gas map. We also demonstrate the boost
in performance of increasing coordination for model-free
exploration under severe time constraints with respect to
the lawnmower and single robot baselines. Moreover, we
boost the performance of our collaborative strategies by
injecting guided spatial exploration through clustering and

model-based navigation. One important conclusion that can
be drawn is that a solely cooperative strategy, relying only
on information sharing, cannot outperform the non-adaptive
path planning strategy. Collaboration, global knowledge or
additional spatial guidance are needed to outperform it. This
conclusion highlights the competitiveness of the lawnmower
strategy for scenarios where sensing capabilities are scarce
and limited to a small area.

The results obtained in this paper will serve as a solid
base to conduct the physical experiments, as they explore
and compare several different strategies, highlighting their
advantages and drawbacks. Further steps will involve the
deployment of the algorithms in a distributed fashion by
employing robots with higher on-board capabilities than
Crazyflies, which will allow, for example, to improve the col-
lision avoidance strategy and move towards an autonomous
MRS. Finally, the model-based strategy could be coupled
with non-myopic navigation strategies, to further boost its
performance.
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