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Abstract

The progress towards intelligent systems and digitalization relies heavily on the use of au-

tomation technology. However, the growing diversity of control objects presents significant

challenges for traditional control approaches, as they are highly dependent on expert knowl-

edge and require substantial commissioning effort. In response to this challenge, data-driven

methods have emerged as a promising alternative that reduces human involvement by incor-

porating knowledge extracted from data. This thesis follows a conventional control research

path and investigates the application of data-driven methods to linear time-invariant dynam-

ics and nonlinear dynamics.

The first part of the thesis focuses on predictive control based on Willems’ fundamental

lemma. A tractable robust formulation based on the data-enabled predictive control (DeePC)

framework is introduced, followed by a bi-level approach that aims to improve robustness

and adaptivity. The focus then shifts to nonlinear dynamics, where reproducing kernel Hilbert

space (RKHS) and Koopman operator-based heuristics are utilized to extend the applicability

of Willems’ fundamental lemma.

The second part of the thesis concentrates on stability analysis, which is a fundamental aspect

of control science. Stability analysis must be robust enough to account for the infinitely many

possible realizations of underlying dynamics based on a fixed finite set of data. To this end,

a robust stability guarantee for a piece-wise affine (PWA) Lyapunov function is provided,

which is a generalization of the classical Lyapunov-Massera local asymptotic stability theorem.

Additionally, a convex second-order cone program (SOCP) is proposed to learn a robust

PWA Lyapunov function assuming the underlying dynamics are Lipschitz. This approach

provides a new means of designing stable control systems without requiring significant human

intervention.

The last part of this thesis presents additional research on self-triggered control and real-time

optimization algorithm design. These studies complement the primary investigation and

provide a complete exposition of the research carried out during the Ph.D. program.
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Résumé

Les progrès vers des systèmes intelligents et la numérisation reposent largement sur l’utili-

sation de la technologie d’automatisation. Cependant, la diversité croissante des objets de

contrôle présente des défis importants pour les approches de contrôle traditionnelles, car elles

dépendent fortement des connaissances d’experts et nécessitent des efforts considérables

de mise en service. En réponse à ce défi, des méthodes axées sur les données ont émergé

comme une alternative prometteuse qui réduit l’implication humaine en incorporant des

connaissances extraites des données. Cette thèse suit un chemin de recherche convention-

nel en matière de contrôle et examine l’application de méthodes axées sur les données aux

dynamiques linéaires invariantes dans le temps et aux dynamiques non linéaires.

La première partie de la thèse se concentre sur le contrôle prédictif basé sur le lemme fonda-

mental de Willems. Une formulation robuste traitable basée sur le cadre de contrôle prédictif

activé par les données (DeePC) est introduite, suivie d’une approche bi-niveau qui vise à

améliorer la robustesse et l’adaptabilité. L’accent est ensuite mis sur les dynamiques non

linéaires, où des heuristiques basées sur l’espace de Hilbert à noyau reproduisant (RKHS) et

l’opérateur de Koopman sont utilisées pour étendre l’applicabilité du lemme fondamental de

Willems.

La deuxième partie de la thèse se concentre sur l’analyse de stabilité, qui est un aspect fonda-

mental de la science du contrôle. L’analyse de stabilité doit être suffisamment robuste pour

tenir compte des nombreuses réalisations possibles des dynamiques sous-jacentes basées

sur un ensemble fini de données fixes. À cette fin, une garantie de stabilité robuste pour

une fonction de Lyapunov piece-wise affine (PWA) est fournie, qui est une généralisation du

théorème de stabilité asymptotique locale de Lyapunov-Massera classique. De plus, un pro-

gramme convexe de cône de second ordre (SOCP) est proposé pour apprendre une fonction

de Lyapunov PWA robuste en supposant que les dynamiques sous-jacentes sont Lipschitz.

Cette approche fournit un nouveau moyen de concevoir des systèmes de contrôle stables sans

nécessiter une intervention humaine significative.

La dernière partie de cette thèse présente des recherches supplémentaires sur le contrôle

déclenché par soi-même et la conception d’algorithmes d’optimisation en temps réel. Ces

études complètent l’enquête principale et fournissent une exposition complète de la recherche

menée pendant le programme de doctorat.
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Introduction

Controller design and stability analysis are two primary topics in control engineering. Classic

control techniques heavily rely on expert knowledge, making it challenging to handle the

increasing diversity and complexity of control objects. To overcome this challenge, a collec-

tion of control techniques called data-driven methods has emerged. These techniques aim

to automate the workflow in control engineering, including controller design and stability

analysis, through the use of data or high fidelity simulators. While simulators have proven

successful in reinforcement learning [1] and digital twin [2] applications, the implementation

of a high fidelity simulator still requires significant effort. Therefore, this thesis focuses on

control techniques that involve only data.

The first part of this thesis focuses on controller design, where the characterization of system

dynamics based on measured data serves as the main enabler of this procedure. Instead of

running through a parametric modelling procedure [3–6], non-parametric methods distin-

guish themselves by directly representing system dynamics with data [7–10]. In particular,

there is a recent spark of interest in behavioural theory [11] where system dynamics are charac-

terized by trajectories. This viewpoint concludes a simple and closed representation for linear

time invariant systems [12], coined Willems’ fundamental lemma, and has been successfully

applied to predictive control [13], named data-enabled predictive control (DeePC). The first

half of the first part study the refinement of this framework, with a specific focus on building

applications. Particularly, building controllers manipulate the heating, ventilation, and air

conditioning (HVAC) units to control in the indoor climate. The main investigation in Chapter

1 is the robustness aspect, where the indoor comfort should be guaranteed robustly, even

when disturbed by outdoor climates and occupants’ behaviour. As a result, this chapter will

provide the readers a systematic data-driven approach to handle unknown measurement

noise and uncertain but predictable process noise in linear systems.

Several works have attempted to map a nonlinear control problem into a linear one, motivated

by the success of linear control theory. Chapter 3 follows this track via the idea of lifting, where

nonlinear mappings are used to warp a nonlinear system to a linear one. Wiener system and

Hammerstein systems are standing examples applying this idea, and recent work also applies

this idea to the Willems’ fundamental lemma [14–17]. Without a direct interaction with nonlin-

ear dynamics in the state space, the techniques studied in Chapter 3 models the behaviour of

our observation. This idea originates from the Koopman operator theory, where the Koopman
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Introduction

operator is a linear composite operator [18] acting on an autonomous system. Even though

this operator and its generator is only well-defined in forward-complete systems [19], it still

serves as a successful heuristic motivating applications in system identification and controller

design [20]. The first half of Chapter 3 is devoted to the parametric finite approximation of

a Koopman operator. Meanwhile, its heuristic extension to a system with input motivates a

nonlinear extension of the Willems’ fundamental lemma. Different from the Koopman opera-

tor based approach, another framework that models the function operation (i.e. functional)

is investigated in the second half of Chapter 3, where an infinite dimensional extension of

the Willems’ fundamental lemma is studied. The results in this chapter provides a systematic

viewpoint of how lifting can be used to simplify the analysis of nonlinear system, albeit of its

possibly infinite dimension.

The second part of this thesis shifts the focus to stability analysis, which is another major

research topic in control science. Among various stability criteria, Lyapunov analysis [21] plays

a key role in this field. In this framework, stability analysis is reformulated into the search for a

Lyapunov function. This has been widely studied in the model-based or sampling-based setup,

where the user is assumed to have direct access to the model or its high-fidelity simulator.

Note that the system model or its simulator may not be available all the time, it is usually

possible and much easier to measure a finite number of system responses offline. Therefore,

stability analysis based on a fixed measured data set poses a new challenge and becomes

desirable. Motivated by this need, we will study the Lyapunov analysis based on a given finite

set of measurements of system response in Chapter 3. The proposed approach can learn a

piece-wise affine (PWA) Lyapunov function on a compact set without access to the system

model/simulator. The learning scheme only resorts to the solution of a convex second order

cone programming (SOCP) even when the underlying dynamics is nonlinear. To arrive at this

major contribution, fundamental contributions in stability analysis are made in this chapter.

Firstly, we generalized the Lyapunov stability analysis of a set around an equilibrium point to

a more general forward invariant set, which follows a robust stability condition that guarantee

stability with respect to an uncertain set of functions.

After addressing the aforementioned aspects, this thesis aims to demonstrate the power

of learning-based methods. By directly using data, rather than going through an explicit

modelling or system identification process, one can generate desired controllers or synthesize

solutions end-to-end. Despite covering technically distinct topics, the key message of this

thesis is:

Robustness/uncertainty quantification is the key enabler of learning based methods.

This message follows an implicit story line throughout the thesis and encompasses at least

two key aspects. Firstly, we are only able to acquire limited knowledge from finitely many data,

and this in the end limits our capability of predicting the systems’ behaviours. This holds true

even when the system is deterministic, as there may exist multiple models that are consistent

with our measurements. Thus, it is important to mathematically quantify and systematically

2



About the Appendix

consider such uncertainty in the design of controllers or stability analyses. In the field of

Bayesian modelling, this kind of uncertainty is referred to as aleatoric uncertainty [22], and its

consideration is typically reflected in Section 2.1 and Chapter 3.

Secondly, uncertainty also arises from the interaction between the dynamical system, the en-

vironment, and the users. This includes the measurement noise that contaminates the sensor

read-out, the disturbance that perturb the system responses, e.t.c. In Bayesian modelling, this

type of uncertainty is referred to as epistemic uncertainty. Such inherent uncertainty limits

our ability to fully understand the underlying system and may result in mismatches between

expected and actual system responses. Chapter 2 sets the tone for the consideration of this

aspect, where output predictions that are used for control decision respects such uncertainty.

Beyond the use of in control engineering, aleatoric and epistemic uncertainty play critical

roles in computer vision [23] and the training of deep neural networks [24].

About the Appendix

In the appendix, we present an alternative parametrization of the feedback control law based

on the bi-level approach discussed in Section 1.3. This additional result offers a deeper

theoretical understanding of how the null space and range of the Hankel matrices play a

role in causality and feedback. While this contribution is informative and enhances the

comprehensiveness of the thesis, the resulting algorithm is less stable compared to the one

utilized in Section 1.3. Thus, it is not advisable for practitioners to rely on the algorithm

presented in the appendix.

About Other Contributions

As you will notice later in my list of publications, my Ph.D is composed of multiple research

topics: learning, optimization algorithm and self-triggered control. The first two parts of

this thesis structure a self-contained story, where selected results related to the data-driven

methods are included. In order to briefly cover the major results in another two tracks, an

independent and self-contained chapter is assigned to each topic respectively in Part III.

For the sake of compactness, each chapter presents one selected result, while other results

are summarized at the end of the corresponding chapter. In particular, the results from the

following two papers are respectively presented in the chapters in Part III:

• Lian, Y., Jiang, Y., Stricker, N., Thiele, L. and Jones, C.N., 2021. Resource-aware stochastic

self-triggered model predictive control. IEEE Control Systems Letters, 6, pp.1262-1267.

• Lian, Y., Jiang, Y., Opila, D.F. and Jones, C.N., 2023.A Proximal-Point Lagrangian Based

Parallelizable Nonconvex Solver for Bilinear Model Predictive Control. Conditionally

accepted by Transactions on Control Systems Technology

3



Notation

Notation

S+, S++ Positive definite/semi-definite cone
N (μ,Σ) Gaussian distribution with mean μ and covariance Σ

× Set product operation: A×B := {(x, y)|x ∈ A, y ∈B}
⊕ Minkowski sum: A⊕B := {x|∃ x1 ∈ A, x2 ∈B , x = x1+x2}
� Pontryagin difference: A�B := {x|x+ y ∈ A, ∀ y ∈B}
+ when A, B are sets, + denotes direct sum

O, 0 are zero matrix/vector
In identity matrix in Rn×n

‖·‖ Euclidean norm
{xi }T

i=1 a set/sequence of size T indexed by i
xi the measurement of x at time i

x1:L

x1:L := [x�1 , x�2 . . . x�L ]�

denotes a concatenated sequence of xi ranging from x1 to xL , the index
is dropped to improve clarity if the intention is clear from the context

〈·, ·〉 inner product
span(A) column space(i.e. range) of matrix A

TxM tangent space of manifold M evaluated at x
id identity map
‖·‖p p-norm

diag(c) diagonal matrix whose diagonal entries stacks to vector c
Ex evaluation functional at x

C∞ smooth function
A∗ when A : Hx→Hy is a linear operator, A∗ denotes its adjoint

X \ Y X \ Y := {x ∈ X | x ∉ Y } for all Y ⊂ X
|C | cardinality of set C

int(X ) interior of topological space X

X closure of topological space X

∂X boundary of topological space X

Zb
a the set of integers {a, a+1. . . ,b}

P(x) probability of stochastic event x
vec(A) stacking all columns of A into one long vector

mat reverse operation of vec(·), mat(vec(A))= A

Table 1: Notation

4



Collaborations

Collaborations

The bi-level DeePC result in Section 1.3 is done in collaboration with Jicheng Shi. Our joint
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1 Linear Predictive Control

Although linear control theory is well-developed, the Willems’ fundamental lemma [12] and

the system level synthesis (SLS) [25] still spark significant research interest. While the SLS, as a

model-based framework, has proven its efficacy in large-scale distributed control, the Willems’

fundamental lemma plays a key role in learning-based methods. Following the main topic of

this thesis, the Willems’ fundamental lemma is the central piece of this chapter. In this part, we

will develop a robust data-driven controller. Even though we are able to target at more general

applications, this chapter still specifically focus on building applications, in order to have a

more intuitive interpretation of the engineering details. Hence, the underlying dynamics are

assumed to be linear, and they are disturbed by measurable process noise. Beyond building

control, systems with measurable disturbances are ubiquitous, especially in energy-related

applications: solar radiation in photovoltaic power systems, electricity demand in power grids,

and power generation in airborne wind energy systems, to name a few.

Previous Work

Data can be used to model building dynamics [26] or to directly generate/improve control

policies. Due to seasonal variations [27] and component wear, building dynamics are usually

slowly time-varying, and adaptive model predictive control (MPC) has been introduced to

combine online parameter estimation and control in [28]. For example, the experiment

in [29] adaptively estimates the model of an evaporator in the HVAC system, which is then

used to control the valve set-points. [30] runs an extended Kalman filter to achieve online

parameter adaptation before the estimated model is used in an MPC controller. However,

these parameter-estimation-based adaptive methods usually require a-priori knowledge about

the structure of the building dynamics and/or the HVAC systems.

Beyond running through a modelling/estimation procedure, data can be used to refine a

control policy. The main approaches in this direction include reinforcement learning (RL) [1]

and iterative learning control (ILC) [31]. In particular, ILC has been used for buildings with

fixed heating/occupant schedules [32, 33] and RL for learning a building control policy that is
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not necessarily iterative [34]. To run these learning schemes, a high-fidelity building simulator

is usually required, and therefore publications on successful experiments with HVAC systems

are rare, with a few exceptions being [35–39].

Beyond RL and ILC, data can also be used to directly characterize the system’s responses from a

behavioural theoretic viewpoint [11]. Willems’ fundamental lemma is such a tool that provides

a characterization of linear time invariant (LTI) systems from measured input and output

trajectories. Such a characterization offers a convenient interface to data-driven controller

design [13, 40–42]. Motivated by the simplicity and effectiveness of the fundamental lemma,

its extension to a more general setting is attracting broad attention, including nonlinear

extensions [14, 16, 17, 43], data informativity [44], descriptor system [45], e.t.c [46].

Even for LTI systems, the absence of output measurement noise in the standard Willems’

fundamental lemma limits its practicality. To accommodate this issue, a wide range of re-

searchers are studying this challenge. In [47–49], classic robust control design tools such as

linear fractional transforms have been proposed to design robust linear feedback controllers.

Parallel to the studies in linear feedback control laws, robustness in predictive control schemes

has also been studied [50–52], where regularization is the main tool applied to deal with mea-

surement noise. [50] shows that the regularization is related to the distributional robustness

of the system uncertainty (including measurement noise). [51] studies a different viewpoint,

where the regularization is linked to the loss function used in the system identification. When

convex relaxation is applied, the loss function in the system identification procedure results in

a regularization term [51, 53].

Building on this regularization viewpoint, data-driven controllers based on the Willems’

fundamental lemma have been successfully deployed on different real-world systems, such

as a quadrotor [54], a four-tank system [55], etc. However, tuning the regularization weight

still poses a non-trivial challenge, and an exhaustive search based on simulation is commonly

used [53].

Outline

The last result of this chapter is to present a robust adaptive data-driven predictive controller.

To achieve this goal, we first introduce the single-level framework, also known as data-enabled

predictive control (DeePC), in order to provide a comprehensive understanding of this data-

driven controller. This will serve as a basis for the subsequent bi-level framework. After

recapitulating the background knowledge in Section 1.1, we state the problem setup. Initially,

we consider LTI systems with measurement-noise-free I/O data in Section 1.2, where we

introduce a basic framework of DeePC and develop its corresponding robust tractable form.

We then extend this formulation to the bi-level framework for LTI systems and present its

heuristic extension to linear-time-varying (LTV) systems in Section 1.3. To validate the efficacy

of both the single-level and bi-level frameworks, we use numerical examples to demonstrate

their effectiveness in building models. Additionally, at the end of Section 1.3, we conduct a
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real-world experiment based on the bi-level framework.

1.1 Preliminary

1.1.1 Willems’ Fundamental Lemma and DeePC

Definition 1. A Hankel matrix of depth L associated with a vector-valued signal sequence

s := {si }T
i=1, si ∈Rns is

HL(s) :=

⎡⎢⎢⎢⎢⎣
s1 s2 . . . sT−L+1

s2 s3 . . . sT−L+2
...

...
...

sL sL+1 . . . sT

⎤⎥⎥⎥⎥⎦ .

A deterministic linear time-invariant (LTI) system, dubbed B(A,B ,C ,D), is defined as

xi+1 = Axi +Bui , yi =C xi +Dui , (1.1)

whose order is nx . nu , ny denote its input and output dimensions respectively. An L-step

trajectory generated by this system is[
u1:L y1:L

]
:=
[

u�1 . . . u�L y�1 . . . y�L
]�

.

The set of all possible L-step trajectories generated byB(A,B ,C ,D) is denoted byBL(A,B ,C ,D).

For the sake of consistency, a datapoint coming from the historical dataset is marked by

boldface subscript d. Given a sequence of input-output measurements {ud,i , yd,i }T
i=1, we call

the input sequence persistently exciting of order L if HL(ud) is full row rank. By building the

following nc -column stacked Hankel matrix

HL(ud, yd) :=
[
HL(ud)

HL(yd)

]
, (1.2)

we state Willems’ Fundamental Lemma as

Lemma 1. [12, Theorem 1] Consider a controllable linear system and assume {ud}T
i=1 is persis-

tently exciting of order L+nx . The condition colspan(HL(ud, yd))=BL(A,B ,C ,D) holds.

For the sake of consistency, L is reserved for the length of the system responses and nc denotes

the number of columns in a Hankel matrix.

A data-driven control scheme has been proposed in [13, 40], called data-enabled predictive

control (DeePC), where Lemma 1 generates a trajectory prediction. To distinguish the dif-
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ference between this framework and the one investigated in Section 1.3, we call the DeePC

and its regularized variants single-level approaches. In particular, for an LTI system without

process noise and measurement noise, the single-level approach solves the following optimal

control problem in a receding horizon scheme:

min
ypr ed ,upr ed

g ,σ

J (ypr ed ,upr ed ) (1.3a)

s.t.

⎡⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,pr ed (ud)

HL,pr ed (yd)

⎤⎥⎥⎥⎥⎦g =

⎡⎢⎢⎢⎢⎣
yi ni t

ui ni t

upr ed

ypr ed

⎤⎥⎥⎥⎥⎦ (1.3b)

upr ed ∈U , ypr ed ∈Y ,

where J(·, ·) is a convex objective function, U and Y denote compact convex constraint sets

on the input and the output. ui ni t , yi ni t are ti ni t -step sequences of the measured inputs and

outputs preceding the current point in time. Accordingly, upr ed , ypr ed are the corresponding

nh-step predictive sequences viewed from the current time step. The matrix HL(yd) is split

into two sub-Hankel matrices:

HL(yd)=
[
HL,i ni t (yd)

HL,pr ed (yd)

]
.

The matrix HL,i ni t (yd) is of depth ti ni t and the depth of HL,pr ed (yd) is the prediction horizon

nh such that ti ni t +nh = L. The matrices HL,i ni t (ud), HL,pr ed (ud) are defined similarly. The

choice of ti ni t is made to ensure a unique estimation of the initial state; please refer to [41]

for more details. Intuitively speaking, for a noise-free and disturbance-free LTI system, the

prediction made by (1.3b) is exact due to the Willems’ fundamental lemma 1. With this

capability of generating exact prediction, we can enforce the constraints U , Y and optimize

the predictive performance for finite steps. The beauty of this framework comes from its

trajecotry predictor (1.3b). This predictor is uniquely characterized by historical I/O data,

whose prediction is implicitly defined by g .

However, real-world measurements are always noisy, the single-level approach can adapt

to this case by adopting regularization in its objective. The detailed discussion about the

regularized single-level approaches and the bi-level approach is assigned in Section 1.3.1, in

order to better articulate the idea behind the existing methods and to better compare the

difference between the bi-level approach and the single-level approaches.

1.1.2 Wasserstein Distance

Wasserstein distance is central to the field of optimal transport, which studies the distance

between probability distribution by mass transportation of minimal effort. This idea of optimal

transport was first hinted in the seminal work by Monge [56], and it is later proved to have
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concrete connection to convexity, partial differential equations and statistics [57]. Optimal

transport is of great practical importance, as any logistics, economic and network routing

problems involve moving products/mass [58–60]. Over the last two decades, scientist from

computer, imaging start to apply this theory to study distribution in more abstract context,

where comparing distribution between data and unknown distribution is of the greatest

interest [61, 62]. In this chapter, we only need to use the 2-Wasserstein distance, and interested

readers are refered to [63, 64] for more details.

The 2-Wasserstein distance between two distributions Px and Py is defined by

W (Px ,Py ) :=
(

inf
γ∈Γ(Px ,Py )

E(x,y)∼γ‖x− y‖2
) 1

2

,

where Γ(Px ,Py ) is the family of joint distributions whose marginals are Px and Py . The

2-Wasserstein distance models the optimal transport between Px and Py in terms of the

Euclidean distance. If Px ∼N (μx ,Σx ) and Py ∼N (μy ,Σy ), then the squared 2-Wasserstein

distance has a closed-form [givens1984class, 65]

W (Px ,Py )2 = ‖μx −μy‖2+ tr

(
Σx +Σy −2(Σ

1
2
x ΣyΣ

1
2
x )

1
2

)
. (1.4)

1.1.3 Setting the Stage

Recall the main properties in building applications:

• The system dynamics are slowly time-varying.

• The building dynamics evolve under strong measurable process noise, such as solar

radiation and outdoor temperature.

• Because of the activity of the occupants, the output measurements, particularly the

measurements of the indoor temperature, are noisy.

Given these properties, this work focuses on the following uncertain linear time-varying (LTV)

system

xi+1 = Ai xi +Bi ui +Ei wi

yi =Ci xi +Di ui

yi = yi + vi

(1.5)

where wi ∈Rnw is bounded measurable process noise and vi ∼N (0,Σv ) with vi ∈Rny inde-

pendent and identically distributed (i.i.d) unknown measurement noise. In particular, y is the

system output, which is unknown, and y is the measurement read out from the sensors. In

particular, in the building control problem, w mostly reflects the external temperature, solar

radiation, occupancy, etc. Note that LTI systems are special case of the LTV systems (1.5).
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In a similar manner to [66, 67], by viewing w as uncontrolled inputs, Lemma 1 can be readily

generalized and the corresponding L-step trajectory is augmented to

[u1:L w1:L y1:L] :=
[

u�1 . . . u�L w�1 . . . w�L y�1 . . . y�L
]�

.

1.2 Robust Single-level DeePC

In this part, we will study how the robustness to process noise can be considered in the single-

level framework (1.3). We first resitrict our discussion to measurement noise free LTI systems,

they satisfy:

Ai = A j , Bi =B j , Ci =C j , Di =D j , Ei = E j , vi = 0, ∀ i , j .

Recall that the main enabler of the single-level approach is its data-driven predictor (1.3b).

This predictor is uniquely characterized by the historical I/O data, whose prediction is im-

plicitly determined by g (see (1.3b)). When a robust predictive control problem is considered,

such implicit link between prediction and the solution to the predictor (1.3b)(i.e.g ) gives rises

to a new parametrization of the feedback control law. Before we state the problem formulation,

we assume:

Assumption 1. {ud, w̃d} is persistently excited of order L+nx .

This assumption is made to enable the application of the Willems’ fundamental lemma. On

top of that, we denote the set of predicted future process noise realizations by w̃pr ed ∈w ⊕ W̃ ,

where w is the nominal prediction and W̃ denotes the uncertainty tube1. And we state our

assumption:

Assumption 2. w and W̃ are known.

Based on the assumptions above, we can adapt the single-level problem (1.3) to the following

1The use of ·̃will be clear in Section 1.3, we stick to this notation for the sake of consistency.
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robust closed-loop predictive control problem:

min
g ,K ,

upr ed ,ypr ed

max
w̃pr ed∈W

J (y pr ed ,upr ed ) (1.6a)

s.t∀ w̃pr ed ∈w ⊕W̃ (1.6b)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed (ud)

HL,pr ed (wd)

HL,pr ed (yd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(g +K w̃pr ed )=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi ni t

ui ni t

wi ni t

upr ed

w̃pr ed

ypr ed

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.6c)

upr ed ∈U , ypr ed ∈Y .

Note that in the non-robust problem (1.3), upr ed and ypr ed are uniquely defined by g , but

the mapping between them becomes implicit. If the uncertain process noise is viewed as

uncontrolled input, Problem (1.6) needs to solve infinitely many linear equations due to the

implicit link between input and output requires. To resolve this numerical tractability issue,

we first parametrize the solution to (1.6c) by g +K w̃pr ed . This is a parametrization of a closed-

loop prediction scheme, and it is different from the one commonly used in model-based

linear MPC and the one in Section 1.3. At the first glance, this closed-loop parametrization

does not resolve the tractability issue, as it still need to solve infinitely many linear equations.

However, it allows us to recast this problem to a tractable form, which requires the following

characterization of the robust equation systems (1.6c):

Lemma 2. If g and K satisfy the following constraints, then the control law (1.6c) guarantees

nh-step robust feasibility. [
H i ni t

HL,pr ed (wd)

]
g =

[
hi ni t

0

]
,

H i ni t K =O , HL,pr ed (wd)K = I ,

∀ w̃pr ed ∈w ⊕W̃ ,[
HL,pr ed (ud)

HL,pr ed (yd)

]
(g +K w̃pr ed )=

[
upr ed

ypr ed

]
upr ed ∈U , ypr ed ∈Y ,

(1.7)

where

H i ni t :=

⎡⎢⎣HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (wd)

⎤⎥⎦ , hi ni t :=

⎡⎢⎣ yi ni t

ui ni t

wi ni t

⎤⎥⎦

Proof. In the control law (1.6c), the nominal g generates a disturbance-free nh step prediction.
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Hence, based on the prediction equation (1.6c), we enforce

∀ w̃pr ed ∈w ⊕W̃⎡⎢⎢⎢⎢⎣
H i ni t

HL,pr ed (ud)

HL,pr ed (wd)

HL,pr ed (yd)

⎤⎥⎥⎥⎥⎦( g︸︷︷︸
(a)

+K w̃pr ed︸ ︷︷ ︸
(b)

)=

⎡⎢⎢⎢⎢⎣
hi ni t

upr ed

0

y pr ed

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

0

u f b

w̃pr ed

y f b

⎤⎥⎥⎥⎥⎦
, (1.8)

where the matrix products of (a) and (b) correspond to the components on the right-hand side

accordingly. Addtionally, upr ed and y pr ed are the nominal input/output sequence correspond-

ing to the nominal predictive process noise w . As the future disturbance w̃pr ed is unknown

and arbitrary within the polytope w ⊕ W̃ , the matrix product of term (b) in (1.8) implies

H i ni t K =O , HL,pr ed (wd)K = I . (1.9)

Due to the perturbation of the unknown future disturbance, the actual input and the ac-

tual output under the control law (1.6c) are upr ed := upr ed +u f b and ypr ed := y pr ed + y f b

respectively, which summarizes the proof with the robust constraints (1.7). �

Lemma 2 enables us to rewrite Problem (1.6) to the following tractable form:

min
g ,K ,

upr ed ,ypr ed

max
w̃pr ed∈W

J (ypr ed ,upr ed )

s.t

[
H i ni t

HL,pr ed (wd)

]
g =

[
hi ni t

0

]
,

H i ni t K =O , HL,pr ed (wd)K = I ,

∀ w̃pr ed ∈w ⊕ W̃ ,[
HL,pr ed (ud)

HL,pr ed (yd)

]
(g +K w̃pr ed )=

[
upr ed

ypr ed

]
upr ed ∈U , ypr ed ∈Y .

(1.10)

This formulation is numerically tractable, as only one linear equation needs to be solved.

It is worth noting that, when the constraints U , Y are polyhedral or ellipsoidal, this prob-

lem can be efficiently solved by a convex reformulation based on the standard dualization

technique [68].

1.2.1 Tractable Causual Feedback K

Before discussing the details of this section, we first recall some notations used in the previous

sections, i -th row block of HL,pr ed (xd) is

HL,pr ed ,i (xd) := [xd,i+ti ni t , xd,i+1+ti ni t . . . , xd,i+nc−1+ti ni t ] .
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And we define K:, j as the j -th block column of feedback law K , which corresponds to the

feedback generated by w̃pr ed ,i and that is the (nw × (i −1))+1-th to nw × i -th entry of w̃pr ed

Here starts the main result of this section. If the feedback matrix K is arbitrary, then the

feedback control law is not necessarily causal. In particular, the feedback computed from

w̃pr ed ,i should not be able to change upr ed ,1:i and ypr ed ,1:i−1, because those events happen

no later than w̃pr ed ,i . To construct the causal data-driven control law, we define

Hr b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HL,i ni t (ud)

HL,i ni t (wd)

HL,i ni t (yd)

HL,pr ed ,1(ud)

HL,pr ed ,1(yd)
...

HL,pr ed ,nh (ud)

HL,pr ed ,nh (yd)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.11)

with Hr b ∈Rnr×nc and nr the number of rows. The QR decomposition [69] of its transpose is

H�r b =
[
Qa Qb

][R

O

]
,

Theorem 1. The causal feedback robust control law in (1.10) is identical to the following

predictive control law,

min
g ,Kp ,

upr ed ,ypr ed

max
w̃pr ed

J (ypr ed ,upr ed )

s.t.

[
H i ni t

HL,pr ed (wd)

]
g =

[
hi ni t

0

]
K =

[
Qa,:,ni ni t+1:nr Qb

]
Kp ,

H i ni t K =O , HL,pr ed (wd)K = I

∀ w̃pr ed ∈w ⊕ W̃[
HL,pr ed (ud)

HL,pr ed (yd)

]
(g +K w̃pr ed )=

[
upr ed

ypr ed

]
upr ed ∈U , ypr ed ∈Y

(1.12)
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where ni ni t := ti ni t × (nu +ny )+nu and Kp has a lower block triangular structure as

Kp =

⎡⎢⎢⎢⎢⎣
Kp,1,1 O O . . . O

Kp,2,1 Kp,2,2 O . . . O
...

...
. . .

. . .
...

Kp,nh ,1 Kp,nh ,2 Kp,nh ,3 . . . Kp,nh ,nh

⎤⎥⎥⎥⎥⎦ .

Kp,i , j are dense matrix blocks, whose sizes are (nu +ny )×nw for ∀ i < nh and are [ny + (nc −
nr )]×nw when i =nh.

Proof. First, it is observed that the data-driven formulation is based on the robust con-

troller (1.10), where y pr ed and upr ed are both well-defined.

We recall a useful property of QR decomposition [69]: the range of the first n rows of H is

spanned by the first n columns of Qa . Because [Qa ,Qb] is an unitary matrix, the remaining

nr −n columns in Qa and the matrix Qb forms the null space of the first n rows in matrix

Hr b . Considering the constraint H i ni t K =O in problem (1.10), each column of matrix K must

lie within the null space of H i ni t . Meanwhile, the feedback ingredients from w̃pr ed cannot

change the value of the first input upr ed ,0. In conclusion, we enforce

colspan(K )⊂ colspan([Qa,:,ni ni t+1:nr ,Qb]) ,

with ni ni t := ti ni t×(nu+ny )+nu . The j -th block column in matrix K , K:, j , defines the feedback

ingredient with respect to w̃pr ed , j . By causality, the feedback from w̃pr ed , j should not be able

to change the inputs and outputs that occur before w̃pr ed , j . In particular, K:, j should further

lie in the null space of the matrices HL,pr ed ,1:i (ud),HL,pr ed ,1:i−1(yd), we therefore enforce

K:, j ⊂ colspan([Qa,:,ni ni t+( j−1)(nu+ny )+1:nr ,Qb]) .

All the constraints on the null spaces can be reformulated as

K =
[
Qa,:,ni ni t+1:nr Qb

]
Kp ,

which concludes the proof. �

Remark 1. In comparison with a model-based robust controller, the robust single-level scheme

has the same scale of computational cost. In particular, the size of the optimization prob-

lem (1.12) only differs in the formulation of the feedback, where the number of decision variables

in the feedback control law is O(nh × (nu +ny )) due to the causal reformulation. Hence, the

computational cost of the robust single-level DeePC control scheme is similar to the robust MPC.

As we will soon discuss in Section 1.3.2, this single-level robust scheme has low computational

cost even when the Hankel matrices are updated online. In particular, the computational cost

of the QR decomposition update by adding or removing a column scales linearly with respect to
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1.2 Robust Single-level DeePC

the size of the Hankel matrix [70, Section 6.5].

1.2.2 Numerical Results

In this section, numrical experiments are carried out to validate the proposed robust single-

level DeePC. First, a second order system is used to show the equivalence between the robust

single-level DeePC and the MPC with full state measurement. After that, we test the robust

single-level scheme in a building control problem to adapt power consumption with respect

to the occupation patterns. The code is implemented with YALMIP [71] interfacing the GUROBI

solver [72]

Second Order System

The robust single-level scheme is compared against a robust MPC controller with state space

model and full state measurement. The comparison is done on a second order system:

xi+1 =
⎡⎣ 0.9535 0.0761

−0.8454 0.5478

⎤⎦xi +
⎡⎣0.0465

0.8454

⎤⎦ui +
⎡⎣0.0465

0.8454

⎤⎦wi

yi =
[

1 0
]

xi ,

the process noise w is bounded within [−0.1,0.1], the inputs and outputs are constrained by

u ∈ [−5,5], y ∈ [−0.5,0.5]. A quadratic stage cost is used

J (ypr ed ,upr ed )=
nh∑

i=1
(ypr ed ,i+1− r )�Q(ypr ed ,i+1− r )

+u�pr ed ,i Rupr ed ,i ,

where Q = 10, R = 0.1 and r is the reference. The Hankel matrices in the robust single-level

DeePC are built with a sequence of length 100. The tracking performance of the proposed

controller is shown in Figure 1.1, where the robust MPC has full state measurement. Both

controllers can guarantee safe operation within the constraints. Meanwhile, we can observe

that the response of the robust single-level DeePC is identical to the robust MPC with full state

measurement. Their equivalence are proved in our paper [67]. To avoid the introduction of

SLS, we skip those details in this thesis in order to make the story line clear.
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Figure 1.1: Comparison of the Robust DeePC and the MPC controller. Note that the two
responses are the same.

Building Control

We consider a single zone building model [73], which is disturbed by internal heat gain, solar

radiation and external temperature. The model used to generate the data is

xi+1 =

⎡⎢⎣0.8511 0.0541 0.0707

0.1293 0.8635 0.0055

0.0989 0.0032 0.7541

⎤⎥⎦xi +

⎡⎢⎣0.0035

0.0003

0.0002

⎤⎥⎦ui

+10−3

⎡⎢⎣ 22.2170 1.7912 42.2123

1.5376 0.6944 2.29214

103.1813 0.1032 196.0444

⎤⎥⎦wi ,

yi =
[

1 0 0
]

xi ,

where x models the indoor temperature, wall temperature and the corridor temperature re-

spectively. In this building control application, the controller is designed to maintain occupant

comfort while minimizing energy consumption. During winter, the indoor temperature is kept

above 23◦C to maintain occupant comfort during the day. When the room is not used at night,

the room temperature is only required to stay above 17◦C . Beyond the control requirements,

the disturbances, especially the internal heat gain, also show a time dependent pattern. With-

out loss of generality, we assume that during the day, the solar radiation and the internal heat

gain are bounded within [4,6] with an external temperature fluctuating between [6◦C ,8◦C ].

During the night, the solar radiation is 0 with much lower internal heat gain, ranging between

[0,2]. Meanwhile, the external temperature is also lower at around [2◦C ,4◦C ]. As the controller

is designed to minimize power consumption, the loss function is

J (ypr ed ,upr ed )= ‖upr ed ,i‖1 .

The Hankel matrices used in the single-level DeePC are built by a 100-step I/O sequence. The

result its operation for one day is shown in Figure 1.2, where the operation starts from 6 A.M.
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Figure 1.2: Temperature control with robust single-level DeePC

We can see that the room was over the indoor temperature lower bound at the beginning, and

the controller can effectively lower the indoor temperature to save energy. It is also observed

that the controller pre-heats the room to slightly above 23◦C before the 6 A.M before the

second morning. This operation cycle shows the effectiveness of the controller.

1.3 Robust bi-level DeePC

In the last Section 1.2, we have developed the robust predictive controller based on the

single-level DeePC framework, where a numerical tractable reformulation of closed-loop

prediction is introduced. However, this controller is limits to noise-free data set. When the

data is contaminated by measurement noise, regularization is used (see Section 1.3.1). In

the application of robust control, the regularization approaches have at least two limitations.

Firstly, the technique introduced in the last section is not applicable to avoid solving infinitely

many linear equations. Secondly, the predictive trajectory is not unique given a predictive

input/disturbance sequence, where the concept of robustness becomes unclear. If we refer to

the bi-level optimization literature [74], it could be that, for a specific input sequence, there

exists a predictive trajectory that is safe. Or it could also be that, for a specific input sequence,

any predictive trajectory is safe. While the latter viewpoint seems to be more reasonable under

the robust optimization framework, the resulting optimization problem will be infeasible as

the set of its prediction can span an affine set. The main issue leading to the aforementioned

problem is that, for the single-level DeePC, the set of predictive trajectory is not unique given a

specific predictive input sequence. To resolve this issue, we develop and analyse the following
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bi-level predictive control problem in this part:

min
ypr ed

upr ed ,K

J (ypr ed ,upr ed )

s.t.∀ w̃pr ed ∈w ⊕ W̃ (1.13a)

upr ed = upr ed +K w̃pr ed ∈ Ũ , (1.13b)

ypr ed =HL,pr ed (yd)g ∈Y , (1.13c)

g ∈ argmin
gl ,σl

1

2
‖σl‖2+ 1

2
g�l Eg gl (1.13d)

s.t.

⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (w̃d)

HL,pr ed (ud)

HL,pr ed (w̃d)

⎤⎥⎥⎥⎥⎥⎥⎦gl =

⎡⎢⎢⎢⎢⎢⎢⎣
yi ni t +σl

ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.13e)

Recall the definition used in (1.6c), J(·, ·) is a convex objective function, Ũ and Y denote

compact convex constraint sets on the input and the output. w ⊕ W̃ models the set of possible

future process noise with w the nominal future process noise and W̃ the quantified uncertainty.

Additionally, the tight input constraint is U , and Ũ is its tightening (i.e. Ũ ⊆U ). W̃ is an

augmented set of actual process noise, and the set of the actual process noise is W (i.e. ∃ n ≥ 0,

such that W̃ ⊂ W ×Rn). The selection of both Ũ and W̃ will be elaborated in the following

sections. ui ni t , w̃i ni t , yi ni t are ti ni t -step sequences of the measured inputs, process noise

and outputs preceding the current point in time. Accordingly, upr ed , w̃pr ed , ypr ed are the

corresponding nh-step predictive sequences viewed from the current time step. The matrix

HL(yd) is split into two sub-Hankel matrices:

HL(yd)=
[
HL,i ni t (yd)

HL,pr ed (yd)

]
.

The matrix HL,i ni t (yd) is of depth ti ni t and the depth of HL,pr ed (yd) is the prediction horizon

nh such that ti ni t+nh = L. The matrices HL,i ni t (ud), HL,pr ed (ud), HL,i ni t (w̃d), HL,pr ed (w̃d) are

defined similarly.

Scheme (1.13) is bi-level, where the penalty weight Eg , the set of disturbances W̃ , and the

tightened input constraints Ũ vary with respect to the working conditions. The selections

of these terms will be elaborated in the following sections. In Section 1.3.1, a rigorous setup

for LTI systems will first be developed to show the logic behind the bi-level formulation. The

extension to LTV system and the computational details will then be discussed in Section 1.3.2.
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1.3 Robust bi-level DeePC

1.3.1 Robust Bi-level Data-driven Control for LTI Systems

In this part, we will establish a rigorous mathematical framework for the bi-level scheme (1.13)

by considering the LTI version of the targeted time-varying dynamics (1.5). The LTI dynamics

satisfy:

Ai = A j , Bi =B j , Ci =C j , Di =D j , Ei = E j ,∀ i , j .

Note that the output trajectory prediction with respect to a given control input sequence

upr ed is the key component for predictive control. In this section, we will show that this

can be done by minimizing a Wasserstein distance upper bound between the trajectories

determined by the fundamental lemma and noisy measurement sequences (Lemma 3). This

trajectory prediction problem defines the lower level problem in our bi-level scheme (1.13),

whose single-level reformulation is summarized in Lemma 4. In the end, Subsection 1.3.1

concludes this Section 1.3.1 by comparing the bi-level scheme with the existing single-level

schemes.

Wasserstein Prediction Upper Bound

Regarding (1.5), the system output yi ni t is contaminated by measurement noise, giving a noisy

measurement vector yi ni t . The output yi ni t thus follows the distribution (Section 1.1.3):

yi ni t ∼N (yi ni t ,Σi ni t ) ,

where Σi ni t = Iti ni t ⊗Σv . Similarly, the measurement Hankel matrix HL,i ni t (yd) is subject to

measurement noise, and we denote the uncertain system output Hankel matrix by HL,i ni t (yd).

Then, for arbitrary g ∈Rnc , the following lemma quantifies the distribution distance between

an uncertain trajectory generated by the fundamental lemma, HL,i ni t (yd)g , and the uncertain

system output sequence yi ni t

Lemma 3. ∀ g ∈Rnc , the squared Wasserstein distance W (HL,i ni t
(
yd
)

g , yi ni t )2 is upper bounded

by

‖HL,i ni t (yd)g − yi ni t‖2+
(√

ti ni t‖g‖−1
)2

tr(Σv ) .

Proof. Similar to the distribution of yi ni t , the distribution of the i -th column of the output

Hankel matrixHL,i ni t (y) follows a Gaussian distribution N (yd,i :i+ti ni t−1 ,Σi ni t ) and the adjacent

columns are correlated. By the basic properties of Gaussian distributions, we have

HL,i ni t (yd)g ∼N (HL,i ni t (yd)g , Σ̃i ni t ) ,

where Σ̃i ni t = G̃⊗Σv and the entry of G̃ ∈Rti ni t×ti ni t is

G̃i , j =
nc−|i− j |∑

n=1
gn gn+|i− j | .
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Hence, the squared Wasserstein distance W (HL,i ni t (yd)g , yi ni t )2 is

W (HL,i ni t (yd)g ,yi ni t )2 = ‖HL,i ni t (yd)g − yi ni t‖2

+ tr(Σ̃i ni t +Σi ni t −2(Σ
1
2
i ni t Σ̃i ni tΣ

1
2
i ni t )

1
2 )︸ ︷︷ ︸

(a)

.

In the rest of this proof, we will upper bound the term (a) above,

(a)= tr(Σ̃i ni t )+ tr(Σi ni t )+2tr

(
(Σ

1
2
i ni t Σ̃i ni tΣ

1
2
i ni t )

1
2

)
= (tr(G̃)+ tr(Iti ni t )

)
tr(Σv )−2tr

((
(G̃ Iti ni t )⊗Σ2

v

) 1
2

)
︸ ︷︷ ︸

(b)

= ti ni t (‖g‖2+1)tr(Σv )−2tr(G̃
1
2 ⊗Σv )︸ ︷︷ ︸
(c)

=
(
ti ni t (‖g‖2+1)−2tr(G̃

1
2 )
)

tr(Σv )

(d)≤
(
ti ni t (‖g‖2+1)−2tr(G̃)

1
2

)
tr(Σv )

=
(
ti ni t (‖g‖2+1)−2

√
ti ni t‖g‖

)
tr(Σv )

(e)≤
(√

ti ni t‖g‖−1
)2

tr(Σv ) ,

(1.14)

where terms (b), (c) follow the same fact that (A⊗B)(C ⊗D)= AC ⊗BD. The inequality (d)

follows [75, Theorem 1 (ii)]

tr(G̃)
1
2 ≤ tr(G̃

1
2 ) .

The inequality (e) uses the fact that ti ni t ≥ 1. We conclude the proof with

W (HL,i ni t
(
yd
)

g , yi ni t )2 ≤
‖HL,i ni t (yd)g − yi ni t‖2+

(√
ti ni t‖g‖−1

)2
tr(Σv ) .

�

Based on the upper bound in Lemma 3, we can generate a trajectory prediction via the
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1.3 Robust bi-level DeePC

following optimization problem:

ypr ed =HL,pr ed (yd)g (w̃pr ed ) (1.15a)

g (w̃pr ed ) ∈argmin
gl ,σl

1

2
‖σl‖2+ 1

2

(√
ti ni t‖gl‖−1

)2
tr(Σv )

s.t.

⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (w̃d)

HL,pr ed (ud)

HL,pr ed (w̃d)

⎤⎥⎥⎥⎥⎥⎥⎦gl =

⎡⎢⎢⎢⎢⎢⎢⎣
yi ni t +σl

ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.15b)

Equation (1.15b) gives the trajectory expectation generated by the Willems’ fundamental

lemma. Meanwhile,
[

y�i ni t +σ�l u�i ni t w̃�i ni t u�pr ed w̃�pr ed

]�
is the trajectory composed

by noisy measurements read out from the sensors, the planned future input and a predicted

disturbance trajectory. Thus, optimization problem (1.15) minimizes the discrepancy upper

bound between an I/O sequence estimated by measurement and an I/O trajectory estimated

by the fundamental lemma.

Remark 2. Note that the Hankel matrix HL,pr ed (yd) is also subject to measurement noise (v

in (1.5)), which means that the estimate of a fundamental lemma based predictive trajectory

HL,pr ed (yd)g is also uncertain and Gaussian with expectation HL,pr ed (yd)g . The prediction

given by (1.15a) can therefore be considered as a certainty equivalent prediction. Meanwhile,

even though it is possible to consider the uncertainty in ypr ed , for the sake of a clean layout, we

only use the certainty equivalence prediction (1.15) in this thesis. It is noteworthy to mention

that, based on our experience, the quantified predictive uncertainty w pr ed ⊕ W̃ is highly con-

servative in building applications, using certainty equivalence is empirically sufficient to give

desirable robust control performance (see Section 1.3.1 for more details).

Tractable Bi-level Reformulation

In this section, we will develop the bi-level scheme (1.13) by integrating the prediction prob-

lem (1.15) into a predictive control problem. This controller should maintain the system

performance while ensuring robust constraint satisfaction regardless of future realizations of

the process noise, and so we assume that the future process noise w̃pr ed can be predicted with

uncertainty quantification. Buildings are systems satisfying this assumption. For example,

the weather forecast can provide a future temperature prediction with an uncertainty tube

centered around a nominal prediction, such that the actual future temperature realization

fluctuates within this tube. Identical to the set up given in Section 1.2, we denote the set

of predicted future process noise realizations by w̃pr ed ∈ w ⊕ W̃ , where w is the nominal

prediction and W̃ denotes the uncertainty tube.

To make the controller less conservative, we consider a predictive control input with a linear
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feedback from process noise

upr ed = upr ed +K w̃pr ed , (1.16)

where the feedback control K is a decision variable in our predictive control problem. In

particular, u reflects the nominal control inputs while feedback K adapts the control input

based on the actual realization of the process noise.

By replacing the lower level problem in (1.13) (i.e. Equation (1.13d) and (1.13c)) with the

prediction problem (1.15), we can state a bi-level robust predictive control problem for LTI

systems:

min
y pr ed

upr ed ,K

J (ypr ed ,upr ed ) (1.17a)

s.t.∀ w̃pr ed ∈w ⊕ W̃

upr ed = upr ed +K w̃pr ed ∈ Ũ ,

ypr ed =HL,pr ed (yd)g (w̃pr ed ) ∈Y , (1.17b)

g (w̃pr ed ) ∈ argmin
gl ,σl

1

2
‖σl‖2+ 1

2

(√
ti ni t‖gl‖−1

)2
tr(Σv )

s.t.

⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (w̃d)

HL,pr ed (ud)

HL,pr ed (w̃d)

⎤⎥⎥⎥⎥⎥⎥⎦gl =

⎡⎢⎢⎢⎢⎢⎢⎣
yi ni t +σl

ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we set W̃ =W and Ũ =U . Problem (1.17) is a bi-level optimization problem, whose

upper level decides the optimal control and whose lower level generates the corresponding

predictive output trajectory. In particular, the upper level problem sends upr ed and K to

the lower level problem. Then for each specific w̃pr ed , the lower level problem returns the

corresponding predictor g (w̃pr ed ), which accordingly defines the output trajectory predictions

ypr ed for that w̃pr ed (Equation (1.17b)). In turn, the robust constraint in the upper level

ensures that input and output constraints are satisfied for all w̃pr ed in the considered set

w⊕W . In conclusion, the upper level problem optimizes upr ed and K based on the prediction

given by the lower level problem.

However, this bi-level problem (1.17) is hard to solve numerically, because the objective in

the lower level problem is non-convex.2 To address this issue, we state a looser, but convex,

Wasserstein upper bound in the following corollary.

Corollary 1. ∀ g ∈ Rnc , the squared Wasserstein distance W (HL,i ni t
(
yd
)

g , yi ni t )2 is upper

2To ensure a composition of two convex functions is convex, the outer convex function needs be non-
decreasing [76, Chapter 3.2.4]. To see the non-convexity in (1.17), one can plot the following function f (x) =
(|x|−1)2, x ∈R.
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bounded by

‖HL,i ni t (yd)g − yi ni t‖2+ ti ni t tr(Σv )
(‖g‖2+1

)
.

Proof. In the inequality (d) of Equation (1.14), we have tr(G̃)≥ 0 as G̃ is positive semi-definite.

Therefore, we give a convex Wasserstein distance upper bound as

W
(
HL,i ni t

(
yd
)

g , yi ni t

)2
≤ ‖HL,i ni t (yd)g − yi ni t‖2+ t 2

i ni t tr(Σv )
(‖g‖2+1

)
.

�

Bringing everything together, we eliminate the solution of the nonconvex problem (1.17), and

arrive at a convex tractable version (i.e. the bi-level scheme (1.13)). This numerically tractable

predictive control problem (1.13) will be used throughout the paper. The terms Ũ , W̃ and Eg

used in the LTI case are:

• Eg = t 2
i ni t tr(Σv )Inc : The lower level problem minimizes the convex Wasserstein upper

bound given in Corollary 1. For the sake of clarity, the constant term t 2
i ni t tr(Σv ) is

dropped in its objective.

• W̃ =W , Ũ =U : The set of predictive process noise is directly defined by the process

noise forecast ( Assumption 2), and the input constraint is not tightened.

Up to this point, we have derived the bi-level structure used in the bi-level scheme (1.13), and

we will show that it has a tractable single-level reformulation via the following lemma:

Lemma 4. The following single-level robust optimization problem is equivalent to the bi-level

problem (1.13).

min
y pr ed

upr ed ,K

J (ypr ed ,upr ed )

s.t.∀ w̃pr ed ∈w ⊕ W̃

upr ed = upr ed +K w̃pr ed ∈ Ũ ,

ypr ed =HL,pr ed (yd)g (w̃pr ed ) ∈Y ,

[
g (w̃pr ed )

κ

]
=M−1

⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)�yi ni t

ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.18a)
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where κ is the dual variable of (1.13e) and

H :=

⎡⎢⎢⎢⎢⎣
HL,i ni t (ud)

HL,i ni t (w̃d)

HL,pr ed (ud)

HL,pr ed (w̃d)

⎤⎥⎥⎥⎥⎦ (1.19a)

M :=
[
H�L,i ni t (yd)HL,i ni t (yd)+Eg H�

H O

]
. (1.19b)

Proof. Note that the uncertain lower level problem in (1.13) is strongly convex and there-

fore can be equivalently represented by its KKT system [74, Chapter 4]. By replacing σl by

HL,i ni t (yd)gl − yi ni t , the Lagrangian of the lower level problem is

L (g )= 1

2
‖HL,i ni t (yd)g − yi ni t‖2+ 1

2
g�Eg g

+κ�(H g −

⎡⎢⎢⎢⎢⎣
ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎦) ,

where κ is the dual variable of the equality constraint. Based on this, we have the stationary

condition of the KKT system

∂L (g )

∂g

�
= (HL,i ni t (yd)�HL,i ni t (yd)+Eg )g +H�κ

−HL,i ni t (yd)�yi ni t = 0 .

By recalling the primal feasibility condition

H g =

⎡⎢⎢⎢⎢⎣
ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎦ ,

we get the uncertain KKT matrix M in (1.19b). Finally, by Assumption 1, M is full-rank and

hence invertible [77, Chapter 16]. This leads to the uncertaint KKT equation (1.18a), which

concludes the proof. �

On top of the single-level reformulation (1.18), we further enforce causality on the decision
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variable K through a lower-block triangular structure [78, Chapter 5.1]:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O O . . .
...

K2,1 O O . . .
...

K3,1 K3,2 O . . .
...

...
. . .

. . .
. . .

...

Knh ,1 Knh ,2 Knh ,3 . . . O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.20)

In particular, causality means that the i -th step of the future process noise can only change

the events happening later than it, which only includes the i +1-th to the nh-th components

in upr ed .

Remark 3. When the feasible sets Ũ ,Y are polytopic, the robust optimization problem (1.18)

can be solved by a standard dualization procedure [68].

Discussion

We would wrap up this Section 1.3.1 by a comparison between the bi-level scheme and existing

single-level schemes. When the historical I/O data is contaminated by measurement noise,

the noise-free single-level problem (1.3) is adapted to the following regularized form [13, 79]:

min
ypr ed ,upr ed

g ,σ

J (ypr ed ,upr ed )︸ ︷︷ ︸
(a)

+ηg‖g‖+ησ‖σ‖︸ ︷︷ ︸
(b)

(1.21a)

s.t.

⎡⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,pr ed (ud)

HL,pr ed (yd)

⎤⎥⎥⎥⎥⎦g =

⎡⎢⎢⎢⎢⎣
yi ni t +σ

ui ni t

upr ed

ypr ed

⎤⎥⎥⎥⎥⎦ (1.21b)

upr ed ∈U , ypr ed ∈Y ,

where ηg and ησ are user-defined parameters and other components are similar to those

defined in the bi-level scheme (1.13). For the sake of clarity, we neglect the process noise in

this subsection. By comparing its objective (1.21a) with the objective function in the lower level

problem (i.e. Equation (1.13d)), one can see that the last two terms (b) can be understood as

the penalty on prediction error. These regularization terms are studied in [50, 51]. In particular,

[51] shows that the first term in (b) is linked to the objective function used in the standard

system identification procedure. Therefore, Problem (1.21) can be understood as a bi-objective

optimization problem, whose loss function tries to balance the prediction accuracy and control

performance. Such a trade-off between these two objectives is modelled into the user-defined

weights ηg and ησ. However, based on our experiments and the results reported in [13, 54, 66,

80], the tunning of ηg and ησ usually requires exhaustive search and is in general non-trivial.

Instead of balancing the prediction accuracy and the control performance in a single objective

function (1.21a), the bi-level scheme couples them hierarchically in a bi-level optimization
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problem (1.13). This follows an intuitive logic applied in predictive control: the control is

decided based on an accurate output prediction. In the bi-level scheme (1.13), the prediction

accuracy is optimized directly by the lower level problem. Thus, the prediction accuracy of the

output trajectory is always guaranteed without sacrificing the control optimality (i.e. upper

level objective). On the other hand, the prediction accuracy of the single-level scheme (1.21)

might be compromised due to the trade-off between control performance and the prediction

accuracy (i.e. terms (a) and (b) in objective (1.21a) respectively). To better see why the bi-level

scheme is preferable, one can consider a special case where Y = 0, U = 0 and ui ni t = 0. In

this case, problem (1.21) has a non-empty solution set as g = 0 is feasible regardless of the

value of yi ni t . This solution corresponds to an output trajectory that can jump to the origin in

one step with zero input regardless of the initial state. If we do not consider the case where

Ai =O∀ i (see dynamics (1.5)), the underlying dynamics are not able to follow this predicted

trajectory for arbitrary yi ni t , and hence the prediction can be inconsistent in the single-level

scheme (1.21). In comparison, because the prediction accuracy is independently ensured by

the lower level problem, the bi-level scheme (1.13) will be infeasible unless the initial state is

at the origin. In practice, the corner case given above barely happens, as reported by [79, 80], it

is always possible to tune the ηg and ησ to achieve a desirable closed loop performance. Note

that, when the regularization term (b) in (1.21a) is not quadratic, its corresponding bi-level

will be more difficult to solve numerically, as there is no convex single level reformulation.

Hence, whether to use the proposed bi-level structure depends on the specific application.

Remark 4. The idea of bi-level optimization is also presented in [51] and in subspace predictive

control (SPC) [81]. In these previous works, the lower level problem defines a system identi-

fication problem based on the historical data (i.e. {ud, yd}). These approaches try to identify

one single model, which is a preprocessed historical dataset in [51] (see e.g. Problem (5), (20)

in [51]) and an ARX model in SPC. Thus, in this identification setup, the treatment of the noise

presented in the online measurements (e.g. noise in yi ni t ) is independent of the treatment

of the measurement noise presented in the historical data (i.e. the identification problem).

On the contrary, our bi-level scheme deals with these two sources of measurement noise in a

more unified way. Firstly, because of the noise in the historical data, the representation of the

underlying dynamics is uncertain. In the bi-level scheme, all the possible representations are

considered (i.e. the uncertain Hankel matrices considered in Section 1.3.1). Secondly, both the

uncertain representations and the online measurement noise are treated in one single problem

via a Wasserstein distance upper bound (Corollary 1). Due to these differences, we intentionally

call the lower level problem in the bi-level scheme a “trajectory prediction" problem but not an

“identification" problem.

Remark 5. Different from our analysis, [50] studies a general setup that further includes

unknown process noise. [50] applies the Wasserstein distance to show that the regularization

on g (first term of (b) in (1.21a)) is related to the minimization of the conditional value at risk

(CVaR) from a distributionally robust viewpoint.

Remark 6. The objective function J(ypr ed ,upr ed ) has different choices, such as the robust

objective J(ypr ed ,upr ed ) = max
w̃pr ed

J̃(ypr ed ,upr ed ). However, unless J̃(·, ·) is linear, this robust
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objective is non-convex, and therefore does not meet our requirement (Section 1.1.3). Notice that

the certainty equivalence is widely adopted in building applications, it is therefore reasonable

to optimize the nominal performance (i.e. J (ypr ed ,upr ed )= J̃ (y pr ed ,upr ed )).

1.3.2 Heuristic Time-varying Extension

In this section, we will adapt the controller (1.13) to LTV dynamics (1.5) by two heuristics. The

modifications are summarized as follows:

1. Modification of the lower level objective: Eg is a diagonal matrix diag(ηg ,1, . . . ,ηg ,nc )

and the weight sequence {ηg ,i }nc

i=1 is decreasing. Recall that the i -th entry of g , gi , is the

weight of the i -th column in H and HL,i ni t (yd) used for prediction. Thus, a non-uniform

penalty on g can be used to model our preference of using recent data for trajectory

prediction, and the decreasing diagonal elements in Eg reflect this preference.

2. Adaptation of the measured dataset: The data are updated online to capture the latest

dynamics from the system. In particular, Hankel matrices are updated by appending new

input/output measurements on the right side of the Hankel matrices and by discarding

old data on the left side.

Note that the second heuristic is tailored for slowly time-varying systems. This is the case for

building applications, whose variations are usually seasonal. This section will discuss how to

update the dataset in a way that can robustly guarantee the data quality (Section 1.3.2), and

that has a scalable update computation (Section 1.3.2). It is worth mentioning that updating

dataset online is also used in [82] to learn the linearized model around different operating

points online.

Active Excitation

In this part, we will discuss the selection of the Ũ and W̃ in (1.13). Recall that persistent

excitation is the key assumption required for Willems’ fundamental lemma to apply. As the

persistent excitation condition is not explicitly considered in the predictive control prob-

lem (1.13), thus the control input excitation may become impersistent in closed loop. In this

case, updating Hankel matrices with these latest I/O sequence is not reasonable. For example,

in building control, if the outdoor temperature and/or solar irradiation are near the building’s

equilibrium point, no extra heating/cooling is needed when the energy consumption is aimed

to be minimized. In this case, the long-term zero-valued control input will not excite the sys-

tem persistently. To accommodate this issue, we introduce a robust active excitation scheme,

which perturbs the control input applied at time i by a random excitation signal

ui = upr ed ,1|i︸ ︷︷ ︸
(a)

+ ue,i︸︷︷︸
(b)

, (1.22)
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where upr ed ,1|i is the first element of upr ed determined by a predictive control problem (1.13)

solved at time i . In this decomposition, the term (a) is determined by the predictive control

problem (1.13) with some specific choice of Ũ and W̃ (see Algorithm (1) below), and the term

(b) is a bounded excitation input, which is unknown to the decision process of upr ed ,1|i . More

specifically, from the viewpoint of upr ed , ue is an uncontrolled, but measurable, process noise

and the underlying time-varying linear dynamics therefore becomes

xi+1 = Ai xi +Bi upr ed ,1|i +
[

Ei Bi

][wi

ue,i

]
,

where the excitation input is randomly sampled from a user-defined compact set as ue ∈Ue ⊂
U . The process noise w̃ is accordingly augmented to

[
w�pr ed u�e

]�
, and the uncertainty

set W̃ in (1.13a) is augmented to
(
w ⊕W

)×Ue . As a result, w̃i ni t is set to
[

w�i ni t 0�
]�

.

Meanwhile, due to an extra excitation signal in (1.22), the feasible set of the control input Ũ is

tightened to U �Ue .

In practice, this active excitation mechanism sacrifices the flexibility of the control input for

data quality. If not necessary, we should set Ũ =U and W̃ =W to generate control inputs and

deactivate the active excitation scheme. We summarize the general algorithm of the proposed

controller in Algorithm 1, which automatically selects the uncertainty set W̃ and input feasible

set Ũ .

Algorithm 1

while true do
Measure yi , wi and update Hankel matrices.
Ũ ←U ,W̃ ←w ⊕W

Solve problem (1.13) to get upr ed |i
if input excitation {ud,upr ed |i } is not persistently exciting then

Ũ ←U �Ue , W̃ ← (w ⊕W
)×Ue

Solve problem (1.13) to get upr ed |i
Sample ue,i from Ue

Apply ui = upr ed ,1|i +ue,i

else
Apply ui = upr ed ,1|i

end if
i ← i +1

end while

In this algorithm, the problem (1.18) is first solved without active excitation. If its nominal

solution upr ed is not expected to be persistently excited, the problem (1.18) is re-solved

considering the active excitation scheme. Note that the computational cost of checking the

rank condition is O(n3
c ) [69], and may not be affordable for online computation. This can

be replaced by some effective heuristics. In building control, the control input excitation

34



1.3 Robust bi-level DeePC

becomes impersistent mainly when the control input is zero (e.g. when the cooling/heating

is turned off), and thus the persistence excitation condition can be heuristically replaced by

checking whether the nominal predictive input is near to a zero valued sequence up to some

user-defined tolerance. This heuristic is particularly useful in building control. Because when

input is not zero-valued, the stochastic property of the process noise (e.g. solar radiation and

outdoor weather) will cause random fluctuation in the closed-loop input trajectory, and the

persistent excitation condition is in turn satisfied. On top of this aspect, due to the stochastic

property of the process noise, the process noise is usually persitently excited.

Remark 7. In general, generating a persistently excited control input while considering control

performance is challenging, as the persistent excitation condition depends on the rank of

HL(ud), which turns the optimization problem into a challenging non-smooth non-convex

optimization [83]. It is noteworthy that [84] also perturbs the nominal control input to guarantee

persistent excitation, however, their result has no guarantee of robust constraint satisfaction.

Remark 8. Due to the causality constraints in (1.20), the matrix K in (1.13b) cannot instanta-

neously counteract the excitation signal ue with a K =
[

Kw −I
]

, which is non-causal.

Numerical Details

In our proposed adaptive robust controller, the Hankel matrices are updated online with the

real-time measurement of ui , yi , wi (Section 1.3.2 and Algorithm 1). Meanwhile, a numerically

efficient reformulation of the robust problem (1.18) requires an explicit evaluation of matrix

inversion M−1 in (1.18a) at each update. More specifically, when the feasible sets Ũ ,Y

and the uncertainty set W̃ are polytopic or ellipsoidal, the dualization/explicit upper bound

of the robust inequality constraint depends on the matrix inversion M−1. However, the

computational cost of M−1 is O((nc +nr )3) [69] with nr and nc the number of rows and

columns in the matrix H , which is roughly cubic in the size of the data set. Thus, direct inverse

of M online is not scalable. This is particularly important for building applications, because

the computing unit in building applications is usually of lower performance [85]. We therefore

propose to apply two linear algebraic techniques to resolve this computational bottleneck.

Notice that the dual variable κ in the lower problem does not affect the upper level problem.

For the sake of compactness, we denote

M1,1 :=H�L,i ni t (yd)HL,i ni t (yd)+Eg

and Msch := (H M−1
1,1H�)−1H M−1

1,1. By matrix inversion of a block-structured matrix, we have

M−1 =
[

M−1
1,1−M−1

1,1H�Msch M�sch

Msch −(H M−1
1,1H�)−1

]
.

35



Outline

We can therefore replace the constraint (1.18a) by

g (w̃pr ed )=Mtop

⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)�yi ni t

ui ni t

w̃i ni t

upr ed

w̃pr ed

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

Mtop :=
[

M−1
1,1−M−1

1,1H�Msch Msch

]
.

With the aforementioned modification, the computational cost is lowered to O(n3
c ), whose

computational bottleneck lies at the inversion of M1,1. We further lower the computational

cost by the Woodbury matrix identity,

M−1
1,1

= (H�L,i ni t (yd)HL,i ni t (yd)+Eg )−1

= E−1
g −E−1

g H�L,i ni t (yd)Mmid
−1HL,i ni t (yd)E−1

g ,

(1.23)

where Mmid := Im +HL,i ni t (yd)E−1
g H�L,i ni t (yd). As Eg is diagonal with a simple and explicit

inversion, the major computation cost happens at the inversion of a size m matrix Mmi d ,

where m := ti ni t ny . Thus, the computational cost of M−1
1,1 and Mtop is lowered to O(m3), which

is fixed and independent of the number of columns in the Hankel matrices (i.e. roughly the

size of the data-set).

Remark 9. Note that the KKT matrix is usually ill-conditioned [77, Chapter 16]. Replacing

the full matrix inversion in (1.18a) with the proposed techniques can improve the numerical

stability. Because only the matrix inversion of Eg and Mmid in (1.23) are evaluated, and these

two matrices are well-conditioned.

1.3.3 Numerical Results

In this part, we will demonstrate that the bi-level scheme shows comparable performance

against some model-based methods in both LTI and LTV systems.

Multi-zone Building Model

It should be noted that we are not claiming that the data-driven approach outperforms all

model-based approaches, as it is definitely possible to tune a better model based method,

such as considering the uncertainty of the identified parameters or using a more complex

estimator/controller. We only aim to show that the bi-level approach has comparable perfor-

mance against a model-based method, but without requiring a model. We therefore select
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a standard model-based controller design pipeline that we believe is reasonable, and we

compare this standard scheme against our bi-level scheme in this example. We considered an

LTI multi-zone building model reported in [86] (index of the rooms are shown in schematic

diagram Figure. 1.3. Due to the space limit, the parameters of the model (i.e. A, B , C , D, E

matrices) are included in the supplementary material on Github3. In this multi-zone building

(Figure 1.3), room 4 is the corridor linking a large warehouse (room 1) and two offices (room

2 and 3). The indoor temperature of room 1 is controlled by an independent HVAC system,

while another HVAC controls the temperature of all other rooms (i.e. u ∈R2). Only the indoor

temperature of these four rooms are measured (i.e. y ∈ R4), while the underlying model is

13 dimensional including the wall temperature (i.e. x ∈R13). Process noise are outdoor tem-

perature and solar radiation (i.e. w ∈ R2), and real weather data is used for the closed-loop

simulation. The sampling time of this discrete time model is 15 minutes. Recall the system

dynamics (1.5), two different level of unknown measurement noise v are considered to show

the reliability of the bi-level scheme. We remind the reader that only the measurement yi is

available to both schemes and yi is unknown to both schemes (See the dynamics (1.5)).

4

3 2

1

Figure 1.3: Schematic diagram of the multi-zone building

In the “standard" scheme, the model is identified by a subspace identification algorithm and

the state estimation is done by a Kalman filter4. Following this, a robust model predictive

controller with linear feedback [78] is used in the “standard" scheme to generate control

3https://github.com/YingZhaoleo/Building_results
4We use the commands N4SID and KALMAN in MATLAB to do subspace identification and Kalman filter design

respectively
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inputs5.

min
upr ed ,Kw

ypr ed

J (y pr ed ,upr ed )

s.t. xpr ed ,0 = x0

∀ i = 0,1. . . ,nh

xpr ed ,i+1 = Ai d xpr ed ,i +Bi d upr ed ,i

+Ei d wpr ed ,i

ypr ed ,i =Ci d xpr ed ,i +Di d upr ed ,i

∀wpr ed ∈W , upr ed = upr ed +Kw wpr ed

upr ed ∈U , ypr ed ∈Y ,

(1.24a)

where the parameters of Ai d , Bi d , Ei d , Ci d , Di d come from system identification and x0 is

estimated with a Kalman filter. Note that the feedback control law Kw is optimized by (1.24).

Other components, such as J (·, ·), nh and U ,Y ,W , are identical to those used in the proposed

robust data-driven scheme. In particular, the heating power (control input) 0 kW ≤upr ed ≤
4.5 kW , the indoor temperature for all the rooms are bounded within 20◦C ≤ ypr ed ≤ 26◦C and

the uncertainty of the solar radiation, outdoor temperature prediction is modelled by a tube

around their nominal prediction. The radius of the tube are respectively 2 kW /m2 and 2◦C ,

and the nominal prediction w pr ed ,i comes from the weather forecast. An indoor temperature

control problem is considered:

J (ypr ed ,upr ed )=
nh∑

i=0
10(y pr ed ,i+1− yr e f )2+0.1u2

pr ed ,i ,

where yr e f is the set point of the indoor temperature and the prediction horizon is set to

nh = 8, and the sampling time of this model 15 minutes. Additionally, we set ti ni t = 5 in the

proposed robust scheme. To ensure a fair comparison, the same dataset is used for system

identification, and for defining the Hankel matrices in the LTI case as well as the initial Hankel

matrices in the LTV case. Four days of historical data is used, which includes 384 data points.

Two experiments with different levels of measurement noise are considered, whose standard

deviation are respectively 0.05◦C and 0.3◦C . These two cases correspond to a measurement

error roughly bounded by 0.15◦C and 1◦C respectively. The results are shown in Figure 1.46

and Table 1.1. Each experiment carries out 50 Monte-Carlo runs. In each Monte-Carlo run,

a new dataset is generated for system identification and for the definition of the Hankel

matrices. The averaged fitting accuracy7 are summarized in Table 1.1 as well, which shows

good modelling accuracy in the “standard" scheme. Additionally, the constraint violation is

5We used the code template of “Approximate closed-loop minimax solution” in
https://yalmip.github.io/example/robustmpc

6To be fair, both controllers are subject to the same measurement noise and process noise during their online
operation.

7The fitting accuracy is generated by the COMPARE command in MATLAB.
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Figure 1.4: Comparison of the proposed robust data-driven control and model based controller.
The shaded region is the mean plus/minus two standard deviation of all MonteCarlo runs.
Standard deviations of measurement noise: row (a): LTI model, measurement noise std: 0.05
◦C ; row (b): LTI model, measurement noise std: 0.3 ◦C ; row (c): LTV model, measurement
noise std: 0.05 ◦C ; row (d): LTV model, measurement noise std: 0.3 ◦C

Room index 1 2 3 4

Constraint
violation

Proposed
scheme

0.67%
(3.12%)

0%
(0.14%)

0.40%
(2.76%)

0%
(0.078%)

Standard
scheme

2.78%
(11.46%)

0%
(0.99%)

3.28%
(10.27%)

0.42%
(3.77%)

Averaged fitting
accuracy

93.17%
(77.60%)

93.07%
(73.43%)

90.72%
(71.32%)

92.58%
(83.93%)

Table 1.1: Statistics of the constraint violation and the fitting accuracy of the identified models.
The bracket number in each entry corresponds to the tests whose standard deviation of
measurment noise is 0.3◦C , the unbracketed ones are of 0.05◦C measurement noise standard
deviation.

calculated by

number of steps where a constraint violation occurs

(number of simulation steps×number of Monte-Carlo runs)
.
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In the second test, we consider that the building dynamics varies slowly on a weekly basis:

Ai = A+0.02sin

(
iπ

336

)
I13

Bi =B , Ci =C , Di =D, Ei = E , ∀ i .

Our bi-level scheme is compared against a model based adaptive method, where a recursive

least square (RLS) estimator updates the parameter of an ARX model:

yi =
ti ni t∑
j=1

θ�y, j yi− j +θ�u, j ui− j +θ�w, j wi− j ,

where θy, j ∈ R4, θu, j ∈ R2, θw, j ∈ R2. The model estimated by RLS is used in the following

robust MPC problem:

min
upr ed ,Kw

ypr ed

max
wpr ed

J (ypr ed ,upr ed )

s.t. xpr ed ,0 = x0

∀ i = 0,1. . . ,nh

ypr ed ,i =
ti ni t∑
j=1

θy, j ypr ed ,i− j +θu, j upr ed ,i− j

+θw, j wpr ed ,i− j

∀wpr ed ∈W , upr ed = upr ed +Kw wpr ed

upr ed ∈U , ypr ed ∈Y ,

(1.25)

where the parameters θy ,θu and θw are updated by the RLS estimator. Other settings are the

same as the previous experiments. In particular, the RLS estimator has a forgetting factor of

0.98 and it is initialized by the data used to build the initial Hankel matrices of the bi-level

scheme. Two experiments with different levels of measurement noise standard deviation

are conducted. The results are shown in rows (c) and (d) in Figure 1.4 and the constraint

violation statistics are given in Table 1.2. From rows (c) and (d) in Figure 1.4, we can see

that both approaches perform the tracking task properly, and the bi-level scheme shows

comparable performance against the RLS-MPC approach. One major observation is that the

bi-level scheme shows better constraint satisfaction against the RLS-MPC method. Indeed, it is

possible to consider the uncertainty generated by the RLS estimator to improve the robustness

of the model-based approach, however, it turns out to be a non-convex robust optimization

problem and there is no standard approach to solve this problem.

1.3.4 Experiment

This part presents our real-world experiments conducted at a conference building on the EPFL

campus.
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room index 1 2 3 4

Constraint
violation

Proposed
scheme

1.64%
(6.99%)

0%
(0.49%)

2.70%
(7.65%)

0.47%
(2.25%)

RLS-MPC
scheme

8.23%
(22.54%)

0.37%
(3.08%)

10.16%
(22.21%)

0.69%
(11.11%)

Table 1.2: Statistic of the constriant violation. The bracket number in each entry corresponds
to the tests whose standard deviation of measurment noise is 0.3◦C , the unbracketed ones are
of 0.05◦C measurement noise standard deviation.

Experimental Setup

The building control experiment is conducted on an entire building, which is a freestanding

600m2 single-zone building on the EPFL campus, called the Polydome. It is regularly used for

lectures/exams and accommodates up to 200 people (Figure 1.5).

Figure 1.5: The Polydome

In the presented experiments, the indoor temperature measurement is the noisy output

measurement y , the active electrical energy consumption of the HVAC system is the input u,

and the weather conditions (outdoor temperature and solar radiation) are the process noise

w =
[

w1 w2

]
. The sampling period Ts is 15 minutes and the structure of the control system

is depicted in Figure 1.6, where the arrows indicate the direction of data transmission. The

system consists of five main components

• Sensors: Four Z-wave FIBARO DOOR/WINDOW SENSOR V2 are put in different locations

in the Polydome to measure the indoor temperature (path (a)). Every five minutes,

the temperature measurements are sent to the database through a wireless Z-wave
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network (path (c)). The average value of the four measurements is used as the indoor

temperature. The active power consumption of the HVAC system is measured via an

EMU 3-phase power meter [87] (path (b)).

• Database: We use INFLUXDB 1.3.7 [88] to log the time-series data, which records the

measurements from sensors (path (c)), the control input computed from the PC (path

(d)) and the historical weather (path ( f )).

• Weather API: We use TOMORROW.IO [89], which provides both historical and current

measurements of solar radiation and outdoor temperature to the database (path ( f )). It

also provides the forecast of solar radiation and outdoor temperature to the PC to solve

the predictive control problem (path (g )).

• Controller: The controller is implemented in MATLAB, interfacing YALMIP [90], which

fetches historical data from the database to build/update the Hankel matrices (path

(d)), and acquires weather forecasts from the weather API (path (g )). It runs Algorithm 1

to generate the control input. This control signal is transmitted to the HVAC system via

the serial communication protocol, Modbus [91].

• HVAC: A roof-top HVAC unit (series No: AERMEC RTY-04 heat pump) is used for heating,

cooling and ventilation. Its heating and cooling units are different, consisting of two

compressors for heating and one compressor for cooling respectively.

Sensors

Database

HVAC

Controller

Polydome

Weather
API

(c)

(d)

(e)

(b)

(a)

( f ) (g )

Figure 1.6: Structure of the building control system

The HVAC system is shipped with an internal hierarchical controller, which includes:

• Mode scheduler: The scheduler determines whether the HVAC is in heating or cooling

mode, and we are not authorized to access this scheduler.
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1.3 Robust bi-level DeePC

• Temperature controller: The indoor temperature is controlled by a bang-bang con-

troller that compares the set-point temperature and the return-air (indoor) temperature

with a dead-band of 1°C . For example, in the heating mode, if the return-air temperature

is 1°C lower than the set-point temperature, the heating will turn on and run at full

power of 8.4kW until the set-point is reached. Vice versa for cooling, except that the

electric power is 7kW .

To map this controller to our proposed controller, we applied the following strategies:

• As the cooling and heating modes of the HVAC system show different responses, two

different I/O datasets for different modes are maintained/updated independently. The

controller monitors the mode of the HVAC system and deploys the corresponding I/O

dataset to build the proposed controller.

• Recall that the input used in our bi-level scheme is electrical energy consumption. To

achieve a desired power consumption, we convert this desired consumption to a set-

point sequence: For example, if the HVAC is in heating mode, and a non-zero desired

power consumption is planned, the controller will turn on the heating by giving a set-

point that is 2°C above the return-air temperature, until the desired energy (Pel Ts) is

reached (path (b) in Figure 1.6). Then, the heating is turned off by setting the set-point

to the return-air temperature.

In our bi-level predictive control scheme, the Hankel matrices for both heating and cooling

modes are built from 200 data-points, with ti ni t = 10 and a prediction horizon nh = 10. The

controller minimizes electrical power consumption with the following loss function

J (ypr ed ,upr ed )=
Npr ed∑

i
|ui |

To better distinguish the heating and cooling modes in our plots, we use a positive input

value for the heating mode and a negative input for the cooling mode. We further enforce the

following input constraint to model the maximal energy consumption of the heating/cooling.{
0kW h ≤ ui ≤ 1.5kW h, heating mode

−1.15kW h ≤ui ≤ 0kW h, cooling mode

Note that the HVAC unit consumes a constant 2.4kW h of energy for ventilation, even without

heating or cooling. The aforementioned input constraint excludes this basic ventilation power.

The parameter Eg in (1.18) is set by MATLAB command DIAG(LINSPACE(0.2,0.02,nc )). The
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uncertainty set of the weather forecasts is estimated from an analysis of historical data as

W :=
{

wi

∣∣∣∣∣
[
−1°C

−50W /m2

]
≤wi ≤

[
1°C

50W /m2

]}
(1.26)

Experimental Results

In this section, we describe four experiments that were conducted from May 2021 to June

2021. In particular, the first experiment shows the necessity of robust control and the second

experiment shows the adaptivity to mode switching. The third one runs a 20-day experiment

to show the adaptivity and reliability of the bi-level scheme and the fourth one runs a 4-day

experiment to compare the bi-level scheme with the default controller. Meanwhile, recall that

we use a negative control input to represent cooling and a positive control input for heating.

Accordingly, and show the control input and system output (indoor temperature) within the

same plot to better show the response from input to output.

Experiment 1

The first experiment includes two parts: a non-robust version of the bi-level scheme (i.e.

W = {0}, K =O) and a robust version with the uncertainty tube given in (1.26). In this test, we

consider a time-varying indoor temperature constraint with respect to office hours, which is

relaxed during the night and is tightened to ensure occupant comfort during office hours.{
21°C ≤ yi ≤ 26°C , from 8 a.m. to 6 p.m.

19°C ≤ yi ≤ 30°C , otherwise

The non-robust experiment was conducted on 14th May 2021 and the result is plotted in

Figure 1.7. The HVAC system was in heating mode throughout this experiment, and we can

observe that the input was 0 until the indoor temperature hit the lower bound at around 4

A.M.. Later, it started pre-heating the room to satisfy the office hours temperature constraint

at around 6 A.M. However, we can still observe frequent but small constraint violations from

8 A.M. to 10 A.M., which then lead to overheating after 10 A.M.

In comparison, the robust controller effectively handled these issues in an experiment con-

ducted on 25th May 2021. The result is shown in Figure 1.8, where we used the same time

varying indoor temperature constraint. We can observe that the robust controller safely pro-

tects the system from violating the lower bound through the whole test, and it also successfully

pre-heated the building to fit the time-varying indoor temperature constraint. The perfor-

mance deterioration that occurred to the non-robust controller after 10 A.M. was avoided as

well, where the controller smoothly turned off the heating without unnecessary overheating.

Experiment 2

The second experiment is a pilot test to validate the adaptivity to the mode switching and

44



1.3 Robust bi-level DeePC

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
5

10

15

20

25

30

time

y
(i
n
d
o
o
r
te
m
p
e
ra

tu
re

[◦
C
])

Output: y Input: u Constraint

0

1

2

3

u
(e
le
c
tr
ic
a
l
p
o
w
e
r
c
o
n
su

m
p
ti
o
n

[k
W

h
])

Figure 1.7: First experiment in Polydome: one-day heating-mode running by the bi-level
data-driven control without robust optimization
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Figure 1.8: First experiment in Polydome: one-day heating-mode running by the proposed
robust data-driven control
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the necessity of active excitation (Algorithm 1). The experiment was conducted from 28th

to 29th May 2021, with the result shown in Figure 1.9, where the indoor temperature of this

experiment is bounded within

21°C ≤ yi ≤ 25°C ,

This change of heating/cooling mode is depicted as a positive/negative control input and

a red/blue shaded region in Figure 1.9. However, it is noteworthy that the system was in

cooling mode on the second evening. If there was no active excitation, the cooling should

be off through the night to minimize energy consumption, and the Hankel matrices used for

the controller would have lost persistent excitation. Instead, the active excitation, which is

depicted as small fluctuations from 0:00 to 8:00 on the second day, maintained the persistency

of excitation. The excitation signal is randomly selected as follows:{
0kW h ≤ ue,i ≤ 0.1kW h, heating mode

−0.075kW h ≤ue,i ≤ 0kW h, cooling mode

In conclusion, the controller successfully carried out the task of energy minimization in this

experiment. In particular, when there is no need for heating/cooling, such as during the

second evening, only active excitation took effect to maintain persistency of excitation. The

heating/cooling also takes effect to robustly maintain the indoor temperature within the

constraints.
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Figure 1.9: Second experiment in Polydome: two-day running by the proposed robust data-
driven control. The black line indicates the time interval within which the active extication is
active: high level: active, low level: inactive.

Experiment 3

This experiment was planned to validate the long-term reliability and adaptivity of the pro-
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1.3 Robust bi-level DeePC

posed controller. The experiment ran continuously for 20 days from 10th June 2021 to 30th

June 2021 (Figure 1.10 and 1.11). The statistics of this experiment is summarized in Table 1.3

Note that the weather varies a lot throughout this experiment, with the outdoor temperature

even once surpassing 29°C on the 20th and also once dropping below 15°C on the 26th .

Therefore, the experiment shows the adaptivity of the proposed controller to weather variation.

Moreover, the cooling mode dominated the whole experiment, with only a few days of heating

at night. The proposed controller gives a long-term guarantee of temperature constraint

satisfaction (see Table 1.3), while updating the Hankel matrices constantly. Regarding the

data update, the active excitation scheme (Algorithm 1) also occasionally took effect to ensure

persistency of excitation. The time intervals within which the active excitation are active are

plotted by value 1 along the black dashed line in Figure 1.11.

average
indoor

temperature

average
outdoor

temperature

average
solar

radiation

duration of
constraint
violation

average
hourly energy
comsumption

23.7◦C 20.8◦C 0.21W /m2 0h 1.6kW h

min/max
indoor

temperature

min/max
outdoor

temperature

min/max
solar

radiation
hours of
heating

hours of
cooling

21.5◦C
24.88◦C

14.6◦C
29.5◦C

0W /m2

0.89W /m2 48h 432h

Table 1.3: Statistics of the 20-day experiment
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Figure 1.10: Experimental results from noon 10th June 2021 to noon 20th June 2021. Left:indoor
temperature and electrical power consumption, right: outdoor temperature and solar radia-
tion
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Figure 1.11: Experimental results from noon 20th June 2021 to noon 30th June 2021. Left:indoor
temperature and electrical power consumption, and the black line indicates the time interval
within which the active extication is active: high level: active, low level: inactive. Right: outdoor
temperature and solar radiation
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Experiment 4

Finally, we compare the proposed robust bi-level DeePC scheme with the default controller

(Section. 1.3.4), which regulates the supply air temperature based on the return air temperature.

A fixed setpoint at 22◦C is given to the default controller in order to ensure the occupants’

comfort throughout the day. It is worth noting that the default controller is a benchmark

controller widely used in the building control community [92–94].

The experiment with the proposed controller was conducted from 23r d July 2021 to 26th July

2021, and the one with the default controller ran from 7th July 2021 to 10th July 2021. To

ensure a fair comparison, the weather conditions for these two experiments were similar, as

shown in Figure 1.12. The indoor temperature and electrical power consumption are plotted

in Figure 1.12, alongside the statistics of these two experiments summarized in Table 1.4.

From Table 1.4 and Figure 1.12, more constraint violation is observed from the default con-

troller than the proposed controller. One major underlying reason is that the default controller

runs without the knowledge of a weather forecast and only cooled down the building when

the return air temperature reached 23◦C . We believe that is the reason accounting for the con-

straint violation in the day-1 experiment of the default controller. If the default controller could

have predicted a high solar radiation and turned the cooling on constantly, the temperature

constraint violation should have been avoided.

Besides the benefit of robust constraint satisfaction, the proposed controller is also more

power efficient than the default controller under similar weather conditions, which in par-

ticular consumed 18.4% less electricity than the default controller (Table 1.4). Note that, to

maintain the data quality, the proposed controller ran the active excitation scheme (Algo-

rithm 1) regularly from 00:00 to 9:00. Thus, there is still the possibility to further improve the

energy efficiency of the proposed controller.

average
indoor

temperature

average
outdoor

temperature

average
solar

radiation

duration of
constraint
violation

Proposed
controller 23.1◦C 18.5◦C 0.17W /m2 0h

Default
controller 23.2◦C 18.8◦C 0.17W /m2 5.75h

min/max
indoor

temperature

min/max
outdoor

temperature

min/max
solar

radiation

averaged
hourly energy
comsumption

Proposed
controller 21.5◦C

24.9◦C
15.2◦C
23.4◦C

0W /m2

0.80W /m2 1.15kW h
Default

controller 21.2◦C
25.9◦C

15.5◦C
24.1◦C

0W /m2

0.92W /m2 1.41kW h

Table 1.4: Statistics of the four-day comparison
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Figure 1.12: Comparison of the proposed robust controller and default controller. Left: indoor
temperature and electrical power consumption. Right: outdoor temperature and solar radia-
tion.
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1.4 Final Remark

In this chapter, we explore the robustness aspect of direct data-driven controllers that are based

on Willems’ fundamental lemma. While data-driven control falls under the broader umbrella

of control design, its key philosophy remains the characterization of system response. As a

trajectory predictor, this characterization is integrated into the predictive control framework.

Therefore, from my perspective, data-driven control is not entirely model-free, as there is still

an implicit "model" used inside the controller. For the controllers studied in this chapter,

this "model" is the KKT system that appears in bi-level scheme or the pseudo-inverse of the

Hankel matrix in the single-level scheme.

The crucial difference between data-driven control and model-based control lies in whether

it requires an explicit modelling/system identification procedure. In data-driven control, its

"model" is fully characterized by data and is implicitly encapsulated as a functional mod-

ule into the controller, thereby minimizing human effort and expert knowledge involved in

understanding the targeted system. Thus, we can make two statements. First, since there

is still a "model," data-driven control cannot outperform model-based control. Second, the

primary goal of data-driven control is to minimize human involvement, mainly by automating

the system identification procedure. Once the hypothesis model class is fixed, a data-driven

control scheme should make minimal assumptions so that the user can tailor their controller

based only on their preference without extra concern about the system responses.

It is worth mentioning that the feedback parametrization used in the single-level approach

(Section 1.2) can also be used in the bi-level setup. However, since it depends on the QR

decomposition of the numerically ill-conditioned Hankel matrices, it is numerically less

robust than the feedback control investigated in Section 1.3. For completeness, the implicit

feedback law and its numerical reformulation are included in the appendix.
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2 Nonlinear Prediction and Control

Motivated by the success of linear direct data-driven control presented in the previous chapter,

this chapter aims to extend those results to nonlinear systems. Rather than using the standard

linearization approach, this chapter employs the idea of lifting. Lifting-based methods reframe

a nonlinear problem as a linear one through nonlinear transformations. Therefore, the key

focus of this chapter is to learn and characterize these nonlinear transforms. We will explore

two different tracks: Koopman operator-based heuristics and reproducing kernel Hilbert space

(RKHS) based lifting. These two approaches share a similar mathematical concept by viewing

the evolution of a dynamical system as an evolution of the function evaluation. While the first

approach directly models the dynamics of the function evaluation, the second approach views

the states and inputs as a functional.

Outline

Due to the underlying difference between the approaches, we split this chapter into two

main sections, whose background knowledge are accordingly allocated at the beginning of

the corresponding sections (Section 2.1.1 and Section 2.2.1). In Section 2.1, a parametric

algorithm that learns a finite dimensional representation of the Koopman operator is first

summarized in Section 2.1.2. An optimization viewpoint of this algorithm is first introduced

in Section 2.1.2 to give a more intuitive understanding. In the following Section 2.1.2, the

mathematical reasoning behind this parametric scheme is studied via the scope of stochastic

processes. After the introduction of a parametric algorithm, its semi-parametric version based

on the Willems’ fundamental lemma is investigated in Section 2.1.3. This is our first heuristic

but natural extension of the Willems’ fundamental lemma. Derived from a dual viewpoint, an

RKHS extension of the Willems’ fundamental lemma is investigated in Section 2.2.
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2.1 Koopman Operator based Extensions

The Koopman operator enables the evolution of a nonlinear dynamic system to be represented

via linear dynamics, albeit of an infinite dimension. It has been used extensively for the analysis

of complex dynamic systems in fields such as fluid mechanics [95] and molecular physics [96]

and in recent years it has been proposed as an approach that allows for some linear design

tools to be used for nonlinear controller design [20, 97–100].

Central to this interest is the Dynamic Mode Decomposition (DMD) [101] algorithm and its

extensions (e.g. [102, 103]), which are data-driven methods that allow the identification of

the Koopman operator from data. Within DMD and its extensions, a lifting (or embedding),

in which a dictionary of feature maps the original state to a higher dimensional feature

space, uniquely characterizes the finite dimensional representation of a Koopman operator.

This dictionary of feature maps is normally assumed as a-priori knowledge, however, as the

dimension of the system increases, the number of feature maps that need to be considered

tends to increase exponentially. Even though there are methods which learn the feature maps,

e.g., [104–106], the learned maps are normally less interpretable. In this part, we will study an

inverse parametric learning algorithm, whose learnt feature maps are the posterior mean of a

Gaussian process.

2.1.1 Preliminary

Koopman Operator

We start by considering an autonomous, discrete-time nonlinear dynamical system

x+ = F (x) (2.1)

where F : M →M is the system update equation and M ⊆Rnx is the state space. Our goal in

this section is to demonstrate how the Koopman operator can be used to develop an infinite-

dimensional linear dynamic system that can be used to compute the state evolution of this

system.

Given a Hilbert space of smooth function F := {g |g : M → R ∈ C∞} endowed with inner

product 〈·, ·〉, coined ‘observables’, the Koopman operator [18, 107] applied to the observable

g ∈F is defined as

K g = g ◦F

The Koopman operator defines a new dynamical system in the function space F that governs

the evolution of the observables. As the Koopman operator is an operator on a function space,

K is in general infinite-dimensional, but critically it is linear even when the dynamics F are

non-linear. By definition, the Koopman operator is a composite operator, and can be viewed

as a shift operator as well. Regarding the fact of that the spectrum of a shift operator lie within
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a unit-circle and has been well-investigated [108], spectrum analysis is central to the research

of Koopman operator in control engineering. In particular, we call an observable φ ∈F an

eigenfunction associated with the eigenvalue λ ∈C if K φ=λφ. From this, we can see that the

eigenfunctions (or the linear combinations of the eigenfunctions) evolve linearly along the

trajectories of our nonlinear system (2.1)

φ(x+)=φ(F (x))=K φ(x)=λφ(x) . (2.2)

This leads to the key idea behind the Koopman operator: instead of tracking the state x of our

system, we track the evolution of a set of observables f along the state trajectories. Specifically,

given an observable g ∈ span
(
{φk }

)
with g =∑ck (g )φk , where the weights {ck (g )} are called

the Koopman modes of f , we notice that the evaluation of the observable at the current g (x)

is a linear function of the Koopman eigenfunctions evaluated at the current state

f (x)=∑ck ( f )φk (x) .

Its function evaluation at x+ is therefore:

f (x+)=∑λk ck ( f )φk (x) . (2.3)

Such evaluation motivates the dynamic mode decomposition (DMD) algorithm as well as the

extended DMD (EDMD) algorithm. We postpone the discussion about EDMD to Section 2.1.2.

In the rest of this chapter, we do not distinguish eigenfunctions and their linear combination,

as we only need the linear space spanned by them to determine the Koopman operator. With

a bit of abuse of notation, a function within this space will be denoted by φ(·).

Similar to the setup in discrete time dynamics, when a continuous time dynamical system:

ẋ = f (x)

is considered with f (x) : M → TxM , the Koopman operator is defined by:

K t g = g ◦ρ(x, t ) ,

where ρ(x, t ) denotes the flow at time t starting from x at time 0. It is worth mentioning that

the Koopman operator for continuous system is not necessarily densely defined [109], this

is typically the case for systems that are not forward complete [110]. We refer the interested

reader to [111] for more details, and we assume that the continuous Koopman operator exists

and compact, especially in Section 2.1.2.
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Subspace Identification

Subspace identification is a class of system identification methods that identify linear state

space models of the form:

xk+1 = Axk +Buk +wk (2.4)

yk =C xk +Duk + vk ,

Subspace identification is a class of system identification methods that identify linear state

space models of the form: where yk ∈ Rny , xk ∈ Rnx , uk ∈ Rnu , wk ∈ Rnx and vk ∈ Rny are the

system outputs, states, control inputs, system noise and measurement noise. In order to

stay close to the main topic of this thesis, the interested readers are referred to [112, 113] for

an overview of subspace identification techniques. Most subspace identification methods

fall in the unifying framework proposed by Van Overschee and De Moor [114]. In general,

these algorithms obtain the Kalman filter states from input-output data, and then the state

space model is computed by optimization with respect to the special structure in the filtering

matrices. The key component of most of the subspace identification methods is the estimation

of the extended observability matrix:

ΓL =

⎡⎢⎢⎢⎢⎣
C

C A
...

C AL−1

⎤⎥⎥⎥⎥⎦ . (2.5)

In Section 2.1.2, the sequential PARSIM algorithm [115] is used.

Gaussian Processes

Gaussian process (GP) models are constructed from classical statistical models by replacing

latent functions of parametric form (e.g. linear functions, truncated Fourier or Wavelet ex-

pansions, multi-layer perceptrons) by random processes with Gaussian prior. A Gaussian

Process GP (μ,k) is an infinite-dimensional distribution over the space of smooth real-valued

functions g : RN → R, specialized by a priori mean μ : RN → R and covariance functions

k : RN×N →R ([116]). k(·, ·) is called the kernel function, and it is stationary when k(x, y) is a

function of x− y . When a kernel is stationary, the underlying stochastic process is invariant to

translation.

By definition, a Gaussian process is a second-order stochastic process whose function evalua-

tion at a finite set of its index set [x1, x2, x3 . . . , xn] follows a multi-variate Gaussian distribution

N (μX ,KX X ), where μX = [μ(x1), . . . ,μ(xn)]T and KX X = [k(xi , x j )]n
i , j=1. In general, K A,B de-

notes the cross-covariance between set A and B . If the measurement is contaminated by

Gaussian observation noise, p(y(x)|g (x))∼N (g (x),σ2) with σ2 as measurement noise vari-
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ance, then the predictive distribution at any point x∗ ∈RN given data D = {xi , yi }n
i=1 is

p(g (x∗)|D)∼GP (μg |D(x∗),kg |D(x∗, x∗))

μg |D(x∗)=μ(x∗)+Kx∗X K̂−1
X X y

kg |D(x∗, x∗)=Kx∗x∗ −Kx∗X K̂−1
X X K T

x∗X

(2.6)

where K̂X X =KX X +σ2I and y = [y1, y2, . . . , yn]T . This defines a scalar-valued regression, for

vector-valued regression, various methods have been proposed, such as in [117–119]. For

simplicity, we will do vector-valued regression via a scalar-valued regression in each dimension

in this thesis.

Gaussian process is a non-parametric statistical model, and it is widely used in controller

design. Particularly, it is used to model any unknown ingredients within a dynamical system.

This unknown ingredient can be the nonlinear part of a system model [120], or the response of a

chemical process [121]. Interested readers are referred to [7] for GP based control applications.

Differential Parametric Quadratic Programming

Sensitivity analysis investigates the continuity of a parametric optimization problem. In most

cases, it is only able to guarantee outer continuity of the optimal solution set and upper semi-

continuity of the objective function [122]. Under a strong assumption of linear constraint

qualification and second order sufficient condition, the implicit function theorem [123] can be

applied to the KKT system to derive the partial derivative between the optimal value function

and the parameter [124]. This idea has been applied to deep learning [125] and reinforcement

learning [126]. It is noteworthy that the optimal solution set is not differentiable even for

linear conic programming [127]. On the contrary, the optimal value function is smoother [128],

and hence more frequently used in differential programming. In this thesis, we only apply

the result in parametric convex programming, whose optimal value function is lower semi-

continuous [129, Theorem 1.17]. When a general nonlinear parametric programming is

considered, the directional derivative of its optimal value function exists [130, Thoerem

1]. Furthermore, this function is lower semicontinuous under the assumption of uniformly

boundedness [131, Thoerem 5].

In this chapter, we consider the parametric quadratic programming(QP), the interested reader

can refer to [132] for the case of linear conic programming. We use subscript q to denote the

parameter used in QP and to avoid confusion. Consider a parametric QP, Q(eq ) := eq → z∗q
with parameters {Qq ∈S+, , qq Hq , hq , Eq }:

min
zq

1

2
zT

q Qq zq +qT
q z

s.t. Hq zq � hq ,Eq zq = eq

(2.7)
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The KKT conditions for this QP are:

Qq z∗ +qq +H T
q λ∗ +E T

q ν
∗ = 0

diag
(
λ∗
)

(Hq z∗ −hq )= 0

Eq z∗q −eq = 0

(2.8)

where z∗q ,ν∗,λ∗ are the optimal primal and dual variables. Then the differentials of the KKT

conditions can be computed by:⎡⎢⎣ Qq H T
q E T

q

diag(λ∗)Hq diag(Hq z∗ −hq ) 0

Eq 0 0

⎤⎥⎦
⎡⎢⎣ d zq

dλ

dν

⎤⎥⎦

=−

⎡⎢⎣ dQq z∗q +d qq +d Hqλ
∗ +dE T

q ν
∗

diag(λ∗)d Hq z∗q −diag(λ∗)db

dEq z∗ −deq

⎤⎥⎦
(2.9)

The derivatives of z∗ with respect to the parameters (Qq , qq , Hq ,hq ,Eq ) and the function

input f are given by the solution to the linear system defined in Equation (2.9). For example,

the solution d z of (2.9) gives the result of
∂z∗q
∂Qq

if we set dQq = I and the differentials of other

parameters to 0. The gradient of optimal value L(z∗) with respect to Q is calculated accordingly

by chain-rule as
∂L(z∗q )

∂z∗q

∂z∗q
∂Qq

.

2.1.2 Parametric Approach

Regarding the dynamical equation defined by the eigenfunctions (2.3), choosing the function

space spanned by {φk (·)}k is central to the spectrum analysis in Koopman operator theory.

When finite dimensional approximation of the Koopman operator is considered, , we assume

that there is a finite number of eigenfunctions, written in matrix form as Φ=
[
φ1 φ2 . . .

]T
.

As the problem is now finite, we can write the Koopman operator as a matrix K =K and the

evolution of the eigenfunctions along the system trajectory as

Φ(x+)=KΦ(x)

The observables, or performance outputs, are then a linear function of Φ(x)

g (x)=CΦ(x)

where g :=
[

g1 g2 . . .
]T

and C is a matrix of Koopman modes. If the eigenfunctions are

assumed to lie within a linear space spanned by a dictionary of basis functions, the learning

of K and C reduces to linear regression, which is termed the EDMD algorithm. However,

when a-priori knowledge is not available, selection of the basis functions becomes non-trivial.

In this part, without using the basis functions, we will instead learn the space spanned by
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eigenfunctions directly.

Setting the stage

We define a finite set of observables, called the ‘performance outputs’, {gi }⊂F , which define

the outputs of interest for the targeted dynamical system. Meanwhile, a sequence of state/out-

put measurement D = {xi , yi := g (xi )} is available for this learning procedure. Note that there

is no need to have the explicit form of functions g , a set of its function evaluation at {xi }i is

sufficient for this learning procedure. Therefore, they can be some sensor readouts or some

user-defined nonlinear/linear mappings evaluated at {xi }.

In the following two sections, we are going to derive the following algorithm:

Algorithm 2 Inverse Parametric Learning of Koopman Operator

Input:D = {xi , yi := g (xi )}, approximation order j
Output: K , {φk }

1: Solve SVD of the Hankel matrix HL(y)=UΛV :=UΦ.
2: K =U †

1:end−ny ,1: jUny+1:end ,1: j , C = u1:ny ,1: j

3: for k = 1:j do
4: φk = argmingk (·)∈F

∑
i‖Φk,i − gk (xi )‖

5: end for

Before delving into its development, the most interesting point of this algorithm is that the

finite approximation K and its Koopman mode C are first learnt before the recovery of the

lifting/feature maps. Therefore, we term this algorithm inverse parametric learning.

Optimization Viewpoint

The learning problem of the finite dimensional approximation of a Koopman operator can be

posed nonlinear least square regression:

min
K ,C ,Φ

∑
i
‖yi −CΦ(xi )‖2+‖Φ(xi )−KΦ(xi−1)‖2 (2.10)

s.t. Φ ∈F

If the eigenfunctions Φ are assumed to be in the span of a finite dictionary of known basis

functions, then (2.10) reduces to a convex least square regression problem. This is the extended

dynamic mode decomposition (EDMD) [102]1 approach, which has been shown to be effective

if a good dictionary of functions Φ is available. However, once the dictionary of feature maps

are fixed, the Koopman mode and Koopman operator are learned separately, the algorithm 2

1If the basis functions are identity functions of measurements sequence preceding the current time step, then a
DMD approach is recovered.

59



Outline

shows that all three can be learned from data. We first state our assumption:

Assumption 3. There is a class of universal approximator U ⊂F such that for ∀ g ∈F and

∀ε> 0, ∃Φ ∈U such that ||g −Φ||∞ < ε.

Assumption 3 implies that U is dense in F . We note that Gaussian process regression and

infinitely-wide neural networks are examples of such classes of functions. By this assumption,

optimization problem (2.10) is equivalent to the following optimization problem almost

everywhere

min
K ,V ,{x̂},Φ

∑
i
‖yi −C x̂i‖2+‖x̂i −K x̂i−1‖2 (2.11)

s.t. x̂i =Φ(xi ) for all xi

Φ ∈U

This optimization problem admits a relaxation2 as:

min
K ,V ,{x̂},Φ∈U

∑
i

1︷ ︸︸ ︷
||yi −C x̂i ||2+||x̂i −K x̂i−1||2 (2.12)

+
2︷ ︸︸ ︷

||x̂i −Φ(xi )||2

As indicated in Assumption 3, the second component of this optimization problem admits an

arbitrarily small error and therefore this relaxation is tight. Hence, the optimization problems

can now be separated into two problems, which can then be solved accordingly.

Problem 1 is solved first,

min
K ,V ,{x̂}

∑
i
||yi −C x̂i ||2+||x̂i −K x̂i−1||2 (2.13)

which produces a lifted state sequence x̂i , as well as the matrices defining the linear dynamics

K and C .

Problem 2 is then solved in order to find a mapping from the true system state xi to the lifted

system state x̂i at the sampled points. The optimization is a standard regression problem.

min
Φ∈U

∑
i
‖x̂i −Φ(xi )‖2 (2.14)

In general, the key of this separation method is that regardless of the optimal state sequence

generated in Problem (2.13), the optimal value of Problem (2.14) will be arbitrarily close to

zero as a result of Assumption 3. As a result, the loss contributed by sub-optimization Prob-

2Relaxation means that every feasible solution in optimization (2.12) admits a feasible solution in optimization
(2.11) by enforcing x̂i =Φ(xi )

60



2.1 Koopman Operator based Extensions

lem (2.13) dominates the loss from sub-optimization Problem (2.14), such that Problem (2.14)

is negligible in the original optimization Problem (2.12). Therefore, without loss of generality,

we are able to apply any flexible regression algorithms that meet this requirement. In particu-

lar, the sub-optimization Problem (2.14) will be solved by Gaussian process regression in this

thesis3.

Remark 10. It is worthwhile noting that, when the dictionary of feature maps coincide with

U , the optimal solution map from data to the {Φ, K , C } generated by EDMD is isometric to the

solution map generated by the proposed method. The proposed algorithm is still advantageous

over the EDMD method with less a-priori knowledge needed, since this algorithm only requires

the existence of this function space without specifying its explicit structure.

Problem (2.13) is equivalent to minimizing the mean squared error of the noise terms wk and

vk in the following model
x̂k+1 =K x̂k +wk

yk =C x̂k + vk
, (2.15)

which indicates that we can apply a subspace identification method to identify the corre-

sponding matrices K , C and the states {x̂}. Regarding an autonomous system, the subspace

identification algorithm reduces to SVD, which recovers the first two steps in the inverse para-

metric learning algorithm 2. Even though the use of subspace identification naturally gives

rise to an extension to system with control input, we postpone this discussion to Section 2.1.2

for the sake of clarity.

Remark 11. In general, the learned feature maps are not necessarily the eigenfunctions, however,

by diagonalization of the matrix K , we can recover the eigenfunctions, eigenvalues and the

corresponding Koopman modes of the performance outputs [133]. Moreover, it is noteworthy

that the state x is a very general concept, one could use previous control inputs or even the value

function of an MPC controller to compose the states.

Connection Between Koopman Operator and Observability

Before we derive the mathematical rationale behind the inverse parametric learning algorithm,

we would take a detour first to develop a better understanding about the Koopman based

learning problem. Firstly, the inverse parametric learning algorithm implies a strong con-

nection between the Koopman operator and observability. To see this, we pose the following

question:

Why do we learn these eigenfunctions but not the others?

3Even though exact interpolation is guaranteed when the measurement noise is assumed to be zero, overfit
usually deteriorate the generalization performance of the learnt model. Therefore, a non-zero measurement noise
is used in our implementation.
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The eigenfunctions of the Koopman operator enjoy a special algebraic structure, in particular,

the eigenfunctions that vanish nowhere form an Abelian group [133]. Specifically, if φ1,φ2

are eigenfunctions with eigenvalues λ1,λ2 respectively, then φ1φ2 is also an eigenfunction

with eigenvalue λ1λ2. Based on this observation, the eigenfunctions related to an unstable

mode or to a slow dynamic mode should dominate the learning problem, which is also the

reason why Dynamic Mode Decomposition (DMD) tends to be numerically ill-conditioned.

In order to learn the family of eigenfunctions, [134] proposed to construct a large family of

possible eigenfunctions. However, we argue that instead of learning all the possible observable

dynamics, we should select the eigenfunctions that are most informative with respect to

‘performance outputs’, because those output are of special interest. For example, if we control

the temperature of a room, then we should learn the eigenfunctions that could properly

reproduce the temperature dynamics but not the others. We thereby propose to use a well-

developed concept in control science, observability, to quantify/regularize and to select the

possible eigenfunctions.

For the sake of simplicity, we elaborate on this idea with a discrete-time, autonomous dynami-

cal system. Assume that {φk }K
k=1 is the set of eigenfunctions with corresponding eigenvalues

{λk }. Let f denote an observable that we focus on, and let its Koopman mode corresponding

to φk be vk , then

K i g = ĈΛiΦ(x), (2.16)

where Ĉ = [c1,c2, . . . ,cK ] and Λ = diag(λ1,λ2, . . . ,λK ) . Given a sequence of Ni evaluations

yi = f (xi ) of the observable f along the state sequence {xi }, we have⎡⎢⎢⎢⎢⎣
y0

y1
...

yNi

⎤⎥⎥⎥⎥⎦= Γ̂Φ(x0)=

⎡⎢⎢⎢⎢⎣
ĈΛ0

ĈΛ1

...

ĈΛNi−1

⎤⎥⎥⎥⎥⎦Φ(x0). (2.17)

Since the value of the eigenfunctions are fixed for a fixed x0, the dynamics of the observable is

determined by Γ̂. This matrix leads to two observations:

1. The matrix Γ̂ is exactly an extended observability matrix appearing in equation (2.5).

2. The dynamics of an observable depends both on the Koopman mode and the eigen-

values. Even though an eigenfunction may have a large eigenvalue, if it has a small

Koopman mode with respect to the observable g (i.e. this eigenfunction has lower ob-

servability in g ), then the dynamics corresponding to this eigenfunction is less relevant

to the outputs that we would like to predict.

The observations above suggest an answer to the question we posed at the beginning of this

section. Because the quality of the reconstruction of the performance outputs are considered

in the original optimization problem (2.10), the eigenvalues learned from the proposed algo-

rithms reflect a balance between state evolution and performance outputs reconstruction.
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The key piece of a subspace identification method is exactly the estimation of the extended

observability matrix, from which the most observable components are extracted by singular

value decomposition (SVD).

Stochastic Process Viewpoint

Even though it is intuitive to develop the proposed algorithm 2 via the optimization scope, the

mathematical object that guarantees the functionality of the proposed algorithm becomes un-

clear. In this part, we will justify the mathematical reasoning behind the proposed algorithm 2

via the scope of stochastic process. Meanwhile, we are able to quantify model uncertainty of

the learnt model. Unlike the common concept of uncertainty/noise encountered in control

science, the model uncertainty in this part is caused by our limited knowledge of an unknown

system and by the use of a finite amount of data, even though the system can be described

by deterministic dynamic equations. Problems in the same vein are broadly investigated in

Bayesian learning [135], and find various applications in control science such as safe learning

( see e.g. [136]).

In this part, we will establish the theory in which a Koopman operator evolves a distribution

of observables instead of a specific observable. We first make the same assumption as in [137].

Assumption 4. The state space M ⊂Rn is compact and the Koopman operator is therefore also

compact.

Similar to other GP based methods, we further assume that

Assumption 5. The underlying continuous time dynamics f is deterministic.

Following the Bayesian learning procedure, we assume an observable has an a priori distribu-

tion g ∼GP (μ,k).

Corollary 2. If an observable g ∼GP (μ,k), then the Koopman operator applied to g is also a

Gaussian process such that K t g =GP (K tμ,K t k(·, ·))

Proof. The Koopman operator is a linear operator. As a Gaussian process is closed under linear

operators [116, 138], K t g is a Gaussian process. Since a Gaussian process is fully characterized

by its second order statistics [139], its mean and kernel functions can be calculated as follows:

E(K t g (x))= Eg (g (ρ(x, t )))

=
∫+∞
−∞

f (ρ(x, t ))p(g (ρ(x, t ))= ξ))dξ

=μ(ρ(x, t ))=K tμ(x),

(2.18)
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E((K t g (x)−E(K t g (x)))(K t
g (y)−E(K t g (y))))

= Eg ((g (ρ(x, t ))−μ(ρ(x, t )))(g (ρ(y, t ))−μ(ρ(y, t ))))

= k(ρ(x, t ),ρ(y, t ))

= 〈k(ρ(x, t ), ·),k(·,ρ(x, t ))〉
= 〈K t k(x, ·),K t k(·, x)〉 =: K t k(x, y)

(2.19)

where Eg denotes expectation with respect to g . The first equality in Equation 2.18 and 2.19

follows Assumption 5. By linearity of the Koopman operator, K t k(·, ·) is positive definite and

therefore a kernel function4. �

Corollary 2 leads to the following corollary:

Corollary 3. If an observable g ∼GP (μ,k), then the trajectory of this observable {g (ρ(x, t ))} is

a Gaussian process.

The proof of Corollary 3 is simple because { f (ρ(x, t )} fulfils the definition of a Gaussian process.

More specifically, any finite snapshots of a GP observable trajectory forms a Gaussian random

vector. In the rest of this paper, we denote f (ρ(x, t )) as f (t ) and ρ(x, t ) as x(t ) for the sake of

compactness. We refer to f ∼GP (μ,k) as a GP observable and { f (t )} as the trajectory of the

GP observable.

Up to this point, we have shown that, when an uncertain observable modelled by a Gaussian

process, the trajectory of measurement/observation generated by this observable remains

a Gaussian process not only in its coordinate (i.e. index set) defined by ρ(·, t) but also in

the direction of time t . As the coordinate defined by ρ(·, t ) is not necessarily Cartesian, the

Koopman operator actually warps the state space M by diffeomorphism to a new manifold

on which the observable remains Gaussian. In what follows, we will show that such warping

(i.e. diffeomorphism) can be approximated by a finite dimensional linear transformation. To

justify this learning process, we assume:

Assumption 6. The trajectory of a GP observable is stationary.

Even though we have established our theory based on a continuous time setup, the available

data only have finite snapshots along this trajectory. In particular, we assume that the data

D := {x, yi := g (xi )} is sampled with a fixed sampling time Ts . The optimality of the inverse

parametric learning algorithm 2 is summarized as:

Lemma 5. Given the singular value decomposition (SVD) of HL(y)=UΛV with columns of U

and rows of V ordered by decreasing singular value, the optimal finite order approximation of

4This notation is not rigour, as it may be confused with the commutation between the bilinear form and the
expectation operator. However, as the idea is clear from the context, we keep this notation to avoid the introduction
of the Hilbert-Schmidt operator [140, p.177].
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the Koopman operator K of order j in the mean-square-error sense is

K =U †
1:end−ny ,1: jUny+1:end ,1: j

The a posteriori distribution of g is

g ∼U [1 : ny ,1 : j ]
[
φ1 φ2 . . . φ j

]T
,

where φk ∼GP (μ,k|{φk (xi )=Φk,i }) and Φ=ΛV

As the size of the data set is finite, the time interval of the data is accordingly finite. To enable

the proof of Lemma 5, we first review the Karhunen–Loève theorem, which is later used to

decompose the trajectory of a GP observable.

Theorem 2. (Karhunen–Loève theorem ([141]))

A centred5 stochastic process {St }t∈[0,Te ] admits a decomposition

St =
+∞∑
k=0

φk ek (t ),

where φk are pairwise uncorrelated random variables and ek (·) are continuous real-valued

orthonormal basis functions in L2[0,Te ]. In the case of a zero-mean Gaussian process, φk are

independent centred Gaussian random variables.

Due to Assumption 4, the system evolves linearly in infinite dimensional feature space within a

compact set, zeros and centred limit cycles are therefore the only possible equilibrium points.

Hence, a GP observable is centred and Theorem 2 is applicable to the trajectory of a GP

observable. In the following, we show the proof of Lemma 5.

Proof. proof of Lemma 5

By Corollary 3 and Assumption 6, we can apply Theorem 2 to a trajectory of a GP observable

Y (t )=
∞∑

k=0
φk ek (t ). (2.20)

Since X are the states of the system, X is the full statistic of the system dynamics. Hence, φ is

σ(X )-measurable, and there exists a Lebesgue measurable function mapping X to φ [142]. We

can therefore rewrite Equation (2.20) as

Y (t )=
∞∑

k=0
φk (X (0))ek (t ).

5Meaning that the process is zero-mean.
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Following Assumption 6, we get

Y (t )=
∞∑

k=0
φk (X (0))ek (t )= g (X (t ))∼GP (K tμ,K t k) .

Y (t ) is a realization of the stochastic process K t g . By Corollary 2, K t g is a Gaussian process,

and therefore its decompositionφk (X ) is a Gaussian process6. Applying the Koopman operator

to ek (·), we get

Y (t )=
∞∑

k=0
φk (X (0))ek (t )

=
∞∑

k=0
φk (X (0))K t ek (0),

(2.21)

Substitute sampling time to (2.21), we get

yi =
∞∑

k=0
φk (xi )ek (i Ts)

=
∞∑

k=0
φk (xi )K i Ts ek (0).

(2.22)

For the sake of clarity, we define the power of discrete-time Koopman operator as

K̃ n g = g (F ◦F · · · ◦F︸ ︷︷ ︸
n

(·)),

where F denotes the discretization of the continuous dynamics f with sampling time Ts .The

Hankel matrix of measurements can be rewritten as a discrete-time system regarding Assump-

6The proof that an uncorrelated decomposition of a Gaussian process only consists of Gaussian processes can
be found in [143, 144].
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tion 6,

HL(y)=⎡⎢⎢⎢⎢⎣
∑+∞

k=0φk (x(T1))ek (0) . . .
∑+∞

k=0φk (x(Tn−m+1))ek (0)∑+∞
k=0φk (x(T1))ek (Ts) . . .

∑+∞
k=0φk (x(Tn−m+1))ek (Ts)

...
. . .

...∑+∞
k=0φk (x(T1))ek (LTs −Ts) . . .

∑+∞
k=0φk (x(Tn−m+1))ek (LTs −Ts)

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑+∞
k=0φk (x(T1))ek (0) . . .

∑+∞
k=0φk (x(Tn−m+1))ek (0)∑+∞

k=0φk (x(T1))K̃ ek (0) . . .
∑+∞

k=0φk (x(Tn−m+1))K̃ ek (0)∑+∞
k=0φk (x(T1))K̃ 2ek (0) . . .

∑+∞
k=1φk (x(Tn−m+1))K̃ 2ek (0)

...
. . .

...∑+∞
k=0φkK̃ L−1ek (0) . . .

∑+∞
k=0φk (x(Tn−m+1))K̃ L−1ek (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
e1(0) e2(0) . . .

K̃ e1(0) K̃ e2(0) . . .
...

...
...

K̃ L−1e1(0) K̃ L−1e2(0) . . .

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

E

⎡⎢⎢⎣
φ1(x(T1)) . . . φ1(x(Tn−m+1))

φ2(x(T1)) . . . φ2(x(Tn−m+1))
...

...
...

⎤⎥⎥⎦
︸ ︷︷ ︸

Φ

.

[145] showed that the numerical finite realization of Karhunen–Loève decomposition is equiv-

alent to the singular value decomposition (SVD), HL(y) =UΛV , with E =U and Φ = ΛV .

Meanwhile, if U and V is ordered by decreasing singular value, then the optimal approxima-

tion in the mean-square-error sense up to order j is spanned by the first j dominant singular

values and their columns/rows in U /V . Therefore, the corresponding finite order approxima-

tion of Koopman operator is K =U †
1:end−ny ,1: jUny+1:end ,1: j . This is sufficient to conclude the

proof. �

To interpret the inverse parametric learning algorithm 2 in a more intuitive way, we first

denote the i th column of U as Ui . U1 captures the most dominant dynamics presented in the

column space of HL(y). In control science language, U1 is the most observable mode in the

extended observability matrix. However, as we only have access to finitely many trajectories,

the lifting φ1 which maps state X to this mode U1 cannot be captured completely. An a-priori

Gaussian process is therefore used to model a distribution of this lifting. In particular, Φi , j

is the realizations of all the i th most dominant GP observable in the j th GP observable

trajectory. The a priori Gaussian process is then refined to its posterior distribution, which is

still a Gaussian process.

Extensions to Systems with Inputs

As discussed in Section 2.1.2, the correspondence between SVD and subspace identification

hints a natural extension of the Koopman operator to systems with control inputs. When a
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discrete time dynamics x+ = F (x,u) is considered, the corresponding model is assumed to be:

K t
u g := g ( f (·))+Bu ,

where B : Rnu →H is a linear operator. This is a heuristic used in [20], and has been shown to

provide good performance in some specific models. It is vital to remember that, this extension

to system with control inputs is merely a heuristic. First, this models implies the eigenvalue of

the dynamics is invariant to the amplitude of the control input, which holds only when the

system is linear. Secondly, even for a linear system, analysis/modelling of system behaviours

based on its open-loop eigenfunction is more or less redundant for control engineering, as

they can be varied by the closed-loop control. If this extension works, it suggests that the

underlying dynamics can be well approximated by linear models. Beyond this extension, there

are other extension such as [99, 146], and to the best of this author’s knowledge, all these

extensions ends up with a nonlinear dynamics, which negates the benefit/motivation behind

the use of the Koopman operator. Hence, we stick to the natural input-affine extension in

this thesis. With the aforementioned remark in mind, we summarize a finite dimensional

approximation of this extension by:

Φ(xk ) =KΦ(xk )+Buk

yk =CΦk +Duk .
(2.23)

To learn this model, the steps 1 and 2 in Algorithm 2 is replaced by a subspace identification

routine. Meanwhile, to determine the order of the system, dubbed nφ, one might choose

different methods, such as cross validation [147] or complexity criteria [148]. In subspace

identification, we are able to choose different weightings in Problem (2.13) to achieve an

optimal realization up to order nφ [149], which is also the optimal finite approximation of

observable dynamics up to order nφ. Following Section 2.1.2, uncertainty of the lifted initial

state can be quantified by the posterior distribution of a Gaussian process regressor, which

gives:

Φ0 =GP (μg |D(x),kg |D(x0)) state space to observables

Φk+1 =KΦk +Buk observables dynamics

yk =CΦk +Duk observables to measurements.
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As Φ0 follows a Gaussian distribution, following stochastic MPC is tractable via convex pro-

gramming,

min
u

max
w

nh∑
i=1

yT
i Q yi +uT

i−1Rui−1

s.t. Φ0 ∼GP (μg |D(x),kg |D(x0)

Φ(xk )=KΦ(xk )+Buk

yk =CΦk +Duk

P (yi ∈Y )≥ 1−ε,P (ui ∈U )≥ 1−ε, i = 0,1. . .nh ,

where Q and R are penalty matrices for outputs and control inputs, nh is the prediction

horizon. U ,Y denotes the feasible sets for control inputs and measurements separately.

Even though w lies in feature space and cannot be measured, the moving horizon scheme of

stochastic MPC only uses the open-loop first step. Hence, following standard causal feedback

law in predictive control can be applied:

⎡⎢⎢⎢⎢⎣
u0

u1
...

unh−1

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

G11 0 0 . . . 0

G21 G22 0 . . . 0
...

...
. . .

...

Gnh 1 Gnh 2 GH3 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(

⎡⎢⎢⎢⎢⎣
y1

y2
...

ynh−1

⎤⎥⎥⎥⎥⎦−
⎡⎢⎢⎢⎢⎣

ȳ1

ȳ2
...

ȳnh−1

⎤⎥⎥⎥⎥⎦),

where ȳi represents the nominal trajectory without uncertainty.

Numerical Results

Learning by demonstration enables robots to imitate human-level control by providing demon-

strations ([150]). A popular method is proposed in [151], which is based on Gaussian mixture

models (GMM). This method ensures global stability by enforcing a Lyapunov condition.

However, this approach is not scalable with respect either to the dimension of the state space

or to the amount of data.

In this validation test, the algorithm is applied to learn the dynamics of hand-written char-

acters. We assume that drawing a character is governed by an autonomous, discrete-time

dynamical system such that the location of the pen tip x evolves according to xk+1 = F (xk ).

We apply the proposed method to learn these dynamics. The effectiveness of the algorithm is

shown in Figure.2.1 and Figure.2.2, whose data comes from [151] with 3 times demonstrations

shown in the corresponding figures. All the sample curves start from the same initial point

but with different initial states sampling in the feature space. We notice that in both cases, the

uncertainty becomes larger when the curves turn, which is aligned with our intuition.
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]

Estimated vector field

Demonstration

Samples

Mean

Figure 2.1: Learned 18th order dynamics of the character ‘r’

In this section, we apply the proposed method to identify the Koopman operator of a bilinear

model of a DC motor [152].

ẋ1 =−(Ra/La)x1+ (km/La)x2u+ua/La

ẋ2 =−(B/J )x2+ (km/J )x1u−τl /J

y = x2

where x1 is the rotor current, x2 is the angular velocity and the control input u is the stator

current. The parameters are La = 0.314, Ra = 12.345, km = 0.253, J = 0.00441, B = 0.00732,

τl = 1.47, and ua = 60. This model is also used in [20], where 103 basis functions are used to

model the feature maps based on EDMD algorithm. However, by using the inverse parametric

learning algorithm 2, only 30 feature maps are needed to reproduce a good model, which

demonstrates a much higher scalability than the EDMD algorithm. The validation of the model

is shown in Figure 2.3, where also a local linearization of the model is used for comparison.

We run tests with 100 randomly sampled initial states and run a 1.5 second simulation with

a random control input sequence. The root-mean-square error (RMSE) for the mean of the

model learnt by the inverse parametric learning algorithm 2 is 0.021 while the RMSE for the
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Estimated vector field

Demonstration

Samples

Mean

Figure 2.2: Learned 22th order dynamics of the character ‘w’

model from [20] is 0.137 for the same initial states. In conclusion, our proposed method has

much higher scalability and performance than current EDMD approaches. It is noted that the

mean of the proposed method can properly track the real output, while its uncertainty evolves

properly with real outputs always included. The closed-loop stochastic controller proposed in

Section 2.1.2 is deployed to control the angular velocity x2. The prediction horizon nh is set to

10, Q and R are set to 1 and 0 respectively. The constraints are u ∈ [−1,1] and y ∈ [−1,1], where

y is the angular velocity. The experiments are shown in Figure 2.4 and 2.5.

2.1.3 Semi-parametric Approach

Recall the lifted dynamics of the Koopman operator and its heuristic extension to systems

with control inputs (2.23), it is natural to apply the Willems’ fundamental lemma in the

feature space to characterize the predictive trajectory without learning the explicit finite order

representation of the Koopman operator. What is left to learn is the feature space within which

the dynamics evolves linearly. This is the key idea behind this part.

Without loss of generality, we consider a system with control input and accordingly follow the

extension studied in Section 2.1.2. By applying the Willems’ fundamental lemma, a prediction
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Figure 2.3: Comparison of the open-loop prediction given Koopman operator and the real
state evolution

problem from Section 1.3.1 is reformulated to:

ypr ed =HL,pr ed (yd)g (w̃pr ed ) (2.24a)

g (w̃pr ed ) ∈argmin
gl ,σl

1

2
‖σl‖2+ ηg

2
‖gl‖2

s.t.

⎡⎢⎣ Φθ(xd)

HL,i ni t (ud)

HL,pr ed (ud)

⎤⎥⎦gl =

⎡⎢⎣φθ(x0)

ui ni t

upr ed

⎤⎥⎦ , (2.24b)

where the lifting functionφθ(·) is parametrized by θ. The finite order parametric representation

of the Koopman operator (i.e. K , B , C , D in (2.23)) is not learned, hence we term this learning

method a semi-parametric approach. By the minimization of the prediction error ‖ypr ed −
yd,pr ed‖ and by the use of differential parametric quadratic programming (Section 2.1.1),

the parameter in Φθ(·) can be trained and optimized by gradient descent. In this case, the

lifting/feature maps can be modelled by any differential functions, including neural networks.

When a neural network is used, the learning of this model can make use of the power learning
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Figure 2.4: Angular velocity of the controlled motor

toolboxes from the machine learning community, such as Pytorch [153].

Numerical Reuslts

We firstly compare the control algorithm with the algorithm Koopman operator-based MPC

controller (K-MPC) proposed in [20] by controlling a bilinear model of a DC motor. [154]

ẋ1 =−(Ra/La)x1− (km/La)x2u+ua/La

ẋ2 =−(B/J )x2+ (km/J )x1u−τ1/J

y = x2

where x1 is the rotor current, x2 the angular velocity an the control input u is the stator current

and the output y is the angular velocity. The parameters are La = 0.314,Ra = 12.345,km =
0.253, J = 0.00441,B = 0.00732,τ1 = 1.47,ua = 60. The physical constraints on the control

input are u ∈ [−1,1].

We use 40 trajectories with time horizon 0.25s to construct a mosaic Hankel matrix. All

trajectories are randomly initialized on the unit box [−1,1]2. The control input that is used to
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Figure 2.5: Control input from GP-based Koopman closed loop robust MPC

generate the dataset is randomly sampled from the uniform distribution over [−1,1]. Finally,

we choose 40 thin plate spline radial basis function as lifting functions. The centers of these

lifting functions are selected randomly within [−1,1]3. Since the system states are not directly

measurable, we construct the state by concatenating the current measurement with it one-step

backward measurement. Hence, we have C = [1,0, . . . ,0], and we choose Q =QNp = 10, R =
0.01. The prediction horizon is set to N = 10 with the input/output constraint u ∈ [−1,1], y ∈
[−0.4,0.4].

We benchmark the controller with a parametric Koopman based MPC (K-MPC) proposed

in [20], where the controller runs in closed-loop for 3 seconds. The results are plotted in

Figure 2.6 and 2.7, from which we can see that both controllers are capable of following the

reference without constraint violation. The control input are not strictly the same between

these two controllers, the input generated by the semi-parametric model vibrates a bit round

the discontinuous points along the reference trajectory.

Our next simulation is to control the nonlinear Korteweg–de Vries(KdV) equation which

models the propagation of acoustic waves in aplasma or shallow-water wave [155]. The
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Figure 2.6: Feedback control input of a bilinear motor

Figure 2.7: Angular velocity of a bilinear motor
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equation is given as:

∂y(t , x)

∂t
+ y(t , x)

∂y(t , x)

∂x
+ ∂3 y(t , x)

∂x3 = u(t , x)

where y(t , x) is the unknown function and u(t , x) the control input. The state is bounded by

x ∈ [−π,π], which is discretized into 128 points. The sampling time of the data is 0.02 seconds.

The input is assumed to be of the form u(t , x)=∑3
i=1 ui (t )vi (x) where vi consists of 3 spacial

basis functions: vi (x)= e−25(x−π/2)2
with c1 =−π/2, c2 = 0, c3 =π/2. The input is constrained

to [−1,1]. To generate the data and to run the closed-loop simulation, the states are initialized

by a convex combination of 3 fixed spatial profiles y1
0 = e−(x−π/2)2

, y2
0 = −si n2(x/2), y3

0 =
e−(x+π/2)2

. We choose the states itself, the elementwise square of the state, the elementwise

product of the states with its periodic shift as the lifting functions. The objective is set by

Q = I , R =O, with the prediction horizon nh = 5. We collect 63 I/O trajectories to construct all

the Hankel matrices.

Figure 2.8: Feedback control input of KdV

2.2 RKHS based Extensions

From Section 2.1.2, we learn the fact that the extension of the Willems’ fundamental lemma

based on the Koopman operator theory is heuristic. At the same time, we have observed that

the use of lifting has been a great success in autonomous system. Then we may ask:

Is there another lifting based viewpoint to extend nonlinear dynamics to linear dynamics?
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Figure 2.9: Tracking result

This part will give another possible mathematical framework without resorting to the Koopman

operator theory.

2.2.1 Reproducing Kernel Hilbert Space

Definition 2. [156] A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert space

of functions from X to R such that for each x ∈ X , the evaluation functional Ex g := g (x) is

bounded.

Given an RKHS H , the Riesz-representation theorem [157] guarantees that each x ∈ X corre-

sponds to a unique kx ∈H such that 〈g ,kx〉H = g (x), where 〈·, ·〉H denotes the inner product

defined in H . It is self-dual, and its dual space H∗ is the space of linear functional over H .

Evaluational function is central to the analysis in the RKHS, as the spaced span({kx }x∈X ) is

dense in H .

The kernel function defined on H is given by K (x, y)= 〈kx ,ky 〉H , and it is positive-semidefinite.

And we mention the definition of characteristic kernel and universal kernel [158] for the

sake of completeness, where the definition of characteristic kernel [159] is adapted to the

deterministic setup used in this part.

Definition 3. Let Cb(X ) be the space of bounded continuous functions on a compact metric

space X . A continuous positive definite kernel K on X is said to be universal if the corresponding

RKHS H is dense in Cb(X ), i.e., for any f ∈Cb(X ) and ε> 0, there exists a function h ∈H such
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that ‖ f −h‖ < ε.

Definition 4. A kernel k is said to be characteristic if the map x→ kx is injective. The RKHS H

is said to be characteristic if its reproducing kernel is characteristic

Universal kernel on a compact set X is characteristic [160, Theorem 3], so as the kernel of form

k(x, y)=ψ(x− y) [161]. In [162], if the RKHS H +R is dense in Lq (X ,P) for any dirac measure

P with q > 1, then k corresponding to H is also characteristic.

Finally, as one might have noticed by its name, there is indeed unique correspondence between

an RKHS and the covariance function of a second-order stochastic process (i.e. Gaussian

process) [163, Chpater 2]. More background knowledge of RKHS theory is available in [156,

163, 164].

2.2.2 RKHS based Data-enabeled Method

We consider a linear dynamical system B(A ,B,C ,D) evolving in the dual RKHS:

fi+1 =A fi +B Eui

Eyi =C fi +D Eui ,
(2.25)

where fi is a real-valued linear functional in RKHS H∗x , similarly Eui and Eyi are evaluational

functionals in RKHS H∗u and H∗y . For the sake of consistency, we denote the dimension of H∗x
by nx . The kernels of Hu and Hy are ku(·, ·) and ky (·, ·) respectively. Meanwhile, the dynamics

are modelled by bounded linear operators A : H∗x → H∗x , B : H∗u → H∗x , C : H∗x → H∗y and

D : H∗u →H∗y . As one might have noticed, this approach shares the same philosophy as the

Koopman operator: the behaviour of the observation is modelled instead of the state. Finally,

it is noteworthy to point out that these dynamics are not necessarily infinite dimensional;

more discussion about this point is allocated to Section 2.2.3.

Given a sequence of measurements {ui }T
i=1, {yi }T

i=1, we have two sequences of evaluation

functionals as {Eui }T
i=1, {Eyi }T

i=1. The corresponding n-column Hankel matrices are:

HL(Eu ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Eu1 Eu2 . . . EuT−L+1

Eu2 Eu3 . . . EuT−L+2

...
...

...

EuL EuL+1 . . . EuT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, HL(Ey ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ey1 Ey2 . . . EyT−L+1

Ey2 Ey3 . . . EyT−L+2

...
...

...

EyL EyL+1 . . . EyT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.26)

For simplicity, we further define v({ui }L
i=1, {yi }L

i=1) := [Eu1 , . . .EuL ,Ey1 , . . . ,EyL ]�. The Gram
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matrix of the stacked Hankel matrix HL(Eu ,Ey ) := [v1, . . . , vn] is then defined by

Ki , j := k(v({ui }, {yi }), v({u j }, {y j }))

=
L−1∑
k=0
< Eui+k ,Eu j+k >H∗u +

L−1∑
k=0
< Eyi+k ,Ey j+k >H∗y

(a)=
L−1∑
k=0

ku(ui+k ,u j+k )+
L−1∑
k=0

ky (yi+k , y j+k ) ,

(2.27)

where (a) holds by the fact that the Hilbert space is self-dual [157]. The corresponding RKHS

generated by k(v({ui }, {yi }), v({u j }, {y j })) is constructed by the following product topology [163,

Chapter 1.4],

H∗ :=H∗u
⊗ · · ·⊗H∗u︸ ︷︷ ︸

L times

⊗
H∗y
⊗ · · ·⊗H∗y︸ ︷︷ ︸

L times

.

With the Fundamental Lemma 1, we can state the following theorem

Theorem 3. Consider a controllable linear system B(A ,B,C ,D) and assume Eu is persis-

tently excited of order N ≥ nx +L. A trajectory of length L {ũi }L
i=1 and {ỹi }L

i=1 is an element of

BL(A ,B,C ,D), if and only if there exists g ∈Rn such that

g T K g +k(ṽ , ṽ)−2
n∑

i=1
gi k(ṽ , vi )= 0 , (2.28)

where ṽ := v({ũi }L
i=1, {ỹi }L

i=1).

Proof. The inputs and outputs sequence containing the evaluation functional is an element of

BL(A ,B,C ,D). Hence, by Fundamental Lemma 1, ṽ ∈ col span(HL(Eu ,Ey )) and there exists

g = [g1, . . . , gn]� ∈Rn such that

n∑
i=1

gi vi = ṽi
(a)⇐⇒‖

n∑
i=1

gi vi − ṽ‖ = 0

(b)⇐⇒
n∑

i , j=1
gi < vi , v j > g j −2

i∑
i=1

gi < vi , ṽ >+< ṽ , ṽ >= 0

⇐⇒ g T K g +k(ṽ , ṽ)−2
n∑

i=1
gi k(ṽ , vi )= 0 .

(a) holds by the uniqueness of the zero-element in a Hilbert space and (b) follows equa-

tion (2.27). �

We are not able to state that span(HL(Eu ,Ey ))=BL(A ,B,C ,D). The most important reason

is that the evaluation functional is not necessarily dense in the RKHS, while dynamics (2.25)

is only defined on the set of evaluation functionals. More specifically, because the set of

evaluational functional is a subset in RKHS, if v(ui , yi ) is a functional I/O trajectory, there
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may not exist any evaluation functional sequence that matches its scaling (i.e. αv(ui , yi ) with

α �= 0). This is what we expect to have in nonlinear systems, as closeness under scaling only

holds true in linear systems. The structure of the evaluation functional in this model therefore

implicitly enforce the structure of the nonlinear responses. With this idea in mind, we can

also see that by enforcing inputs outputs to be evaluational functional also limits the possible

realization of operator A . More specifically, it is still unclear how restrictive this nonlinear

structure is, and the proposed dynamics (2.25) still remain hypothetical.

Nonlinear Data-enabled Prediction

Similar to what we have done in Section 1.3.1, we are able to define a data-driven predictor

based on the Theorem above. In particular, given an input-output sequence of length ti ni t ,

ũm := {ũ1, ũ2, . . . ũti ni t } and ỹm := {ỹ1, ỹ2, . . . ỹti ni t }, an open-loop prediction of length nh is to

predict ỹp := {ỹti ni t+1, ỹti ni t+2, . . . ỹti ni t+nh } if a sequence of inputs ũp := {ũti ni t+1, ũti ni t+2, . . . ũti ni t+nh }

is applied from ti ni t +1 to ti ni t +nh . Theorem 3 indicates that the prediction problem is equiv-

alent to the following optimization problem

min
yp ,g

g T K g +k(ṽ , ṽ)−2
n∑

i=1
gi k(ṽ , vi ) , (2.29)

where K is computed from the Hankel matrixHti ni t+nh (Eu ,Ey ) and ṽ := v({ũi }ti ni t+nh

i=1 , {ỹi }ti ni t+nh

i=1 ).

Note that the prediction is achieved by an optimization problem instead of by solving the

nonlinear equation (2.28) in order to better accommodate the numerical solvability of non-

linear equation (2.28), the presence of measurement noise, the model mismatch and the

infinite dimensionality. At the same time, it is noteworthy to point out that a solution to

equation (2.28) is a global minimizer of problem (2.29).

Remark 12. A kernel heuristic is mentioned in [17, Section V], which relies heavily on their pre-

sumed Hammerstein and/or Wiener system structure. In particular, their algorithm decouples

the reconstruction of the predicted trajectory and the selection of the weight by assuming an

inverse map from RKHS to the states, which is not valid for most RKHS.

Nonlinear Data-enabled Predictive Control

To convert the method in Section 2.2.2 into a predictive control scheme, the input sequence is

optimized so that the corresponding output sequence is most desirable. Similar to what we
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have done in Section 1.3.1, it leads to an optimistic bi-level problem [74, Chapter 2] as follows:

min
up ,yp ,g

nh∑
i=0

l (uti ni t+i , yti ni t+1+i )

s.t.uti ni t+i ∈U , yti ni t+1+i ∈Y

yp ∈ argminỹp
g T K g +k(ṽ , ṽ)−2

n∑
i=1

gi k(ṽ , vi ) , (2.30a)

where l (·, ·) is the stage cost and U , Y are constraints for control input and outputs.

2.2.3 Discussion and Practical Issues

In Section 2.2.2, the theory and the applications have been built, more theoretical details and

practical issues are elaborated in this section.

On Existence of the Proposed Model

One obvious question is that whether the proposed model (2.25) makes any practical sense.

Above all, the proposed model (2.25) includes standard linear systems (2.25) as a special

instance.

Lemma 6. If Hx , Hu , Hy are RKHS whose kernel are k(x, y)= xT y, then model (2.25) is equiva-

lent to a linear dynamics.

Proof. By Riesz representation theorem, for each fi ∈H∗x there exists a unique xi ∈Hx such

that ∀ x̃ ∈ Hx , fi (x̃)=< xT
i , x̃ >= xT

i x̃. The following proof finds the xi+1 such that 〈xi+1, ·〉 =
fi+1(·). For any x̃ ∈Hx , equation (2.25) gives

fi+1(x̃)=A fi (x̃)+B Eui (x̃)
(1)= 〈A xi , x̃〉+〈B ui , x̃〉

=〈A xi +B ui , x̃〉 (2)=⇒ fi+1(·)= 〈A xi +B ui , ·〉 ,

where (1) follows the definition of the kernel function and (2) is weak-* convergence. In a

similar way, Eyi = C fi +D Eui can be reformulated. Hence, we conclude a standard linear

system (2.25). �

Remark 13. Lemma 6 can be generalized to Hammerestein systems and Wiener systems. With-

out loss of generality, we consider a Hammerstein system, whose input nonlinearity enters the

dynamics through an Nφ dimensional map φ(·) as follows,

xi+1 = Axi +Bφ(ui )

yi =C xi +Dφ(ui ) .

If Hu is generated by the kernel k(x, y)=<φ(x),φ(y)>
R

Nφ with Nφ the dimension of φ(·) and
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Hx , Hy are generated by a linear kernel, then the resulting dynamics of (2.25) is a Hammerstein

system following a similar proof of Lemma 6.

On Persistent Excitation

The assumption of persistent excitation of Eu in Theorem 3 is defined according to the rank

of its Hankel matrix HL(Eu). Checking rank of a matrix defined by functionals is not trivial,

instead, the following procedure can simplify the rank calculation.

rank(HL(Eu))= rank(HL(Eu)T HL(Eu))=: Ku , (Ku)i , j =
L−1∑
k=0

ku(ui+k ,u j+k ) .

Hence, the condition of persistent excitation is determined by the rank of the correspond-

ing Gram matrix. However, the condition of persistent excitation is only well-defined for

finite dimensional dynamics, where Hx , Hu , Hy are finite dimensional, such as the RKHS

corresponding to a linear kernel or a polynomial kernel. If, instead, the dynamics is infi-

nite dimensional, persistent excitation is no longer guaranteed, and Theorem 3 only serves

as a heuristic. Motivated by the persistent excitation condition, more informative data is

more desirable in this case. This is particular the case when a universal kernel is used. This

claim follows the fact that rank(Ku) ≥ trace(Ku) when Eui is within a unit ball of H∗u [165]7.

Given the fact that a universal kernel ku(·, ·) is strictly positive definite [164, Lemma 4.55]

(i.e. ku(ui ,ui )> 0∀ i ∈Z), the rank of Ku is non-decreasing regarding the amount of data. In

conclusion, a relaxed condition of persistent excitation is required for an infinite dimensional

system, and this author believes that this requires a more in-depth understanding about the

geometric structure of the evaluational functional. Until the submission of this thesis, this

author has not yet found out a solution.

On Choice of the Kernel

Even though the proposed method is non-parametric, the choice of kernel still determines

the final performance. Due to the unique correspondence between the RKHS and the kernel

function by Moore-Aronszajn theorem [163, Theorem 3], the choice of kernel function reflects

our a-priori knowledge. Above all, to ensure a unique recovery of the predictive trajectory

from its evaluational functional, the kernel needs to be characteristic. Beyond this basic

requirement, side information can be included in the choice of kernel. For example, if x is the

unique fixed point, one can choose a kernel k such that k(x, x)= 0. On top of this, linear and

polynomial kernels imply symmetric dynamics around 0. An exponential kernel k(x, y)= exT y

is used when Hx , Hu , Hy is spanned by polynomials, because polynomials are dense in the

corresponding RKHS [164, Chapter 4]. Moreover, if the trajectories that are close to each other

in the state space also show similar behaviour, the RBF kernel k(x, y)= e
‖x−y‖

2 can be used.

7By scaling the kernel function, this condition holds for any kernel function defined on a compact set.
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Beyond the a-priori knowledge about the system, the choice of kernel function also affects the

tractability of Problem (2.29) and Problem (2.30). We observe that the exponential kernel has

relatively low numerical stability, as two distant trajectories result in a large gradient. We also

observed that the RBF kernel leads to pervasive local minima, which causes poor performance

when the Problem (2.30) and Problem (2.29) are solved by gradient based algorithms. Based on

our experiments, the kernel function k(x, y)= e
−‖x−y‖

2 exT y in general has the best performance

for examples tried so far.

Finally, even with all points discussed above, the choice of the kernel function is still non-trivial

in general. If a dictionary of kernel functions {k(·, ·)}Nk

i=1 is available, the choice of the kernel

can be optimized over the positive-weighted sum k(·, ·)=∑Nk

i=1αi k(·, ·) via minimization of the

prediction error in the training data set.

On Stochastic Model with Measurement Noise

When the data is contaminated by measurement noise, a kernel mean embedding [166] can

be used, which evaluates the kernel function with respect to its distribution as

EX̃ k(·, x) , (2.31)

where x ∼ X̃ relating to the distribution of the measurement noise. If the distribution of

measurement noise is known, such as Gaussian distribution, the Equation (2.31) has closed

explicit form. If noise is unknown, then (2.31) can be evaluated by the empirical distribution.

Remark 14. Notice that the measurement noise in each column of the Hankel matrix is not

i.i.d. Hence, the empirical distribution has slower convergence rate than O( 1
N ).

2.2.4 Numerical Results

Damped Pendulum

We consider a force acting on the tip of the damped pendulum. The dynamics are

ẋ1 = x2 , ẋ2 =−2g

l
sin(x1)−μx3

2 +
1

l
|cos(x1)|u

with g = 9.8N /kg , l = 0.5m and μ = 0.1 denoting a nonlinear friction factor. Only x1 is

observed as y = x1. The output training data is generated by random input of ranging from

-1 to 1, the sequence is measured with a sampling time of 0.04 seconds. 500 data points are

used to defined the Problem (2.29) and Problem (2.30). Part of the output training data is

shown in Figure 2.10, in which one can see the nonlinear modulation effect of the damped

pendulum model. An open-loop prediction of nh = 60 step is carried out with ti ni t = 10

previous step measured and the result is shown in Figure 2.11, where the kernel for inputs is

ku(x, y)= 0.2e
−‖x−y‖2

6 +exT y +0.01e
−‖x−y‖2

6 exT y and the one for outputs is ky (x, y)= 0.2e
−‖x−y‖2

6 +
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Figure 2.10: Snapshot of training data used in damped pendulum model

exT y +0.01e
−‖x−y‖2

6 exT y + (1+xT y)2.

Bilinear Motor

We consider a bilinear motor [152] whose dynamics is

ẋ1 =−Ra

La
x1+ km

La
x2u+ ua

La
, ẋ2 =−B

J
x2+ km

J
x1u− τ

J

where x1 is the rotor current, x2 is the angular velocity and the control input u is the stator

current. Only the stator current is measured as y = x2. The parameters are La = 0.314, Ra =
12.345, km = 0.253, J = 0.00441, B = 0.00732, τ= 1.47, and ua = 60. Due to the synthetic effect

of the bilinear term and the bias term, the responses of the system at different operating

points are wildly different, hence the data is generated by a sequence of N (μn ,σ2
n), where the

mean of the random signal μn is time varying in order to excite more modes around different

operating points. In particular, the mean μn ranges from -0.5 to 0.5, and the variance σn = 1.

700 datapoints are used to defined the prediction and the optimal control problem. The

sampling time of the generated sequence is 0.01 seconds. An open-loop prediction of 30 is

carried out with 40 previous step measured, the corresponding result is shown in Figure 2.12,

where the kernel for inputs is ku(x, y) = 0.1e
−‖x−y‖2

4 + e
−‖x−y‖2

4 exT y and the one for outputs is

ky (x, y)= 0.1e
−‖x−y‖2

4 +e
−‖x−y‖2

4 exT y .

Furthermore, a predictive control scheme is tested, where the 15 previous steps are used for

a prediction horizon of 8 steps. The stage cost is l (u, y)= (y − yref)
T (y − yref)+0.01uT u. The

proposed predictive control scheme is compared to the nonlinear model predictive control,

which has explicit knowledge of the system dynamics and full access of the state measurement.

A step-like reference signal is tracked with outcome shown in Figure 2.13 without considering

output constraints8, it is observed that the proposed method shows competitive performance

against the model based control law, however, it fails to converge to the upper reference with a

subtle bias and it has slight overshoot with respect to both set points.

8The consideration of output constraints makes the bi-level highly unsolvable.
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Figure 2.11: Open-loop prediction of damped pendulum. An asymmetric oscillation is ob-
served and is learnt by the proposed method in subfigure (b). Each subplot is an open-loop
prediction evaluated on different data. By referring to Section 2.2.2, the black curves are ỹm

and orange curves are the open-loop prediction solved by problem (2.29)
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Figure 2.12: Open-loop output prediction with random biased input sequence of bilinear
motor model. Interpretation of each subplot is similar to Figure 2.11
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Figure 2.13: Closed-loop MPC control output

2.3 Final Remark

After studying the robustness aspect of direct data-driven control based on Willems’ funda-

mental lemma for linear systems, we sought to extend these results to nonlinear systems in

this chapter. Two approaches were considered: the Koopman operator-based heuristic and

the reproducing kernel Hilbert space (RKHS)-based lifting. While these methods have shown

promise in this chapter, it is important to discuss their limitations.

For the heuristic Koopman based extension, the major challenge is on the theoretical side.

One argument is that, if we use the lifted states φ(x) as the underlying state, the resulting

model is just a linear model, making the model linear. This view is agreed upon by the

author. In fact, the inverse statement is also true: it is always possible to disguise a linear

system as a nonlinear one. Consider a simple 1-d example x+ = 2x, if we use the use ex

as the state instead, you will have the dynamics ex+ = (ex )2. For most reported successful

applications of the Koopman operator in nonlinear systems, the author conducted exhaustive

tests on those reported models. With the exception of the KdV model and the bilinear motor

model, using a linear controller can provide comparable or even higher performance than the

Koopman-based method in all other models. Therefore, the author believes that there is some

potential for Koopman operator-based methods, but the mathematical framework based on

the Koopman operator theory may not be a proper choice for extending the application of

linear control theory to nonlinear systems. This is also why all the proofs in Section 2.1 are

given in autonomous systems.

In contrast, the RKHS-based extension addresses the limitation of linearity by imposing

the nonlinear structure endowed by the evaluational functionals. However, the resulting

method poses a significant computational challenge, making the rationale for not using

system identification becomes unclear. Additionally, it is also unclear whether the proposed

hypothetical dynamics (2.25) in dual RKHS can model nonlinear dynamics with multiple
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fixed point. For a stable linear system9, the collection of its limiting behaviours will form

a subspace, and thus its limit cycle and equilibrium points are not isolated. Therefore, the

resulting topology induced by the collection of limiting behaviours require us to investigate

the induced topology generated by the intersection of the set of evaluational functionals and a

linear subspace. To the best of my knowledge, this topic is still an untouched area in the RKHS

community.

In summary, the idea of lifting presents potential, but significant challenges remain. While

both the Koopman-based and RKHS-based extensions have their limitations, they offer promis-

ing avenues for future research.

9This statement holds true in infinite dimensional linear system

87





Part IIDirect Data-driven Stability Analysis

89





3 Robust Lyapunov Stability Analysis

Nonlinear Lyapunov stability analysis has been widely studied, where model-based approaches

and sampling-based approaches form two main categories. In either approach, a Lyapunov

candidate is optimized or synthesized by verifying the Lyapunov stability conditions. In

the model-based approaches, the knowledge of the underlying model is explicitly used in

the search of the Lyapunov function. On the contrary, the Lyapunov function is trained by

penalizing the violation of the Lyapunov stability conditions on a dataset. Even though a stan-

dard Monte-Carlo sampling scheme can also give a probabilistic guarantee [167], it is always

preferable to give a strict qualification in stability analysis. In this case, both model-based

approaches and sample-based approaches require the explicit knowledge of the model. In

particular, verification of the Lyapunov stability condition usually resort to nonlinear opti-

mization or satisfiability modulo theory (SMT) solvers, such as dReal [168]. Note that when

smooth dynamics are considered, one can write the Lyapunov stability condition with respect

to any Lyapunov candidate into an explicit algebraic form (see e.g [169–171]). The SMT solver

is accordingly used to checked whether these algebraic inequalities are satisfied up to some

user-defined tolerance [172].

To the best of the authors’ knowledge, the first numerical method that finds a Lyapunov func-

tion solves the Zubov equation [173]. The Zubov equation models the Lyapunov function as

the solution to a linear partial differential equation (PDE). The approximation of this PDE is

solved by series expansion [173], collocation method [174], etc. One main advantage of the

model-based approach is the a-priori knowledge about the model can be used to reformulate

the Lyapunov learning problem into a simpler problem. When polynomial dynamics are con-

sidered, a sum of square (SOS) programming relaxation can be used to search for polynomial

Lyapunov functions [175, Chapter 4][176]. Due to the nice algebraic property of polynomials,

the SOS framework has been further used to find the region of attraction [177, 178] and its

sparsity structure has been used to improve its scalability [179, 180]. Parallel to the studies

in polynomial dynamics, PWA dynamics are another genre attracting broad research inter-

est [181, 182]. Such tremendous interest is also a result of the ubiquitous appearances of PWA

functions in various controllers, such as ReLU-neural-networks-based controller and linear
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MPC [183]. For the PWA setup, optimization based approaches play the central role, which

mostly applies linear matrix inequality [178, 184, 185] and mixed integer programming [186].

Unlike the model-based approaches, sampling-based methods highly rely on an efficient

strategy of generating informative samples. The counter-example guided inductive synthesis

(GEGIS) [187, 188] is one major concept applied behind many sample-based approaches

(see e.g. [185, 189, 190]). These approaches have direct access to the model or its simulator.

During the learning process, they iteratively augment the sample dataset by adding counter

examples to the Lyapunov candidate proposed in the current iteration. These algorithms train

the Lyapunov function by penalizing the violation of the Lyapunov stability condition on the

samples, and they converge when no further counter example can be generated [170, 189].

The search for a Lyapunov function is usually confined to a specific function class, such as

generalized quadratic form [191] or positive definite kernel regressor [192]. In this part, we

will focus on PWA Lyapunov functions defined on a compact set. Besides the advantages

mentioned in the model-based approach paragraph, PWA Lyapunov candidates have shown

nice interplay with Lipschitz dynamics. In particular, when the samples of system dynamics

are assigned to the vertices of a grid, a robust Lyapunov stability condition on each simplex

can be verified by only considering a tightened Lyapunov condition defined on its vertices.

This family of methods is called the continuous piece-wise affine (CPA) method [193, 194].

The CPA method has been extend to more general problem setup: differential inclusion [195],

switched system [196], etc. In this part, we also consider Lipschitz dynamics, but we do not

assume that the data are located on the vertices. Therefore, we do not term our method a CPA

method to avoid unnecessary confusion. More detailed comparison with the CPA method are

postponed to Section 3.3.3.

The rest of this chapter is organized as follows: In Section 3.1, some necessary tools from

convex analysis are reviewed alongside the statement of the problem setup. In Section 3.2,

we will first generalize the Lyapunov theorem in Section 3.2.1, this generalization will later be

used to develop a local Lyapunov condition with PWA Lyapunov candidate in Section 3.2.2. In

the sequel, Section 3.3 applies this local condition to a set of uncertain function defined by

data, whose robust satisfaction is summarized as in Theorem 7. This theorem is later used to

define a convex inequality condition for the class of Lipschitz function in Section 3.3.2, where

the learning problem will be summarized. A comparison between the proposed learning

problem and other related works are given in Section 3.3.3. The learnability of the proposed

scheme is studied in Section 3.4.1, after which the proposed learning problem is recast into

an equivalent form to enable higher computational efficiency in Section 3.4.2. The general

learning algorithm are summarized in 3.4.3 with a numerical validation in Section 3.5.

Due to ambiguity in the literature, we indicate our definition of polyhedra and polytopes:

• A polyhedron P ⊂ Rn is an intersection of finitely many half spaces: ∃m ∈ N, A ∈
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Rm×n ,b ∈Rm such that

P = {x ∈Rn | Ax−b ∈ (R+)m} .

When the polyhedron is bounded, with slightly abuse of notation, we denote the number

of vertices by |P |.

• A polytope is a finite union of bounded polyhedra, which is not necessarily convex.

Accordingly, a convex polytope is the convex hull of its vertices.

3.1 Preliminary

In this section, we will first review some results from convex analysis and then introduce the

considered stability analysis problem.

3.1.1 Convex Analysis

Let Rn
C denote the set of compact convex subsets in Rn , the support function of a compact set

C ∈Rn
C is defined by

VC (g ) :=max
x∈C

g�x ,

for all g ∈ Rn , and any convex set can be uniquely characterized by its support function.

Meanwhile, the indicator function of a convex set C ∈Rn
C is defined by

ιC (x) :=
⎧⎨⎩0 , x ∈C

∞ , x ∉C ,

and this function is convex. With this definition, we also have

ιC1∩C2 (x)= ιC1 (x)+ ιC2 (x) , (3.1)

as ιC1∩C2 (x) = 0 if and only if ιC1 (x) = 0 (i.e. x ∈ C1) and ιC2 (x) = 0 (i.e. x ∈ C2), and thus

x ∈C1∩C2. A conjugate of a convex function h : Rn→R is defined, for g ∈Rn , by

h∗(g ) :=max
x∈Rn

g�x−h(x) .

By this definition, the conjugate of a non-empty set indicator function is its support func-

tion [129, p. 11.4] as

VC (·)= ι∗C (·) .
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Given two proper, convex functions h1 : Rn −→R and h2 : Rn −→R, the infimal convolution is

defined by

h1(x)#h2(x) := inf
y∈Rn

h1(y)+h2(x− y) ,

Geometrically, the epigraph of h1(·)#h2(·) is the Minkowski sum of the epigraph of h1(·) and

h2(·). For the sake of simplicity, we denote

#i hi (x) := inf
∑

i
hi (yi ) s.t.

∑
i

yi = x .

By Lagrangian multiplier, the following calculus of infimal convolution can be derived [197]

Proposition 4. Let h1, h2 be two proper, convex functions, then

(h1+h2)∗ (x)= h∗1 (x)#h2(x)∗ ,

3.1.2 Unknown dynamic, fixed data

In our problem setup, we consider an unknown continuous time dynamic system on a dimen-

sion nx compact set X ⊂Rnx ,

d x

d t
= f (x) ,

which we know has a locally asymptotically stable (LAS) equilibrium point (EP). And we have

a size ND fixed dataset sampled from this dynamic system as D = {(xi , fi = f (xi ))}ND
i=1 with

xi ∈X . The goal is to analyse the stability of this unknown dynamical system based on the

fixed dataset D . Without loss of generality, we assume that

Assumption 7. 0 ∈X is the LAS EP and we have access to a compact subset Xs of its region of

attraction.

Note that Xs models a conservative prior about the region of attraction (RoA) of the unknown

dynamic system, e.g. deduced from engineering practice. Meanwhile, if no such information is

available, one can also consider Xs = {0}. We denote the vector space of Lipschitz continuous

functions on nx dimensional domain X by Lip(X )nx . To facilitate the analysis, we further

assume that

Assumption 8. Let f ∈F with F ⊂ Lip(X )nx , such that

∀ h ∈F , x �→ ‖h(x)‖ is bounded within X ,

with upper bound denoted ‖h‖∞ (clearly a norm on F ).

Remark 15. Assumption 8 means that the underlying dynamic system is bounded within X

(i.e. there will not exist infinite velocity). Meanwhile, F does not need to be a Hilbert space, a
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typical case being the whole Lip(X )nx . If a Hilbert space F is used, it is usually assumed to be

infinite dimensional to ensure a large modelling capability.

Remark 16. Assumption 8 implies that the evaluation operator defined by

Ex (h) := h(x) , ∀ x ∈X , h ∈F

is bounded (i.e. continuous in h) with respect to the norm ‖ ·‖∞, meaning that

∀ x ∈X ,∃Cx ≥ 0 ;∀ h ∈F ,‖Ex (h)‖ ≤Cx‖h‖∞.

Indeed, taking Cx = 1 for all x ∈X is always possible. However, as soon as F contains the

space of polynomial vector fields, it cannot be complete with respect to this norm ‖ ·‖∞, as the

Stone-Weierstrass theorem ensures that its uniform completion is the whole space of continuous

functions (including non-Lipschitz ones). As a result, one might prefer the standard Lipschitz

norm

‖h‖Lip := ‖h(0)‖+ sup
x �=y∈X

‖h(x)−h(y)‖
‖x− y‖︸ ︷︷ ︸

Lipschitz constant

for which Lip(X )nx is complete and the Ex are also bounded:

‖Ex (h)‖ = ‖h(x)‖
= ‖h(0)+h(x)−h(0)‖
≤ ‖h(0)‖+‖h(x)−h(0)‖

≤ ‖h(0)‖+‖x‖ sup
y �=z∈X

‖h(y)−h(z)‖
‖y − z‖

≤ (1+‖x‖)︸ ︷︷ ︸
Cx

‖h‖Lip

3.2 Piecewise affine functions for Lyapunov inference

In this section, we first try to augment the prior knowledge of stability in Xs to a bigger set X

in Section 3.2.1. This result is refined to a Lyapunov candidate from the class of piece-wise

affine (PWA) functions in in Section 3.2.2.

3.2.1 Lyapunov inference

Before proceeding to the stability condition, we introduce two additional concepts on func-

tions L : Rnx →R. The sub-level set of L with level α ∈R is given by

L≤α := {x ∈Rnx | L(x)≤α
}

.

95



Chapter 3. Robust Lyapunov Stability Analysis

The Clarke generalized gradient of L at a point x ∈Rnx is the set given by

∂ClL(x) := co

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩y ∈Rnx :

∀ ε> 0,∃ xε ∈Rnx ;

‖x−xε‖ < ε,

L is differentiable in xε,

‖y −∇L(xε)‖ < ε

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

In [198, Theorem 2.5.1] it is proved that if L is Lipschitz continuous on a neighbourhood of

x, then ∂ClL(x) �= ∅. The Clarke gradient is a generalized gradient in the sense that if L is

continuously differentiable on a neighbourhood of x, then trivially ∂ClL(x)= {∇L(x)}.

Now we summarize the Lyapunov stability condition on a compact set X in the following

Lyapunov inference theorem.

Theorem 5. Let Assumption 7 and 8 hold, and suppose that there exists a Lipschitz continuous

function L : Rnx →R such that:

5.1) There exists α ∈R such that X = L≤α.

5.2) f (x)�y < 0 for all x ∈X \Xs , y ∈ ∂ClL(x).

Then for all x0 ∈ int(X ),

x(t |x0) −→
t→∞ 0

where t �→ x(t |x0) denotes the (unique by Lipschitz continuity of f – see Assumption 8) continu-

ously differentiable solution to the Cauchy problem⎧⎨⎩
d

d t
x(t |x0)= f (x(t |x0))

x(0|x0)= x0.

Proof. The proof is similar to the proof of the Lasalle theorem [199]. Let x0 ∈ int(X ) and define

the entering time

τ(x0) := inf{t ≥ 0 : x(t |x0) ∈Xs}.

If τ(x0)<∞, then x(τ(x0)|x0) ∈Xs and using the semigroup property and Assumption 7, one

obtains x(t +τ(x0)|x0)= x(t |x(τ(x0)) −→
t→∞ 0 so that x(t |x0) −→

t→∞ 0.

We now proceed to the non-trivial case where τ(x0) = ∞, i.e. ∀ t ≥ 0, x(t |x0) ∉ Xs , and

consider the exit time T := inf{t ≥ 0 : x(t |x0) ∈ ∂X }. Notice that as x0 ∈ int(X ) and t �→ x(t |x0)

is continuous, T > 0. Then, using Lipschitz continuity of L, condition 5.2) and [200, Lemma

2.15], for almost all t ∈ [0,T ), d
d t L(x(t |x0))< 0, so that L(x(t |x0)) is decreasing on [0,T ) by the

mean value inequality. This yields that ∀ t ∈ (0,T ), one has L(x(t |x0)) < L(x0) ≤ α, and by
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condition 5.1) and continuity of t �→ L(x(t |x0)), T =∞ and thus L(x(t |x0)) is decreasing on

[0,∞) and for all t ≥ 0, x(t |x0) ∈X \Xs regarding τ(x0)=∞.

We now consider the compact set Ω :=X \Xs from which the trajectory x(t |x0) never escapes.

Since L is continuous and Ω is compact, by the Weierstrass extreme value theorem, one has

that

−∞< � := inf
Ω

L,

so that the function t �→ L(x(t |x0)) is decreasing and lower bounded, hence it has a limit

c := lim
t→∞L(x(t |x0)) ∈R that it does not attain in finite time.

We also consider the limit set

Γ(x0) := {p ∈Ω :∀ ε,T > 0,∃ t ≥ T ;‖x(t |x0)−p‖ < ε},

that has the following property (see [199]): as t �→ x(t |x0) is bounded, Γ(x0)⊂Ω is nonempty,

compact and invariant (forward and backwards). Thus, ∃ p0 ∈ Γ(x0) and∀ t ≥ 0, x(t |p0) ∈ Γ(x0).

Moreover, continuity of the function L and the definition of Γ(x0) ensure that for all p ∈ Γ(x0),

L(p) = c, so that ∀ t ≥ 0,L(x(t |p0)) = c. By Lipschitz continuity of L and x(·|p0), we deduce

that for almost all t ≥ 0, d
d t L(x(t |p0))= 0. In addition to that, [200, Lemma 2.15] states that for

almost all t ≥ 0, ∃ y ∈ ∂ClL(x(t |p0)) such that 0= d
d t L(x(t |p0))= y� f (x(t |p0)). From these two

points and condition 5.2) we deduce that for almost all t ≥ 0, x(t |p0) ∈Xs . Additionally, by

definition of Xs , x(t |p0) −→
t→∞ 0, and by invariance and compactness of Γ(x0), we have 0 ∈ Γ(x0).

Finally, we recall the definition of Assumption 7’s local asymptotic stability condition:

∃ ε> 0 s.t . ‖x1‖ < ε=⇒ x(t |x1) −→
t→∞ 0.

Moreover, by definition of Γ(x0) � 0, for all T > 0 we are given a t0 ≥ T such that ‖x(t0|x0)‖ < ε.

Those two observations, taking x1 = x(t0|x0), ensure that

x(t |x0) −→
t→∞ 0.

. �

Intuitively speaking, the proof of Theorem 5 considers two cases. The first part with finite

entering time τ(x0) concerns the case where 0 ∈ int(Xs). Meanwhile, the second part of

the proof regarding τ(x0) = ∞ deals with the case where 0 ∈ ∂Xs . While so far numerical

considerations lead us to limit to the former case, it is worth noticing that in theory Lyapunov

inference can be performed even when the equilibrium point lies on the boundary of the prior

region of attraction estimate (including the case Xs = {0}).

Remark 17. The local asymptotic stability condition around 0 given in Assumption 7 is neces-
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sary. To see this, we construct a two-dimensional counter example:

d x

d t
= ‖x‖‖x− (1,0)‖2︸ ︷︷ ︸

normal speed

(−x2, x1)+ vr (x)︸ ︷︷ ︸
radial speed

x (3.2)

vr (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
‖x‖ −1, ‖x‖ ≥ 3

4

1− 1
2‖x‖ , 1

4 ≤ ‖x‖ < 3
4

−1, ‖x‖ < 1
4

(3.3)

in the following, we would try to expand the ROA around xs = (1,0). Note that to shift this point

to 0, one only has to do the change of variable x̃ = x− (1,0).

Now we start to analyse the behaviour of these dynamics in three cases (in addition to the trivial

case of equilibrium point).

• If ‖x0‖ = 1, then vr (x0)= 0 so that ‖x(t )‖ is constant (equal to 1) and the normal speed is

positive unless / until x(t )= (1,0).

• If ‖x0‖ = 1
2 , again the radial speed is zero and the solution will stay on the circle centred

at 0 with radius 1
2 , permanently rotating as the normal speed never vanishes. This is an

unstable limit cycle.

• If ‖x0‖ > 1
2 , then the radial speed will have same sign as 1−‖x‖ and ‖x(t )‖will converge

to 1. In particular, if ‖x0‖ ≥ 3
4 , then ‖x(t |x0)‖ = 1+ (‖x0‖−1)e−t .

• If ‖x0‖ < 1
2 , then the radial speed will stay negative and x(t) will converge to 0. In

particular, if ‖x0‖ < 1
4 , then ‖x(t |x0)‖ = ‖x0‖e−t .

The discussion above allows us to set Xs = ∂B(0,1): it is true that ∀x0 ∈Xs , x(t |x0) −→
t→∞ (1,0).

Assuming that X =B(0, 5
4 ) \ B(0, 3

4 ), with a Lyapunov candidate L(x) = |‖x‖−1 |, we have

L≤ 1
4
= X , which fulfills sublevel set condition 1.1) in Theorem 5. Additionally, on X \ Xs ,

∇L(x) = sgn(‖x‖−1)x and thus f (x)�∇L(x) = −‖x‖|1−‖x‖| < 0, satisfying condition 1.2) in

Theorem 5. However, ∀ x0 ∈X \Xs , x(t |x0) never converges to (1,0). Instead, it has a limit set

Γ(x0)= ∂B(0,1)⊂ ∂Xs (see proof of Theorem 5), and the trajectory will circulate forever around

the ∂B(0,1) without convergence to any point (Fig. 3.1)

Remark 18. Condition 5.1) is important. To see this, we can assume that X � L≤α, by continuity

of L(x), there exists xext ∉X such that L(xext )≤α. For any x0 ∈X \Xs , we can only ensure that

the evaluation of L(x) is decreasing, but it is possible to leave X heading towards xext . Note that

our condition 2) in Theorem 5 only holds on X , no stability guarantee can be given in this case.

Remark 19. Theorem 5 is a generalization of the classical Lyapunov-Massera local asymptotic

stability theorem, included in it as the case where L is continuously differentiable and Xs = {0}.

However, we do not assume that L ≥ 0 with equality only satisfied in 0, as 0 is already assumed

LAS.
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Figure 3.1: Vector field and trajectories with different initial points of dynamic system (3.2)
that converges to (1,0).

3.2.2 Piecewise Affine Lyapunov Function

PWA functions have strong modelling capability because they are dense in the space of con-

tinuous functions with a compact domain [201, Chapter 7.4]. This part will refine Theorem 5

to the Lipschitz continuous PWA Lyapunov function. For the sake of simplicity, we further

assume

Assumption 9. X is a polytope.

When X is not a polytope, it can be inner-approximated by a polytope up to arbitrary accuracy,

thus this assumption will not limit the application of the proposed analysis. Additionally, it is

worth noting that the definition of polytope used in this thesis is not necessarily convex (see

Section 3.1.2).

We now introduce our Lyapunov candidate under the form of a Lipschitz continuous PWA

function. Let {Ck }NC

k=1 be an NC -piece tessellation of X (i.e. ∪kCk =X and int(Ck )∩int(C�)=∅
if k �= �) where the Ck are convex polytopes (without loss of generality we take C1 � 0). For

k ∈ NNC , we denote the vertices of Ck by {v j ,k }|Ck |
j=1. Using this structure, a PWA Lyapunov

candidate LX is defined on X by

∀k ∈NNC , x ∈Ck , LX (x)= g�k x+bk . (3.4)

With appropriate conditions on gk ∈Rnx ,bk ∈R, continuity of LX on X is enforced: for any
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common vertex v ∈Ck ∩C� (i.e. ∃ i ∈N|Ck |, j ∈N|C�| such that v = vi ,k = v j ,�), the condition

(gk − g�)�v = b�−bk (3.5)

should hold. Then, LX is Lipschitz continuous on X with

‖LX ‖Lip = |b1|+ max
1≤k≤NC

‖gk‖ <∞.

Remark 20. Existence of a set {gk ,bk }NC

k=1 such that (3.4) defines a continuous function is

guaranteed for any tessellation of X , as a constant function on X always satisfies the continuity

condition (i.e. gk = 0, ∀ k ∈NNC and bi = b j , ∀ i , j ∈NNC ). When the tessellation is defined by

a power-diagram, existence of convex PWA functions is further guaranteed [202].

Then, our PWA Lyapunov candidate LX defined on X can be extended to the whole Rnx , such

that Theorem 5 can be applied.:

L(x) :=
⎧⎨⎩α+η dist(x,X ), x ∈Rnx \X

LX (x), x ∈X
(3.6)

where η :=max1≤k≤NC ‖gk‖ is LX ’s Lipschitz constant, and α ∈R is used to define the sublevel

set (see Theorem 5) and can be tuned during the Lyapunov analysis.

Regarding our PWA LF candidate, the stability conditions in Theorem 5 can be restated as

Theorem 6. Let Assumptions 7 to 9 hold, and consider the function LX and L defined by (3.4), (3.5)

and (3.6). If L moreover satisfies the following conditions

6.1) α is such that the evaluation of L on the vertices satisfies

∀ j ,k s.t. v j ,k ∈X \∂X , L(v j ,k )<α (3.7a)

∀ j ,k s.t. v j ,k ∈ ∂X , L(v j ,k )=α (3.7b)

6.2) ∀ k ∈NNC , ∀ x ∈Ck ∩ (X \Xs),

f (x)�gk < 0 (3.8)

Then L is Lipschitz continuous and for all x0 ∈ int(X ),

x(t |x0) −→
t→∞ 0.

Proof. We first prove Lipschitz continuity of L. L is Lipschitz continuous on X by its defini-

tion (3.5). By (3.6), as the distance function is 1-Lipschitz, L is Lipschitz continuous on Rn \X

with same Lipschitz constant as in X . Then, to prove global Lipschitz continuity of L we only
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need to prove continuity at the boundary ∂X , which is straightforward using condition (3.7b).

Indeed, by construction of the Ck and Assumption 9, any x ∈ ∂X is a convex combination of

some vertices v j ,k ∈ ∂X : ∃ k ∈NNC , {λ j }|Ck |
j=1 ⊂ [0,1] s.t.

v j ,k ∈ int(X )⇒λ j = 0,
|Ck |∑
j=1

λ j = 1,
|Ck |∑
j=1

λ j v j ,k = x

so that L(x)= g�k x+bk =
∑

j λ j (g�k v j ,k +bk )︸ ︷︷ ︸
α

=α, and L =α on ∂X , which is consistent with

the limit dist(x,X )→ 0 in (3.6).

We are now going to use Theorem 5 to complete our proof. We first check condition 5.1) :

X = L≤α. As X ⊃ L≤α is trivially deduced from (3.6), we focus on the converse inclusion. Let

x ∈X and let us prove that x ∈ L≤α i.e. L(x)≤α.

By construction, ∃ k ∈NNC s.t. x ∈Ck , and thus ∃{λ j }|Ck |
j=1 ⊂ [0,1] s.t.

∑
j λ j = 1 and

∑
j λ j v j ,k = x.

Again,

L(x)=
|Ck |∑
j=1

λ j (g�k v j ,k +bk )︸ ︷︷ ︸
≤α

≤α

using condition 6.1), which is the announced result.

We then move on to condition 5.2) in Theorem 5. Let x ∈X \ Xs and define K (x) := {k ∈
NNC | x ∈Ck }.

If x ∈ int(X ) and K (x) has a single element k, then x ∈ int(Ck ) and L is smooth on a neighbour-

hood of x with ∂ClL(x)= {gk } and we conclude using condition 6.2).

Else, if x ∈ int(X ) but |K (x)| > 1, we deduce from the previous point and the definition of the

Clarke gradient that

∂ClL(x)= co{gk | k ∈K (x)}

so that ∀ y ∈ ∂ L(x), ∃{λk }k∈K (x) ⊂ [0,1] s.t.∑
k∈K (x)

λk = 1 and
∑

k∈K (x)
λk gk = y.

This yields that for such y

f (x)�y = ∑
k∈K (x)

λk f (x)�gk︸ ︷︷ ︸
<0

< 0

using condition 6.2).

Else, if K (x) has a single element k but x ∈ ∂X (i.e. x is in the interior of a facet of X ), we

notice that conditions (3.7a), (3.7b) enforce that L is constant equal to α on Ck ∩∂X and less

than α in int(Ck ), which yields, using the definition (3.4), that gk is orthogonal to ∂X in x and

points outward of X . Thus, the unit normal vector to ∂X ∩Ck at x pointing outward of X is

101



Chapter 3. Robust Lyapunov Stability Analysis

given by

ν(x)= gk

‖gk‖
.

Let ε> 0 and xε ∈Rnx \X s.t. ‖x−xε‖ < ε. The definition (3.6) ensures that L is differentiable

in xε and that

∇L(xε)−→
ε→0

(
max

1≤�≤NC

‖g�‖
)
ν(x)=

(
max

1≤�≤NC

‖g�‖
)

gk

‖gk‖
.

denoting

g̃k :=
(

max
1≤�≤NC

‖g�‖
)

gk

‖gk‖
= η

‖gk‖
gk ,

we then deduce that ∂ClL(x) = co{gk , g̃k } = [1,η/‖gk‖] gk and we conclude the proof using

condition 6.2).

Eventually, in the last case where |K (x)| > 2 and x ∈ ∂X (i.e. x is on the boundary of a facet

of X ), from the above we deduce that if y ∈ ∂ClL(x), then ∃{λk }k∈K (x), {μk }k∈K (x) ⊂ [0,1] s.t.∑
k∈K (x)λk +μk = 1 and

y = ∑
k∈K (x)

(λk gk +μk g̃k )= ∑
k∈K (x)

(λk +
η

‖gk‖
μk ) gk

and

f (x)�y = ∑
k∈K (x)

(λk +
η

‖gk‖
μk ) f (x)�gk︸ ︷︷ ︸

<0

< 0

using condition 6.2). �

Finally, we would wrap up this part by sorting out the logic flow in this theorectical Section 3.2

again. The ultimate goal is to extend some prior knowledge of RoA (i.e. Xs) to a bigger set

int(X ) via PWA continuous function, which is not smooth. Theorem 5 gives this characteriza-

tion with respect to a continuous Lyapunov candidate via its Clarke gradient evaluation within

the set X \Xs . A specific characterization based on a continuous PWA Lyapunov candidate is

then summarized in Theorem 6. This theorem is useful as it allows us to define the Lyapunov

candidate only on the region of interest (i.e. X ), while the general Thereom 5 requires the

definition of the Lyapunov candidate on the whole state space. Moreover, Theorem 6 refor-

mulates the stability analysis into the analysis on function evaluation on the vertices and the

negativity test on each affine piece. Additionally, this negativity test is local with respect to

each affine piece, which implies that a local refinement of the Lyapunov candidate L(x) is

possible, further discussion of this aspect will be given at the end of the following section.

3.3 Learning Robust PWA Lyapunov Function

Recall the ultimate goal of this part; we would like to learn a PWA Lyapunov function for an

unknown Lipschitz dynamic f (x) based on a given fixed dataset D = {xi , fi }ND
i=1. Regarding the

underlying dynamic system, we further assume that an overestimate of the Lipschitz constant
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is given:

Assumption 10. M is a known overestimate of the Lipschitz constant of f , i.e. for all x, y ∈Rnx

‖ f (x)− f (y)‖ ≤M‖x− y‖.

Remark 21. In the case where F is a Hilbert space with inner product 〈·; ·〉F , it is also possible to

work with another assumption that might be more convenient in some settings, but introduces

additional technicalities in the learning process, namely: M is a known overestimate of the

Hilbert norm of f , i.e.

‖ f ‖F =
√
〈 f ; f 〉F ≤M .

In order to formulate a tractable learning problem, we further assume:

Assumption 11. The tessellation of X \Xs is fixed by a given set {Ck }NC

k=1.

The discussion about why we make this assumption is postponed to Remark 23. In this Section,

we will show how to learn the PWA Lyapunov function on the tessellation {Ck }NC

k=1 based on

Theorem 6. In the following subsections, we will gradually develop a Lyapunov function

learning scheme under the form of an optimization problem.

Subsection 3.3.1 studies the negative condition for a general hypothesis space, and Subsec-

tion 3.3.2 studies the condition in the most basic hypothesis space, i.e. the Lipschitz function

space.

3.3.1 Robust Lyapunov Condition

Although condition (3.8) is local to each affine piece, it still poses a numerically intractable

infinite dimensional constraint, especially when the dynamic system is unknown and uncer-

tain as f ∈F . In this subsection, we will show how this condition can be relaxed to a more

tractable form via the calculus of the infimal convolution.

Based on dynamic system evaluation fi := f (xi ) on location xi in the dataset D , the hypothesis

space of the underlying dynamic system is tightened to

FD := {h ∈F | Exi h = fi ,∀ i ∈NND } , (3.9)

where ND is the number of the collected data points. Accordingly, we further define

FD,i := {h ∈F | Exi = fi } , (3.10)

such that

FD =∩i FD,i . (3.11)
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The following theorem is the cornerstone representing the infinite dimensional Lyapunov

constraint with a finite number of constraints.

Theorem 7. The condition 0 > g�k f (x) holds for any x ∈Ck if there exist a set {g̃i ,k }ND
i=1 ⊂ Rnx

such that

ND∑
i=1

g̃i ,k = gk , and
ND∑
i=1

max
x∈Ck

ι∗FD,i
(E∗x g̃i ,k )< 0. (3.12)

Proof. The key idea in this proof is to view the negativity condition (3.8) as an evaluation of a

conjugate function in direction gk :

0>max
x∈Ck

max
f ∈FD

g T
k f (x)

(a)⇐⇒ 0>max
x∈C

max
f ∈F

g T
k (Ex f )− ιFD ( f )

(b)⇐⇒ 0>max
x∈Ck

ι∗FD
(E∗x gk )

(c)⇐⇒ 0>max
x∈Ck

ι∗∩i FD,i
(E∗x gk )

(d)⇐⇒ 0>max
x∈Ck

(
ND∑
i=1

ιFD,i (E∗x gk )

)∗
(e)⇐⇒ 0>max

x∈Ck

#i ι
∗
FD,i

(Ex gk )

( f )⇐⇒ 0>max
x∈Ck

inf∑
g̃i ,k=gk

ND∑
i
ι∗FD,i

(Ex g̃i ,k )

(g )⇐= 0> inf∑
g̃i ,k=gk

max
x∈Ck

ND∑
i
ι∗FD,i

(Ex g̃i ,k )

(h)⇐⇒∃
ND∑
i=1

g̃i ,k = gk s.t. max
x∈Ck

ND∑
i
ι∗FD,i

(E∗x g̃i ,k )< 0.

(a) writes the feasible set FD into the objective function by indicator function, and (b) follows

the definition of the convex conjugate (see Section 3.1.1). (c) applies the decomposition given

in (3.11), and (d) applies the calculus of indicator functions given in (3.1). (e) applies calculus

of conjugate function in Proposition 4, whose explicit form is written in ( f ). (g ) applies the

min-max inequality [76, Chapter 3.14]. Finally, as often performed in robust optimization (see

e.g. [203]), the infimum operator is replaced by an existence assertion in (h). �

The key concept behind Theorem 7 is the decomposition of the hypothesis space in (3.11). In

particular, ι∗
FD,i

(E∗x g̃i ,k )=max f ∈FD,i g�i ,k f (x) is related to the uncertainty quantified from one

data point, which usually has an easy-to-evaluate explicit closed solution. In comparison, the

explicit solution is usually not available or difficult to evaluate when the whole dataset D is

considered. For example, when F is the space of Lipschitz functions, then the uncertainty

boundary quantified by one data point defines a shifted cone. However, the uncertainty

upper and lower bounds are PWA and non-trivial to evaluate [204] when the whole dataset D
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is used. Recall Assumption 8, it is also reasonable to consider a reproducing kernel Hilbert

space (RKHS)1, which underpins various uncertainty quantification methods such as Gaussian

process regression [205] and deterministic error bound methods [206]. All these methods

require computing the inverse of the Gram matrix or solving a second order cone program,

which has an easy-to-evaluate explicit solution only when one data point is considered.

Remark 22. In this part, we consider a decomposition of the hypothesis space FD into the

intersection of single-data models, i.e. FD =∩FD,i . It is also possible to generalize the result

to other decomposition, dubbed {F j }. If F =∩ j F j , where the conclusion in Theorem 7 needs

slight modification accordingly:∑
j

g̃ j ,k = gk , 0>
∑

j
max
x∈Ck

ι∗F j
(E∗x g̃ j ,k ) .

Remark 23. Even though function evaluation on a fixed location defines a linear operator from

the hypothesis space F to Rnx , the mapping from the evaluation point to this operator is in

general nonlinear. Assumption 11 is posed to develop a tractable formulation by avoiding this

nonlinear mapping, and the next subsection will make use of this property. It is also noteworthy

that, with a fixed tessellation, the parameters of the Lyapunov candidate on each affine piece

(i.e. gk ,bk on Ck ) can be uniquely determined by the function evaluation on the vertices.

Another main benefit of a fixed tessellation is that it allows a direct control over the model

complexity of the Lyapunov candidate. In particular, consider two Lyapunov candidates L1(x)

and L2(x) with their corresponding partitions {C1,k } and {C2,k }. Then, we can state that L1(x)

is a refinement of L2(x) (i.e. L1(x) has a higher degree of modelling capability than L2(x)) if

∀C2,k , ∃{C1, j } j∈Ik such that ∪ j C1, j =C2,k . As condition (3.8) is local to each affine piece, if one

affine piece Ck violates the assumptions of Theorem 7, then we can refine the model locally by

further partition this piece.

3.3.2 A Convex Tractable Case: Lipschitz Dynamics

Theorem 7 gives us a representation of condition (3.8), but such a representation remains

abstract and hard to check numerically; thus, we will now recast this representation under a

tractable form, in a specific case. Although we have discussed that it is possible to consider a

more complex function space property on top of the Lipschitz property in Section 3.3.1, this

section will show that a convex learning problem exists even when we consider the most basic

hypothesis space:

F = Lip(X )nx (3.13)

In such case, the following corollary holds:

1A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert space of functions from X to R such that
for each x ∈ X , the evaluation functional Ex g := g (x) is bounded [156]
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Corollary 4. The condition 0> g�k f (x) holds for any x ∈Ck if there exists a set {g̃i ,k }ND
i=1 ⊂Rnx

such that for all j ∈N|Ck |

ND∑
i=1

g̃i ,k = gk , and
ND∑
i=1

g̃�i ,k fi +‖g̃i ,k‖M‖v j ,k −xi‖ < 0. (3.14)

Proof.

∀ j , 0>
ND∑
i=1

g̃�i ,k fi +‖g̃i ,k‖M‖v j ,k −xi‖ (a)⇐⇒ 0>max
x∈Ck

ND∑
i=1

g̃�i ,k fi +‖g̃i ,k‖M‖x−xi‖ (3.15)

(b)⇐⇒ 0>max
x∈Ck

ND∑
i=1

max
yi∈B( fi ,M‖x−xi ‖)

g̃�i ,k yi

(c)=⇒ 0>max
x∈Ck

ND∑
i=1

max
f ∈FD,i

g̃�i ,k f (x)

(d)⇐⇒ 0>max
x∈Ck

ND∑
i=1

ι∗FD,i
(E∗x g̃i ,k ) .

To show (a), we notice that the right-hand side of (3.15) is a convex maximization problem over

a bounded convex polytope, its optimal solution is attained on its vertices, i.e. {v j ,k }. (b) uses

the Cauchy-Schwarz inequality on the second term of the sum g̃�i ,k yi = g̃�i ,k fi + g̃�i ,k (yi − fi ).

(c) follows the assumption of Lipschitz constant overestimate (Assumption 10). Finally, (d)

applies the definition of the conjugate function. �

Remark 24. If instead of Assumption 10, we suppose that ‖ f ‖F ≤M, then one has a bound

function BM : Rnx →R+ (depending on M) such that for any x ∈Rnx , h� ∈ argminh∈FD
‖h‖F ,

‖ f (x)−h�(x)‖ ≤BM (x),

so that in the previous proof one has to replace M‖x−xi‖with BM (x). However, the problem

here is that BM is not convex, so that relation (b) does not hold anymore, and we would need

other arguments (out of the scope of this article) to obtain a finite dimensional constraint.

Using Theorem 6 and Corollary 4, we get the following conditions for int(X ) to be a positively
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invariant subset of the region of attraction of our unknown system:

∃ {g̃i ,k | i ∈NND ,k ∈NNC }⊂Rnx , ∃ {gk | k ∈NNC }⊂Rnx ,

∃ {bk | k ∈NNC }⊂R, ∃α ∈R
∀ k,� ∈NNC , j ∈N|Ck | s.t. v j ,k ∈C�, (gk − g�)�v j ,k = b�−bk (3.5)

∀ k ∈NNC , j ∈N|Ck |, s.t. v j ,k ∈X \∂X g�k v j ,k +bk <α (3.7a)

∀ k ∈NNC , j ∈N|Ck |, s.t. v j ,k ∈ ∂X g�k v j ,k +bk =α (3.7b)

∀ k ∈NNC ,
ND∑
i=1

g̃i ,k = gk (3.12)

∀ k ∈NNC , j ∈N|Ck |,
ND∑
i=1

g̃�i ,k fi +‖g̃i ,k‖M‖v j ,k −xi‖ < 0. (3.14)

Hence, our Lyapunov inference now boils down to a finite number of equality and strict

inequality tests. Regarding condition (3.14) for a fixed k ∈NNC , we introduce slack variables to

transform this certification problem into an optimization problem, with optimality giving the

best robust certificates possible. This results in the following optimization problem:

s�α,ε := min
{gk ,bk },{g̃i ,k }{s j ,k }

∑NC

k=1

∑ |Ck |
j=1 s j ,k

∀ k,� ∈NNC , j ∈N|Ck |, s j ,k ≥−ε (3.16a)

v j ,k ∈C� =⇒ (gk − g�)�v j ,k = b�−bk (3.16b)

v j ,k ∈X \∂X =⇒ g�k v j ,k +bk ≤α−ε (3.16c)

v j ,k ∈ ∂X =⇒ g�k v j ,k +bk =α (3.16d)∑ND
i=1 g̃i ,k = gk (3.16e)∑ND
i=1 g̃�i ,k fim +‖g̃i ,k‖M‖v j ,k −xim‖ ≤ s j ,k (3.16f)

where ε> 0 is a user-defined negativity tolerance and α ∈R is the user-defined maximal value

of the Lyapunov function. Constraint (3.16b) is the continuity condition, and constraint (3.16c)

is the interior condition (3.7a) and constraint (3.16d) is the boundary condition (3.7b), both

stated in Theorem 6. When the slack variables satisfy s j ,k < 0, constraints (3.16e) and (3.16f)

correspond to the negative condition (3.8) stated in Theorem 6. Optimization problem (3.16)

comes with the following result:

Theorem 8. ∀ h ∈F whose function evaluations are consistent with the unknown underlying

dynamic system f (h(xi )= fi , ∀ xi , fi ∈D), the solution to problem (3.16) defines a Lyapunov

function for dynamic system h on X when its optimal value verifies s�α,ε =−ε
∑NC

k=1 |Ck |.
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Proof. We need to show that an optimal solution {g opt
k ,bopt

k , g̃ opt
i ,k , sopt

j ,k } satisfying

∑
j ,k

sopt
j ,k =−ε

∑
k
|Ck |

will also satisfy the conditions given in Theorem 6.

First of all, by constraint (3.16b) the learnt PWA function is continuous (see Equation (3.4)).

On top of this, by constraints (3.16d) and (3.16c), a solution to problem (3.16) recovers the

condition 6.1) in Theorem 6. In the rest of this proof, we need to show that constraints (3.16e)

and (3.16f) are equivalent to the negative condition 6.2) in Theorem 6 (i.e. 0> g�k f (x), ∀ x ∈
Ck ).

Note that, by s j ,k ≥ −ε (constraint (3.16a)), the optimal value
∑
j ,k

sopt
j ,k = −ε

∑NC

k=1 |Ck | implies

that s j ,k =−ε, ∀ j ∈N|Ck |, k ∈NNC . Therefore, we have

0>−ε≥
ND∑

m=1
g̃�im ,k fim +M‖g̃im ,k‖‖v j ,k −xim‖

(a)=⇒ 0>
ND∑
i=1

g̃�i ,k fi +M‖g̃i ,k‖‖v j ,k −xi‖
(b)=⇒ 0> g�k h(x) ∀ x ∈Ck , h ∈FD ,

where (a) holds by taking g̃i ,k = 0, ∀ i such that (xi , fi ) ∉D and (b) is Corollary 4. Based on

this, we can derive:

In summary, constraints (3.16f) and (3.16e) guarantees the satisfaction of condition 6.2) in

Theorem 6 for any h ∈FD . Hence, we conclude the proof. �

The implication of this theorem is strong as it states that under the assumption of Lipschitz

dynamics, we can learn/validate a LF by convex programming (3.16) even when the unknown

underlying dynamic system f is nonlinear.

3.3.3 Comparison with related works

We would like to wrap up this subsection by comparing the proposed learning scheme with

other existing methods. In comparison with other PWA Lyapunov function based methods

(see e.g. [193, 195]), the proposed scheme shows two major differences. First, the location

of the samples and the tessellation of the PWA Lyapunov candidate are decoupled in the

proposed scheme. While in existing methods, the data are sampled on the vertices of the

tessellation, therefore, the data locations are usually structural due to the choice of the tessel-

lation. Secondly, the robust Lyapunov stability conditions considered in the existing methods

only consider the model uncertainty quantified by one data point. On the contrary, the pro-

posed scheme synthetically makes use of the uncertainty quantified by each data point while
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Proposed bound Tight gf(x) bound from set-membership

Figure 3.2: Comparison between set membership method and the proposed method. The
proposed scheme is evaluated by g̃1 = 0, g̃2 = 0.65, g̃3 = 0.35.
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maintaining a convex tractable structure.

Another framework related to the proposed approach is the set-membership method [204]. In

short, the set-membership method models the set of Lipschitz functions whose evaluation on

the points {xi } are consistent with data {xi , f (xi )}. When nx = 1, the evaluation upper/lower

bounds given by this method are PWA. To better demonstrate the difference between the

proposed scheme and the set-membership method, we consider a specific example in R

(Figure 3.2), whose Lipschitz overestimate is set to M = 1 and the data points are:

{
(
0, f (0)=−0.4

)
,
(
0.3, f (0.3)=−0.5

)
,
(
1, f (1)=−0.6

)
}

Now, consider a Lyapunov function candidate L(x)= g x with g = 0.9 within interval [0,1]. If the

evaluation bounds of set-membership method are used, the Lyapunov decreasing condition

needs to be examinated in all the sub-intervals generated by the PWA bounds (plotted as two-

headed arrow in Figure 3.2). Determination of these sub-intervals is computationally heavy.

Instead, if we hope to simplify the analysis by only taking one data point into consideration,

none of the simple model generated by one data point can justify the Lyapunov decreasing

condition (see black lines of different markers in Figure 3.2). These two aspects together imply

the use of the whole dataset is necessary. The proposed scheme synthesizes the knowledge

of simple models via a convex optimization. One optimal solution to the proposed scheme

is plotted as a blue line in Figure 3.2, which only utilizes the last two points (i.e. g̃1 = 0). It is

worth noting that, in this example, if we only consider the left data and the right data point, the

Lyapunov deceasing condition will fail even when the set-membership method is used. Hence,

we can observe that the proposed method is able to search for the data points that are relevant

to the Lyapunov decreasing condition. Additionally, this process is done by polynomial time

convex optimization algorithms [207]. On the contrary, even though the set-membership

method gives the tightest bound, checking the Lyapunov decreasing condition with these

bounds is NP-hard, as it requires vertex elimination of the Voronoi cells.

Remark 25. Note that in the proof of Theorem 4, we use the Cauchy-Schwarz inequality

in (3.15), that holds only with Euclidean 2-norm. Actually, other norms can be considered, and

the resulting problem (3.16) will have different properties accordingly. In particular, if 1-norm

or∞-norm is used, the resulting problem is a linear program. For the sake of simplicity, the

thesis uses the Euclidean norm only, and as a result the learning problem (3.16) is a second

order cone programming (SOCP) (Details in Section. 3.4).

3.4 Algorithm Development

After the introduction of the Lyapunov learning problem (3.16), we will discuss its learnability

in Section 3.4.1. The original learning problem (3.16) will be recast to an equivalent but numer-

ically more efficient form in Section 3.4.2. In the end, the main algorithms are summarized in

Section 3.4.3.
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3.4.1 Learnability

Above all, the set of Lyapunov functions is closed under positive scaling. More specifically, if

a Lyapunov function L(x) is learnt from problem (3.16), then its positive scaling λL(x) with

λ> 0 is also a Lyapunov function. Thus, the user-defined value α in (3.16c) will not introduce

conservativeness in the learning problem. Furthermore, due to the introduction of the slack

variables {s j ,k }, the learning problem (3.16) is always feasible. It is natural to ask the following

core question in the limiting case:

If X is the RoA of the underlying dynamic system f and we are allowed to evaluate the dynamic

system f in any finite set of points x ∈X , can we always learn a Lyapunov function for any RoA

subsets X \Xs?

Unfortunately, the answer to this question is no, and a counterexample is summarized in the

following Corollary:

Corollary 5. Let Assumption 7 holds and let the hypothesis space F satisfy Equation (3.13), if

0 ∉ int(Xs), then the optimal value to problem (3.16) verifies:

∑
j ,k

sopt
j ,k >−ε

NC∑
k=1
|Ck |

Proof. Note that the user-defined tolerance is negative (i.e. −ε< 0) and arbitrary, we need to

show that there exist one sopt
j ,k ≥ 0 in the optimal solution.

By Assumption 7, we have f (0)= 0. Using the Lipschitz condition and Assumption 10 yields

‖ fi‖ = ‖ fi −0‖ ≤M‖xi −0‖

As 0 is the LAS EP, we have 0 ∈Xs , and by assumption 0 ∉ int(Xs), so 0 ∈ ∂Xs . Consider

the affine piece Ck that contains 0 (i.e. 0 ∈ Ck and it is a vertex of Ck ). By inspecting the

constraint (3.14) and using Cauchy-Schwarz inequality, one has:

g̃�i ,k fi +M‖g̃i ,k‖‖0−xi‖
≥M‖g̃i‖‖0−xi‖−‖g̃i‖‖ fi‖ ≥ 0 .

Thus, the constraint (3.16f) will become:

s j ,k ≥
ND∑
i=1

g̃�i ,k fi +M‖g̃i ,k‖‖v j ,k −xi‖ ≥ 0>−ε,

which is sufficient to conclude the proof. �

Even though our theory of expanding a-priori knowledge from Xs to a bigger set X holds for

any Xs (Section 3.2), Corollary 5 shows that, if the domain of a Lyapunov function contains
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0, then it is impossible to learn this function by only assuming Lipschitz continuity (Equa-

tion (3.13)). Similar observation of infeasibility was also made in the constructive proof of

converse Lyapunov theorem [208]. Meanwhile, many numerical methods also have similar

limitation around the invariant set [209, Chapter 2.11]; we refer the interested reader to [210,

211] for more details. In summary, if we do not further assume other function space structure

on the hypothesis space F , following assumption is required to ensure the learnability of

problem (3.16):

Assumption 12. 0 ∈ int(Xs) .

We would stress again that the assumption above is only necessary for the learning scheme

based on problem (3.16), and a learning scheme without this assumption is left for future

research.

After answering the aforementioned problem by Corollary 5, the follow-up core question is:

Given an RoA prior estimate Xs , what condition on the dataset D should hold to enable

learning the PWA Lyapunov function on X \Xs?

Obviously, it is impossible to answer this question with a sufficient condition, regarding the

arbitrariness of the unknown dynamic system f . However, if we only assume the function

space to be Lipschitz (Equation (3.13)), we can still give an initial check of the learnability of

problem (3.16). In order to discuss this necessary condition, we first define

ri := ‖ fi‖
M

.

We state the necessary condition as follows:

Lemma 7. Let Assumption 7 hold and let hypothesis space F = Lip(X )nx . If solutions to

problem (3.16) define a Lyapunov function as in Theorem 6, then X \Xs ⊂∪ND
i=1B(xi ,ri ).

Proof. From the proof of Theorem 8, the solution to problem (3.16) is a Lyapunov function if

for ∀ k ∈NNC , j ∈N|Ck |, s j ,k =−ε. Let x ∈X \Xs , and without loss of generality, we suppose

x ∈Ck for some k ∈NNC . By Corollary 4,

0>−ε= s j ,k ≥
ND∑

m=1
g̃�im ,k fim +M‖g̃im ,k‖‖x−xim‖ ,
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which implies that there exist at least one n ∈NNd such that

0> g̃�n,k fn +M‖g̃n,k‖‖x−xn‖
=⇒|g̃�n,k fn | >M‖g̃n,k‖‖x−xn‖
(a)=⇒‖ fn‖‖g̃n,k‖ >M‖g̃n,k‖‖x−xn‖

⇐⇒x ∈B

(
xn ,
‖ fn‖

M

)
⇐⇒x ∈B(xn ,rn)

=⇒x ∈∪ND
i=1B(xi ,ri )

where (a) follows from the Cauchy-Schwarz inequality. Due to the inclusion condition is

sastisfied for any point x ∈X \Xs , we conclude the proof with X \Xs ⊂∪ND
i B(xi ,ri ). �

This lemma shows the connection between learning a PWA Lyapunov function and the set

covering problem, which was proved to be equivalent to a non-convex semi-infinite prob-

lem [212], and thus one should not try to check the condition in Lemma 7 numerically. Recall

a key idea behind the problem (3.16): the global analysis on X \Xs is reduced to the analysis

on the vertices. This inspires us to relax the continuous set covering problem to the covering

problem of the vertices and we state this condition in the following Corrolary

Corollary 6. Let Assumption 7 hold and let hypothesis space F = Lip(X )nx , if solutions to

problem (3.16) define a Lyapunov function as in Theorem 6, then

{vi ,k }1≤k≤NC
1≤i≤|Ck |

⊂ ∪ND
i=1B(xi ,ri ) , (3.17)

This necessary condition (3.17) can be checked in polynomial time. If this test fails, it means

that there exist vi ,k ∉ ∪ND
i=1B(xi ,ri ), and therefore, the data is not informative enough to

learn a PWA Lyapunov function by only assuming the Lipschitz condition (Equation (3.13)).

Accordingly, the learning process will be terminated. Intuitively, the points which vi ,k ∉
∪ND

i=1B(xi ,ri ) should suggest the location where additional samples are required.

3.4.2 Computationally efficient recasting

In this part, we will discuss how we recast the original problem (3.16) to an equivalent problem

that can be handled numerically more efficiently.

Data Refinement

One main computational bottleneck for the original problem (3.16) comes from the number

of decision variables. Without loss of generality, we consider an affine piece Ck . By inspecting

the tessellation validation test (3.17), if a data point (xi , f (xi )) does not contatin any vertices
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of Ck in B(xi ,ri ) (i.e. Ck � v j ,k ∉B(xi ,ri )), then ∀ g̃ ∈Rnx , following inequality holds

0≤ g̃� fi +M‖g̃‖‖v j ,k −xi‖ .

Hence, this data point xi cannot help enforce the strict negative Lyapunov decreasing con-

dition (3.16f), and can therefore be neglected in the constraints defined on affine piece Ck .

Accordingly, the set of data points relevant to Ck are:

Dk := {(xi , fi )
∣∣ i ∈ Ik

}
with Ik := {i ∈NND

∣∣ ∃ j ∈N|Ck |, v j ,k ∈B(xi ,ri )
}

The condition defining this set essentially states the point should at least be possible to enforce

strict negativity on constraint (3.16f) at one vertex. This technique can significantly reduce

the computational cost. To see this, we consider a homogeneous tessellation within a unit

hypercube centred at 0 within which data points scatter uniformly. We further assume that the

affine pieces of the tessellation are hypercubes with edge width r el . Based on the Lipschitz

condition (3.13), each data point will at most get involved in O
(( ri

r el

)nx
) NC . Notice that

ri ≤ .5 (see Section 3.4.1), the number of decision variables are reduced to roughly O
( 1

2nx

)
of the problem defined by the whole data set. In the numerical example we consider in Sec-

tion 3.5, we observe on average an 81% reduction in the number of decision variables, which

makes the problem tractable on a Laptop without memory overflow.

Explicit SOCP formualtions

In the numerical implementation, it is critical to convert the inequality constraint (3.16f) into

a set of second-order cones, or Lorentz cone in particular [76]:

s j ,k ≥
∑

i∈Ik

g̃�i ,k fi + ti , j ,k

ti , j ,k ≥ ‖g̃i ,k‖M‖v j ,k −xi‖ ,

where |Ik | auxiliary decision scalar variables {ti , j ,k } are introduced per vertex v j ,k in order to

define the Lorentz cone. The resulting computational complexity per iteration in an interior

point algorithm is O(ND NC n2
x ) [213]. In comparison, without this reformulation, this inequal-

ity constraint will be directly handled by a block diagonal positive semi-definite matrix, whose

computational complexity per iteration in an interior point algorithm is O
(|Ck | (ND nx )3

)
[214,

Chapter 1].

The Recast Problem
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After introducing of the reformulation techniques, the learning problem we solved becomes:

s�α,ε := min
{gk ,bk },{g̃i ,k }
{s j ,k },{ti , j ,k }

∑NC

k=1

∑ |Ck |
j=1 s j ,k

∀ k,� ∈NNC , j ∈N|Ck |, s j ,k ≥−ε
v j ,k ∈C� =⇒ (gk − g�)�v j ,k = b�−bk

v j ,k ∈X \∂X =⇒ g�k v j ,k +bk ≤α−ε
v j ,k ∈ ∂X =⇒ g�k v j ,k +bk =α∑

i∈Ik | g̃i ,k = gk∑
i∈Ik | g̃

�
i ,k fi + ti , j ,k ≤ s j ,k

∀i ∈ Ik , ‖g̃i ,k‖M‖v j ,k −xi‖ ≤ ti , j ,k

(3.18)

3.4.3 Algorithms

The final learning algorithm is summarized in Algorithm 3. Even though we use the standard

tessellation algorithm in algorithm 3, generating a good tessellation is vital but non-trivial.

Existing works mostly focus on the link between a convex liftable tessellation and the power

diagram (see e.g. [215, 216]). However, as the Lyapunov function studied in this thesis is not

necessarily convex, hence we leave the study of this topic in the future research. And we use

the standard Delaunay triangularization in this part [217].

Algorithm 3
Input: RoA prior Xs , negativity tolerance −ε, Lipschitz overestimate M , set level α,
Output: Lyapunov function L(x)

Refine a tessellation {Ck }Nc

k=1 until it satisfies (3.17)
if tessellation is valid then

Solve optimization (3.18)
if Optimal value solution satisfies s�α,ε =−ε

∑NC

k=1 |Ck | then
Return

end if
else

Return cannot learn L(x).
end if

Sequential Space Partition

Based on the aforementioned strategies, the scalability of the learning problem (3.16) can still

be improved by partitioning the region of interest X into a sequence of subset, such that

Xs ⊂X1 ⊂X2 · · · ⊂X .

Note that the logic behind the proposed algorithm is an augmentation of the a-priori knowl-

edge in Xs to X , this allows us to further improve the computational efficiency. The key idea is
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to gradually augment the volume of the RoA, and in each iteration, it is only necessary to learn

the LF on the set Xi \Xi−1. This sequential learning algorithm is summarized in Algorithm 4.

It is noteworthy that, if one needs to recover the whole LF on X \Xs , then it is necessary to

impose the continuity condition on be boundary of ∂Xi between the i -th iteration and the

i +1-th iteration. The corresponding algorithm is summarized in Algorithm 4.

Algorithm 4
Input: Subset sequence {Xi } and the initial basin X0 =Xs

Output: Lyapunov function L(x)

i = 1
while {Xs �=X } do

Run Algorithm. 3 with Xs

if Algorithm 3 failed then
Return cannot learn L(x).

end if
i ← i +1
Xs←Xi

end while

3.4.4 Learning X

Up to this point, we assume that a known X within which the stability analysis is conducted.

However, such prior knowledge/assumption is not necessarily available. Instead, the users

may only have access to a set of data and whole to find out a ROA based on this dataset. In this

case, we will need to solve the Learning problem (3.16) without the boundary condition:

s�ε := min
{gk ,bk },{g̃i ,k }{s j ,k }

∑NC

k=1

∑ |Ck |
j=1 s j ,k

∀ k,� ∈NNC , j ∈N|Ck |, s j ,k ≥−ε
v j ,k ∈C� =⇒ (gk − g�)�v j ,k = b�−bk

v j ,k ∈X \∂X =⇒ g�k v j ,k +bk ≤α−ε∑ND
i=1 g̃i ,k = gk∑ND
i=1 g̃�i ,k fim +‖g̃i ,k‖M‖v j ,k −xim‖ ≤ s j ,k

(3.19)

Based on the solution to this problem, it is possible to determine a ROA by the following

Corollary:

Corollary 7. If the solution to problem (3.19) satisfies s�ε =−ε
∑NC

k=1 |Ck |, then any sublevel set

L≤α ⊂X with α ∈R defines a ROA.

Proof. If the solution to (3.19) satisfies s�ε =−ε
∑NC

k=1 |Ck |, by choosing α ∈R such that L≤α ⊂X ,
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then the optimal solution to (3.19) is also an optimal solution to:

min
{gk ,bk },{g̃i ,k }{s j ,k }

∑NC

k=1

∑ |Ck |
j=1 s j ,k

∀ k,� ∈NNC , j ∈N|Ck |, s j ,k ≥−ε
v j ,k ∈C�∩L≤α =⇒ (gk − g�)�v j ,k = b�−bk

v j ,k ∈ L≤α \∂L≤α =⇒ g�k v j ,k +bk ≤α−ε
v j ,k ∈ ∂L≤α =⇒ g�k v j ,k +bk =α∑ND

i=1 g̃i ,k = gk∑ND
i=1 g̃�i ,k fim +‖g̃i ,k‖M‖v j ,k −xim‖ ≤ s j ,k ,

whose tessellation is given by {Ck∩L≤α}NC

k . Hence, Theorem 8 holds in L≤α, which summarizes

the proof.

�

Based on this corollary, we are able to learn the ROA within X by the following algorithm.

Algorithm 5
Input: RoA prior Xs , negativity tolerance −ε, Lipschitz overestimate M ,
Output: Lyapunov function L(x), ROA L≤α

Refine a tessellation {Ck }Nc

k=1 until it satisfies (3.17)
if tessellation is valid then

Solve optimization (3.19)
if Optimal value solution satisfies s�ε =−ε

∑NC

k=1 |Ck | then
find α ∈ such that L≤α ⊂X

Return
end if

else
Return cannot learn L(x).

end if

Remark 26. Besides the numerical improvements discussed in Section 3.4.2, it is also possible

to parallelize the solution of problem (3.16) by distributed convex optimization. In particular,

each affine piece {Ck } has its local constraints (3.16a), (3.16d), (3.16c), (3.16e) and (3.16f). It is

coupled with its adjacent pieces by the linear equality constraints (3.16b). This structure fits

into the standard structure in distributed convex optimization and can effectively enable the

solution of the large problem (3.16) into iterative solution of small scale SOCP defined only on

each affine pieces Ck .
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3.5 Numerical Results

In this part, we are going to evaluate the proposed learning schemes in two different examples.

In particular, we will make use of Algorithm 3, 4 and 5 in the first example and use Algorithm 5

in the second one. All the following results are implemented on a laptop with Intel i7-11800H

and 32G memory, and the Mosek is used for solving the SOCP problem.

3.5.1 Non Polynomial Dynamics

We consider a two-dimensional nonlinear dynamic system:

ẋ1(t )=−0.9sin(x1(t ))cos(x2(t ))+0.2x1(t )x2(t )+0.25x2(t )2

ẋ2(t )=−1sin(x2(t ))(|x1(t )+0.2|)+0.5
x1(t )x2(t )

cos(x2(t ))−0.3x1(t )

We assume that we know a ROA Xs = [−0.1,0.1]× [−0.1,0.1]. A dataset with only 200 samples

within [−1,1]× [−1,1]⊂R2 is used to learn the underlying Lyapunov function: the positions

{xi } and speeds { f (xi )} of these samples are plotted in Figure 3.3, from which we can observe

that this dataset is relatively sparse in [−1,1]× [−1,1]. Judging by the speed sample, the

dynamic system seems stable within the box of [−0.4,0.4]× [−0.4,0.4], while stability within

the region [−1,1]× [−1,1] \ [−0.4,0.4]× [−0.4,0.4] is unclear because of the speed samples

in the lower right corner in Figure 3.3. Hence, we ran sequential space partition scheme

(Algorithm 4). In particular, we first use Algorithm 3 in the region [−0.4,0.4]× [−0.4,0.4] with

Xs = [−0.1,0.1]×[−0.1,0.1]. After we justify that [−0.4,0.4]×[−0.4,0.4] is a ROA, then we further

apply Algorithm 5 to [−1,1]× [−1,1] with Xs = [−0.4,0.4]× [−0.4,0.4]. In both sub-problems,

the negativity tolerances ε are set to 10−3 and the tessellation are both randomly generated by

Delaunay triangularization [217].

The learnt Lyapunov function in [−0.4,0.4]×[−0.4,0.4] is shown in Figure 3.4, while the ROA we

finally end up is shown in Figure 3.6. Moreover, the Lyapunov function learnt from Algorithm 5

in Xs = [−0.1,0.1]× [−0.1,0.1]\[−0.4,0.4]× [−0.4,0.4] is shown in Figure. Figure 3.6 also shows

the evaluation of dL
d x f (x) with respect to the underlying dynamic system, whose maximal

evaluation is −1.525×10−2. In accordance with our guess, the learnt ROA in Figure 3.6 cuts

off the lower right corner, because this region does not seem to be stable. To see that, we

simulate the underlying dynamic system by setting the initial states to points in our dataset.

The simulated trajectories are plotted in Figure 3.7, and please note that these trajectories are

not used in the learning scheme at all.
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Figure 3.3: Visualization of the data used for the learning scheme

Figure 3.4: Visualization of the Lyapunov function on [−0.4,0.4]× [−0.4,0.4]

3.5.2 Reverse Time Van Del Pol Oscillator

In this part, we consider the reverse time Van Del Pol oscillator:

ẋ1(t )=−2x2(t )

ẋ2(t )=−0.8∗x1(t )−10(x1(t )2−0.21)x2(t ) . 119
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Figure 3.5: Visualization of the Lyapunov function on the learnt ROA within [−1,1]× [−1,1]

Figure 3.6: Evaluation of dL
d x f (x) on the learnt ROA, the gray triangularization in the back-

ground is the tessellation used to solve Problem (3.19), while the coloured region in the front
is ROA.

We know an a-priori polytopic ROA Xs , which is plotted in the center of Figure 3.11. A dataset

with only 400 samples within [−0.5,0.5]× [−0.5,0.5] ⊂ R2 is used to learn the underlying
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Figure 3.7: Simulation of the underlying dynamic system

Lyapunov function: the positions {xi } and speeds { f (xi )} of these samples are plotted in

Figure 3.8. Similar to what we did in the last example, we simulate these data forward in

Figure 3.9, while these trajectories not used in the learning scheme. We can observe that both

the lower right corner and the upper left corner in Figure 3.9 correspond to regions of unstable

states. Even with only the access to the data in Figure 3.8, we can not give a clear idea about

which region is safe, hence we apply Algorithm 5 to [−0.5,0.5]× [−0.5,0.5]. In particular, the

negativity tolerance ε is set to 10−3 and the tessellation is randomly generated by Delaunay

triangularization [217]. The learnt Lyapunov function and its evaluation of dL
d x f (x) on the

learnt ROA are respectively plotted in Figure 3.10 and Figure 3.11. In particular, the maximal

evaluation of the dL
d x f (x) on the learnt ROA is −1.947×10−2.

3.6 Conclusion

Our results

In this work, we went all the way from proving a variant of stability theorem with non-smooth

Lyapunov functions (LF), to actually implementing an algorithm for data-based region of

attraction (RoA) estimation with unknown dynamic system. In the process, we went through

proving a theorem for piecewise affine (PWA) LF computation and deriving a convex optimiza-

tion program for computing such LF.

The originality of the method we propose is that it only requires a fixed dataset to compute an
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Figure 3.8: Visualization of the data used for the learning scheme
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Figure 3.9: Simulation of the reverse time Van Del Pol oscillator

estimate of the RoA, from which it allows the user to deduce global information from local

data and knowledge on the Lipschitz constant of the dynamic system. Hence, it can be used to

study systems whose dynamics cannot be easily sampled at will, through a relatively simple
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Figure 3.10: Visualization of the Lyapunov function on the learnt ROA

Figure 3.11: Evaluation of dL
d x f (x) on the learnt ROA, the gray triangularization in the back-

ground is the tessellation used to solve Problem (3.19), while the coloured region in the front
is ROA. The polytopic hole in the middle is Xs .

optimization problem that can be handled with interior point methods.
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Future works

In this work, we propose a learning scheme that can learn a robust Lyapunov function with

a fixed dataset. However, with such minimal knowledge of the underlying dynamic system

results a big convex optimization even for a low-dimensional dynamic system. In the future

works, we should investigate how the side information or other a-priori knowledge of the

underlying dynamic system can be incorporated into the learning scheme so that the proposed

learning scheme can handle a higher-dimensional dynamic system.
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In this part, we will take a detour to another two major topics that I have been explored

during my Ph.D, which includes self-triggered control and real-time nonlinear MPC solver

design. Each topic is assigned a specific chapter, and one selected result is presented in the

corresponding chapter. Each chapter is written to be self-contained such that they do not

affect the integrity of the first two parts. For the readers that mainly hope to have a rough

idea of the result presented in these two chapters before reading them into details, I briefly

summarize them as follows:

Lian, Y., Jiang, Y., Stricker, N., Thiele, L. and Jones, C.N., 2021. Resource-aware stochastic

self-triggered model predictive control. IEEE Control Systems Letters, 6, pp.1262-1267.

In this section, we investigate a continuous-time stochastic linear system where an aperi-

odic zero-order-hold predictive controller is applied. The main challenge addressed is the

predictive uncertainty propagation of this aperiodic closed-loop control law. In particular,

we consider two aspects. Firstly, in self-triggered control, the triggering time instance of an

actuator is a control input and therefore a decision variable in the MPC problem. Another

problem that needs to be resolved in the MPC scheme is that the control input is constant

between two adjacent triggers. When a closed-loop prediction scheme is used, the predictive

controller needs to react to uncertainty by some parametric feedback control law. However,

such reaction only occurs at the triggered time instances. Therefore, a new characterization

of uncertainty propagation needs to be considered. To provide such a characterization, this

paper offers two fascinating results. Firstly, we provide the first result, to the best of our knowl-

edge, that decomposes information by product sigma field. Without resorting to the inner

product space structure, such decomposition is achieved solely based on the knowledge of

the topology of the stochastic process. Additionally, this decomposition enables us to quantify

which part of the information is available to update the feedback control law, which leads to

the second result in this paper. We characterize the uncertainty propagation by two ordinary

differential equations (ODEs), while the considered dynamics are governed by stochastic

differential equations. In these ODEs, we observe an interesting correlation in the direction of

time.

Lian, Y., Jiang, Y., Opila, D.F. and Jones, C.N., 2023.A Proximal-Point Lagrangian Based Paral-

lelizable Nonconvex Solver for Bilinear Model Predictive Control. Conditionally accepted by

Transactions on Control Systems Technology

This part presents a real-time solver for the bilinear model predictive control (MPC) problem,

in which we leverage parametric explicit quadratic programming to improve the performance

of the sequential quadratic programming (SQP) algorithm in detecting the active set. The key

contributions of this work lie in two aspects. Firstly, we bridge the gap between explicit MPC

and nonlinear MPC by incorporating a parametric QP step in the SQP algorithm. Secondly,

we recover a proximal alternating linearized method [218] in the dual space, which suggests

potential applications in broader nonlinear MPC problems. The proposed algorithm not only

offers interesting theoretical insights, but also achieves comparable performance to the fine-
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tuned SQP solver, acados [219]. In addition, we deploy the proposed solver on a real-world

bilinear motor with a low-cost embedded system and successfully achieve a reference tracking

task at a frequency of 500 Hz. Overall, our work demonstrates the practicality and effectiveness

of the proposed solver in real-time control applications.
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4 Self-triggered MPC

In this chapter, we will briefly review the work that I have done in the direction of self-triggered

control. Particularly, we will mainly elaborate on the result of stochastic self-triggered MPC

and then summarize the contributions in other papers at the end.

4.1 Introduction

Most devices in Internet of Things (IoT) networks and wireless sensing systems are operated

with some limited resource factors, such as battery life or hardware longevity. In order to

maintain desirable performance, a minimal number of triggers are required to best exploit

the limited resource. Event-triggered control and self-triggered control are two main control

schemes [220] accommodating this issue. In particular, control under an event-triggered

scheme is updated reactively by determining a trigger condition, for which a sensor has

to continuously monitor the trigger condition. Contrarily, a self-triggered scheme updates

proactively by planning the next trigger in advance, leaving the sensor and controller in idle

mode. Due to the limitation of the resource factors, especially battery life, a self-triggered

scheme is often preferable and is, therefore, the research object of this work.

The key ingredient of a self-triggered controller is the decision of the triggering time sequence.

The triggering time can be chosen as long as possible to minimize resource consumption as

in [221, 222]. However, to balance performance and resource consumption more effectively,

the response of the resource is explicitly considered in the model predictive control (MPC)

problem in [223, 224]. The former work solves a mixed-integer problem and is designed for

discrete-time systems, while the latter work solves a non-convex continuous-time optimal

control problem and has been later generalized to a distributed control scheme in one of our

previous result [225].

Running a triggered system within an uncertain environment while maintaining system

performance is challenging. Especially for the self-triggered controllers, the lack of sensor

measurement between consecutive triggers requires extra consideration of the uncertainty
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propagation. In [226], a nominal control law is determined based on a nominal system, while

the discrepancy between the nominal and measured trajectories serves as the triggering

condition. In [227–229], the idea of tube-MPC enables the design of robust self-triggered

controllers for both discrete-time and continuous-time linear systems. [230] used a min-max

optimization to optimize the worst-case performance. Although it is capable of handling

general uncertainties in nonlinear systems, the resulting non-convex robust optimization

problem is NP-hard [68]. Except for [230], other previous works mainly decouple the effects of

uncertainty from the nominal system, and the feedback control laws are updated with a fixed

frequency.

In this part, a resource-aware stochastic predictive control scheme is designed for a stochastic

linear system where the process noise is explicitly considered in the predictive control problem.

In particular, a discrete-time zero-order-hold linear feedback control law is integrated into the

closed-loop predictive control problem. The update time instances of this feedback control

law distribute non-uniformly on the time axis, which we term time-inhomogeneous, and

are optimized within the predictive control problem. The contributions of this work are

summarized into two aspects:

• A sigma field decomposition strategy is proposed to enable the analysis of a time-

inhomogeneous control.

• A discrete-time closed-loop feedback control law for stochastic self-triggered MPC is

proposed.

4.2 Deterministic Self-Triggered MPC

This section recaps the main idea of deterministic resource-aware self-triggered control. We

consider a linear time invariant (LTI) system in continuous time:

d x(t )

d t
= Ax(t )+Bu(t ) (4.1)

with state x(·) : [0,∞)→ Rnx and control input u(·) : [0,∞) ∈ Rnu . A self-triggered controller

determines both the value of the control inputs and the time instances at which the control

input is changed. In the framework of direct optimal control [231], a self-triggered controller

parameterizes its control inputs over the time horizon [0, tN ] by

u(t )=
N−1∑
k=0

vk ·ζk (t , tk , tk+1), (4.2)
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where the orthogonal functions ζk ∈L 2[t0, tN ], k ∈ZN−1
0 model the triggering property with a

piece-wise constant function

ζk (t , tk , tk+1)=
⎧⎨⎩1 t ∈ (tk , tk+1]

0 otherwise.
(4.3)

For the sake of compactness, we use notation v ∈ RN nu := [v�0 , v�1 . . . , v�N−1]� to stack the

control coefficients, and define the triggering time interval Δk := tk+1− tk and use the notation

Δ= [Δ0, ...,ΔN−1]�.

A self-triggered agent updates its control inputs at triggering time instances {tk }N−1
k=0 . When

the control law is fixed within (tk , tk+1], the resource r is recharged at a constant rate ρ until

saturation. More specifically, ṙ (t)= h(r − r (t))ρ for all t ∈ [tk , tk+1), where r is the saturated

value and h(·) is a heaviside function with h(s)= 1 if s > 0 and 0 elsewhere. When the agent is

triggered to update the control input, the resource is discharged by an amount η(Δk ) to pay

the update cost. Hence, the resource at triggering time instants {tk }N−1
k=0 is

r (t )=

⎧⎪⎨⎪⎩
r0 t = t0

lim
t→t−k

r (t )−η(Δk ) t ∈ {tk }N−1
k=1

(4.4)

with an initially available resource r0 at t0. Here, t→ t−k represents the left limits, i.e., t→ tk and

t < tk . Moreover, the resource r is required to be lower bounded by r . In conclusion, a resource-

aware self-triggered agent can update its control input when its resource is sufficiently high

to stay above the lower bound r . Otherwise, it must wait until enough resource is available.

Once the controller is triggered at time t0, the resource-aware self-triggered control solves the

following optimization problem to plan the next trigger time t1 and the control input within

[t0, t1],

min
x(·),v,Δ

N−1∑
k=0

∫tk+1

tk

l (x(τ), vk )dτ+M(x(tN )) (4.5a)

s.t. x(t0)= x0 , r (t0)= r0 (4.5b)

∀ t ∈ [t0, tN ],
d x(t )

d t
= Ax(t )+Bu(t ), (4.5c)

∀ t ∈ [t0, tN ], x(t ) ∈X , u(t ) ∈U , (4.5d)

∀k ∈ {0,1, ..., N −1}

r (tk+1)=min{ρΔk + r (tk )−η(Δk ),r } (4.5e)

r (tk+1) ∈ [r ,r ] , (4.5f)

Δk ∈ [Δ,Δ] (4.5g)

where l (·, ·) and M(·) in (4.5a) are stage cost and terminal cost, respectively. (4.5e) is a sim-

plified yet equivalent formulation of the resource dynamics (4.4) [224] and the resource is
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bounded by (4.5f). The constraints of the triggering time interval in (4.5g) protects the sys-

tem from being Zeno1 or frozen. X ⊆ Rnx and U ⊆ Rnu in (4.5d) model the state and input

constraints. The initial state and resource are given by (4.5b).

4.3 Stochastic Self-Triggered MPC

In this section, we consider the LTI system (4.1) contaminated by a Wiener process noise. This

is described by the stochastic differential equation (SDE)

d x(t )= (Ax(t )+Bu(t ))d t +dW , (4.6)

where W denotes a multi-dimensional Wiener process with statistics E{W (t )W (s)}=Q min(s, t )

and E{W (t )}= 0.

The open-loop evolution of the system’s state distribution (4.6) is widely studied in filter

theory [232] and the state evolution remains Gaussian N (μ(t ), P (t )), where

dμ(t )

d t
= Aμ(t )+Bu(t ) , (4.7a)

dP (t )

d t
= AP (t )+P (t )A�+Q . (4.7b)

Above all, given the dynamics in (4.7), it is straightforward to adapt the deterministic formula-

tion in (4.5) to generate an open-loop resource-aware stochastic MPC. The main focus and

contribution of this work are to develop a closed-loop scheme with respect to the dynam-

ics (4.7). In particular, a feedback control law is explicitly considered in the predictive control

problem and this feedback control law should satisfy the following requirements:

1. The feedback control law can only change its value when the controller is triggered,

otherwise, the control inputs remain constant.

2. The feedback control law is not updated at a fixed frequency, and its update time

instances are decision variables of the self-triggered problem.

In the following, the dynamics of the state distribution driven by a discrete time feedback

control law are developed by using the technique of sigma field decomposition. This results in

a resource-aware stochastic self-triggered MPC and its numerical implementation is discussed

at the end of this section. In order to convey the main idea of the proposed scheme, we state

the main results intuitively and provide the mathematical details in the Appendix.

1Zeno means that the triggering time Δ can be zero.
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4.3.1 Stochastic Process Decomposition

Considering an ordered triggering time sequence {tk }N
k=0, a sigma field Fk collects all the

stochastic events occurring between [t0, tk ], whereas F0 includes all the deterministic events.

Because the controller can update only when it is triggered, we propose to partition the

stochastic events by time intervals. In particular, the collection of stochastic events between

two consecutive triggers is defined by Fk,k+1 := σ(Fk+1\Fk ), where σ(·) denotes the mini-

mal sigma field. The following lemma indicates that there is no information loss with the

partitioning {Fk,k+1}N−1
k=0 .

Lemma 8. For a given Wiener process W with a stopping time sequence {tk }N−1
k=0 , if t j > ti holds

almost surely for all j > i , the sigma field at time tN can be decomposed as FN =σ(∪N−1
i=0 Fi ,i+1),

where Fi ,i+1 is independent from F j , j+1 for all i �= j .

Proof. We first recall the definition Fk,k+1 := σ(Fk+1\Fk ). According to the independence

property of a Wiener process, Fi ,i+1 ⊥F j , j+1 holds for all i �= j , therefore we haveσ(∪N−1
i=0 Fi ,i+1)⊂

FN . Then, we show the equality holds by contradiction. If FN �=σ(∪N−1
i=0 Fi ,i+1), by definition

of Fi ,i+1, there exists i ∈ZN−1
0 such that Fti �=Ft+i

:=σ(∩t>ti Ft ), which violates the continuity

of a Wiener process [233]. Hence, the proof concludes �

Remark 27. This lemma holds for any càdlàg Lévy process [232], which is practical for real-

world applications as all the analysis is established from the current time step or, in particular,

the sigma fields accumulated up to the current time instant.

Remark 28. Equation (4.8) holds due to product topology given by the Lemma 8, which reflects

the fact that the conditional covariance matrix Pk (t ) := E(P (t )|Fk,k+1) is a projection onto the

L 2 space of the progressively measurable process on Fk,k+1.

Lemma 8 is the key component of the feedback control law analysis, which enables us to

decompose the statistics of the state evolution into non-overlapping time intervals. Here, we

focus on the decomposition of the covariance matrix P (t) because of its close link with the

feedback control law. The projection2 of the covariance matrix P (t ) onto the stochastic events

within (tk , tk+1] is defined by Pk (t ) := E(P (t )|Fk,k+1), and Lemma 8 implies that

∀ t ∈ [t0, tN ] , P (t )=
N−1∑
i=0

Pi (t ) . (4.8)

Based on this decomposition, the open-loop evolution of the conditional dynamics of Pk (t )

2This is a geometric interpretation of conditional expectation [142]. Given a squared-integrable random variable
X in Sigma field F and a sub-Sigma field G ⊂F , then E(X |G )= argminY ∈G E((X −Y )2).
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are given by

dPk (t )

d t
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t ∈ [t0, tk ]

APk (t )+Pk (t )A�+Q t ∈ (tk , tk+1]

APk (t )+Pk (t )A� t > tk .

(4.9)

Note that substituting (4.9) into (4.8) yields the dynamics in (4.7b).

4.3.2 Discrete-Time Feedback Covariance Dynamics

To alleviate the perturbation caused by the process noise in (4.6), a feedback control law is

introduced to regulate the state deviation around the expected trajectory μ(t ) := E{x(t )}. Based

on the standard self-triggered scheme in (4.2) and (4.3), the feedback control law is defined by

u(t )=
N−1∑
k=0

(vk +K (x(tk )−μ(tk )))ζ(t , tk , tk+1) , (4.10)

where vk is the nominal control input determined by the expected dynamics of μ(t). Note

that this is a discrete-time linear control law written in continuous time, and it respects the

self-triggered control scheme such that the control input remains constant within time interval

(tk , tk+1] given by

u(t )= vk +K (x(tk )−μ(tk )) , t ∈ (tk , tk+1] .

Meanwhile, due to the fact that the state is accurately measured at time instance t0, there is no

feedback at t0. Recall (4.7), the evolution of the state distribution under the control law (4.10)

is characterized by its mean and covariance, where the nominal input vk governs the mean

dynamics by

dμ(t )

d t
= Aμ(t )+B vk , t ∈ (tk , tk+1], k ∈ZN−1

0 . (4.11)

As the feedback part in (4.10) reacts to the deviation from the nominal dynamics of μ(t ), the

covariance dynamics is therefore governed by the feedback control gain K ∈ Rnu×nx . The

following theorem gives the covariance dynamics.

Theorem 9. Let the feedback control law be defined by (4.10). The dynamics of the covariance

is given by

dP (t )

d t
=AP (t )+P (t )A� (4.12a)

+BK Pk,t (t )+Pt ,k (t )(BK )�+Q ,

dPt ,k (t )

d t
=APt ,k (t )+BK P (tk ) (4.12b)
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with correlation matrix lim
t→tk ,t>tk

Pt ,k (t )= P (tk ) and

Pt ,k (t ) := E{E{(x(t )−E{x(t )})(x(tk )−E{x(tk )})�|Fk }} (4.13)

for all t ∈ (tk , tk+1] and k ∈ZN−1
0 .

To prove this theorem, we first state the Itô lemma [233]:

Lemma 9 (Itô’s Lemma). For a given drift-diffusion process d x = ad t +bdW , if function f (·) is

twice-differentiable, It̂o’s formula holds as

d f =
(
∂ f

∂t
+a

∂ f

∂x
+ b2

2

∂2 f

∂x2

)
d t +b

∂ f

∂x
dW .

Proof. This proof consists of two steps:

1. Derive the decomposed covariance dynamics {Pk (·)}N−1
k=0 .

2. Reconstruct the ensemble covariance dynamics P (t ).

Decomposed covariance dynamics

Conditioning on the sigma field Fk,k+1, the control law is

E(u(t ) |Fk,k+1)= (4.14)⎧⎪⎪⎨⎪⎪⎩
vi t ∈ (ti , ti+1], i ∈Zk

0

vi +K E{x(t )−μ(t )|Fk,k+1} t ∈ (ti , ti+1], i ∈ZN−1
k+1 .

Notice that under a predictive control scheme, {vi }N−1
i=0 are determined at t0, hence {vi }N−1

i=0 are

F0 measurable and furthermore Fk,k+1 is measurable. Before tk+1, none of the triggers can

generate feedback with respect to the events in Fk,k+1 because Fk,k+1 happens later than tk .

These facts conclude the conditional control law in (??). Based on the system dynamics (4.6),

the mean dynamics (4.11) and the conditional control inputs (??), the SDE of the conditional

deviation dynamics of x(t )−μ(t ) is

E{d(x(t )−μ(t ))|Fk,k+1}= (4.15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t ∈ [t0, tk ]

A(E{x(t )−μ(t )|Fk,k+1})d t +dW t ∈ (tk , tk+1]

[
A(E{x(t )−μ(t )|Fk,k+1})+B t ∈ (ti , ti+1]

·K (E{d(x(ti )−μ(ti ))|Fk,k+1})
]

d t i ∈ZN−1
k+1 .

More specifically, this dynamic means that when t ≤ tk , there is no uncertainty generated by

Fk,k+1, and E(x(t )−μ(t )|Fk,k+1)= 0. After that, the stochastic events within interval (tk , tk+1]

135



Chapter 4. Self-triggered MPC

do not generate any feedback before tk+1 and the deviation evolves in an open-loop form.

After tk+1, no new Fk,k+1-measurable events can happen anymore and the feedback control

law comes into effect.

As Pk (t )= E{E{(x(t )−μ(t ))(x(t )−μ(t ))�|Fk,k+1}}, we can apply Itô’s Lemma (Lemma 9) to the deviation

dynamics. As a result, we have dPk (t )
d t = 0 for all t ∈ [t0, tk ]. And we have

dPk (t ) = (APk (t )+Pk (t )A�+Q)d t

+E{E{x(t )−μ(t )|Fk,k+1}dW �}︸ ︷︷ ︸
(a)

+E[dW E(x(t )−μ(t )|Fk,k+1)�]︸ ︷︷ ︸
(b)

,

holds for all t ∈ (tk , tk+1], where (a) = 0 and (b) = 0 as E{E{x(t)−μ(t)|Fk,k+1}} = 0. We thus,

conclude

dPk (t )

d t
= APk (t )+Pk (t )A�+Q ,∀ t ∈ (tk , tk+1] ,

which shares a form similar to (4.7b).

The last piece is the intervals in which the feedback control law takes effect. Without loss of

generality, we consider one interval (ti , ti+1] with i ∈ZN−1
k+1 , where we have

dPk (t )

d t
= APk (t )+Pk (t )A�+BK Pi ,t ,k (t )+Pt ,i ,k (t )(BK )�

with Pt ,i ,k (t )= Pi ,t ,k (t )� :=

E{E{(x(t )−μ(t ))(x(ti )−μ(ti )�}|Fk,k+1} .

Applying Itô’s Lemma again, we have

dPt ,i ,k

d t
= APt ,i ,k +BK Pt ,i ,k (ti )= APt ,i ,k +BK Pk (ti ) ,

where the second equality holds by definition.

Reconstruct general dynamics P (t )

Considering interval (ti , ti+1], we have following facts:

1. ∀k ≥ i +1, we have Pk (t )= 0.

2. Because the feedback is not active for the sigma-fields Fk,k+1, ∀k ≥ i , we have Pt ,i ,k =
0, ∀ k ≥ i .
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Based on the previous derivation, we have

dP (t )

d t
(a)=

N−1∑
k=0

dPk (t )

d t
=

i−1∑
k=0

dPk (t )

d t︸ ︷︷ ︸
1

+ dPi (t )

d t︸ ︷︷ ︸
2

+
N−1∑

k=i+1

dPk (t )

d t︸ ︷︷ ︸
3

=
i∑

k=0
(APi (t )+Pi (t )A�)︸ ︷︷ ︸

(b)

+Q+
i−1∑
k=0

BK Pk,t ,i (t )+Pt ,k,i (BK )�︸ ︷︷ ︸
(c)

,

where (a) holds by Lemma 8. 1 corresponds to the components whose feedback is active, 2

incorporates the stochastic event happening in the current interval (ti , ti+1], while 3 are the

future stochastic events which have no effect yet. The first aforementioned fact allows the

reformulation of (b) as

(b)=
N−1∑
k=0

(APk (t )+Pk (t )A�) .

Similarly, the second aforementioned fact reformulates (c) as

(c)=
N−1∑
k=0

BK Pi ,t ,k (t )+Pt ,i ,k (t )(BK )� .

Hence, by equation (4.8), we conclude

dP (t )

d t
= AP (t )+P (t )A�+BK Pk,t (t )+Pt ,k (t )(BK )�+Q .

In a similar approach, we have

dPt ,k (t )

d t
= APt ,k (t )+BK P (tk ) ,

which concludes the proof. �

Before proceeding to the predictive control problem, we discuss the physical meaning behind

Theorem 9. Equation (4.13) is the definition of Pt ,k (t ), ∀ k ∈ZN−1
0 and the rest of Theorem 9

summarizes its dynamics. In particular, Matrix Q in (4.12a) models the uncontrolled un-

certainty happening during interval (tk , tk+1] and Pt ,k models the stabilization effect of the

feedback control law, Pt ,k in (4.12b) is the correlation between current time instance t and

the previous trigger moment tk , which reflects the fact that the feedback control law within

(tk , tk+1] only uses information up to tk to generate a constant feedback. The final piece of

Theorem 9, lim
t→tk ,t>tk

Pt ,k (t )= P (tk ), links the dynamics between (tk−1, tk ] and (tk , tk+1]. In par-

ticular, as the feedback control law updates at tk , Pt ,k gets reset at tk and drops the information

Pt ,k−1(tk ) from the last interval.

Remark 29. We have Pt ,0(t0) = 0 and P (t0) = 0 in the first time interval [t0, t1], . Hence, by
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Theorem 9, the covariance dynamics in t ∈ [t0, t1] is

dP (t )

d t
= AP (t )+P (t )A�+Q ,

dPt ,0(t )

d t
= 0, (4.16)

which is consistent with the fact that there is no effective feedback within the first interval [t0, t1].

4.3.3 Model Predictive Control Scheme

In this section, we summarize a stochastic MPC controller, that incorporates the dynamics de-

rived in Theorem 9 into the self-triggered MPC scheme. In particular, the controller optimizes

the expected performance while ensuring input/state constraint satisfaction up to some user

defined probability. For the sake of compactness, the saturated resource dynamics are de-

noted by g (r (tk ),Δk ) :=min
{
ρΔk + r (tk )−η(Δk ),r

}
. In general, the nominal inputs {vk }N−1

k=0 ,

the feedback control K , the triggering time instances {tk }N
k=1 are determined by following

problem.

min
K ,v,Δ
μ(·),P (·)

N−1∑
k=0

∫tk+1

tk

E (l (x(τ),u(τ)))dτ+E(M(x(tN ))) (4.17a)

s.t. ∀ t ∈ (tk , tk+1], ∀k ∈ {0,1, ..., N −1},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dμ(t )

d t
=Aμ(t )+B vk ,

dP (t )

d t
=AP (t )+P (t )A�+Q

+BK Pk,t (t )+Pt ,k (t )(BK )�,

dPt ,k (t )

d t
=APt ,k (t )+BK P (tk ),

(4.17b)

∀ t ∈ [t0, tN ] ,

{
x(t )∼N (μ(t ),P (t )),

P(x(t ) ∈X )≥ 1−εx ,
(4.17c)

∀ t ∈ {tk }N−1
k=0 ,

{
u(tk )∼N (Kμ(tk ),K P (tk )K�),

P(u(tk ) ∈U )≥ 1−εu ,
(4.17d)

∀k ∈ {0,1, ..., N −1} ,{
r (tk+1)= g (r (tk ),Δk ), Δk ∈ [Δ,Δ],

Pt ,k (tk )= P (tk ), r (tk+1) ∈ [r ,r ],
(4.17e)

where εx and εu are the threshold that the chance constraints (4.17c) and (4.17d) are required

to stay above. Notice that due to the feedback with respect to a random event, the actual input

value u(t) is uncertain as well. On the practical side, if the feasible X and U are polytopic,

the chance constraints can be conservatively approximated by an explicit reformulation [234,

Chapter 3]. Without loss of generality, we consider P(H�x,i x(t )≤ hx,i ), i ∈Znh

i=1, where nh is the

number of inequality constraints with respect to x and Hx,i ∈Rnx and hx,i ∈R. As x(t ) follows
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a Gaussian distribution, any of these constraints can be reformulated as

H�x,iμ(t )≤ hx,i −
√

H�x,i P (t )Hx,i N −1(1−εx ) ,

where N −1(·) is the inverse cumulative probability distribution function, i.e., P(x ≤N −1(1−
εx ))= 1−εx .

4.3.4 Implementation Discussion

When Pproblem (4.17) is solved within a direct optimal control scheme, the integration of the

ordinary differential equations can be achieved by numerical integration methods such as the

Runge-Kutta method or the collocation method [235]. We recommend to use the collocation

method, because the triggering time instances are decision variables. If Runge-Kutta is used,

the integration depends on high order terms of {Δk }N−1
k=0 , which results in low numerical

stability. Instead, a collocation method depends linearly on {Δk }N−1
k=0 and hence is numerically

more stable.

4.4 Numerical Result

The proposed algorithm is tested on a double integrator with state x(t )= (x1(t ), x2(t )), whose

SDE is

d x(t )=
([

0 1

0 0

]
x(t )+

[
0

1

]
u(t )

)
d t +dW.

The controller is designed to track a reference signal oscillating between 1 and −0.4. Only

the stage cost is considered with l (x(t),u(t)) = 10(x1(t)− ref(t))2+0.1u(t)2 and ref(t) is the

tracking reference. The parameters for the chance constraints in (4.17c) and (4.17d) are

εx = 0.01, εu = 0.01. The recharging rate is 1 with a trigger cost of 0.4. To show the effectiveness

of the proposed algorithm, we consider two different cases, Q = 0.01I and Q = 10−4I . The

former case can be considered as more dangerous than the second case as it has larger process

noise. In both cases, we consider a input chance constraint in [−10,10] with a prediction

horizon N = 10.

In the first case, the covariance of the process noise is set to be Q = 0.01I and the output is

bounded by y ∈ [−2,1]. In this case, the reference overlaps with the output’s upper bound, and

the standard deviation of the process noise is around 10% the scale of the output.

A Monte-Carlo simulation of the output responses is shown in Figure ??, where the controller

tries to stay close to the reference, however, as the output is upper bounded by 1, it stays below

the upper reference to ensure safety. Regarding another reference signal at −0.4, because it is

far away from both constraints, the fluctuations of all the sampled experiments centre around

the reference −0.4.
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Figure 4.1: Resource response of the stochastic self-triggered MPC (Q = 10−2I )
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Figure 4.2: Resource response of the stochastic self-triggered MPC (Q = 10−2I )
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Figure 4.3: Triggering time response of the stochastic self-triggered MPC (Q = 10−2I )
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Figure 4.4: Output of the stochastic self-triggered MPC (Q = 10−4I )
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Figure 4.5: Resource response of the stochastic self-triggered MPC (Q = 10−4I )

Figure 4.2 and Figure 4.3 show the responses of the resource and the triggering time difference

Δ of all Monte-Carlo runs. When the reference is close to the bound, the controller uses

the shortest triggering time confined by the resource dynamics (i.e. 0.4s) and consumes

all the resource. When the reference is farther away from the bound, the resource starts to

recharge, which is also reflected as the time between triggering times is larger than 0.4 in

Figure 4.3. However, the resource level is lower in comparison with another case because the

process noise is large and a more frequent triggers are required to guarantee the controller

performance.

In the second case, a smaller process noise Q = 10−4I is considered and the output is bounded

by y ∈ [−2,1.1]. In this case, we compare our proposed scheme against the open-loop scheme

to show the necessity of the closed-loop control. Monte-Carlo samples of the output responses

are shown in Figure 4.4, where the output of the proposed scheme tightly tracks the reference.

Meanwhile, as a stochastic control scheme, one can see that there is a sampled trajectory that

violates the upper bound at around 1s. The open-loop scheme also performs the task properly,

however, we can see that it stays farther away from the reference 1. To make a cleaner and
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more informative plot, the resource of one sampled trajectory is shown in Figure 4.5, where

we can see that the resource of the closed-loop scheme tends to ramp up when the output

is already around the reference and tends to decrease when the reference signal changes.

Meanwhile, we can see that the resource consumption in the open-loop scheme is much

higher than that of the closed-loop scheme, which means that the open-loop is less desirable

as it requires more frequent triggers to maintain the system performance.

4.5 Final Remarks and Other Contributions

Having introduced the resource-aware self-triggered MPC and its stochastic version in this

chapter, we can see that the major challenge for self-triggered approach concerns its com-

putational aspect. As the triggering time is a decision variable and the actuator cannot be

further updated between two consecutive triggers, the computational aspect becomes more

challenging, including the coordination among self-triggered devices, uncertainty propaga-

tion and even its numerical implementation. Other work that I carried out in this research

direction mainly resolve the aforementioned challenges, which allows me to make use of the

self-triggered concept to resolve other applied problems:

• Stricker, N., Lian, Y., Jiang, Y., Jones, C.N. and Thiele, L., 2021, November. Joint energy

management for distributed energy harvesting systems. In Proceedings of the 19th ACM

Conference on Embedded Networked Sensor Systems (pp. 575-577).: use self-triggered

control to minimize energy use of the actuator, whose energy supply comes from a

PV-based enregy harvest system. As the energy availability depends on the illumination

condition, which is uncertain depending on the weather condition or the occupant

behaviours. Hence, limiting the triggers and accordingly its power consumption, while

maintaining the performance, is vital to the reliable operation of this category of devices.

• Lian, Y., Jiang, Y., Stricker, N., Thiele, L. and Jones, C.N., 2021. Robust Resource-Aware

Self-Triggered Model Predictive Control. IEEE Control Systems Letters, 6, pp.1724-1729.:

the robust version of resource-aware self-triggered MPC. The setup is similar to what

we did in the stochastic version, while the ellipsoidal calculus is used. The resulting

uncertainty propagation dynamics is slightly different from its stochastic version, where

the correlation in the direction of time still presents.

• Lian, Y., Wildhagen, S., Jiang, Y., Houska, B., Allgöwer, F. and Jones, C.N., 2020, December.

Resource-aware asynchronous multi-agent coordination via self-triggered MPC. In 2020

59th IEEE Conference on Decision and Control (CDC) (pp. 685-690). IEEE.: Coordination

of multiple self-triggered control object, while allowing each of them to operate/trigger

asynchronously.

• Lian, Y., Jiang, Y., Jones, C.N. and Opila, D.F., 2022. Scheduling Delays and Curtailment

for Household Appliances With Deterministic Load Profiles Using MPC. IEEE Control

Systems Letters, 6, pp.3301-3306.: Use the self-triggered control idea to schedule the
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home appliances with a continuous time formulation. This formulation can reduce

the amount of decision variables in comparison with its discrete time formulation, and

hence reduce the computational time.

• Stricker, N., Lian, Y., Jiang, Y., Jones, C.N. and Thiele, L., 2021, November. Self-triggered

Control with Energy Harvesting Sensor Nodes. To appear in Transactions on Cyber-

Physical Systems. IEEE.: Experimental validation of the self-triggered scheme on enery

harvesting sensor nodes for long-term operation.
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5 Proximal Bilinear MPC solver

5.1 Introduction

Bilinear systems were originally introduced in [236, 237] to model systems where the dynamics

involve products of the inputs and the states. These dynamics may result from the linearization

of a nonlinear input affine system and are most commonly used to model convection, and

spinning in chemical processes and mechanical systems [238, 239]. Additionally, by means

of the concept of Carleman linearization [240], it has been shown that bilinear systems are

capable of modeling general nonlinear systems [241]. Meanwhile, with the help of various

sophisticated tools such as Lie algebra [242, Chapter 2] and Volterra series [243], bilinear

control theory has been explored in depth and has found various successful applications [244–

248].

Nonlinear model predictive control (NMPC) is one of the most successful approaches used

to control bilinear systems [249–252]. The main idea of NMPC is to achieve the desired

performance by optimizing the input in a receding horizon scheme while enforcing state and

input constraints [253]. This requires the solution of a nonlinear optimal control problem

(OCP) online within a limited update time. Therefore, an efficient solver is a must to run

NMPC in real time1.

Among various real-time NMPC methods, designing and executing an online solver that

can run in parallel via distributed algorithms has been a trend over the past decade [254].

Compared to centralized solution approaches, parallelizable methods split the problem into

multiple smaller problems such that the computational resources can be utilized more ef-

ficiently by exploiting the structure of the OCP being solved. A classical approach used in

distributed optimization is based on dual decomposition, where, for example, a gradient-

based method [255, 256] or a semi-smooth Newton method [257] have been used to solve

the concave dual problem. Another famous approach is the Alternating Direction Method of

1In this chapter, real-time means that the MPC solver should return the solution fast enough to enable a
desirable operation of the targeted system. Based on our experience, for a mechatronic/mechanical system, the
MPC solver should be at least five times faster than the sampling frequency.
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Multipliers, which parallelizes the computation by introducing auxiliary variables [254, 258].

These two methods lack convergence guarantees for nonconvex problems and hence are only

formally applicable to linear systems. In [259], an augmented Lagrangian based distributed

optimization algorithm is proposed, which has been applied to parallelize the computation of

MPC problems in [260, 261]. However, despite being parallelized, these algorithms require

a solution to multiple non-convex optimization problems in each iteration, which are still

numerically intense.

Decomposing an NMPC problem into a set of small-scale problems mainly leverages the

linear equality constraints that appear in NMPC problems, which can reflect the topology

of a network system or that naturally emerge in the temporal direction via the introduction

of auxiliary variables. The latter approach is the horizon splitting method [262, 263], or

sometimes termed Schwarz decomposition [264]. It splits the predictive trajectories into short

sequential sequences, where linear couplings naturally enforce the equality between the initial

states and the terminal state of two adjacent short sequences, hence the name. Within the

scope of horizon splitting, tools beyond distributed algorithms have been leveraged to improve

efficiency further. The banded structure of the KKT system is the most investigated object

in this setup. In [265], a general parallel solver is summarized by a binary-tree-structured

algorithm, and in [263], an approximation scheme is introduced to develop a parallel Ricatti

solver. However, these algorithms still handle the nonconvex problem directly and, as such,

are still numerically challenging.

Another category of methods that are widely used in real-time NMPC leverages the super-linear

local convergence property of Newton-type methods to accelerate the online convergence

given a good initialization of the decision variables. This category of methods roughly defines

the “warm-start" strategy, whose initialization usually derives from the solution information

gathered from the preceding time step. A basic approach directly shifts the solution from the

last iteration [266], and then a Newton iteration ensures efficient local convergence. Under

the umbrella of sequential quadratic programming (SQP), the sensitivity information of the

local solution is further used to initialize the KKT system, where an initial guess of active

constraints is the most challenging object. In [267], the piece-wise affine property of linear

model predictive control (MPC) is used to estimate the change of the active constraint. This

idea is generalized in [268] under the name of real-time iteration (RTI), where a sensitivity

analysis of the local solution is used to give a piece-wise affine update of the control law.

Instead of solving the NMPC directly online, explicit MPC shifts the online computational

burden offline. It treats the MPC control law as a nonlinear mapping from the initial state to

control input, and this control law is precomputed offline to enable efficient online calls. In a

linear MPC setup, the optimal control law is locally affine [269, 270], and this piece-wise affine

parametric solution is first used to pre-compute the MPC control law offline in [270]. However,

this algebraic property only holds for linear systems, and its application to nonlinear MPC is

limited without approximation [271].
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this chapter studies a new proximal-point Lagrangian based algorithm (PPL), which combines

the ideas of horizon splitting, explicit MPC, and real-time SQP. In contrast to a standard

horizon-splitting approach, a novel interlacing horizon-splitting scheme is introduced. The

advantages of the proposed controller are summarized as follows:

1. The PPL algorithm runs computationally efficient iterations, which only require an eval-

uation of a multi-parametric QP (mpQP) solution and to solve a sparse linear equation

system.

2. The detection of the active set is shifted to the mpQP solution, whose problem size is

independent of the prediction horizon.

3. A novel interlacing horizon splitting scheme is introduced. The resulting problem

has the same number of decision variables as the original NMPC problem without

introducing auxiliary variables.

4. The PPL algorithm will not abort even when an infeasible initial state is given. It will

output a solution that at least satisfies the input constraint.

5.1.1 Preliminaries

We first recap some existing results from the field of multi-parametric quadratic programming

(mpQP) used later in this chapter. A generic convex mpQP can be written in the form of

min
x

1

2
x�Qx+θ�Sx (5.1a)

s.t. Ax ≤ b+Cθ , (5.1b)

with decision variables x ∈ Rnx and parameters θ ∈ Rnp . Here, matrices Q ∈Snx+ , S ∈ Rnp×nx ,

A ∈ Rm×nx , C ∈ Rm×np and vector b ∈ Rm are given data. Moreover, we denote by Ω the set

of all parameters θ for which (5.1) is feasible. For a mpQP (5.1) with a strongly convex value

function, it has been shown (see, e.g., [272]) that Ω is a polyhedron while the solution map

x�(θ) : Rnp → Rnx is a continuous piecewise affine (PWA) function of the parameters. Each

affine piece is called a critical region [273, Chapter 7.1.2]. Meanwhile, the Lipschitz-continuity

holds at x�(·), i.e., there exists a positive constant η> 0 such that for any θ1,θ2 ∈Ω, we have∥∥x�(θ1)−x�(θ2)
∥∥≤ η‖θ1−θ2‖ . (5.2)

We now recall some definitions from the field of nonlinear programming (NLP). Let us consider

NLPs in a generic form

min
x

f (x) subject to

{
g (x)= 0 |λ,

h(x)≤ 0 | κ.
(5.3)

Throughout the rest of this chapter, we write Lagrangian multipliers right after the constraints
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such that λ ∈ Rng and Rnh � κ ≥ 0 denote, respectively, the Lagrangian multipliers of the

equality constraints and inequality constraints. Functions f : Rnx →R, g : Rnx →Rng and h :

Rnx →Rnh are assumed twice continuously differentiable. A primal-dual solution (x∗,λ∗,κ∗) is

called a Karush–Kuhn–Tucker (KKT) point of (5.3) if the following conditions are satisfied [274,

Chapter 12.3]

∇ f (x∗)+∇g (x∗)λ∗ +∇h(x∗)κ∗ = 0,

g (x∗)= 0, h(x∗)≤ 0,

∀ i ∈ 1, ...,nh , [κ∗]i · [h(x∗)]i = 0,[κ∗]i ≥ 0,

(5.4)

where [κ∗]i and [h(x∗)]i define the i -th element of κ∗ and h(x∗), respectively. For a given

feasible x, we denote by A (x) the active set at x, i.e., the index set that includes the equality

constraints and the inequality constraints that holds equality at x. When the set of active

constraint gradients (i.e.,
[
∇g (x),∇hi∈A (x)(x)

]
) is linearly independent at point x, the linear

constraint qualification (LICQ) holds [274, Chapter 12.2]. Furthermore, we say the second-

order sufficient condition (SOSC) holds at point x, if its hessian ∇2h(x) is positive definite

semidefinite on the null space spanned by active constraint gradients [275]. Finally, we say

the strict complementary condition (SCC) holds if a dual variable equals zero only when the

corresponding constraint is active. Then, we state the definition of regular KKT point for

NLP (5.3).

Definition 5. [275] A given KKT point (x∗,λ∗,κ∗), is called a regular KKT point if the LICQ,

SOSC, and the SCC hold.

For a given KKT point (x∗,λ∗,κ∗), if it is regular, then there exists an open neighborhood

B(x∗) around x∗ such that the active set is fixed for any x ∈B(x∗), (i.e., A (x)=A (x∗)) [275]).

Regularity at KKT points guarantees the local convergence property when a Newton-type

method is applied to solve (5.3) [274].

When the inequality constraint h(x)≤ 0 defines a convex set, the first-order optimality condi-

tion (5.4) can be further simplified for the sake of compactness:

0 ∈∇ f (x∗)+∇g (x∗)λ∗ +NX (x∗),

with the convex set X := {x ∈Rnx |h(x)≤ 0} and NX (x∗) := {y
∣∣(y −x∗)�(x−x∗)≤ 0, ∀ x ∈X

}
denotes the normal cone of convex set X at x∗.

In contrast to the standard Hestenes-Powell augmented Lagrangian method [276, 277], a

variant of an augmented Lagrangian method, termed proximal-point Lagrangian [278], is used

in this chapter. Given an equality constraint optimization problem

min
x

f (x) s.t. g (x)= 0 ,
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its linearized proximal-point Lagrangian around x is defined by

L ρ(x,λ, x) := f (x)+ (∇g (x)λ)�x+ ρ

2
‖x−x‖2 . (5.5)

Note that when ρ = 0, it recovers the linearized Lagrangian. For the sake of completeness, the

Hestenes-Powell augmented Lagrangian is defined by f (x)+λ�g (x)+ ρ
2 ‖g (x)‖2.

5.2 Problem Formulation

this chapter considers discrete-time, time-invariant bilinear dynamic systems:

xk+1 =Axk +Buk +
nu∑

i=1
Ci xk [uk ]i +Bw wk (5.6)

with state xk ∈ Rnx , control inputs uk ∈ Rnu and disturbance wk at time instant k. For the

sake of simplicity, we group the bilinear coefficient matrices C = [C�1 , ...,C�nu
]� ∈Rnx ·nu×nx and

assume that the states and control inputs are subject to the polyhedral constraints

xk ∈X := {x ∈Rnx
∣∣Px x ≤ px

}
,

and uk ∈U := {u ∈Rnu
∣∣Puu ≤ pu

}
.

The dynamics (5.6) also includes the case without process noise. For the case with process

noise, to make the problem tractable, we consider solving a certainty equivalent problem,

where the prediction of the nominal process noise wk is available. This assumption holds in

many energy-related applications: solar radiation in photovoltaic power systems, the outdoor

climate in building control, and power generation in airborne wind energy systems, to name a

few. An MPC controller can be designed by recursively solving the following optimal control

problem in a receding horizon fashion,

min
x0,x,u

N−1∑
k=0

�k (xk ,uk )+�N (xN ) (5.7a)

subject to:

x0 = x(t ), (5.7b)

∀k ∈ {0,1, ..., N −1},

xk+1 = Axk +Buk +
nu∑

i=1
Ci xk [uk ]i +Bw wk |λk , (5.7c)

xk+1 ∈X , uk ∈U | κk , (5.7d)

with x = [x�1 , ..., x�N ]�, u = [u�0 , ...,u�N−1]� and prediction horizon N ∈Z>0. For the sake of con-

sistency, variables indexed by bracketed time, such as x(t ), denote the actual measurements

read out from sensors. Meanwhile, variables indexed by a subscript, such as xk , denote the
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Chapter 5. Proximal Bilinear MPC solver

predictive “virtual" variables used in the MPC problem. In problem (5.7), the stage cost �k (·, ·),

k ∈ZN−1
0 and terminal cost �N (·) are quadratic and strongly convex, i.e.,

�k (x,u)=1

2
x�Qk x+q�k x+ 1

2
u�Rk u+ r�k u,

�N (x)=1

2
x�QN x+q�N x

with user-defined parameters Q,QN ∈Snx++, R ∈Snu++ qk ∈Rnx , rk ∈Rnu . Notice that although

its objective is strongly convex, solving nonconvex Problem (5.7) is challenging due to the

bilinear dynamics (5.7c).

5.3 Algorithm Development

In this part, we will study an algorithm to solve the bilinear MPC problem (5.7) efficiently.

Before delving into the algorithmic details, we would first state the logic behind the design of

the PPL algorithm. As reviewed in Section 5.1, real-time application of MPC mainly applies

and SQP solver with warm-start strategies, or uses explicit MPC. When a good initialization is

not available, the detection of active inequality constraints becomes the major performance

bottleneck for the SQP algorithm. This requires the design of sophisticated active set detection

strategies or the use of merit functions (see e.g. [274, Chapter 18.2] [279, Chapter 2.3] [280,

Chapter 2.3]). In the worst case, a poor estimate of the active set will lead to an infeasible QP

subproblem, which in the end, aborts the progress of the SQP algorithm. On the contrary, the

information of the active set is implicitly saved as critical regions in the explicit solution of

explicit MPC. However, its application is limited to linear systems (Section 5.1).

this chapter aims at bringing the benefits of explicit MPC to the SQP method in the application

of bilinear MPC. In particular, instead of the direct use of an explicit MPC, the explicit solution

will play the role of an active set detector in this chapter. In the rest of this section, we will

first introduce a novel interlacing horizon splitting scheme, after which the parallelizable

parametric nonconvex solver is elaborated. The convergence properties of the proposed

solver are studied in Section 5.3.3. An interpretation of the proposed scheme in the dual space

is given in Section 5.3.4, followed by a comparison with related works in Section 5.3.5.

5.3.1 Interlacing horizon splitting reformulation

This section presents the interlacing horizon splitting scheme used later to develop a par-

allelizable parametric solver to deal with (5.7). As depicted in Fig. 5.1, its main idea is to

bind the k-th input uk with state xk+1. To this end, we introduce the shorthand ξ0 = x0 and

ξk = [u�k−1, x�k ]� for all k ∈ZN
1 with associated constraint sets Ξ0 = {ξ ∈Rnx : ξ0 = x0 = x(t )} and

Ξk ={ξ ∈Rnu+nx : ξ ∈U ×X }, k ∈ZN
1

={ξ ∈Rnu+nx : Pξξ≤ pξ}
(5.8)
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u0 u1 . . . uN−1

x0 x1 x2 . . . xNx1 x2 xN

Figure 5.1: Visualization of the interlacing horizon splitting.

with Pξ = diag(Pu ,Px ) and pξ = [p�u , p�x ]�. Moreover, we denote the decoupled objective by

F0(ξ0)= 1

2
ξ�0 Q0ξ0+q�0 ξ0,

Fk (ξk )= 1

2
‖ξk‖2

diag(Rk−1,Qk )+ [r�k−1, q�k ]�ξk , k ∈ZN
1

and summarize the bilinear dynamics (5.6) by

Dkξk +Ekξk+1+ (Sk+1ξk+1⊗ Inx )�Gkξk = dk

with coefficients dk =−Bw wk , k ∈ZN−1
0 ,

D0 = A, Dk = [0nx×nu , A], k ∈ZN−1
1

Ek = [B ,−Inx ], Sk = [Inu , 0nu×nx ], k ∈ZN−1
0

and G0 =C , Gk =
[
[0nx×nu , C1]�, ..., [0nx×nu , Cnu ]�

]�
for all k ∈ZN−1

1 . Accordingly, Problem (5.7) can be rewritten as

min
ξ

N∑
k=0

Fk (ξk ) (5.9a)

s.t. (Sk+1ξk+1⊗ Inx )�Gkξk

+Dkξk +Ekξk+1 = dk |λk , k ∈ZN−1
0 (5.9b)

ξk ∈Ξk , | κk , k ∈ZN
0 . (5.9c)

5.3.2 Proximal-point Lagrangian Based Parallelizable Solver

Based on the interlacing splitting, the proximal-point Lagrangian introduced in (5.5) are used

to design the algorithm. On the one hand, it gives zero local duality gap even under the

nonlinear/non-convex dynamics [129, Chapter 11.K]. On the other hand, it enables a convex

QP, accordingly an mpQP, formulation of parallelizable local problems. In particular, for a

given primal trajectory ξ (i.e inputs and states) and a dual trajectory {λk }N−1
0 , the linearized
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proximal-point Lagrangian of (5.9) w.r.t the equality constraint (5.9b) is given by

L ρ(ξ,λ,ξ)=L
ρ
0 (ξ0,λ0,ξ0,ξ1)+L

ρ

N (ξN ,λN−1,ξN−1,ξN )

+
N−1∑
k=1

L
ρ

k (ξk ,λk−1,λk ,ξk−1,ξk ,ξk+1) (5.10)

with

L
ρ
0 (ξ0,λ0,ξ0,ξ1) := F0(ξ0) (5.11a)

+λ�0
[

D0+ (S1ξ1⊗ Inx )�G0

]
ξ0+ ρ

2

∥∥∥ξ0−ξ0

∥∥∥2
,

L
ρ

k (ξk ,λk−1,λk ,ξk−1,ξk ,ξk+1) := (5.11b)

Fk (ξk )+λ�k−1

(
Ek−1+mat(Gk−1ξk−1) ·Sk

)
ξk

+λ�k
[

Dk + (Sk+1ξk+1⊗ Inx )�Gk

]
ξk +

ρ

2

∥∥∥ξk −ξk

∥∥∥2
,

L
ρ

N (ξk ,λN−1,ξN−1,ξN ) := FN (ξk )+ ρ

2

∥∥∥ξN −ξN

∥∥∥2

+λ�N−1

(
EN−1+mat(GN−1ξN−1) ·SN

)
ξN (5.11c)

with ρ > 0 and λ := [λ�0 ,λ�1 , . . . ,λ�N−1]�. From the proximal-point Lagrangian (5.10), the ben-

efits of the interlacing horizon splitting become clear. Firstly, the problem is decomposed

into N +1 independent subproblems in ξ. Secondly, each subproblem is a convex mpQP.

Furthermore, the use of the proximal-point Lagrangian allows a simplification of L
ρ

k (·) to a

modified proximal form (Section. 5.4.1) [281].

If the primal-dual solution (ξ∗,λ∗) of (5.9) is a regular KKT point, we have solving (5.9) equiva-

lent to solving

max
λ

(
−

N−1∑
k=0

λ�k dk +min
ξ

L ρ(ξ,λ,ξ= ξ∗)

)
subject to ξ ∈Ξ=Ξ0× ...×ΞN .

(5.12)

As L ρ is decoupled in ξ, our main idea to develop a parallelizable algorithm solving (5.9) is to

design a primal-dual algorithm to solve the dual problem (5.12) with an iterative update in ξ.

Algorithm 6 outlines the main steps of the PPL algorithm for solving (5.9). Step 1) deals

with decoupled problem (5.13) in parallel, which has explicit solutions as convex mpQPs.

Particularly, their solution maps are piece-wise affine functions and can be pre-computed

offline (See Section 5.4.1). Based on the local solutions ξ, Step 2) evaluates the sensitivities,

including the Hessian approximation of the Lagrangian L 0, the gradients of the decoupled

objective Fk and the bilinear dynamics residual ck . The active Jacobian P̂ k
ξ

are constructed

based on the active set at local solutions ξk . The terminal condition is given in Step 3). It

is clear that if these termination conditions hold, we have the iterate (ξ,λ) satisfying the
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5.3 Algorithm Development

Algorithm 6 Proximal-point Lagrangian Based Online Solver for Bilinear MPC

Input: an initial guess of (ξ,λ), a stop tolerance ε> 0, a proximal weight ρ and a slack penalty
μ

Repeat:

1. Solve decoupled mpQP problems sequentially or in parallel,

min
ξ0∈Ξ0

L
ρ
0 (ξ0,λ0, x(t ),ξ1), (5.13a)

min
ξk∈Ξk

L
ρ

k (ξk ,λk−1,λk ,ξk−1,ξk ,ξk+1), k ∈ZN−1
1 , (5.13b)

min
ξN∈ΞN

L
ρ

N (ξN ,λN−1,ξN−1,ξN ). (5.13c)

In all the following steps, ξk , k ∈ZN
0 denote optimal solutions of the above QPs.

2. Evaluate sensitivities

H ≈∇ξξL 0(ξ,λ,ξ), (5.14a)

gk =∇Fk (ξk )−∇L
ρ

k (ξ,λ,ξ) , k ∈ZN
0 , (5.14b)

ck =Dkξk +Ekξk+1

+ (Sk+1ξk+1⊗ Inx )�Gkξk −dk , (5.14c)

and the active Jacobian P̂ k
ξ

at local solution ξk . Here, we use simplified notation

L
ρ

k (ξ,λ,ξ), k ∈ZN
0 . for (5.11).

3. Terminate if maxk ‖ck‖ ≤ ε and maxk ρ‖ξk −ξk‖ ≤ ε hold.

4. Solve equality-constrained QP

min
Δξ,s

1

2
Δξ�HΔξ+

N∑
k=1

{
g�k Δξk +μ‖sk‖2} (5.15a)

s.t. Δξ0 = 0 (5.15b)

EkΔξk+1+ (Sk+1ξk+1⊗ Inx )�GkΔξk

+mat(Gkξk ) ·Sk+1Δξk+1

+ck +DkΔξk = 0 |λQP
k , k ∈ZN−1

0 (5.15c)

P̂ k
ξΔξk = sk , k ∈ZN

1 . (5.15d)

5. Update ξ
+ = ξ+Δξ and λ+ =λQP.
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first-order optimality condition

O(ε) ∈∇ξL 0(ξ,λ,ξ)+NΞ(ξ)

with Ξ=Ξ0×Ξ1×·· ·×ΞN and the primal feasibility condition∥∥Dkξk +Ekξk+1+ (Sk+1ξk+1⊗ Inx )�Gkξk
∥∥=O(ε)

for all k ∈ ZN−1
0 up to a small error of order O(ε). Step 4) deals with a structured equality-

constrained QP (5.15). In order to overcome the potential infeasibility caused by the lineariza-

tion of nonlinear dynamic (5.6) in constraint (5.15c), we introduce a decoupled slackness sk for

each active constraint (5.15d). This makes QP (5.15) always feasible regardless of the feasibility

of the original problem (5.9). Note that step 4) is similar to an SQP step, while its active sets are

directly generated by the mpQP solutions. On top of this, the mpQPs in step 1) are also always

feasible. Therefore, if one applies Algorithm 6 as an online solver for MPC, the resulting MPC

controller is always feasible, i.e., the iteration of Algorithm 6 will never fail before termination,

and it is independent of the initial condition x(t). This property is desirable in real-world

applications because the handling of infeasibility requires a careful design/tuning of a relaxed

problem. , even for a feasible problem, the standard SQP algorithm may abort due to an

incorrect estimate of the active sets. More specifically, if the estimated active set leads to an

infeasible QP, the iterations of the SQP algorithm will stop. In summary, the interlacing horizon

splitting scheme enables the mpQPs formulation. The PPL algorithm thereby iteratively calls

the mpQP solutions, and the inputs to the mpQPs are iteratively updated in the SQP-style step

4).

Remark 30. As discussed above, the proposed solver is always feasible even when the initial

state makes the NMPC problem infeasible. This property is also observed in the compositions of

the projection operator [282, 283], whose convergence to a point pair that are closest to all the

sets is proved. However, in a nonconvex setup, the property of the convergent results is unclear

and remains open for future research.

5.3.3 Local Convergence Property

This section shows that the PPL Algorithm 6 asymptotically converges to the local optimal

solution of (5.7) at a quadratic rate. The logic behind the constructive proof follows two facts:

local mpQPs (5.13) have a Lipschitz-continuous solution map; and the coupled QP (5.15) is

equivalent to a Newton-type method. To this end, we introduce the following lemma first to

establish the quadratic contraction of the solution of (5.15).

Lemma 10. Let the KKT point (ξ∗,λ∗) of Problem (5.9) be regular such that the solution ξ∗ is a

local minimizer. Moreover, let the Hessian evaluation H satisfy

H =∇ξξL 0(ξ,λ,ξ)+O(‖ξ−ξ‖). (5.16)
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and let μ in (5.15) satisfy 1
μ ≤O(‖ξ−ξ‖). Then, there exists α> 0, the solution to (5.15) locally

satisfies, ∥∥∥ξ+−ξ∗∥∥∥≤α
∥∥ξ−ξ∗∥∥2 ,

∥∥λ+−λ∗∥∥≤α‖ξ−ξ∗‖2. (5.17)

The term "local" in the statement means that the initial guess of primal-dual iterates locates

within a small neighborhood around the local solution (ξ∗,λ∗).

Proof. Based on the definition 5 of regular KKT point, we have that the active sets are not

changed locally [284]. Then, the standard analysis of Newton’s method gives∥∥∥∥∥
[
ξ
+−ξ∗

λ+−λ∗
]∥∥∥∥∥≤∥∥H −∇ξξL 0(ξ,λ,ξ)

∥∥ ·O(∥∥ξ−ξ∗∥∥)
+O

(∥∥ξ−ξ∗∥∥2
) (5.16)≤ O

(∥∥ξ−ξ∗∥∥2
)

as discussed in [274, Chapter 3.3], which concludes the proof. �

Intuitively speaking, this lemma states that if the iterates given by (5.13) are close to the optimal

solution to (5.7), then the distance between iterate given by (5.15) and the optimal solution

contract quadratically. The following theorem intends to show that this quadratic contraction

also holds even when we consider the iterates given by (5.13). Based on condition (5.16), we

have that there exists a constant α> 0 such that the local quadratic contraction (5.17) holds.

Then, we define by ξ+ the solution of (5.13) based on the updated primal-dual iterate (ξ
+

,λ+)

such that we can summarize the local convergence result as follows.

Theorem 10. Let all assumptions in Lemma 10 be satisfied. The iterates ξ of Algorithm 6 locally

converges to the local minimizer ξ∗ of Problem (5.9) with quadratic rate.

Proof. As discussed in Section 5.1.1, we have the local solution map ξ�(ξ,λ) of convex mpQPs (5.13)

are Lipschitz continuous such that we have

∥∥∥ξ�(ξ
+

,λ+)−ξ�(ξ∗,λ∗)
∥∥∥= ∥∥ξ+−ξ∗∥∥≤ η

∥∥∥∥∥
[
ξ
+−ξ∗

λ+−λ∗
]∥∥∥∥∥

with a constant η > 0. Here, we use the fact ξ∗ = ξ�(ξ∗,λ∗), i.e., if we initialize Algorithm 6

with the optimal solution (ξ∗,λ∗), the solution of convex mpQPs (5.13) is equal to the local

minimizer ξ∗. Moreover, iterate ξ+ is the solution of (5.13) if one starts the Algorithm 6 with

(ξ
+

,λ+) as the initial guess. Substituting (5.17) into the inequality above yields∥∥ξ+−ξ∗∥∥≤α ·η∥∥ξ−ξ∗∥∥2 ,

which is sufficient to establish the local quadratic convergence of iterates ξ to the local mini-

mizer ξ∗ [274, Chapter 3.3]. �
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It is worth mentioning that the same order of local convergence speed holds in a wide range of

second-order algorithms, such as the SQP Algorithm [274, Chapter 18.7] and the augmented

Lagrangian based alternating direction inexact Newton (ALADIN) method [259]. The the-

oretical importance of Theorem 1 shows that such convergence rate is still preserved even

when another layer of mpQPs is added (i.e., step 1) in Algorithm 6). Therefore, regarding the

motivation discussed at the beginning of this Section 5.3, the PPL algorithm not only achieves

efficient convergence as the Newton-type algorithm but also achieves an efficient active set

detection mechanism via the concept of explicit MPC (i.e., mpQPs). Hence, in comparison

with the standard SQP, the detection of active sets via mpQPs makes the PPL algorithm advan-

tageous. Additionally, such a benefit does not increase the iteration cost significantly, which in

practice, retains a low absolute computational time. This is not the case in other SQP-style

extensions, such as the ALADIN method, and we postpone the detailed comparison with

ALADIN to Section 5.3.5.

5.3.4 Dual Interpretation

In this part, we would show a different but more intuitive view of the PPL algorithm. The

expansion of the first-order information gk used in (5.15) gives

gk =
(
diag(Rk−1,Qk )+ρInx+nu

)
ξk + [r�k−1; q�k ]�+P k

ξ κk .

Moreover, recall that Pξ is the parameter of the inequality constraints (5.8), and κk are the

corresponding dual variables (5.9c), which are generated by the mpQPs solutions directly. By

inspecting the objective function in (5.15), the quadratic penalty term μ‖sk‖2 and gk together

recover an augmented Lagrangian defined at ξ, where the active inequality constraints are

dualized. This observation leads to a dual interpretation of the PPL algorithm.In the local

problems (5.13) (i.e., step 1) in Algorithm 6), the system dynamics are dualized with fixed dual

variables (i.e., {λk }) based on the proximal-point Lagrangian. The dual variables to the inequal-

ity constraints (i.e., {κk }) are thereby updated. Accordingly, the coupled QP problem (5.15)

(i.e., step 4) in Algorithm 6) updates the dynamics dual with the dual variables to the inequality

constraints fixed. Hence, the PPL algorithm can be viewed as an alternating direction method

in the dual space. Via the scope of this dual interpretation, the coupled QP (5.15) is not a

relaxed problem, as the augmented Lagrangian is an exact penalty function [274, Chapter 17].

With this dual interpretation at hand, we are ready to elaborate on the reasoning behind the

use of proximal-point Lagrangian. Firstly, the dual variables model first-order local proper-

ties [285], and an aggressive update should therefore be avoided due to such locality. The

proximal term (i.e., ρ
2 ‖ξk −ξk‖2 in the local steps (5.13)) realize this goal. This is important,

especially when a good estimate of dual variables is not yet available. Secondly, as dual vari-

ables encompass first-order information, linearization is therefore needed. More specifically,

the dual to the dynamics is updated to ξ in the coupled QP step. Hence the proximal-point

Lagrangian is linearized around ξ in (5.13). It is worth noting that the design logic similar to the

aforementioned one also appears in other nonconvex primal alternating direction methods,
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such as [218]. To the best of our knowledge, the PPL algorithm is the first algorithm to bring

this idea to the dual space.

5.3.5 Comparison with Related Work

In this part, we will compare the proposed scheme with other related results, particularly

the augmented Lagrangian based alternating direction inexact Newton (ALADIN) method.

The ALADIN method is also an extension of the SQP algorithm, but it can only handle linear

coupling. Hence, auxiliary variables that duplicate the states are introduced in order to handle

the bilinear dynamics. More specifically, ALADIN reformulates the bilinear MPC problem (5.7)

to the following equivalent problem:

min
x0,x,u

N−1∑
k=0

�k (xk ,uk )+�N (xN )

subject to:

x0 = x(t ),

∀k ∈ {0,1, ..., N −1},

zk+1 = Axk +Buk +
nu∑

i=1
Ci xk [uk ]i +Bw wk

xk+1 = zk+1 | λ̃k , (5.18a)

zk+1 ∈X , xk ∈X , uk ∈U

where auxilary variables zk duplicate the states xk , and a linear coupling constraint is thereby

introduced in (5.18a). This is the standard horizon splitting scheme used in other nonlinear

MPC algorithms [261–264], where inputs and states of the same time step are grouped together.

This leads to the first advantage of this chapter’s proposed splitting scheme: no auxiliary

variables are introduced, so the problem size remains unchanged. This benefit also leads to a

limitation of the PPL algorithm: the proposed splitting scheme requires that the stage cost and

the constraints are decoupled between states and inputs. How to overcome this limitation is

left for future research.

In the ALADIN algorithm, following N nonconvex subproblems {Pk }N−1
k=0 can be solved in

parallel:

∀k ∈ {0,1, . . . , N −2}
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Pk :=min
xk ,uk
zk+1

�k (xk ,uk )+
[
λ̃k−1

−λ̃k

]�[
xk

zk+1

]

+ ρ

2

∥∥∥∥∥
[

xk

zk+1

]
−
[

xk

zk+1

]∥∥∥∥∥
2

subject to:

zk+1 = Axk +Buk +
nu∑

i=1
Ci xk [uk ]i +Bw wk

zk+1 ∈X , xk ∈X , uk ∈U

PN−1 := min
xN−1,uN−1

zN

�k (xN−1,uN−1)+�(zN )+ λ̃�N−1xN−1

+ ρ

2
‖xk −xk‖2

subject to:

zN = AxN−1+BuN−1+
nu∑

i=1
Ci xk [uk ]N−1+Bw wN−1

zN ∈X , xN−1 ∈X , uN−1 ∈U

After the parallel iteration, the ALADIN algorithm applies a relaxed SQP-style step to the refor-

mulated problem (5.18) in order to update the coupling dual variables {λ̃k }. The differences

between the ALADIN and the proposed scheme now become clear:

• The proposed scheme only needs to solve a convex QP, whose solutions can be pre-

computed offline via mpQPs. Instead, the ALADIN algorithm has to solve a nonconvex

problem online. Even though these nonconvex subproblems can be computed in paral-

lel, the resulting computational cost per iteration is still significantly higher than the

proposed scheme.

• The proposed scheme directly handles the nonlinear coupling (i.e. the bilinear dynam-

ics) and therefore does not need to introduce auxiliary variables to duplicate the states.

As a result, the SQP step used in the proposed scheme solves a smaller problem than the

one solved in the ALADIN.

Due to the use of a SQP-style update and use of augmented Lagrangian methods [259, Sec-

tion 4], the PPL algorithm and the ALADIN algorithm have a certain similarity. However,

their focus during the algorithm design are different. ALADIN focuses more on the allocation

of the computational complexity, while the PPL algorithm aims at efficient iteration with a

good active detection scheme. That is why the ALADIN tends to handle the non-convexity
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directly, as this can be handled by different computational nodes. On the contrary, the PPL

algorithm is customized to bilinear MPC to have a lower computational cost per iteration

and fewer decision variables. In summary, even though both the ALADIN and the proposed

scheme can be viewed as extensions to the SQP algorithm, the ALADIN is more tailored for

distributed computation. The proposed scheme is instead tailored for efficient online compu-

tation. Finally, we wrap up this section by summarizing the benefits of the proposed scheme

as follows:

• It brings the efficiency of explicit MPC into an NMPC setup. The integration of the

explicit mpQP solution provide two benefits: it returns an accurate primal solution

when good estimates of the dual variables {λk } are given, and it significantly improves

the real-time efficiency by providing the active set estimation.

• It retains the SQP structure. This not only preserves the convergence rate of the SQP

algorithm but also makes the PPL algorithm compatible with any existing acceleration

strategy developed for real-time SQP, such as warm-start.

• It enjoys high computational efficiency even without parallelization. With proper imple-

mentation, this efficiency may be further improved by parallelization for some proces-

sors.

Remark 31. It is worth mentioning that the proposed scheme reduces to an ALADIN algorithm

when the dynamics are linear (i.e., Ck = 0). In this case, the resulting algorithm is similar to the

one studied in [261], where global convergence is also guaranteed [286].

Remark 32. The alternating direction method of multipliers (ADMM) can be used to solve a bi-

convex optimization problem [254, Chapter 9.2]. With the standard formulation given in [254,

Chapter 9.2], the ADMM algorithm needs to solve a nonconvex QP problem in each iteration,

which is proved to be NP-hard even for the calculation of a local minimizer [287, 288]. The

resulting computational cost per iteration is significantly higher, and such ADMM formulation

is therefore not suitable for our comparison. If the proposed interlacing horizon splitting scheme

is applied instead, the resulting ADMM algorithm gets rid of the solution of an nonconvex QP,

which is also one contribution of this chapter. However, the ADMM algorithm is still not suitable

for comparison. On the one hand, a convergence guarantee exists only when there is no state

constraint, which is not desirable in MPC applications. Based on our test on the numerical

given in the following Section 5.5.1, we did not observe the convergence of the ADMM after 3000

iterations (equivalently 1 minute in absolute time). On the other hand, the bilinear dynamics

are squared in the augmented Lagrangian. The resulting problem is no longer an mpQP, and

cannot be precomputed offline. As a result, multiple inequality constraint QPs are required to

be solved in each iteration, leading to a much higher computational cost. Finally, even though

we did not observe convergence in our numerical study, if it happens to converge for some

specific cases, the convergence rate of a nonconvex ADMM algorithm is at most sublinear [289].

Therefore, it requires more iterations and accordingly, more computational time to converge.
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5.4 Implementation Details

This section elaborates on the implementation details of Algorithm 6 with a particular em-

phasis on run-time aspects and a limited memory requirement. Here, the implementation of

Steps 3) and 5) turns out to be straightforward such that we focus on the implementation of

Steps 1), 2) and 4).

5.4.1 mpQP Subproblems

We summarize the local mpQPs (5.13) into a uniform form

P(θk ) : min
ξk∈Ξk

1

2
ξ�k Qkξk +θ�k ξk (5.20)

with parametric inputs θk ∈Rnx+nu and coefficient matrices Qk = diag(Rk−1,Qk )+ρInx+nu for

all k ∈ ZN
1 . Here, the first problem is omitted as its solution is fixed by ξ0 = x(t) due to the

initial state constraint enforced by Ξ0. Based on the formulation of L
ρ

k , we can work out the

explicit form of θk as follows,

θk =[r�k−1; q�k ]�+
(
Ek−1+mat(Gk−1ξk−1) ·Sk

)�
λk−1

+
[

Dk + (Sk+1ξk+1⊗ Inx )�Gk

]�
λk −ρξk (5.21a)

θN =[r�N−1; q�N ]�−ρξN

+
(
EN−1+mat(GN−1ξN−1) ·SN

)�
λN−1. (5.21b)

Evaluating these parameters only requires matrix-vector multiplications such that the com-

plexity is O (N · (nx +nu)2). In this chapter, we use the enumeration-based multi-parametric

QP algorithm from [290] for generating solution maps ξ�k : Rnx+nu → Rnx+nu of (5.20). The

complexity of pre-processing the small-scale QPs (5.20) depends on the number of critical

regions NR,k over which the PWA optimizers ξ�k (·) are defined [272]. Here, we assume that each

parametric QP is post-processed, off-line, to obtain binary search trees [291] in O (N 2
R,k ) time.

Once the trees are constructed, they provide for a fast evaluation of the solution maps in (5.20)

in time that is logarithmic in the number of regions, thus establishing the O (
∑

k log2(NR,k )) on-

line computational bound. The memory requirements are directly proportional to the number

of critical regions, with each region represented by a finite number of affine half-spaces. Fi-

nally, it is worth mentioning that if Qi =Q j , qi = q j , Ri = R j , ri = r j , ∀ i �= j , then the i -th

mpQP subproblems (5.20) is identical to the j -th one, and one mpQP solution can therefore

serve for two subproblems. Identical subproblems happen in many MPC applications as the

stage cost are usually fixed throughout the prediction horizon.
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5.4.2 Sensitivities Evaluation

Step 2) of Algorithm 6 evaluates the sensitivities gk , ck , P̂ k
ξ

and H . As we consider the quadratic

cost, the gradients gk can be easily evaluated with analytical form. Moreover, the primal

feasibility residual ck and active Jacobian P̂ k
ξ

are also straightforward. Therefore, we focus on

the computation of the Hessian matrix H in this subsection.

As we used an interlacing horizon splitting scheme, the exact Hessian∇ξξL0(ξ,λ,ξ) is not block

diagonal with respect to each yk but the banded block diagonal. However, as the off-diagonal

blocks only involve the bilinear dynamics, we can work out each block analytically as follows

∇ξξL0(y,λ, y)=

⎡⎢⎢⎢⎢⎣
Q0 S0,1

S1,0 Q1 S1,2

. . .
. . .

. . .

SN−1,N QN

⎤⎥⎥⎥⎥⎦
with blocks

S0,1 = S�1,0 = [C�1 λ0, ...,C�nu
λ0,0nx×nx ] ∈Rnx×(nu+nx )

Sk,k+1 = S�k,k+1

=
[

C�1 λk ... C�nu
λk 0nx×nx

0nu ..., 0nu 0nu×nx

]
∈R(nx+nu )×(nx+nu )

for all k ∈ ZN−1
1 . It is clear that evaluating the exact Hessian is equivalent to evaluate C�i λk

for all i ∈ Z
nu
1 and k ∈ ZN−1

0 . Therefore, its computational complexity is only O (N nun2
x ).

In practice, some heuristics can be adopted to achieve a better numerical robustness on

the convergence performance of Algorithm 6 such as enforcing H ≈∇ξξL 0 # 0 by adding a

regularization term, i.e., H =∇ξξL 0+σI with σ≥ 0 [292].

5.4.3 Coupled QP

The coupled QP (5.15) has no inequality constraints such that solving (5.15) is equivalent to

solving linear equations defined by the KKT system:[
H +ρP̂�

ξ
P̂ξ J�

J

]
︸ ︷︷ ︸

H

[
Δξ

λQP

]
︸ ︷︷ ︸

w

=
[−g

−c

]
(5.22)

with

J =

⎡⎢⎢⎢⎢⎢⎢⎣
D̃0 Ẽ0

D̃1 Ẽ1

. . .
. . .

D̃N ẼN

⎤⎥⎥⎥⎥⎥⎥⎦ ,

P̂ξ = diag(P̂ 1
ξ , ..., P̂ N

ξ )

g = [g�0 , g�1 , ..., g�N ]�

c = [c�0 ,c�1 , ...,c�N ]�
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and for all k ∈Z N
0 ,

D̃k =Dk + (Sk+1ξk+1⊗ Inx )�Gk ,

Ẽk =Ek +mat(Gk zk ) ·Sk+1.

If we rearrange the KKT matrix H by resorting w as

(Δξ0, λQP
0 , Δξ1, λQP

1 , ...,ΔξN−1, λQP
N−1, ΔξN ),

a tri-blocked-diagonal sparsity pattern appears in the KKT matrix H , such that the Schur-

complement based back-forward sweeps can be used to solve the linear equation efficiently.

In order to better illustrate this idea, we consider N = 2 such that the resulting rearranged KKT

system is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q0 D̃�0 S0,1

D̃0 Ẽ0

S1,0 Ẽ�0 Q̃1 D̃�1 S1,2

D̃1 Ẽ1

S2,1 Ẽ�1 Q̃2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δξ0

λ
QP
0

Δξ1

λ
QP
1

Δξ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−g0

−c0

−g1

−c1

−g2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
with Q̃k = diag(Rk−1,Qk )+μ(P̂ k

ξ
)�P̂ k

ξ
. We start the backward sweep by considering the whole

KKT matrix as a 2x2 block matrix. Then, applying the Schur complement with respect to the

lower left block Q̃2 yields a reduced KKT matrix⎡⎢⎢⎢⎢⎢⎣
Q0 D̃�0 S0,1

D̃0 Ẽ0

S1,0 Ẽ�0 Q̃1+S1,2Q̃
−1
2 S2,1 D̃�1 +S1,2Q̃

−1
2 Ẽ�1

D̃1+ Ẽ1Q̃
−1
2 S2,1 Ẽ1Q̃

−1
2 Ẽ�1

⎤⎥⎥⎥⎥⎥⎦ .

Applying the Schur complement once more results in a reduced KKT system with respect to

only (Δξ0,λ0) such that the substitution of the initial condition Δξ0 = 0 can enable a forward

sweep to recover the primal-dual solution (Δξ,λ). This method has been shown that it is

equivalent to the Riccati recursion in dealing with LQR problems [293]. As the update of the

right-hand side of the KKT system only requires matrix-vector multiplication, we observe that

the computational complexity of this linear solver is dominated by the matrix update (i.e.,

computation of the Schur complement), which is O (N (nx +nu)3).

5.5 Numerical Results

This section studies the PPL algorithm on two bilinear system examples. The PPL algorithm is

first compared against other state-of-art solvers on a building control problem running on a

laptop computer. The algorithm is then implemented in an embedded microcontroller for

speed control of a DC motor. The binary search tree of the mpQP solutions used in the PPL

algorithm is generated by the multi-parametric toolbox (MPT 3.0) [294].

162



5.5 Numerical Results

5.5.1 Bilinear Building Control

In this part, the PPL algorithm is compared with an efficient optimal control solver acados [279]

and the ALADIN algorithm, which is implemented by ALADIN-α toolbox [295]. The code gener-

ation in acados is based on the SQP method with exact Hessians and without/with condensing.

All the algorithms use the mirror method to regularize the indefinite QP problem [292]. It is

worth mentioning that acados is highly optimized for MPC, whose linear algebra subroutine

BLASFEO [296] and QP solver [297] exploit the structure in MPC. On top of that, a sophisticated

active set detection scheme by exact penalty function is implemented in acados [279, Chapter

2.3]. Hence, this comparison can demonstrate the performance of the PPL algorithm.

We considered a multi-zone building model reported in [86] with room indices shown in

Figure. 5.2. Due to the space limit, the parameters of the model (i.e., A, B , Bw , C , matrices) are

included in the supplementary material on Github. In this multi-zone building (Figure 5.2),

room 2 is the corridor linking a large warehouse (room 1) and two offices (rooms 3 and 4).

The indoor temperature of room 1 is controlled by an independent HVAC system, while

another HVAC controls the temperature of all other rooms. The corresponding control inputs

(u ∈R2) are the valve positions in the air handling unit, where the heat transfer between the

air and the hot water flowing in the heating coil results in the bilinear term in the system

dynamics. As a result, the control inputs can manipulate the supply air temperature in a

nonlinear way, which accordingly controls the indoor temperatures. In summary, this is a 15

dimensional model (i.e. x ∈R15) with two dimensional control inputs, the states include the

indoor temperature, wall temperature between two different rooms, wall temperature that

stands between a specific room, and outdoor, and supply air temperature control. Process

noises are outdoor temperature and solar radiation (i.e. w ∈ R2). In building control, a

common practice is to apply certainty equivalence control [298], which uses weather forecast

as the nominal disturbance in the MPC formulation. Meanwhile, the building evolves under

the actual weather condition that is similar but not identical to the weather forecast. Real-

world weather data is used for this numerical study.

2

3 4

1

Figure 5.2: Schematic diagram of the multi-zone building

Using this approach, 100 Monte-Carlo tests were conducted with recorded weather from

tomorrow.io [89] in winter ( Fig.5.3(a)-(b) plot one sampled weather condition). The weather
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forecast used in the MPC problem is the recorded weather perturbed by zero-mean random

noise, while the simulation uses the recorded weather (i.e., the weather forecast curves in

Figure 5.3 (a)-(b)). The prediction horizon is set to 8 with an objective of minimizing energy

consumption, whose loss function is

�k (xk ,uk )=u2
k .

The indoor temperature is bounded within [22,24]◦C to ensure occupant comfort. The control

input (i.e., fractional valve position) is bounded within [0,1].

Remark 33. It is possible to define an objective as �k (xk ,uk )= |uk |. The resulting local problem

can be reformulated as a linear program and, thus, also an mpQP. We use a quadratic loss

function here to avoid unnecessary confusion.

For this numerical test, all solvers use the same initialization in the first iteration and apply the

same warm-start strategy to generate the initialization for the following iterations. In particular,

the shifted solution from the last iteration is used to warm-start. The computational time is the

sum of the CPU time returned by the solver. The results in this subsection are generated by a

laptop with an Intel i7-11800H 16-core processor and 32 GB memory. Meanwhile, as Step 1) in

the PPL Algorithm 6 is a convex QP, the solution time without using mpQPs is also investigated.

In particular, the mpQP solution in this example has 729 critical regions, and the resulting

binary search tree is of depth 13 (Section 5.4.1). The parallelization of the PPL algorithm is

done by using OpenMP, while the parallelization in ALADIN relies on the parallel computing

toolbox from Matlab. The statistics of the solution time are summarized in Table 5.1, where

the maximal solution time indicates the solution time when good initialization is not available

(i.e., cold-start). Additionally, the mean solution time reflects the averaged performance when

a good initialization is available.

Above all, Table 5.1 shows that the ALADIN method is not desirable for fast MPC applications,

the need to solve multiple nonconvex problems significantly slows down its speed (Sec-

tion 5.3.5). We only report the parallelized solution time for ALADIN, and the non-parallelized

solution time is at least three times slower. Regarding the PPL algorithm, the overhead caused

by parallelization pays off only when mpQP solutions are not used. In this case, step 1) in the

PPL algorithm requires solving a QP whose computational cost is significantly higher than

calling the mpQP solution. Thus, it is easier to gain performance improvement by paralleliza-

tion in this case. On the contrary, as calling mpQP solution is already computationally highly

efficient, improving performance by parallelization may require more involved code design,

such as caching. We believe that is the reason why the use of OpenMP does not accelerate the

mpQP based implementation in this case. Note that this observation does not negate the

benefit of parallelization. On the one hand, the efficiency of parallelization depends on the

computing unit and the compiler. The use of OpenMP and a general purpose Intel CPU in

this numerical example may not be the most efficient implementation. On the other hand,

the construction of the mpQP solutions may not be computationally affordable for large-scale
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systems. If solving convex QPs online is needed, then performance improvement is easy to

achieve by parallelization, which is also justified by this numerical test.

In comparison with acodos, when the proposed scheme uses mpQPs solution without par-

allelization, the maximal solution is on average 71% faster than those of acados without

condensing. Regarding the mean solution time, even though the proposed scheme is faster

than acados without condensing by 17%, but it is 48% slower than the mean solution of

acados with condensing. Note that both the QP solver and the linear algebra routine in

acados is highly optimized for NMPC; the results in Table 5.1 show that a tailored SQP solver

is highly efficient when a good initialization is available. As Step 4) in the proposed scheme

is similar to an SQP iteration, the PPL algorithm also shows comparable performance to a

tailored SQP solver for warm-started iterations. This computational efficiency is aligned with

our discussion given in Section 5.3. On top of this benefit, the proposed scheme shows much

better performance when a good initialization is not available. This justifies the use of mpQP

solutions, which improves the detection of the active sets. In summary, this numerical study

proves the efficiency and efficacy of the PPL algorithm, and it also suggests a further possibility

of performance improvement by a more sophisticated combination of the proposed scheme

and a tailored SQP solver; we leave this for a future study.

Besides the observation given in Table 5.1, we also observe that the PPL algorithm is more

robust to the choice of initialization strategy. More specifically, if the initialization is only

partially warm-started by setting the predictive input sequence to 0 (i.e., cold-start inputs

but warm start all the other variables), both acados and ALADIN will return NaN during the

simulation for all the Monte-Carlo tests. On the contrary, the proposed scheme will always

converge even when all the decision variables are initialized by 0. This observation aligns with

the motivation of the PPL algorithm and justifies the benefit of Step 1) in the PPL algorithm.

Meanwhile, this robustness might be beneficial in some applications. For example, set-point

change in tracking control makes initialization more challenging.

Last but not least, the property that the PPL algorithm is feasible even with an infeasible initial

state is useful in practice, which is typically the case in building control. Due to the uncertain

occupant behavior, such as opening the window, the indoor climate can be significantly

perturbed, resulting in an infeasible initial state for the MPC problem. Consider a case where

the occupant opens the window to bring in the fresh air when he first arrives in room 1 at 10:00

A.M, this move causes a sudden drop in indoor temperature as shown in Fig. 5.3 (c). Such

sudden temperature drop causes infeasibility, which leads to the failures of the acados solver.

However, the PPL algorithm can still give reasonable control inputs and quickly recovers the

indoor temperature to a comfortable level.

5.5.2 Bilinear DC Motor Control with a C2000 Microcontroller

Next, the PPL algorithm is deployed on an embedded system, a Texas Instruments C2000

LaunchPad XL F28379D, to control the speed of a field-controlled DC motor. The dynamics of
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Figure 5.3: Case study of sudden indoor temperature drop: (a) - (b): a sample of the recorded
and forecast weather condition, (a) outdoor temperature, (b) solar radiation. The forecast is
used as the nominal weather in the NMPC problem, while recorded weather is used for the
simulation of building dynamics. (c): simulation of indoor temperature of different rooms
(room index depicted in Figure 5.2).
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Table 5.1: Statistics of the solution time at different tolerance (the entries of top two perfor-
mance in each row are stressed by boldface black and boldface blue respectively)

method Algorithm 6 acados ALADIN

tol
sol time

(ms)
parallel (mpQPs) condensing

parallelyes
(yes)

no
(yes)

yes
(no)

no
(no) yes no

10−4
max 8.404 6.304 8.926 12.272 19.858 10.711 2553

mean 0.5280 0.4835 0.6583 0.8751 0.3671 0.7931 897.4

10−5
max 8.838 6.629 9.371 12.905 21.755 11.804 2859

mean 0.6864 0.6286 0.8558 1.137 0.4020 0.8687 953.2

10−6
max 8.968 6.753 9.593 13.510 22.532 12.251 3369

mean 0.7814 0.7156 0.9743 1.295 0.4163 0.8995 1053

the field-controlled DC motor are bilinear,

d x1

d t
=−Ra

La
x1− Km

La
x2u+ Vs

La
,

d x2

d t
=−B

J
x2+ Km

J
x1u− Te

J
,

where states x1, x2 are respectively armature current and angular velocity, and the control

input u is field current. Vs and Te define the external torque respectively, which are chosen

as 60 V and 0 Nm for this experiment. The remaining parameters are identified on a real

field-controlled DC motor (Fig. 5.5b) as shown in Table 5.2.

Table 5.2: Parameters of the Field Controlled DC Motor

Parameter Variable Value

Armature Resistance Ra 10 [ohm]

Armature Inductance La 60 [mH]

Motor Constant Km 0.2297 [V (A rad/s)−1]

Damping Ratio B 0.0024 [Nm(rad/s)−1]

Inertia J 0.008949 [kg m2]

We first provide some background on the motor behaviour to gain insight into the NMPC

solutions. Typically, the armature current dynamics x1 are much faster than the mechanical

dynamics, so it is useful to consider the motor behaviour after the current dynamics have
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decayed. The torque-speed curves of the motor are shown in Fig. 5.4 (a) for various field

currents. This is the electrical torque produced by the motor for the given speed and field

current. If the mechanical torques (drag+external) match this torque at a given speed, it is an

equilibrium point. For example, we may observe that the no-load speed for this motor (without

drag) is 87 rad/s at the full 3 A field current. The typical operating region of this type of motor

is at speeds higher than the full-field line, roughly [80,180]rad/s for low torques. Operation

below this speed is undesirable because the armature currents exceed the 3A continuous

thermal limits regardless of the field current selected. This is shown in current-speed curve

(Fig. 5.4 (b)), where armature current are plotted as a function of speed for different field

currents (i.e control input). Hence, the curves below the red dashed line in Figure 5.4 (b) also

show the set of desired operating points that allows long-term operation without overheating.

The continuous dynamics are discretized by the Euler method with a sampling time of 10ms.

The prediction horizon is set to 32 with a convergence tolerance at 10−4. The MPC controller

conducts speed control, which tracks a reference speed ωref. This motor operates around

[80,180] rad/s, and for most reference torque/speed combinations within this range, there are

two possible field current solutions as shown by overlapping lines in Fig. 5.4 (a). The low field

current (i.e., control input) solution results in a higher armature current, usually above the

3 A limit (Fig. 5.4 (b)). Long-term operation on this equilibrium point will result in armature

overheating even though it tracks the reference speed. However, in order to have an agile

motor response, the armature current should be able to operate above 3 A for short intervals.

Therefore, we do not enforce a constraint on the armature current, while the field current (i.e.,

control input) is bounded within [1,3] A.

In this control setup, the desired operating point has an armature current lower than 3 A,

which corresponds to the higher of two viable field currents (Fig 5.4). A proper choice of the

loss function can help the solver to converge to the desired operating point. First of all, it is not

desirable to use the speed regulating stage cost �(x,u)= ([xk ]2−ωref)
2, as the solver tends to

select the lower field current command which will overheat the armature. This is particularly

the case in the presence of noise based on our observation of different hardware in the loop

simulations. We suspect that this can be explained by the torque-speed curve (Fig. 5.4 (a)).

When operating with a low field current, the curves are relatively flat and a slight change in the

field current can lead to a rapid change in speed. This implies that the solver can give better

local convergence behavior in this region, so the solver tends to converge to this undesired

operating point. To avoid this issue and push the solution to the preferred operating point,

we offer a reference armature current and field current, whose steady state solution has an

explicit form by substituting ωref into the system dynamics. The stage cost is designed to

�(x,u)= 20([xk ]1− Iref)
2+ ([xk ]2−ωref)

2+10(u−uref)
2,

2The prediction horizon is set based on some recent results with commercial solver from ODYS [299, 300], where
they use the same C2000-series hardware to deploy MPC on a synchronous machine. In their setup, the input
constraints are neglected, the prediction horizon is two, and the linearized model is used instead of the nonlinear
model.
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5.6 final Remark

where Iref and uref are reference armature current and reference field current.

The experimental setup is shown in Fig. 5.5 with the explanation given in its caption. Two

experiments are carried out on velocity tracking control, which both track a triangular refer-

ence speed that varies between 100 rad/s and 140 rad/s. In the first case, we only have a speed

constraint within [80,180] rad/s, while this constraint is tightened to [110,180] rad/s in the

second case. Thus, the speed lower bound is inactive in the first case, but active and satisfied

in the second case.

To verify the real-time controller performance, we first simulate these experiments using

control hardware in the loop methods. Both the controller and a simulated motor run on the

same C2000 microcontroller (Fig. 5.5c). The results are shown in Fig. 5.6, with the armature

current disturbed by white noise to reproduce the switching noise encountered in real-world

experiments. In simulations, the NMPC properly executes the speed control, and the speed

constraint is satisfied in the second case as expected.

The hardware in-the-loop result above can already justify the efficiency of the proposed solver,

a similar setup for performance proof is also used in the commerical product in [299, 300].

But for the sake of completeness, we carry out the experiment on a real motor. The hardware

experimental results are shown in Fig. 5.7. The measured signals are post-processed with a low-

pass zero-phase filter. In this experiment, the PPL algorithm successfully executes the control

in real time with a 10 ms MPC update rate. In particular, the maximum and average execution

time of the PPL algorithm in this embedded system is 2.088 ms and 1.764 ms respectively.

Thus, the solver can run up to 500 Hz, which is sufficiently fast regarding the 10 ms sampling

time of the targeted system.

However, in our real-world experiments, the tracking performance is somewhat lacking. From

Fig. 5.7, we can observe that the NMPC tries to track the signal and periodic triangular speed

trajectories are recorded with noticeable tracking errors. It is noteworthy that the NMPC

satisfies the lower speed limit in the second test, which justifies the constraints enforced

by the NMPC. The reasons will be investigated in future work but are possibly due to poor

estimates of the unmeasured drag torque or other parameter errors, or inaccurate delivery of

the current command. In summary, based on the hardware in the loop experiments and the

real-world experiments, the efficiency and real-time capability of the PPL algorithm has been

proven. Even though it is not the main focus of this chapter, we believe that there are still a

few imrovments to be carried out on our experiment platform to fully expolit the capability of

the NMPC control, and we leave this for future investigation.

5.6 final Remark

This chapter investigates a novel proximal-point Lagrangian based nonconvex solver for

bilinear model predictive control. The PPL algorithm combines the ideas of explicit MPC,

horizon splitting, and real-time SQP algorithms, and a novel horizon splitting scheme is
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Chapter 5. Proximal Bilinear MPC solver
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Figure 5.4: Toruqe current curves of the DC motor. Top: Torque-Speed curve at different field
currents (indicated in Amps on the left end of each straight line). Bottom: Armature current
as a function of speed for different field currents (indicated in Amps on the right end of each
straight line). To avoid armature overheating, the armature current should stay below the 3 A
thick red dashed line in long term operation.170



5.6 final Remark

(c) TI LaunchPad XL and analog I/O filtering

Figure 5.5: Hardware testing of the proposed MPC algorithm with a real motor controlled by a

171
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Figure 5.6: Hardware in the loop simulation of the motor control with the C2000 microcon-
troller. Left: speed constraint not active. Right: speed constraint [110,180] rad/s active (black
dashed line). Raw signals are plotted.
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Figure 5.7: Hardware testing of the proposed MPC algorithm with a real motor controlled by a
C2000 microcontroller. Left: speed constraint not active. Right: speed constraint [110,180]
rad/s active (black dashed line). The measured signals are post-processed with a low-pass
zero-phase forward-reverse filter.
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5.6 final Remark

proposed to enable this integration. The numerical efficiency of the PPL algorithm is validated

by a building control simulation and an experiment on a real field-controlled DC motor with

TI C2000 LaunchPad XL F28379D microcontroller. Particularly, the latter experiment proves

the real-time capability of the PPL algorithm, which successfully solves the NMPC problem in

1.764 ms on average.
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6 Conclusion and Outlook

This thesis presents a systematic approach for integrating data into the pipeline of controller

design and stability analysis. Except for the result presented in Section 2.1, WE demonstrate

that data can be directly used to characterize system behaviour, while explicit identification of

the underlying model is not necessary

The first part of this thesis focuses on controller design, with separate chapters dedicated

to linear and nonlinear systems. The major contribution in the linear controller design is

a systematic bi-level approach to handle process noise with noisy I/O measurements. This

approach can incorporate heuristic techniques to adapt the predictor to slowly time-varying

linear dynamics. As reported in this chapter, this framework has been tested on real-world

building and provides long-term reliable service for three weeks. In our follow-up experiment,

which is not included in this thesis, this bi-level framework can be hierarchically integrated

into the demand response service. We have run another five-week experiment to showcase

the capability of the proposed framework. While some technical details are currently tailored

for building control, its general framework and most numerical techniques are applicable to

general LTI systems. The next step for this framework is definitely to deploy the proposed

framework in faster mechatronic systems. Autonomous driving is one promising application,

where we already have some initial results in collaboration with Jiawei Wang. Another aspect

that would be interesting is the update behaviour of the underlying optimization problem.

In particular, once the I/O dataset is updated online iteratively, the data linearly enters the

equality constraints on the left-hand side, this is no longer a convex parametric QP, but it

can definitely quantify sensitivity of the proposed framework particularly with respect to the

measurement noise.

In the design of nonlinear controllers, the primary contribution is to demonstrate the effective

use of data to characterize system responses through lifting. However, the author believes

that the key message of this chapter is not focused on numerical techniques or mathematical

models behind the numerical algorithms. Rather, two function space viewpoints are essential

takeaways. To develop these viewpoints, we must consider the dynamical behaviours as the

evolution of observables. This perspective may seem unusual to most control engineers, but
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Chapter 6. Conclusion and Outlook

it is intuitive to non-control engineers. The evolution of a system is perceived through the

variation of its measurements. When viewed in this way, we arrive at two different function

space viewpoints: for a function, we can model either the function itself or our interactions

with it. The former begins with parametric forms or hypotheses about the function space, while

the latter starts with the set of functionals we will use. These two aspects together indicate that

modelling the users, including their interactions or measurement behaviours, is sufficient for

them to manipulate the dynamical systems. While we may need additional information to fully

capture the underlying dynamics, it is mostly redundant for controller design, at least from the

users’ viewpoint. Extending this viewpoint is theoretically intriguing, but the crucial question

is why we should use this viewpoint to understand a dynamical system. Furthermore, this

perspective results in new hypothetical model structures. Thus, the long-standing question

remains: which models/methods are best suited to specific classes of dynamics? The answer

to this question should consider practicality and numerical performance as well. Therefore,

before delving too deep, it is reasonable to step back and reconsider whether and when a

direct data-driven approach is desirable for nonlinear control.

In the second part of this thesis, we focus on stability analysis that relies solely on data,

which represents a significant contribution to the field of control theory. Specifically, we

present two major contributions in this area. First, we extend the Lyapunov stability theory

from analysing a single equilibrium point to a forward invariant set, which is a non-trivial

extension that has important implications for the practical implementation of control systems.

Secondly, we demonstrate that the use of a complex and informative model can be effectively

relaxed and simplified by synthetically assembling multiple simple submodels that are part

of the larger complex model. There are several avenues for future work in this area. First,

we need to explore the applicability of this method to more complex function spaces, while

maintaining its computational merit. This will involve developing new techniques to deal with

the increased complexity of the models and data. Secondly, while our current result is based

on Fenchel duality, it will be important to explore other duality structures to determine their

effectiveness for this type of stability analysis. Overall, this work represents an important step

forward in the development of data-driven techniques for control system analysis and design.

In the preceding paragraphs, a summary of the main results and their implications for future

research has been provided. However, this brief summary fails to convey the full scope of the

challenges and opportunities facing the field in the coming decades. As a young researcher in

this field, the author would like to offer a more comprehensive perspective on the matter.

First and foremost, one of the primary concerns that needs to be systematically addressed is

robustness to uncertainty. This includes both aleatoric and epistemic uncertainty, and the

thesis has explored various approaches to addressing these issues using different mathematical

tools. However, underpinning all of these mathematical tools is the topology of the function

space being studied. For example, the Wasserstein distance considers the topology of the

probability distribution, while the Reproducing Kernel Hilbert Space (RKHS) investigates the

topology induced by the bounded evaluation functional. The relevance of study topology
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is proved in its numerical meaning by providing different bound used in the algorithm. In

summary, a significant challenge for future research is to develop one or more systematic

approaches to handle control problems while considering the corresponding topological

structure. Based on that, we are able to endow the underlying topological space with a specific

geometric structure. For example, when we use the RKHS, we have the inner product space

and the corresponding geometric structure in the function space. This offers us a friendly

interface to interact with those infinite dimensional objects. However, it may also prohibit

us from considering the geometric information contained in the state space, which presents

strong nonlinearity/nonconvexity due to the nonlinear evaluation map between the x in state

space and the Ex in RKHS.

Building on top of topology, the geometric aspect gives a promising and highly unexplored

direction. Actually, I once planned to write the thesis under the title of “geometric aspects of

learning-based control". Even though I choose not to use this title in the end, the concept

behind this title remains a central concept that can lead to significant advances in the field.

Mathematical tools from symplectic geometry, variational analysis and nonlinear operator

theory will be the key enabler for this direction. This is already hinted by the Chapter 4 and

the bilinear MPC solver result in Chapter 6. In particular, the elliptic and symplectic structure

that presents in most locally monotone object will be a fascinating direction to explore. The

author has already obtained some initial results in this direction, and believes that further

exploration in this area will be essential for future progress in learning-based control.

In conclusion, while data-driven approaches offer a holistic view of control science, they

also present significant challenges. Classic control methods based on divide-and-conquer

principles have helped simplify and sort out the structure of control science over decades.

The direct use of data pushes us to deal with all the problems related to the controller design,

especially the nonlinearity, simultaneously. This requires every control researcher to rethink

the mathematical structure we have been used to for decades. Without question, the existing

mathematical framework used in control science may not be suitable for this new control

challenge without modifications, and a bottom-up refresh of control science may be needed

to develop new tools that are better suited for data-driven control. This thesis is my initial

attempt and I believe that many results, including the discussion in the preceding paragraphs,

should suggest promising directions for future research.
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In this part, we will develop the close-loop prediction that acts on the solution to the equation

system. Meanwhile, all the assumption made in Chapter 1 remain valid. We specify the robust

bi-level optimization problem to be solved as follows

min
g ,K ,

upr ed ,y pr ed

max
wpr ed∈W

J (ypr ed ,upr ed )

s.t. K ∈Kc (6.1a)

∀wpr ed ∈W

upr ed +u f b(wpr ed ) ∈U (6.1b)

y pr ed + y f b(wpr ed ) ∈Y (6.1c)

g +K wpr ed ∈argmin
gl ,σl

1

2
‖σl‖2+ 1

2
ηg‖gl‖2 (6.1d)

s.t H gl =

⎡⎢⎢⎢⎢⎢⎢⎣
yi ni t +σl

ui ni t

wi ni t

upr ed +u f b(wpr ed )

wpr ed

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Kc is the set of causal feedback control laws. By Assumption 2, we need to model

a set-valued solution map of the lower level problem, which maps W to g +K W . To better

elaborate this challenge, we write down the KKT system of the lower level problem (6.1d),

∀wpr ed ∈W

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)︷ ︸︸ ︷

H(g +K wpr ed )=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi ni t +σ
ui ni t

wi ni t

upr ed

wpr ed

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

I(ti ni t ny ) O
]
κ(wpr ed )=σ(wpr ed )

H�κ(wpr ed )=−ηg (g +K wpr ed ) ,

(6.2)

where κ(wpr ed ) and σ(wpr ed ) indicates that σ and κ depend on the value of wpr ed and this

dependence is not necessarily linear [301]. To intuitively explain the reason why this is

nonlinear, one can consider that wpr ed not only perturbs the right-hand-side of the term (a)

in (6.2), it also perturbs the matrix H by HK wpr ed . A further complexity is that K is confined

to be causal.

We conclude the main result in the following theorem

Theorem 11. The following single level robust optimization problem is equivalent to the bi-level
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robust optimization problem (6.1).

min
g ,σ,κ

Kp ,upr ed ,y pr ed

max
wpr ed∈W

J (ypr ed ,upr ed ) (6.3a)

s.t. K =
[
Qa,:,ni ni t+1:nr Qb

]
Kp (6.3b)

[
H

HL,pr ed (yd)

]
g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yi ni t +σ
ui ni t

wi ni t

upr ed

0

y pr ed

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3c)

HL,pr ed (wd)K = I(nh nw ) (6.3d)

T κ :=
[
−H�

[I(ti ni t ny ) O]

]
κ=

[
ηg g

σ

]
(6.3e)

(I −P )

[
ηg K

HL,i ni t (yd)K

]
=O (6.3f)

∀wpr ed ∈W ,

[
HL,pr ed (ud)

HL,pr ed (yd)

]
K wpr ed =

[
u f b

y f b

]
u f b +upr ed ∈U , y f b + y pr ed ∈Y , (6.3g)

where ni ni t := ti ni t × (nu+nw )+nu, Qa and Qb are defined by the following QR decomposition

of H f b ∈Rnr×nc

H�f b :=

⎡⎢⎣HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed (ud)

⎤⎥⎦
�

=
[
Qa Qb

][R

O

]
.

Meanwhile, Kp is a blockwise lower triangular matrix as

Kp =

⎡⎢⎢⎢⎢⎣
Kp,1,1 O O . . . O

Kp,2,1 Kp,2,2 O . . . O
...

...
. . .

. . .
...

Kp,nh ,1 Kp,nh ,2 Kp,nh ,3 . . . Kp,nh ,nh

⎤⎥⎥⎥⎥⎦ .

In particular, Kp,i , j are dense matrix blocks, whose sizes are nu ×nw for ∀ i < nh and are

(nc −nr )×nw when i =nh. Finally, we enforce

P =T (T �T )−1T � ,

with T defined in (6.3e).
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Proof. This proof consists of two parts

• Reformulation of the KKT system such that g = g +K W models the set of optimal

solutions to the lower level problem.

• Formulation of the feedback control law K to respect causality.

Reformulating KKT Systems:

The key idea is to decompose the KKT system (6.2) of the lower level problem (6.1d) into two

sub systems, one corresponds to the nominal decision variables and the other corresponds to

the perturbation caused by the feedback law. Based on this idea, we will reformulate the terms

in (6.2) accordingly. The first component we consider is the primal feasibility condition

∀wpr ed ∈W ,

H︷ ︸︸ ︷⎡⎢⎢⎢⎢⎢⎢⎣
HL,i ni t (yd)

HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed (ud)

HL,pr ed (wd)

⎤⎥⎥⎥⎥⎥⎥⎦(g +K wpr ed )=

⎡⎢⎢⎢⎢⎢⎢⎣
yi ni t +σ

ui ni t

wi ni t

upr ed

wpr ed

⎤⎥⎥⎥⎥⎥⎥⎦ (6.4)

Regarding the yi ni t +σ term, we enforce the following decomposition

σ= (HL,i ni t (yd)g − yi ni t )︸ ︷︷ ︸
σ

+HL,i ni t (yd)K wpr ed︸ ︷︷ ︸
σ f b (wpr ed )

(6.5)

Regarding the ui ni t and wi ni t terms in (6.4), the causality constraint on K is relevant. In

particular, the feedback caused by wpr ed cannot change ui ni t and wi ni t , therefore, we enforce[
HL,i ni t (ud)

HL,i ni t (wd)

]
g =

[
ui ni t

wi ni t

]
=⇒

[
HL,i ni t (ud)

HL,i ni t (wd)

]
K =O︸ ︷︷ ︸

(a)

. (6.6)

Because upr ed is also a decision variable, we skip this term by simply enforcing

HL,pr ed (ud)(g +K wpr ed )= upr ed +u f b(wpr ed ) .

The last ingredient in (6.4) is wpr ed , where we enforce

HL,pr ed (wd)g =HL,pr ed (g +K wpr ed )

(b)= HL,pr ed (wd)K wpr ed =wpr ed ,∀wpr ed ∈W

=⇒HL,pr ed (wd)K = I(nh nw ) ,
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where (b) holds by enforcing

HL,pr ed (wd)g = 0 . (6.7)

Thus, we can now conclude the constraints (6.3c) and (6.3d).

We recall the stationary condition for the KKT system (6.2),

∀wpr ed ∈W ,

H�κ(wpr ed )=−ηg (g +K wpr ed ) ,[
I(ti ni t ny ) O

]
κ(wpr ed )=σ+σ f b(wpr ed ) .

Similarly to the decomposition applied to σ in (6.5), the dual variables κ are decomposed as

κ= κ+κ f b(wpr ed ) .

Hence, we rewrite the stationary conditions as

⎡⎣ −H�

[I(ti ni t ny ) O]

⎤⎦ (κ+κ f b (wpr ed ))=
⎡⎣ ηg (g +K wpr ed )

σ+HL,i ni t (yd)K wpr ed

⎤⎦ ,

which is decomposed into two systems[
−H�

[I(ti ni t ny ) O]

]
κ=

[
ηg g

σ

]
, (6.8a)[

−H�

[I(ti ni t ny ) O]

]
κ f b =

[
ηg K

HL,i ni t (yd)K

]
wpr ed , (6.8b)

where (6.8a) corresponds to the constraint (6.3e). For sake of compactness, we denote

T :=
[
−H�

[I(ti ni t ny ) O]

]
.

As the dual variables did not enter the objective function, we only need to ensure that the

linear equations (6.8b) is solvable for arbitrary wpr ed ∈W , which means that

colspan(

[
ηg K

HL,i ni t (yd)K

]
)⊂ colspan(T )

Note that the projection operator [302, Chapter 1.12] onto colspan(T ) is defined by

P =T (T �T )−1T � .
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Then the residual of the projection is always null for arbitrary wpr ed ∈W , which is

(I −P )

[
ηg K

HL,i ni t (yd)K

]
wpr ed = 0 , ∀wpr ed ∈W

=⇒ (I −P )

[
ηg K

HL,i ni t (yd)K

]
=O ,

corresponding to constraint (6.3f).

In conclusion, constraints (6.3c), (6.3d), (6.3e) and (6.3f) models the set-valued solution map

of the lower level problem (6.1d).

Formulation of Causal Feedback:

In this part, we first show the structure that K must have to ensure causal feedback and then

use the QR decomposition to enforce causality.

In terms of causality, it includes two parts. First, the feedback law cannot changes what has

already happened, which has been enforced by the term (a) in constraint (6.6). Therefore,

each column block of matrix K should satisfy the following subspace condition,

K:, j ⊂null

([
HL,i ni t (ud)

HL,i ni t (wd)

])
∀ j = 1, . . . ,nh .

Second, the feedback from wpr ed , j should not be able to change the inputs that occur no later

than wpr ed , j , which includes upr ed ,1: j . As the j -th column block in matrix K , K:, j , defines the

feedback ingredient with respect to wpr ed , j , we therefore further have the following subspace

condition

K:, j ⊂null
(
HL,pr ed ,1: j (ud)

)
.

In conclusion, we have

K:, j ⊂ null

⎛⎜⎝
⎡⎢⎣ HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed ,1: j (ud)

⎤⎥⎦
⎞⎟⎠ ∀ j = 1, . . . ,nh , (6.9)

where HL,pr ed ,1: j (ud) denotes the first j row blocks in HL,pr ed (ud).

To implement this null space condition (6.9) in a numerically efficient manner, we define

H f b ∈Rnr×nc and the QR decomposition of its transpose as follows

H�f b :=

⎡⎢⎣HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed (ud)

⎤⎥⎦
�

=
[
Qa Qb

][R

O

]
.

Recall a useful property of QR decomposition [69]: the range of the first n rows of H f b ∈Rnr×nc
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is spanned by the first n columns of Qa . Because [Qa ,Qb] is an unitary matrix, the remaining

columns in Qa and the matrix Qb spans the null space of the first n rows in matrix H f b . The

null space in (6.9) is represented by

null

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

HL,i ni t (ud)

HL,i ni t (wd)

HL,pr ed ,1: j (ud)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠= colspan([Qa,:,ni ni t+( j−1)nu+1:nr ,Qb ])

=⇒K:, j ⊂ colspan([Qa,:,ni ni t+( j−1)nu+1:nr ,Qb ]) ,

where ni ni t := ti ni t × (nu +nw )+nu and . All the constraints on the null spaces can be sum-

marized as

K =
[
Qa,:,ni ni t+1:nr Qb

]
Kp ,

where Kp is a blocked lower triangular matrix as

Kp =

⎡⎢⎢⎢⎢⎣
Kp,1,1 O O . . . O

Kp,2,1 Kp,2,2 O . . . O
...

...
. . .

. . .
...

Kp,nh ,1 Kp,nh ,2 Kp,nh ,3 . . . Kp,nh ,nh

⎤⎥⎥⎥⎥⎦ .

In particular, Kp,i , j are dense matrix blocks, whose sizes are nu ×nw for ∀ i < nh and are

(nc −nr )×nw when i = nh , where nr is the number of rows in H f b . In conclusion, this

parametrization enforces the causality constraint (6.3b).

Note that, in theory, causality should be considered in ypr ed = HL,pr ed (yd)g as well, but

actually HL,pr ed (yd) should not be considered in the QR decomposition. The reason is two-

fold. Firstly, by the fundamental lemma 1, the trajectory prediction ypr ed should be uniquely

determined once yi ni t , ui ni t , wi ni t , upr ed and wpr ed are given. Hence, consideration of

HL,pr ed (yd) is redundant. Secondly, our prediction ypr ed is calculated from a noisy Hankel

matrix as ypr ed = HL,pr ed (yd)g , which breaks the null-space formed by the fundamental

lemma ??. Thus, HL,pr ed (yd) is not considered in the matrix H f b

Thus, we summarize the equivalence between problem (6.1) and problem (6.3b). �
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[86] F. Belić, D. Slišković, and Ž. Hocenski. “Detailed Thermodynamic Modeling of Multi-

Zone Buildings with Resistive-Capacitive Method”. In: Energies 14.21 (2021), p. 7051.

[87] EMU Electronics AG. https://www.emuag.ch/. Accessed: 2021-06-01.

[88] InfluxDB. https://www.influxdata.com. Accessed: 2021-06-01.

[89] Tomorrow.io. https://www.tomorrow.io. Accessed: 2021-06-01.

[90] J. Lofberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”. In: 2004

IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508).

IEEE. 2004, pp. 284–289.

[91] A. Swales et al. “Open Modbus/TCP Specification”. In: Schneider Electric 29 (1999),

pp. 3–19.

[92] R. Godina et al. “Optimal residential model predictive control energy management

performance with PV microgeneration”. In: Computers & Operations Research 96 (2018),

pp. 143–156.

[93] A. Aswani et al. “Reducing transient and steady state electricity consumption in HVAC

using learning-based model-predictive control”. In: Proceedings of the IEEE 100.1

(2011), pp. 240–253.

[94] S. Yang et al. “Model predictive control with adaptive machine-learning-based model

for building energy efficiency and comfort optimization”. In: Applied Energy 271 (2020),

p. 115147.

[95] C. W. Rowley et al. “Spectral analysis of nonlinear flows”. In: Journal of fluid mechanics

641 (2009), pp. 115–127.

[96] H. Wu et al. “Variational Koopman models: slow collective variables and molecular

kinetics from short off-equilibrium simulations”. In: The Journal of Chemical Physics

146.15 (2017), p. 154104.

[97] A. Mauroy and J. Goncalves. “Linear identification of nonlinear systems: A lifting tech-

nique based on the Koopman operator”. In: arXiv preprint arXiv:1605.04457 (2016).

194



Bibliography

[98] A. Surana and A. Banaszuk. “Linear observer synthesis for nonlinear systems using

Koopman operator framework”. In: IFAC-PapersOnLine 49.18 (2016), pp. 716–723.

[99] M. O. Williams et al. “Extending data-driven Koopman analysis to actuated systems”.

In: IFAC Symposium on Nonlinear Control Systems (NOLCOS). 2016.

[100] M. E. Villanueva, C. N. Jones, and B. Houska. “Towards global optimal control via

koopman lifts”. In: Automatica 132 (2021), p. 109610.

[101] P. J. Schmid. “Dynamic mode decomposition of numerical and experimental data”. In:

Journal of fluid mechanics 656 (2010), pp. 5–28.

[102] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. “A data–driven approximation

of the koopman operator: Extending dynamic mode decomposition”. In: Journal of

Nonlinear Science 25.6 (2015), pp. 1307–1346.

[103] H. Arbabi and I. Mezic. “Ergodic theory, dynamic mode decomposition, and compu-

tation of spectral properties of the Koopman operator”. In: SIAM Journal on Applied

Dynamical Systems 16.4 (2017), pp. 2096–2126.

[104] S. E. Otto and C. W. Rowley. “Linearly-recurrent autoencoder networks for learning

dynamics”. In: arXiv preprint arXiv:1712.01378 (2017).

[105] N. Takeishi, Y. Kawahara, and T. Yairi. “Learning Koopman invariant subspaces for

dynamic mode decomposition”. In: Advances in Neural Information Processing Systems.

2017, pp. 1130–1140.

[106] R. Vinuesa and S. L. Brunton. “Enhancing computational fluid dynamics with machine

learning”. In: Nature Computational Science 2.6 (2022), pp. 358–366.

[107] B. O. Koopman. “Hamiltonian systems and transformation in Hilbert space”. In: Pro-

ceedings of the National Academy of Sciences 17.5 (1931), pp. 315–318.

[108] I. Gohberg, S. Goldberg, and M. Kaashoek. Basic classes of linear operators. Birkhäuser,

2012.

[109] J. A. Rosenfeld et al. “Occupation kernels and densely defined Liouville operators for

system identification”. In: 2019 IEEE 58th Conference on Decision and Control (CDC).

IEEE. 2019, pp. 6455–6460.

[110] D. Angeli and E. D. Sontag. “Forward completeness, unboundedness observability,

and their Lyapunov characterizations”. In: Systems & Control Letters 38.4-5 (1999),

pp. 209–217.

[111] B. P. Russo and J. A. Rosenfeld. “Liouville operators over the Hardy space”. In: Journal

of Mathematical Analysis and Applications 508.2 (2022), p. 125854.

[112] P. Van Overschee and B. De Moor. Subspace identification for linear systems: The-

ory—Implementation—Applications. Springer Science & Business Media, 2012.

[113] S. J. Qin. “An overview of subspace identification”. In: Computers & chemical engineer-

ing 30.10-12 (2006), pp. 1502–1513.

195



Bibliography

[114] P. Van Overschee and B. De Moor. “A unifying theorem for three subspace system

identification algorithms”. In: Automatica 31.12 (1995), pp. 1853–1864.

[115] S. J. Qin, W. Lin, and L. Ljung. “A novel subspace identification approach with enforced

causal models”. In: Automatica 41.12 (2005), pp. 2043–2053.

[116] C. E. Rasmussen. “Gaussian processes in machine learning”. In: Advanced lectures on

machine learning. Springer, 2004, pp. 63–71.

[117] M. A. Álvarez and N. D. Lawrence. “Computationally efficient convolved multiple

output Gaussian processes”. In: Journal of Machine Learning Research 12.May (2011),

pp. 1459–1500.

[118] E. V. Bonilla, K. M. Chai, and C. Williams. “Multi-task Gaussian process prediction”. In:

Advances in neural information processing systems. 2008, pp. 153–160.

[119] C. A. Micchelli and M. Pontil. “On learning vector-valued functions”. In: Neural com-

putation 17.1 (2005), pp. 177–204.

[120] J. Kabzan et al. “Learning-based model predictive control for autonomous racing”. In:

IEEE Robotics and Automation Letters 4.4 (2019), pp. 3363–3370.

[121] H. A. Shukla. Optimization Methods for Control: From Embedded Programmable Hard-

ware to Data-Driven Process Optimization. Tech. rep. EPFL, 2021.

[122] A. L. Dontchev and R. T. Rockafellar. Implicit functions and solution mappings. Vol. 543.

Springer, 2009.

[123] S. G. Krantz and H. R. Parks. “Introduction to the Implicit Function Theorem”. In: The

Implicit Function Theorem. Springer, 2003, pp. 1–12.

[124] S. M. Robinson. “Generalized equations and their solutions, part II: applications to

nonlinear programming”. In: Optimality and stability in mathematical programming.

Springer, 1982, pp. 200–221.

[125] L. El Ghaoui et al. “Implicit deep learning”. In: arXiv preprint arXiv:1908.06315 2 (2019).

[126] M. Zanon and S. Gros. “Safe reinforcement learning using robust MPC”. In: IEEE

Transactions on Automatic Control (2020).

[127] A. Mohammad-Nezhad. “Conic Optimization: Optimal Partition, Parametric, and

Stability Analysis”. PhD thesis. Lehigh University, 2019.

[128] A. V. Fiacco. Mathematical programming with data perturbations. CRC Press, 2020.

[129] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Vol. 317. Springer Science &

Business Media, 2009.

[130] J. M. Danskin. “The theory of max-min, with applications”. In: SIAM Journal on Applied

Mathematics 14.4 (1966), pp. 641–664.

[131] W. W. Hogan. “Point-to-set maps in mathematical programming”. In: SIAM review 15.3

(1973), pp. 591–603.

196



Bibliography

[132] A. Agrawal et al. “Differentiating through a cone program”. In: arXiv preprint arXiv:1904.09043

(2019).
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[137] M. Korda and I. Mezić. “On convergence of extended dynamic mode decomposition to

the Koopman operator”. In: Journal of Nonlinear Science 28.2 (2018), pp. 687–710.

[138] A. Papoulis and S. U. Pillai. Probability, random variables, and stochastic processes. Tata

McGraw-Hill Education, 2002.

[139] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[140] J. B. Conway. A course in functional analysis. Vol. 96. Springer, 2019.

[141] H. Stark and J. W. Woods. Probability, random processes, and estimation theory for

engineers. Prentice-Hall, Inc., 1986.

[142] J. Jacod and P. Protter. Probability essentials. Springer Science & Business Media, 2012.

[143] G. Feldman and P Graczyk. “On the Skitovich–Darmois theorem for compact Abelian

groups”. In: Journal of Theoretical Probability 13.3 (2000), pp. 859–869.

[144] V. Skitovitch. “On a property of the normal distribution”. In: DAN SSSR 89 (1953),

pp. 217–219.

[145] J. J. Gerbrands. “On the relationships between SVD, KLT and PCA”. In: Pattern recogni-

tion 14.1-6 (1981), pp. 375–381.

[146] J. L. Proctor, S. L. Brunton, and J. N. Kutz. “Generalizing Koopman theory to allow

for inputs and control”. In: SIAM Journal on Applied Dynamical Systems 17.1 (2018),

pp. 909–930.

[147] B. Efron. “The estimation of prediction error: covariance penalties and cross-validation”.

In: Journal of the American Statistical Association 99.467 (2004), pp. 619–632.

[148] H. Akaike. “A new look at the statistical model identification”. In: Selected Papers of

Hirotugu Akaike. Springer, 1974, pp. 215–222.

[149] T. Gustafsson. “Subspace-based system identification: weighting and pre-filtering of

instruments”. In: Automatica 38.3 (2002), pp. 433–443.

[150] A. Billard et al. “Robot programming by demonstration”. In: Springer handbook of

robotics (2008), pp. 1371–1394.

197



Bibliography

[151] S. M. Khansari-Zadeh and A. Billard. “Learning stable nonlinear dynamical systems

with gaussian mixture models”. In: IEEE Transactions on Robotics 27.5 (2011), pp. 943–

957.

[152] S Daniel-Berhe and H Unbehauen. “Experimental physical parameter estimation of a

thyristor driven DC-motor using the HMF-method”. In: Control Engineering Practice

6.5 (1998), pp. 615–626.

[153] A. Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”.

In: Advances in neural information processing systems 32 (2019).

[154] S. Daniel-berhe and H. Unbehauen. “Parameter Estimation of the Nonlinear Dynam-

ics of a Thyristor Driven DC-Motor Experimental Set-Up Using HMF-Method”. In:

IFAC Proceedings Volumes 30.11 (1997). IFAC Symposium on System Identification

(SYSID’97), Kitakyushu, Fukuoka, Japan, 8-11 July 1997, pp. 203 –208. DOI: https :

//doi.org/10.1016/S1474-6670(17)42847-3.

[155] R. M. Miura. “The Korteweg–deVries equation: A survey of results”. In: SIAM review

18.3 (1976), pp. 412–459.

[156] S. Saitoh and Y. Sawano. Theory of reproducing kernels and applications. Springer,

2016.

[157] G. K. Pedersen. Analysis now. Vol. 118. Springer Science & Business Media, 2012.

[158] I. Steinwart. “On the influence of the kernel on the consistency of support vector

machines”. In: Journal of machine learning research 2.Nov (2001), pp. 67–93.

[159] K. Fukumizu, F. R. Bach, and M. I. Jordan. “Dimensionality reduction for supervised

learning with reproducing kernel Hilbert spaces”. In: Journal of Machine Learning

Research 5.Jan (2004), pp. 73–99.

[160] A. Gretton et al. “A kernel method for the two-sample-problem”. In: Advances in neural

information processing systems 19 (2006).

[161] K. Fukumizu et al. “Kernel measures of conditional dependence”. In: Advances in

neural information processing systems 20 (2007).

[162] K. Fukumizu, F. R. Bach, and M. I. Jordan. “Kernel dimension reduction in regression”.

In: The Annals of Statistics 37.4 (2009), pp. 1871–1905.

[163] A. Berlinet and C. Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and

statistics. Springer Science & Business Media, 2011.

[164] I. Steinwart and A. Christmann. Support vector machines. Springer Science & Business

Media, 2008.

[165] M. Fazel, H. Hindi, and S. P. Boyd. “A rank minimization heuristic with application to

minimum order system approximation”. In: Proceedings of the 2001 American Control

Conference.(Cat. No. 01CH37148). Vol. 6. IEEE. 2001, pp. 4734–4739.

[166] K. Muandet et al. “Kernel mean embedding of distributions: A review and beyond”. In:

arXiv preprint arXiv:1605.09522 (2016).

198



Bibliography

[167] M. Hertneck et al. “Learning an approximate model predictive controller with guaran-

tees”. In: IEEE Control Systems Letters 2.3 (2018), pp. 543–548.

[168] S. Gao, S. Kong, and E. M. Clarke. “dReal: An SMT solver for nonlinear theories over the

reals”. In: International conference on automated deduction. Springer. 2013, pp. 208–

214.

[169] Y.-C. Chang, N. Roohi, and S. Gao. “Neural lyapunov control”. In: Advances in neural

information processing systems 32 (2019).

[170] H. Dai et al. “Counter-example guided synthesis of neural network lyapunov functions

for piecewise linear systems”. In: 2020 59th IEEE Conference on Decision and Control

(CDC). IEEE. 2020, pp. 1274–1281.

[171] J. Kapinski et al. “Simulation-guided Lyapunov analysis for hybrid dynamical systems”.

In: Proceedings of the 17th international conference on Hybrid systems: computation

and control. 2014, pp. 133–142.

[172] S. Gao, J. Avigad, and E. M. Clarke. “δ-complete decision procedures for satisfiability

over the reals”. In: International Joint Conference on Automated Reasoning. Springer.

2012, pp. 286–300.

[173] V. I. Zubov. Methods of AM Lyapunov and their application. P. Noordhoff, 1964.

[174] P. Giesl. Construction of global Lyapunov functions using radial basis functions. Vol. 1904.

Springer, 2007.

[175] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in

robustness and optimization. California Institute of Technology, 2000.

[176] P. A. Parrilo and S. Lall. “Semidefinite programming relaxations and algebraic optimiza-

tion in control”. In: European Journal of Control 9.2-3 (2003), pp. 307–321.

[177] A. Oustry, M. Tacchi, and D. Henrion. “Inner approximations of the maximal positively

invariant set for polynomial dynamical systems”. In: IEEE Control Systems Letters 3.3

(2019), pp. 733–738.

[178] D. Henrion and M. Korda. “Convex computation of the region of attraction of polyno-

mial control systems”. In: IEEE Transactions on Automatic Control 59.2 (2013), pp. 297–

312.

[179] M. Tacchi et al. “Approximating regions of attraction of a sparse polynomial differential

system”. In: IFAC-PapersOnLine 53.2 (2020), pp. 3266–3271.

[180] A. A. Ahmadi and A. Majumdar. “DSOS and SDSOS optimization: more tractable

alternatives to sum of squares and semidefinite optimization”. In: SIAM Journal on

Applied Algebra and Geometry 3.2 (2019), pp. 193–230.

[181] Z. Sun. “Stability of piecewise linear systems revisited”. In: Annual Reviews in Control

34.2 (2010), pp. 221–231.

199



Bibliography

[182] H. Lin and P. J. Antsaklis. “Stability and stabilizability of switched linear systems:

a survey of recent results”. In: IEEE Transactions on Automatic control 54.2 (2009),

pp. 308–322.

[183] A. Alessio and A. Bemporad. “A survey on explicit model predictive control”. In: Non-

linear model predictive control. Springer, 2009, pp. 345–369.

[184] M. Johansson and A. Rantzer. “Computation of piecewise quadratic Lyapunov func-

tions for hybrid systems”. In: 1997 European Control Conference (ECC). IEEE. 1997,

pp. 2005–2010.

[185] H. Ravanbakhsh and S. Sankaranarayanan. “Learning control lyapunov functions from

counterexamples and demonstrations”. In: Autonomous Robots 43.2 (2019), pp. 275–

307.

[186] R. Schwan, C. N. Jones, and D. Kuhn. “Stability Verification of Neural Network Con-

trollers using Mixed-Integer Programming”. In: arXiv preprint arXiv:2206.13374 (2022).

[187] A. Solar-Lezama et al. “Combinatorial sketching for finite programs”. In: Proceedings of

the 12th international conference on Architectural support for programming languages

and operating systems. 2006, pp. 404–415.

[188] A. Solar-Lezama. Program synthesis by sketching. University of California, Berkeley,

2008.

[189] S. Chen et al. “Learning lyapunov functions for hybrid systems”. In: Proceedings of

the 24th International Conference on Hybrid Systems: Computation and Control. 2021,

pp. 1–11.

[190] A. Abate et al. “Formal synthesis of Lyapunov neural networks”. In: IEEE Control

Systems Letters 5.3 (2020), pp. 773–778.

[191] T. A. Johansen. “Computation of Lyapunov functions for smooth nonlinear systems

using convex optimization”. In: Automatica 36.11 (2000), pp. 1617–1626.

[192] P. Giesl et al. “Approximation of Lyapunov functions from noisy data”. In: arXiv preprint

arXiv:1601.01568 (2016).

[193] S. F. Marinósson. “Lyapunov function construction for ordinary differential equations

with linear programming”. In: Dynamical Systems: An International Journal 17.2 (2002),

pp. 137–150.

[194] P. M. Julian. “A high-level canonical piecewise linear representation: Theory and appli-

cations”. PhD thesis. Universidad Nacional del Sur (Argentina), 1999.

[195] R. Baier, L. Grüne, and S. F. Hafstein. “Linear programming based Lyapunov function

computation for differential inclusions”. In: Discrete & Continuous Dynamical Systems-

B 17.1 (2012), p. 33.

[196] S. F. Hafstein. “AN ALGORITHM FOR CONSTRUCTING LYAPUNOV FUNCTIONS.” In:

Electronic Journal of Differential Equations 2007 (2007).

200



Bibliography

[197] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis. Springer

Science & Business Media, 2004.

[198] F. H. Clarke. Optimization and Nonsmooth Analysis. Classics in Applied Mathematics.

SIAM, 1990.

[199] J. P. La Salle. The stability of dynamical systems. SIAM, 1976.

[200] M. Della Rossa. “Non-Smooth Lyapunov Functions for Stability Analysis of Hybrid

Systems”. PhD thesis. Institut National des Sciences Appliquées de Toulouse, 2020.

[201] H. L. Royden and P. Fitzpatrick. Real analysis. Vol. 32. Macmillan New York, 1988.

[202] F. Aurenhammer. “A criterion for the affine equivalence of cell complexes in R d and

convex polyhedra in R d+ 1”. In: Discrete & Computational Geometry 2.1 (1987), pp. 49–

64.

[203] A. Ben-Tal and A. Nemirovski. “Robust optimization–methodology and applications”.

In: Mathematical programming 92.3 (2002), pp. 453–480.

[204] J.-P. Calliess et al. “Lazily adapted constant kinky inference for nonparametric regres-

sion and model-reference adaptive control”. In: Automatica 122 (2020), p. 109216.

[205] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. Vol. 2. 3.

MIT press Cambridge, MA, 2006.

[206] P. Scharnhorst et al. “Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces:

A Convex Optimization Approach”. In: arXiv preprint arXiv:2104.09582 (2021).

[207] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex pro-

gramming. SIAM, 1994.

[208] S. F. Hafstein*. “A constructive converse Lyapunov theorem on asymptotic stability for

nonlinear autonomous ordinary differential equations”. In: Dynamical Systems 20.3

(2005), pp. 281–299.

[209] P. Giesl and S. Hafstein. “Review on computational methods for Lyapunov functions”.

In: Discrete & Continuous Dynamical Systems-B 20.8 (2015), p. 2291.

[210] A. Subbaraman and A. R. Teel. “A Matrosov theorem for strong global recurrence”. In:

Automatica 49.11 (2013), pp. 3390–3395.

[211] S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Springer Science

& Business Media, 2012.

[212] H. Krieg. Modeling and solution of continuous set covering problems by means of semi-

infinite optimization. Fraunhofer Verlag, 2019.

[213] E. D. Andersen, C. Roos, and T. Terlaky. “On implementing a primal-dual interior-point

method for conic quadratic optimization”. In: Mathematical Programming 95.2 (2003),

pp. 249–277.

[214] L. Vandenberghe and M. S. Andersen. “Chordal graphs and semidefinite optimization”.

In: Foundations and Trends in Optimization 1.4 (2015), pp. 241–433.

201



Bibliography

[215] K. Rybnikov. Polyhedral partitions and stresses. Queen’s University at Kingston, 2000.

[216] F. Aurenhammer. “Power diagrams: properties, algorithms and applications”. In: SIAM

Journal on Computing 16.1 (1987), pp. 78–96.

[217] B. Delaunay et al. “Sur la sphere vide”. In: Izv. Akad. Nauk SSSR, Otdelenie Matematich-

eskii i Estestvennyka Nauk 7.793-800 (1934), pp. 1–2.

[218] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for

nonconvex and nonsmooth problems”. In: Mathematical Programming 146.1 (2014),

pp. 459–494.

[219] R. Verschueren et al. “acados—a modular open-source framework for fast embedded

optimal control”. In: Mathematical Programming Computation 14.1 (2022), pp. 147–

183.

[220] W. Heemels, K. H. Johansson, and P. Tabuada. “An introduction to event-triggered and

self-triggered control”. In: Proc. 51th Conf. Decis. Control. 2012, pp. 3270–3285.

[221] J. B. Berglind, T. Gommans, and W. Heemels. “Self-triggered MPC for constrained linear

systems and quadratic costs”. In: IFAC Proceedings Volumes 45.17 (2012), pp. 342–348.

[222] D. Bernardini and A. Bemporad. “Energy-aware robust model predictive control based

on noisy wireless sensors”. In: Automatica 48.1 (2012), pp. 36–44.

[223] E. Henriksson et al. “Self-triggered model predictive control for network scheduling

and control”. In: IFAC-PapersOnLine 45.15 (2012), pp. 432–438.

[224] S. Wildhagen, C. N. Jones, and F. Allgöwer. “A resource-aware approach to self-triggered

model predictive control”. In: IFAC-PapersOnLine 53.2 (2020), pp. 2733–2738.

[225] Y. Lian et al. “Resource-Aware Asynchronous Multi-Agent Coordination via Self-Triggered

MPC”. In: Proc. 59th Conf. Decis. Control. 2020, pp. 685–690.

[226] H. Li and Y. Shi. “Event-triggered robust model predictive control of continuous-time

nonlinear systems”. In: Automatica 50.5 (2014), pp. 1507–1513.

[227] E. Aydiner, F. D. Brunner, W. Heemels, et al. “Robust self-triggered model predictive

control for constrained discrete-time LTI systems based on homothetic tubes”. In: Proc.

Eur. Control Conf. 2015, pp. 1587–1593.

[228] F. D. Brunner, M. Heemels, and F. Allgöwer. “Robust self-triggered MPC for constrained

linear systems: A tube-based approach”. In: Automatica 72 (2016), pp. 73–83.

[229] M. Farina and R. Scattolini. “Tube-based robust sampled-data MPC for linear continuous-

time systems”. In: Automatica 48.7 (2012), pp. 1473–1476.

[230] C. Liu et al. “Robust self-triggered min–max model predictive control for discrete-time

nonlinear systems”. In: Automatica 89 (2018), pp. 333–339.

[231] H. G. Bock and K.-J. Plitt. “A multiple shooting algorithm for direct solution of optimal

control problems”. In: IFAC-PapersOnLine 17.2 (1984), pp. 1603–1608.

[232] V. Krishnan. Nonlinear filtering and smoothing: An introduction to martingales, stochas-

tic integrals and estimation. Courier Corporation, 2013.

202



Bibliography

[233] J.-F. Le Gall. Brownian motion, martingales, and stochastic calculus. Springer, 2016.

[234] L. Giulioni. “Stochastic model predictive control with application to distributed control

systems”. In: (2015).

[235] W. S. Levine, L. Grüne, et al. Handbook of model predictive control. Springer, 2018.

[236] R. Mohler and R. Rink. “Multivariable bilinear system control”. In: Proc. IFAC Symp.

Multivariable Control Systems. Vol. 14. 2. 1968.

[237] R. Rink and R. Mohler. “Completely controllable bilinear systems”. In: SIAM Journal

on Control 6.3 (1968), pp. 477–486.

[238] A Ruberti and R. Mohler. “Variable Structure Systems with Applications to Economics

and Biology”. In: Proceedings of the Second US-Italy Seminar on Variable Structure

Systems. Springer. 1974.

[239] D. L. Elliott. “Bilinear systems”. In: Wiley Encyclopedia of Electrical and Electronics

Engineering (2001).

[240] W.-H. Steeb. “A note on Carleman linearization”. In: Physics Letters A 140.6 (1989),

pp. 336–338.

[241] E. Kaiser, J. N. Kutz, and S. L. Brunton. “Data-driven approximations of dynamical

systems operators for control”. In: The Koopman Operator in Systems and Control

(2020), pp. 197–234.

[242] D. Elliott. Bilinear control systems: matrices in action. Vol. 169. Springer Science &

Business Media, 2009.

[243] W. J. Rugh. Nonlinear system theory. Johns Hopkins University Press Baltimore, MD,

1981.

[244] J. Baillieul. “Geometric methods for nonlinear optimal control problems”. In: Journal

of optimization theory and applications 25.4 (1978), pp. 519–548.

[245] S. M. Rajguru, M. A. Ifediba, and R. D. Rabbitt. “Three-dimensional biomechanical

model of benign paroxysmal positional vertigo”. In: Annals of biomedical engineering

32.6 (2004), pp. 831–846.

[246] D. D’alessandro and M. Dahleh. “Optimal control of two-level quantum systems”. In:

IEEE Transactions on Automatic Control 46.6 (2001), pp. 866–876.

[247] G. Escobar et al. “An experimental comparison of several nonlinear controllers for

power converters”. In: IEEE Control Systems Magazine 19.1 (1999), pp. 66–82.

[248] H. Sira-Ramirez. “Sliding motions in bilinear switched networks”. In: IEEE transactions

on circuits and systems 34.8 (1987), pp. 919–933.

[249] S. Peitz. “Controlling nonlinear PDEs using low-dimensional bilinear approximations

obtained from data”. In: arXiv preprint arXiv:1801.06419 (2018).

[250] J. Haddad and N. Geroliminis. “On the stability of traffic perimeter control in two-

region urban cities”. In: Transportation Research Part B: Methodological 46.9 (2012),

pp. 1159–1176.

203



Bibliography

[251] M. B. Kane, J. Scruggs, and J. P. Lynch. “Model-predictive control techniques for hy-

dronic systems implemented on wireless sensor and actuator networks”. In: 2014

American Control Conference. IEEE. 2014, pp. 3542–3547.

[252] L. Hetel, M. Defoort, and M. Djemai. “Binary control design for a class of bilinear

systems: Application to a multilevel power converter”. In: IEEE Transactions on Control

Systems Technology 24.2 (2015), pp. 719–726.

[253] J. B. Rawlings, D. Q. Mayne, and M. Diehl. Model predictive control: theory, computation,

and design. Vol. 2. Nob Hill Publishing Madison, WI, 2017.

[254] S. Boyd, N. Parikh, and E. Chu. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Now Publishers Inc, 2011.

[255] A. Rantzer. “Dynamic dual decomposition for distributed control”. In: 2009 American

Control Conference. IEEE. 2009, pp. 884–888.

[256] I Necoara and J. Suykens. “Interior-point lagrangian decomposition method for sepa-

rable convex optimization”. In: Journal of Optimization Theory and Applications 143.3

(2009), pp. 567–588.

[257] J. V. Frasch, S. Sager, and M. Diehl. “A parallel quadratic programming method for

dynamic optimization problems”. In: Mathematical programming computation 7.3

(2015), pp. 289–329.

[258] S. Richter, M. Morari, and C. N. Jones. “Towards computational complexity certification

for constrained MPC based on Lagrange relaxation and the fast gradient method”. In:

2011 50th IEEE Conference on Decision and Control and European Control Conference.

IEEE. 2011, pp. 5223–5229.

[259] B. Houska, J. Frasch, and M. Diehl. “An augmented Lagrangian based algorithm for

distributed nonconvex optimization”. In: SIAM Journal on Optimization 26.2 (2016),

pp. 1101–1127.

[260] Y. Jiang et al. “Parallel MPC for linear systems with input constraints”. In: IEEE Trans-

actions on Automatic Control (2020).

[261] Y. Jiang, C. N. Jones, and B. Houska. “A Time Splitting Based Real-Time Iteration

Scheme for Nonlinear MPC”. In: 2019 IEEE 58th Conference on Decision and Control

(CDC). IEEE. 2019, pp. 2350–2355.

[262] F. Laine and C. Tomlin. “Parallelizing LQR Computation Through Endpoint-Explicit

Riccati Recursion”. In: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE.

2019, pp. 1395–1402.

[263] H. Deng and T. Ohtsuka. “A parallel Newton-type method for nonlinear model predic-

tive control”. In: Automatica 109 (2019), p. 108560.

[264] S. Shin et al. “A parallel decomposition scheme for solving long-horizon optimal

control problems”. In: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE.

2019, pp. 5264–5271.

204



Bibliography

[265] I. Nielsen and D. Axehill. “A parallel structure exploiting factorization algorithm with

applications to model predictive control”. In: 2015 54th IEEE Conference on Decision

and Control (CDC). IEEE. 2015, pp. 3932–3938.

[266] Y. Wang and S. Boyd. “Fast model predictive control using online optimization”. In:

IEEE Transactions on control systems technology 18.2 (2009), pp. 267–278.

[267] H. J. Ferreau, H. G. Bock, and M. Diehl. “An online active set strategy to overcome the

limitations of explicit MPC”. In: International Journal of Robust and Nonlinear Control:

IFAC-Affiliated Journal 18.8 (2008), pp. 816–830.

[268] M. Diehl, H. G. Bock, and J. P. Schlöder. “A real-time iteration scheme for nonlinear op-

timization in optimal feedback control”. In: SIAM Journal on control and optimization

43.5 (2005), pp. 1714–1736.

[269] E. Zafiriou. “Robust model predictive control of processes with hard constraints”. In:

Computers & Chemical Engineering 14.4-5 (1990), pp. 359–371.

[270] A. Bemporad et al. “The explicit linear quadratic regulator for constrained systems”. In:

Automatica 38.1 (2002), pp. 3–20.

[271] D. M. Raimondo et al. “A robust explicit nonlinear MPC controller with input-to-state

stability guarantees”. In: IFAC Proceedings Volumes 44.1 (2011), pp. 9284–9289.

[272] A. Bemporad et al. “The explicit linear quadratic regulator for constrained systems”. In:

Automatica 38.1 (Jan. 2002), pp. 3–20.

[273] F. Borrelli, A. Bemporad, and M. Morari. Predictive control for linear and hybrid systems.

Cambridge University Press, 2017.

[274] S. Wright, J. Nocedal, et al. “Numerical optimization”. In: Springer Science 35.67-68

(1999), p. 7.

[275] N. G. D. Robinson. “A second derivative SQP method: local convergence”. In: (2009).

[276] M. R. Hestenes. “Multiplier and gradient methods”. In: Journal of optimization theory

and applications 4.5 (1969), pp. 303–320.

[277] M. J. Powell. “A method for nonlinear constraints in minimization problems”. In:

Optimization (1969), pp. 283–298.

[278] R. T. Rockafellar. “Augmented Lagrangians and applications of the proximal point

algorithm in convex programming”. In: Mathematics of operations research 1.2 (1976),

pp. 97–116.

[279] R. Verschueren et al. “acados – a modular open-source framework for fast embedded

optimal control”. In: Mathematical Programming Computation (2021). DOI: 10.1007/

s12532-021-00208-8.

[280] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for large-scale

constrained optimization”. In: SIAM review 47.1 (2005), pp. 99–131.

205



Bibliography

[281] G Di Pillo and L Grippo. “A new augmented Lagrangian function for inequality con-

straints in nonlinear programming problems”. In: Journal of Optimization Theory and

Applications 36.4 (1982), pp. 495–519.

[282] S. Alwadani et al. “The difference vectors for convex sets and a resolution of the ge-

ometry conjecture”. In: Open Journal of Mathematical Optimization 2 (2021), pp. 1–

18.

[283] S. Alwadani et al. “Resolvents and Yosida approximations of displacement mappings

of isometries”. In: Set-Valued and Variational Analysis 29.3 (2021), pp. 721–733.

[284] B. Houska and Y. Jiang. “Distributed Optimization and Control with ALADIN”. In:

Recent Advances in Model Predictive Control: Theory, Algorithms, and Applications

(2021), 135–163.

[285] R. T. Rockafellar. “Augmented Lagrange multiplier functions and duality in nonconvex

programming”. In: SIAM Journal on Control 12.2 (1974), pp. 268–285.

[286] B. Houska et al. “Convex optimization with ALADIN”. In: Optimization Online preprint

(2017).

[287] B. Contesse. “Une caractérisation complete des minima locaux en programmation

quadratique”. In: (1980).

[288] A. Forsgren, P. Gill, and W Murray. “On the identification of local minimizers in inertia-

controlling methods for quadratic programming”. In: SIAM journal on matrix analysis

and applications 12.4 (1991), pp. 730–746.

[289] Y. Wang, W. Yin, and J. Zeng. “Global convergence of ADMM in nonconvex nonsmooth

optimization”. In: Journal of Scientific Computing 78.1 (2019), pp. 29–63.

[290] M. Herceg et al. “Enumeration-based approach to solving parametric linear comple-

mentarity problems”. In: Automatica 62 (2015), pp. 243–248. DOI: 10.1016/j.automatica.

2015.09.019.

[291] P. Tøndel, T. Johansen, and A. Bemporad. “Evaluation of piecewise affine control via

binary search tree”. In: Automatica 39.5 (2003), pp. 945–950.

[292] R. Verschueren et al. “A sparsity preserving convexification procedure for indefinite

quadratic programs arising in direct optimal control”. In: SIAM Journal on Optimiza-

tion 27.3 (2017), pp. 2085–2109.

[293] G. Frison. “Algorithms and methods for high-performance model predictive control”.

PhD thesis. 2016.

[294] M. Kvasnica et al. “Multi-parametric toolbox (MPT)”. In: International Workshop on

Hybrid Systems: Computation and Control. Springer. 2004, pp. 448–462.

[295] A. Engelmann et al. “ALADIN-—An open-source MATLAB toolbox for distributed non-

convex optimization”. In: Optimal Control Applications and Methods 43.1 (2022), pp. 4–

22.

206



Bibliography

[296] G. Frison et al. “BLASFEO: Basic linear algebra subroutines for embedded optimiza-

tion”. In: ACM Transactions on Mathematical Software (TOMS) 44.4 (2018), pp. 1–30.

[297] G. Frison and M. Diehl. “HPIPM: a high-performance quadratic programming frame-

work for model predictive control”. In: IFAC-PapersOnLine 53.2 (2020), pp. 6563–6569.

[298] F. Oldewurtel et al. “Stochastic model predictive control for building climate control”.

In: IEEE Transactions on Control Systems Technology 22.3 (2013), pp. 1198–1205.

[299] G. Cimini et al. “Online model predictive torque control for permanent magnet syn-

chronous motors”. In: 2015 IEEE International Conference on Industrial Technology

(ICIT). IEEE. 2015, pp. 2308–2313.

[300] G. Cimini et al. “Embedded model predictive control with certified real-time optimiza-

tion for synchronous motors”. In: IEEE Transactions on Control Systems Technology

29.2 (2020), pp. 893–900.

[301] R.-C. Li. “Relative perturbation theory: II. Eigenspace and singular subspace varia-

tions”. In: SIAM Journal on Matrix Analysis and Applications 20.2 (1998), pp. 471–

492.

[302] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

207



Ce document a été imprimé 
au Centre d’impression EPFL, 
imprimerie climatiquement 
neutre, certifiée myClimate 
depuis 2017 repro.epfl.ch


