
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Approximation Algorithms for Allocation and Network
Design

Etienne Michel François BAMAS

Thèse n° 9946

2023

Présentée le 9 juin 2023

Prof. E. Telatar, président du jury
Prof. O. N. A. Svensson, directeur de thèse
Prof. A. Gupta, rapporteur
Prof. F. Grandoni, rapporteur
Prof. F. Eisenbrand, rapporteur

Faculté informatique et communications
Laboratoire de théorie du calcul 2
Programme doctoral en informatique et communications

To my parents,
and Johanna.

ACKNOWLEDGMEN TS

I am indebted tomany people whose support and encouragement were crucial
during my journey towards completing my PhD thesis. The years I spent at
EPFL have been a fantastic experience, and I sincerely think that I have been
lucky in many ways until this moment. Now is the time to acknowledge it.

I would like to express my deepest gratitude to my advisor, Ola Svensson,
for being an exceptional advisor and a role model as a researcher. His never-
ending enthusiasm is truly contagious, and it is one of the reasons why
working in the Theory Lab has been so enjoyable to me. He often aims at
solving problems known to be very difficult, and seeing his success with that
strategy has been very inspiring. Even if he is not a co-author on several
papers in this thesis, he definitely had a big influence on all of them. In
addition to being a fantastic researcher, Ola always showed support in various
situations, from Covid times to life after the PhD. For this, I would like to
thank him.

I am also grateful to the members of my thesis committee Fritz Eisenbrand,
Fabrizio Grandoni, Anupam Gupta, and Emre Telatar, for the careful reading
of this thesis and the interesting discussion during the defense.

I have been very lucky to work with amazing co-authors during my time at
EPFL and the results of this thesis would not have existed without them. For
this, I would like to thank Marina Drygala, Paritosh Garg, Andreas Maggiori,
Lars Rohwedder, and my advisor Ola. I would also like to give a special thanks
to Lars, with whom I learned a lot about the Santa Claus problem, which is
now one of my favorite problems. I should also thank Louis Esperet, who was
my advisor during my master thesis, and is one of the people that inspired
me to pursue a PhD.
I am very grateful to Adam, Andreas, Chantal, Muriel, and Pauline with

whom we organized the workshop ALPS in 2022, inviting almost 50 people
from all over the world to come to EPFL for one week. It was a pleasure
organizing this with you. Special thanks to Chantal for also being a great
help in many other administrative or organizational aspects of my life, and
for always being friendly and welcoming.
During my PhD, I also had the opportunity to travel a lot for academic

visits. For this, I must thank Lars for inviting me in his lab in Maastricht, the
Simons Institute for giving me the opportunity to visit UC Berkeley, and Rico
Zenklusen for inviting me during an entire month at ETH Zurich.
I enjoyed a lot being part of the Theory Group and I would like to thank

all my friends and colleagues there for the friendly atmosphere that they
created, the very nice activities we did together, and the fun discussions on
many topics. Moreover, I am especially grateful to Xinrui for proofreading
the introduction of this thesis.
Although I will not attempt to name all of them, I want to thank all my

friends in France and Switzerland for making these years so enjoyable. Men-
tion spéciale à mes colocs et amis Arnout, Quentin, et Sylvain pour ces belles

iii

années de doctorat ponctuées d’épisodes de Top Chef, de moments difficiles
avec notre ami Shaun T, de randos, d’innombrables virées à KFC, et j’en passe.

Je tiens à exprimer ma reconnaissance particulière envers Géraldine et (un
autre) Sylvain, qui m’ont accueilli chez eux pendant plusieurs mois durant
l’épidémie de Covid. Je me suis toujours senti le bienvenu chez eux.
Mes plus sincères remerciements vont à ma famille, en particulier mes

parents Nathalie et Philippe, mon frère Arthur, et ma soeur Eliette. Sans leur
soutien, leur amour, et leurs encouragements sans faille depuis 28 ans, je ne
serais sans doute pas là où je suis aujourd’hui.

Je voudrais dédier ces dernières lignes à ma compagne Johanna. Johanna,
j’aurais sans doute dû écrire ton nom dans chacun des 3 derniers paragraphes
tellement tu es importante à mes yeux. Je veux te remercier pour ces belles
années à tes côtés, et j’espère en vivre beaucoup d’autres avec toi.

iv

ABSTRACT

In this thesis, we give new approximation algorithms for some NP-hard
problems arising in resource allocation and network design. As a resource
allocation problem, we study the Santa Claus problem (also known as the
MaxMin Fair Allocation problem) in which we are givenm agents, n indivis-
ible resources, and we have to allocate resources in order to maximize the
happiness of the least happy agent. For the network design part, we study two
key problems: the Steiner Forest problem and the Matching Augmentation
problem.
In the first part of this thesis, we give improved guarantees for the Santa

Claus problem in two prominent settings. First, we consider the Santa Claus
problem in the setting where the happiness of each agent i is an arbitrary
linear function fi. Obtaining a constant factor approximation in that setting
is a major open problem in the area of approximation algorithms. In 2009,
the MaxMin Arborescences problem was identified as a key special case
that appears to capture most of the difficulty of the general problem. Even
in that special case, a constant factor approximation has remained elusive,
and the current best algorithm only guarantees a polylogarithmic approxi-
mation in quasi-polynomial time. We give an exponential improvement to
this, anO(poly(log log(n)))-approximation in quasi-polynomial time for the
MaxMin Arborescences problem. Our second result in this part considers the
Santa Claus problem in the restricted assignment case: all the agents have the
same happiness function f , but each agent i is only interested in a subset Γi

of the resources. When f is a monotone submodular function, we show that
we can obtain an O(log log n)-approximation in polynomial time. Before our
work, comparable results in this setting were only known for the case where
f is a linear function.

In the second part of this thesis, we start with the Steiner Forest problem
which is defined as follows. Given a graphG and an arbitrary set of k terminal
pairs {{s1, t1}, . . . , {sk, tk}}, the goal is to return a minimum-weight sub-
graph that connects all the pairs. In 1996, Awerbuch, Azar, and Bartal showed
that an intuitive greedy algorithm guarantees an O(log2 k)-approximation.
Our first result is to show that, in fact, the greedy algorithm guarantees
an O(log(k) · log log(k))-approximation, which is nearly tight in light of a
known lower bound of order Ω(log k). Interestingly, our analysis also gives
important insights in the online setting of the problem, in which the pairs are
revealed one by one in an adversarial order. Our last result is on the Matching
Augmentation problem, a key problem to compute cheap 2-edge connected
subgraphs. We give a simple polynomial-time algorithm that guarantees a
better-than-2 approximation when compared to the standard relaxation of
the problem known as the cut LP. In contrast, previous better-than-2 approx-
imations were much more complicated and did not compare to this simple
relaxation.
Keywords— approximation algorithms, Santa Claus, maxmin allocation,

network design, Steiner forest, matching augmentation.

v

RÉ SUMÉ

Dans cette thèse de doctorat, nous proposons de nouveaux algorithmes
d’approximation pour des problèmes NP-difficiles d’allocation de ressources
et de conception de réseaux. Dans le domaine d’allocation de ressources, nous
étudions le problème du Père Noël (aussi connu sous le nom de problème
d’allocation MaxMin) : étant donné m individus et n ressources indivisibles,
le but est d’allouer les ressources afin de maximiser le bonheur de l’individu le
moins heureux. Dans le domaine de la conception de réseaux, nous étudions
deux problèmes importants : le problème de la forêt de Steiner et le problème
d’augmentation de couplage.

Dans la première partie de cette thèse, nous donnons de meilleures garan-
ties pour le problème du Père Noël dans deux cas importants. En premier
lieu, nous considérons le problème du Père Noël dans le cas où le bonheur de
chaque individu i est défini par une fonction linéaire quelconque fi. Obtenir
une approximation de facteur constant dans ce cas est un problème ouvert
majeur dans le domaine des algorithmes d’approximation. En 2009, le pro-
blème d’arborescences MaxMin a été identifié comme un cas particulier qui
semble capturer l’essence du problème général. Même dans ce cas particulier,
une approximation de facteur constant échappe encore largement aux tech-
niques actuelles, et l’état de l’art ne peut garantir qu’une approximation de
facteur polylogarithmique en temps quasi-polynomial. Nous proposons une
approximation de facteur O(poly(log log(n))) en temps quasi-polynomial
pour le problème d’arborescences MaxMin, ce qui constitue une amélioration
exponentielle de l’état de l’art. Notre deuxième résultat traite du problème du
Père Noël avec des restrictions d’allocation : le bonheur de tous les individus
est décrit par la même fonction f , mais chaque individu i n’accepte que les
ressources appartenant à un sous-ensemble Γi. Dans le cas où f est une
fonction sous-modulaire et monotone, nous obtenons une approximation de
facteur O(log log n) en temps polynomial. Avant nos travaux, des résultats
comparables n’étaient connus que dans le cas où f est une fonction linéaire.
Dans la deuxième partie de cette thèse, nous commençons par étudier le

problème de la forêt de Steiner : étant donné un graphe G et un ensemble de
k paires de terminaux {{s1, t1}, . . . , {sk, tk}}, nous devons trouver le sous-
graphe de poids minimum qui connecte toutes les paires. En 1996, Awerbuch,
Azar, et Bartal ont montré qu’un simple algorithme glouton garantit une
approximation de facteur O(log2 k). Notre premier résultat est de montrer
que l’algorithme glouton retourne en fait une approximation de facteur
O(log(k) · log log(k)), ce qui est presque optimal en raison d’une borne
inférieure connue d’ordre Ω(log k). De plus, nos résultats apportent une
compréhension nouvelle de la version en-ligne du problème, lorsque les
paires sont révélées les unes après les autres par un adversaire. Notre dernier
résultat concerne le problème d’augmentation de couplage, un problème
important pour trouver des sous-graphes 2-connectés de poids minimum.
Nous proposons un algorithme simple (et de complexité polynomiale) qui
garantit une approximation de facteur strictement inférieur à 2 par rapport à

vi

la valeur de la relaxation linéaire du problème. En comparaison, les autres
algorithmes connus pour garantir une approximation de facteur strictement
inférieur à 2 sont bien plus complexes et ne peuvent pas être comparés à
cette relaxation linéaire.

Mots-clefs— algorithmes d’approximation, Père Noël, allocation maxmin,
conception de réseaux, forêt de Steiner, augmentation de couplage.

vii

CON TEN TS

1 Introduction 1
1.1 Our contributions 3

1.1.1 The Santa Claus problem 3
1.1.2 Simple Algorithms for Network Design 4

1.2 How to read this thesis 6
1.3 Linear Programming 6

1.3.1 The use of LPs in this thesis 10

i The Santa Claus Problem
2 Introduction 15

2.1 MaxMin Arborescences 15
2.1.1 Our results for MaxMin Arborescences 17

2.2 The Restricted Submodular Santa Claus 18
2.2.1 Our results for the Restricted Submodular Santa Claus 19

2.3 Probabilistic lemmas 19
3 MaxMin Arborescences 21

3.1 Our techniques and intuition 21
3.2 Formal proof structure 23

3.2.1 Bounded depth solution 24
3.2.2 Local congestion and layered instances 25
3.2.3 Connecting the dots 26
3.2.4 Bottom-to-top pruning 27

3.3 Local to global congestion 28
3.4 Computing a solution with locally low congestion 34

3.4.1 Preprocessing the LP solution 35
3.4.2 The main rounding 35

3.5 From single source to multiple sources 45
3.6 APX-hardness of MaxMin Arborescences 48

4 The Restricted Submodular Santa Claus 51
4.1 Overview of previous techniques and our new ideas 51
4.2 Reduction to hypergraph matching problem 54

4.2.1 Reduction to unweighted hypergraphmatching 56
4.3 Matchings in regular hypergraphs 57

4.3.1 Overview and notations 58
4.3.2 Properties of resource sets 59
4.3.3 Selection of configurations 60
4.3.4 Assignment of resources to configurations 64

ii Network Design Problems
5 Introduction 73

5.1 The Steiner Forest Problem 73
5.1.1 Our results 75

5.2 The Matching Augmentation Problem 78
5.2.1 Our results 80

6 Improved bounds for Greedy Steiner Forest 83

ix

x contents

6.1 The idea behind the proof 83
6.2 Proof of Theorem 5.1 88

6.2.1 Problem definition and notation 88
6.2.2 Preliminary results and preprocessing of the instance 89
6.2.3 Overview of the proof 94
6.2.4 Building a balanced dual solution 97
6.2.5 Inductive proof using balanced dual solutions 102

6.3 Proof of Theorem 5.2 and Theorem 5.3 108
7 A Simple Approximation Algorithm for MAP 113

7.1 Our proof technique 113
7.2 The analysis of the LP-based Algorithm 114

7.2.1 Preliminaries 114
7.2.2 The analysis of the algorithm 115

8 Conclusion and Open Problems 121

iii Appendix
a Deferred proofs for MaxMin Arborescences 125

a.1 A challenging instance for randomized rounding 125
a.2 Preprocessing the Path LP 129

b Deferred proofs for the Restricted Submodular Santa Claus 133
b.1 Reduction to hypergraph matching problem 133

b.1.1 Solving the Configuration LP 133
b.1.2 Clusters 134

b.2 Properties of resource sets 137

Bibliography 143

L I S T OF F IGURE S

Figure 5.1 An integrality gap example. 81
Figure 6.1 An example with two cost classes before charging

or clustering. 85
Figure 6.2 An example with two cost classes after charging or

clustering. In the top left corner, smaller pairs are
much more expensive than the pairs that created the
big dual ball while we have the opposite situation
in the bottom right corner. 85

Figure 6.3 The girth argument. 93
Figure 7.1 An example of a bad DFS tree. 114
Figure 7.2 On the left side, the case when the first edge selected

out of u is heavy. On the right the case when the
first edge selected out of u is light. 119

Figure B.1 The directed network and an s-t cut. 139

xi

1I N TRODUCT ION

Many problems faced every day can be phrased as a discrete optimization
problem, in which there is a finite set of possible solutions. Some exam-
ples (among many) include finding the closest supermarket, finding the best
assignment of students to universities, or even how to design the energy
network of a country. It is quite clear that some of these questions are of sig-
nificant and global importance for a big part of the population. Many of these
problems are now solved automatically by a computer that runs an algorithm,
and it is therefore natural that these algorithms have a high importance in
our lives. Even seemingly minor decisions can have big influence on society
at large when millions of individuals rely on them, and this naturally creates
the need for a thorough and rigorous understanding of these algorithms.

Regrettably, many of these problems can have a complex structure which
often makes it very difficult (if not impossible) to find the best solution in a
reasonable amount of time. This obstacle motivated the study of approxima-
tion algorithms, which are algorithms designed to find approximate solutions
to optimization problems. Approximation algorithms are often used when
it is impractical or impossible to find the best solution, because the time
required to find that solution is prohibitive. The output of these algorithms
may not be perfect, but can still provide valuable insights and help us make
better decisions. This is the main topic of this thesis, which focuses on the
design and analysis of approximation algorithms with provable, worst-case
guarantees.
As a concrete illustration, imagine the following situation. You are man-

aging a factory in which there is a setM ofm identical machines that can
perform jobs for you. Each day you are given a new set J of n jobs to be
distributed among themmachines, where job i takes time pi to be completed
by a machine (the machines can perform several types of jobs, which may
not need the same time). Because you want to save electricity and go home
earlier, you are interested in how to assign these tasks to the machines so
as to minimize the overall completion time (also called the makespan). In
future references, we will call this problem theMakespan problem. A simple
solution would be to try all possible assignments of jobs to machine and keep
the best one; this is what we call an exhaustive search. But how long would
your computer need to perform this exhaustive search? Let us perform a
quick calculation, imagine you have 40 tasks and 10 machines (this is a very
small factory): then there are 1040 possible assignments. Unfortunately, this
number is already astronomically big. Assuming we had all the computa-
tional power of the world (often estimated to be around 1020 basic operations
per second, see [57] and references therein), then we would need at least 317
years to find the best assignment. With 44 jobs we would need more than a
million years.

This exponential growth of the number of solutions is sometimes referred
to as combinatorial explosion. Very often, this makes it prohibitive to try an

1

2 introduction

exhaustive search and necessitates the design of a faster algorithm. Tradi-
tionally, an algorithm is considered to be efficient if it runs in time that is a
polynomial function of the input size, and the class of problems for which
there is such an algorithm is denoted by P. Unfortunately, the MakeSpan
problem belongs to a wide and significant class of problems called NP-hard
problems, for which it is widely believed that there is no such efficient algo-
rithm1.

Fortunately, this is not the end of the story. Here, we were looking for an
exact solution to the Makespan problem but an approximate solution might
be satisfying as well. For instance, for theMakespan problem, there exists
an algorithm that runs in polynomial time and returns a solution that is
always within 1% of the optimal solution (see [54]). This result shows that it
is possible to sacrifice a tiny bit of accuracy to save one of the most valuable
resources, time. Clearly, it is not worth waiting for millions of years in order
to improve the solution by 1%.

The above example falls into the realm of approximation algorithms, which
are widely used when facing NP-hard problems. We say that an algorithm
has approximation ratio α if it always returns a solution that is not worse
than α times the cost of the best solution (for instance, the above algorithm
has approximation ratio 1.01). Now, a fundamental question that comes to
mind is how much accuracy do we need to lose in order to be able to find an
efficient algorithm? To answer this question, researchers have designed in-
creasingly elaborate algorithms to get better and better approximation ratios.
These results often came with very interesting insights and new algorithmic
techniques that turned out to be useful for other problems. Unfortunately,
during this quest of the best approximation guarantee, another crucial prop-
erty often got lost on the way: simplicity. This is also very important, because
extremely complicated algorithms are difficult to use in practice and often
remain in the world of theory. For many problems, it is therefore tempting
to design a simple and intuitive algorithm. In the Makespan problem, we
can consider the following very simple algorithm: schedule the jobs one by
one (in any order), so that each job gets assigned to the machine that has
been assigned the least amount of work so far. This is very natural as we
intuitively want to balance the loads on the machines. It turns out that this
algorithm has an approximation ratio of 2 (see [85]). It is extremely simple
and runs very fast in practice, which might be an advantage over a more
complicated algorithm with a better approximation ratio.

In this thesis, we focus on problems that are known to be NP-hard, which
means that there is probably no efficient algorithm to solve the problem (like
the Makespan problem defined above). We start by focusing on the Santa
Claus problem, a fundamental problem in resource allocation. Second, we
study two key network design problems: the Steiner Forest problem and the
Matching Augmentation problem. For the Santa Claus problem, we aim at
finding the best approximation ratio that an efficient algorithm can guarantee
(without worrying about the simplicity of the algorithm). For the network
design problems, we focus on analyzing the approximation ratio guaranteed

1 In fact,NP-hard problems can have polynomial time algorithms only if P = NP, an assertion
widely believed to be false. The P ̸= NP conjecture is one of the Millenium Prize Problems, a
list of seven of the most important problems in mathematics.

1.1 our contributions 3

by a simple and intuitive heuristic. Interestingly, all our results leverage some
linear programming relaxation of the problem at hand. We will elaborate
further on this concept at the end of this introduction (see Section 1.3).

1.1 our contributions

We give new approximation algorithms for various settings of the Santa Claus
problem, a fundamental problem in resource allocation, and two interesting
problems in the area of network design. We detail here these contributions.

1.1.1 The Santa Claus problem

First, we study the Santa Claus problem, also known asMaxMin Fair Allocation.
In this problem, we have to assign resources to players in order to make
the least happy player as happy as possible. Formally, we have a set P of
m players, a set R of n resources, and each player i is equipped with an
arbitrary valuation function fi : S ⊆ R 7→ R+. We have to find a partition
(S1, . . . , Si, . . . , Sm) of the resource set such that

min
i∈P

fi(Si)

is maximized (note that a resource can be assigned to at most one player).
The most classic version of this problem is when each fi is an arbitrary

linear valuation function. We can rephrase this case as the setting where
player i assigns value vij to resource j and the goal is to find an assignment
of resources to players σ : R 7→ P such that

min
i∈P

∑
j:σ(j)=i

vij

is maximized. Proving if a constant factor approximation can be obtained effi-
ciently or not is amajor open problem in the area of approximation algorithms
[13, 78, 85]. In fact, there is a huge gap in our understanding of this funda-
mental problem. The state-of-the-art gives only an O(nε)-approximation
in time nO(1/ε) for any fixed ε > 0, and an O(polylog(n))-approximation
in quasi-polynomial time2 [21]. On the other hand, it is only known that
getting a (2 − ε)-approximation (for any fixed ε > 0) is NP-hard [17, 68].
The mentioned algorithm is obtained by reducing to a problem similar to the
MaxMin Arborescences problem, which is defined as follows: Given a directed
graph G = (V,E) with sources and sinks, our goal is to find vertex disjoint
arborescences rooted in the sources such that at each non-sink vertex of an
arborescence the out-degree is at least k, where k is to be maximized. This
problem can be seen as a special case of the Santa Claus problem (see the
beginning of Part i for more details).
This special case is of particular interest, as it seems to capture most of

the difficulty of the Santa Claus problem with linear valuation functions.
Indeed, an O(nε)-approximation in time nO(1/ε) for any fixed ε > 0, and an

2 Quasi-polynomial refers here to a running time of npoly(logn), which is only slightly worse
than polynomial time.

4 introduction

O(polylog(n))-approximation in time nO(logn) were first obtained only for
the MaxMin Arborescence problem before being generalized to the general
linear valuations case [15]. Our main result on this problem is to obtain
an exponential improvement over previous works, an O(poly(log log n))-
approximation in time nO(logn) for the MaxMin Arborescence problem. We
also show that getting a better than (

√
e/(e− 1) − ε)-approximation for

the MaxMin Arborescence problem is NP-hard for any fixed ε > 0.
Lastly, we turn our attention to the Santa Claus problem with valuation

functions f1, f2, . . . , fm that are submodular and not linear. This is of interest,
as linear functions fail to capture properties that are often crucial. For instance,
submodular function capture the diminishing returns property in economics,
which is particularly relevant in the context of the Santa Claus problem. In the
linear case, a popular line of research (started by Bansal and Srividenko [14])
has considered the restricted assignment case. This is the special case where
each player i is given a set of desired resourcesΓi and the individual valuation
functions are defined as fi(S) = f(S∩Γi) for a global linear function f . This
can also be interpreted as maximizingmini f(Si)with additional assignment
restrictions, i.e., resources can only be assigned to certain players. In that
case, it has been known for a long time how to obtain anO(1)-approximation
in polynomial time [7, 39]. Our second result in Part i makes comparable
progress for the submodular variant: If f is a monotone submodular function,
we can in polynomial time compute an O(log log(n))-approximate solution.

1.1.2 Simple Algorithms for Network Design

In the second part of this thesis, we are interested in the design and analysis
of simple algorithms for problems in the wide area of network design, which
contains problems about designing cheap networks that are robust to edge
failures. Being able to design such networks is a fundamental question, both
in practice and in theory. The first problem we study is the Steiner Forest prob-
lem: we are given a weighted graph G = (V,E) with a weight function w :
E 7→ R+ and a set of k pairs of verticesP := {(s1, t1), (s2, t2), . . . , (sk, tk)}.
The goal is to compute the cheapest set of edges such that any two vertices
belonging to the same pair are connected (note that some vertices might
not appear in any pair). This is a generalization of two famous optimization
problems: Minimum Spanning Tree, which is the special case where P con-
tains all possible pairs, and Steiner Tree, where there is a special vertex s that
belongs to all the pairs in P . The Steiner Forest problem was at the heart of
many new algorithmic techniques and several polynomial-time algorithms
are known to guarantee a factor 2 approximation for this problem [47, 58].
However, these algorithms are fairly involved and are not necessarily the
most intuitive algorithms. The simplest algorithm is arguably the greedy
algorithm which can be informally defined as follows:

1.1 our contributions 5

1. Order the pairs in P in an arbitrary order.

2. For i = 1 to k, connect {si, ti} with the shortest path in the
current metric, then contract the metric along the chosen path.

Although simple an intuitive, greedy proved itself challenging to analyze.
Awerbuch, Azar, and Bartal [8] showed with a beautiful argument that this
algorithm guarantees a factor O(log2(k)) approximation for any ordering of
P . They also showed that this algorithm is no better than Ω(log(k)) (even
if we select a specific ordering of P), and they conjectured that greedy
gives in fact an O(log(k))-approximation. Whether this conjecture is true is
particularly interesting, because it would also mean that greedy is the optimal
algorithm in the online setting, where the pairs are given in an adversarial
order. Unfortunately, this conjecture has not seen any progress since its
formulation. Our first result in this part is to show that if we order the pairs
in non-increasing order of distance in the graphG (i.e. such that dG(si, ti) ⩾
dG(sj , tj) for all j > i), then greedy guarantees an O(log(k) · log log(k))-
approximation. While it does not imply an improved bound for the online
setting, our proof has important consequences even in that case.

Then, we turn our attention to theMatching Augmentation problem (MAP),
which is defined as follows. We are given a graph G = (V,E), a weight
function w such that w(e) ∈ {0, 1} for all e ∈ E and the set of edges that
are given weight 0 forms a matchingM . The goal is to compute the cheapest
set E′ ⊆ E of edges such that G′ = (V,E′) is 2-edge connected (note
that it is forbidden to take two copies of the same edge e ∈ E). The name
“matching augmentation” stems from the fact that the matchingM can be
included in the solution for free, and the challenge only remains in how
to “augment” this matching to make it 2-edge connected. This problem has
recently received significant attention as an important step towards better
approximation algorithms for finding cheap 2-edge connected subgraphs.
A 2-approximation can be obtained for this problem via many standard
techniques, and the challenge is to overcome this barrier to obtain better-
than-2 approximations. Previous works on this problem culminated in a 13

8 -
approximation algorithm [45]. However, these algorithms and their analysis
are very involved (the mentioned result is proven in a paper of 60 pages) and
do not compare against the problem’s well-known LP relaxation called the
cut LP. Our second result in this part is a simple algorithm that, guided by an
optimal solution to the cut LP, first selects a depth-first search (DFS) tree and
then finds a solution to MAP by computing an optimum augmentation of this
tree. Using properties of extreme point solutions, we show that our algorithm
always returns (in polynomial time) a better-than-2 approximation when
compared to the cut LP. We thereby also obtain an improved upper bound on
the integrality gap of this natural relaxation. The algorithm is simple enough
to be described in 3 basic steps, and the analysis takes roughly 5 pages.

6 introduction

1.2 how to read this thesis

This thesis is split into two main parts, each part presenting a detailed moti-
vation of the problems studied (including a fairly complete literature review),
followed by the proof of our results. Part i contains our results on the Santa
Claus problem, while Part ii contains our results on the Steiner Forest prob-
lem and the Matching Augmentation problem. In Chapter 8, we conclude
the thesis with some interesting open problems arising out of our work. For
clarity and better readability, some proofs are deferred to the Appendix in
Part iii. Before moving on to the main body of the thesis, we finish this chap-
ter by Section 1.3, which contains an introduction to Linear Programming, a
fundamental tool in all our results.

1.3 linear programming

A major challenge on the way to our results is to compare the cost of the
solution returned by an algorithm to the cost of the optimum solution, which
is unknown. To make matters worse, the optimum solution is often very
unstable to small changes in the instance and very difficult to reason about
in general. Fortunately, linear programming relaxations can be used to cope
with these issues. In this section, we introduce this powerful tool which we
will use extensively in this thesis.

Linear programs play a crucial role in the design and analysis of approxima-
tion algorithms. We illustrate its role on the Makespan problem we defined
earlier. In the previous version of Makespan we considered, all the machines
were identical. But in general, it might be that the factory has several types
of machines, which can perform different sets of jobs. To account for this,
we define pij as the time that machine i needs to finish job j. For instance,
if a machine cannot perform a specific job, one can model this by setting
pij = ∞ for the corresponding i, j. This more general version is called
makespan minimization on unrelated machines, and we will refer to this
version as Unrelated Makespan. It is significantly more challenging than
the version on identical machines. In particular, all the results we cited for
the Makespan problem do not hold anymore for the Unrelated Makespan
problem. For instance, it is easy to check that the simple factor 2 approxi-
mation for Makespan does not guarantee any finite approximation ratio for
Unrelated Makespan.

A natural question arises: what is the best approximation ratio an efficient
algorithm can guarantee for the Unrelated Makespan problem? To tackle
this question, we will use a linear program, a concept that we define next.

Definition 1.1 (Linear Program (LP) [85]). A linear program is formulated in
terms of some number of decision variables that represent some sort of decision
that needs to be made. The variables are constrained by a number of linear
inequalities and equalities called constraints. Any assignment of real numbers
to the variables such that all of the constraints are satisfied is called a feasible
solution. A linear program is said to be feasible if it admits a feasible solution.
In addition to the constraints, linear programs are defined by a linear function
of the decision variables called the objective function. The linear program seeks

1.3 linear programming 7

to find a feasible solution that either maximizes or minimizes this objective
function. Such a solution is called an optimal solution.

A breakthrough result by Khachiyan [60] shows that there is an efficient
(i.e. polynomial time) algorithm that decides, for any given linear program,
if there exists an optimal solution or not. Moreover, if an optimal solution
exists, then this algorithm returns such a solution in polynomial time.
We are now ready to use this concept in the context of approximation

algorithms. To this end, let us consider a slightly easier version of the Un-
related Makespan problem where instead of building the assignment we
only want to decide if there is an assignment of value less than T for T > 0
that is given in input. This is the decision version of the problem where the
algorithm simply has to answer YES or NO. While this may seem restrictive,
we can combine an algorithm for the decision version with any standard
binary search framework to find the smallest T such that there exists an
assignment of value at most T (let us call this optimum value T ∗). This is
often called an estimation algorithm, in contrast to a constructive algorithm
which also returns a schedule that achieves the claimed objective T ∗.

However, even the decision version of Unrelated Makespan is NP-hard,
hence we need to relax a little bit the problem. Fix an α ⩾ 1, we say that
a decision algorithm is an α-approximation to the decision version of the
problem if:

1. For any T ⩾ T ∗, the algorithm returns YES.

2. If T < T ∗/α, the algorithm returns NO.

3. If T ∗/α ⩽ T < T ∗, the algorithm can output YES or NO indifferently.

We recall here that T is given as input to the algorithm. Combining an
α-approximation to the decision problem with a binary search gives an α-
approximation to the estimation problem, i.e. an algorithm that returns in
polynomial time a value T̂ such that T ∗ ⩽ T̂ ⩽ αT ∗. In the rest of this
section, we focus on obtaining an α-approximation to the decision problem,
with α as close to 1 as possible (note that α is always at least 1). A landmark
result by Lenstra, Shmoys, and Tardos [68] shows that this is possible for
α = 2. The rest of the section is devoted to provide some brief introduction
to this result. To this end, we formulate a linear program and our estimation
algorithm will simply return YES if the linear program is feasible, and NO
otherwise. To decide if the linear program is feasible we can use Khachiyan’s
algorithm mentioned above. Now, we are ready to formulate the decision
variables and constraints of the linear program.

For any machine i, job j we define the decision variable xij that takes
value 1 if the job j is assigned to machine i and 0 otherwise. A solution to
our problem can now be described as the binary vector x := (xij)i∈M,j∈J .
In order for the solution to be feasible for our problem, it needs to respect a
few constraints, that we can enforce using linear inequalities. First, any job j
needs to be assigned to one machine to be processed therefore it must be that∑

i∈M
xij = 1,

8 introduction

for all j ∈ J . Finally, it must be that the load on any machine is no more
than T hence we can write∑

j∈J
xijpij ⩽ T,

for any machine i ∈M . Here we are simply designing a decision algorithm
that outputsYES if and only if there is a feasible solution to the linear program,
hence the objective function does not matter and we can simply define it to be
the constant function equal to 0, which we omit for clarity. In summary, we
have rephrased the decision version of the Unrelated Makespan problem
into the following set of constraints:

∑
j∈J

xijpij ⩽ T ∀i ∈M (1.1)

∑
i∈M

xij = 1 ∀j ∈ J (1.2)

xij ∈ {0, 1} ∀i ∈M, ∀j ∈ J . (1.3)

Unfortunately, this is not a linear program, because of the last constraint
xij ∈ {0, 1} (which is not linear). The above program is often called an
integer linear program, because the decision variables are forced to be inte-
gers. Solving integer linear programs in general is NP-hard, and this is not
surprising since the above integer linear program is equivalent to the exact
decision version of Unrelated Makespan, which is also NP-hard. Hence a
common approach in algorithm design is to relax the integer constraints. The
fact of relaxing the constraint naturally gave the name of linear programming
relaxation. Here, we relax the integer constraints into xij ⩾ 0 to obtain the
following linear program.∑

j∈J
xijpij ⩽ T ∀i ∈M (1.4)

∑
i∈M

xij = 1 ∀j ∈ J (1.5)

xij ⩾ 0 ∀i ∈M, j ∈ J . (1.6)

This is the linear programming relaxation of our decision problem. Because
it is now a linear program, we can use Khachiyan’s algorithm to decide in
polynomial time if there exists a feasible solution. Let us denote by TLP

the smallest T such that the above LP is feasible. Then clearly TLP ⩽ T ∗,
because Constraint (1.6) is less restrictive than Constraint (1.3). Recall that
our decision algorithm simply returns YES if and only if the LP is feasible.
Therefore if T ⩾ T ∗, then the algorithm always returns YES. To guarantee
an α-approximation, it only remains to prove that

T ∗

TLP
⩽ α

always holds. This ratio is often referred to as the integrality gap the relax-
ation, and it measures how strong the relaxation is. The bigger T ∗

TLP
is, the

less useful the relaxation is.

1.3 linear programming 9

Here, it turns out that T ∗

TLP
can be as big asm (the number of machines),

hence the approximation ratio α of our algorithm is at least m, far from
our goal of a 2-approximation. Consider the following example. There are
m machines, and a unique job {1} that has loadm on all the machines (i.e.
pi1 = m for any machine i). Then the linear program is feasible for T = 1,
by setting xi1 = 1/m for all machines i. Clearly the job is assigned once in
total, while every machine receives only a 1/m fraction of the job, for a total
load of 1. Hence TLP ⩽ 1. However, T ∗ ⩾ m because no matter where we
assign the job, it takes space at leastm.

To cope with this, a useful idea is to introduce more restrictive constraints
to the linear program. While doing this, we must ensure that an integral solu-
tion also satisfies those constraints, as otherwise it would not be a relaxation
anymore. In order to find a suitable candidate constraint, we must understand
intuitively what went wrong in the previous relaxation. Here, what happened
is that the linear programming relaxation is allowed to spread a huge job
on many machines, while the integral solution has to assign it entirely on a
single machine. But clearly, if the objective is T , then any integral solution
cannot assign job j on machine j if pij > T . This additional insight can be
incorporated into the relaxation in the following sense. For any job j, we
denote by BT (j) the set of machines such that pij > T . We then obtain the
following new relaxation.∑

j∈J
xijpij ⩽ T ∀i ∈M (1.7)

∑
i∈M\BT (j)

xij = 1 ∀j ∈ J (1.8)

xij ⩾ 0 ∀i ∈M, j ∈ J . (1.9)

Constraint (1.5) was simply replaced by Constraint (1.8), in which we allow
the LP to assign job j to machine i only if pij ⩽ T . Note that the previous
example is not feasible for T = 1 on this new relaxation. It turns out that this
seemingly benign modification of the LP now guarantees an integrality gap
of at most 2. This was showed in [68]. We do not give here the proof here as
it is beyond the scope of this introduction. To obtain such a result, [68] used
a procedure that transforms the feasible solution x into an integral solution
x̂ (i.e. a solution such that x̂ij ∈ {0, 1}). Such a procedure is often referred
to as a rounding scheme, a crucial concept in many results in approximation
algorithms. Indeed, after solving the LP, we obtain a feasible solution xwhere
xij ∈ [0, 1] and we would like to show that there exists an integral solution
that is not much worse than x. The most intuitive way to proceed is to
transform x into an integral vector x̂ where x̂ij ∈ {0, 1}. Along the way, if
we manage to show that

∑
j∈J

x̂ijpij ⩽ α ·

∑
j∈J

xijpij

 (1.10)

for all i ∈ M , then we will have shown that the integrality gap of the
relaxation is at most α, and that our algorithm is an α-approximation. This is
precisely what is shown in [68] for α = 2, hence obtaining a 2-approximation

10 introduction

for our problem. Finding the good rounding scheme is however non-trivial,
as some intuitive rules do not work. For instance, one might be tempted to
simply assign each job j to the machine i such that xij is maximum. This
intuitively follows the decisions made by the LP, but unfortunately does not
guarantee a factor 2. Another intuitive rounding is simply to assign randomly
each job j randomly to machine i with probability xij , but again this does
not guarantee a factor 2. In fact, the rounding scheme of [68] is non-trivial
and crucially exploits an additional property of the feasible solution x.

Indeed, [68] assumes that the feasible point x that we need to round is an
extreme point solution to the LP. A feasible solution x is said to be an extreme
point if it cannot be expressed as a convex combination of other feasible
points. It turns out that if the LP has a bounded feasible region (which is
the case in many relevant settings in approximation algorithms), then there
always exists an extreme point that also achieves the optimum value, and
an optimum extreme point can be found in polynomial time. These extreme
points have some additional properties that are often useful and that we do not
develop here. For intuition in our setting, the reader might just think that the
extreme point x that we obtain has only n+m coordinates that are non-zero,
i.e. the solution is very sparse (note that in total there are n ·m coordinates).
Using the special structure of extreme points, [68] design a clever rounding
scheme that satisfies Equation (1.10) with α = 2. Interestingly, this rounding
scheme runs in polynomial time, which renders the whole proof constructive
and although we were focusing only on estimating the optimum value, we
get a constructive algorithm that runs in polynomial time.
While the techniques here are specific to the Unrelated Makespan

problem, the general structure of the example illustrates a very success-
ful paradigm in the area approximation algorithms: (1) write a relaxation of
the problem, then (2) devise a rounding scheme of the fractional solution.
Both steps are crucial and challenging: Step (1) might necessitate to introduce
stronger constraints, and carrying out Step (2) successfully involves design-
ing a new algorithm. There is no magic recipe that works for all problems,
and overcoming each step is often an interesting mathematical problem on
its own.

1.3.1 The use of LPs in this thesis

In all the results presented in this thesis, we will use a linear programming
relaxation of the problem considered. Our results on the Santa Claus problem
and the Matching Augmentation problem essentially fit into the classic frame-
work described above: first write a relaxation of the problem, then round
a fractional solution into an integral one. Interestingly, for the Matching
Augmentation problem we crucially need that the LP solution has a sparse
support, which is satisfied in general by extreme points of the linear program.
Lastly, for our result on the Steiner Forest problem, the use of linear program-
ming techniques is less obvious, but still important. Indeed, to compare the
cost of the greedy solution to the optimum solution, we need to lower bound
the cost of the latter. In order to achieve this, we rely on the weak duality the-
orem for linear programs, which states that the value of any feasible solution

1.3 linear programming 11

to the dual linear program is a lower bound on the objective of the primal
linear program. In our setting, the primal will be a relaxation of the Steiner
Forest problem, hence a feasible dual solution gives us a lower bound on the
value of any feasible solution to the Steiner Forest problem. This last example
is interesting, as it shows that even if the algorithm itself does not use the LP
relaxation, this relaxation is still useful in the analysis of the algorithm.

Part I

THE SAN TA CLAUS PROBLEM

2I N TRODUCT ION

In this part, we focus on the Santa Claus problem, a central problem in
scheduling and algorithmic fairness. In its full generality, we have a set P
ofm players, a set R of n resources, and each player i is equipped with an
arbitrary valuation function fi : S ⊆ R 7→ R+. We have to find a partition
(S1, . . . , Si, . . . , Sm) of the resource set such that

min
i∈P

fi(Si)

is maximized (note that a resource can be assigned to at most one player).
This problem is often referred to as MaxMin Fair Allocation in the sense that
the objective is to find the fairest solution, unlike other objectives like total
welfare which maximizes the average happiness. Unfortunately, without
any restrictions on the utility functions the Santa Claus problem becomes
hopelessly difficult. Consider the following reduction from set packing. There
are sets of resources {S1, . . . , Sk} and all utility functions are equal and
defined by fi(S) = 1 if Sj ⊆ S for some j and fi(S) = 0 otherwise. Deciding
whether there are m disjoint sets in S1, . . . , Sk (a classical NP-hard problem,
see [59]) is equivalent to deciding whether the optimum of the Santa Claus
problem is non-zero. In particular, obtaining any bounded approximation ratio
for Santa Claus in this case is NP-hard. This motivates natural restrictions on
the valuation functions. This part gives new results for two special cases of
the Santa Claus problem that we callMaxMin Arborescences, and the Restricted
Submodular Santa Claus.

2.1 maxmin arborescences

The most natural restriction is to assume that all the fi are linear valuation
functions. We can rephrase this as follows: each resource j has unrelated
values vij for each of the player i. The goal is to assign each resource j to a
player σ(j) such that we maximize the utility of the least happy player, that
is,

min
i∈P

∑
j:σ(j)=i

vij .

The dual of the problem, where one has to minimize the maximum instead
of maximizing the minimum is the problem of makespan minimization on
unrelated parallel machines (this is exactly the Unrelated Makespan prob-
lem from the introduction of this thesis). Both variants form notoriously
difficult open problems in approximation algorithms [13, 78, 85] and there is
a common believe that the Santa Claus problem admits a constant approxi-
mation if and only if makespan minimization on unrelated machines admits
a better-than-2 approximation [13]. Although formally no such reduction

15

16 introduction

is known, techniques often seem to transfer from one problem to the other,
which gives an additional motivation to study this problem.

Bateni, Charikar, and Guruswami [15] identified as a central special case
of the Santa Claus problem the restriction that for all values we have vij ∈
{0, 1,∞} and for each resource there is at most one player with vij = ∞
and for each player there is at most one resource with vij =∞. This special
case can be rephrased in a graph problem as follows. For each resource j
such that there is no player i with vij = ∞, we create a sink vertex. For
each player i such that there is no resource j with vij = ∞, we create a
source vertex. For any pair of a player i and resource j such that vij =∞, we
create a vertex in our graph. Note that in this construction, source vertices
correspond to a single player in the original instance, sink vertices correspond
to a single resource, and other vertices correspond to a single player and a
single resource. Next we create directed edges in our graph as follows. For
every vertex v that corresponds to a player i in the original instance, we add
a directed edge from v to all other vertices in the graph that corresponds
to a resource j with vij = 1. The Santa Claus problem in this special case
can now be rephrased as follows. We are given a directed graph G = (V,E),
a set of sources S ⊆ V , and a set of sinks T ⊆ V . Our goal is to compute
a set of vertex disjoint arborescences rooted in each of the sources S (one
for each source). The leaves of these arborescences must be at the sinks (i.e.
only vertices in T can be included as a leaf of an arborescence). For all inner
vertices we must have an out-degree of k, where k is to be maximized. This
problem is called the MaxMin Arborescences problem.

Bateni et al. gave amax{poly(log n), nε}-approximation in time nO(1/ε),
which is still the state-of-the-art for this problem. In particular, they ob-
tain a quasi-polynomial time polylogarithmic approximation by setting
ε = log log n/ log n. In a highly non-trivial way, the same approach was
then generalized by Chakrabarty, Chuzhoy, and Khanna [21] to obtain the
same result also for the Santa Claus problem. The only hardness known for
the Santa Claus problem is that there is no better-than-2 approximation (see
[17, 68]). This still leaves a large gap in the understanding of both problems.
In particular, the two most pressing questions are whether the polyloga-
rithmic guarantee can also be achieved in polynomial time and whether a
sublogarithmic approximation guarantee can be achieved.
While much progress on sublogarithmic approximations has been made

on other special cases of the Santa Claus problem, most notable the restricted
assignment case (on which we will elaborate later), these results are all based
on a popular relaxation of the problem named the configuration LP. However,
it is known that for the general Santa Claus problem the configuration LP has
an polynomial integrality gap and hence these methods seem very unlikely
to generalize. Similarly, the MaxMin Arborescences problem is a case where
the integrality gap of the configuration LP is already high [15] and as such
the algorithmic techniques need to be rethought. Given this and the fact that
previous progress on the problem was quickly extended to the general Santa
Claus problem, the MaxMin Arborescences problem seems to be an important
piece of the puzzle towards the goal of understanding the approximability of
the Santa Claus problem.

2.1 maxmin arborescences 17

The rephrasing of this special case of the Santa Claus problem as an
arborescence problem also uncovers an intriguing connexion to the Directed
Steiner Tree problem. In this problem we are given an edge-weighted directed
graph with a source and a set of sinks. The goal is to find an arborescence of
minimal weight, which is rooted at the source and spans all sinks. It is quite
remarkable that the state-of-the-art for this problem is very similar to ours:
there is a nε-approximation algorithm in polynomial time for every fixed
ε > 0 and a polylogarithmic approximation algorithm in quasi-polynomial
time [22]. Unlike our problem, it was shown that no sublogarithmic (in fact,
no log2−ε n) approximation exists [52].

2.1.1 Our results for MaxMin Arborescences

Our main result for MaxMin Arborescences is the following.

Theorem 2.1. There exists an O((log log n)20)-approximation running in
time nO(logn) for the MaxMin Arborescences problem.

We remark that we did not try to optimize the exponent of 20 in the
approximation guarantee. The main challenge was to get a sublogarithmic
guarantee (i.e. an o(log n)-approximation) and approach a constant factor.
Indeed, in light of theΩ(log2−ε(n))-hardness for directed Steiner Tree [52], it
was not even clear if a sublogarithmic guarantee was possible for the MaxMin
Arborescences problem. In fact, if one takes a closer look at the literature on
directed Steiner Tree problems, we believe our result to be rather surprising.
We elaborate now on this. Related to the directed Steiner Tree problem is
also the (undirected) group Steiner Tree problem, which can be shown to be
a special case. In this problem, we are given an undirected weighted graph
and a list of groups that are subsets of vertices. The goal is to compute the
cheapest set of edges that is connected and contains at least one vertex from
each group. Here, there are more subtile connections to our problem: taking
a closer look at the literature one can notice that the challenging instances
in the group Steiner Tree problem have a similar structure to the challenging
ones for the MaxMin Arborescence problem. More precisely they are layered
graphs with O(log n) layers. Halperin et al. [51] show that the integrality
gap of a natural LP relaxation of group Steiner Tree could be amplified from
Θ(log(n)) on O(1)-layered instances to Θ̃(log2(n)) on Ω(log(n))-layered
graphs. This construction was later transformed to the hardness result by
Halperin and Krauthgamer [52].

Before our result, it was quite plausible that such an amplification technique
could also apply in the context of the MaxMin Arborescences problem. This
would have shown how to amplify a Ω(1) gap on O(1)-layered instances to
a Ω̃(log(n)) gap on Θ(log(n))-layered instances. In Appendix A.1, we adapt
the construction of [51] to our setting. At first sight, the gap indeed seems to
amplify and our construction shows that the previous rounding algorithms
of [15, 21] cannot hope to get better than a Ω̃(log(n))-approximation. Fortu-
nately, we notice that a simple (but crucial) pruning trick seems to resolve
the issue for this specific construction. We note that the group Steiner Tree
problem has a rich history and it would be very interesting to see if more
techniques could be transferred to the MaxMin Arborescences problem.

18 introduction

Finally, we also show as a side result a hardness of approximation for the
MaxMin Arborescences problem.

Theorem 2.2. For any ε > 0, there is no (
√

e/(e− 1)− ε)-approximation
algorithm for the MaxMin Arborescences problem, unless P = NP.

It is worthwhile to mention that our hardness result is obtained by a
reduction from the max-k-cover problem. Interestingly, the hardness of di-
rected Steiner Tree problems in [52] is obtained by a reduction from set cover
combined with the amplification technique mentioned above.

2.2 the restricted submodular santa claus

We introduce here our second result on the Santa Claus problem. As explained
in the beginning in this chapter, assuming no restrictions on the valuation
functions fi makes the problem hopelessly difficult: no finite approximation
is possible. However, we notice that most of the work on the Santa Claus
problem has focused on the case where all valuation functions fi are linear,
and there are some interesting special cases of linear functions where a
constant factor is already known. A prominent such example is the so-called
restricted assignment case.

In the restricted assignment case, the utility functions are defined by one
linear function f and a set of resources Γi for each player i. Intuitively,
player i is interested in the resources Γi, whereas the other resources are
worthless for him. The individual utility functions are then implicitly defined
by fi(S) = f(S ∩ Γi).

In a seminal work, Bansal and Srividenko [14] provide an Õ(log log(m))1-
approximation algorithm for this case using randomized rounding of the
configuration LP. This was improved by Feige [39] to anO(1)-approximation.
Further progress on the constant or the running timewasmade since then, see
e.g. [5, 6, 24, 25, 35, 53, 76]. These works culminate in a (4+ε)-approximation
in polynomial time and an 3.534-approximation that only gives an estimation
of the optimum value in polynomial time (but does not return the correspond-
ing assignment in polynomial time).
It is very natural to ask what is possible beyond the case of linear val-

uation functions. Two naturally arising properties of utility functions are
monotonicity and submodularity, see for example the related submodular
welfare problem [67, 83] where the goal is to maximize

∑
i fi(Si). A func-

tion f is monotone, if f(S) ⩽ f(T) for all S ⊆ T . It is submodular, if
f(S∪{a})−f(S) ⩾ f(T ∪{a})−f(T) for all S ⊆ T and a /∈ T . The latter
is also known as the diminishing returns property in economics. A standard
assumption on monotone submodular functions (used throughout this thesis)
is that the value on the empty set is zero, i.e., f(∅) = 0. Goemans, Harvey,
Iwata, and Mirrokni [46] first considered the Santa Claus problem with ar-
bitrary monotone submodular utility functions as an application of their
fundamental result on submodular functions. Together with the algorithm
of [21] it implies an O(n1/2+ε)-approximation in time nO(1/ε). In the case

1 To be precise, the exact approximation ratio is O(log log(m)/ log log log(m)).

2.3 probabilistic lemmas 19

that the valuation functions are all equal, that is, fi(S) = f(S) for a mono-
tone submodular function f , Krause, Rajagopal, Gupta, and Guestrin gave a
constant approximation [65]. We also refer to their work for an application
of this problem in sensor placement.

Our second result investigates the approximability of the Santa Claus with
monotone submodular functions in the restricted assignment case. That is,
all utility functions are defined by fi(S) = f(S ∩ Γi), where f is a mono-
tone submodular function and Γi is a subset of resources for each players
i. Before our work, the state-of-the-art for this problem was the O(n1/2+ε)-
approximation algorithmmentioned above, since none of the previous results
for the restricted assignment case with a linear utility function apply when
the utility function becomes monotone submodular. In the rest of the thesis,
we refer to this problem as the Restricted Submodular Santa Claus problem.

2.2.1 Our results for the Restricted Submodular Santa Claus

In Chapter 4, we show the following theorem, which essentially generalizes
the result of Bansal and Srividenko [14] to the case of submodular functions.

Theorem2.3. There is a randomized polynomial timeO(log log(n))-approximation
algorithm for the Restricted Submodular Santa Claus problem.

2.3 probabilistic lemmas

We finish the introduction of this part by stating here two crucial probabilistic
lemmas, that we will use extensively for both results.

Lemma 2.4 (Chernoff’s bound, see [31]). Let X1, . . . , Xn be independent
random variables that take value in [0, a] for some fixed a. Let Sn =

∑n
i=1Xi.

Then we have, for any δ ⩾ 0,

P[Sn ⩾ (1 + δ)E[Sn]] ⩽ exp

(
− δ2E[Sn]

(2 + δ)a

)
.

Lemma 2.5 (Constructive Lovász Local Lemma, see [70]). Let X be a finite
set of mutually independent random variables in a probability space. Let A be
a finite set of events determined by these variables. For any A ∈ A, let ΓA(A)
be the set of events B ∈ A such that A and B depend on at least one common
variable. If there exists an assignment of reals x : A 7→ (0, 1) such that for all
A ∈ A,

P[A] ⩽ x(A) ·
∏

B∈ΓA(A)

(1− x(B)) ,

then there exists an assignment of values to the variables X not triggering any
of the events in A. Moreover, there exists a randomized algorithm that finds
such an assignment in expected time

|X | ·
∑
A∈A

x(A)

1− x(A)
.

3MAXMIN ARBORESCENCES

This chapter is devoted to the proof of Theorem 2.1 and Theorem 2.2. For
Theorem 2.1, we start by a brief overview of the main ideas and intuition
behind our result before giving the formal proof structure in Section 3.2, and
then we provide the three crucial steps of the proof in Section 3.3, Section
3.4, and Section 3.5. We close this chapter by a short proof of Theorem 2.2
in Section 3.6. All the results in this chapter are based on a joint work with
Lars Rohwedder which has been accepted for publication at the Annual ACM
Symposium on Theory of Computing (STOC ‘23). It is currently available on
ArXiv [12].

3.1 our techniqes and intuition

A crucial idea that goes back to previous work [15, 21] is to allow congestion
in the solution. Generally, a vertex can only have one incoming edge in
the solution, but we relax this constraint. We call the maximum number of
times a vertex is used the congestion. The algorithms in [15, 21] employ
randomized rounding to obtain a solution with polylogarithmic congestion.
The congestion can then be translated into an approximation rate by relatively
straight-forward arguments. This polylogarithmic congestion comes from
a Chernoff bound that yields an inversely polynomial probability, which is
then applied to all vertices with a union bound.
A new ingredient of our algorithm is the notion of local congestion.

Roughly speaking, we first compute a solution, which still has polyloga-
rithmic congestion, but when considering only a local part of the solution
(say, vertices within a distance of ℓ = O(log log n) in the arborescences), then
this local part needs to have much smaller congestion, i.e., poly(log log n).
In other words, if a vertex is used multiple times in the solution, then the
occurrences should be far apart in the arborescences.

First, let us describe why it is plausible to be able to obtain such a guarantee.
It is already known that by randomized rounding a polylogarithmic conges-
tion can be achieved. The local congestion on the other hand is by definition
a very local constraint and hence Lovász Local Lemma (LLL) is natural to
employ. This is indeed our approach, although the details are challenging.
Next, we will explain how to arrive at a sublogarithmic congestion. The

approach that we call top-to-bottom pruning is very blunt: slighly oversim-
plifying, we take a given solution (with poly(log n) congestion) and start
at the sources of the arborescences. We throw away randomly a constant
fraction (say, half) of their children. Then we move to the other children and
recurse. Clearly, this decreases the approximation rate only insignificantly.
However, in expectation the congestion at each vertex decreases drastically.
If for example a vertex is at distance d from the source of an arborescence,
then the probability of it not being removed is only 1/2d. There is, however, a
caveat here: suppose that the same vertex occurs in a (relaxed) arborescence

21

22 maxmin arborescences

many times and all occurrences are very close to each other. Then there is
a high positive correlation between the vertices not being removed, which
forms a serious problem. Indeed, this is where the local congestion comes
in. It essentially bounds the dependence of occurrences surviving. Again,
this proof makes use of LLL, because it seems infeasible to try and make
the probability of a vertex’s congestion staying above poly(log log n) small
enough to apply a union bound.
Since both parts require LLL, it is crucial to bound the dependencies.

However, if k is large (say Ω(n)), then even a local part of the arborescence
contains many vertices. It then seems unlikely to be able to guarantee locally
low congestion for every vertex. Roughly speaking, we will only guarantee
the property for a large fraction of the vertices, so that we can make the
probability inversely polynomial in k. All other vertices need to be removed
from the solution and this is generally very dangerous: even if we remove only
a small fraction of vertices, this can lead to other vertex removals becoming
necessary, because they now have a low out-degree. If we are not careful,
this can accelerate and corrupt the whole solution. We call this the bottom-
to-top pruning and we formalize a condition, under which the damage to the
solution can be controlled. This condition is then applied in both parts.

This brings us to a discussion on our two pruning techniques. Intuitively,
both approaches have complementary merits to each other. Bottom-to-top
pruning makes it easy to maintain a low maximum congestion, but difficult
to keep a good number of children for every vertex in the arborescence.
On the contrary, top-to-bottom pruning makes it very easy to maintain a
good number of children, but difficult to keep the maximum congestion
under control. Our proof can be seen as a careful combination of those two
techniques using LLL. The use of pruning makes the proof fairly involved
and one might wonder if this could not be avoided. In particular, it is not
clear if the analysis of the previous randomized rounding algorithm (see
[15, 21]) is tight or not. However, we argue that an Ω(log n/ log logn) factor
seems unavoidable in previous works, and that it is not easily fixable. We
now elaborate on this: In previous approaches as in ours, a crucial part of the
algorithm is to solve the max-min degree arborescence problem on layered
instances (that is, the sources are located in the first layer, and edges can exist
only between vertices of consecutive layers). Previous works [15, 21] then
solve these instances by rounding an LP relaxation of the problem (we use the
same LP relaxation but with a different rounding). An intuitive randomized
rounding that appears in previous works is roughly as follows. Assume that
the LP says there exists a solution of value k. Then the source samples k
children with probability equal to the LP values. These selected children then
select k children each, again equal to the LP values (more precisely, values
that correspond to conditioning on the previous selections). In that manner,
we make progress layer by layer until reaching the last layer. This guarantees
a maximum congestion that is at most polylogarithmic in the number of
vertices, hence the polylogarithmic approximation ratio. At this point, one
might be tempted to argue that very few vertices in our solution will have
congestion Ω(log n) and that they are not a serious problem. Unfortunately,
we show in Appendix A.1 an instance in which the above rounding results in a
solution in which all the sinks selected in the arborescence have an expected

3.2 formal proof structure 23

congestion of Ω(log n/ log log n). While this may seem counter-intuitive,
recall that here we are implicitly conditioning by the fact of being selected in
the solution. It is non-trivial to recover from this issue: For instance deleting—
in a bottom-to-top fashion—the vertices with high congestion will basically
remove almost all the sinks which will corrupt the whole solution.
Lastly, there is one important issue that we have not mentioned so far:

in a similar way that each vertex loses some fraction of its children in the
rounding (compared to the LP relaxation), we would lose some fraction of
the sources. This happens also in previous works [15, 21], who then only
compute a solution for a 1/poly(log n) fraction of the sources and repeat it
for poly(log n) times to cover all sources. This again introduces a congestion
of poly(log n), which seems difficult to avoid with the randomized rounding
approach. First, we only design the randomized rounding to approximate
single source instances so that we do not have to cope with this. Then we
present a black-box reduction from many sources to one source, which uses
a non-trivial machinery that is very different from the randomized rounding
approach. Namely, this is by a local search framework, which has already
seen a big application in the restricted assignment case of the Santa Claus
problem, see related work. Usually the local search is analyzed against the
configuration LP, which is not applicable here, so our way of applying it is
quite different to previous works.

3.2 formal proof structure

We start with some simplifying assumptions. Let k be the optimum of the
given instance, which we guess via a binary search framework. If k ⩽
poly(log log n), then obtaining a (1/k)-approximation is sufficient. This
is easy to achieve: it is enough to find |S| vertex-disjoint paths that connect
each source to a sink, which can be done by a standard max-flow algorithm.
Throughout the paper we assume without loss of generality that k is at
least poly(log log n) with sufficiently large constants. Similarly, we assume
that n is larger than a sufficiently large constant. Whenever we divide k
by some term, for example, k/ log logn, we would normally have to write
⌊k/ log logn⌋. All the divisors considered can be assumed to be much smaller
than k, hence any loss due to rounding is only a small constant factor and
therefore insignificant. We assume for simplicity that the divisors are always
integral and the divisions have no remainder.
We describe solutions using a set of paths instead of directly as arbores-

cences. This abstraction will become useful in the linear programming relax-
ation, but also in other parts throughout the paper. With a given arborescence,
we associate the set of all paths from a source to some vertex in it. Let p
be a path from a source to some vertex v. Formally, p is a tuple of vertices
(v0, v1, . . . , vℓ) where v0 is a source, v1 a vertex with an edge from v0, and
more generally vi is a vertex having an edge from vℓ−1. We do not explicitly
forbid circles, but the properties of a solution will imply that only simple
paths can be used. Finally we say that p is a closed path if its last vertex is a
sink and an open path otherwise.

24 maxmin arborescences

Wewill denote by p◦v the path p, to which we add the extra vertex v at the
end. We write |p| for the length of path p. A path q is said to the a descendant
of p if it contains p as a prefix. In that case we call p an ancestor of q. We also
say that p ◦ v is a child of p (who is then a parent of p ◦ v). Within a given set
of paths P , we denote the sets of children, parent, ancestors, and descendants
of a path p by CP (p), PP (p), AP (p), and DP (p) respectively. By DP (p, ℓ)
we denote the descendants q ∈ DP (p) with |q| = |p|+ ℓ. Furthermore, we
writeDP (p,⩽ ℓ) =

⋃
ℓ′⩽ℓDP (p, ℓ

′). The set of paths that ends at a vertex v
is denoted by IP (v). If the set of paths P is clear from the context, we may
choose to omit the subscript for convenience.
The conditions for a set of paths Q to form a degree-k solution are the

following:

1. (s) ∈ Q for every source s,

2. |IQ(v)| ⩽ 1 for every v ∈ V , and

3. |CQ(p)| = k for every path p ∈ Q that is open.

We will also consider a relaxed version of (2), where we allow higher
values than 1. Then we call maximum over all |IQ(v)| the congestion of the
solution. The motivation for looking at solutions with (low) congestion is
that we can remove any congestion by reducing k by the same factor.

Lemma 3.1. Let Q be a degree-k solution with congestion K . Then in polyno-
mial time we can compute a degree-k/K solution without congestion.

Proof. Consider a bipartite multigraph (U ∪ U ′, F) on two copies U,U ′ of
the vertices in V that appear in Q. The graph has an edge (u, v) ∈ F for
every path p ∈ Q that ends in u and for which p◦ v ∈ C(p). Then the degree
of a vertex u′ ∈ U ′ is exactly the congestion of this vertex. Similarly, the
degree of a vertex u ∈ U is k times its congestion. We consider a fractional
selection of edges xe = 1/K for each e ∈ F . Here, each vertex u ∈ U has∑

e∈δ(u) xe ⩾ k/K and each vertex u′ ∈ U ′ has
∑

e∈δ(u′) xe ⩽ 1, where
δ(u) are the edges incident to u. As explained at the beginning of the section,
we assume thatK divides k and thereforeK/k is integer. By integrality of
the bipartite matching polytope there exists also an integral vector x′ that
satisfies these bounds. This corresponds to a degree-k/K solution without
congestion.

3.2.1 Bounded depth solution

The following proof follows exactly the arguments of a similar statement
in [15]. We repeat it here for convenience.

Lemma 3.2. Let Q be a degree-k solution. Then there exists a degree-k/2
solution Q′ ⊆ Q where |p| ⩽ log2 n for every p ∈ Q′.

Proof. We iteratively deriveQ′ fromQ. For every d = 1, 2, . . . , nwe consider
the paths p ∈ Q with |p| = d. For d = 1 we add all these paths to Q′. Then
given the paths of length d in Q′ we select for each of them the subset of
k/2 children in Q, which has the least number of descendants (assuming for

3.2 formal proof structure 25

simplicity that 2 divides k). For every d we will now bound the total number
of descendants in Q of paths of this length, namely

nd =
∑

p∈Q′:|p|=d

|DQ(p)| .

Notice that the descendants are counted in set Q and not Q′. Clearly, we
have n1 ⩽ n, since |Q| ⩽ n. Then since we remove the children with
the largest number of descendants, we get ni+1 ⩽ ni/2 for every i. Thus,
nlog2 n = 0.

3.2.2 Local congestion and layered instances

A crucial concept in our algorithm are solutions with locally low congestion.
It will later be shown that such a solution suffices to derive a solution with
(globally) low congestion.

Definition 3.3. Let Q be a solution and ℓ ∈ N. We say that Q has an ℓ-local
congestion of L, if for every p ∈ Q ∪ {∅} and v ∈ V we have

|ID(p,⩽ℓ)(v)| ⩽ L .

For sake of clarity, let us note the special case of p = ∅ in the definition
above. In this case, D(p,⩽ ℓ) is simply the set of all paths in P with length
at most ℓ (potentially starting at different sources). Throughout the paper
we use values of the order ℓ = O(log log n) and L = poly(log log n). The
usefulness of local congestion is captured by the following lemma, which we
will prove in Section 3.3.

Lemma 3.4. Let Q be a degree-k solution with ℓ-local congestion of L and
global congestion K , where ℓ ⩾ log2K and K ⩾ log2 n. Then we can com-
pute in polynomial time a degree-k/(8ℓ) solution Q′ ⊆ Q, which has global
congestion at most

O(ℓ7L) .

It remains to show how to compute a solution with low local congestion.
The abstraction of local congestion and the lemma on bounded depth allows
us to reduce at a low expense to instances in layered graphs.

Definition 3.5. A layered instance has layers L0∪̇L1∪̇ . . . ∪̇Lh = V such
that L0 consists of all sources and edges go only from one layer Li to the next
layer Li+1.

Lemma 3.6. In polynomial time we can construct a layered instance with h =
log2 n such that if there exists a degree-k solution for the original instance, then
there exists a degree-k/2 solution for the layered instance. Further, any degree-
k′ solution with ℓ-local congestion L and global congestion K in the layered
instance can in polynomial time be transformed to a degree-k′ solution for the
original instance with ℓ-local congestion ℓL and global congestionK log2 n.

26 maxmin arborescences

Proof. Let L0 be the set of sources. Then for each i = 1, 2, . . . , log n let Li

be a copy of of all vertices V . We introduce an edge from u ∈ Li to v ∈ Li+1

if (u, v) is an edge in the original instance. The new set of sinks is the union
of all sink vertices in all copies.

Consider now a degree-k solutionQ for the original instance. By Lemma 3.2
there exists a degree-k/2 solution Q′ where each p ∈ Q′ has |p| ⩽ log2 n.
For each such p = (v1, v2, . . . , vt) we introduce a path p′ = (v′1, v

′
2, . . . , v

′
t)

in the layered instance where v′i is the copy of vi in Li.
Now let Q′ be a degree-k′ solution with ℓ-local congestion L and global

congestion C in the layered instance. We transform Q′ to a solution Q for
the original instance by replacing each path p′ = (v′1, v

′
2, . . . , v

′
t) by a path

p = (v1, v2, . . . , vt), where v′i is a copy of vi. Since there are only log2 n
copies of each vertex, the global congestion increases by at most a factor
of log2 n. For the local congestion consider a path p ∈ Q. This path was
derived from a path p′ ∈ Q′. Notice that any path q′ ∈ D(p′,⩽ ℓ) ends
in some vertex in L|p|+1, L|p|+2, . . . , L|p|+ℓ. Thus, there are only ℓ copies
of each vertex that q′ can end in. Consequently, the ℓ-local congestion can
increase at most by a factor of ℓ.

Lemma 3.7. Let K = 211 log3 n, ℓ = 10 log log n, and L = 210ℓ2. Given a
layered instance with a single source and optimum k, we can in time nO(logn)

compute a degree-k/(64ℓ) solution with ℓ-local congestion at most L and global
congestion at mostK .

This lemma is proven in Section 3.4. The lemmas above would allow us
already to obtain our main result for instances with a single source. To
generalize to multiple sources we present a black-box reduction on layered
instances. This is proved in Section 3.5.

Lemma 3.8. Suppose we have an α-approximation for the max-min degree
bounded arborescence problem on layered instances with a single source running
in time nO(logn). Then there is also a 256α-approximation for layered graphs
and an arbitrary number of sources running in time nO(logn).

3.2.3 Connecting the dots

We complete the proof of the main theorem (Theorem 2.1) as follows.

Theorem 2.1. First we prove the theorem on layered instances with a single
source. Let k be the optimum of the given instance. Using Lemma 3.7 we can
find a degree-Ω(k/ℓ) solutionwith ℓ-local congestionL and global congestion
K . Here K = O(log3 n), ℓ = O(log log n) with 2ℓ ⩾ K , and L = O(ℓ2).
Next, we apply Lemma 3.4 to turn this into a degree-Ω(k/ℓ2) solution with
global congestion at mostO(ℓ7L) = O(ℓ9). Using Lemma 3.1 we can convert
this to a degree-Ω(k/ℓ11) solution without congestion. We therefore have an
O(ℓ11)-approximation algorithm for a single source on layered graphs and
Lemma 3.8 implies that we can extend this to an arbitrary number of sources.
We now turn our attention to instances that are not necessarily layered. Let

again k be the optimum. Using Lemma 3.6 we construct a layered instance
that is guaranteed to contain a degree-k/2 solution. Thus, with our algorithm

3.2 formal proof structure 27

for layered instances we can obtain a degree-Ω(k/ℓ11) solution for it. This
solution has ℓ-local congestion at most 1 and global congestion at most
1. Using Lemma 3.6 we can construct a degree-Ω(k/ℓ11) solution for the
original (non-layered) instance with ℓ-local congestion at most ℓ and global
congestion at most log n. Using again Lemma 3.4 we obtain a degree-Ω(k/ℓ12)
solution with global congestion at most O(ℓ8). Finally, applying Lemma 3.1
we obtain a degree-Ω(k/ℓ20) solution without congestion. In particular, our
approximation ratio is

O(ℓ20) = O((log log n)20) .

Finally, the overall running time in clearly dominated by the use of Lemmas
3.7 and 3.8, which is nO(logn).

3.2.4 Bottom-to-top pruning

In this subsection we will describe a method of pruning that is used in the
proofs of Lemmas 3.4 and 3.7. Before stating the result we need, we illustrate
why this pruning technique can be tricky to use and what are its limitations.

The name “bottom-to-top pruning” refers to the following intuitive strategy.
Suppose we are given a degree-k solution with some congestion. A natural
approach is to remove paths that have high congestion at their endpoint
in the hope to decrease the maximum congestion. However, this can be
dangerous. Indeed, removing paths may remove children of some other paths
and therefore forcing us to remove them as well. In general, even a very
small amount of removals can lead to the whole solution getting corrupted,
that is, ultimately sources may need to be removed as well. In fact, a simple
calculation shows that if we allow an adversary to delete some fraction β of
the paths of length d in our solution and that we try to maintain a solution
of degree k/α, then the fraction of children of the sources that we might
be forced to delete becomes roughly equal to βed/α ⩽ βelogn/α (recall that
at a constant loss we can assume that the depth of the solution is at most
log n). In particular if we aim at a sublogarithmic approximation ratio (i.e.
α = o(log n)), the bottom-to-top pruning becomes very sensitive to a small
number of deletions.

This pruning techniquewill be useful nonetheless, and the following lemma
states a condition under which we can perform bottom-to-top pruning while
keeping the damage under control.

Lemma 3.9. Let Q be a degree-k solution. Let R ⊆ Q be a set of paths that
is supposed to be removed. Let ℓ ⩾ 2 such that for every p ∈ Q \ R we have
that at most kℓ/(8ℓ)2 many descendants q ∈ D(p, ℓ) with q ∈ R. Then we can
compute in polynomial time a solution Q′ ⊆ Q \R such that

1. Q′ is a degree-k/2ℓ solution and

2. we have (s) ∈ Q′ for every source s, such that for any distance ℓ′ ⩽ ℓ
there are at most kℓ

′
/(8ℓ) many q ∈ D((s), ℓ′) with q ∈ R.

Proof. We assume that no path p ∈ R has a descendant also in R. This is
without loss of generality, since removing the former implies that the latter

28 maxmin arborescences

will be removed, and omitting the latter from R still keeps the premise of the
lemma valid. In particular, this assumption allows us to assert that also paths
in R satisfy the bound on the number of descendants in R.
We prune the solution from longest paths to shortest paths: We remove

a path if it is in R or if more than (1 − 1/2ℓ)k many of its children were
removed. Then we prove a stronger variant of (2) inductively, namely, that
any path of length 1, 1+ℓ, 1+2ℓ, etc. satisfies the implication (or an ancestor
of it is removed). Let p be a path with |p| = 1+t·ℓ that satisfies the premise of
(2), but is not necessarily a singleton. Further, assume that all paths of length
1 + (t+ 1)ℓ satisfy the implication of (2). Let ℓ′ ⩽ ℓ. Each of the distance-ℓ′
descendants of p has at most (8ℓ)−2kℓ many distance-ℓ descendants in R.
Consequently, p has at most

kℓ
′ · (8ℓ)−2kℓ

distance (ℓ + ℓ′)-descendants in R. Thus, at most (8ℓ)−1kℓ many of p’s
distance-ℓ descendants have more than (8ℓ)−1kℓ

′ distance-ℓ′ descendants
belonging to R. Summing over all values of ℓ′, we have that at most 1/8 · kℓ
many distance-ℓ descendants of p do not satisfy the premise of (2). Next,
let us show in a second induction that for every ℓ′ ⩽ ℓ, of the distance-ℓ′
descendants of p at most

1

8

(
1 +

2

ℓ

)ℓ−ℓ′+1

kℓ
′

many are removed. For the base case we sum the distance-ℓ descendants that
do not satisfy the premise of (2) and the descendants that are themselves in
R, which together are at most

1

8
kℓ +

1

(8ℓ)2
kℓ ⩽

1

8

(
1 +

2

ℓ

)ℓ−ℓ+1

kℓ .

Now assume that we removed at most 1/8 · (1 + 2/ℓ)ℓ−ℓ′kℓ
′+1 paths from

the distance-(ℓ′ + 1) descendants. For each distance-ℓ′ descendants that we
remove because of few remaining children, there are (1 − 1/(2ℓ))k many
distance-(ℓ′ + 1) descendants that we removed. The bound from this and
the number of distance-ℓ′ descendants in R lets us bound the number of
distance-ℓ′ descendants that we remove by

1

k

(
1− 1

2ℓ

)−1

· 1
8

(
1 +

2

ℓ

)ℓ−ℓ′

kℓ
′+1+

1

8ℓ
kℓ

′
⩽

1

8

(
1 +

2

ℓ

)ℓ−ℓ′+1

kℓ
′
.

It follows with ℓ′ = 1 that we remove at most 1/8 · (1 + 2/ℓ)ℓk ⩽ e2/8 ·
k < (1 − 1/(2ℓ))k children of p. Hence, p is not removed itself by the
procedure.

3.3 local to global congestion

This section is to prove Lemma 3.4. Let Q be a degree-k solution with ℓ-local
congestion L and global congestion K . We partition Q by length: let Qi

3.3 local to global congestion 29

be the set of paths p ∈ Q with |p| = i. Further, we split the paths into ℓ
groups G1, G2, . . . , Gℓ, where Gj = Qj ∪ Qj+ℓ ∪ Qj+2ℓ ∪ · · · . For some
p ∈ Gj we write G(p) = Gj . Roughly speaking, we proceed as follows. We
sample from each Gℓ half of the paths and throw away all others (including
their descendants). Then we move to Gℓ−1 and do the same. We continue
until G1 and then repeat the same a second time, stopping afterwards. The
sampling is done in a way that guarantees that each path retains a quarter
of its children at the end. We prove with Lovász Local Lemma that in each
step we can reduce the congestion significantly. Since it seems unclear how
to argue directly about the worst case congestion, we will argue about the
congestion aggregated over many paths, which we will formalize next.

Consider a path p ∈ Q and its close descendants in D(p,⩽ ℓ). Recall, that
D(p,⩽ ℓ) contains all descendants of length at most |p| + ℓ. Intuitively, if
many of the direct children of p have high congestion (more precisely, the
vertex that they end in), this is bad for p as well: if they have high congestion,
we may not be able to keep many of these children for p, which means we
might not be able to include p itself in the solution. Let congG(p) be the
congestion of the last vertex in p, but restricted to paths in the group G(p).
In other words,

congG(p) = |{q ∈ G(p) | q ends in the same vertex as p}| .

The restriction to other paths inG(p) is only for technical reasons and almost
at no cost: if we can achieve that every vertex is used by only few paths in
each Gj (i.e., congG(p) is small for all p ∈ Q), the overall congestion can
only be worse by a factor ℓ. An important quantity in the following will be
the total congestion of descendantsD(p, ℓ′) of p at some distance ℓ′ < ℓ, that
is,

congG(D(p, ℓ′)) =
∑

q∈D(p,ℓ′)

congG(q) , (3.1)

Since during the procedure the number of children may differ between groups
Gj , we will use k(Gj) to describe the current number of children for every
open path in Gj . Our intermediate goal will be to bound the totals (3.1) for
some p ∈ Gj in terms of k(p, ℓ′) =

∏j+ℓ′−1
j′=j k(Gj) (an upper bound on

|D(p, ℓ′)|).
Notice that intially (3.1) can be at most K · k(p, ℓ′). When sampling down

the paths in Gj , we want to show that this reduces (3.1) significantly for
paths p ∈ Gj and all ℓ′ < ℓ. This is captured in the following lemma.

Lemma 3.10. Assume we are given a solution that has an ℓ-local congestion of
at mostL and global congestion of at mostK , where ℓ ⩾ logK andK ⩾ log n.
From the paths in Gj form pairs where each pair shares the same parent. Then
select i.i.d. one path from each pair and remove it and all its descendants. Let
congG and cong′G be the congestion count before and after the removal and
similarly k and k′ the children count. Then we have with positive probability
for every remaining p ∈ Gj and ℓ′ < ℓ that

cong′G(D(p, ℓ′))

k′(p, ℓ′)
⩽ cℓ4L+

1

2

(
1 +

1

ℓ

)
congG(D(p, ℓ′))

k(p, ℓ′)
,

30 maxmin arborescences

where c is a fixed constant. Furthermore, we can obtain such a sampling in
expected polynomial time.

Proof. We can rewrite

congG(D(p, ℓ′)) =
∑

q∈G(p)

congG(D(p, ℓ′), D(q, ℓ′)) ,

where congG(D(p, ℓ′), D(q, ℓ′)) is the number of pairs p′ ∈ D(p, ℓ′), q′ ∈
D(q, ℓ′) that end in the same vertex. We remove every term in the sum with
probability 1/2, so in expectation the sum will reduce by 1/2. Furthermore,
each term cong(D(p, ℓ′), D(q, ℓ′)) is bounded by L · |D(p, ℓ′)| ⩽ L · k(p, ℓ′),
because we have low local congestion. This will give us good concentration.
Notice also that k(p, ℓ′) = k′(p, ℓ′).
We now group the terms in the sum by their size. For p ∈ Gj let G(p, ℓ′, t)

be the set of q ∈ G(p) = Gj with congG(D(p, ℓ′), D(q, ℓ′)) ∈ [L · k(p, ℓ′) ·
2−(t+1), L ·k(p, ℓ′) ·2−t). LetQ′ be the set of paths remaining after sampling
down (without taking into account those that are removed recursively). Let c
be a large constant to be specified later. Depending on whether t is small or
large, we define bad events B(p, ℓ′, t) for each p ∈ Gj as∑
q∈G(p,ℓ′,t)∩Q′

congG(D(p, ℓ′), D(q, ℓ′))

> 24cℓ3L · k(p, ℓ′) + 1

2

(
1 +

1

ℓ

) ∑
q∈G(p,ℓ′,t)

congG(D(p, ℓ′), D(q, ℓ′))

if t ⩽ 2ℓ,∑
q∈G(p,ℓ′,t)∩Q′

congG(D(p, ℓ′), D(q, ℓ′))

> 24cℓ3L · 1
K

k(p, ℓ′) +
1

2

(
1 +

1

ℓ

) ∑
q∈G(p,ℓ′,t)

congG(D(p, ℓ′), D(q, ℓ′))

if t > 2ℓ.

Since from the experiment the total congestion cannot increase, we have a
probability of 0 for all bad events where congG(p,ℓ′,t)(D(p, ℓ′)) :=

∑
q∈G(p,ℓ′,t)

congG(D(p, ℓ′), D(q, ℓ′)) ⩽

12cℓ3L · k(p, ℓ′) if t ⩽ 2ℓ,

12cℓ3L · 1
K k(p, ℓ′) otherwise.

For the remaining bad events, we will now derive an upper bound on the
probabilities. This holds trivially also for the zero probability events. From
Chernoff’s bound we get

P[B(p, ℓ′, t)] ⩽ exp

(
−
(1/ℓ2) · 1/2 · congG(p,ℓ′,t)(D(p, ℓ′))

(2 + 1/ℓ) · 2−tL · k(p, ℓ′)

)

⩽ exp

(
−
congG(p,ℓ′,t)(D(p, ℓ′))

6ℓ2 · 2−tL · k(p, ℓ′)

)

⩽

exp
(
−2cℓ2t

)
if t ⩽ 2ℓ,

exp
(
−2cℓ2t/K

)
⩽ n−10 otherwise.

3.3 local to global congestion 31

Towards applying LLL, we set the values of the bad events as

x(B(p, ℓ′, t)) =

exp
(
−cℓ2t

)
if t ⩽ 2ℓ,

n−5 otherwise.

The experiment involves binary variables V . An event B(p, ℓ′, t) depends on
at most K · 2t+1 many variables. A variable V influences at most 2Kℓ · 2t+1

type-t bad events. Notice that 2Kℓ·2t+1 ⩽ exp(cℓ2t)/(4K2) for c sufficiently
large (since ℓ ⩾ logK). Let Γt(V) be the set of all these events for a specific
variable V and a specific value of t. Then∏

B∈Γt(V)

(1− x(B)) ⩾
(
1− exp

(
−cℓ2t

))2Kℓ2t+1

⩾ 1− 1

4K2
.

Notice that t can range only from 0 to log n. Furthermore, since every vertex
has congestion at mostK , the number of paths inQ is at mostKn. Together,
we can upper bound the total number of events by Knℓ log n ⩽ n5. Thus,
for t ⩽ 2ℓ and c sufficiently large it holds that

P[B(p, ℓ′, t)] ⩽ x(B(p, ℓ′, t)) · exp(−cℓ2t)

⩽ x(B(p, ℓ′, t)) ·
(
1− 1

e

)4ℓ·2t

⩽ x(B(p, ℓ′, t)) ·
ℓ∏

t′=0

(
1− 1

4K2

)K·2t+1

·
(
1− 1

n5

)n5

⩽ x(B(p, ℓ′, t)) ·
∏

B∈Γ(B(p,ℓ′,t))

(1− x(B)) .

Similarly, for t > 2ℓ we have

P[B(p, ℓ′, t)] ⩽ x(B(p, ℓ′, t) · exp(−cℓ2t/K)

⩽ x(B(p, ℓ′, t)) ·
(
1− 1

e

)4ℓ·2t/K

⩽ x(B(p, ℓ′, t)) ·
ℓ∏

t′=0

(
1− 1

4K2

)K·2t+1

·
(
1− 1

n5

)n5

⩽ x(B(p, ℓ′, t)) ·
∏

B∈Γ(B(p,ℓ′,t))

(1− x(B)) .

Hence, by LLL we have with positive probability that none of the bad events
occur. If none of them occur, then by summing up bounds fixed p and ℓ′ we
get

cong′(D(p, ℓ′)) ⩽ 2ℓ · 24cℓ3L · k(p, ℓ′)
+ log n · 24cℓ3L · k(p, ℓ′)/K

+
1

2

(
1 +

1

ℓ

)
cong(D(p, ℓ′))

⩽ 100cℓ4L · k(p, ℓ′) + 1

2

(
1 +

1

ℓ

)
cong(D(p, ℓ′)) .

32 maxmin arborescences

Lemma3.11. Consider a successful run of the random experiment in Lemma 3.10
where we sample down the paths in Gj and satisfy the stated inequalities. For
each path p (potentially not in Gj) and every ℓ′ ∈ {1, 2, . . . , ℓ} we have

cong′G(D(p, ℓ′))

k′(p, ℓ′)
⩽ cℓ4L+

(
1 +

1

ℓ

)
congG(D(p, ℓ′))

k(p, ℓ′)
.

Here c is the constant from Lemma 3.10.

Lemma 3.10 only shows that the average congestion reduces for descen-
dants of paths in the groupGj , wherewe sample down. Conversely, Lemma 3.11
says that for all other groups it does not increase significantly.

Proof. Let Gj′ = G(p). We can assume without loss of generality that j′ <
j ⩽ j′ + ℓ′ (modulo ℓ), since the congestion can only decrease and k(p, ℓ′)
in the other case would not change. Let ℓ′′ = j − j′ (modulo ℓ). Further,
let D′(p, ℓ′) be the distance-ℓ′ descendants of p after sampling down Gj

and D(p, ℓ′) before it. Then D′(p, ℓ′′) contains half of the elements D(p, ℓ′′).
Thus,

cong′G(p, ℓ
′)

k′(p, ℓ′)
=

1

k′(p, ℓ′)

∑
q∈D′(p,ℓ′′)

cong′G(q, ℓ
′ − ℓ′′)

=
2

k(p, ℓ′)

∑
q∈D′(p,ℓ′′)

cong′G(q, ℓ
′ − ℓ′′)

⩽
2

k(p, ℓ′)

∑
q∈D′(p,ℓ′′)

[cℓ4L+
1

2

(
1 +

1

ℓ

)
congG(q, ℓ

′ − ℓ′′)]

⩽ cℓ4L+

(
1 +

1

ℓ

)
congG(p, ℓ

′) .

Lemma 3.12. Given a degree-k solutionQwith ℓ-local congestionL and global
congestion K , we can compute a degree-k/4 solution Q′ ⊆ Q with

congG(p, ℓ) ⩽ 3cℓ4L

(
k

4

)ℓ

+

(
1 +

1

e

)2 K

2ℓ

for all p ∈ Q′. Here c is the constant from Lemma 3.10.

Proof. We will perform the sampling from Lemma 3.10 for Gℓ,Gℓ−1, . . . ,G1

and then again the same a second time. The reason is that we want that for
every groupGj thatGj , Gj−1, . . . , Gj−ℓ (index modulo ℓ) are down-sampled
at least once in this order.
Let Gj = G(p) and consider the first time that we sample down Gj+ℓ−1

(index taken modulo ℓ). LetD(p, ℓ′) be the distance-ℓ′ descendants of p before
this sampling. Then for each q ∈ D(p, ℓ− 1) we have

congG(D(q, 1))

k(q, 1)
⩽ K .

3.3 local to global congestion 33

This is due to the fact that sampling down cannot increase the congestion
on any vertex and initially all vertices have congestion at most K . After
sampling according to Lemma 3.10 we have

congG(q, 1)

k(q, 1)
⩽ cℓ4L+

(
1 +

1

ℓ

)
K

2
.

In the next step we are sampling down Gj+ℓ−2. We have for each q ∈
D(p, ℓ− 2) that

congG(D(q, 2))

k(q, 2))
=

1

k(q, 1)

∑
q′∈C(q)

congG(q
′, 1)

k(q′, 1)
⩽ cℓ4L+

(
1 +

1

ℓ

)
K

2
.

Thus, after sampling

congG(D(q, 2))

k(q, 2)
⩽ cℓ4L+

1

2

(
1 +

1

ℓ

)
cℓ4L+

(
1 +

1

ℓ

)2 K

4

⩽ 2cℓ4L +

(
1 +

1

ℓ

)2 K

4
.

Continuing this argument, after we sample down Gj we have

congG(p, ℓ)

k(p, ℓ)
⩽ 3cℓ4L+

(
1 +

1

ℓ

)ℓ K

2ℓ
.

After Gj there may be at most ℓ more steps of sampling down, after which
we finally have

congG(p, ℓ)

k(p, ℓ)
⩽ 3cℓ4L+

(
1 +

1

ℓ

)2ℓ K

2ℓ
⩽ 3cℓ4L+

(
1 +

1

e

)2 K

2ℓ
.

We will now conclude the proof of Lemma 3.4. Using the previous lemma,
we obtain a degree-k/4 solution Q′. Let A := 3cℓ4L+ (1 + 1/e)2K/2ℓ be
the upper bound on average distance-ℓ congestion. Assuming without loss
of generality that c is sufficiently large, we have that A ⩽ 3cℓ4L. Let R be
the set of all paths p with congG(p) > 16Aℓ2. We remove these paths using
Lemma 3.9. We use the property that each path has at most a (8ℓ)−2(k/4)ℓ

many of its ancestors at distance ℓ in R. This follows directly from the
bounded average congestion. The lemma implies that we can remove those
high congestion paths and still keep a solution where each remaining path
has k/(4 · 2ℓ) = k/8ℓ children. Since we start with a ℓ-local congestion of
at most L ⩽ 16Aℓ2 and this cannot be increased by only removing paths,
we have that none of the paths of length at most ℓ are removed and thus all
sources satisfy the premise of (2) of Lemma 3.9 and remain in the solution.
Indeed, the value of congG(p) is now bounded by 16Aℓ2 for all remaining
paths. We recall that the actual congestion is at most a factor ℓ higher than
maxp congG(p), that is,

16Aℓ3 ⩽ 64cℓ7L .

34 maxmin arborescences

3.4 computing a solution with locally low congestion

The goal of this section is to prove Lemma 3.7. We recall that we are in a
layered graph with vertices partitioned into layers L0, L1, . . . , Lh where
h = log n and a single source s. The source s belongs to layer L0 and edges
can only go from vertices in some layer Li to the next layer Li+1.
In the following we will extensively argue about paths that start in the

source. For the remainder of the section every path p that we consider is
implicitly assumed to start at the source and then traverses (a prefix of) the
layers one by one. Slightly abusing notation, we sometimes use Li also to
denote the set of paths ending in a vertex of Li, that is,⋃

v∈Li

I(v) ,

and T to describe the set of closed paths (recall that those are the paths that
end at a sink). Let P refer to the set of all possible paths and notice that by
virtue of the layers we have that |P | ⩽ nh ⩽ nlogn+1. We will now describe
a linear programming relaxation, which goes back to Bateni et al. [15]. The
intuition behind the linear program is to select paths similarly to the way
we describe solutions, see Section 3.2. We have a variable x(p) for each path
p that in an integral solution takes value 1 if the path p is contained in an
arborescence and 0 otherwise.∑

q∈C(p)

x(q) = k · x(p) ∀p ∈ P \ T (3.2)

∑
q∈I(v)∩D(p)

x(q) ⩽ x(p) ∀p ∈ P, v ∈ V (3.3)

x((s)) = 1 (3.4)
x ⩾ 0 (3.5)

Here we assume that k is the highest value for which the linear program
is feasible, obtained using a standard binary search framework. Moreover,
we assume that k ⩾ 210(log log n)8 in the rest of the section. This is at
little cost, since a 1/k-approximation is easy to obtain (see the proof of
Theorem 2.1) and is already sufficient for our purposes. The first two types
of constraints describe that each open path has many children and each
vertex has low congestion (in fact, no congestion). Constraint (3.3) comes
from a lift-and-project idea. For integral solutions it would be implied by the
other constraints, but without it, there could be situations with continuous
variables, where for example we take a path p with only value 1/k and then
a single child of q with value 1. Such situations easily lead to large integrality
gaps, which we can avoid by this constraint.
Since the graph has h + 1 many layers, this linear program has nO(h)

variables and constraints and therefore can be solved in time nO(h). We refer
to this relaxation as the path LP. In order to prove Lemma 3.7, we will design
a rounding scheme. Before getting to the main part of the proof, we will first
preprocess the fractional solution to sparsify its support.

3.4 computing a solution with locally low congestion 35

3.4.1 Preprocessing the LP solution

Our first step is to sparsify the path LP solution x to get another sparser
solution (i.e., with a limited number of non-zero entries). For ease of notation,
we might need to take several times a copy of the same path p ∈ P . We
emphasize here that two copies of the same path are different objects. To
make this clear, we will now have amultiset P ′ of paths but we will slightly
change the parent/child relationship between paths. Precisely, for any path
q′ ∈ P ′ is assigned as child to a unique copy p′ ∈ P ′ such that q was a
child of p in the set P . With this slight twist, all the ancestors/descendants
relationships extend to multisets in the natural way. For instance, we will
denote by DP ′(p) the set of descendants of p in the multiset P ′. Again, the
set of closed path in P ′ will be denoted by T ′ and s refers to the source. We
assume that there is a unique copy of the trivial path (s) ∈ P ′.
In this step we will select paths such that each open path has k log2 n

children instead of the k children one would expect. However, we use a
function y(p) that assigns a weight to each path and this weight decreases
from layer to layer, modelling that the children are actually picked fractionally
each with a 1/4 log2 n fraction of the weight of the parent. Thus, taking the
weights into account we are actually picking only k/4 children for each path.

Formally, the preprocessing of the LP will allow us to obtain a multiset of
path P ′ such that∑

q∈CP ′ (p)

y(q) =
k

4
· y(p) ∀p ∈ P ′ \ T ′ (3.6)

∑
q∈IP ′ (v)∩DP ′ (p)

y(q) ⩽ 2y(p) ∀p ∈ P ′, v ∈ V (3.7)

where y(p) = 1

(4 log2(n))i
∀i ⩽ h,∀p ∈ Li (3.8)

We obtain such a solution P ′ in a similar way as the randomized rounding
in [15, 21], which achieves polylogarithmic congestion. The fact that we
select more paths, but only fractionally gives us better concentration bounds,
which allows us to lose only constant congestion here. For completeness we
give the proof in Appendix A.2.

3.4.2 The main rounding

We start this part with the sparse multiset of paths P ′ with the properties
as above. The discount value y can be thought of fractionally in the sense
that each p ∈ P ′ is taken to an extent of y(p). We will proceed to round
this fractional solution to an integral solution Q that is locally nearly good,
a concept we will define formally below. Intuitively, this specifies that the
number of paths that have locally high congestion can be removed without
losing much with Lemma 3.9. We fix ℓ = 10 log log n for the rest of this
section. Let cong(v | Q) be the global congestion of vertex v induced by Q,
that is, the number of paths in Q ending in v. For paths p ∈ Q ∪ {∅} and
q ∈ DQ(p) We denote by congp(q | Q) the local congestion induced on the
endpoint of q by descendants of p. We consider all paths descendants of ∅.

36 maxmin arborescences

A locally nearly good solution is a multiset of paths Q ⊆ P ′ (where again
every path has a unique parent among the relevant copies of the same path)
that has the following properties:

1. one copy of the trivial path (s) belongs to Q;

2. every open path has k/32 children;

3. no vertex has global congestion more than 210 log3(n);

4. for every p ∈ Q ∪ {∅} and ℓ′ ⩽ ℓ we have

|{q ∈ DQ(p, ℓ
′) | congp(q | Q) > 210ℓ2}| ⩽ 1

ℓ2

(
k

32

)ℓ′

.

From a locally nearly good solution we will then derive a solution of low local
congestion by removing all paths with high local congestion using bottom to
top pruning (Lemma 3.9). Condition 4 is tailored to ensure that the number of
such high local congestion paths is small enough so that the lemma succeeds.
To obtain such a nearly good solution, we will proceed layer by layer,

where the top layers are already rounded integrally and the bottom layers
are still fractional (as in the preprocessing). However, unlike the case of the
preprocessing, we cannot arguewith high probability and union bounds, since
some properties we want only deviate from expectation by poly(log log n)
factors. To obtain a locally nearly good solution, we will use Lovász Local
Lemma (LLL) in every iteration, where one iteration rounds one more layer.
In the following, we describe the rounding procedure, the bad events and an
analysis of their dependencies and finally we apply LLL.

the randomized rounding procedure. We proceed layer by layer
to round the solution P ′ (with discount y) to an integral solution Q. We
start by adding a single copy the trivial path (s) to the partial solution Q(0).
Assume we rounded until layer i, that is, we selected the final multiset of
paths Q(i) to be used from all paths in L⩽i.
To round until layer i + 1 we proceed as follows. Every open path p ∈

Q(i)∩Li selects exactly k/16 children where the i-th child equals q ∈ CP ′(p)
with probability equal to

1

k log2 n
=

y(q)∑
q′∈CP ′ (p) y(q

′)
.

The selection of each child is independent of the choices made for other
children. We then letQ(i+1) be the union ofQ(i) and all newly selected paths.
The reason that each path selects k/16 children instead of the k/32 many
that were mentioned before is that we will later lose half of the children.
We will repeat this procedure until reaching the last layer h and we return
Q = Q(h).

definitions related to expected congestion. In order for this
iterated rounding to succeed we need to avoid that vertices get high conges-
tion (in the local and the global sense). It is not enough to keep track only of

3.4 computing a solution with locally low congestion 37

the congestion of vertices in the next layer that we are about to round, but
we also need to maintain that the expected congestion (over the remaining
iterations) remains low on all vertices in later layers. Hence, we will define
quantities that help us keep track of them. To avoid confusion, we remark that
the quantities we will define do not exactly correspond to the expected con-
gestion of the vertices: notice that we sample less children for each path than
P ′ has. Intuitively, P ′ has k/4 children per open path (see Equation (3.6)),
but we only sample k/16 many. The quantities we define below would be
the expectations if we would sample k/4 children instead. Roughly speaking,
this gives us an advantage of the form that the expectation always decreases
by a factor 4 when we round one iteration. Apart from the intuition on the
expectation, the definitions also incorporate a form of conditional congestion,
which means that we consider the (expected) congestion based on random
choices made so far. This is similar to notions that appear in Appendix A.2
for the preprocessing step.

First, we define the fractional congestion induced by some path p ∈ P ′ on
a vertex v ∈ V as follows.

cong(p, v) :=
∑

q∈DP ′ (p)∩IP ′ (v)

y(q).

Using this definition, we will define the conditional fractional congestion at
step i induced by p on a descendant q as follows (writing vq for the endpoint
of q).

congp(q | Q
(i)) :=

|{q′ ∈ DQ(i)(p) ∩ IQ(i)(vq)}| if q ∈ L⩽i∑
q′∈D

Q(i) (p)∩Li

1
y(q′)cong(q

′, vq) otherwise.

We will use this definition only for p ∈ Q(i). If vq belongs to one of the first
i layers (i.e., vq is in the integral part corresponding to the partial solution),
this is simply the number of descendants of p ∈ Q(i) in our partial solution
that end at vq . Otherwise, this is the total fractional congestion induced by
all the paths that we actually selected in our partial solution q ∈ Q(i) ∩ Li

and that are descendants of p. The name conditional comes from the term
1/y(q′) which is simply the fact that we condition on having already selected
the path q′ once integrally. The global congestion at step i on a vertex v ∈ V
is defined similarly with

cong(v | Q(i)) :=

|{q ∈ Q(i) ∩ I(v)}| if v ∈ L⩽i∑
q∈Q(i)∩Li

1
y(q)cong(q, v) otherwise.

the first type of bad event: global congestion. The naiveway
to bound the global congestion would be to simply to bound the global con-
gestion on each vertex and make a bad event from exceeding this. However,
to manage dependencies between bad events and get better concentration
bounds, we partition the set of paths according to how much fractional load
their ancestors are expected to put on v and then bound the congestion
incurred by each group on v. More precisely, assume we rounded until layer i

38 maxmin arborescences

and are now trying to round until layer Li+1. Consider any vertex v ∈ L⩾i+1.
The decisions made in this step of the rounding concern which paths in Li+1

will be selected. Fix an integer t ⩾ 0 and and let P (i+1)
v,t to be the set of all

paths p ∈ Li+1 such that

cong(p, v)
y(p)

∈ (2−t, 2−(t−1)] .

We define the bad event B1(v, t) as the event that∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)
> 2E

[∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)

]
+ 210 log n .

Since P (i+1)
v,t partitions the paths in Li+1, the bad events for all t together will

bound the increase in the congestion on v: this is because cong(v | Q(i+1)) =∑
p∈Q(i+1)∩Li+1

cong(p, v)/y(p). We argue this formally in Lemma 3.13 be-
low.
At this point, it is worthwhile to mention that t can only take values in

{0, 1, . . . , log2 n}. Indeed, by Constraint (3.7) we have that

cong(p, v)
y(p)

⩽ 2

is ensured for all p ∈ P ′. Moreover, we notice that y has a low granularity
(i.e. y satisfies Equation (3.8)) which implies that either cong(p, v) = 0 or

cong(p, v)
y(p)

⩾
1

(4 log2 n)h−|p| ⩾
1

(4 log2 n)h
.

Hence bad events B1(v, t) will be instantiated only for t = 0, 1, . . . , log2 n
(assuming here that n is sufficiently large).

Lemma 3.13. Assuming no bad event B1(v, t) has occurred in any iteration
up to i, we have for every v that

cong(v | Q(i)) ⩽ 211 log3 n .

Proof. We argue inductively. For i = 0 we have

cong(v | Q(i)) =
∑

p∈Q(i)∩Li

cong(q, v)

y(q)
=
∑
s∈S

cong((s), v)

=
∑

p∈IP ′ (v)

y(v) ⩽ 2 .

Now assume that for i ⩾ 0 we have

cong(v | Q(i)) ⩽ 211 log3 n .

Since the congestion of any v ∈ L⩽i cannot change anymore, we may assume
w.l.o.g. that v ∈ L⩾i+1. For each t let

µt = E
[∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)

]
.

3.4 computing a solution with locally low congestion 39

Then
∑

t µt = 1/4 · cong(v | Q(i)) ⩽ 29 log3 n. To see this, denote by N
(i)
q

the number of copies of a path q ∈ P ′ that is selected inQ(i). As a shorthand,
we write P (q) for the parent of q in Q(i+1). By linearity of expectation we
can write∑

t

µt =
∑
t

E
[∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)

]

=
∑
t

E
[∑
p∈P ′∩P (i+1)

v,t

N (i+1)
p · cong(p, v)

y(p)

]

=
∑
t

∑
p∈P ′∩P (i+1)

v,t

E[N (i+1)
p] · cong(p, v)

y(p)

=
∑
t

∑
p∈P ′∩P (i+1)

v,t

(k/16) · y(p)
(k/4) · y(P (p))

· cong(p, v)
y(p)

=
1

4
·
[∑

t

∑
p∈P ′∩P (i+1)

v,t

cong(p, v)

y(P (p))

]

=
1

4
·
[∑

t

∑
p∈P ′∩P (i)

v,t

cong(p, v)

y(p)

]

= (1/4) · cong(v | Q(i)) ⩽ 29 log3 n .

It follows that

cong(v | Q(i+1)) =
∑

p∈Q(i+1)

cong(p, v)

y(p)

=
∑
t

∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)

⩽
∑
t

[2µt + 210 log n]

⩽ 210 log3 n+ 210 log3 n

⩽ 211 log3 n .

the second type of bad event: local congestion. Recall that
we want to bound the congestion induced by close descendants of some open
path p. Let ℓ′ ⩽ ℓ and p ∈ Q(i) ∩ Li′ , where i− ℓ′ ⩽ i′ ⩽ i. We define

N (i+1)(p, ℓ′) = |{q ∈ DP ′(p, ℓ′) | congp(q | Q(i)) ⩽ 210ℓ2

and congp(q | Q(i+1)) > 210ℓ2}| .

These are the number of vertices with newly high local congestion (counting
only the congestion induced by descendants of p). Moreover, note that by
Constraint (3.6) and (3.8), we have that |DP ′(p, ℓ′)| ⩽ (k log2 n)ℓ

′ .

40 maxmin arborescences

Then, for any p ∈ Li′ ∩Q(i) where i− ℓ− 1 ⩽ i′ ⩽ i− 1, and t ⩾ 0, we
define the set of marked children of p at step i+1 as the setM (i+1)(p) of all
q ∈ CQ(i)(p) such that

N (i+1)(q, ℓ′) >
1

log10 n

(
k

32

)ℓ′

for at least one ℓ′ ⩽ ℓ. Notice that the children of p (in Q(i)) are already
determined because p is in L⩽i−1. We are now ready to state the second
type of bad event. We define the bad event B2(p) for any p ∈ Li′ where
i− ℓ− 1 ⩽ i′ ⩽ i− 1, as the event that

|M (i+1)(p)| ⩾ 1

ℓ3
· k
16

,

which means that a lot of children selected by p become marked at step i+1.
As we will ensure that this bad event never happens, we can guarantee that a
large fraction of children q of each path p always satisfies that N (i+1)(q, ℓ′)
is low for all ℓ′ ⩽ ℓ. As we explain later, we will simply remove all other
children and this way indirectly prevent the existence of too many locally
congested descendants for all the remaining paths. The advantage of this
indirect method is that we can apply good concentration bounds on the
children and thereby amplify the probability (indeed, note that the event that
a child q of p is marked is independent of the same events for other children
of p).

the third type of bad event: keeping the source path (s) .
Because our algorithm will delete in the end all the paths that have been
marked in some round, we need to ensure that the source path (s) is never
marked. Hence for the first ℓ steps of rounding, we define a single bad event
B3(s) that is that the source path (s) is marked during this step.

the probabilities of the bad events. In this part, we derive upper
bounds for the probability of each bad event. Some bounds are sub-optimal
to simplify later formulas.

Lemma 3.14. For any v ∈ V and integer t we have that

P[B1(v, t)] ⩽ n−10·2t−1
.

Proof. We need to prove that

P

[∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)
> 2E

[∑
p∈Q(i+1)∩P (i+1)

v,t

cong(p, v)

y(p)

]
+210 log n

]

⩽ n−10·2t−1
.

Notice that cong(p, v)/y(p) is upper bounded by 2−(t−1) by definition of
P

(i+1)
v,t and the sum can be rewritten as a sum over the paths chosen in

iteration i+1, where a path p contributes cong(p, v)/y(p) to the sum. These

3.4 computing a solution with locally low congestion 41

paths are chosen independently and thus by a standard Chernoff bound we
obtain that the probability is at most

exp

(
−210 log n
2 · 2−(t−1)

)
⩽ n−10·2t−1

.

Lemma 3.15. Let ℓ′ ⩽ ℓ and p ∈ Q(i) ∩ Li′ , where i− ℓ′ ⩽ i′ ⩽ i. Then

P[N (i+1)(p, ℓ′) > (1/ log10 n) · (k/32)ℓ′] ⩽ (log n)−40ℓ . (3.9)

Moreover,

P[B3(s)] ⩽ (log n)−1 . (3.10)

Proof. Recall that we are bounding the number of descendants of p that
had low local congestion of at most 210ℓ2 before, but now get high local
congestion. More concretely, consider some q ∈ DP ′(p, ℓ′) with congp(q |
Q(i)) ⩽ 210ℓ2. Then

E
[
congp(q | Q(i+1))

]
=

1

4
· congp(q | Q(i)) ⩽ 28ℓ2 .

We do not go into detail for this calculation here but similar calculations
have been derived already in Lemma 3.13 or Appendix A.2. This is exactly
the same type or argument.

Further, congp(q | Q(i+1)) can be decomposed into a sum of independent
random variables bounded by 2. Indeed, recalling the definition of congp(q |
Q(i+1)) we see that this quantity can be written as a sum over 1/y(q′) ·
congq′(q | Q(i+1)), where a paths q′ are taken from a certain multiset of
chosen paths. Constraint (3.7) of the path LP ensures that this is always at
most 2. Those variables are independent because of the randomized rounding
that selects children independently of each other. Hence, by a Chernoff bound
we have

P
[
congp(q | Q(i+1)) > 210ℓ2

]
⩽ exp(−27ℓ2) .

Therefore, by linearity of expectation we obtain

E[N (i+1)(p, ℓ′)] ⩽
(k log2 n)ℓ

′

exp(27ℓ2)
⩽

1

(log n)27·10ℓ

(
k

32

)ℓ′

.

From Markov’s inequality it follows that

P[N (i+1)(p, ℓ′) > (1/ log10 n) · (k/32)ℓ′] ⩽ (log n)−40ℓ .

For the second claim, notice thatB3(s) is simply the event that the source path
(s) is marked, which is equivalent toN (i+1)((s), ℓ′) > (1/ log10 n) · (k/32)ℓ′

for at least one ℓ′ ⩽ ℓ. By a simple union bound, we get the desired result.

Finally, we upper-bound the probability of B3(p).

42 maxmin arborescences

Lemma 3.16. Let p ∈ Li′ where i− ℓ− 1 ⩽ i′ ⩽ i− 1. Then we have that

P[B3(p)] ⩽ exp
(
−
√
k
)

.

Proof. To prove this, note that a child q of p (in the set Q(i)) is marked
independently of other children of p. This is because q being marked depends
only on the random choices made by descendants of q, which are independent
of descendants of other children of p. Therefore using Lemma 3.15 and a
standard union bound we obtain that each child of p is marked independently
with probability at most ℓ · (log n)−40ℓ. Recall that k ⩾ 210(log log n)8 ⩾
(32ℓ3)2. We note that p has k/16 children inQ(i) and therefore the probability
that more than (1/ℓ3) · (k/16) of them are marked is at most

exp

(
− k

32ℓ3

)
⩽ exp

(
−
√
k
)

.

the dependencies of the bad events. For any bad event B we
define Γ1(B) to be the set of bad events of the first type B1(v, t) that depend
on the bad event B. Similarly, let Γ2(B) the set of bad events B2(p) that
depend on B. We will now upper bound the cardinality of these sets. Note
that there is a single bad event of third type B3(s) hence it is clear that
Γ3(B) ⩽ 1 for any bad event B. For the rest, we remark that the focus here
is on simplicity of the terms rather than optimizing the precise bounds.

Lemma 3.17. For any bad event B, we have that

|Γ1(B)| ⩽ n2 .

Proof. The statement holds trivially, since there are at most n · (1+log2 n) ⩽
n2 bad events of the first type in total (n possibilities of the choice of vertex
v and less than n possibilities for the choice of t).

Before proving the dependencies to events of type 2, we will prove an
auxiliary lemma that concerns the events affected by the children picked by
one particular path p ∈ Q(i) ∩ Li.

Lemma 3.18. Let p ∈ Q(i)∩Li. Then the choice of children picked by p affects
in total at most log n events of type 2.

Proof. In order to influence a bad event B2(q) for some q, it must be that p
is a descendant of q in the multiset Q(i). Any path has at most h ⩽ log n
ancestors.

Lemma 3.19. Assuming that no bad event has happened until the current
iteration of rounding, for any v ∈ V and integers t ⩾ 0, we have

|Γ2(B1(v, t))| ⩽ 2t · (log n)10 . (3.11)

3.4 computing a solution with locally low congestion 43

Proof. We first notice that the bad event B1(v, t) depends only on the random
choices made by paths q ∈ Q(i) ∩ Li that have at least one child q′ ∈ CP ′(q)
such that

cong(q′, v)
y(q′)

⩾ 2−t.

Let us count how many such paths q can exist inQ(i). For each such path we
have that

cong(q, v)
y(q)

=
∑

q′∈CP ′ (q)

cong(q′, v)
y(q)

=
∑

q′∈CP ′ (q)

cong(q′, v)
(4 log2 n)y(q′)

⩾
2−t

4 log2 n
,

where we used here the granularity of y, see Constraint (3.8). Since we assume
that no bad event happened so far, we can apply Lemma 3.13 to get∑

q∈Q(i)∩Li

cong(q, v)
y(q)

= cong(v | Q(i)) ⩽ 211 log3 n .

Hence, there can be at most 2t · 213 log5 n such paths q. We conclude with
Lemma 3.18 to bound the number of bad events of second type influenced by
each q and obtain

|Γ2(B1(v, t))| ⩽ 2t · (213 log5 n) · (log n) ⩽ 2t · (log10 n) .

Lemma 3.20. For any p ∈ Li′ where i− ℓ− 1 ⩽ i′ ⩽ i− 1 we have

|Γ2(B2(p))| ⩽ kℓ · (log n) . (3.12)

Furthermore,

|Γ2(B3(s))| ⩽ kℓ · (log n) . (3.13)

Proof. The bad event B2(p) (or B3(s)) is entirely determined by the random
choices made by the descendants of p (or (s)) inQ(i) that are located in layer
Li. There are at most (k/16)ℓ ⩽ kℓ such descendants q. By Lemma 3.18, each
descendant can influence at most log n other bad events of the second type.
This concludes the proof.

instantiating lll. For the bad events we set

x(B1(v, t)) = n−2 , (3.14)

x(B2(p)) = exp
(
−k1/3

)
(3.15)

x(B3(s)) = 1/2 . (3.16)

44 maxmin arborescences

Consider now a bad event B1(v, t) and recall that k ⩾ 210(log log n)8. Then

P[B1(v, t)] ⩽ n−10·2(t−1)

⩽ n−5·2t

⩽ n−2 · (1− n−2)n
2 ·
(
1− exp(−k1/3)

)2t·(logn)10
· (1/2)

⩽ n−2 ·
∏

B∈Γ(B1(v,t))

(1− x(B)) .

Next, we get

P[B2(p)] ⩽ exp
(
−
√
k
)

⩽ exp
(
−k1/3

)
· (1− n−2)n

2

2
·
(
1− exp(−k1/3)

)kℓ·(logn)
⩽ x(B2(p)) ·

∏
B∈Γ(B2(p))

(1− x(B)) .

Similarly, for B3(s) we have

P[B3(s)] ⩽ (log n)−1

⩽ (1/2) · (1− n−2)n
2 ·
(
1− exp(−k1/3)

)kℓ·(logn)
⩽ x(B3(s)) ·

∏
B∈Γ(B3(s))

(1− x(B)) .

Hence, with positive probability none of the bad events occur and we can
compute such a solution in expected quasi-polynomial time (polynomial in
|P ′|).

finishing notes. We proved that we can round in (expected) quasi-
polynomial time from layer 0 to layerhwithout any bad event ever happening.
Next, observe that we get that any sampled path p ∈ Q ∩ Li has at most∣∣∣∣ i+ℓ+1⋃

i′=i+1

M (i′)(p)

∣∣∣∣ ⩽ ℓ · 1
ℓ3
· k
16

⩽
k

32

marked children. We now delete from the solution all the marked paths
obtaining a solution Q′. Note that the source remains as it is never marked.
This means that any sampled open path retains at least k/32 children. For
any path p, we denote by N(p, ℓ′) the number of its descendants at distance
ℓ′ that have congestion induced by p bigger than 210ℓ2. Then if p was never
marked at any round, we have that

N(p, ℓ′) ⩽
1

log n

(
k

32

)ℓ′

.

Indeed, if p belongs to layer i then congp(q | Q(i)) = 1/y(p)·cong(p, vq) ⩽ 2
by Constraint (3.7). Hence the first time we instantiate bad events involv-
ing local congestion induced by the path p, it is the case that none of its
descendants are bad. Then if p is never marked we have that

N (i′)(p, ℓ′) ⩽
1

log10 n
·
(

k

32

)ℓ′

3.5 from single source to multiple sources 45

at every iteration i ⩽ i′ ⩽ i+ℓ, whichmeans that few of the good descendants
become bad at each round. Hence we obtain that

N(p, ℓ′) ⩽
i+ℓ∑
i′=i

N (i′)(p, ℓ′) ⩽
1

log n

(
k

32

)ℓ′

.

This ensures that any remaining path has few bad descendants (in terms of
local congestion).
We now define a set of paths R ⊆ Q, which contains all paths with high

local congestion. More precisely, let R contain for every path p ∈ Q and
ℓ′ ⩽ ℓ all paths q ∈ DQ(p, ℓ

′) such that congp(q | Q′) > 210ℓ2. Since
we have no more marked paths, each p has at most (log n)−1 · (k/32)ℓ′ ⩽
1/(8ℓ)2 · (k/32)ℓ′ descendants at distance ℓ′ in R. Applying Lemma 3.4 we
can remove R and obtain a solution Q′ ⊆ Q \ R, where each open path
has k/(64ℓ) children and the source remains in the solution. Moreover, the
solution has no more paths with ℓ-local congestion more than 210ℓ2 and the
global congestion is at most 211 log3 n. This finishes the proof of Lemma 3.7.

3.5 from single source to multiple sources

We devise an algorithm that solves the problem with multiple sources based
on an algorithmic technique first introduced by Haxell in the context of hy-
pergraph matchings and then applied to a range of other problems, including
the restricted assignment version of the Santa Claus problem. Haxell’s algo-
rithmic technique can be thought of as a (highly non-trivial) generalization of
the augmenting path algorithm for bipartite matching. Our algorithm makes
only calls to the α-approximation for a single source. The algorithm itself
requires quasi-polynomial time as well (even if the α-approximation ran in
polynomial time). Our concrete variant relies on the following simple, but
powerful subprocedure.

Lemma 3.21. Let Q be a (single) degree-k′ arborescence in a layered graph.
Let R ⊆ Q be a set of paths where at most (k′/4)i many end in each layer i .
Then there is a degree-k′/4 arborescence Q′ ⊆ Q \R. Furthermore, Q′ can be
computed in polynomial time.

Proof. We start pruning the arborescence from bottom to top andwemaintain
at every layer i that we remove at most (k′/2)i paths in it. At the last layer
i = h we remove simply the paths that are in R. These are by definition
at most (k′/4)i ⩽ (k′/2)i many. Then assume we already pruned layers
i, i + 1, . . . , h and that we removed at most (k′/2)i many paths in layer i.
Now in layer i − 1 we again remove the at most (k′/4)i−1 many paths in
R, but also those open paths where more than 3/4 · k′ many children were
removed in layer i. The number of open paths removed this way is at most
(k′/2)i/(3/4 · k′) ⩽ 2/3 · (k′/2)i−1 < (k′/2)i−1. Clearly, this procedure
maintains that every remaining open path has at least k′/4 children and the
source never gets removed.

Throughout the sectionwe assume that k is the optimum, which is obtained
through a binary search framework. We now assume that we have a degree-
k/256α solution that already covers all but one source s0 ∈ S. We will

46 maxmin arborescences

augment this solution to one that covers all sources. This is without loss of
generality, since we can apply the procedure iteratively |S| times, adding one
source at a time.

blocking trees and addable trees. Let Q be our current solution
(which does not cover s0). On an intuitive level, blocking trees are k/256α-
degree arborescences in our current solution Q, which we would like to
remove from the solution. In order to remove them, we need to add other
arborescences for their sources instead. The addable trees are k/32α-degree
arborescences not in our solution. Their sources are sources of blocking trees
inQ and we would like to add to them solution. The addable trees in turn may
be blocked by blocking trees, which means they overlap on some non-source
vertex with a tree in Q, preventing us from adding them to the solution. We
note that addable trees are (by a factor of 8) better arborescences than what
we ultimately need. As explained above, addable and blocking trees naturally
form an alternating structure, which is usually referred to as layers. In order
to avoid conflicts with our other notion of layers, we call these rings. The
addable and blocking trees in the ith ring will be denoted by Ai and Bi.

the algorithm. Initially we have no rings.We run ourα-approximation
to find a k/α-degree arborescence for s0 (without taking into account our
current solution Q). We reduce this to a k/32α-degree arborescence and
store it as singleton set in A1. Then we store in B1 all arborescences in Q
that intersect on any vertex with it. If the total intersection on each layer j is
at most (k/128α)j , then we can find through Lemma 3.21 a k/128α-degree
arborescence for s0 which is disjoint from Q. We reduce it to a k/256α-
degree arborescence and add it to the solution and terminate. Otherwise we
continue the algorithm, but now we indeed have one ring of addable and
blocking trees.

Assume now the algorithm in its current state has ringsA1, B1, . . . , Ai, Bi.
Then we intialize Ai+1 = ∅ and add addable trees to it in the following
Greedy manner. From our (layered) graph we produce a reduced instance by
removing any vertices appearing in A1, B1, . . . , Ai, Bi, Ai+1 (except for the
sources). Then we iterate over any source s that is either s0 or the source
of a blocking tree in B1 ∪ · · · ∪ Bi. We call our α-approximation for s on
the reduced instance. If it outputs a k′-degree solution with k′ ⩾ k/32α, we
add it to Ai+1 (after reducing to degree exactly k/32α). We repeat this until
we can no longer add any addable trees to Ai+1. Then we construct Bi+1 by
taking any arborescence in Q that intersects with any addable tree in Ai+1.
As before, we check if any addable tree in Ai+1 has a total intersection of
at most (k/128α)j on each layer j with solution Q. If so, we collapse: we
can compute through Lemma 3.21 a k/128α-degree arborescence for the
corresponding source s, which is disjoint from Q. We reduce it to a k/256α-
degree arborescence and add it to Q. Now s has two arborescences in Q.
The other arborescence must have appeared as a blocking tree in an earlier
ring Bi′ . We remove this blocking tree from Q and delete all rings after i′.
Then we revisit the addable trees in Ai′ . Since we removed a blocking tree in
Bi′ , one of them may now have a small intersection with all trees in Q (as
above). If so, we collapse this as well. We continue so until no more collapse

3.5 from single source to multiple sources 47

is possible, leaving us with a new solution Q and a prefix of the previous
rings. We then continue the algorithm. Once an addable tree for s0 is added
to Q we terminate.

analysis. Our analysis relies on two lemmas.

Lemma 3.22. At any point of time in the local search algorithm we have for
every ring that |Bi| ⩾ |Ai|.

Proof. Recall that the addable trees in Ai are vertex disjoint by construction.
At the same time, none of them can be collapsed. This means for each of them
there must be a layer j such that the addable tree intersects with Q (that
is, with Bi) on (k/128)j many vertices. Let Rj be the set of all intersecting
vertices with Q in layer j (across all addable trees in Ai). Then∑

j⩾1

|Rj |
(k/128)j

> |Ai| .

On the other hand, each blocking tree in Bi has at most (k/256)j many
vertices in each layer j. Thus,∑

j⩾1

|Rj |
(k/128)j

⩽
∑
j⩾1

|Bi| ·
1

2j
⩽ |Bi| .

Lemma 3.23. After the Greedy procedure to construct Ai+1, we have that
|Ai+1| ⩾

∑i
i′=1 |Bi′ |.

Proof. By Lemma 3.22 we have that

i∑
i′=1

|Ai′ |+ |Bi′ | ⩽ 2
i∑

i′=1

|Bi′ | .

Now assume toward constradiction that |Ai+1| <
∑i

i′=1 |Bi′ | and no more
addable trees can be added. Recall that the reduced instance we consider
removes all vertices appearing in A1, B1, . . . , Ai, Bi, Ai+1. By the bounds
above we know that this removes a total of at most

(k/32)j · 3
i∑

i′=1

|Bi′ | (3.17)

many vertices from each layer j. Now consider the optimal degree-k solu-
tion restricted to the sources in

⋃i
i′=1Bi′ . Each of the arborescences in this

solution must overlap with the removed vertices on some layer j on at least
(k/4)j many vertices. Otherwise, by Lemma 3.22 there would be a degree-k/4
arborescence rooted in one of the sources of a blocking tree which is disjoint
from the removed vertices. Consequently, our α-approximation would have
found a degree-k/4α arborescence that would have been added as an addable

48 maxmin arborescences

tree. Let Rj be the intersection of the aforementioned optimal solution with
the removed vertices. Then

∑
j⩾1

|Rj |
(k/4)j

⩾
i∑

i′=1

|Bi′ | .

However, from (3.17) it follows that

∑
j⩾1

|Rj |
(k/4)j

⩽

(
3

i∑
i′=1

|Bi′ |

)
·
∑
j⩾1

(
1

8

)j

<

i∑
i′=1

|Bi′ | ,

a contradiction.

From the lemmas above it follows that the local search never gets stuck: at
any time it can either collapse or add a new (large) ring. It remains to show
that it terminates in quasi-polynomially many steps. First we observe that
the algorithm never has more than O(log n) many rings. By the previous
two lemmas we have for every i that

i+1∑
i′=1

|Bi′ | = |Bi+1|+
i∑

i′=1

|Bi′ | ⩾ |Ai+1|+
i∑

i′=1

|Bi′ | ⩾ 2

i∑
i′=1

|Bi′ | .

Consequently, the number of blocking trees grows exponentially and the
number of rings can be only logarithmic. Now consider the potential

(|B1|, |B2|, . . . , |Bi|,∞) ,

where i is the number of rings. This potential decreases lexicographically
with every collapse or newly added ring. Number of possible potentials
is bounded by nO(logn), which implies that the local search terminates in
quasi-polynomial time.

3.6 apx-hardness of maxmin arborescences

We finish this chapter by showing that the MaxMin arborescence problem is
APX-hard, even in a layered graph with 2 layers and a single source (hence a
stronger statement than Theorem 2.2). Our proof is based on a reduction from
the max-k-cover problem, in which one is given a universe U of m elements,
a family of subsets S1, S2, . . . , Sn of subsets of U and one has to cover a
maximum number of elements of U using at most k sets. In a seminal result
by Feige [38], it is showed that it is NP-hard to approximate max-k-cover
within factor better than e

e−1 . More specifically, it is showed that on instances
where all sets have the same cardinalitym/k, it is NP-hard to decide whether
there exist k disjoint sets that cover the whole universe U (YES instance) or
if any k sets cover at most (1− 1/e) ·m elements (NO instance).

Theorem3.24. For any ε > 0 there is no (
√

e
e−1−ε)-approximation algorithm

to the single source MaxMin Arborescences problem on 2-layered graphs, unless
P=NP.

3.6 apx-hardness of maxmin arborescences 49

Proof. From a max-k-cover instance (U , S1, S2, . . . , Sn) we make a layered
instance of max-min arborescence as follows. In layer L0 there is a single
source s. In layer L1, there are m/k2 vertices (vi,j)1⩽j⩽m/k2 for each set Si.
In layer L2, there arem/k2 sinks (sa,j)1⩽j⩽m/k2 for each element a ∈ U .
Then we connect the source s to all vertices in layer L1. Each vertex vi,j

in L1 is connected to all sinks sa,j such that a ∈ Si. Let us denote by OPT
the optimum max-min degree of an arborescence on this instance.

Claim 3.25. If the max-k-cover instance is a YES instance, then OPT ⩾ m/k.
Otherwise, OPT ⩽

√
1− 1/e ·m/k.

Proof. If the max-k-cover instance is a YES instance then for the source we
select as neighbors in L1 all the vertices vi,j such that Si is selected in the
k-cover solution. The source gets in this way k · m/k2 = m/k outgoing
neighbors. Each vertex vi,j that was selected then selects all the sinks sa,j
such that a ∈ Si. Since we are in a YES instance, all the selected sets are
disjoint and each one receives exactlym/k sinks. This is a valid arborescence
of value m/k.

In the NO case, consider any valid arborescence of value OPT. If there is a
j such that the source selects more than (1 + β) · k vertices (for any β ⩾ 0)
in the set Vj = (vi,j)1⩽i⩽m then this arborescence cannot have a maxmin
degree more than

max
β⩾0

min

{
1− 1/e+ β

1 + β
,

1

1 + β

}
·m
k

⩽
1

1 + 1/e
·m
k

⩽
(√

1− 1/e
)
·m
k

To see this, note that in a NO instance, any union of k sets contains at most
(1− 1/e) ·m elements, hence any union of (1 + β) · k sets contains at most
(1− 1/e) ·m+ βm elements (recall that each set has cardinality m/k), to
be shared between (1 + β) · k vertices. This gives the first ratio. The second
comes from the fact that any union of some sets contains at mostm elements.
Optimizing over all β ⩾ 0 gives the upper-bound. Hence assume there is not
such j.

If the source s has outdegree more than
√
1− 1/e ·m/k then it must be

that there is a j ∈ [1,m/k2] such that s has more than√
1− 1/e ·m/k

m/k2
=
√

1− 1/e · k

out-neighbors in the set Vj = (vi,j)1⩽i⩽m. By assumption, the source has
also at most k out-neighbors in this set hence the number of sinks connected
to vertices in Vj is at most (1− 1/e) ·m (recall we are in a NO case). Hence
there must be a vertex vi,j that gets less than

(1− 1/e) ·m√
1− 1/e · k

=
(√

1− 1/e
)
· m
k

sinks as neighbors. In all cases, there must be a vertex in the arborescence
that gets out-degree at most (

√
1− 1/e) · mk , which ends the proof of the

claim.

50 maxmin arborescences

By the previous claim, a (
√

e
e−1 − ε)-approximation would be able to

distinguish between the YES and NO instances of the max-k-cover problem,
which is NP-hard.

4THE RE STR ICTED SUBMODULAR SAN TA CLAUS

This chapter contains the proof of Theorem 2.3, starting by an introduction
to our techniques. This chapter is based on the publication “The Submodular
Santa Claus in the Restricted Assignment Case", a joint work with Lars
Rohwedder and Paritosh Garg that appeared at the International Colloquium
on Automata, Languages and Programming (ICALP ‘21) [11]. Our way to the
result is organised as follows. In Section 4.2, we first reduce our problem to a
hypergraph matching problem (see next paragraph for a formal definition).
We then solve this problem using Lovasz Local Lemma (LLL) in Section 4.3.
In [14] the authors also reduce to a hypergraph matching problem which
they then solve using LLL, although both parts are substantially simpler. The
higher generality of our utility functions is reflected in the more general
hypergraphmatching problem. Namely, our problem is precisely theweighted
variant of the (unweighted) problem in [14]. We will elaborate later why the
previous techniques do not easily extend to the weighted variant.

4.1 overview of previous techniqes and our new ideas

After the reduction in Section 4.2 we arrive at the following problem. There
is a hypergraph H = (P ∪ R, C) with hyperedges C over the vertices P
and R. We write m = |P | and n = |R|. We will refer to hyperedges as
configurations, the vertices in P as players and R as resources1. Moreover,
a hypergraph is said to be regular if all vertices in P and R have the same
degree, that is, they are contained in the same number of configurations. The
hypergraph may contain multiple copies of the same configuration. Each
configuration C ∈ C contains exactly one vertex in P , that is, |C ∩ P | = 1.
Additionally, for each configuration C ∈ C the resources j ∈ C have weights
wj,C ⩾ 0. We emphasize that the same resource j can be given different
weights in two different configurations, that is, we may have wj,C ̸= wj,C′

for two different configurations C,C ′.
We require to select for each player i ∈ P one configuration C that

contains i. For each configuration C that was selected we require to assign
a subset of the resources in C which has a total weight of at least (1/α) ·∑

j∈C wj,C to the player in C . A resource can only be assigned to one player.
We call such a solution an α-relaxed perfect matching. One seeks to minimize
α.

We show that every regular hypergraph has an α-relaxed perfect matching
for some α = O(log log(n)) assuming that wj,C ⩽ (1/α) ·

∑
j′∈C wj′,C

for all j, C , that is, all weights are small compared to the total weight of
the configuration. Moreover, we can find such a matching in randomized
polynomial time. In the reduction we use this result to round a certain LP

1 We note that these do not have to be the same players and resources as in the Santa Claus
problem we reduced from, but n andm do not increase.

51

52 the restricted submodular santa claus

relaxation and α essentially translates to the approximation rate. This result
generalizes that of Bansal and Srividenko [14] on hypergraph matching in
the following way. They proved the same result for unit weights and uniform
hyperedges, that is, wj,C = 1 for all j, C and all hyperedges have the same
number of resources2. In the next paragraph we briefly go over the techniques
to prove our result for the hypergraph matching problem.

our techniqes. Already the extension from uniform to non-uniform
hypergraphs (assuming unit weights) is highly non-trivial and captures the
core difficulty of our result. Indeed, we show with a (perhaps surprising)
reduction, that we can reduce our weighted hypergraph matching problem
to the unweighted (but non-uniform) version by introducing some bounded
dependencies between the choices of the different players. For sake of brevity
we therefore focus in this section on the unweighted non-uniform variant,
that is, we need to assign to each player a configuration C and at least |C|/α
resources in C . We show that for any regular hypergraph there exists such a
matching for α = O(log log(n)) assuming that all configurations contain at
least α resources and we can find it in randomized polynomial time. With-
out the assumption of uniformity the problem becomes significantly more
challenging. To see this, we lay out the techniques of Bansal and Srividenko
that allowed them to solve the problem in the uniform case. We note that for
α = O(log(n)) the statement is easy to prove: We select for each player i one
of the configurations containing i uniformly at random. Then by standard
concentration bounds each resource is contained in at most O(log(n)) of
the selected configurations with high probability. This implies that there is a
fractional assignment of resources to configurations such that each of the
selected configurations C receives ⌊|C|/O(log(n))⌋ of the resources in C .
By integrality of the bipartite matching polytope, there is also an integral
assignment with this property.
To improve to α = O(log log(n)) in the uniform case, Bansal and Srivi-

denko proceed as follows. Let k be the size of each configuration. First they
reduce the degree of each player and resource to O(log(n)) using the ar-
gument above, but taking O(log(n)) configurations for each player. Then
they sample uniformly at random O(n log(n)/k) resources and drop all oth-
ers. This is sensible, because they manage to prove the (perhaps surprising)
fact that an α-relaxed perfect matching with respect to the smaller set of
resources is still an O(α)-relaxed perfect matching with respect to all re-
sources with high probability (when assigning the dropped resources to the
selected configurations appropriately). Indeed, the smaller instance is easier
to solve: With high probability all configurations have size O(log(n)) and
this greatly reduces the dependencies between the bad events of the random
experiment above (the event that a resource is contained in too many selected
configurations). This allows them to apply Lovász Local Lemma (LLL) in
order to show that with positive probability the experiment succeeds for
α = O(log log(n)).

It is not obvious how to extend this approach to non-uniform hypergraphs:
Sampling a fixed fraction of the resources will either make the small configura-

2 In fact they get a slightly better ratio of α = O(log log(m)/ log log log(m)).

4.1 overview of previous techniqes and our new ideas 53

tions empty—which makes it impossible to retain guarantees for the original
instance—or it leaves the big configurations big—which fails to reduce the
dependencies enough to apply LLL. Hence it requires new sophisticated ideas
for non-uniform hypergraphs, which we describe next.
Suppose we are able to find a set K ⊆ C of configurations (one for each

player) such that for each K ∈ K the sum of intersections |K ∩K ′| with
smaller configurations K ′ ∈ K is very small, say at most |K|/2. Then it is
easy to derive a 2-relaxed perfect matching: We iterate over all K ∈ K from
large to small and reassign all resources toK (possibly stealing them from the
configuration that previously had them). In this process every configuration
gets stolen at most |K|/2 of its resources, in particular, it keeps the other half.
However, it is non-trivial to obtain a property like the one mentioned above.
If we take a random configuration for each player, the dependencies of the
intersections are too complex. To avoid this we invoke an advanced variant of
the sampling approach where we construct not only one set of resources, but
a hierarchy of resource setsR0 ⊇ · · · ⊇ Rd by repeatedly dropping a fraction
of resources from the previous set. We then formulate bad events based on
the intersections of a configuration C with smaller configurations C ′, but
we write it only considering a resource set Rk of convenient granularity
(chosen based on the size of C ′). In this way we formulate a number of bad
events using various sets Rk. This succeeds in reducing the dependencies
enough to apply LLL. Unfortunately, even with this new way of defining bad
events, the guarantee that for eachK ∈ K the sum of intersections |K ∩K ′|
with smaller configurations K ′ ∈ K is at most |K|/2 is still too much to
ask. We can only prove some weaker property which makes it more difficult
to reconstruct a good solution from it. The reconstruction still starts from
the biggest configurations and iterates to finish by including the smallest
configurations but it requires a delicate induction where at each step, both
the resource set expands and some new small configurations that were not
considered before come into play.

a remark on local search techniqes. In our proof, we focus
here on an extension of the LLL technique of Bansal and Srividenko. How-
ever, another technique proved itself very successful for the Santa Claus
problem in the restricted assignment case with a linear utility function. This
is a local search technique discovered by Asadpour, Feige, and Saberi [6]
who used it to give a non-constructive proof that the integrality gap of the
configuration LP of Bansal and Srividenko is at most 4. One may wonder if
this technique could also be extended to the submodular case as we did with
LLL. Unfortunately, this seems problematic as the local search arguments
heavily rely on amortizing different volumes of configurations (i.e., the sum of
their resources’ weights or the number of resources in the unweighted case).
Amortizing the volumes of configurations works well, if each configuration
has the same volume, which is the case for the problem derived from linear
valuation functions, but not the one derived from submodular functions. If
the volumes differ then the amortization arguments break and we believe
this is a fundamental problem for this approach.

54 the restricted submodular santa claus

4.2 reduction to hypergraph matching problem

In this section we give a reduction of the restricted submodular Santa Claus
problem to the hypergraph matching problem. As a starting point we solve
the configuration LP, a linear programming relaxation of our problem. The
LP is constructed using a parameter T which denotes the value of its solution.
The goal is to find the maximal T such that the LP is feasible. In the LP
we have a variable xi,C for every player i ∈ P and every configuration
C ∈ C(i, T). The configurations C(i, T) are defined as the sets of resources
C ⊆ Γi such that f(C) ⩾ T . We require every player i ∈ P to have at least
one configuration and every resource j ∈ R to be contained in at most one
configuration. ∑

C∈C(i,T)

xi,C ⩾ 1 for all i ∈ P

∑
i∈P

∑
C∈C(i,T):j∈C

xi,C ⩽ 1 for all j ∈ R

xi,C ⩾ 0 for all i ∈ P,C ∈ C(i, T)

Since this linear program has exponentially many variables, we cannot di-
rectly solve it in polynomial time. We will give a polynomial time constant
approximation for it via its dual. This is similar to the linear variant in [14],
but requires some more work. In their case they can reduce the problem to
one where the separation problem of the dual can be solved in polynomial
time. In our case even the separation problem can only be approximated. Nev-
ertheless, this is sufficient to approximate the linear program in polynomial
time.

Theorem 4.1. The configuration LP of the Restricted Submodular Santa Claus
problem can be approximated within a factor of (1 − 1/e)/2 in polynomial
time.

We defer the proof of this theorem to Appendix B.1.1. Given a solution
x∗ of the configuration LP we want to arrive at the hypergraph matching
problem from the introduction such that an α-relaxed perfect matching of
that problem corresponds to an O(α)-approximate solution of the Restricted
Submodular Santa Claus problem. Let T ∗ denote the value of the solution x∗.
We will define a resource j ∈ R as fat if f({j}) ⩾ T ∗/(100α).

Resources that are not fat are called thin. We call a configuration C ∈
C(i, T) thin, if it contains only thin resources and denote by Ct(i, T) ⊆
C(i, T) the set of thin configurations. Intuitively in order to obtain an O(α)-
approximate solution, it suffices to give each player i either one fat resource
j ∈ Γi or a thin configurationC ∈ Ct(i, T ∗/O(α)). For our next step towards
the hypergraph problem we use a technique borrowed from Bansal and
Srividenko [14]. This technique allows us to simplify the structure of the
problem significantly using the solution of the configuration LP. Namely, one
can find a partition of the players into clusters such that we only need to
cover one player from each cluster with thin resources. All other players can
then be covered by fat resources. Informally speaking, the following lemma

4.2 reduction to hypergraph matching problem 55

is proved by sampling configurations randomly according to a distribution
derived in a non-trivial way from the configuration LP.

Lemma 4.2. Let ℓ ⩾ 12 log(n). Given a solution of value T ∗ for the con-
figuration LP in randomized polynomial time we can find a partition of the
players into clustersK1 ∪ · · · ∪Kk ∪Q = P and multisets of configurations
Ch ⊆

⋃
i∈Kh

Ct(i, T ∗/5), h = 1, . . . , k, such that

1. |Ch| = ℓ for all h = 1, . . . , k and

2. Each small resource appears in at most ℓ configurations of
⋃

h Ch.

3. given any i1 ∈ K1, i2 ∈ K2, . . . , ik ∈ Kk there is a matching of fat
resources to players P \ {i1, . . . , ik} such that each of these players i
gets a unique fat resource j ∈ Γi.

The role of the players Q in the lemma above is that each one of them
gets a fat resource for certain. The proof follows closely that in [14]. For
completeness we include it in Appendix B.1.2. We are now ready to define
the hypergraph matching instance. The vertices of our hypergraph are the
clustersK1, . . . ,Kk and the thin resources. Let C1, . . . , Ck be the multisets of
configurations as in Lemma 4.2. For eachKh andC ∈ Ch there is a hyperedge
containing Kh and all resources in C . Let {j1, . . . , jm} = C ordered arbi-
trarily, but consistently. Then we define the weights as normalized marginal
gains of resources if they are taken in this order, that is,

wji,C =
5

T ∗ f({ji} | {j1, . . . , ji−1})

=
5

T ∗ (f({j1, . . . , ji−1, ji})− f({j1, . . . , ji−1})) .

This implies that
∑

j∈C wj,C ⩾ 5f(C)/T ∗ ⩾ 1 for each C ∈ Ch, h =
1, . . . , k.

Lemma 4.3. Given an α-relaxed perfect matching to the instance as described
by the reduction, one can find in polynomial time an O(α)-approximation to
the instance of Restricted Submodular Santa Claus.

Proof. Theα-relaxed perfect matching implies that each clusterKh gets some
small resources C ′ where C ′ ⊆ C for some C ∈ Ch and

∑
j∈C′ wj,C ⩾ 1/α.

By submodularity we have that f(C ′) ⩾ T ∗/(5α). Therefore we can satisfy
one player in each cluster using thin resources and by Lemma 4.2 all others
using fat resources.

The proof above is the most critical place in the paper where we make
use of the submodularity of the valuation function f . We note that since all
resources considered are thin resources we have, by submodularity of f , the
assumption that

wj,C ⩽
5

T ∗ f({j}) ⩽
5

T ∗
T ∗

100α
⩽

5

100α

∑
j∈C

wj,C

for all j, C such that j ∈ C . This means that the weights are all small
enough, as promised in introduction. From now on, we will assume that

56 the restricted submodular santa claus

∑
j∈C wj,C = 1 for all configurations C . This is without loss of generality,

since we can just rescale the weights inside each configuration. This does
not hurt the property that all weights are small enough.

4.2.1 Reduction to unweighted hypergraph matching

Before proceeding to the solution of this hypergraph matching problem, we
first give a reduction to an unweighted variant of the problem. We will then
solve this unweighted variant in the next section. First, we note that we can
assume that all the weights wj,C are powers of 2 by standard rounding argu-
ments. This only loses a constant factor in the approximation rate. Second, we
can assume that inside each configuration C , each resource has a weight that
is at least a 1/(2n). Formally, we can assume thatminj∈C wj,C ⩾ 1/(2n) for
all C ∈ C. If this is not the case for some C ∈ C, simply delete from C all
the resources that have a weight less than 1/(2n). By doing this, the total
weight of C is only decreased by a factor 1/2 since it looses in total at most
a weight of n · (1/2n) = 1/2. (Recall that we rescaled the weights so that∑

j∈C wj,C = 1).
Hence after these two operations, an α-relaxed perfect matching in the

new hypergraph is still an O(α)-relaxed perfect matching in the original
hypergraph. From there we reduce to an unweighted variant of the matching
problem. Note that each configuration contains resources of at most log(n)
different possible weights (powers of 2 from 1/(2n) to 1/α). We create the
following new unweighted hypergraph H′ = (P ′ ∪ R, C′). The resource
set R remains unchanged. For each player i ∈ P , we create log(n) play-
ers, which later correspond each to a distinct weight. We will say that the
players obtained from duplicating the original player form a group. For ev-
ery configuration C containing player i in the hypergraphH, we add a set
SC = {C1, . . . , Cs, . . . , Clog(n)} of configurations inH′. Cs contains player
is and all resources that are given a weight 2−(s+1) in C . In this new hy-
pergraph, the resources are not weighted. Note that if the hypergraphH is
regular thenH′ is regular as well.

Additionally, for a group of player and a set of log(n) configurations (one
for each player in the group), we say that this set of configurations is consistent
if all the configurations selected are obtained from the same configuration in
the original hypergraphH (i.e. the selected configurations all belong to SC
for some C inH).

Formally, we focus of the following problem. Given the regular hypergraph
H′, we want to select, for each group of log(n) players, a consistent set of
configurations C1, . . . , Cs, . . . , Clog(n) and assign to each player is a subset
of the resources in the corresponding configuration Cs so that is is assigned
at least ⌊|Cs|/α⌋ resources. No resource can be assigned to more than one
player. We refer to this assignment as a consistent α-relaxed perfect matching.
Note that in the case where |Cs| is small (e.g. of constant size) we are not
required to assign any resource to player is.

We finish this section by formally proving that this reduction is sufficient
for our purposes. More precisely, we show that we can easily transform a

4.3 matchings in regular hypergraphs 57

consistent α-relaxed matching in H′ into a good matching in the original
hypergraphH.

Lemma 4.4. A consistent α-relaxed matching inH′ induces a O(α)-relaxed
matching inH.

Proof. Let us consider a group of log(n) players i1, . . . , is, . . . , ilog(n) inH′

corresponding to a player i inH. These players are assigned a consistent set
of configurations C1, . . . , Cs, . . . , Clog(n) that correspond to a partition of a
configuration inH. Moreover, each player is is assigned ⌊|Cs|/α⌋ resources
from Cs. We have two cases. If |Cs| ⩾ α then we have that is is assigned at
least

⌊|Cs|/α⌋ ⩾ |Cs|/(2α)

resources from Cs. On the other hand, if ⌊|Cs|/α⌋ = 0 then the player is
might not be assigned anything. However, we claim that that the configu-
rations Cs of cardinality less than α can represent at most a 1/5 fraction of
the total weight of the configuration C in the original weighted hypergraph.
To see this note that the total weight they represent is upper bounded by

α

 ∞∑
k=log(100α/5)

1

2k

 = α

(
5

100α

∞∑
k=0

1

2k

)
⩽

10

100
=

1

10

∑
j∈C

wj,C .

Hence, the consistent α-relaxed matching in H′ induces in a straight-
forward way a matching in H where every player gets at least a fraction
1/(2α) · (1− 1/10) ⩾ 1/(3α) of the total weight of the appropriate configu-
ration. This means that the consistent α-relaxed perfect matching inH′ is
indeed a (3α)-relaxed perfect matching inH.

4.3 matchings in regular hypergraphs

In this section we solve the hypergraph matching problem we arrived to in
the previous section. For convenience, we give a self contained definition of
the problem before formulating and proving our result.

input: We are givenH = (P ∪R, C) a hypergraph with hyperedges C
over the vertices P (players) and R (resources) withm = |P | and n = |R|.
As in previous sections, we will refer to hyperedges as configurations. Each
configuration C ∈ C contains exactly one vertex in P , that is, |C ∩ P | = 1.
The set of players is partitioned into groups of size at most log(n), we will use
A to denote a group. These groups are disjoint and contain all players. Finally
there exists an integer ℓ such that for each group A there are ℓ consistent
sets of configurations. A consistent set of configurations for a group A is a
set of |A| configurations such that all players in the group appear in exactly
one of these configurations. We will denote by SA such a set and for a player
i ∈ A, we will denote by S(i)A the unique configuration in SA containing i.
Finally, no resource appears in more than ℓ configurations. We say that the
hypergraph is regular (although some resources may appear in less than ℓ
configurations).

58 the restricted submodular santa claus

output: We wish to select a matching that covers all players in P . More
precisely, for each groupAwewant to select a consistent set of configurations
(denoted by {S(i)A }i∈A). Then for each player i ∈ A, we wish to assign a
subset of the resources in S(i)A to the player i such that:

1. No resource is assigned to more than one player in total.

2. For any group A and any player i ∈ A, player i is assigned at least
⌊|S(i)A |/α⌋ resources from S

(i)
A .

We call this a consistent α-relaxed perfect matching. Our goal in this section
will be to prove the following theorem.

Theorem 4.5. Let H = (P ∪R, C) be a regular (non-uniform) hypergraph
where the set of players is partitioned into groups of size at most log(n). Then
we can, in randomized polynomial time, compute a consistent α-relaxed perfect
matching for α = O(log log(n)).

We note that Theorem 4.5 together with the reduction from the previous
section will prove our main result (Theorem 2.3) stated in introduction.

4.3.1 Overview and notations

To prove Theorem 4.5, we introduce the following notations. Let ℓ ∈ N be the
regularity parameter as described in the problem input (i.e. each group has ℓ
consistent sets and each resource appears in no more than ℓ configurations).
As we proved in Lemma 4.2 we can assumewith standard sampling arguments
that ℓ = 300.000 log3(n) at a constant loss. If this is not the case because
we might want to solve the hypergraph matching problem by itself (i.e. not
obtained by the reduction in Section 4.2), the proof of Lemma 4.2 can be
repeated in a very similar way here.

For a configuration C , its size will be defined as |C ∩R| (i.e. its cardinality
over the resource set). For each player i, we denote by Ci the set of configura-
tions that contain i. We now group the configurations in Ci by size: We denote
by C(0)i the configurations of size in [0, ℓ4) and for k ⩾ 1we write C(k)i for the
configurations of size in [ℓk+3, ℓk+4). Moreover, define C(k) =

⋃
i C

(k)
i and

C(⩾k) =
⋃

h⩾k C(h). Let d be the smallest number such that C(⩾d) is empty.
Note that d ⩽ log(n)/ log(ℓ). Now consider the following random process.

Random Experiment 4.6. We construct a nested sequence of resource sets
R = R0 ⊇ R1 ⊇ . . . ⊇ Rd as follows. Each Rk is obtained from Rk−1 by
deleting every resource in Rk−1 independently with probability (ℓ− 1)/ℓ.

In expectation only a 1/ℓ fraction of resources in Rk−1 survives in Rk.
Also notice that for C ∈ C(k) we have that E[|Rk ∩ C|] = poly(ℓ).

The proof of Theorem 4.5 is organized as follows. In Section 4.3.2, we give
some properties of the resource sets constructed by Random Experiment 4.6
that hold with high probability. Then in Section 4.3.3, we show that we can
find a single consistent set of configurations for each group of players such
that for each configuration selected, its intersection with smaller selected
configurations is bounded if we restrict the resource set to an appropriate

4.3 matchings in regular hypergraphs 59

Rk. Restricting the resource set is important to bound the dependencies of
bad events in order to apply Lovasz Local Lemma. Finally in Section 4.3.4, we
demonstrate how these configurations allow us to reconstruct a consistent
α-relaxed perfect matching for an appropriate assignment of resources to
configurations.

4.3.2 Properties of resource sets

In this subsection, we give a precise statement of the key properties that we
need from Random Experiment 4.6. The first two lemmas have a straight-
forward proof. The last one is a generalization of an argument used by Bansal
and Srividenko [14]. Since the proof is more technical and tedious, we also
defer it to Appendix B.2 along with the proof of the first two statements.
We start with the first property which bounds the size of the configu-

rations when restricted to some Rk. This property is useful to reduce the
dependencies while applying LLL later.

Lemma 4.7. Consider Random Experiment 4.6 with ℓ ⩾ 300.000 log3(n). For
any k ⩾ 0 and any C ∈ C(⩾k) we have

1

2
ℓ−k|C| ⩽ |Rk ∩ C| ⩽ 3

2
ℓ−k|C|

with probability at least 1− 1/n10.

The next property expresses that for any configuration the sum of in-
tersections with configurations of a particular size does not deviate much
from its expectation. In particular, for any configuration C , the sum of it’s
intersections with other configurations is at most |C|ℓ as each resource is in
at most ℓ configurations. By the lemma stated below, we recover this up to a
multiplicative constant factor when we consider the appropriately weighted
sum of the intersection of C with other configurations C ′ of smaller sizes
where each configuration C ′ ∈ C(k) is restricted to the resource set Rk.

Lemma 4.8. Consider Random Experiment 4.6 with ℓ ⩾ 300.000 log3(n). For
any k ⩾ 0 and any C ∈ C(⩾k) we have

∑
C′∈C(k)

|C ′ ∩ C ∩Rk| ⩽
10

ℓk

|C|+ ∑
C′∈C(k)

|C ′ ∩ C|

with probability at least 1− 1/n10.

We now define the notion of good solutions which is helpful in stating
our last property. Let F be a set of configurations, α : F → N, γ ∈ N,
and R′ ⊆ R. We say that an assignment of R′ to F is (α, γ)-good if every
configuration C ∈ F receives at least α(C) resources of C ∩ R′ and if no
resource in R′ is assigned more than γ times in total.

Below we obtain that given a (α, γ)-good solution with respect to resource
set Rk+1, one can construct an almost (ℓ · α, γ)-good solution with respect
to the bigger resource set Rk . Informally, starting from a good solution with
respect to the final resource set and iteratively applying this lemma would
give us a good solution with respect to our complete set of resources.

60 the restricted submodular santa claus

Lemma 4.9. Consider Random Experiment 4.6 with ℓ ⩾ 300.000 log3(n). Fix
k ⩾ 0. Conditioned on the event that the bounds in Lemma 4.7 hold for k, then
with probability at least 1 − 1/n10 the following holds for all F ⊆ C(⩾k+1),
α : F → N, and γ ∈ N such that ℓ3/1000 ⩽ α(C) ⩽ n for all C ∈ F and
γ ∈ {1, . . . , ℓ}: If there is a (α, γ)-good assignment of Rk+1 to F , then there
is a (α′, γ)-good assignment of Rk to F where

α′(C) ⩾ ℓ

(
1− 1

log(n)

)
α(C)

for all C ∈ F . Moreover, this assignment can be found in polynomial time.

Given the lemmata above, by a simple union bound one gets that all the
properties of resource sets hold.

4.3.3 Selection of configurations

In this subsection, we give a random process that selects one consistent set
of configurations for each group of players such that the intersection of
the selected configurations with smaller configurations is bounded when
considered on appropriate setsRk . We will denote SA the selected consistent
set for groupA and for ease of notation we will denoteKi = S(i)A the selected
configuration for player i ∈ A. For any integer k, we write K(k)

i = {Ki} if
Ki ∈ C(k)i and K(k)

i = ∅ otherwise. As for the configuration set, we will also
denote K(k) =

⋃
iK

(k)
i and K =

⋃
k K(k). The following lemma describes

what are the properties we want to have while selecting the configurations.
For better clarity we also recall what the properties of the sets R0, . . . , Rd

that we need are. These hold with high probability by the lemmata of the
previous section.

Lemma 4.10. Let R = R0 ⊇ . . . ⊇ Rd be sets of fewer and fewer resources.
Assume that for each k and C ∈ C(k)i we have

1/2 · ℓk−h ⩽ |C ∩Rh| ⩽ 3/2 · ℓ−h|C| < 3/2 · ℓk−h+4

for all h = 0, . . . , k. Then there exists a selection of one consistent set SA for
each group A such for all k = 0, . . . , d, C ∈ C(k) and j = 0, . . . , k then we
have ∑

j⩽h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh| ⩽
1

ℓ

∑
j⩽h⩽k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩Rh|

+ 1000
d+ ℓ

ℓ
log(ℓ)|C|.

Moreover, this selection of consistent sets can be found in polynomial time.

Before we prove this lemma, we give an intuition of the statement. Consider
the sets R1, . . . , Rd constructed as in Random Experiment 4.6. Then for
C ′ ∈ C(h) we have E[ℓh|C ′ ∩ C ∩Rh|] = |C ′ ∩ C|. Hence∑

h⩽k

∑
K∈K(h)

|K ∩ C| = E[
∑
h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh|]

4.3 matchings in regular hypergraphs 61

Similarly for the right-hand side we have

E[
1

ℓ

∑
j⩽h⩽k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩Rh|+O(
d+ ℓ

ℓ
log(ℓ)|C|)]

=
1

ℓ

∑
j⩽h⩽k

∑
C′∈C(h)

|C ′ ∩ C|

︸ ︷︷ ︸
⩽ℓ|C|

+O

(
d+ ℓ

ℓ
log(ℓ)|C|

)

= O

(
d+ ℓ

ℓ
log(ℓ)|C|

)
.

Hence, the lemma says that each resource in C is roughly covered
O((d+ ℓ)/ℓ · log(ℓ)) times by smaller configurations.

We now proceed to the proof of Lemma 4.10.

Proof. We perform the following random experiment and show with LLL
that there is a positive probability of success.

Random Experiment 4.11. For each group A, select one consistent set SA
uniformly at random. Then for each player i ∈ A setKi = S(i)A .

Given this experiment we can define the following random variables. For
all h = 0, . . . , d and i ∈ P we define

X
(h)
i,C =

∑
K∈K(h)

i

|K ∩ C ∩Rh| ⩽ min{3/2 · ℓ4, |C ∩Rh|}.

Let X(h)
C =

∑m
i=1X

(h)
i,C . Then

E[X(h)
C] ⩽

1

ℓ

∑
C′∈C(h)

|C ′ ∩ C ∩Rh| ⩽ |C ∩Rh|.

We are now ready to define the bad events on which we will apply the Lovasz
Local Lemma. As we will show later, if none of them occur, Lemma 4.10 will
hold. For each k, C ∈ C(k), and h ⩽ k let B(h)

C be the event that

X
(h)
C ⩾

E[X(h)
C] + 63|C ∩Rh| log(ℓ) if k − 5 ⩽ h ⩽ k,

E[X(h)
C] + 135|C ∩Rh| log(ℓ) · ℓ−1 if h ⩽ k − 6.

The intuitive reason as to why we define these two different bad events
can be summarized as follows. In the case h ⩽ k − 6, we are counting how
many times C is intersected by configurations that are much smaller than C .
Hence the size of this intersection can be written as a sum of independent
random variables of value at mostO(ℓ4)which is much smaller than the total
size of the configuration |C ∩Rh|. Since the random variables are in a much
smaller range, Chernoff bounds give much better concentration guarantees
and we can afford a very small deviation from the expectation. In the other
case, we do not have this property hence we need a bigger deviation to
maintain a sufficiently low probability of failure. However, this does not
hurt the statement of Lemma 4.10 since we sum this bigger deviation only

62 the restricted submodular santa claus

a constant number of times. One key idea to be able to apply Lovasz Local
Lemma here is also to consider intersection of C with smaller configurations
but restricted to a set Rh of convenient granularity. One can notice that
|C ′ ∩Rh| = poly(ℓ) if C ′ ∈ C(h) (by the assumption made in Lemma 4.10).
This allows to reduce significantly the dependencies between bad events
which is crucial to make any use of LLL here.

With this in mind, we claim that the probability of each bad event happen-
ing is small.

Claim 4.12. For each k, C ∈ C(k), and h ⩽ k we have

P[B(h)
C] ⩽ exp

(
−2 |C ∩Rh|

ℓ9
− 18 log(ℓ)

)
.

Proof. Consider first the case that h ⩾ k − 5. By a Chernoff bound (see full
version for the precise formulation) with

δ = 63
|C ∩Rh| log(ℓ)

E[X(h)
C]

⩾ 1

we get

P[B(h)
C] ⩽ exp

(
−

δE[X(h)
C]

3|C ∩Rh|

)
⩽ exp(−21 log(ℓ)))

⩽ exp

(
− 2
|C ∩Rh|

ℓ9︸ ︷︷ ︸
⩽3/2

−18 log(ℓ)
)
.

Now consider h ⩽ k − 6. We apply again a Chernoff bound with

δ = 135
|C ∩Rh| log(ℓ)

ℓE[X(h)
C]

⩾
1

ℓ
.

This implies

P[B(h)
C] ⩽ exp

(
−
min{δ, δ2}E[X(h)

C]

3 · 3/2 · ℓ4

)

⩽ exp

(
−30 |C ∩Rh| log(ℓ)

ℓ6

)
⩽ exp

(
−2 |C ∩Rh|

ℓ9
− 18 log(ℓ)

)
.

We are now ready to instanciate the Lovász Local Lemma and use it in our
setting. Let k ∈ {0, . . . , d}, C ∈ C(k) and h ⩽ k. For event B(h)

C we set

x(B
(h)
C) = exp(−|C ∩Rh|/ℓ9 − 18 log(ℓ)).

We now analyze the dependencies of B(h)
C . The event depends only on ran-

dom variables SA for groups A that contain at least one player i that has

4.3 matchings in regular hypergraphs 63

a configuration in C(h)i which overlaps with C ∩ Rh. The number of such
configurations (in particular, of such groups) is at most ℓ|C ∩Rh| since the
hypergraph is regular.
In each of these groups, we count at most log(n) players, each having ℓ

configurations hence in total at most ℓ · log(n) configurations.
Each configurationC ′ ∈ C(h′) can only influence those eventsB(h′)

C′′ where
C ′∩C ′′∩Rh′ ̸= ∅. Since |C ′∩Rh′ | ⩽ 3/2·ℓ4 and since each resource appears
in at most ℓ configurations, we see that each configuration can influence at
most 3/2 · ℓ5 events.

Putting everything together, we see that the bad eventB(h)
C is independent

of all but at most

(ℓ|C∩Rh|) ·(ℓ · log(n)) ·(3/2 ·ℓ5) = 3/2 ·ℓ7 · log(n)|C∩Rh| ⩽ |C∩Rh|ℓ8

other bad events.
We can now verify the condition for LLL (see Lemma 2.5) by calculating

x(B
(h)
C)

∏
(B

(h)
C ,B

(h′)
C′)∈E

(1− x(B
(h′)
C′))

⩾ exp(−|C ∩Rh|/ℓ9 − 18 log(ℓ)) · (1− ℓ−18)|C∩Rh|ℓ8

⩾ exp(−|C ∩Rh|/ℓ9 − 18 log(ℓ)) · exp(−|C ∩Rh|/ℓ9)

⩾ exp(−2|C ∩Rh|/ℓ9 − 18 log(ℓ)) ⩾ P[B(h)
C].

By LLL we have that with positive probability none of the bad events happen.
Let k ∈ {0, . . . , d} and C ∈ C(k). Then for k − 5 ⩽ h ⩽ k we have

ℓhX
(h)
C ⩽ ℓhE[X(h)

C]+63ℓh|C∩Rh| log(ℓ) ⩽ ℓhE[X(h)
C]+95|C| log(ℓ).

Moreover, for h ⩽ k − 6 it holds that

ℓhX
(h)
C ⩽ ℓhE[X(h)

C]+135ℓh−1|C∩Rh| log(ℓ) ⩽ ℓhE[X(h)
C]+203|C| log(ℓ)·ℓ−1.

We conclude that, for any 0 ⩽ j ⩽ k,∑
j⩽h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh|

⩽
∑

j⩽h⩽k

ℓhE[X(h)
C] + 1000

(k − j + 1) + ℓ

ℓ
|C| log(ℓ)

⩽
1

ℓ

∑
j⩽h⩽k

ℓh
∑

C′∈C(h)

|C ′ ∩ C ∩Rh|+ 1000
d+ ℓ

ℓ
|C| log(ℓ).

This proves Lemma 4.10.

Remark 4.13. Since there are at most poly(n,m, ℓ) bad events and each bad
event B has x(B)

1−x(B) ⩽ 1/2 (because x(B) ⩽ ℓ−18), the constructive variant of
LLL by Moser and Tardos [70] can be applied to find a selection of configurations
such that no bad events occur in randomized polynomial time.

64 the restricted submodular santa claus

4.3.4 Assignment of resources to configurations

In this subsection, we show how all the previously established properties
allow us to find, in polynomial time, a good assignment of resources to the
configurations K chosen as in the previous subsection. We will denote as in
the previous subsection K(k)

i = {Ki} ifKi ∈ C(k)i and K(k)
i = ∅ otherwise.

We also define K(k) =
⋃

iK
(k)
i and K(⩾k) =

⋃
h⩾k K(k). Finally we define

the parameter

γ = 100.000
d+ ℓ

ℓ
log(ℓ),

which will define how many times each resource can be assigned to con-
figurations in an intermediate solution. Note that d ⩽ log(n)/ log(ℓ). By
our choice of ℓ = 300.000 log3(n), we have that γ ⩽ 310.000 log log(n).
Lemma 4.10 implies the following bound.
Claim 4.14. For any k ⩾ 0, any 0 ⩽ j ⩽ k, and any C ∈ K(k)∑

j⩽h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh| ⩽ 2000
d+ ℓ

ℓ
log(ℓ)|C|

Proof. By Lemma 4.10 we have that∑
j⩽h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh|

⩽
1

ℓ

∑
j⩽h⩽k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩Rh|+ 1000
d+ ℓ

ℓ
log(ℓ)|C| .

Furthermore, by Lemma 4.8, we get

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩Rh| ⩽ ℓh
10

ℓh

|C|+ ∑
C′∈C(h)

|C ′ ∩ C|

 .

Finally note that each resource appears in at most ℓ configurations, hence∑
j⩽h⩽k

∑
C′∈C(h)

|C ′ ∩ C| ⩽ ℓ|C|.

Putting everything together we conclude∑
j⩽h⩽k

∑
K∈K(h)

ℓh|K ∩ C ∩Rh|

⩽
1

ℓ

∑
j⩽h⩽k

∑
C′∈C(h)

ℓh|C ′ ∩ C ∩Rh|+ 1000
d+ ℓ

ℓ
log(ℓ)|C|

⩽
1

ℓ

∑
j⩽h⩽k

10

|C|+ ∑
C′∈C(h)

|C ′ ∩ C|

+ 1000
d+ ℓ

ℓ
log(ℓ)|C|

⩽
k − j

ℓ
10|C|+ 10|C|+ 1000

d+ ℓ

ℓ
log(ℓ)|C|

⩽ 20|C|+ 1000
d+ ℓ

ℓ
log(ℓ)|C|

⩽ 2000
d+ ℓ

ℓ
log(ℓ)|C|.

4.3 matchings in regular hypergraphs 65

We can now proceed to the main technical part of this section which is
the following lemma proved by induction.

Lemma 4.15. For any j ⩾ 0, there exists an assignment of resources of Rj to
configurations in K(⩾j) such that no resource is taken more than γ times and
each configuration C ∈ K(k) (k ⩾ j) receives at least(

1− 1

log(n)

)2(k−j)

ℓk−j |C ∩Rk|−
3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−j |K ∩C ∩Rh|

resources from Rk.

Before going through the proof, we give here the intuition of why this is
what we want to prove. Note that the term ℓk−j |C ∩ Rk| is roughly equal
to ℓ−j |C| by the properties of the resource sets (precisely Lemma 4.7). The
second term∑

j⩽h⩽k

∑
K∈K(h)

ℓh−j |K ∩ C ∩Rh|

can be shown to be

O

(
ℓ−j d+ ℓ

ℓ
log(ℓ)|C|

)
= O(ℓ−j log log(n)|C|)

by Claim 4.14. Hence by choosing γ to be Θ(log log(n)) we get that the
bound in Lemma 4.15 will be Θ(ℓ−j |C|). At the end of the induction, we
have j = 0 which indeed implies that we have an assignment in which
configurations receive

Θ(ℓ−0|C|) = Θ(|C|)

resources and such that each resource is assigned to at most O(log log(n))
configurations. With this in mind, we give the formal proof of Lemma 4.15.

Proof. We start from the biggest configurations and then iteratively recon-
struct a good solution for smaller and smaller configurations. Recall d is the
smallest integer such that K(⩾d) is empty. Our base case for these configura-
tions in K(⩾d) is vacuously satisfied.
Now assume that we have a solution at level j, i.e. an assignment of

resources to configurations in K(⩾j) such that no resource is taken more
than γ times and each configuration C ∈ K(k) such that k ⩾ j receives at
least(

1− 1

log(n)

)2(k−j)

ℓk−j |C ∩Rk|−
3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−j |K ∩C ∩Rh|

66 the restricted submodular santa claus

resources from Rj . We show that this implies a solution at level j − 1 in the
following way. First by Lemma 4.9, this implies an assignment of resources
of Rj−1 to configurations in K(⩾j) such that each C ∈ K(k) receives at least(

1− 1

log(n)

)
ℓ

[
(ℓk−j

(
1− 1

log(n)

)2(k−j)

|C ∩Rk|

− 3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−j |K ∩ C ∩Rh|
]

=

(
1− 1

log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩Rk|

− 3

γ

(
1− 1

log(n)

) ∑
j⩽h⩽k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩Rh|

⩾

(
1− 1

log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩Rk|

− 3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩Rh|

resources and no resource of Rj−1 is taken more than γ times. Note that we
can apply Lemma 4.9 since we have by Claim 4.14 and Lemma 4.7(

1− 1

log(n)

)2(k−j)

ℓk−j |C ∩Rk|

− 3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−j |K ∩ C ∩Rh|

⩾
ℓk−j

e2
|C ∩Rk| −

3

γ
2000ℓ−j d+ ℓ

ℓ
log(ℓ)|C|

⩾ ℓ−j |C|
(

1

2e2
− 6000

γ

d+ ℓ

ℓ
log(ℓ)

)
⩾

ℓ−j |C|
3e2

>
ℓ3

1000
.

Now consider configurations inK(j−1) and proceed for them as follows. Give
to eachC ∈ K(j−1) all the resources inC∩Rj−1 except all the resources that
appear in more than γ configurations in K(j−1). Since each deleted resource
is counted at least γ times in the sum

∑
K∈K(j−1) |K ∩ C ∩Rj−1|, we have

that each configuration C in K(j−1) receives at least

|C ∩Rj−1| −
1

γ

∑
K∈K(j−1)

|K ∩ C ∩Rj−1|

resources and no resource is taken more than γ times by configurations in
K(j−1). Notice that now every resource is taken no more than γ times by
configurations inK(⩾j) and no more than γ times by configurations inK(j−1)

which in total can sum up to 2γ times.
Therefore to finish the proof consider an resource i ∈ Rj−1. This resource

is taken bi times by configurations in K(⩾j) and ai times by configurations

4.3 matchings in regular hypergraphs 67

in K(j−1). If ai + bi ⩽ γ, nothing needs to be done. Otherwise, denote by
O the set of problematic resources (i.e. resources i such that ai + bi > γ).
For every i ∈ O, select uniformly at random ai + bi − γ configurations in
K(⩾j) that currently contain resource i and delete the resource from these
configurations. When this happens, each configuration in C ∈ K(⩾j) that
contains i has a probability of (ai + bi − γ)/bi to be selected to loose this
resource. Hence the expected number of resources that C looses with such a
process is

µ =
∑

i∈O∩C

ai + bi − γ

bi

It is not difficult to prove the following claim.

Claim 4.16. For any C ∈ K(⩾j),

1

γ2

∑
K∈K(j−1)

|K ∩C ∩Rj−1∩O| ⩽ µ ⩽
2

γ

∑
K∈K(j−1)

|K ∩C ∩Rj−1∩O|

Proof. Note that we can write

µ =
∑

i∈O∩C

ai + bi − γ

bi
⩽ max

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K∩C∩Rj−1∩O|.

The reason for this is that each resource i accounts for an expected loss of
(ai + bi − γ)/bi while it is counted ai times in the sum∑

K∈K(j−1)

|K ∩ C ∩Rj−1 ∩O|.

Similarly,

µ =
∑

i∈O∩C

ai + bi − γ

bi
⩾ min

i∈O∩C

{
ai + bi − γ

aibi

} ∑
K∈K(j−1)

|K∩C∩Rj−1∩O|.

Note that by assumption we have that ai+ bi > γ. This implies that either ai
or bi is greater than γ/2. Assume w.l.o.g. that ai ⩾ γ/2. Since by assumption
ai ⩽ γ we have that

ai + bi − γ

aibi
⩽

bi
aibi

=
1

ai
⩽

2

γ
.

In the same manner, since ai + bi > γ and that ai, bi ⩽ γ, we can write

ai + bi − γ

aibi
⩾

1

aibi
⩾

1

γ2
.

We therefore get the following bounds

1

γ2

∑
K∈K(j−1)

|K∩C∩Rj−1∩O| ⩽ µ ⩽
2

γ

∑
K∈K(j−1)

|K∩C∩Rj−1∩O|,

which is what we wanted to prove.

68 the restricted submodular santa claus

Assume then that µ ⩽ |C∩Rk|
1012 log3(n)

. Note that C cannot loose more than∑
K∈K(j−1) |K ∩C ∩Rj−1∩O| resources in any case. Therefore, by assump-

tion on µ, and since

µ ⩾
1

γ2

∑
K∈K(j−1)

|K ∩ C ∩Rj−1 ∩O| ,

we have that∑
K∈K(j−1)

|K ∩ C ∩Rj−1 ∩O| ⩽ γ2

1012 log3(n)
|C ∩Rk|

⩽
1011 log2 log(n)

1012 log3(n)
|C ∩ Rk| ⩽

1

log(n)
|C ∩ Rk| .

Therefore C looses at most |C ∩Rk|/ log(n) resources. Otherwise we have
that

µ >
|C ∩Rk|

1012 log2(n)
⩾

ℓ3

1012 log3(n)
⩾ 200 log(n) ,

by Lemma 4.7. Hence noting X the number of deleted resources in C we
have that

P
(
X ⩾

3

2
µ

)
⩽ exp

(
− µ

12

)
⩽

1

n10
.

With high probability no configuration looses more than

3

2
µ ⩽

3

γ

∑
K∈K(j−1)

|K ∩C ∩Rj−1 ∩O| ⩽
3

γ

∑
K∈K(j−1)

|K ∩C ∩Rj−1|

resources. Hence each configuration C ∈ K(⩾j) ends with at least(
1− 1

log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩Rk|

− 3

γ

∑
j⩽h⩽k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩Rh|

− 1

log(n)

(
1− 1

log(n)

)2(k−(j−1))−1

ℓk−(j−1)|C ∩Rk|

− 3

γ

∑
K∈K(j−1)

|K ∩ C ∩Rj−1|

⩾

(
1− 1

log(n)

)2(k−(j−1))

ℓk−(j−1)|C ∩Rk|

− 3

γ

∑
j−1⩽h⩽k

∑
K∈K(h)

ℓh−(j−1)|K ∩ C ∩Rh|

resources which concludes the proof of Lemma 4.15.

Given Lemma 4.15 and the intuition below it, it is straightforward to prove
the following corollary which will complete the proof of Theorem 4.5.

4.3 matchings in regular hypergraphs 69

Corollary 4.17. There exists an assignment of resourcesR toK such that each
configuration C ∈ K receives at least ⌊|C|/(100γ)⌋ resources. Moreover, this
assignment can be found in polynomial time.

Proof. Lemma 4.15 with k = 0 and Claim 4.14 together imply that we can
assign at least

|C|
2e2
− 6000

100.000
|C| ⩾ |C|

100

resources to every C ∈ K such that no resource in R is assigned more
than γ times. In particular, we can fractionally assign at least |C|/(100γ)
resources to each C ∈ K such that no resource is assigned more than once.
By integrality of the bipartite matching polytope, the corollary follows.

Part II

NETWORK DES IGN PROBLEMS

5I N TRODUCT ION

In this part, we focus on the design and analysis of simple algorithms for the
Matching Augmentation problem (MAP) and the Steiner Forest problem, two
fundamental problems in network design. Designing cheap networks that
are robust to edge failures is a basic and important problem in the field of ap-
proximation algorithms. The area containing these problems is often referred
to as survivable network design. Generally, one has to compute the cheap-
est network that satisfies some connectivity requirements in-between some
prespecified set of vertices. Classic examples are for instance the Minimum
Spanning Tree problem in which one has to augment the connectivity of a
graph from 0 to 1 or related questions such as the Steiner Tree or the Steiner
Forest problem. Another type of network design is to build 2-edge connected
spanning subgraph (2-ECSS) or multisubgraph (2-ECSM), where one has to
augment the connectivity of a graph from 0 to 2. Unfortunately, most of
the problems in this area are NP-hard (or even APX-hard), and what one
can hope for is generally to compute an approximate solution in polynomial
time. In this part, we will focus on two interesting connectivity problems:
the Steiner Forest problem and the Matching Augmentation problem (MAP).

Powerful and versatile techniques such as primal-dual [47, 85] or iterative
rounding [58, 66] guarantee an approximation within factor 2 for many of
these problems (including the Steiner Forest problem and the MAP) but im-
proving on this bound for any connectivity problem is often quite challenging.
In addition, the mentioned techniques are already fairly involved while some
extremely simple heuristics are still poorly understood.

5.1 the steiner forest problem

One of the most classic problems in network design is arguably the Steiner
Tree problem. Given a weighted graph G = (V,E,w : E 7→ R+) and a set
T ⊆ V of terminals, one has to compute the cheapest tree that connects
all the terminals. A straightforward generalization of this problem is the so-
called Steiner Forest problem in which one is given a set P of pairs of vertices
that are required to be connected. One has to buy the cheapest forest that
connects all the pairs of terminals. These two problems are also interesting in
the study of online algorithms, which deal with uncertain future. Indeed, the
assumption that we know all the instance upfront might not always apply in
real life, and it makes sense to relax this assumption. In the online version of
the Steiner Tree (or Forest) problem, the terminals in T (or P) are revealed
one by one (in a possibly adversarial order), and the algorithm has to connect
all previously arrived terminals (or pairs) before seeing the next one. The
challenge lies in the fact that the algorithm is not allowed to remove edges
that were bought before. By opposition, we refer to the standard model of
computation where all the information is known upfront as the offline case.

73

74 introduction

In a seminal paper, Imase and Waxman [56] introduced the online version
of the Steiner Tree problem and provided tight bounds in this scenario by
proving that (1) the natural greedy algorithmwhich simply connects the latest
arrived terminal to the closest previously arrived terminal is O(log(|T |))-
competitive1 and (2) no algorithm can be better thanΩ(log(|T |))-competitive.
Shortly after, Westbrook and Yan [84] introduced the online Steiner Forest
problem. As it is a more general problem, the negative result of Imase and
Waxman shows that no algorithm can be better thanΩ(log(|P|))-competitive.
From now on, with a slight abuse of notation, we will use k to denote either
the number of terminals |T | in the online Steiner Tree problem or the number
of pairs |P| in the online Steiner Forest problem. A natural generalization of
the greedy algorithm of Imase and Waxman for online Steiner Tree to the
case of online Steiner Forest can be described informally as follows:

Upon the arrival of a new pair {si, ti}, connect si and ti with the
shortest path in the current metric, contract the metric along the
chosen path and wait for the next pair.

We mention that there are some subtleties about how the metric is con-
tracted exactly, but for the sake of clarity, we will postpone these details
to later in the introduction. The reader might think for now that greedy
contracts the edges that it selects (i.e. for any edge e selected by greedy, its
weight w(e) is set to 0). For now, an algorithm will be considered as “greedy”
if it always buys the shortest path in the current metric, and nothing else.
Compared to the algorithm we introduced in Chapter 1, the only difference
is that here the algorithm cannot choose the order in which the pairs are
revealed.

Westbrook and Yan [84] showed that a wide class of greedy algorithms are
O
(√

k log(k)
)
-competitive. This boundwas quickly improved by Awerbuch,

Azar, and Bartal [8] who showed with an elegant dual fitting argument
that greedy algorithms are in fact O

(
log2(k)

)
-competitive and conjectured

that the right bound should be O(log(k)). Since then, their conjecture has
remained open. It is quite remarkable that the state-of-the-art for this problem
is the same also in the offline case, where greedy can choose the order in
which it connects the pairs.

This remark also applies to the lower bound side. The best lower-bound
is Ω(log(k)) both in online and offline settings. In fact, all lower bounds for
greedy that appeared so far in the literature (see [3, 8, 23, 56]) are instances
where the underlying optimum forest is a single tree. Surprisingly, even in
this case, nothing better than theO

(
log2(k)

)
upper bound is known.We note

that the O(log(k))-competitive analysis of Imase and Waxman for online
Steiner Tree does not extend to the online Steiner Forest problem, even if we
additionally assume that the optimum is a single tree. Indeed, the solution
constructed by greedy may not be a single connected component even if the

1 In the literature on online algorithms, we say that an algorithm is α-competitive if it returns
a solution that is never more than α times the optimum. For the purpose of this thesis, one
might think of an α-competitive algorithm as an α-approximation algorithm that works in
an online setting.

5.1 the steiner forest problem 75

underlying optimum solution is. This problem is highlighted by the lower
bounds that appear in [8, 23], which showcase the limitations of the current
analysis techniques.

further related work. Apart from the two results [8, 84] mentioned
above, many papers are related to the problem of understanding the greedy
algorithm for Steiner Forest. The competitive ratio of greedy was first men-
tioned again in a list of open problems by Fiat and Woeginger [40]. Around
the same time, Berman and Coulston [16] designed a more complex (non-
greedy) algorithm which they showed to be O(log(k))-competitive in the
online setting. However, their algorithm is not greedy because it can buy
additional edges that could be helpful in the future but are useless right now.
Later, Chen, Roughgarden, and Valiant [23] applied the result of Awerbuch
et al. regarding the greedy algorithm to design network protocols for good
equilibrium. Interestingly, they mention that the non-greedy algorithm of
Berman and Coulston was not possible to apply in their setting. More re-
cently, the performance of greedy algorithms for online Steiner Forest was
further raised as an “important open problem” in [36] and also cited in [75].
Finally, we note that there are several other situations where the Steiner

Forest problem is significantly harder to the understand than the Steiner
Tree problem. In the offline case, giving a better-than-2 approximation for
Steiner Forest is a major open problem in approximation algorithms, while
such a result already exists for the Steiner Tree problem [19, 77, 86]. Similarly,
it was known for a very long time that greedy (i.e. compute a minimum
spanning tree of the metric completion on terminals) gives a constant factor
approximation to the optimum Steiner Tree in the offline case, but it has only
been recently proved by Gupta and Kumar [50] that a simple “gluttonous”
algorithm also yields a constant factor approximation in the case of offline
Steiner Forest (we emphasize that the gluttonous algorithm cannot apply to
the online setting, in constrast with the simpler greedy algorithm).

5.1.1 Our results

As announced, there are some subtleties about how the metric is contracted
when running greedy. Hence we will first define three variants of greedy that
contract the metric in slightly different ways. However, we emphasize that
the best current upper bound for all these three variants is the O(log2(k))
upper bound of Awerbuch et al. Furthermore, these three variants behave
exactly the same on the problematic examples of [8, 23]. In particular, all
the discussion so far applies to any of these three variants and our main
technical theorem will apply to all three variants of greedy, but we will be
able to obtain more specialized results for some variants. In particular, for
one of the variants we show that greedy guarantees a O(log(k) · log log(k))-
approximation in the offline case. Before getting into the precise definition,
it is worthwhile to mention that Gupta and Kumar [50] also discussed some
subtleties about contracting the metric and also defined several algorithms
based on that. Hence it is not the first time that altering the contraction
procedure has been considered.

76 introduction

definition of the greedy algorithm. After greedy connected the
latest arrived pair p = {s, t}, it is clear that the distance between s and t
can be set to 0 in the current metric. This is the only property of the metric
contraction that the proof of Awerbuch et al. uses to obtain a good upper
bound. As long as we obtain a new graph G′ such that dG′(s, t) = 0, the
O(log2(k)) upper bound applies. In our paper, each greedy algorithm will
formally maintain a graph G(τ) = (V,E(τ)) that accurately describes the
current metric. In any case, greedy will always take the shortest path in the
current metric G(τ) to connect a newly arrived pair. After connecting the
τ -th pair, the set of edges will be defined as E(τ) = E ∪ S(τ) where S(τ)

is a set of edges of weight 0 over vertex set V that we will call shortcuts.
It will be clear from definition that we will have the natural condition that
∅ = S(0) ⊆ S(1) ⊆ . . . ⊆ S(k). The cost incurred by greedy will always be
the sum of lengths of all the shortest paths taken for connecting the pairs.
We now proceed to define the three contraction rules formally.

Rule 1: When greedy connects a pair {s, t} through a path s =
v0, v1, v2, . . . , vℓ, t = vℓ+1, add the following shortcuts:

• For all 0 ⩽ i ⩽ ℓ add the edge {vi, vi+1} of weight 0.

Rule 1 is what Awerbuch et al. intended in their original paper. It can be
seen as simply contracting all the edges on the path taken.

Rule 2:When greedy connects a pair {s, t} add an edge {s, t} with
weight 0.

Rule 2 is actually how the metric is contracted in [50] for their main
algorithm. Rule 2 might seem much weaker than Rule 1 as fewer shortcuts
are added. One can see that for any u, v ∈ V , the distance between u and v
can only be smaller when using Rule 1 over Rule 2. Hence the cost of greedy
equippedwith Rule 2 is always an upper bound on the cost of greedy equipped
with Rule 1. However, the proof of [8] already applies in this case. Hence the
greedy algorithm that uses Rule 2 is already O(log2(k))-competitive.

Rule 3: When greedy connects a pair {s, t} through a path
s, v1, v2, . . . , vℓ, t, let s = v′0, v

′
1, . . . , v

′
ℓ′ , t = v′ℓ′+1 be the sub-

sequence of s, v1, v2, . . . , vℓ, t in which we keep only the vertices
that appeared in a previous pair (i.e. previously arrived terminals).
Then, add the following shortcuts:

• For all 0 ⩽ i ⩽ ℓ′ add the edge {v′i, v′i+1} of weight 0.

Intuitively, Rule 3 is in-between rules 1 and 2. It is also reminiscent of the
contraction rule of the second algorithm in [50]. Again, using this rule, it is
clear that we obtain shorter paths than with Rule 2. The O(log2(k)) upper
bound also applies when using Rule 3. The formal definition of Greedyi
follows naturally for any i ∈ {1, 2, 3}.

5.1 the steiner forest problem 77

Algorithm 1 Greedyi

1: Upon arrival of pair {s, t}, buy the shortest path in the current metric.
2: Update the metric fromG(τ) toG(τ+1) using Rule i and wait for the next

pair.

As a shorthand, we will denote by A the greedy algorithm at hand. If we
do not specify which contraction rule we use, it will implicitly mean that the
statement that follows holds for any of our three rules.

our results. First, we introduce an intuitive measure of the efficiency of
Greedyi . In general, it might be that the cost incurred by the pair p = {s, t}
is much smaller than dG(s, t) = dG(0)(s, t). Indeed, because of additional
shortcuts, it might be that the ratio dG(s, t)/dG(τ)(s, t) is unbounded when
dG(τ)(s, t) = 0. We will define this ratio as the contraction of pair p and
denote it α(p). We have that

1 ⩽ α(p) ⩽∞,

for all pairs p, in any instance I . Intuitively, a very high contraction means
that Greedyi did a good job at reusing edges bought before. Following this
remark, one can note that all known lower bounds in [3, 8, 23, 56] have a
contraction of exactly 1 for all pairs in the instance (in the case of Steiner Tree
instances in [3, 56], one can always choose one of the two endpoints of each
pair so that this is the case). This seems to confirm the intuitive reasoning
that a hard instance should have most of the pairs with low contraction.

After this remark, we use the shorthandA =Greedyi to denote the greedy
algorithm at hand (using any of our three contraction rules). We denote by
costA(I,P<α) the cost incurred by A because of pairs of contraction strictly
less than α (i.e. pairs p with α(p) < α) when running instance I . Note that
we do not count the cost incurred by A because of pairs with contraction
higher than α. Furthermore, we will denote costA(I) the total cost incurred
by A. Finally, denote by w(OPT(I)) the cost of the offline optimum. Our
main technical result is the following. We remark that it applies regardless
of the ordering of the pairs in P .

Theorem 5.1 (Main technical theorem). Fix a sequence (αk)k⩾0 with αk ⩾ 1
for all k. Let A be a greedy algorithm running on the instance I containing k
pairs. Then,

costA (I,P<αk
) = O(log(k)) · (log(αk) + log log(k)) · w(OPT(I)).

As mentioned, this theorem applies to greedy with any of our three con-
traction rules. This already implies the theorem of Awerbuch et al. as it is
straightforward to see that pairs with contraction at least k can make greedy
pay at most O(1) · w(OPT(I)). To see this, simply denote by P ′ these pairs
with contraction more than k and c the greedy cost of the most expensive
pair in P ′. Then greedy pays for those pairs in P ′ a total cost of at most k · c
while OPT(I) must pay at least k · c to connect the most expensive pair in
P ′. With this observation and plugging in αk = k in our bound, we obtain
an upper bound of O(log2(k)) on the competitive ratio.

78 introduction

A consequence of our result is that if one wants to have an Ω
(
log1+ε(k)

)
lower bound for any fixed ε > 0, it must be that the lower bound on the cost
incurred by greedy comes from pairs with contraction at least 2Ω(logε(k)). This
already changes the perspective on how to obtain a stronger lower bound (if
it exists) and shows that all previous lower bounds (that have contraction
αk = 1 for all pairs) cannot give anything stronger thanΩ(log(k)·log log(k)).
The fact that the cost should come from pairs with high contraction seems
quite counter-intuitive, and we believe this is strong evidence that the old
conjecture of Awerbuch et al. should be true, even in adversarial order. Un-
fortunately, it is not clear to us how to formalize such an intuition. However,
this result still has a number of additional consequences that are interesting.
In the following, w(T ⋆(I)) denotes the optimum tree solution to instance I
(i.e. we restrict the solution to be a single connected component).

Theorem 5.2. Let A be the greedy algorithm using Rule 3. Then we have that

costA(I) = O(log(k) · log log(k)) · w(T ⋆(I)),

even in adversarial order.

As mentioned in the introduction, even in the case of a single tree spanning
the whole graph, nothing better than the generalO(log2(k))was known, and
all lower bounds in the literature are instances where the optimum is a single
component. We also obtain the following result, which was highlighted in
the introduction of this thesis (Chapter 1).

Theorem 5.3 (Main theorem). LetA be the greedy algorithm using contraction
rule 3. Denote by ci the cost paid by A when connecting pair pi = {si, ti} and
define di = dG(si, ti) (note that we take the distance in the original graphG). If
either of the two sequences (c1, c2, . . . , ck) or (d1, d2, . . . , dk) is non-increasing
then

costA(I) = O(log(k) · log log(k)) · w(OPT(I)).

This last result can be derived by using our main theorem, combined with
a potential function argument from [50]. This result proves that greedy is
an O(log(k) · log log(k))-approximation in the offline setting (for instance,
we can choose to order the pairs so that the sequence (d1, d2, . . . , dk) is
non-increasing).

These results are proven in Chapter 6. This chapter is organized as follows.
Section 6.1, we present the main obstacles in previous approaches and the
key idea underlying our new result. In Section 6.2 we present the proof of
our main technical result, Theorem 5.1. In Section 6.3, we present our proof
of Theorem 5.2 and Theorem 5.3.

5.2 the matching augmentation problem

As mentioned earlier, an important network design problem is the 2-edge
connected spanning subgraph (2-ECSS) where has to select the cheapest
2-edge connected subgraph of a given graph (note that taking two copies of
the same edge is not allowed in this problem. This problem is closely related
to the famous Traveling Salesman Problem (TSP). As for the Steiner Forest

5.2 the matching augmentation problem 79

problem, iterative rounding gives a factor 2 approximation for this problem
[58], and it is known that the problem is APX-hard (see for instance [34]). In
the case of 2-ECSS, a 118/89+ε < 1.321-approximation is known [44] if the
underlying graphG is unweighted (this improves on a the previous bound of
4/3 [55, 79]). However, a similar result for the weighted case has remained
elusive, and the best approximation algorithm only guarantee a factor 2
approximation. A prominent special case of the weighted 2-ECSS problem
is the so-called Forest Augmentation Problem (FAP). In such instances of
2-ECSS all edge weights are either 0 or 1 (we will refer to edges of cost 0
as light edges and edges of cost 1 as heavy edges). The name stems from
the fact that one can assume that the light edges form a forest F , and the
goal is to find the smallest set of heavy edges E′ such that F ∪ E′ is 2-edge
connected. Independently of our work, a very recent breakthrough [48] gives
an 1.9973-approximation algorithm for FAP, breaching for the first time the
barrier of 2 in that setting.
A famous special case of FAP is the Tree Augmentation Problem (TAP)

which has been extensively studied for decades. In this problem, the forest
F is a single spanning tree, and one has to find the smallest set of edges
to make the tree 2-edge connected. For this problem, several better-than-2
approximations were designed in a long line of research [1, 20, 28–30, 32,
37, 41, 43, 49, 61, 63, 64, 72, 74, 81, 82]. One can see TAP as an extreme case
of FAP where the forest is a single component. Another interesting special
case is the Matching Augmentation Problem (MAP), in which the forest of
light edges forms a matchingM and one has to find the smallest set of heavy
edges E′ such thatM ∪E′ is 2-edge connected. It can be seen as the other
extreme case in which the forest forms as many components as possible. We
also remark that MAP generalizes the unweighted 2-ECSS problem, which
can be viewed as an instance of MAP with an empty matching. For MAP,
only recently several better-than-2 approximation [26, 27, 45, 48] were given.
These works culminate in a 13/8 ≈ 1.625-approximation for MAP.

For many of these network design problems, there is a simple linear pro-
gramming relaxation called the cut LP. In the case of FAP, for a given graph
G = (V,E), forest F ⊆ E the cut LP is written as follows, with a variable
xe to decide to take each edge e or not. Recall that δ(S) denotes the edges
with exactly one endpoint in S.

LP (G,F) : min
∑

e∈E\F

xe∑
e∈δ(S)

xe ⩾ 2, for all S, ∅ ⊊ S ⊊ V

0 ⩽ xe ⩽ 1, ∀e ∈ E.

The integrality gap of this linear program is an interesting question by
itself. Recently, in the case of TAP (i.e. F is a spanning tree), Nutov [74]
showed that the integrality gap is at most 2− 2/15 ≈ 1.87. Cheriyan et al.
[30] showed that the integrality gap is at least 3/2 in the case of TAP while
in the case of MAP, the best upper bound on the integrality gap is 2, and the
best lower bound is 9/8 [2, 79]. We note that the recent works on MAP [26,

80 introduction

27, 45, 48] do not compare against the cut LP, and therefore do not show an
integrality gap better than 2 for MAP. Moreover, these algorithms and their
analysis are quite involved.

5.2.1 Our results

In Chapter 7 of this thesis, we give a simple algorithm that guarantees an
approximation ratio 2− c (for some absolute constant c > 0) with respect to
the best fractional solution of the cut LP. In contrast to the other better-than-2
approximation algorithms, our algorithm is very simple. We note that some of
our techniques are reminiscent of the algorithm of Mömke and Svensson [69]
for the travelling salesman problem (see also [71, 73] for follow-up works).
The algorithm is the following.

The LP-based algorithm:

1. Compute an optimal extreme point solution x∗ to LP (G,M).

2. Let E′ = {e ∈ E, x∗e > 0} be the support of x∗, and run a DFS
on the support graph G′ = (V,E′) which always give priority
first to an available light edge and second to the available heavy
edge e maximizing x∗e .

3. Compute an optimum augmentationA to the TAP problemwith
respect to the DFS tree T computed in the previous step and
return H = T ∪A.

We note that the LP-based algorithm indeed runs in polynomial time. Step
2 computes a DFS in which some edges are explored in priority (if possible).
Step 3 can also be done in polynomial time because the tree T is a DFS
tree. This implies that all non-tree edges are back-edges (i.e. one endpoint
is an ancestor of the other). In the language of TAP, these edges are often
referred to as “uplinks", and it is well-known that TAP instances in which the
edges are only “uplinks" are solvable in polynomial time [32, 42]. Finally, the
solution given by the algorithm is feasible since Step 2 increases connectivity
from 0 to 1 and Step 3 from 1 to 2. One can check that no edge is taken twice
in the process since A and T are disjoint.

In this part of the thesis, our main result shows that this simple algorithm
guarantees an approximation within factor strictly better than 2 with respect
to the cut LP relaxation.
Theorem 5.4. The LP-based algorithm returns a feasible solution to any MAP
instance of cost at most 2 − c times the cost of the fractional solution x∗, for
some absolute constant c > 0.

For the sake of exposition, we did not try to optimize the constant c but
we believe that improving the ratio of 13/8 in [45] (that holds with respect to
the optimum integral solution) would require new techniques in the analysis.
Since Nutov [74] proved the integrality gap of the cut LP to be strictly better
than 2 for TAP, the cut LP seems a promising relaxation for the general FAP.
Additionally, we prove the following simple theorem.

5.2 the matching augmentation problem 81

Theorem 5.5. The integrality gap of the cut LP for MAP is at least 4/3.

Proof. Consider the example given in Figure 5.1, which is a simple adaptation
of a classic example for the related TSP problem. One can check that the

heavy edge

light edge

1/2

1/2

1/21/2

1/2

1/2

Figure 5.1: An integrality gap example.

fractional solution that gives 1/2 fractional value to all heavy edges and
value 1 to all light edges is feasible for a total cost of 6/2 = 3. However, any
integral solution costs at least 4.

6IMPRO VED BOUNDS FOR GREEDY STE INER FORE ST

In this chapter, we give the proof of Theorem 5.1 in Section 6.2, Theorem 5.2,
and Theorem 5.3 in Section 6.3. We first give an overview of the techniques
in Section 6.1 before providing the proofs. All the results presented in this
chapter are based on the paper “An Improved Analysis of Greedy for Online
Steiner Forest”, a joint work with Marina Drygala and Andreas Maggiori. It
appeared at the ACM-SIAM Symposium on Discrete Algorithms (SODA ‘22)
[9].

6.1 the idea behind the proof

In this section, we give the necessary technical details to illustrate our tech-
niques but keeping it rather informal for clarity.

previous techniqes. Before going into our techniques, we will briefly
mention the main ingredients of previous proofs. For ease of notation, we
will denote by T the set of terminals that appear in at least one pair of P . For
a terminal u ∈ T , denote by u its mate which is the terminal that u should
be connected to. Note that we can assume without loss of generality that
all terminals have exactly one mate, by duplicating vertices if this is not the
case. For ease of presentation, we will assume until the end of the section
that for each pair {u, u} greedy pays exactly the distance of u and u in the
initial graph, i.e. no previously arrived pair helps greedy in paying less for
the newly arrived terminal pair {u, u}. Put otherwise, we assume that the
contraction of all the pairs is equal to 1.

By standard arguments, we can assume that w(OPT(I)) = k and that for
each pair of terminal greedy pays a cost that belongs to the set {k/2i}1⩽i⩽log(k),
with only the loss of a constant factor. Indeed, we can rescale all the edges in
the graphG by the factor k/w(OPT(I)) and for the second assumption, note
that by standard geometric grouping, we can assume that greedy pays a cost
that belongs to the set {k/2i}1⩽i⩽∞. It is then straightforward to see that the
total cost incurred by greedy for pairs cheaper than k/2log(k) = 1 is at most
O(w(OPT(I)). Based on this observation, we will partition P into disjoint
sets P(i) where each set contains pairs of terminals for which greedy paid
k/2i. These sets will be called cost classes. Moreover, in order to introduce the
first observation let B(v, r) = {u ∈ V | dG(v, u) < r} be an open ball with
center the terminal u and radius r. A classic observation is the following.

Observation 6.1.1. Let B = {B1, B2, . . . , Bℓ} be a collection of balls around
terminals, such that (1) all the balls are pairwise disjoint and (2) each ball Bi

is centered as some terminal u ∈ T and its radius ri satisfies ri < dG(u, u).
Then

∑
i ri ⩽ w(OPT(I)).

The proof of this observation is straightforward, and we will come back
to it later in Section 6.2. These balls can be viewed as a solution to the dual

83

84 improved bounds for greedy steiner forest

of the natural linear programming relaxation of the Steiner Forest problem;
hence we will refer to these balls as dual balls. We continue by restating
(informally) a key lemma in the analysis of [8].

Lemma 6.1 ([8]). For any cost class P(i) (associated with cost ci = k/2i), it
is possible to place disjoint dual balls in G such that these balls are centered
around terminals that belong to P(i) and they all have a radius of

k

2i · log(|P(i)|)
.

Moreover, at the cost of losing a constant factor we can assume that every pair
p = {s, t} in P(i) has at least one dual ball centered around s or t.

By taking Lemma 6.1 together with Observation 6.1.1, we obtain that
greedy pays at most O(log(|P(i)|)) = O(log(k)) times the dual solution for
each cost class. This proves that greedy is O(log(k))-competitive for each
cost class Pi. Hence we see that the previous proof technique has mainly
two ingredients:

(1) Partition the set P into disjoint cost classes P(i) such that
P =

⋃log(k)
i=1 P(i) and for each pair in P(i) greedy paid k/2i.

(2) Prove that greedy is O(log(k))-competitive for each cost class sepa-
rately by building a dual solution.

By (1) and (2) we get that greedy is O(log(k) · log(k)) = O(log2(k))-
competitive. Interestingly, in the case of Steiner Tree, it is possible to improve
the second step by showing that greedy is O(1)-competitive for each cost
class, hence the O(log(k)) competitive ratio in general (see [3]). Unfortu-
nately, this is impossible in the case of Steiner Forest. Even if all the pairs
have contraction 1, it might be that greedy is already Ω(log(k))-competitive
for a single cost class (see [8, 23] for an example). We also note that the
Berman-Coulston algorithm [16] is designed so that the algorithm is O(1)-
competitive for each cost class, so the analysis of this more complex algorithm
cannot apply to greedy.

our new approach. The first step of our new proof relies in a different
partitioning of the set P . Indeed we will partition P into N = Θ(log log(k))
classes P̃(j) such that each class is defined as follows.

P̃(j) =
⋃

i≡j mod(N)

P(i).

Note that we have Θ(log log(k)) groups with this partitioning, each con-
taining Θ

(
log(k)

log log(k)

)
cost classes. Inside each group, the cost classes have

the nice property that they are well separated, that is, the multiplicative
gap between two consecutive costs is polylog(k). We will make good use
of this property to disentangle the interactions between pairs that have dif-
ferent costs. Using these techniques we prove that the competitive ratio of
greedy for each set P̃(j) is O(log(k)) ending up with a competitive ratio of

6.1 the idea behind the proof 85

Figure 6.1: An example with two cost classes before charging or clustering.

0

0

0

0

0

0
0

0

0

0

0

0

0

Figure 6.2: An example with two cost classes after charging or clustering. In the
top left corner, smaller pairs are much more expensive than the pairs
that created the big dual ball while we have the opposite situation in the
bottom right corner.

86 improved bounds for greedy steiner forest

O(log(k) · log log(k)) overall. The main technical challenge lies in proving
such a result.
If we use Lemma 6.1 to place dual balls around pairs in each cost class

P(i) ⊆ P̃(j) (hence creating several collections B(i) of balls) it might be that
two dual balls B,B′ that belong to different sets B(i) and B(i′) overlap. This
is the critical issue in the previous proofs, and we will proceed differently. For
simplicity, assume we have two cost classes in our set P̃(j). Let ci be the cost
of the larger class and ci′ the cost of the smaller class (hence i′ > i). We place
the dual balls only for the biggest cost class (using Lemma 6.1). Intuitively,
the worst case in the analysis will be when all pairs of the smaller cost lie
inside the dual balls from the bigger cost class (as depicted in Figure 6.1). If
this happens, it will be impossible to place dual balls for the small cost class
without intersecting the bigger balls already placed. To overcome this issue,
we consider a ball B from the big cost class, and we look at the number of
pairs from the small cost class that lie inside this ball. Let the number of such
pairs be k′. We have two cases.

(1) k′ · ci′ ⩾ polylog(k) · ci which is the easy case. In this case, instead
of charging the cost of the big pairs to the dual ball B we can instead
charge this cost to the smaller pairs inside B. By Lemma 6.1, the cost
that was initially charged to the ball B was O(ci). Hence if we evenly
distribute this cost among all the small pairs inside B, each pair will
get a cost of roughly.

O
(ci
k′

)
⩽ O

(
ci′ · ci

polylog(k) · ci

)
= O

(
ci′

polylog(k)

)
.

Since the cost was transferred to smaller pairs, we can also safely
delete the big dual ball B, hence making this space available to place
the smaller balls. Note that smaller pairs can be charged at most once
in this way because the balls in the dual solution B(i) for big pairs are
pairwise disjoint. This case is depicted in the top left corner of Figure
6.2.

(2) k′ · ci′ < polylog(k) · ci. This is the most challenging case and is
depicted in the bottom right corner of Figure 6.2. We cannot proceed as
in the previous case as we cannot guarantee that small pairs do not get
charged too much. Here lies the crux of our proof. First, by re-scaling
slightly the ball B, we can assume that almost all the small pairs in B
are far from the border of B (a pair {s, t} is far from the border if one
of s or t is at a distance much bigger than ci′ from the border ofB). For
simplicity we assume that all the small pairs are far from the border
of B. From here we construct an instance I ′ as follows. Consider the
graph G′ that is induced by vertices inside B. The instance I ′ will be
composed of the set P ′ containing all the pairs of small cost that are
inside B, and the metric will be the graph G′. Here the assumption
that the contraction is 1 implies that both endpoints of each pair in P ′

should be inside B (one endpoint well inside the ball and one outside
would cost too much). It also implies that greedy behaves exactly the
same for the pairs in P ′ in instance I ′ as it was behaving for these

6.1 the idea behind the proof 87

pairs P ′ in instance I , that is, for each pair p ∈ P ′ greedy buys exactly
the same path to connect p whether instance I or I ′ is running. Recall
that we assumed

k′ · ci′ < polylog(k) · ci
hence we have

k′ <
polylog(k) · ci

ci′
.

We know by previous results that greedy is O(log(k))-competitive on
a single cost class; hence the competitive ratio of greedy on instance
I ′ will be bounded by

O(log(k′)) = O

(
log

(
polylog(k) · ci

ci′

))
= O(log log(k)) + O

(
log

(
ci
ci′

))
.

Now the crucial question: What is the value of w(OPT(I ′))? As we
defined the graph G′ now, it is not clear. But because we assumed all
the small pairs are far from the border of B, we can allow ourselves to
modify the metric on the border of B without changing the behavior
of greedy. If we consider V ′ the set of vertices that lie exactly on the
border of B we will add an edge of length 0 between any pair of
vertices in V ′. This does not change the behavior of greedy on instance
I ′ because these extra edges are already too far from the pairs in I ′
to be used (see Figure 6.2, bottom right corner). The interesting fact is
now that

w(OPT(I ′)) ⩽ w(OPT(I) ∩B),

where we denote by w(OPT(I) ∩ B) the cost of edges bought by
OPT(I) inside the ball B.

These observations suggest a Top-Down approach where we first try
to place dual balls around big pairs. Then proceed by the case distinction
described above. Then we move to the next cost class but ignoring all the
pairs that got into case (2). We repeat this until we reach the bottom of the
cost hierarchy. We end up with dual balls that have different radii but are
all pairwise disjoint (because we ignored the pairs that were in case (2) of
any iteration). During this process, each pair got into case (1) at most log(k)
times, hence the total additional charge is O(log(k)

polylog(k)) = O(1). It remains
to handle all the pairs that were ignored. The idea is now that these pairs
can be partitioned into disjoint instances with not too many pairs (recall
that we have an upper bound on k′ in case (2)) and such that the optimum
solution is at most what OPT(I) pays inside the ball that created this instance.
For instance in the case of two consecutive cost classes P(i),P(i′) (hence
ci
ci′

= polylog(k)), the total cost of ignored pairs would be equal to:

∑
B∈B(i)

(
O(log log(k)) +O

(
log

(
ci
ci′

)))
· w(OPT(I) ∩B)

=
∑

B∈B(i)

O(log log(k)) · w(OPT(I) ∩ B) .

88 improved bounds for greedy steiner forest

But because the pairs in B(i) are pairwise disjoint we have∑
B∈B(i)

w(OPT(I) ∩B) ⩽ w(OPT(I)) .

Hence in total the ignored pairs cost at most O(log log(k)) · w(OPT(I)) to
greedy. Because we have Θ(log(k)

log log(k)) cost classes inside a set P̃
(j), it feels

that a log(k) competitive ratio for this set is now possible. Of course we took
two consecutive cost classes so that ci

ci′
= polylog(k) but this is intuitively

the worst case in the analysis. All this is formally handled via a delicate
induction that is done in Section 6.2.

6.2 proof of theorem 5.1

This section is devoted to the proof of Theorem 5.1. Recall that this theorem
applies to the three variants of greedy as defined in the introduction. Hence
in this section, A will denote Greedyi for any i ∈ {1, 2, 3}. This section is
organized as follows. In Subsection 6.2.1, we introduce some basic definitions
that will be needed. In Subsection 6.2.2, we detail some results implied by
previous work as well as some pre-processing of the instance needed for
the rest of the proof. Namely, we recall the concept of dual fitting used
by [8] . In addition, we pre-process the instance so that the different costs
greedy pays upon the arrival of different pairs is well-structured (i.e. there is
a geometric grouping and a big gap in-between two consecutive cost classes).
In Subsection 6.2.3, we give an overview of the main body of the proof, and
finally, in Subsections 6.2.4 and 6.2.5, we finish the proof.

6.2.1 Problem definition and notation

We will consider a slightly more general problem than Online Steiner Forest.
Formally, we are given a weighted graphG = (V,E,w)with weight function
w : E 7→ R⩾0. Along with graph G we are given an ordered sequence of
pairs of vertices P = {p1, p2, . . . , pk} revealed one by one, and an ordered
sequence of sets S = {E1, E2, . . . , Ek} of additional weighted edges. These
edges will be made available to the online algorithm A over time as follows.
Before revealing the first pair p1, the set of edges in E1 is added in the graph
G to form the graph G1 = (V,E ∪ E1). These edges in E1 will remain
available to the greedy algorithm A until the end. Then A buys some path
and contracts the metric according to its contraction rule as defined in the
Introduction to obtain graph G′

1. Next, before revealing p2, we add the edge
set E2 into the graphG′

1 to obtain the graphG′
2 (hence A updates the metric

accordingly). Then A sees the pair p2 and so on. In general, if G(τ) denotes
the current metric available to greedy after reading pairs p1, p2, . . . , pτ , we
first add the edges of Eτ+1 to the graph G(τ) and after this A connects the
pair pτ+1 via the shortest path contracting the metric according to the chosen
contraction rule. We call this variant online Steiner Forest in decreasing metrics.
This generalizes the classic Online Steiner Forest which is the special case
where Ei = ∅ for all i.

6.2 proof of theorem 5.1 89

The goal is to compare the cost incurred by A on the instance I =
(G,P,S) to the cost of the optimum Steiner forest in the graph G with
pairs P . We insist that the offline optimum is not allowed to use edges from
S while the algorithm A can use these edges in S after they are revealed to
it. We will denote the optimum cost by w(OPT(I)). The size of an instance
I is the number of pairs in P . It will be denoted k in the following (hence
k = |P|). For each pair p = {s, t}, we will naturally call the endpoints of the
pair p the two vertices s, t.

For any subset S ⊆ P , we will denote by costA(I, S) the cost incurred
by algorithm A on instance I because of pairs in S. By a slight abuse of
notation, for a single pair p, we will denote by costA(I, p) = costA(I, {p})
the cost that A pays upon arrival of p.
The contraction of a pair with respect to instance I and algorithm A will

be the ratio of the shortest path distance in-between the two endpoints of the
pair inG and the actual cost paid byA for this pair when running instance I .
Note that the shortest path is taken in the original graph G, without help of
edges in S . Formally, if we denote by α(p) the contraction of pair p = {s, t},
we have

α(p) =
dG(s, t)

costA(I, p)
,

with the convention that α(p) = ∞ if costA(I, p) = 0. Given a fixed
α ⩾ 1 and an instance I = (G,P,S), we denote by P<α the set of pairs of
P that have contraction less than α when running A (i.e. the pairs p with
α(p) < α).

For simplicity we will assume that every edge is of weight exactly η for
some arbitrarily small η > 0. If the graphG does not satisfy this, we subdivide
all the edges into chains of smaller edges. Of course, this increases the number
of edges and vertices in the graph, but since our competitive ratio is only a
function of the number of pairs of terminals, this subdivision will not hurt our
analysis. It is also clear that subdividing edges changes neither the optimum
solution nor the behavior of the greedy algorithm. It also does not change
any of the parameters we just defined above. This assumption will be used
for simplicity when constructing balls in the graph; we will assume that no
edge in the graph G has an endpoint inside and the other endpoint outside
the balls (i.e. edges do not "jump over" the border of any ball).

6.2.2 Preliminary results and preprocessing of the instance

We describe here some key concepts that will be useful in the rest of the proof.
We first introduce the following definition that gives much more structure to
the instance I .
Definition 6.2 (Canonical instance). For any α, δ ⩾ 1, any instance I =
(G,P,S) of online Steiner Forest in decreasing metrics is said to be (α, δ)-
canonical with respect to a greedy algorithm A if the following holds:

(a) There exist some real number m > 0 such that for any pair p ∈ P , there
exists an integer 1 ⩽ j ⩽ log(k)/δ such that

costA(I, p) = m/2j·(δ+10).

90 improved bounds for greedy steiner forest

(i.e. we have some geometric grouping of costs and two consecutive cost
classes are separated by a multiplicative factor of at least 2δ+10). We will
say that cost classes are well separated, and define cj = m/2j·(δ+10).

(b) All pairs in P have contraction at most α when running A on instance
I . We say that all pairs have low contraction.

(c) For any i ⩾ 1, the set of additional edges Ei contains exactly one edge
with the same endpoints of the pair pi and whose weight is exactly
costA(I, pi) (i.e. we can assume A connected the pair pi by simply using
the single edge in Ei).

This definition suggests that we partition the set of pairs P into cost classes
P(1), . . . ,P(j), . . . ,P(log(k)/(δ+10)) where P(j) is the subset of pairs in P
that cost exactly m/2(δ+10)·j . Note that there are at mostM ⩽ log(k)/(δ +
10) distinct cost classes. Given this definition, we first claim the following
lemma. Intuitively, the lemma states that worst-case instances can be re-
duced to (α, δ)-canonical instances (for some big δ) at a multiplicative loss
of O(log log(k) + log(α)).

Lemma 6.3. For any instance I of size k, any greedy algorithm A and any
α ⩾ 1, there exists an (α, δ)-canonical instance I ′ of size k′ ⩽ k such that

costA(I ′) ⩾
costA(I,P<α)

O(log log(k) + log(α))
,

δ ⩾ 100 · (log(α) + log log(k)), and

w(OPT(I ′)) ⩽ w(OPT(I)).

Proof. By standard geometric grouping arguments we can assume that there
are at most log(k) cost classes P(1), . . . ,P(log(k)) such that the greedy al-
gorithm A pays a cost of w(OPT(I))/2i−1 for all pairs in P(i). This first
transformation already appeared in [75] and loses a constant factor. Then we
consider these cost classes but we keep only the pairs of contraction at most
α. Fix δ = 100 · (log log(k) + log(α))We partition the pairs as follows:

P̃(j) =
⋃

i≡j mod(δ+10)

P(i)

for all 0 ⩽ j < (δ + 10). Since there are (δ + 10) groups, one of them
represents at least a fraction 1/(δ + 10) of the total cost. Keep only this
group and transform the instance by adding additional edges to S as follows.
Assume that we kept the group P̃(j) then index the pairs in P̃(j) by order of
arrival i.e. P̃(j) = {p1, . . . , pi, . . . , pk′}. For each pair pi ∈ P̃(j), we define
the set of additional edges E(i) as a single edge whose endpoints are exactly
the endpoints of the pair pi and whose length is exactly what A paid for
this pair in the original instance I . This formally describes the instance
I ′ = (G, P̃(j),S). We claim that for any pair selected, the greedy algorithm
A pays exactly the same cost for this pair regardless of which instance I or I ′
is running. We can prove this simple fact by induction of the number of pairs
already arrived in I ′. If no pair has arrived this is clear. Now consider the

6.2 proof of theorem 5.1 91

next pair pi to arrive. Note that when running instance I ′, a path of length
exactly costA(I, pi) is available to connect pi since we added an edge in E(i)

of exactly this length connecting the endpoints of pi. We claim that there
cannot be a shorter path. Indeed, by induction we assumed that A paid the
same in instance I and I ′ for previously arrived pairs hence it must be that
the greedy algorithm A used the additional edges in S to connect previously
arrived pairs. BecauseA isGreedyi for some i ∈ {1, 2, 3}, it must be that the
shortcuts added by A on instance I ′ so far are exactly edges of length 0 with
endpoints at the endpoints of pairs arrived before pi. Note that when running
greedy on instance I , the endpoints of previously arrived pairs must be at
distance 0 when the new pair pi arrives. Hence all the shortcuts available to
A when receiving the pair pi in instance I ′ are also available when receiving
the pair pi in instance I . In particular, the shortest path taken by A for pair
pi in instance I ′ can only be longer than the path taken for pair pi in instance
I .
One can see that in total we lose a multiplicative factor of at most O(δ)

during the reduction. Finally, it is also clear that w(OPT(I ′)) ⩽ w(OPT(I))
and k′ ⩽ k since the graph G has not changed and we keep in I ′ only a
subset of the pairs in I . This ends the proof of the lemma.

The rest of the section will be devoted to the proof of the following theorem.

Theorem 6.4. LetA be any greedy algorithm that uses one of our 3 contraction
rules. Let I be an (α, δ)-canonical instance (of size k) of online Steiner Forest
in decreasing metrics. Assume δ ⩾ 100 · (log(α) + log log(k)). Then,

costA (I) ⩽ O(log(k)) · w(OPT(I)).

Note that Theorem 6.4 together with Lemma 6.3 imply Theorem 5.1.
To see this, consider any instance I . By losing a multiplicative factor of
O(log log(k)+ log(α)) and only considering the pairs in P<α, we transform
the instance I into an (α, δ)-canonical instance I ′ using Lemma 6.3. Then
we apply Theorem 6.4 on instance I ′ and the total competitive ratio for pairs
in P<α will be O(log(k)) ·O(log log(k) + log(α)) which is exactly what we
wanted to prove.

dual fitting. A key technical ingredient in the proof of Theorem 6.4
will be dual fitting, which was also used in [3, 8] and is a common technique
in competitive analysis. In the case of Steiner Forest, a natural way to do dual
fitting without explicitly writing a linear program is to consider a set of balls
in the graph G = (V,E). For some vertex v ∈ V and some radius r > 0, the
ball B(v, r) is the open ball of center v and radius r, i.e.

B(v, r) = {u ∈ V | dG(v, u) < r}.

Denote by T the set of terminals which are the vertices that appear in at least
one pair. For a terminal u ∈ T , denote by u its mate which is the terminal
that u should be connected to. Note that we can assume without loss of
generality that all terminals have a only one mate, by duplicating vertices if
this is not the case. Assume we have a collection B = {B1, B2, . . . , Bℓ} of
balls such that:

92 improved bounds for greedy steiner forest

• All of the balls in B are pairwise disjoint, and

• Each ball Bi is centered at some terminal u ∈ T and its radius ri
satisfies r < dG(u, u).

Then if we define y =
∑

i ri the sum of radii of these balls it must be that

w(OPT(I)) ⩾ y.

A reason for this is that any feasible solution to the Steiner Forest instance
must connect u to u. If we look at any ball Bi ∈ B, then at its center lies at a
terminal u, and we know that u is not in Bi. Therefore, to connect u to u, a
feasible solution needs to buy at least a path from the center to the border of
Bi, which will have length at least ri. Since all balls are pairwise disjoint, we
know that these paths will be disjoint, and we can sum the lower bounds on
each ball.
An alternative view of this is that the dual balls can be seen as a feasible

solution (because the balls are pairwise disjoint) to the dual of the natural
LP relaxation of the Steiner Forest problem. Then by weak duality, we know
that any feasible solution has cost at least the cost of the dual. Hence we will
also refer to a collection of balls as above as a dual solution. A dual solution is
feasible if all the corresponding balls are pairwise disjoint and are all centered
around the endpoints of some pairs. Using previous works, we obtain the
following lemma, which is a formal and slightly more general version of
Lemma 6.1.

Lemma 6.5. Let I be an instance of online Steiner Forest in decreasing metrics.
Consider a cost class P̃ ⊆ P of pairs. Let P ′ ⊆ P̃ be an arbitrary subset of P̃ .
Let c be the constant such that

costA(I, p) = c

for all p ∈ P̃ and A a greedy algorithm. Fix an arbitrary radius

r ⩽
c

8 log(|P̃|)
.

Then for any such radius r it is possible to construct a feasible dual solution B
such that:

(a) All the balls B ∈ B have a radius equal to r,

(b) |P ′| ⩽ 5 · |B|,

(c) each pair p ∈ P ′ has at most one ball B ∈ B (denoted B(p)) centered
around one of its endpoints, and

(d) all balls in B are centered around endpoints of pairs in P ′.

Proof. We start the proof by stating Moore’s bound. We recall that the girth
of a graph is the length of the shortest cycle in that graph.

Theorem 6.6 (Moore’s bound, see [4, 18]). Every graph with at least 2n1+ 1
p

edges has girth at most 2p.

6.2 proof of theorem 5.1 93

s t

s1

t1

s2

t2
s3

s4

t3

s5

t4

t5

s6

t6

c

0

0

0

0

0

0

< c

Figure 6.3: The girth argument.

We are interested in a subset of pairs P ′ that all belong to the same cost
class P ′. That is, all the pairs in P ′ cost the same value c. We will place dual
balls as desired in the statement of Lemma 6.5. To do this we will try to
place a dual ball around the endpoint of a pair p as it arrives. If this is not
possible without intersecting previously placed balls, we then skip the pair p.
It will be clear by construction that the dual solution will be feasible. As we
construct the feasible dual solution B, we will maintain an auxiliary graph
G′ = (V ′, E′) which will be unweighted. The quantity of interest will be
the number of edges in E′. The vertex set V ′ will correspond to a subset of
terminals that appear in the pairs in P ′.
We proceed as follows. When a pair p = {s, t} belonging to P ′ arrives, we

try to place a ball of radius

r =
c

8 log(|P ′|)

around either one of s or t. If one of these two balls can be placed without
intersecting balls previously placed in B we place it. We also add its center
(either s or t) to the vertex set V ′ of the auxiliary graphG′. Otherwise, if none
of these balls can be placed without intersecting balls already placed in B
we do not add any ball. However, we identify one ball B ∈ B that intersects
with the ball of radius r around s and another ball B′ ∈ B for t. Let s′ and
t′ be their centers. By construction we have that s′, t′ ∈ V ′. We can add the
edge {s′, t′} in the auxiliary graph. We have the following claim.

Claim 6.7. The girth of G′ is at least 2 log(|P ′|).

Proof of Claim 6.7. Suppose that the claim does not hold, and consider a cycle
of length ℓ < 2 log(|P ′|) in G′ as in Figure 6.3. Consider the last edge that
was added to the cycle. Suppose it was added because of terminal pair {s, t}
(in red on Figure 6.3). Each other edge in the cycle must have been created
by a previous pair {sm, tm} for 1 ⩽ m < ℓ. By triangle inequality we have,
for all m < ℓ that

dG(tm, sm+1) ⩽ dG(tm, u) + dG(u, sm+1) ⩽ 4r,

94 improved bounds for greedy steiner forest

where u is the center of the ball that was close to both tm and sm+1. Similarly,
dG(t, s1) ⩽ 4r and dG(tm−1, s) ⩽ 4r. Since all pairs {sm, tm}m⩽ℓ−1 arrived
before {s, t}, it must be that the shortest path in the current metricG′ (when
the pair {s, t} arrives) satisfies

dG′(sm, tm) = 0

(this holds for all three contraction rules). Hence, by going through the
terminals t, s1, t1, s2, t2, . . . , sℓ−1, tℓ−1, s, greedy could have paid at most

(4r) · ℓ < (8r) · log(|P ′|) ⩽ c,

which is a contradiction on the fact that greedy should always take the
shortest path available. Hence the girth in G′ is at least 2 log(|P ′|). We note
that this whole argument also holds if we are in the case of Steiner Forest in
decreasing metrics where additional edges are revealed over time. Indeed,
these additional edges cannot make a shortest path longer.

Applying Moore’s bound to the graph G′ (which has at most |P ′| vertices
by construction) gives that |E′| < 4|V ′| ⩽ 4|P ′|. Since the cardinality of P ′

equals the number of vertices |V ′| in G′ plus the number of edges |E′| in G′,
and |V ′| = |B| property (b) of Lemma 6.5 follows. Properties (a), (c) and (d)
follow by construction.

We are now ready to start the overview of our main proof.

6.2.3 Overview of the proof

Recall that we aim to prove Theorem 6.4. By assumption we have that all
pairs have contraction at most α and that the cost classes are well separated.
Recall that this means the multiplicative gap between two consecutive cost
classes is at least 2δ for some δ ⩾ 100 · (log log(k) + log(α)). We use M
to denote the number of cost classes where class j is denoted by P(j) for
1 ⩽ j ⩽ M .

The goal will be to construct a feasible dual solution B that has some
special properties. This dual solution will be constructed by taking a subset
of the dual balls in each of the log(k) dual solutions constructed with the
technique of Awerbuch, Azar, and Bartal [8]. In the end we will charge a
portion of the cost that A pays to the dual solution B. The remaining portion
of the cost A pays will be handled by an inductive argument. To this end
we will have a charging scheme, charge : P 7→ R+ that will redistribute
costA(I) amongst the terminal pairs.

Precisely, the total cost that a pair p carries will be

charge(p) · costA(I, p).

Hence we see the charge as an additional multiplicative factor on the cost of
a given pair (initially, the charge is set to 1 for all pairs).

Note that we might sometimes decrease or increase the charge of a pair or
transfer the cost, but we will always make sure that when a charge of a pair p
is decreasing, the charge of some other pairs are increasing accordingly so that

6.2 proof of theorem 5.1 95

no cost is lost. For any set S of terminal pairs, we will let costA(I, S, charge)
denote the total charged cost carried by pairs in S. Formally,

costA(I, S, charge) =
∑
p∈S

charge(p) · costA(I, p).

In the proof the pairs in P will be classified into three types: surviving
pairs, charged pairs, and dangerous pairs. The surviving pairs will contain
pairs p such that there is a ball B(p) ∈ B centered around one of the end-
points. Intuitively these pairs are good for us since we can charge their cost
directly to the dual ball B(p). The other pairs will be by default classified as
non-surviving. Non-surviving pairs are further partitioned into two subsets,
charged or dangerous pairs. Charged pairs are those pairs that have their
charge set to 0 (i.e. charge(p) = 0). Intuitively, they are also in an excellent
situation for us since it means that we were able to transfer their cost entirely
to other pairs. We do not need to count them in our total cost anymore.
Finally, the dangerous pairs are those pairs have neither a charge equal to
0 nor a dual ball in B centered at one of the endpoints. These pairs will be
handled carefully via an inductive argument since we cannot charge them to
the dual solution nor to some other pair. To keep careful track of all these
elements, we will store a triple (B, charge, D) where charge is the charge
function as described above, B is a feasible dual solution and D ⊆ P a set of
dangerous pairs. The family of dual balls will be a union of subsets of dual
balls B(j) for 1 ⩽ j ⩽ M . Each of the balls in B(j) will account for a subset
of pairs in P(j) and have some radius of roughly

rj =
cj

8 log(kj)
,

where cj is the cost of pairs in P(j) and kj = |P(j)|. This choice of radius is
coming from previous work, summarized in Lemma 6.5.

Note that in our procedure, it might be that some pairs are not yet classified
into one of the three categories (surviving, charged, or dangerous). However,
at the beginning of iteration j, all pairs in cost classes j′ < j will be classified.
The procedure contains two main steps.

step 1. In this step, we start taking into account interactions in-between
cost classes. Informally, we do an iterative procedure from j = 1 to M ,
where we try to build the dual solution from top to bottom. When we start
iteration j of this procedure we have a feasible dual solution composed of
B(1), . . . ,B(j−1) (of radius Θ(rj) with rj specified above) centered around
pairs in P(1), . . . ,P(j−1). All the pairs in P(j) that are not yet classified are
guaranteed to be far from the dual balls already in place. We then look at pairs
in P(j) that are not yet classified, and build a dual solution B(j) around these
pairs using Lemma 6.5. Because unclassified pairs are far from previously
placed balls in B(1), . . . ,B(j−1), it is guaranteed that this new dual solution
B(j) will not overlap with the previous dual solution. We then proceed as
follows. For any ball B ∈ B(j) that we just added, we let BP denote the set

96 improved bounds for greedy steiner forest

of pairs of
⋃

j′>j P(j′) (note that we only consider pairs of smaller cost) such
that one of its endpoints is at a distance at most

r ·
(
1 +

1

200 · log2(K)

)
from the center ofB (denoted p(B)). Here we note that for a technical reason,
K is only an upper bound on the real number of pairs k (i.e.K ⩾ k). We will
let ∂BP denote the set of pairs of BP that have one endpoint at a distance of
at least

r ·
(
1− 1

200 · log2(K)

)
from the center of B. These pairs are on the border of B hence the choice of
notation. With a similar analogy, we will denote the interior of BP by B̊P .
This is the complement of ∂BP in BP , i.e.

B̊P = BP \ ∂BP .

Then for the current ball B ∈ B(j) at hand, centered at an endpoint of p, we
look at the total charged cost of the pairs in B̊P and make a case distinction
based on this value. If this cost is more than polylog(K) times the charged
cost of the pair p, then we can safely set the charge of p to 0, delete the dual
ball B, and increase the charge of pairs in BP to account for this lost cost.
Note that the charges of pairs in B̊P increase by at most a multiplicative
(1+ 1

polylog(K))). This is pictured in the top left corner of Figure 6.2. Since the
number of cost classes is at mostM < log(K) such accumulation of charges
is not a problem (note that the charge of each pair can increase at most once
per cost class in this way, since we only charge pairs inside a dual ball and
the dual balls in a single cost class are pairwise disjoint).

On the contrary, if the charged cost of pairs in B̊P is less than polylog(K)
times the charged cost of the pair p, we first halve the radius of B to get
B′. If the charged cost of the pairs inside B′

P is at most a constant factor
times the charged cost of p, we classify all the pairs in B′

P as charged and
charge their cost to the pair p. Note that the charge of p only increases by a
constant factor when doing this, and this happens at most once per pair p
(when we place the dual ball around p). In addition we update B to be B′,
and we classify the pair p as surviving. If on the other hand, the charge of the
pairs inside B′

P is larger than a specified constant factor times the charge
of B, we scale the radius of B′ up until we reach a point where most of the
cost in B′

P is carried by B̊′
P and not ∂B′

P . Then we mark all the pairs in B′
P

as dangerous and add them to the set D. We update B to be the ball B′ and
classify p as surviving. This case is pictured in the bottom right corner of
Figure 6.2. Note that if the ball B is not deleted, then all the pair in BP will
be classified as either charged or dangerous. In particular, we will never try
to place a dual ball around these pairs in the following iterations. We do this
procedure for all the balls B ∈ B(j) and then move to iteration (j + 1). This
step is handled in Subsection 6.2.4.

step 2. After Step 1, we end with a feasible dual solution B consisting of
the balls placed around surviving pairs, a charge function , and a set D of
dangerous pairs. Additionally, we guarantee that no pair is overcharged.

6.2 proof of theorem 5.1 97

The pairs that are not dangerous are easily accounted for by the dual solu-
tion B. Indeed, the surviving pairs still have a dual ball around an endpoint,
and the charged pairs have their cost entirely redistributed to other pairs.
The only problem might come from dangerous pairs. However, because of
how we constructed the dual solution B and the set D, we will be able to
cluster the dangerous pairs into disjoint sub-instances that are contained in
dual balls corresponding to bigger cost classes. These instances are disjoint,
and the crux of the argument is to show a statement of the form:

If the greedy algorithm were to run separately on each sub-instance, then the
cost greedy would pay for these pairs would be the same cost that it was paying
for these pairs in the bigger instance I .
Hence we can argue that the total cost incurred for dangerous pairs is at

most the sum of costs paid by greedy on each sub-instance separately. This
helps because we only put pairs in D in the case that their charged cost was
bounded by polylog(K) times the charged cost of the pair that created the
ball B that contains them. As a result, we have a strong upper bound on
the number of pairs k′ in each smaller sub-instance I ′. To finish the proof,
we need to bound the cost of the offline optimum for each sub-instance I ′.
We note that because all the pairs in D are in the interior of B (i.e. far from
the border of B), we can modify the metric of the graph G at the border of
B. This will not change the behavior of greedy for the pairs in D because
the border is way too far from the interior of B for greedy to be tempted to
use the modified metric (recall that greedy always takes the shortest path).
We will define a new graph G′, which is the graph induced by vertices in
B. We also say that all the vertices exactly on the border of B are all at
a distance 0 from each other (see bottom right corner of Figure 6.2). With
this modification, it becomes clear that the offline optimum cost on instance
I ′ is at most the cost paid by OPT(I) inside B, which we will denote by
w(OPT(I) ∩ B). Hence the offline optimum cost for each sub-instance is
at most what the global optimum pays locally inside the ball that created
the sub-instance. Since all balls in B are disjoint, these areas never overlap;
hence the sum of all local optima is at most the global optimum of instance
I . Using this observation, we handle the cost incurred by pairs in D via a
delicate induction hypothesis on the number of cost classes in the instance.
This induction is described formally in Subsection 6.2.5.

6.2.4 Building a balanced dual solution

We formalize here Step 1 of the previous subsection. We give a formal defini-
tion of all the properties that our triple (B, charge, D) should satisfy. Note
that we are also given an upper bound K on the real number of pairs k (this
is for technical reasons for handling the induction in the next subsection).
Recall that for a ballB ∈ B(j) we denote byBP the set of pairs of

⋃
j′>j P(j′)

such that one of its endpoint is at distance at most

r ·
(
1 +

1

200 · log2(K)

)
from the center of B. We also have similar definitions for ∂BP and B̊P . Now
we can state the main definition of this subsection. Intuitively, conditions (a)

98 improved bounds for greedy steiner forest

and (b) state that B is a feasible dual solution whose dual balls have radii large
enough. Condition (c) states that the total charged cost of dangerous pairs
inside the ball B is never much more than polylog(K) times the charged
cost of the pair that created the ball B. Similarly, condition (d) states that
the charged cost of dangerous pairs on the border of B is not more than
1/ log(K) times the charged cost of dangerous pairs strictly inside B. The
last condition (e) states that no pair was charged too many times.

Definition 6.8 (Balanced dual solution). A balanced dual solution for an
(α, δ)-canonical instance I with respect to algorithm A is a quadruple
(B, charge, D,K) such that:

(a) All balls B ∈ B are pairwise disjoint and D ⊆
⋃

B∈B BP . Moreover, B
is partitioned intoM sub-collections of balls B(1),B(2), . . . ,B(M) such
that,

(b) For every j ⩾ 1, each ball in B(j) has a radius r′ that satisfies rj/2 ⩽
r′ ⩽ rj = cj/8 log(kj), with cj the cost associated to cost class P(j) and
kj = |P(j)|.

(c) For every ball B ∈ B(j)

costA(I, B̊P ∩D, charge) ⩽ 10 · charge(p(B)) · cj · log10(K),

(d) For any ball B ∈ B(j)

costA(I, ∂BP ∩D, charge) ⩽
10 · costA(I, B̊P ∩D, charge)

log(K)
,

(e) For any j > 0, any pair p ∈ P(j),

charge(p) ⩽

55 · e5 if p is a surviving pair,

0 if p is a charged pair,

charge(p) ⩾ 1 if p is a surviving or dangerous pair, and finally

if p is a dangerous pair that belongs to BP for some B ∈ B(j) then

charge(p) ⩽

(
1 +

5

log(K)

)j−1

.

The main result of this subsection will be that it is always possible to find
a balanced dual solution.

Lemma 6.9. Given an (α, δ)-canonical instance I with respect toA, a balanced
dual solution (B, charge, D,K) always exists provided that δ ⩾ 100·(log(α)+
log log(K)), the number of cost classes M satisfies M ⩽ log(K), and the
number of pairs k satisfies k ⩽ K .

Proof. We build the solution quadruple (B, charge, D,K) with an iterative
procedure from j = 1 to j = M (recall that M is the number of cost classes
in I) that will maintain the following invariants at the beginning of any
iteration j:

6.2 proof of theorem 5.1 99

(i) For any j′ < j, the dual balls in B(j′) are already fixed and all pairs in
P(j′) are already classified as either surviving, charged, or dangerous.
The dual balls of B(j′) satisfy conditions (b), (c), (d) of Definition 6.8.

(ii) For any j′ < j, the charge of pairs in P(j′) satisfy condition (e) of
Definition 6.8.

(iii) For any j′ ⩾ j, the pairs in P(j′) can be classified as either dangerous
or charged, or not be classified yet. No pair of P(j′) is classified as
surviving yet. We also have B(j′) = ∅.

(iv) For any j′ ⩾ j, all pairs in P(j′) classified as either dangerous or
charged satisfy condition (e) in Definition 6.8. The pairs p that are not
yet classified satisfy

1 ⩽ charge(p) ⩽

(
1 +

5

log(K)

)j−1

.

(v) For any j′ ⩾ j, all pairs in P(j′) not yet classified do not belong to
any set BP for some already existing ball (i.e. unclassified pairs are far
from the balls already placed).

We start iteration j by considering the pairs in P(j) that are not yet classified.
To avoid confusion, let us denote by P ′(j) ⊆ P(j) this set of unclassified
pairs. Using Lemma 6.5, we get a dual solution B(j) of balls all of radius

rj =
cj

8 log(kj)

that are all centered around endpoints of pairs in P ′(j) and such that no pair
in P ′(j) has more than one ball centered around an endpoint. All the pairs
in P ′(j) that do not have a dual ball can already be classified as charged. We
decrease the charge of these pairs to 0 increase the charge of the other pairs
in P ′(j) to compensate. Since we have that |P ′(j)| ⩽ 5 · |B(j)| and invariant
(iv), we have that the charge of the remaining pairs in P ′(j) will be at most

5 ·
(
1 +

5

log(K)

)(j−1)

⩽ 5 ·
(
1 +

5

log(K)

)M

⩽ 5 · e5 (6.1)

after this step (we use the assumption that M ⩽ log(K) and (1 + x) ⩽ ex).
Then for each new ball B ∈ B(j) that we created around the endpoint of a
pair p we consider the following process with two cases. We consider the
pairs of B̊P (i.e. pairs of smaller cost in the interior of B) and proceed to a
case distinction on the value of their total charged cost

costA(I, B̊P , charge)

that we denote Σ.

100 improved bounds for greedy steiner forest

case 1 (top left corner in figure 6.2). If

Σ > 10 · charge(p) · cj · log10(K), (6.2)

that we can rephrase intuitively as "B does not satisfy condition (c)" then
we simply erase the dual ball B and charge all the cost charge(p) · cj to the
pairs in B̊P proportionally to their weight. Note that by doing this, all the
pairs in B̊P see their charge increasing by a multiplicative factor of(
1 + 1

(10 log10(K))

)
<
(
1 + 5

log(K)

)
. The pair p is now classified as charged.

Note that the pairs inP(j′>j) have now a charge that is at most
(
1 + 5

log(K)

)j
by applying invariant (iv). This will be the only place where their charge can
increase during iteration j and note that this happens only once per iteration
since only the pairs inside a ball B ∈ B(j) are charged and the balls in B(j)
are pairwise disjoint. Therefore invariant (iv) will hold at the beginning of
iteration j + 1 for these pairs.

case 2. In this case we assume that Σ ⩽ 10 · charge(p(B)) · cj · log10(K).
We consider the ball B′ with the same center as B but with only half the
radius of B (i.e. B′ is a ball centered at p(B) with radius r = rj/2). We look
at the total charged cost of pairs in B′

P and proceed to a case distinction on
this value (note that we do not consider only the strict interior of B but also
its border). Denote by Σ′ this new value, i.e.

Σ′ = costA(I, B′
P , charge).

We proceed by a sub-case distinction of the value of Σ′.

sub-case 2(a). If Σ′ ⩽ 10 · charge(p(B)) · cj then we simply charge
the cost of all the pairs in in B′

P to the pair p. In this case the pairs in B′
P

become charged pairs. Note that the charge of p in that case is multiplied by
at most 11. We also set the dual ball B to B′ (i.e. we scale down the radius of
B by a factor 2). By Equation 6.1, we get that the charge of p will be at most

charge(p) ⩽ 11 · 5 · e5 = 55e5.

This will be the final charge of this pair hence invariant (ii) will be satisfied.

sub-case 2(b) (bottom right corner in figure 6.2). If Σ′ >
10 · charge(p(B)) · cj , then we will try to increase the radius r of B′ by an
increment of

∆r =
rj

200 · log2(K)
,

until we find a radius which satisfies condition (d) for the ball B′. We denote
by B(t) the ball obtained after increasing the radius of B′ t times by ∆r.
Hence the radius of B(t) is rt = rj/2+ t · (∆r). Each time we increase r, we
check if

costA(I, ∂B(t)
P , charge) ⩽

10 · costA(I, B̊(t)
P , charge)

log(K)
. (6.3)

6.2 proof of theorem 5.1 101

If this is the case we stop and add all the pairs in B
(t)
P to D. The pairs in

B
(t)
P become in this case dangerous pairs. If not we continue increasing the

radius r until Equation 6.3 holds. We claim that this process will stop before
reaching rt = rj . To see this we first prove that B(t)

P ∩ ∂B
(t+6)
P = ∅ for any

t ⩾ 0. Indeed if a pair pi ∈ P(j′) with j′ > j belongs to B(t)
P ∩ ∂B

(t+6)
P then

it must be that one of the two endpoints of pi = {si, ti} belongs toB(t) while
the other belongs to the border ∂B(t+6) since B(t) ∩ ∂B(t+6) = ∅. Hence
the distance between the two endpoints of pi = {si, ti} satisfies:

dG(si, ti) ⩾ (rt + 6∆r)·
(
1− 1

200 · log2(K)

)
−rt·

(
1 +

1

200 · log2(K)

)
⩾ 5∆r − 2rt

200 · log2(K)
⩾

rj

200 · log2(K)
.

where the last inequality comes from the fact that rt ⩽ rj . However, we
assumed that the instance I is (α, δ)-canonical with δ ⩾ 100 · (log(α) +
log log(K)) and this implies that all pairs have contraction at most α which
means that the pair pi should have costed A at least

rj

α(200 · log2(K))
⩾

cj

α(8 · 200 · log3(K))
>

cj

210 · α100 log100(K)

>
cj

2δ+10
= cj+1 ,

which is a contradiction. Thus B(t)
P ∩ ∂B

(t+6)
P = ∅. Since we assume the

process does not stop, we have that

costA(I, ∂B(t+6)
P , charge) >

10 · costA(I, B̊(t+6)
P , charge)

log(K)

⩾
10 · costA(I, B(t)

P , charge)

log(K)
.

Together with the fact that B(t)
P ∩ ∂B

(t+6)
P = ∅ we get

costA(I, B(t+6)
P , charge) ⩾ costA(I, B(t)

P , charge)+costA(I, ∂B(t+6)
P , charge)

⩾ costA(I, B(t)
P , charge) ·

(
1 +

10

log(K)

)
.

This implies that, for all t ⩾ 0,

costA(I, B(t)
P , charge) ⩾ costA(I, B(0)

P , charge) ·
(
1 +

10

log(K)

)⌊t/6⌋

= Σ′ ·
(
1 +

10

log(K)

)⌊t/6⌋
.

However, we have by assumption in our case that

Σ

Σ′ ⩽ log10(K),

102 improved bounds for greedy steiner forest

thus for t = 60 log(K) log log(K), we can write simultaneously

costA(I, B(t)
P , charge) ⩾ Σ′ ·

(
1 +

10

log(K)

)10 log(K) log log(K)

(6.4)

> Σ′ · log10(K) ⩾ Σ, (6.5)

and

rt = rj/2 + t · (∆r) = rj ·
(
1

2
+

60 log(K) log log(K)

200 · log2(K)

)
< rj . (6.6)

This is a contradiction since by Equation 6.6 we should have B(t)
P ⊆ BP and

by Equation 6.5 we have costA(I, B(t)
P , charge) > costA(I, BP , charge).

Thus the process must stop before reaching t = 60 log(K) log log(K), hence
before reaching rt = rj .

correctness. We note that Sub-case 2(b) is the only case in which we
create dangerous pairs. By construction, properties (c) and (d) will hold for
any ball. This is because if a ball B remains around a pair p at the end of
the procedure, either all the pairs inside are charged to p, or they become
dangerous pairs. In the case where the pairs inside become dangerous the
procedure described in Sub-case 2(b) stops exactly when properties (c) and (d)
are satisfied. Property (b) is also satisfied since the only place where a radius
can be modified is in Sub-case 2(b). In this case, we show that after halving
the radius, it cannot grow for too long before the number of pairs in the
border is less concentrated than in the interior. This means that since the balls
in B(j) were disjoint when taken with radius rj , they also have to be disjoint
if the radius is slightly smaller. Condition (a) is also satisfied. To see this, note
that the balls in B(j) cannot intersect balls installed before since in Case 2,
which is the only case where a ball survives, for any ball B ∈ B(j′<j), all
the pairs in BP become classified as either dangerous or charged (invariant
(v)). In particular, we will never try to place a ball around these pairs since
we only place dual balls around pairs that are not classified yet. Since BP
encompasses a region slightly bigger than the ball B, the smaller dual balls
will not intersect B. We also have thatD ⊆

⋃
B∈B BP since dangerous pairs

are only created in Sub-case 2(b) where we consider pairs inside a ball B. It
remains to show that condition (e) holds. Note that for charged pairs, this is
clear. For surviving pairs, we showed that our process maintains invariant (ii);
hence after the end of the procedure, condition (e) is satisfied. For dangerous
pairs, note that once a pair becomes dangerous, its charge will never increase
anymore. Hence this shows that invariant (ii) also holds for these pairs, and
in particular, at the end of the process, condition (e) holds.

6.2.5 Inductive proof using balanced dual solutions

Given the previous subsection, we are ready to state the main induction.
Recall that in a balanced dual solution (B, charge, D), all the pairs except
the dangerous pairs (the set D) are accounted for by the dual balls in B. Our
induction will precisely take advantage of this. In the following, for any ball

6.2 proof of theorem 5.1 103

B and instance I , we denote by w (OPT(I) ∩B) the total cost of edges that
are contained in B and bought by OPT(I) (note that we assume that edges
in G are arbitrarily small, so no edge is crossed by the border of B). Note
that we also have the straightforward bound r ⩽ w (OPT(I) ∩B) (with r
being the radius of B) since the optimum solution needs to connect at least
the center of the ball B to its border. For a collection of disjoint balls B, we
define

w (OPT(I) ∩ B) =
∑
B∈B

w (OPT(I) ∩B) .

Lemma 6.10. Let I be an (α, δ)-canonical instance with respect to algorithm
A. Assume that its size is k ⩽ K , and δ ⩾ 100 ·(log(α)+log log(K)). Assume
there are M ⩽ log(K) distinct cost classes when running A on instance I . Let(
B =

⋃M
j=1 B(j), charge, D,K

)
be a balanced dual solution. Then we have

that

costA(I) ⩽ (880e5) ·

 M∑
j=1

log(kj) · w
(
OPT(I) ∩ B(j)

)
+ e200+20M/ log(K) ·

 M∑
j=1

δ · (M − j) · w
(
OPT(I) ∩ B(j)

) ,

where kj is the number of terminals in cost class j for j = 1, . . . ,M .

Intuitively, the first term of the right-hand side of the inequality corre-
sponds to the pairs that are either surviving or charged and can be charged
to the dual. The second term corresponds to the cost paid by A because of
dangerous pairs inD. The proof of Lemma 6.10 will be done by induction on
the number of cost classesM .

Proof. The base case of the induction is forM = 0 in which case the state-
ment is vacuously true (the instance is empty). Hence assume M > 0 and
that the statement is true for any (α, δ)-canonical instance with M ′ < M
cost classes, and satisfying the conditions of the lemma.
Recall that in a balanced dual solution (B =

⋃M
j=1 B(j), charge, D,K)

(that exists by Lemma 6.9) we have that charge(p) ⩽ 55e5 for all surviving
pairs p, that B is a feasible dual solution, and that the radius of each ball
B ∈ B(j) is at least 1/(16 log(kj)) times the cost of corresponding pair.
Hence we have that the total cost of surviving or charged pairs (denote this
set P ′) is at most

costA(I,P ′) ⩽ (16 · 55e5) ·

 M∑
j=1

log(kj) · w
(
OPT(I) ∩ B(j)

)
= (880e5) ·

 M∑
j=1

log(kj) · w
(
OPT(I) ∩ B(j)

) .

All that remains to do is to upper bound the total cost incurred by A because
of pairs in D. By property (a) of Definition 6.8, it suffices to consider each

104 improved bounds for greedy steiner forest

ball B ∈ B and the dangerous pairs it contains. Hence fix a ball B ∈ B(j) of
radius r. We consider the instance I ′ = (G′,P ′,S ′) that is defined as follows
(see bottom right corner of Figure 6.2).

• The graph G′ is the graph induced by G on the vertex set B, in which
we add an edge of cost 0 between any pair of vertices at a distance
exactly r from the center of B. We denote by E′ this set of additional
edges of weight 0 (see Figure 6.2 in the bottom right corner).

• P ′ is the set of pairs in B̊P ∩D, given in the same relative order to
algorithm A. Note that these pairs must have both endpoints inside
B because all pairs have a low contraction, and the cost paid by these
pairs is much smaller than the radius of the ball. Hence traveling from
the interior ofB to the border is already way too far. We also emphasize
that we ignore pairs in ∂BP ∩D.

• The set of additional edges S ′ contains all the edges in S that we
revealed just before reading a pair in P ′. Moreover, the edges in S ′ are
revealed in the same way to A, that is, if an edge e ∈ S is revealed just
before a pair p ∈ P ′, then it is also revealed just before p in instance
I ′.

We then make the following claim.

Claim 6.11. Given instance I ′ we have that:

(a) For all p ∈ P ′, costA(I ′, p) = costA(I, p). In particular, the cost in-
curred by A because of pairs in P ′ is exactly the same as the cost that A
would pay when running on instance I ′.

(b) w (OPT(I ′)) ⩽ w (B ∩ OPT(I)).

Proof. To see (b), let us buy the edge set (OPT(I) ∩B) ∪ E′. It is clear that
this costs at most w (B ∩ OPT(I)) since all edges in E′ have cost 0. We
claim that this is a feasible solution for the instance I ′. Consider any pair
p = {s, t} ∈ P ′. It must be that OPT(I) contains a path between s and t.
If this path does not leave the ball B then it is contained in the edge set
(OPT(I) ∩B) ∪ E′. Otherwise, denote this path by its sequence of vertices:
s, v1, v2, . . . , vk, t. Denote by vf and vℓ the first and last vertices on this path
that are outside B. Then it is clear that the edge set (OPT(I) ∩ B) ∪ E′

contains the path s, v1, . . . , vf−1, vℓ+1, . . . , vk, t. In both case, s and t are
connected and (OPT(I) ∩B) ∪ E′ is a feasible solution to instance I ′.
To see (a), we prove by induction on the number of pairs P ′ arrived so far

that the claim holds. If no pair arrived yet, this is vacuously true. Otherwise,
consider the arrival of pair p and assume (a) holds for all pairs that arrived
before. First note that the set of shortcuts added by A when connecting any
pair p′ = {s, t} in instance I is just one edge e = {s, t} with weight 0. This
is because we assumed that just before p′ arrived, an edge of S between s
and t arrived with weight exactly costA(I, p′). Hence we can assume that A
went through this edge to connect p′. Here we also use the fact that when
A goes through only one edge to connect a pair, the three contraction rules
behave exactly the same.

6.2 proof of theorem 5.1 105

Now by induction hypothesis, the set of shortcuts bought by A so far on
instance I ′ have exactly the same property. Hence this set of shortcuts is a
subset of the shortcuts added by A on instance I . We claim that when pair
p = {s, t} arrives, the shortest path is again through the corresponding edge
of S ′. Assume this is not the case. As a shorthand, define c = costA(I, p).
Denote by B̊ the set of vertices in B that are at distance at most

r ·
(
1− 1

100 · log2(K)

)
from the center of B. We first claim that all the shortcuts added so far by A
in instance I ′ have both endpoints in B̊ (i.e. far from the border of B). To
see this, note that all the pairs in P ′ are in B̊P hence they have one endpoint
at distance at most

r ·
(
1− 1

200 · log2(K)

)
from the center of B. If the other endpoint was not in B̊, the distance d
between the two endpoints would be at least

d ⩾
r

200 · log2(K)
,

and since pairs have contraction at most α, we would have that the cost paid
for this pair in I is at least

d

α
⩾

r

200 · (α log2(K))

but we assume that cost classes would be separated by at least a multiplicative
2δ+10 > 210 · α100 · log100(K) by assumption on δ. Hence we would have
a contradiction. Hence all pairs in P ′ have both endpoints in B̊, but this
also implies that all shortcuts added so far by A in instance I ′ have both
endpoints in B̊.
Now remark that because the instance is (α, δ)-canonical, we have that

dG(s, t) ⩽ αc, and since the distance between a point in B̊ and the exact
border of B is much bigger than αc, it cannot be that the shortest path uses
some edges in E′ (just to reach them is already too expensive because all
previously bought shortcuts have endpoints in B̊). Hence the shortest path
only uses edges that were available to A when connecting p in instance
I . Therefore the shortest path available in I ′ can only be longer than the
shortest path for the same pair in I . Since the corresponding edge of S ′ of
weight exactly c is available, the shortest path is in fact exactly the same.

By Claim 6.11, we know that the cost incurred by A because of pairs
in B̊P is equal to the cost that A would pay on the instance I ′. Denote
by k′i the number of pairs in P ′(i) in I ′. Note that by Claim 6.11 we have
P ′(i) = P(i) ∩ B̊P ∩D. Because of properties (c) and (e) of Definition 6.8, it
must be that the following inequalities hold

costA(I, B̊P , charge) ⩽ 10 · charge(p(B)) · cj · log10(K) (6.7)
⩽ (550e5) · cj · log10(K) (6.8)

106 improved bounds for greedy steiner forest

where cj is the cost of the pair that created the ball B, and

k′i · ci ⩽ costA(I, B̊P , charge). (6.9)

Putting Equations 6.8 and 6.9 together we obtain

k′i ⩽ (550e5)·log10(K)·cj
ci

= (550e5)·log10(K)·2(δ+10)·(i−j) ⩽ 23(δ+10)·(i−j),

(6.10)

for all i > j.
Note that in instance I ′, we have at most M ′ = M − j < M cost classes.

Finally, it is clear that I ′ is still an (α, δ)-canonical instance , A behaves the
same on the relevant pairs, and all conditions of Lemma 6.10 are satisfied
(we keep the same upper boundK on the number of pairs). Hence we can
apply the induction hypothesis on the sub-instance I ′ to obtain the following
upper bound on the cost of dangerous pairs inside B.

costA(I ′) ⩽ (880e5)

(
M ′∑
i=1

log(k′i) · w
(
OPT(I ′) ∩ B′(i)

))

+ e200+20M ′/ log(K) ·

(
M ′∑
i=1

δ · (M ′ − i) · w
(
OPT(I ′) ∩ B′(i)

))
,

with k′i ⩽ 23(δ+10)·i by re-indexing cost classes from 1 to M ′ in Equation
6.10. The first term on the right-hand side is

(880e5) ·

(
M−j∑
i=1

log(k′i) · w
(
OPT(I ′) ∩ B′(i)

))

⩽ (880e5) ·

(
M−j∑
i=1

log
(
23(δ+10)·i

)
· w
(
OPT(I ′) ∩ B′(i)

))

⩽ (2640e5) · (δ + 10) ·
M−j∑
i=1

i · w
(
OPT(I ′) ∩ B′(i)

)

⩽
(
δe200+20M ′/ log(K)

)
·
M−j∑
i=1

i · w
(
OPT(I ′) ∩ B′(i)

)
.

The second term in the right-hand side is less than

(
e200+20M ′/ log(K)

)
·

(
M−j∑
i=1

δ · (M − j − i) · w
(
OPT(I ′) ∩ B′(i)

))
.

6.2 proof of theorem 5.1 107

By summing both terms, we obtain a cost of at most

(
e200+20M ′/ log(K)

)
·
M−j∑
i=1

(iδ) · w
(
OPT(I ′) ∩ B′(i)

)
+

(
e200+20M ′/ log(K)

)
·

(
M−j∑
i=1

δ · (M − j − i) · w
(
OPT(I ′) ∩ B′(i)

))

⩽
(
δe200+20M ′/ log(K)

)
·

(
M−j∑
i=1

(M − j) · w
(
OPT(I ′) ∩ B′(i)

))
.

Now recall that in a balanced dual solution, all balls are pairwise disjoint
hence we obtain the upper bound(

δe200+20M ′/ log(K)
)
· (M − j) · w(OPT(I ′)) (6.11)

on the cost of pairs in B̊P ∩ D when summing on all i in the previous
inequality.
By Claim 6.11, we also have w(OPT(I ′)) ⩽ w (B ∩ OPT(I)). Now we

need to take into account the charges that were put on dangerous pairs in
B̊P ∩D by the balanced dual solution in the big instance I . By property (d)
of Definition 6.8, the total charged cost incurred by A for pairs in ∂BP ∩D
is a most 10/ log(K) fraction of the cost of pairs in B̊P ∩D. Additionally,
the charge of each pair in p ∈ B̊P ∩D is at most (by property (e))(

1 +
5

log(K)

)j−1

⩽ e5(j−1)/ log(K),

if the ball that contains this pair is in B(j). Hence we only need to in-
crease the upper bound given by Equation 6.11 by a multiplicative term
e(5(j−1)+10)/ log(K) ⩽ e20j/ log(K) to get a final upper bound of(

δe200+(20(M−j)+20j)/ log(K)
)
· (M − j) · w(OPT(I ′))

⩽
(
δe200+20M/ log(K)

)
· (M − j) · w(OPT(I ′)) (6.12)

on the total charged cost incurred by A (in instance I) because of pairs in
BP ∩D. To finish the proof, we sum these upper bounds over all B ∈ B(j)
and all j to obtain indeed the second term of the induction hypothesis.

108 improved bounds for greedy steiner forest

Given Lemma 6.10, it is now straightforward to prove Theorem 6.4. Lemma
6.10 applied to the main canonical instance I states that A pays at most

(880e5) ·

 M∑
j=1

log(kj) · w
(
OPT(I) ∩ B(j)

)
+ e200+20M/ log(K) ·

 M∑
j=1

δ · (M − j) · w
(
OPT(I) ∩ B(j)

)
⩽ O

[
M∑
j=1

log(kj) · w
(
OPT(I) ∩ B(j)

)

+
M∑
j=1

δ · (M − j) · w
(
OPT(I) ∩ B(j)

)]
.

For the first inequality, we use that M ⩽ log(K). We obtain that the first
term is at most

log(k) ·
M∑
j=1

w
(
OPT(I) ∩ B(j)

)
⩽ log(k) · w(OPT(I)) ,

since all balls in B are pairwise disjoint. The second term, is at most

M∑
j=1

δ · (M − j) · w
(
OPT(I) ∩ B(j)

)
⩽ (δM) · w(OPT(I))

⩽ log(k) · w(OPT(I)),

since we have that M ⩽ log(k)/δ (choosing the upper bound K = k is a
valid choice). Hence, if I is an (α, δ)-canonical instance, we indeed have that
the cost paid by A on this instance is at most O(log(k)) ·w(OPT(I)), which
proves Theorem 6.4, and Theorem 5.1, combining it with Lemma 6.3.

6.3 proof of theorem 5.2 and theorem 5.3

The aim of this section is to establish Theorem 5.2 and Theorem 5.3. To this
end we prove Lemma 6.12. We recall that in this section, all results apply
only to Greedy3 so A will be a shorthand for Greedy3 in this whole section,
unlike in Section 6.2 where A would mean that we could use any of the
contraction rules.

Lemma 6.12. Suppose we are given an instance I of Steiner Forest, with k
pairs of terminals. Then we can construct an instance I ′ of Steiner Forest that
satisfies the following, where A = Greedy3:

(a) costA(I) = costA(I ′).

(b) The contraction of all pairs in instance I ′ when running A is exactly
equal to 1.

6.3 proof of theorem 5.2 and theorem 5.3 109

(c) I ′ has k′ = O(k2) terminal pairs.

(d) The set of terminals (vertices that appear in a pair) is the same for instance
I and I ′.

Proof. The idea is to subdivide each pair pi in instance I into O(k) pairs
that are made of pairs of previously arrived terminals that lie on the path P
that is used to connect pi. It will be clear from construction that Property
(d) holds. Formally, we will construct an instance I ′ of Steiner Forest as
follows. Beginning with the empty set of terminal pairs, for each pair {si, ti}
that arrives in I we will construct a list of pairs P({si, ti}) and add them
to our instance I ′. The order in which we add pairs to I ′ determines the
arrival order. We next describe how to construct P({si, ti}). Suppose that
when {si, ti} appears in I the algorithm A connects the pair using the
path P = si, v1, . . . , vℓ, ti. Let si, v′1, . . . , v′ℓ′ , ti be the sub-sequence of P
specified by the contraction rule 3. Recall that this sub-sequence contains
only si, ti and previously arrived terminals. We add to P({si, ti}) the subset
of {{si, v′1}, {v′1, v′2}, . . . , {v′ℓ′−1, v

′
ℓ′}, {v′ℓ′ , ti}} containing all the pairs such

that their distance in the contracted metric is not yet 0 (here we consider
the contracted metric just before connecting the pair p = {si, ti} in instance
I). For any pair {s′, t′} in P({si, ti}) we say that {si, ti} is the parent of
{s′, t′}.

Now that we have constructed I ′, we argue that it satisfies the properties of
the lemma. To show that costA(I) = costA(I ′) we will prove the following
stronger statement. For any pair pi = {si, ti},

1. A spends exactly the same cost for the pairs in P({si, ti}) in instance
I ′ that it was spending for the pair pi = {si, ti} in instance I , i.e.

costA(I, pi) = costA(I ′,P({si, ti})).

2. The contracted metric G(i) after revealing all the pairs up to pair pi
in instance I is exactly the same as the contracted metric G′(τ) after
revealing all the pairs

⋃
i′⩽i P({si′ , ti′}) in instance I ′.

We will prove this statement by induction on i. It is vacuously true for
i = 0 since no pair appeared so far in both instances. Assume this is true up
to pair i−1, and let us prove the statement for step i. Let v′0, v′1, . . . , v′ℓ′ , v′ℓ′+1

be the sub-sequence of previously arrived terminals in the path P thatA uses
to connect si and ti in instance I , where v′0 = si and v′ℓ′+1 = ti. Suppose
that for some 0 ⩽ j ⩽ ℓ′ the pair {v′j , v′j+1} is not in P({si, ti}). Then by
construction we know that v′j and v′j+1 were already at distance 0 in the
contracted metric before the arrival of {si, ti} during the execution of A on
I , i.e.

dG(i−1)(v′j , v
′
j+1) = 0.

As a result the portion of the path P between v′j and v′j+1 contributes 0
to the value costA(I, pi) hence no cost is lost. Now suppose that the pair
{v′j , v′j+1} is inP({si, ti}), and that when presented with the pair {v′j , v′j+1}
in instance I ′, A uses a path P ′ to connect the pair. Denote by P[v′j ,v

′
j+1]

the

110 improved bounds for greedy steiner forest

restriction of the path P to vertices that appear in-between vertices v′j , v′j+1

(included). We claim that P ′ = P[v′j ,v
′
j+1]

. To see this, let us consider the first
time this is not the case, this would mean that the path P ′ costs less to A
in instance I ′ than what P[v′j ,v

′
j+1]

costed to A in instance I . But since we
assumed that the contracted metrics were identical up to pair pi−1, A could
have replaced the path P[v′j ,v

′
j+1]

by P ′ to pay less. This is a contradiction to
the fact that A always takes the shortest path. Hence the total cost for the
pair pi is preserved and we have that

costA(I, pi) = costA(I ′,P({si, ti})).

To see why we have the second property, now note that we have that P ′ =
P[v′j ,v

′
j+1]

, in particular on the path P ′ there is no previously arrived terminal
other than v′j , v

′
j+1. By contraction rule 3, it means that A simply adds an

edge {v′j , v′j+1} of weight 0 in the contracted metric. But by the definition of
contraction rule 3, this edge was also added by A when connecting the pair
pi in instance I . Reciprocally, it is clear that if a shortcut was added by A
when connecting the pair pi in instance I , it must be between two previously
arrived terminals v′j′ , v′j′+1 that are consecutive on the path P . If these two
previously arrived terminals were already at distance 0 in the contracted
metric, then the shortcut does not change the metric. Otherwise if v′j′ and
v′j′+1 were not at distance 0 then we have that P({si, ti}) also contains the
pair {v′j′ , v′j′+1} hence this shortcut will also be added in the metric when
running instance I ′. This proves that the contracted metrics are indeed the
same after step i. We also have Property (b) since, by construction, there is
no previously arrived terminal on the path P ′. Hence it must be that A pays
the cost of the path P ′ in the original metric (the only way to pay less than
the length in the original metric is to use a shortcut that was added before,
but such a shortcut must connect previously arrived terminals).

Lastly, we argue that the number of terminals k′ in I ′ isO(k2). Since there
are k pairs in instance I , we know that there are at most 2k terminals in
total. Thus there are at most 2k terminals along any path A takes to connect
a terminal pair in I (going twice through the same terminal cannot happen
since A takes the shortest path). Summing this bound over all terminal pairs
in I , we get that I ′ has at most 2k2 terminals.

With Lemma 6.12, we are able to prove Theorem 5.2.

Theorem 5.2. Construct I ′ from I as in Lemma 6.12. Then we can write

costA(I) = costA(I ′) ⩽ O(log(k′) · log log(k′)) · w(OPT(I ′))
⩽ O(log(k′) · log log(k′)) · w(T ⋆(I))
⩽ O(log(k) · log log(k)) · w(T ⋆(I)),

where the first equality follows by Property (a) of Lemma 6.12, the second
inequality from Theorem 5.1 applied to instance I ′ (using that contraction
of all pairs is 1 by Property (b) of Lemma 6.12), the third inequality from the
fact that the optimum tree solution to instance I denoted T ⋆(I) is also a
feasible solution to instance I ′ (because by Property (d) of Lemma 6.12 the
set of terminals does not change) and the last inequality from the fact that
k′ = O(k2) by Property (c) of Lemma 6.12.

6.3 proof of theorem 5.2 and theorem 5.3 111

Next we prove Theorem 5.3. For this, we require some additional notation.
Let I be an instance of Steiner Forest and F a feasible solution consisting
of trees T1, . . . , Tm. Then the width of a tree Tj with respect to an instance
I , denoted width(Tj , I), is defined to be the largest distance between any
terminal pair in Tj in the original metric, i.e.

width(Tj , I) = max
u∈T ∩Tj

dG(u, u).

where u is the terminal that u should be connected to in instance I , and T is
the set of all terminals in instance I . This is exactly the same definition of
width as in [50]. For such a forest F = (T1, . . . , Tq) we define the potential

Φ(F , I) = w(F) +
q∑

j=1

width(Tj , I).

Wherew(F) is the cost of the forest. Note thatw(F) ⩽ Φ(F , I) ⩽ 2w(F)
for any forest F that is a feasible solution to instance I . We will use this
property to prove Theorem 5.3.

Theorem 5.3. We construct the instance I ′ from instance I exactly as how
we transformed the instance in Lemma 6.12. We show that if the costs of
shortest paths are non-increasing over time, it must be that

w(OPT(I ′)) = O(w(OPT(I)).

Once this is established, the result follows as we have

costA(I) = costA(I ′) = O(log(k′) · log log(k′)) · w(OPT(I ′))
= O(log(k) · log log(k)) · w(OPT(I))

again by Lemma 6.12 and Theorem 5.1 (recall that subdividing pairs to create
instance I ′ as in Lemma 6.12 guarantees that the contraction is 1 for all pairs
in the instance I ′).
We argue that w(OPT(I ′)) = O(w(OPT(I)), using essentially the same

potential function argument than that of [50]. The idea is to begin with
the solution OPT(I) and add additional connections to produce a feasible
solution F to I ′, where w(F) ⩽ 2w(OPT(I)). Since w(OPT(I ′)) ⩽ w(F)
if we succeed the proof is complete.
As previously stated, we initialize F to be OPT(I). We will only add edges

toF hence it will be clear thatF will always be a feasible solution to instance
I . Now for each terminal pair {si, ti} that arrives in I we construct F ′ from
F as follows. Suppose that all the pairs in P({si, ti}) are already connected
by the current solution F , then nothing needs to be done.
Suppose otherwise that the solution F does not connect all pairs in

P({si, ti}). By re-indexing let T1, . . . , Tq be the components of F that con-
tain the terminals that appear in the pairs of P({si, ti}), ordered so that

width(T1) ⩾ . . . ⩾ width(Tq).

112 improved bounds for greedy steiner forest

Construct F ′ from F by adding the edges that A uses to connect the
pairs in P({si, ti}) in instance I ′. We claim that the total cost of these edges
(which is exactly equal to cost(I, pi)) is at most the width of Tq (with respect
to instance I), i.e.

cost(I, pi) ⩽ width(Tq, I).

To see this first note that the tree Tq either contains the pair {si, ti} or a
pair that appeared even before {si, ti} in instance I (here we use that F is
a feasible solution to instance I). Hence if the sequence of shortest paths
d1 = dG(s1, t1), . . . , dk = dG(sk, tk) is non-increasing, then

width(Tq, I) ⩾ min
i′⩽i

di′ = di ⩾ ci = cost(I, pi).

For the same reason if the sequence of costs c1 = cost(I, p1), . . . , ck =
cost(I, pk) is non-increasing, then

width(Tq, I) ⩾ min
i′⩽i

di′ ⩾ min
i′⩽i

ci′ = ci = cost(I, pi).

We use here that di ⩾ ci for all i. This proves our claim.
We now note that, if we needed to add edges because the current solution
F did not connect all the pairs inP({si, ti}), then we obtained a new solution
F ′ such that

w(F ′) ⩽ w(F) + cost(I, pi),

and at least two of the components in T1, T2, . . . , Tq were merged into one
component. Hence

width(F ′, I) ⩽ width(F , I)− min
1⩽i⩽q

width(Ti, I)

⩽ width(F , I) − width(Tq, I).

In particular we obtain

Φ(F ′, I)− Φ(F , I) ⩽ cost(I, pi)− width(Tq, I) ⩽ 0,

by the above remarks. We then update F to be F ′.
After completing the process we have that F connects all pairs in I ′, as

required and that the potential function did not increase. Therefore we have
that

w(F ′) ⩽ Φ(F ′, I) ⩽ Φ(F , I) ⩽ 2w(F),

as desired.

7A S IMPLE APPROX IMAT ION ALGOR I THM FOR MAP

This chapter contains the proof of Theorem 5.4, which is arguably much
simpler than in other works. We start by a brief explanation of the overall
idea in Section 7.1 before providing the complete proof in Section 7.2. The
results presented in this chapter are based on the paper entitled “A Simple LP-
based Approximation Algorithm for the Matching Augmentation Problem”,
which is a joint work with Marina Drygala and Ola Svensson. It appeared
at the International Conference on Integer Programming and Combinatorial
Optimization (IPCO ‘22) [10].

7.1 our proof techniqe

The proof of Theorem 5.4 relies on several crucial observations that we
sketch here. The first observation is that the total cost of the DFS tree T is
always at most the cost of x∗ (denoted c(x∗)). This follows because T must
contain all the light edges since they are given priority over any other edge
(note that since we assume that M is a matching, it cannot happen that two
distinct light edges want priority at the same time). Therefore, the total cost
of the tree T is exactly equal to n− 1− |M |, while it is easy to show that
c(x∗) ⩾ (n− |M |).

Another interesting fact is that if one considers the LP solution x∗ restricted
to the edges not in the tree T (denote this solution by x∗E\T), then this is a
feasible solution to the cut LP of the TAP instance with respect to the tree T
(i.e. x∗E\T is a feasible solution to LP (G,T)). Hence, if we denote by y∗ the
optimum fractional solution to LP (G,T), we have that c(y∗) ⩽ c(x∗E\T).
Because T is a DFS tree, the TAP instance with respect to the tree T

contains only “uplinks” and therefore LP (G,T) is known to be integral [1].
We note that this already gives a simple proof that the integrality gap of
LP (G,M) is at most 2. To get better than 2, we only need to show that

(n− |M | − 1) + c(y∗) ⩽ (2− δ)c(x∗) ,

for some δ > 0. Conceptually, we distinguish between two cases. If c(x∗) >
(1 + δ)(n − |M |) (i.e. the LP solution is expensive), then the DFS tree is
significantly cheaper than c(x∗) and it is easy to conclude that the cost of our
solution T ∪ A is better than 2c(x∗). Otherwise, assume that the LP value
is close to the trivial lower bound of (n− |M |). In this case, we show that
c(y∗) ⩽ (1− δ)c(x∗).
To show this, we consider two possibilities. We can prove that either we

can scale down a significant portion of x∗E\T to obtain a cheaper feasible
solution to LP (G,T), or that c(x∗E\T) itself is already significantly smaller
than c(x∗). When a lot of the tree cuts in T (i.e. the cuts defined by removing
an edge from T to obtain two trees and taking the edges with one endpoint in
each tree) have some slack in the TAP solution x∗E\T (that is when a lot of tree

113

114 a simple approximation algorithm for map

cuts S satisfy x∗E\T (δ(S)) > 1+δ), the first case is realized. Otherwise, when
almost all of the tree cuts are nearly tight (i.e. satisfy x∗E\T (δ(S)) ⩽ 1 + δ),
we can show that the DFS must have captured a good fraction of the value
of c(x∗) inside the tree T . This step uses some crucial properties of extreme
point solutions as well as our choice of DFS. Therefore the cost of x∗E\T is
significantly smaller than the cost of x∗ completing the argument.
Before proceeding to the proof, it is worthwhile to mention that we are

not aware of any example on which our algorithm has a ratio worse than
4/3 times the cost of x∗. It remains open to give a tighter analysis of this
algorithm. We also note that [62] also makes use of DFS for the related
problem of unweighted 2-ECSS. They obtain a ratio of 3/2 for the unweighted
2-ECSS problem. However, their DFS is not LP-based and we remark that
if we do not guide the DFS with the LP solution, the approximation ratio
can be arbitrarily close to 2. We give an example in Figure 7.1. One can
see that the DFS tree (rooted at r) contains all the matching edges, and the
tree augmentation problem requires us to take all but one of the back-edges.
However, the optimum solution to the MAP instance is to take a Hamiltonian
tour containing all the light edges. Generalizing the same example by simply
increasing the depth of the tree leads to an approximation arbitrarily close
to 2.

heavy edge in the DFS tree

light edge (all in the DFS tree)

heavy edge outside the DFS tree

r

Figure 7.1: An example of a bad DFS tree.

7.2 the analysis of the lp-based algorithm

In this section, we prove Theorem 5.4. It is organized as follows. In subsection
7.2.1, we introduce some basic definitions. In the subsequent subsection, we
proceed via a case distinction to prove the theorem.

7.2.1 Preliminaries

We will use T to refer to the DFS tree computed by the algorithm, and we
will list edges in G as uv, where u is an ancestor of v in T . Since T is a DFS
tree, all edges in G must have the property that one endpoint is an ancestor
of the other in T . We will let B = E \ T denote the set of back-edges of G.

7.2 the analysis of the lp-based algorithm 115

As in the introduction, we will call an edge of weight 1 a heavy edge and an
edge of weight 0 a light edge. For every edge e in the DFS tree T computed,
we let T (e) denote the tree cut corresponding to the edge e in the tree T .
Formally, T (e) = δ(Tv), where e = uv and Tv is the sub-tree rooted at v.
We call an edge e ∈ T α-tight if we have

x∗(T (e))− x∗e < 1 + α.

Implicitly, if we call an edge e α-tight, this will mean that e belongs to the tree
T . In addition, we denote by N

(α)
t the number of α-tight edges in the tree T .

For a tree T , we denote by x∗T the restriction of x∗ to the edges in the tree T .
We note that for any instance of the MAP, it must be that c(x∗) ⩾ (n− |M |).
This follows by a simple double counting argument on the fractional degree
of each component (precisely we have n− |M | components that must have
fractional degree 2 each). It is also clear that the DFS tree T must contain
all the light edges in M since they are given priority. Hence the cost of T is
at most n− |M | − 1 ⩽ c(x∗). In the following, we will fix two parameters
ε = 10−1, γ = 10−3.

7.2.2 The analysis of the algorithm

We note that if c(x∗) ⩾ (1 + γ)(n− |M |), it is easy to show that the cost of
the returned solution T ∪A is at most

(n− |M | − 1) + c(x∗) ⩽
c(x∗)

1 + γ
+ c(x∗) = c(x∗)

(
2− γ

1 + γ

)
. (7.1)

However, if c(x∗) < (1 + γ)(n − |M |) and N
(γ)
t ⩽ (1 − γ)(n − |M |) (i.e.

there are few γ-tight tree cuts), then we proceed as follows. We partition the
set of back edges in our graph B into B

(γ)
t ∪B

(γ)
s , where B(γ)

t contains all
edges e ∈ B that are contained in T (e′) for some γ-tight edge e′ ∈ T . Then
x′, defined by

x′(e) =

x∗(e) e ∈ B

(γ)
t

x∗(e)
1+γ e ∈ B

(γ)
s

1 otherwise

is also a feasible solution to LP (G,T). The total fractional value represented
by edges in B

(γ)
t is at most (1 + γ)N

(γ)
t . Hence, c(x′) can be upper bounded

as follows.

c(x′) ⩽
c(x∗)− (1 + γ)N

(γ)
t

1 + γ
+ (1 + γ)N

(γ)
t =

c(x∗)

1 + γ
+ γN

(γ)
t .

Since the cost of T ∪A is at most c(x∗) + c(x′) and we assume that

N
(γ)
t ⩽ (1− γ)(n− |M |),

it is easy to get the upper-bound of

c(x∗)

(
1 +

1

1 + γ

)
+ γ(1− γ)(n− |M |) ⩽ c(x∗)

(
2− γ3

1 + γ

)
, (7.2)

116 a simple approximation algorithm for map

where the last inequality follows because n− |M | ⩽ c(x∗). Since these two
cases clearly give a better-than-2 approximation, we assume in the rest of
the analysis that

(n− |M |) ⩽ c(x∗) < (1 + γ)(n− |M |), (7.3)

and

N
(γ)
t > (1− γ)(n− |M |). (7.4)

We will show that c(x∗T) is at least a constant fraction times c(x∗). Since
the cost of the returned solution T ∪A is at most 2c(x∗)− c(x∗T), this will
conclude the proof. First, we partition the γ-tight tree cuts into two sets of
cuts S0 and S1 containing the tight tree cuts associated with light edges and
heavy edges, respectively. We can then distinguish between two sub-cases.
For each edge e = uv ∈ T , we say that e is a leaf edge if v is a leaf in the
tree T (recall that we always write an edge e as e = uv such that v is a
descendant of u in T). We denote S+0 the non-leaf edges in S0 and S−0 the
leaf edges in S0. We have two main cases.

7.2.2.1 Suppose that |S1| ⩾ γ(n− |M |) or that |S+0 | ⩾ γ(n− |M |).

By feasibility of x∗ at least 2 units of x∗ must cross any tree cut. Hence
x∗(δ(Tv)) ⩾ 2, for any v ∈ V . By definition of γ-tightness we know that for
any γ-tight edge e = uv we have x∗(e) ⩾ x∗(δ(Tv))− (1 + γ) ⩾ 1− γ.
Hence if |S1| ⩾ γ(n− |M |), we have that

c(x∗T) ⩾ γ(1− γ)(n− |M |) ⩾ γ(1− γ)

1 + γ
c(x∗),

which concludes the case when |S1| is large. In the following we use some
properties of extreme point solutions. We say that an edge e is fractional
(with respect to the fractional solution x∗) if 0 < x∗e < 1. A vertex v is said
to be α-fractional if it has more than 1/α incident fractional edges in the
support of x∗ (for any α > 0). We claim the following lemma, the proof of
which relies on standard techniques that we repeat here for completeness.
We note that a similar result was used in [69].

Lemma 7.1. If x∗ is an extreme point solution of the cut LP, then there are at
most 2n− 1 fractional edges in G. Moreover, for any α > 0, there are at most
4αn α-fractional vertices with respect to x∗.

Proof. An extreme point x∗ can be defined as the unique solution to the
following system of |E| linearly independent constraints, for some S ⊆ 2V

and E0 ∪ E1 ⊆ E.

∑
e∈δ(S)

xe = 2, for all S ∈ S

xe = 0 ∀e ∈ E0

xe = 1 ∀e ∈ E1

7.2 the analysis of the lp-based algorithm 117

We then use Theorem 4.9 from [33] that proves that we can select S to be
a laminar family.

Lemma 7.2 (Theorem 4.9 in [33]). Let x∗ be an extreme point of the MAP cut
LP then the family of equations S can be chosen to be a laminar family.

It is well known that any laminar family has size at most 2n− 1. Using
this fact together with Lemma 7.2, we obtain that the number of fractional
edges is at most |E| − |E0| − |E1| = |S| ⩽ 2n − 1. To finish the proof of
Lemma 7.1, fix some α > 0. Each vertex that is α-fractional accounts for at
least 1/α fractional edges. By a simple double-counting argument, there can
be at most α · (4n− 2) ⩽ 4αn vertices that are α-fractional.

Using Lemma 7.1 with α = γ/16, we get that if |S+0 | ⩾ γ(n− |M |), then
(recall that n− |M | ⩾ n/2) there are at least

γ(n− |M |)− (γ/4)n ⩾ (γ/2)(n− |M |)

edgesuv ∈ S+0 such that v is not γ/16-fractional.We then claim the following
simple lemma.

Lemma 7.3. Fix any α, α′ > 0. Suppose that e = uv is an α-tight light edge,
such that v is not a leaf in T . Then if v is not α′-fractional there exists some
edge e′ = vw in T such that x∗(e′) ⩾ (1− α)α′.

Proof. By feasibility of x∗ we know that x∗(δ(Tv \ v)) ⩾ 2. Since e is α-tight
and T is a DFS tree we have that x∗(δ(Tv))− x∗(e) ⩽ 1 + α. We know that
E(Tv \ v, v) = δ(Tv \ v) \ δ(Tv), and as a result x∗(E(Tv \ v, v)) ⩾ 1− α.
Since v is not α′-fractional there must be an edge e′ ∈ E(Tv \ v, v) with
value at least x∗(E(Tv \ v, v))α′ ⩾ (1− α)α′. Since our DFS selects always
the highest possible fractional value if there is no light edge to explore,
the first edge selected after exploring v must be of fractional value at least
(1− α)α′.

Combining Lemma 7.3 with the previous observation, if |S+0 | ⩾ γ(n−|M |)
we get that

c(x∗T) ⩾ (γ/2)(n− |M |)(1− γ)(γ/16) ⩾ c(x∗)
γ2(1− γ)

32(1 + γ)
.

Combining these two cases we get that if |S1| ⩾ γ(n − |M |) or |S+0 | ⩾
γ(n− |M |) then

c(x∗T) ⩾ c(x∗) ·min

(
γ2(1− γ)

32(1 + γ)
,
γ(1− γ)

1 + γ

)
,

hence the cost of T ∪A is upper bounded by

2c(x∗)− c(x∗T) ⩽ c(x∗)

(
2− γ2(1− γ)

32(1 + γ)

)
, (7.5)

which is clearly better than 2. Hence we are left with the last case, in which

|S−0 | > (1− γ)(n− |M |)− |S1| − |S+0 | > (1− 3γ)(n− |M |).

118 a simple approximation algorithm for map

7.2.2.2 Suppose |S−0 | > (1− 3γ)(n− |M |).

This is the most interesting case. Note that for each edge e = uv ∈ S−0 , the
fractional degree of v restricted to heavy edges must be at least 1, and all of
this fractional degree is carried by backedges in T . Denote by B′ this subset
of backedges. Next we defineB′′ ⊆ B′ to be the subset ofB′ containing only
edges with fractional value at least ε = 10−1. We claim that

|B′′| ⩾ n/10. (7.6)

Assume the contrary, since the fractional value of any edge is at most 1
then the total value carried by edges in B′ \B′′ must be at least

|S−0 | − (n/10) > (1− 3γ)(n− |M |)− n/10 > 3n/8− n/10.

(Recall that (n − |M |) ⩾ n/2 and (1 − 3γ) > 3/4). Since all the edges
in B′ \ B′′ have fractional value at most ε, there must be at least (3n/8 −
n/10)/ε = 30n/8−n > 2n−1 such edges, contradicting Lemma 7.1. Hence
|B′′| ⩾ n/10.

For completeness we consider the case when E contains heavy edges that
are parallel to light edges. Partition B′′ into B′′

1 ∪ B′′
2 , where B′′

2 is the set
of edges in B′′ parallel to an edge in S−0 . We define B′′

1 to be the remaining
edges in B′′.

We claim that |B′′
2 | ⩽ n/100, and thus loosely |B′′

1 | ⩾ n/20.
To see this note that,

c(x∗)− (n− |M |) ⩾ |B′′
2 |ε. (7.7)

Equation (7.7) holds as the lower bound of (n− |M |) on c(x∗) is obtained
only by counting the fractional degree of each component in M . Since those
parallel edges are not counted in this bound (they are only within a single
component), they directly count in the value of c(x∗)− (n− |M |), which
counts the surplus of c(x∗) above (n− |M |).

Then as c(x∗)− (n− |M |) ⩽ γ(n− |M |), by choice of ε and γ we obtain
that |B′′

2 | ⩽ n/100.
Consider the set of vertices X that contains the ancestor vertices of the

edges in B′′
1 . We claim that

|X| ⩾ n/500. (7.8)

To prove this, we first claim that

c(x∗)− (n− |M |) ⩾ |B′′
1 |ε− 2|X|. (7.9)

To see this, note again that the value c(x∗) − (n − |M |) represents the
surplus value of c(x∗) above the lower bound that gives fractional degree 2
to every vertex. This trivial lower bound gives a fractional value—which is
the fractional degree restricted to heavy edges—of at most 2 to every vertex,
hence a fractional value of at most 2|X| to the set of vertices X . Since every
edge in B′′

1 has fractional value of at least ε and is adjacent to a single vertex
in X , we get that the surplus value of c(x∗) above the trivial lower bound is
at least |B′′

1 |ε− 2|X| which proves Equation (7.9).

7.2 the analysis of the lp-based algorithm 119

heavy edge in the tree

light edge

backedge

≥ ε

u

v

u

v

Heavy Light

f

Tu Tu

f

≥ ε

≥ ε ≥ ε

Figure 7.2: On the left side, the case when the first edge selected out of u is heavy.
On the right the case when the first edge selected out of u is light.

Since by assumption we have c(x∗) < (1+γ)(n−|M |) we conclude with
Equation (7.9) that

γ(n− |M |) > c(x∗)− (n− |M |) ⩾ |B′′
1 |ε− 2|X|

which implies, by our lower bound on |B′′
1 | and our choice of γ and ε,

|X| ⩾ |B
′′
1 |ε− γ(n− |M |)

2
⩾

n/200− n/103

2
= n/500. (7.10)

For each vertex u ∈ X , denote by eu the first edge selected by the DFS
after reaching u. Denote X ′ ⊆ X the subset of X containing only vertices
u ∈ X such that eu does not belong to S+0 . Then, we have by assumption,

|X ′| ⩾ |X|− |S+0 | ⩾ n/500− γ(n−|M |) ⩾ n/500−n/103 = n/103.

We finally claim the following, which crucially uses how the DFS selects the
edges to explore in priority.

Claim 7.4.

c(x∗T) ⩾ ε|X ′|.

Proof. There are two cases to consider (depicted in Figure 7.2).
If u ∈ X ′ is such that eu = uv is a heavy edge, by definition of X ′ there

must be an edge e′ = uf coming from a leaf f in the tree T to u of fractional
value xe′ ⩾ ε. At the first time the DFS visits the vertex u, the leaf f was not
explored yet hence the edge e′ was a valid choice of edge to explore. Since
our DFS always takes the highest fractional value, it must be that

xeu ⩾ xe′ ⩾ ε.

If u ∈ X ′ is such that eu = uv is a light edge, recall that by definition of
X ′, v must be a leaf in T . Then when the DFS arrived at v, it must be that
all reachable vertices from v were already visited. Hence the DFS must have
backtracked to u. Now note that by our construction of B′′

1 , we know that
there must be another leaf f such that e′ = uf is a back-edge in the tree of
fractional value xuf ⩾ ε (recall that uf is not parallel to the edge eu). Since

120 a simple approximation algorithm for map

f is a leaf, u must have been explored before f therefore, after backtracking
from v to u the edge uf was a valid edge to take. Therefore the DFS must
have selected a second edge e′′ in the tree from u such that

xe′ ⩾ xuf ⩾ ε.

Hence we proved that all vertices u in X must be adjacent to at least one
heavy edge of fractional value ε that belongs to the tree T and goes to a child
of u. Hence the proof of the claim.

By the previous claim, we have c(x∗T) ⩾ ε|X ′| hence the cost of the
returned solution T ∪A is at most

2c(x∗)− c(x∗T) ⩽ 2c(x∗)− n/104 ⩽ c(x∗)
(
2− 10−4

)
, (7.11)

which ends the proof of Theorem 5.4.

8CONCLUS ION AND OPEN PROBLEMS

In the first part of this thesis, we have given improved approximation al-
gorithms for the Santa Claus problem in various settings. For the MaxMin
Arborescences problem, we gave an O(poly(log log n))-approximation run-
ning in quasi-polynomial time. As we highlighted in the introduction of this
thesis, the ultimate goal would be to design a constant factor approximation
for the Santa Claus problem with linear valuation functions (if it exists). Here
we give three open problems that are necessary intermediate steps towards
this goal.

Open Question 8.1. Can the O(poly(log log n))-approximation guarantee
be generalized to the Santa Claus problem with linear valuations?

A big hurdle to extend our proof to the general case seems to be our use of
the Lovasz Local Lemma. Indeed, in the general version of the problem, one
needs to deal with a slightly more general version of the MaxMin Arbores-
cences problem, in which two vertices in a arborescence can be connected
by a long path instead of a single edge. This seems to introduce more depen-
dencies between bad events. Nevertheless, we believe that many of our ideas
will be very useful to generalize to the Santa Claus with linear valuations.

Open Question 8.2. Is there an O(1)-approximation for MaxMin Arbores-
cences (possibly in quasi-polynomial time)?

It is worthwhile to recall that the MaxMin Arborescences problem is a
special case of the Santa Claus problem. Hence obtaining a constant factor
for MaxMin Arborescences is necessary if one aims at a constant factor for
the Santa Claus problem. We mention that even in the special case of a single
source in a layered graph, we do not know how to solve Open Question 8.2.
This seems to be an interesting starting point.

Open Question 8.3. Is anO(poly(logn))-approximation in polynomial time
possible for MaxMin Arborescences?

The best guarantee that is known to be possible in polynomial time is only
polynomial [15, 21]. This state of affairs in reminiscent of the Directed Steiner
Tree problem, for which anO(nε)-approximation is achievable in polynomial
time for every fixed ε > 0 [22]. Designing an O(poly(log n))-approximation
in polynomial time for the Directed Steiner Tree problem is a notorious open
problem in approximation algorithms. Hence we believe Open Question 8.3
to be very challenging.

As our second result, we showed anO(log log n)-approximation algorithm
(in polynomial time) for the Restricted Submodular Santa Claus. The main
open question here is the following.

Open Question 8.4. Is there an O(1)-approximation for the Restricted Sub-
modular Santa Claus?

121

122 conclusion and open problems

In the second part of this thesis, we provided new results for fundamental
network design problems. For the Steiner Forest problem, we show that of-
fline greedy is an O(log(k) · log log(k))-approximation. Even if our result
has important consequences also for the online version, it is still an inter-
esting open question to generalize our result to online greedy. Furthermore,
improving the bound to a simple O(log(k)) would be very interesting. Both
these questions can be summarized in a single open question.

Open Question 8.5. Is the greedy algorithm an O(log(k))-approximation in
the online setting?

As a starting point, one might assume that all pairs have contraction 1 and
the cost of each pair belongs to the interval [OPT/ log(k),OPT]. As far as
we know, this case seems to retain all the difficulty and we are not aware of
any better bounds in this setting that the ones in this thesis.
Finally, for the Matching Augmentation Problem, we gave a simple poly-

nomial time algorithm that guarantees a better-than-2 approximation when
compared to the cut LP. Tha Matching Augmentation problem can be seen as
an instance of the cheapest 2-edge connected subgraph problem in a graph
with edge-weights 0 or 1, where the edges of cost 0 form a matching. A
natural direction would be to drop the assumption on the structure of edges
of cost 0, in which case we obtain the Forest Augmentation problem. A natural
research direction is the following question.

Open Question 8.6. Is the integrality gap of the cut LP for the Forest Aug-
mentation problem strictly less than 2?

It was shown that it is better than 2 for the (unweighted) Tree Augmenta-
tion problem ([74]), which is the case where we assume the edges of cost 0 to
form a spanning tree. Our result shows a similar statement for the Matching
Augmentation problem. Since these two cases are the two “extreme” cases
of the Forest Augmentation problem, it is believable that the cut LP is also
better than 2 in the more general Forest Augmentation case.

Part III

APPEND IX

ADEFERRED PROOF S FOR MAXM IN ARBORESCENCES

a.1 a challenging instance for randomized rounding

In this section, we discuss a specific limitation of the rounding algorithm in
previous works (see [21] and [15]). Essentially, we explain why their tech-
niques cannot give a better than Θ(log(n)

log log(n)) approximation. This argument
is based on an instance that we build below, which also illustrates why the
bottom-to-top pruning cannot fix the issue by itself. We reuse here the nota-
tion defined in Section 3.2. For clarity, we restate here the LP relaxation of
the problem (for a single source s), called the path LP.∑

q∈C(p)

x(q) = k · x(p) ∀p ∈ P \ T

∑
q∈I(v)∩D(p)

x(q) ⩽ x(p) ∀p ∈ P,∀v ∈ V

x((s)) = 1 ∀s ∈ S

x ⩾ 0

Below we give a construction of a random instance inspired by [51]. The
graph will have h+1 layers labeled from 0 to h and a single source s located
in L0. n will be the number of vertices in the last layer Lh and we choose
h = Θ

(
logn

log logn

)
so that (log10 n)h = n. The set of sinks corresponds exactly

to the vertices in the last layer Lh. The graph until layer h− 1 is a complete
and regular tree where every internal vertex has exactly log20 n children.
Vertices in layerLh−1 will be called leaves. Next, we describe how we connect
layer h− 1 to layer h.

Each vertex v ∈ Lℓ (note that v is a sink) runs the following sampling pro-
cess, independently of other sinks. Start at the source s. From the source select
each vertex u in L1 independently at random with probability 1/ log10 n. All
the vertices inL2 whose parent was selected is then selected independently at
random with probability 1/ log10 n. We repeat layer by layer, each vertex in
layer Li whose parent was selected is then selected independently at random
with probability 1/ log10 n.

Finally, connect the sink v ∈ Lh to all vertices in layer Lh−1 that were
selected by the above random process initiated by v.
In the following we denote by Tu for any u ∈ ∪0⩽i⩽h−1Li the subtree

rooted at vertex u that is contained in layers ∪0⩽i⩽h−1Li. We first claim the
following.

Claim A.1. With high probability, for any j ⩽ h − 1 no sink v ∈ Lh is
connected to more than(

1 +
1

log(n)

)
· (log10(n))h−1−j

125

126 deferred proofs for maxmin arborescences

leaves in layer ℓ− 1 that belong to the subtree rooted at a vertex u ∈ Lj .

Proof. To see this, note that during the random process initiated by the sink
v, every internal node u that was selected selects in expectation
log20(n)/ log10(n) = log10(n) of its children. By a standard Chernoff bound
the probability that this internal nodes selects more than(

1 +
1

log2(n)

)
· log10(n)

of its children is at most

exp

(
− 1

3 log4(n)
· log10(n)

)
⩽ exp

(
− log6(n)/3

)
.

Thereforewith high probability, no internal node selectsmore than
(
1 + 1

log2 n

)
·

log10(n) of its children which implies that the total number of selected nodes
at layer h− 1 that belong to the subtree Tu (which are exactly the neighbors
of v in that subtree) is at most(

1 +
1

log2 n

)h−1−j

(log10 n)h−1−j ⩽

(
1 +

1

log(n)

)
(log10 n)h−1−j .

Let u be a vertex in layer Lh−1. Then u is connected to each vertex v ∈ Lh

independently with probability 1/(log10 n)h−1, therefore with high proba-
bility each vertex u ∈ Lh−1 has at least

n(
1 + 1

log(n)

)
· (log10(n))h−1

=
log10(n)

1 + 1
log(n)

many neighbors in layer h.
With this observation and Claim A.1, it is easy to prove the following.

Claim A.2. With high probability, the path LP is feasible on this instance for

k =
log10(n)

1 + 1
log(n)

.

Proof. We set the following fractional values.

x(p) =

(1 + 1/ log n)−(h−1) · (log10 n)−(h−1) if p ends at layer h, and

(1 + 1/ log n)−i · (log10 n)−i if p ends at layer i ⩽ h− 1.

Clearly, x((s)) = 1. We can easily verify the demand constraints: let p be a
path that ends at layer i ⩽ h− 2, then

∑
q∈C(p)

x(q) =
log20 n

(1 + 1/ log n)i+1 · (log10 n)i+1

=
k

(1 + 1/ log n)i · (log10 n)i
= k · x(p) .

A.1 a challenging instance for randomized rounding 127

If p ends at layer h− 1, then with high probability we have

∑
q∈C(p)

x(q) ⩾
log10(n)

1 + 1
logn

· 1

(1 + 1/ log n)h−1 · (log10 n)h−1
= k · x(p) .

The capacity constraints are also easily verified with high probability. Let u
be a vertex in layer i ⩽ h− 1 and p a path ending in layer j ⩽ i then

∑
q∈I(v)∩D(p)

x(q) ⩽
1

(1 + 1/ log n)i · (log10 n)i

⩽
1

(1 + 1/ log n)j · (log10 n)j
= x(p) .

If v is a vertex in layer h and p a path ending in layer i ⩽ h− 2 then, using
Claim A.1, we obtain∑

q∈I(v)∩D(p)

x(q)

⩽

(
1 +

1

log n

)
· (log10 n)h−1−i · 1

(1 + 1/ log n)h−1 · (log10 n)h−1

⩽
1

(1 + 1/ log n)h−2 · (log10 n)i

⩽ x(p) .

If v is a vertex in layer h and p a path ending in layer i = h− 1 then∑
q∈I(v)∩D(p)

x(q) ⩽
1

(1 + 1/ log n)h−1 · (log10 n)h−1
= x(p) .

Given Claim A.2, one might be tempted to run the intuitive random-
ized rounding as in previous works. It is easy to show that this round-
ing will select a tree in which every internal node will have between (1−
2/ log n) · log10 n and (1 + 2/ log n) · log10 n children with high probability.
Note that this implies that this tree will have at least (1 − 2/ log n)h−1 ·
(log10 n)h−1 = Ω(log10(h−1) n) leaves in layer Lh−1. These leaves will each
demand k = Ω(log10(n)) sinks. Hence the total number of sinks needed will
be Ω(log10h n) = Ω(n). We prove the following last claim.

Claim A.3. With high probability, any subtree T rooted at s with leaves at
layer h− 1 and in which every internal node has between(

1− 2

log n

)
log10(n),

and (
1 +

2

log n

)
log10(n)

128 deferred proofs for maxmin arborescences

many children is connected to at most

O

(
(log10 n)h

h

)
= O

(n
h

)
many sinks in layer Lh.

Before giving a proof sketch of this, we explain why this shows that some
kind of pruning is needed. As explained above, the intuitive randomized
rounding will select a tree in which every node has roughly log10(n) children
with high probability. This tree needs to be connected to Ω(n) sinks in
layer Lh in order to give Ω(k) children to every leaf in Lh−1. By Claim A.3,
only a O(1/h) fraction of these sinks are available to these leaves, yielding
an approximation factor of Ω(h) = Ω(log n/ log log n) on the vertices in
Lh−1. Hence without any post-processing that can modify the tree, it seems
impossible to break through this Ω̃(log n) approximation factor. Moreover,
this instance shows that the post-processing cannot be only local: a simple
post-processing one could think of is to remove vertices with high congestion
and hope that this does not remove too many children of any other vertex.
However, it does not suffice to remove only children of Lh−1 in this example.
Instead one needs to remove vertices from many layers. A careful reader
may notice that if instead of sampling k children for every node (as it is
the case in previous works) we allow ourselves to sample only k/2 children
(which is equivalent to sample k children and then perform our top-to-bottom
pruning); then the necessary number of sinks in Lh drops by a factor of 2−h.
This factor seems to be enough to overcome the issue highlighted by our
construction.

We finish this discussion by giving a proof sketch of Claim A.3.

Proof sketch for Claim A.3. Let us call d the number of children of each node
in a fixed tree T and assume for simplicity that d = log10(n) for all internal
nodes in the tree. For any vertex u ∈ Lj ∩ T with j ⩽ h− 1, we will denote
by Tu the subtree of T rooted at u. We say that a vertex v ∈ Lh survives in
Tu if at least one leaf of Tu is connected to v. We define

pj := P(v survives in Tu | v selected u),

for any u ∈ Lj ∩ T . Note that by symmetry this probability does not depend
on which vertex u ∈ T ∩Lj and which sink v we select, hence the simplified
notation. We will now upper bound pj depending on the depth j. We note
that for a vertex v to survive in Tu, it must be that there is at least one child
u′ of u such that v selects u′ and v survives in Tu′ . The probability that v
survives in Tu conditioned by the fact that v selected u can be written as

P[v survives in Tu | v selected u]

= 1−
∏

u′ child of u in the tree Tu

(
1− P [v survives in Tu′ | v selected u′]

log10 n

)
which by symmetry is equivalent to

pj = 1−
(
1− pj+1

log10 n

)d

.

A.2 preprocessing the path lp 129

When n goes to infinity, this is roughly equal to

1− e
−

dpj+1

log10 n ≈ 1− e−pj+1 .

From there, it is easy to prove by induction that

pj ⩽
O(1)

h− j
.

Hence the expected number of vertices of the last layer that survive in any
fixed tree T rooted at the source is at most

p0 · n = O
(n
h

)
.

By independence and a standard Chernoff bound, one can show that with
probability at most

exp
(
−Ω

(n
h

))
,

more than 10n
h sinks survive in a fixed tree T . To upper bound the number

of possible trees, note that it suffices so select the set of (log10(n))h−1 leaves
among the (log20(n))h−1 possible leaves. Hence there are at most

(log20(n))(h−1)·(log10 n)h−1
= exp

(
Θ

(
n · h · log log(n)

log10 n

))
= exp

(
o
(n
h

))
possible trees with internal degree log10(n). By a standard union bound, this
happens for no such tree.

a.2 preprocessing the path lp

We recall the goal is to obtain, from a feasible fractional solution x to the
path LP a multiset of paths P ′ containing (s) for each s ∈ S and satisfying∑

q∈CP ′ (p)

y(q) =
k

4
· y(p) ∀p ∈ P ′ \ T ′ (A.1)

∑
q∈IP ′ (v)∩DP ′ (p)

y(q) ⩽ 2y(p) ∀p ∈ P ′, v ∈ V (A.2)

y(p) =
1

(4 log2 n)i
∀i ⩽ h,∀p ∈ Li (A.3)

The value of y is fixed by the distance to the sources; hence, the only challenge
in this part is in fact to select the multiset P ′.
Towards this, consider a randomized rounding algorithm, that proceeds

layer by layer starting from the sources. We will produce partial solutions
P (i) that correspond to our final solution for all paths in L⩽i. Recall that this
is a multiset and there might be several times the same copy of a path p ∈ P ,
but every copy will have a unique parent. Initially, we add a single copy of
the trivial path (s) for each s ∈ S to P (0). Assume now that we defined the
solutions up to P (i), that is, we sampled up to layer i for some i ⩾ 0. For

130 deferred proofs for maxmin arborescences

each path p that is open and belongs to P (i)∩Li, we sample (k/4) · (4 log2 n)
many children paths where the j-th child equals path q ∈ CP (p)∩Li+1 with
probability

x(q)∑
q′∈CP (p) x(q

′)
.

For each path q that is sampled, we set the parent of q to be p (which is a
unique copy). Let Qq be the multiset of all copies of a path q ∈ P that were
sampled in this way. Then we set

P (i+1) ← P (i) ∪ (∪q∈Li+1Qq).

We repeat this process until reaching the last layer h and we set P ′ = P (h).
We argue below that we obtain the desired properties with high probability.
To this end, we notice that each open path p ∈ P (i) ∩ Li samples exactly
(k/4) · (4 log2 n) children paths q and hence we obtain

∑
q∈CP ′ (p)

y(q) =
(k/4) · (4 log2 n)
(4 log2 n)i+1

=
k

4
y(p) .

Therefore constraint (A.1) is satisfied with probability 1. It remains to verify
that constraint (A.2) holds with high probability. For this, we consider the
following quantity, that keeps track of the (possibly fractional) congestion
induced by the descendants of a path p ∈ P (i) on a vertex v. If v ∈ L⩽i, then
this induced congestion cannot change anymore so we will only keep track
of this congestion for v ∈ L⩾i+1. For ease of notation, let us define for all
q ∈ P ,

cong(q, v) :=
∑

q′∈DP (q)∩IP (v)

x(q′) .

Then, we define for any p ∈ P (i)

cong(p, v | P (i)) :=
∑

q∈D
P (i) (p)∩Li

y(q)

x(q)
cong(q, v) ,

which intuitively is the fractional congestion induced by descendants of p on
vertex v but where we condition by what happened until layer i. Note that if
v ∈ Lj the quantity cong(p, v | P (j)) is the final quantity we need to bound
in order to ensure constraint (A.2). Indeed, in this case we obtain that

cong(p, v | P (j)) =
∑

q∈D
P (j) (p)∩IP (j) (v)

y(q)

x(q)
·x(q) =

∑
q∈D

P (j) (p)∩IP (j) (v)

y(q) .

Claim A.4. For any p ∈ P (i) ∩ Li, we have that

cong(p, v | P (i)) ⩽ y(p),

with probability 1.

A.2 preprocessing the path lp 131

Proof. If p ∈ P (i) ∩ Li, then we have that

cong(p, v | P (i)) = y(p)
cong(p, v)

x(p)
⩽ y(p) ,

using constraint (3.3) of the original path LP.

Claim A.5. For any open p ∈ P (i) and any i ⩾ 0, we have that

P

[
cong(p, v | P (i+1)) ⩾

cong(p, v | P (i))

2
+ y(p)

]
⩽

1

n2 log(n)
,

where the probability is taken over the randomness to round layer Li+1.

Proof. Denote by Nq the number of copies of q ∈ Li+1 ∩ DP (p) that are
sampled as descendants of p. We also denote P (q) the parent of q in the set P .
Accordingly, NP (q) is the number of copies of the path P (q) that are chosen
in P (i) as descendants of p. First, we compute

E
[
cong(p, v | P (i+1))

]
=

∑
q∈DP (p)∩Li+1

E[Nq] ·
1

(4 log2 n)i+1 · x(q)
· cong(q, v)

=
∑

q∈DP (p)∩Li+1

NP (q) ·
(k/4) · (4 log2 n)
(4 log2 n)i+1

· x(q)∑
q′∈CP (P (q)) x(q

′)
· cong(q, v)

x(q)

=
∑

q∈DP (p)∩Li+1

NP (q) · (k/4) ·
1

(4 log2 n)i
· 1∑

q′∈CP (P (q)) x(q
′)
· cong(q, v)

=
∑

q∈DP (p)∩Li+1

NP (q) · (k/4) · y(P (q)) · 1

k · x(P (q))
· cong(q, v)

=
1

4

∑
q∈DP (p)∩Li+1

NP (q) ·
y(P (q))

x(P (q))
· cong(q, v)

=
1

4

∑
q′∈DP (p)∩Li

Nq′ ·
y(q′)

x(q′)
·
∑

q∈CP (q′)

cong(q, v)

=
1

4

∑
q′∈DP (p)∩Li

Nq′ ·
y(q′)

x(q′)
· cong(q′, v) = cong(p, v | P (i))

4
.

where we used constraint (3.2) of the original path LP to obtain the fourth
line, and standard algebraic manipulations for the rest. Second, we note that
cong(p, v | P (i+1)) can be written as a sum of independent random variables
of value

y(q)

x(q)
· cong(q, v)

for some q ∈ Li+1. By constraint (3.3) of the path LP, the absolute value of
these variables is never more than 1/(100 log2 n)i+1. By a standard Chernoff
bound, we can conlude that

P

[
cong(p, v | P (i+1)) ⩾

cong(p, v | P (i))

2
+ y(p)

]
⩽ exp

(
−y(p)(4 log2 n)i+1

2

)
⩽ n−2 log(n) .

132 deferred proofs for maxmin arborescences

There are at most nh ⩽ nlog(n)+1 constraints to maintain to ensure con-
straint (A.2) over at most h rounds of rounding. Hence by ClaimA.5, we have
cong(p, v | P (i+1)) ⩽ cong(p, v | P (i))/2 + y(p) for all paths p, vertices v,
and rounds i with probability at least 1− n− log(n)+1. Using Claim A.4 with
this fact we obtain that for any path p and vertex v

∑
q∈IP ′ (v)∩DP ′ (p)

y(q) ⩽ y(p)
∞∑
j=0

1

2j
⩽ 2y(p).

This proves the desired result.

BDEFERRED PROOF S FOR THE RE STR ICTED
SUBMODULAR SAN TA CLAUS

b.1 reduction to hypergraph matching problem

b.1.1 Solving the Configuration LP

The goal of this section is to prove Theorem 4.1. We consider the dual of the
configuration LP (after adding an artificial minimization direction min 0Tx).

max
∑
i∈P

yi −
∑
j∈R

zj∑
j∈C

zj ⩾ yi for all i ∈ P,C ∈ C(i, T)

yj , zi ⩾ 0

Observe that the optimumof the dual is either 0 obtained by yi = 0 and zj = 0
for all i, j or it is unbounded: If it has any solution with

∑
i∈P yi−

∑
j∈R zj >

0, the variables can be scaled by an arbitrary common factor to obtain any
objective value. If it is unbounded, this can therefore be certified by providing
a feasible solution y, z with∑

i∈P
yi −

∑
j∈R

zj ⩾ 1. (∗)

We approximate the dual in the variant with constraint (∗) instead of a
maximization direction using the ellipsoid method. The separation problem of
the dual is as follows. Given zj , yi find a player i and setC with g(C∩Γi) ⩾ T
such that

∑
j∈C zj < yi.

To this end, consider the related problem of maximizing a monotone
submodular function subject to knapsack constraints. In this problem we
are given a monotone submodular function g over a ground set E and the
goal is to maximize g(E′) over all E′ ⊆ E with

∑
j∈E′ aj ⩽ b. Here aj ⩾ 0

is a weight associated with j ∈ E and b is a capacity. For this problem
Srividenko gave a polynomial time (1− 1/e)-approximation algorithm [80].
It is not hard to see that this can be used to give a constant approximation for
the variation where strict inequality is required in the knapsack constraint:
Assume w.l.o.g. that 0 < aj < b for all j. Then run Srivideko’s algorithm to
find a set E′ with

∑
j∈E′ aj ⩽ b. Notice that g(E′) is at least (1− 1/e)OPT,

also when OPT is the optimal value with respect to strict inequality. If E′

contains only one element then equality in the knapsack constraint cannot
hold and we are done. Otherwise, splitE′ into two arbitrary non-empty parts
E′′ and E′′′. It follows that

∑
j∈E′′ aj < b and

∑
j∈E′′′ aj < b. Moreover,

either g(E′′) ⩾ g(E′)/2 or g(E′′) ⩾ g(E′)/2. Hence, this method yields a
c-approximation for c = (1− 1/e)/2. We now demonstrate how to use this
to find a c-approximation to the configuration LP.

133

134 deferred proofs for the restricted submodular santa claus

Let OPT be the optimum of the configuration LP. It suffices to solve the
problem of finding for a given T either a solution of value cT or deciding that
T > OPT. This can then be embedded into a standard dual approximation
framework. We run the ellipsoid method on the dual of the configuration LP
with objective value cT and constraint (∗). This means we have to solve the
separation problem. Let z, y be the variables at some state. We first check
whether (∗) is satisfied, that is

∑
i∈P yi −

∑
j∈R zj ⩾ 1. If not, we return

this inequality as a separating hyperplane. Hence, assume (∗) is satisfied
and our goal is to find a violated constraint of the form

∑
j∈C zj < yi for

some i ∈ P and C ∈ C(i, T). For each player i we maximize f over all
S ⊆ Γi with

∑
j∈S zj < yi. We use the variant of Srividenko’s algorithm

described above to obtain a c-approximation for each player. If for one player
i the resulting set S satisfies f(S) ⩾ cT , then we have found a separating
hyperplane to provide to the ellipsoid method. Otherwise, we know that
f(S) < T for all players i and S ⊆ Γi with

∑
j∈S zj < yi. In other words,

for all players i and all C ∈ C(i, T) it holds that
∑

j∈C zj ⩾ yi, i.e., z, y is
feasible for objective value T and hence OPT > T . If the ellipsoid method
terminates without concluding that OPT > T , we can derive a feasible
primal solution with objective value cT : The configurations constructed
for separating hyperplanes suffice to prove that the dual is bounded. These
configurations can only be polynomially many by the polynomial running
time of the ellipsoid method. Hence, when restricting the primal to these
configurations it must remain feasible. To obtain the primal solution we now
only need to solve a polynomial size linear program. This concludes the proof
of Theorem 4.1.

b.1.2 Clusters

This section is devoted to prove Lemma 4.2. The arguments are similar to
those used in [14].

Lemma B.1. Let x∗ be a solution to the configuration LP of value T ∗. Then x∗

can be transformed into some x′i,C ⩾ 0 for i ∈ P ,C ∈ Ct(i, T ∗) which satisfies
the following. There is a partition of the players into clustersK1∪· · ·∪Kk∪Q =
P that satisfy the following.

1. any thin resource j is fractionally assigned at most once, that is,∑
i∈P

∑
C∈Ct(i,T ∗):j∈C

x′i,C ⩽ 1

We say that the congestion on resource j is at most 1.

2. every clusterKj gets at least 1/2 thin configurations in x′, that is,∑
i∈Kj

∑
C∈Ct(i,T ∗)

x′i,C ⩾ 1/2;

3. given any i1 ∈ K1, i2 ∈ K2, . . . , ik ∈ Kk there is a matching of fat
resources to players P \ {i1, . . . , ik} such that each of these players i
gets a unique fat resource j ∈ Γi.

B.1 reduction to hypergraph matching problem 135

The role of the set of players Q in the lemma above is that each of them
gets one fat resource for certain.

Proof. We first transform the solution x∗ as follows. For every configuration
C (for player i) that contains at least one fat resource and such that x∗i,C > 0,
we select arbitrarily one of these fat resources j and we set x∗i,{j} = x∗i,C and
then we set x∗i,C = 0. It is clear that this does not increase the congestion
on resources and now every configuration that has non-zero value is either
a thin configuration or a singleton containing one fat resource. Therefore
we can consider the bipartite graph G formed between the players and the
fat resources where there is an edge between player i and fat resource j if
the corresponding configuration C = {j} is of non zero value (i.e. x∗i,C > 0).
The value of such an edge will be exactly the value x∗i,C . We now make G
acyclic by doing the following operation until there exists no cycle anymore.
Pick any cycle (which must have even length since the graph is bipartite)
and increase the coordinate of x∗ corresponding to every other edge in the
cycle by a small constant. Decrease the value corresponding to the remaining
edges of the cycle by the same constant. This ensures that fat resources are
still (fractionally) taken at most once and that the players still have one unit
of configurations fractionally assigned to them. We continue this until one of
the edge value becomes 0 or 1. If an edge becomes 0, delete that edge and if
it becomes 1, assign the corresponding resource to the corresponding player
forever. Then delete the player and the resource from the graph and add the
player to the cluster Q. By construction, every added player to Q is assigned
a unique fat resource. Notice that when we stop, each remaining player still
has at least 1 unit of configurations assigned to him and every fat resource
is still (fractionally) taken at most once. Hence we get a new assignment
vector where the assignments of fat resources to players form a forest. We
also note that the congestion on thin resources did not increase during this
process (it actually only decreased either when we replace fat configurations
by a singleton and when players are put into the set Q and deleted from the
instance). We show below how to get the clusters for any tree in the forest.

1. If the tree consists of a single player, then it trivially forms its own
cluster. By feasibility of the original solution x∗, condition 2 of the
lemma holds.

2. If there is a fat resource that has degree 1, assign it to its player, add
the player to Q and delete both the player and resource. Continue this
until every resource has a degree of at least 2. This step adds players
to cluster Q. By construction, every added player is assigned a unique
fat resource.

3. While there is a resource of degree at least 3, we perform the following
operation. Root the tree containing such a resource at an arbitrary
player. Consider a resource j of degree at least 3 such that the subtree
rooted at this resource contains only resources of degree 2. Because
this resource must have at least 2 children in the tree i1, i2, . . . (which
are players) and because∑

i∈P

∑
C:j∈C

x∗i,C ⩽ 1,

136 deferred proofs for the restricted submodular santa claus

it must be that one of the children (say i1) satisfies x∗i1,{j} ⩽ 1/2. We
then delete the edge (j, i1) in the tree and set x∗i1,{j} to 0.

4. Every resource now has degree exactly 2. We form a cluster for each
tree in the forest. The cluster will contain the players and fat resources
in the tree. We note that in every tree, only the player at the root lost at
most 1/2 unit of a fat resource by the previous step in the construction.
By the degree property of resources and because the graph contains no
cycle, it must be that in each clusterK we have |R(K)| = |P (K)| − 1
where |R(K)| is the number of resources in the cluster and |P (K)|
the number of players. Because each resource is assigned at most once,
and because only one player in the cluster lost at most 1/2 unit of a fat
resource, it must be that the cumulative amount of thin configurations
assigned to players in K is at least

|P (K)| − |R(K)| − 1/2 = 1/2.

This gives the second property of the lemma. For the third property,
notice that for any choice of player i ∈ K , we can root the tree
corresponding to the cluster K at the player i and assign all the fat
resources inK to their only child in the tree (they all have degree 2).
This gives the third property of the lemma.
As each of these steps individually maintained maintained a congestion
of at most 1 on every thin resource, we indeed get a new solution x′

and the associated clusters with the required properties.

Lemma B.1 implies that for each cluster we need to cover only one player
with a thin configuration. Then the remaining players can be covered with fat
resources. We will now replace x′ by a solution x′′ which takes slightly worse
configurations Ct(i, T ∗/5), but satisfies (2) in Lemma B.1 with 2 instead of
1/2. This can be achieved by splitting each configuration C ∈ Ct(i, T ∗) in 4
disjoint parts C1, C2, C3, C4 ∈ Ct(i, T ∗/5). Let C1 ⊆ C with f(C1) ⩾ T ∗/5
minimal in the sense that f(C1 \ {j}) < T ∗/5 for all j ∈ C1. Let j1 ∈ C1.
By submodularity and because j1 is thin it holds that

f(C \ C1) ⩾ f(C)− f(C1 \ {j1})− f({j1}) ⩾ 4T ∗/5− T ∗/100.

Hence, in the same way we can select C2 ⊆ C \ C1, C3 ⊆ C \ (C1 ∪ C2)
and C4 ⊆ C \ (C1 ∪ C2 ∪ C3). We now augment x′ to x′′ by initializing x′′
with 0 and then for each i and C ∈ C(i, T ∗) increasing x′′i,C1

, x′′i,C2
, x′′i,C3

,
and x′′i,C4

by x′i,C . Here C1, C2, C3, C4 ∈ C(i, T ∗/5) are the configurations
derived from C by splitting it as described above.
Finally, we sample for each cluster some ℓ ⩾ 12 log(n) many configura-

tions with the distribution of x′′ to obtain the statement of Lemma 4.2 which
we restate for convenience.

Lemma (Lemma 4.2 restated). Let ℓ ⩾ 12 log(n). Given a solution of value
T ∗ for the configuration LP in randomized polynomial time we can find a
partition of the players into clusters K1 ∪ · · · ∪Kk ∪Q = P and multisets of
configurations Ch ⊆

⋃
i∈Kh

CT (i, T ∗/5), h = 1, . . . , k, such that

B.2 properties of resource sets 137

1. |Ch| = ℓ for all h = 1, . . . , k and

2. Each small resource appears in at most ℓ configurations of
⋃

h Ch.

3. given any i1 ∈ K1, i2 ∈ K2, . . . , ik ∈ Kk there is a matching of fat
resources to players P \ {i1, . . . , ik} such that each of these players i
gets a unique fat resource j ∈ Γi.

Proof. We start with the clusters obtained with Lemma B.1 and the solution
x′′ described above. Recall that∑

i∈Kh

∑
C∈Ct(i,T ∗/5)

x′′i,C ⩾ 2

for each clusterKh. We assume w.l.o.g. that equality holds by reducing some
variables x′′i,C . Clearly then each resource is still contained in at most one
configuration in total.
For each cluster Kh, we sample a configuration that contains a player

in this cluster according to the probability distribution given by the values
{x′′i,C/2}i∈Kh,C∈Ct(i,T ∗/5). By the assumption of equality stated above this
indeed defines a probability distribution. We repeat this process ℓ times. We
first note that for one iteration, each resource is in expectation contained in∑

i∈P

∑
C∈C(i,T ∗/5):j∈C

x′′i,C/2 ⩽ 1/2

selected configurations. Hence in expectation all the resource are contained
in ℓ/2 selected configurations after ℓ iterations. By a standard Chernoff bound
(see Proposition 2.4), we have that with probability at most

exp (−ℓ/6) ⩽ 1/n2

a resource is contained in more than ℓ configurations. By a union bound, it
holds that all resources are contained in at most ℓ selected configurations
with high probability.

b.2 properties of resource sets

Lemma B.2 (Lemma 4.7 restated). Consider Random Experiment 4.6 with
ℓ ⩾ 300.000 log3(n). For any k ⩾ 0 and any C ∈ C(⩾k) we have

1

2
ℓ−k|C| ⩽ |Ik ∩ C| ⩽ 3

2
ℓ−k|C|

with probability at least 1− 1/n10.

Proof. The lemma trivially holds for k = 0. For k > 0, by assumption
C ∈ C(⩾k) hence |C| ⩾ ℓk+3. Since each resource of R = R0 survives in Rk

with probability ℓ−k we clearly have that in expectation

E(|Rk ∩ C|) = ℓ−k|C|

138 deferred proofs for the restricted submodular santa claus

Hence the random variable X = |Rk ∩ C| is a sum of independent variables
of value either 0 or 1 and such that E(X) ⩾ ℓ3. By a standard Chernoff
bound (see Proposition 2.4), we get

P
(
X /∈

[
E(X)

2
,
3E(X)

2

])
⩽ 2 exp

(
−E(X)

12

)
⩽ 2 exp

(
−300.000 log3(n)

12

)
⩽

1

n10
,

since by assumption ℓ ⩾ 300.000 log3(n).

Lemma B.3 (Lemma 4.8 restated). Consider Random Experiment 4.6 with
ℓ ⩾ 300.000 log3(n). For any k ⩾ 0 and any C ∈ C(⩾k) we have

∑
C′∈C(k)

|C ′ ∩ C ∩Rk| ⩽
10

ℓk

|C|+ ∑
C′∈C(k)

|C ′ ∩ C|

with probability at least 1− 1/n10.

Proof. The expected value of the random variable
X =

∑
C′∈C(k) |C ′ ∩ C ∩Rk| is equal to

E(X) =
1

ℓk

∑
C′∈C(k)

|C ′ ∩ C| .

Since each resource is in at most ℓ configurations,X is a sum of independent
random variables that take value in a range [0, ℓ]. Then by a standard Chernoff
bound (see Lemma 2.4), we get

P
(
X ⩾ 10

(
|C|
ℓk

+ E(X)

))
⩽ exp

(
−3|C|
ℓk+1

)
⩽

1

n10
,

since by assumption, |C| ⩾ ℓk+3 and ℓ ⩾ 300.000 log3(n).

We finish by the proof of the last property. As mentioned in Chapter 4,
this statement is a generalization of some ideas that already appeared in
[14]. However, in [14], the situation is simpler since they need to sample
down the resource set only once (i.e. there are only two sets R1 ⊆ R and
not a full hierarchy of resource sets Rd ⊆ Rd−1 ⊆ · · · ⊆ R1 ⊆ R). Given
the resource set R1, they want to select configurations and give to each
selected configurationK all of its resource set |K∩R1| so that no resource is
assigned too many times. In our case the situation is also more complex than
that since at every step the selected configurations receive only a fraction of
their current resource set. Nevertheless, we extend the ideas of Bansal and
Srividenko to our more general setting. We recall the main statement before
proceeding to its proof.

B.2 properties of resource sets 139

Lemma B.4 (Lemma 4.9 restated). Consider Random Experiment 4.6 with
ℓ ⩾ 300.000 log3(n). Fix k ⩾ 0. Conditioned on the event that the bounds in
Lemma 4.7 hold for k, then with probability at least 1−1/n10 the following holds
for all F ⊆ C(⩾k+1), α : F → N, and γ ∈ N such that ℓ3/1000 ⩽ α(C) ⩽ n
for all C ∈ F and γ ∈ {1, . . . , ℓ}: If there is a (α, γ)-good assignment ofRk+1

to F , then there is a (α′, γ)-good assignment of Rk to F where

α′(C) ⩾ ℓ

(
1− 1

log(n)

)
α(C) (B.1)

for all C ∈ F . Moreover, this assignment can be found in polynomial time.

We first provide the definitions of a flow network that allows us to state a
clean condition whether a good assignment of resources exists or not. We
then provide the high probability statements that imply the lemma.

For any subset of configurationsF ⊆ C(⩾k+1), resource setRk ,α : F → N,
and any integer γ, consider the following directed network (denoted by
N (F , Rk, α, γ)). Create a vertex for each configuration in F as well as a
vertex for each resource. Add a source s and sink t. Then add a directed
arc from s to the vertex C ∈ F with capacity α(C). For every pair of a
configuration C and a resource i such that i ∈ C add a directed arc from C
to i with capacity 1. Finally, add a directed arc from every resource to the
sink of capacity γ. See Figure B.1 for an illustration.

Figure B.1: The directed network and an s-t cut.

We denote by

maxflow (N (F , Rk, α, γ))

the value of the maximum s-t flow in N (F , Rk, α, γ).
Before delving into the technical lemmas, we provide a brief road map for

the proof. First, we argue that for any subset of configurations, in the two
networks induced on this subset and the consecutive resource sets (which
are Rk and Rk+1), the value of the maximum flow differs by approximately
a factor ℓ (this is Lemma B.6 stated below). Then by a union bound over
all possible subsets of configurations, we say that the above argument con-
secutively holds with good probability. This helps us conclude that a good

140 deferred proofs for the restricted submodular santa claus

assignment of the resource set Rk+1 implies that there is a good assignment
of the resource set Rk. Notice that if one does not have the above argument
with respect to all subsets of configurations at once, it is not necessary that a
good assignment of resources must exist. In particular, we need Lemma B.5 to
show that if on all subsets of configurations the maximum flow is multiplied
by approximately ℓ when we expand the resource set from Rk+1 to Rk , then
an (α, γ)-good assignment of Rk+1 implies an (α′, γ)-good assignment of
Rk, where α′ is almost equal to ℓα.

Lemma B.5. Let F be a set of configurations, R′ ⊆ R, α : F → N a set of
resources, γ ∈ N, and ε ⩾ 0. Define

α′(C) = ⌊(1− ε)α(C)⌋.

There is an (α′, γ)-good assignment of R′ to F if and only if for every F ′ ⊆
F , the maximum flow in the network N (F ′, R′, α, γ) is of value at least∑

C∈F ′ α′(C). Moreover, this assignment can be found in polynomial time.

Proof. First assume there is such an (α′, γ)-good assignment. Then send a
flow of α′(C) from s to each C ∈ F . If resource i is assigned to C , send a
flow of 1 from C to i. Finally ensure that flow is preserved at every vertex
corresponding to a resource by sending the correct amount of flow to t. Since
no resource is taken more than γ times, this flow is feasible.
We prove the other direction by contradiction. Denote by N the network
N (F , R′, α′, γ). If there is no good assignment satisfying the condition of the
lemma then the maximum flow in N must be strictly less than

∑
C∈F α′(C)

(otherwise consider the maximum flow, which can be taken to be integral,
and give to every configuration C all the resources to which they send a flow
of 1). Then by the max-flow min-cut theorem, there exists an s-t cut S that
has value strictly less than

∑
C∈F α′(C). Let C′ be the set of configurations

on the side of the source in S. Notice that C′ cannot be empty by assumption
on the value of the cut.

Consider the induced networkN (C′, R′, α′, γ) and the cut S in it. It has a
value strictly lower than

∑
C∈C′ α′(C). This, in turn implies that the cut S in

N (C′, R′, α, γ) has a value strictly lower than
∑

C∈C′ α′(C), since this cut
does not contain any edge from the source s to some configuration. Hence the
maximum flow inN (C′, R′, α, γ) has a value strictly less than

∑
C∈C′ α′(C),

a contradiction to the assumption in the premise.

Lemma B.6. Let F ⊆ C⩾(k+1), α : F → N such that ℓ3/1000 ⩽ α(C) ⩽ n
for all C ∈ F , and 1 ⩽ γ ⩽ ℓ. Denote by N the network N (F , Rk, ℓ · α, γ)
and by Ñ the network N (F , Rk+1, α, γ). Then

maxflow (N) ⩾
ℓ

1 + 0.5/ log(n)
maxflow

(
Ñ
)

with probability at least 1− 1/(nℓ)20|F|.

Proof. We use the max-flow min-cut theorem that asserts that the value of
the maximum flow in a network is equal to the value of the minimum s-t
cut in the network. Consider a minimum cut S of network N with s ∈ S

B.2 properties of resource sets 141

and t /∈ S. Denote by c(S) the value of the cut. We will argue that with high
probability this cut induces a cut of value at most c(S)/ℓ · (1 + 0.5/ log(n))
in the network Ñ . This directly implies the lemma.

Denote by C′ the set of configurations of F that are in S, i.e., on the source
side of the cut, and C′′ = F \ C′. Similarly consider R′ the set of resources
in the s side of the cut and R′′ = Rk \ R′. With a similar notation, we
denote R̃′ = R′ ∩ Rk+1 the set of resources of R′ surviving in Rk+1; and
R̃′′ = R′′ ∩Rk+1. Finally, denote by S̃ the cut in Ñ obtained by removing
resources of R′ that do not survive in Rk+1 from S, i.e., S̃ = {s} ∪ C′ ∪R′.
The value of the cut S of N is

c(S) =
∑
C∈C′′

ℓ · α(C) + e(C′, R′′) + γ|R′|

where e(X,Y) denotes the number of edges from X to Y . The value of the
cut S̃ in Ñ is

c(S̃) =
∑
C∈C′′

α(C) + e(C′, R̃′′) + γ|R̃′|

We claim the following properties.

Claim B.7. For every C ∈ F , the outdegree of the vertex corresponding to C
in N is at least ℓ4/2.

Since C ∈ C(⩾k+1) and by Lemma 4.7, we clearly have that |C ∩ Rk| ⩾
ℓ4/2.

Claim B.8. It holds that

c(S) ⩾
|F|ℓ3

1000
.

We have by assumption on α(C)

c(S) =
∑
C∈C′′

ℓ·α(C)+e(C′, R′′)+γ|R′| ⩾
∑
C∈C′′

ℓ3

1000
+e(C′, R′′)+γ|R′|

⩾
|C′′|ℓ3

1000
+ e(C′, R′′) + γ|R′| .

Now consider the case where e(C′, R′′) ⩽ |C′|ℓ3/1000. Since each vertex in
C′ has outdegree at least ℓ4/2 in the network N (by Claim B.7) it must be
that e(C′, R′) ⩾ |C′|ℓ4/2 − |C′|ℓ3/1000 > |C′|ℓ4/3. Using that each vertex
in R′ has indegree at most ℓ (each resource is in at most ℓ configurations),
this implies |R′| ⩾ |C′|ℓ3/3. Since γ ⩾ 1 we have in all cases that e(C′, R′′)+
γ|R′| ⩾ |C′|ℓ3/1000. Hence

c(S) ⩾
|C′′|ℓ3

1000
+
|C′|ℓ3

1000
=
|F|ℓ3

1000
.

This proves Claim B.8. We can now finish the proof of the lemma. Denote by
X the value of the random variable e(C′, R̃′′) + γ|R̃′|. We have that

E[X] =
1

ℓ
(e(C′, R′′) + γ|R′|).

142 deferred proofs for the restricted submodular santa claus

Moreover, X can be written as a sum of independent variables in the range
[0, ℓ] since each vertex is in at most ℓ configurations and γ ⩽ ℓ by assumption.
By a Chernoff bound (see Lemma 2.4) with

δ =
0.5c(S)

log(n) · (c(S)−
∑

C∈C′′ α(C))
⩾

0.5

log(n)
,

we have that

P
(
X ⩾ E(X) +

0.5c(S)

ℓ log(n)

)
⩽ exp

(
−min{δ, δ2}E(X)

3ℓ

)
⩽ exp

(
− c(S)

12ℓ2 log2(n)

)
⩽ exp

(
− |F|ℓ3

12.000ℓ2 log2(n)

)
⩽

1

(nℓ)20|F| ,

where the third inequality comes from Claim B.8 and the last one from
the assumption that ℓ ⩾ 300.000 log3(n). Hence with probability at least
1− 1/(nℓ)20|F|, we have that

c(S̃) =
∑
C∈C′′

α(C) + e(C′, R̃′′) + γ|R̃′| ⩽ 1

ℓ
c(S) +

0.5

ℓ log(n)
c(S) .

We are now ready to prove Lemma 4.9. Note that Lemma B.6 holds with
probability at least 1− 1/(nℓ)20|F|. Given the resource set Rk and a cardi-
nality s = |F| there are O((nℓ)2s) ways of defining a network satisfying
the conditions from Lemma B.6 ((mℓ)s ⩽ (nℓ)s choices of F , ns choices
for α and ℓ choices for γ). By a union bound, we can assume that the prop-
erties of Lemma B.6 hold for every possible network with probability at
least 1 − 1/n10. Assume now there is a (α, γ)-good assignment of Rk+1

to some family F . Then by Lemma B.5 the maxflow(N (F ′, Rk+1, α, γ))
is exactly

∑
C∈F ′ α(C) for any F ′ ⊆ F . By Lemma B.6, this implies that

maxflow(N (F ′, Rk, ℓ · α, γ)) is at least ℓ/(1 + 0.5/ log(n))
∑

C∈F ′ α(C).
By Lemma B.5, this implies a (α′, γ)-good assignment from Rk to F , where

α′(C) = ⌊ℓ/(1 + 0.5/ log(n))⌋α(C) ⩾ ℓ/(1 + 1/ log(n))α(C)

⩾ ℓ(1 − 1/ log(n))α(C) .

B I B L IOGRAPHY

[1] David Adjiashvili. “Beating approximation factor two for weighted tree
augmentationwith bounded costs.” In:ACMTransactions on Algorithms
15.2 (2018), pp. 1–26.

[2] Anthony Alexander, Sylvia Boyd, and Paul Elliott-Magwood. On the
integrality gap of the 2-edge connected subgraph problem. Tech. rep.
Citeseer, 2006.

[3] Noga Alon and Yossi Azar. “On-line Steiner trees in the Euclidean
plane.” In: Proceedings of SoCG (1992), pp. 337–343.

[4] Noga Alon, Shlomo Hoory, and Nathan Linial. “The Moore bound for
irregular graphs.” In: Graphs and Combinatorics 18.1 (2002), pp. 53–57.

[5] Chidambaram Annamalai, Christos Kalaitzis, and Ola Svensson. “Com-
binatorial algorithm for restricted max-min fair allocation.” In: ACM
Transactions on Algorithms 13.3 (2017), pp. 1–28.

[6] Arash Asadpour, Uriel Feige, and Amin Saberi. “Santa claus meets
hypergraph matchings.” In: ACM Transactions on Algorithms 8.3 (2012),
24:1–24:9.

[7] Arash Asadpour and Amin Saberi. “An approximation algorithm for
max-min fair allocation of indivisible goods.” In: Proceedings of STOC
(2007), pp. 114–121.

[8] Baruch Awerbuch, Yossi Azar, and Yair Bartal. “On-line generalized
Steiner problem.” In: Theoretical Computer Science 324.2-3 (2004), pp. 313–
324.

[9] Étienne Bamas, Marina Drygala, and Andreas Maggiori. “An Improved
Analysis of Greedy for Online Steiner Forest.” In: Proceedings of SODA
(2022), pp. 3202–3229.

[10] Étienne Bamas,Marina Drygala, andOla Svensson. “A Simple LP-Based
Approximation Algorithm for the Matching Augmentation Problem.”
In: Proceedings of IPCO (2022), pp. 57–69.

[11] Etienne Bamas, Paritosh Garg, and Lars Rohwedder. “The Submodular
Santa Claus Problem in the Restricted Assignment Case.” In: Proceed-
ings of ICALP (2021), 22:1–22:18.

[12] Étienne Bamas and Lars Rohwedder. “Better Trees for Santa Claus.” In:
arXiv preprint arXiv:2211.14259 (2022).

[13] Nikhil Bansal. Scheduling: Open problems old and new. Presentation at
MAPSP (2017).

[14] Nikhil Bansal and Maxim Sviridenko. “The santa claus problem.” In:
Proceedings of STOC (2006), pp. 31–40.

[15] MohammadHossein Bateni,Moses Charikar, andVenkatesanGuruswami.
“Maxmin allocation via degree lower-bounded arborescences.” In: Pro-
ceedings of STOC (2009), pp. 543–552.

143

144 bibliography

[16] Piotr Berman and Chris Coulston. “On-line algorithms for Steiner tree
problems.” In: Proceedings of STOC (1997), pp. 344–353.

[17] Ivona Bezáková and Varsha Dani. “Allocating indivisible goods.” In:
ACM SIGecom Exchanges 5.3 (2005), pp. 11–18.

[18] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.
[19] Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità.

“Steiner tree approximation via iterative randomized rounding.” In:
Journal of the ACM (JACM) 60.1 (2013), pp. 1–33.

[20] Federica Cecchetto, Vera Traub, and Rico Zenklusen. “Bridging the
gap between tree and connectivity augmentation: unified and stronger
approaches.” In: Proceedings of STOC (2021), pp. 370–383.

[21] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. “On
allocating goods to maximize fairness.” In: Proceedings of FOCS (2009),
pp. 107–116.

[22] Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish
Goel, Sudipto Guha, and Ming Li. “Approximation algorithms for di-
rected Steiner problems.” In: Journal of Algorithms 33.1 (1999), pp. 73–
91.

[23] Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. “Designing
network protocols for good equilibria.” In: SIAM Journal on Computing
39.5 (2010), pp. 1799–1832.

[24] Siu-Wing Cheng and Yuchen Mao. “Restricted Max-Min Fair Alloca-
tion.” In: Proceedings of ICALP 107 (2018), 37:1–37:13.

[25] Siu-Wing Cheng and Yuchen Mao. “Restricted Max-Min Allocation:
Approximation and Integrality Gap.” In: Proceedings of ICALP (2019),
38:1–38:13.

[26] Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and
VishnuVNarayan. “Thematching augmentation problem: a 7/4-approximation
algorithm.” In: Mathematical Programming 182.1 (2020), pp. 315–354.

[27] Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. “An
improved approximation algorithm for the matching augmentation
problem.” In: SIAM Journal on Discrete Mathematics 37.1 (2023), pp. 163–
190.

[28] Joseph Cheriyan and Zhihan Gao. “Approximating (unweighted) tree
augmentation via lift-and-project, part I: stemless TAP.” In: Algorith-
mica 80.2 (2018), pp. 530–559.

[29] Joseph Cheriyan and Zhihan Gao. “Approximating (unweighted) tree
augmentation via lift-and-project, part II.” In: Algorithmica 80.2 (2018),
pp. 608–651.

[30] Joseph Cheriyan, Howard Karloff, Rohit Khandekar, and Jochen Köne-
mann. “On the integrality ratio for tree augmentation.” In: Operations
Research Letters 36.4 (2008), pp. 399–401.

[31] Herman Chernoff. “A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations.” In: The Annals of
Mathematical Statistics (1952), pp. 493–507.

bibliography 145

[32] Nachshon Cohen and Zeev Nutov. “A (1+ ln2)-approximation algo-
rithm for minimum-cost 2-edge-connectivity augmentation of trees
with constant radius.” In: Theoretical Computer Science 489 (2013),
pp. 67–74.

[33] Gérard Cornuéjols, Jean Fonlupt, and Denis Naddef. “The traveling
salesman problem on a graph and some related integer polyhedra.” In:
Mathematical programming 33.1 (1985), pp. 1–27.

[34] Artur Czumaj andAndrzej Lingas. “On approximability of theminimum-
cost k-connected spanning subgraph problem.” In: Proceedings of SODA
(1999), pp. 281–290.

[35] Sami Davies, Thomas Rothvoss, and Yihao Zhang. “A tale of Santa
Claus, hypergraphs and matroids.” In: Proceedings of SODA (2020),
pp. 2748–2757.

[36] Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid
Liaghat, and Saeed Seddighin. “Greedy algorithms for online survivable
network design.” In: Proceedings of ICALP (2018), 152:1–152:14.

[37] Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. “A 1.8 approx-
imation algorithm for augmenting edge-connectivity of a graph from
1 to 2.” In: ACM Transactions on Algorithms 5.2 (2009), pp. 1–17.

[38] Uriel Feige. “A threshold of ln n for approximating set cover.” In:
Journal of the ACM (JACM) 45.4 (1998), pp. 634–652.

[39] Uriel Feige. “On allocations that maximize fairness.” In: Proceedings of
SODA (2008), pp. 287–293.

[40] Amos Fiat and Gerhard J Woeginger. Online algorithms: The state of
the art. Vol. 1442. Springer, 1998.

[41] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. “Ap-
proximating weighted tree augmentation via Chvátal-Gomory cuts.”
In: Proceedings of SODA (2018), pp. 817–831.

[42] Greg N Frederickson and Joseph Ja’ja. “On the relationship between
the biconnectivity augmentation and travelling salesman problems.”
In: Theoretical Computer Science 19.2 (1982), pp. 189–201.

[43] Greg N Frederickson and Joseph Ja’Ja’. “Approximation algorithms for
several graph augmentation problems.” In: SIAM Journal on Computing
10.2 (1981), pp. 270–283.

[44] Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. “Improved
Approximation for Two-Edge-Connectivity.” In: Proceedings of SODA
(2023), pp. 2368–2410.

[45] Mohit Garg, Felix Hommelsheim, and Nicole Megow. “Matching Aug-
mentation via Simultaneous Contractions.” In: arXiv preprint arXiv:2211.01912
(2022).

[46] Michel X Goemans, Nicholas JA Harvey, Satoru Iwata, and Vahab
Mirrokni. “Approximating submodular functions everywhere.” In: Pro-
ceedings of SODA (2009), pp. 535–544.

146 bibliography

[47] Michel X Goemans and David P Williamson. “A general approxima-
tion technique for constrained forest problems.” In: SIAM Journal on
Computing 24.2 (1995), pp. 296–317.

[48] Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. “Breaching
the 2-approximation barrier for the forest augmentation problem.” In:
Proceedings of STOC (2022), pp. 1598–1611.

[49] Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. “Improved
approximation for tree augmentation: saving by rewiring.” In: Proceed-
ings of STOC (2018), pp. 632–645.

[50] Anupam Gupta and Amit Kumar. “Greedy algorithms for steiner for-
est.” In: Proceedings of STOC (2015), pp. 871–878.

[51] Eran Halperin, Guy Kortsarz, Robert Krauthgamer, Aravind Srinivasan,
and Nan Wang. “Integrality ratio for group Steiner trees and directed
Steiner trees.” In: SIAM Journal on Computing 36.5 (2007), pp. 1494–
1511.

[52] Eran Halperin and Robert Krauthgamer. “Polylogarithmic inapprox-
imability.” In: Proceedings of STOC (2003), pp. 585–594.

[53] Penny Haxell and Tibor Szabó. “Improved Integrality Gap in Max-Min
Allocation: or Topology at the North Pole.” In: Proceedings of SODA
(2023), pp. 2875–2897.

[54] Dorit S Hochbaum and David B Shmoys. “Using dual approximation
algorithms for scheduling problems theoretical and practical results.”
In: Journal of the ACM (JACM) 34.1 (1987), pp. 144–162.

[55] Christoph Hunkenschröder, Santosh Vempala, and Adrian Vetta. “A
4/3-Approximation Algorithm for the Minimum 2-Edge Connected
Subgraph Problem.” In: ACM Transactions on Algorithms 15.4 (2019).
issn: 1549-6325.

[56] Makoto Imase and Bernard M Waxman. “Dynamic Steiner tree prob-
lem.” In: SIAM Journal on Discrete Mathematics 4.3 (1991), pp. 369–
384.

[57] AI Impacts.Global computing capacity. 2015.url:https://aiimpacts.
org/global-computing-capacity (visited on 12/12/2022).

[58] Kamal Jain. “A factor 2 approximation algorithm for the generalized
Steiner network problem.” In: Combinatorica 21.1 (2001), pp. 39–60.

[59] Richard M Karp. “Reducibility among combinatorial problems.” In:
Complexity of computer computations. Springer, 1972, pp. 85–103.

[60] L.G. Khachiyan. “Polynomial algorithms in linear programming.” In:
USSR Computational Mathematics andMathematical Physics 20.1 (1980),
pp. 53–72.

[61] Samir Khuller and Ramakrishna Thurimella. “Approximation algo-
rithms for graph augmentation.” In: Journal of algorithms 14.2 (1993),
pp. 214–225.

[62] Samir Khuller and Uzi Vishkin. “Biconnectivity Approximations and
Graph Carvings.” In: Journal of the ACM (JACM) 41.2 (1994), 214–235.

https://aiimpacts.org/global-computing-capacity
https://aiimpacts.org/global-computing-capacity

bibliography 147

[63] Guy Kortsarz and Zeev Nutov. “A simplified 1.5-approximation algo-
rithm for augmenting edge-connectivity of a graph from 1 to 2.” In:
ACM Transactions on Algorithms 12.2 (2015), pp. 1–20.

[64] Guy Kortsarz and Zeev Nutov. “LP-relaxations for tree augmentation.”
In: Discrete Applied Mathematics 239 (2018), pp. 94–105.

[65] Andreas Krause, Ram Rajagopal, Anupam Gupta, and Carlos Guestrin.
“Simultaneous placement and scheduling of sensors.” In: Proceedings
of IPSN (2009), pp. 181–192.

[66] Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in
combinatorial optimization. Vol. 46. Cambridge University Press, 2011.

[67] Benny Lehmann, Daniel Lehmann, and Noam Nisan. “Combinatorial
auctions with decreasing marginal utilities.” In: Games Econ. Behav.
55.2 (2006), pp. 270–296.

[68] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. “Approximation al-
gorithms for scheduling unrelated parallel machines.” In:Mathematical
programming 46.1 (1990), pp. 259–271.

[69] Tobias Mömke and Ola Svensson. “Removing and adding edges for
the traveling salesman problem.” In: Journal of the ACM (JACM) 63.1
(2016), pp. 1–28.

[70] Robin A Moser and Gábor Tardos. “A constructive proof of the general
Lovász local lemma.” In: Journal of the ACM (JACM) 57.2 (2010), pp. 1–
15.

[71] Marcin Mucha. “13/9 -Approximation for Graphic TSP.” In: Theory of
Computing Systems 55.4 (2014), pp. 640–657.

[72] Hiroshi Nagamochi. “An approximation for finding a smallest 2-edge-
connected subgraph containing a specified spanning tree.” In: Discrete
Applied Mathematics 126.1 (2003), pp. 83–113.

[73] Alantha Newman. “An Improved Analysis of the Mömke-Svensson
Algorithm for Graph-TSP on Subquartic Graphs.” In: SIAM Journal on
Discrete Mathematics 34.1 (2020), pp. 865–884.

[74] Zeev Nutov. “On the tree augmentation problem.” In: Algorithmica
83.2 (2021), pp. 553–575.

[75] Debmalya Panigrahi.COMPSCI 638: GraphAlgorithms. 2019.url:https:
//www2.cs.duke.edu/courses/fall19/compsci638/
fall19_notes/lecture16.pdf (visited on 02/20/2023).

[76] Lukáš Poláček and Ola Svensson. “Quasi-polynomial local search for
restricted max-min fair allocation.” In: ACM Transactions on Algorithms
12.2 (2015), pp. 1–13.

[77] Gabriel Robins and Alexander Zelikovsky. “Improved Steiner tree
approximation in graphs.” In: Proceedings of SODA (2000), pp. 770–779.

[78] Petra Schuurman and Gerhard J Woeginger. “Polynomial time approx-
imation algorithms for machine scheduling: Ten open problems.” In:
Journal of Scheduling 2.5 (1999), pp. 203–213.

https://www2.cs.duke.edu/courses/fall19/compsci638/fall19_notes/lecture16.pdf
https://www2.cs.duke.edu/courses/fall19/compsci638/fall19_notes/lecture16.pdf
https://www2.cs.duke.edu/courses/fall19/compsci638/fall19_notes/lecture16.pdf

148 bibliography

[79] András Sebö and Jens Vygen. “Shorter tours by nicer ears: 7/5-Approximation
for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-
connected subgraphs.” In: Combinatorica 34.5 (2014), pp. 597–629.

[80] Maxim Sviridenko. “A note on maximizing a submodular set function
subject to a knapsack constraint.” In: Oper. Res. Lett. 32.1 (2004), pp. 41–
43.

[81] V Traub and RZenklusen. “A better-than-2 approximation forweighted
tree augmentation.” In: Proceedings of FOCS (2021), pp. 1–12.

[82] Vera Traub and Rico Zenklusen. “Local search for weighted tree aug-
mentation and Steiner tree.” In: Proceedings of SODA (2022), pp. 3253–
3272.

[83] Jan Vondrák. “Optimal approximation for the submodular welfare
problem in the value oracle model.” In: Proceedings of STOC (2008).
Ed. by Cynthia Dwork, pp. 67–74.

[84] Jeffery Westbrook and Dicky C. K. Yan. “The performance of greedy
algorithms for the on-line Steiner tree and related problems.” In:Math-
ematical systems theory 28.5 (1995), pp. 451–468.

[85] David P Williamson and David B Shmoys. The design of approximation
algorithms. Cambridge university press, 2011.

[86] Alexander Z Zelikovsky. “An 11/6-approximation algorithm for the
network Steiner problem.” In: Algorithmica 9.5 (1993), pp. 463–470.

CURR ICULUM V I TAE

education

• (2018-2023) EPFL, Lausanne, Switzerland.
PhD student in Theoretical Computer Science, Advisor: Ola Svensson.

• (2017-2018) Université Paris Diderot - École Normale Supérieure,
Paris, France.
M.Sc. in Theoretical Computer Science (MPRI) (summa cum laude);
GPA: 18.81/20 (rank: 2/63).

• (2014-2018) École polytechnique (Engineering diploma), Paris,
France.

• (2012-2014) Lycée Louis-Le-Grand, classe préparatoire MPSI/MP*,
Paris, France.

• (2012) French "Baccalauréat série S" (summa cum laude), Paris, France.

work experience

• (Nov.-Dec. 2022) Academic visit at the Simons Institute, Berkeley,
USA.

• (Apr.-Aug. 2018) Research internship at the G-SCOP lab, Grenoble,
France.

• (Mar.-Jul. 2017) Research and software engineering internship,
INRIA, Grenoble, France.

• (Summer 2016) Internship at Surrey Satellite Technology Ltd,
Guildford, England.

• (Sep. 2014-Apr. 2015)Military Service.

awards and honors

• (2020) NeurIPS oral presentation (≈ 1% acceptance rate).

• (2020) NeurIPS spotlight presentation (≈ 4% acceptance rate).

• (2018) EPFL IC School 1-year Fellowship.

• (2015) Citation for outstanding service in my unit during military
service.

151

publications

• Etienne Bamas and Lars Rohwedder, Better Trees for Santa Claus, to
appear in STOC ‘23.

• Etienne Bamas, Marina Drygala, and Ola Svensson, A Simple LP-Based
Approximation Algorithm for the Matching Augmentation Problem, IPCO
‘22.

• Etienne Bamas, Marina Drygala, and Andreas Maggiori, An Improved
Analysis of Greedy for Online Steiner Forest, SODA ‘22.

• Etienne Bamas, Paritosh Garg, and Lars Rohwedder, The Submodular
Santa Claus Problem in the Restricted Assignment Case, ICALP ‘21.

• Etienne Bamas, Andreas Maggiori, and Ola Svensson, The Primal-Dual
method for Learning Augmented Algorithms, NeurIPS ‘20.

• Etienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson,
Learning Augmented Energy Minimization via Speed Scaling, NeurIPS
‘20.

• Etienne Bamas and Louis Esperet, Local Approximation of the Maximum
Cut in Regular Graphs, WG ‘19.

• Etienne Bamas and Louis Esperet, Distributed Coloring of Graphs with
an Optimal Number of Colors, STACS ‘19.

teaching

• (since 2021) Supervision of semester projects at EPFL. Supervised stu-
dents: Alexandre Reynaud (master student), Taha El Ghazi (master
student).

• (2019-2023) Teaching Assistant at EPFL ("Algorithms" (head TA), "The-
ory of Computation" (head TA), "Information, Calcul, Communica-
tion").

• (2017-2018) Teaching Assistant at Lycée Janson-de-Sailly for oral exams
in mathematics.

academic service and talks

• I co-organized the workshop ALPS 2022 on algorithms with predictions
(∼ 45 international participants).

• Reviewer for the conferences: MFCS ‘19, WAOA ‘20, ITCS ‘20, NeurIPS
‘21, SODA ‘22, ICML ‘22, NeurIPS ‘22, SODA ‘23, STOC ‘23, ICALP ‘23.

• Reviewer for the journals: Algorithmica (2021).

• I gave a talk at the following conferences: WG ‘19, STACS ‘19, NeurIPS
‘20, ICALP ‘21, Operations Research Bern ‘21, SODA ‘22.

	Dedication
	Acknowledgments
	Abstract
	Résumé
	Contents
	List of Figures
	1 Introduction
	1.1 Our contributions
	1.1.1 The Santa Claus problem
	1.1.2 Simple Algorithms for Network Design

	1.2 How to read this thesis
	1.3 Linear Programming
	1.3.1 The use of LPs in this thesis

	 The Santa Claus Problem
	2 Introduction
	2.1 MaxMin Arborescences
	2.1.1 Our results for MaxMin Arborescences

	2.2 The Restricted Submodular Santa Claus
	2.2.1 Our results for the Restricted Submodular Santa Claus

	2.3 Probabilistic lemmas

	3 MaxMin Arborescences
	3.1 Our techniques and intuition
	3.2 Formal proof structure
	3.2.1 Bounded depth solution
	3.2.2 Local congestion and layered instances
	3.2.3 Connecting the dots
	3.2.4 Bottom-to-top pruning

	3.3 Local to global congestion
	3.4 Computing a solution with locally low congestion
	3.4.1 Preprocessing the LP solution
	3.4.2 The main rounding

	3.5 From single source to multiple sources
	3.6 APX-hardness of MaxMin Arborescences

	4 The Restricted Submodular Santa Claus
	4.1 Overview of previous techniques and our new ideas
	4.2 Reduction to hypergraph matching problem
	4.2.1 Reduction to unweighted hypergraph matching

	4.3 Matchings in regular hypergraphs
	4.3.1 Overview and notations
	4.3.2 Properties of resource sets
	4.3.3 Selection of configurations
	4.3.4 Assignment of resources to configurations

	 Network Design Problems
	5 Introduction
	5.1 The Steiner Forest Problem
	5.1.1 Our results

	5.2 The Matching Augmentation Problem
	5.2.1 Our results

	6 Improved bounds for Greedy Steiner Forest
	6.1 The idea behind the proof
	6.2 Proof of Theorem 5.1
	6.2.1 Problem definition and notation
	6.2.2 Preliminary results and preprocessing of the instance
	6.2.3 Overview of the proof
	6.2.4 Building a balanced dual solution
	6.2.5 Inductive proof using balanced dual solutions

	6.3 Proof of Theorem 5.2 and Theorem 5.3

	7 A Simple Approximation Algorithm for MAP
	7.1 Our proof technique
	7.2 The analysis of the LP-based Algorithm
	7.2.1 Preliminaries
	7.2.2 The analysis of the algorithm

	8 Conclusion and Open Problems

	 Appendix
	A Deferred proofs for MaxMin Arborescences
	A.1 A challenging instance for randomized rounding
	A.2 Preprocessing the Path LP

	B Deferred proofs for the Restricted Submodular Santa Claus
	B.1 Reduction to hypergraph matching problem
	B.1.1 Solving the Configuration LP
	B.1.2 Clusters

	B.2 Properties of resource sets

	 Bibliography
	Curriculum Vitae

