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Abstract

Computer simulations based on statistical methods have emerged as a powerful tool for

studying structure-property relationships at the atomistic level. However, to provide reliable

insights into materials in realistic conditions, it is essential to accurately describe their be-

haviour at finite temperatures. While ab initio calculations offer the flexibility to study any

stoichiometry and chemical complexity, their scalability and computer resource requirements

limit their application to large systems and timescales. Machine learning interatomic poten-

tials (MLIP) overcome this limitation by approximating quantum mechanical (QM) potential

energy surfaces at a fraction of the cost. Despite their advantages, ML methods based on

atom-centred density have been constrained to systems with 4-5 chemical elements.

This thesis aims to address these challenges by focusing on two aspects: 1) accurately de-

scribing finite temperature effects, and 2) enabling ML models based on atom densities

representations to describe systems with a large number of chemical elements. To address

finite temperature effects, we employ a combination of machine learning and statistical sam-

pling methods, using elemental nickel as a prototypical material with a wide application

temperature range. Our framework covers bulk, interfacial, and defect properties from 100

to 2500 K and models nuclear quantum fluctuations and electronic entropy when necessary.

The presented framework is versatile and, when paired with an appropriate potential, can be

readily applied to complex alloys and various material classes.

Another problem we tackle in this thesis is how to describe different chemistries with ML. We

generate a dataset covering a wide range of concentrations of 25 d-block transition metals

and apply a scheme to compress chemical information in lower-dimensional space. The

resulting model demonstrates semi-quantitative accuracy for prototypical alloys and is stable

for extrapolation. We use this model to study element segregation in an equimolar 25-element

alloy, reproducing in a computational setting Cantor et al.’s experiments. Our observations are

used to define data-driven Hume-Rothery rules for alloy design guidance. Furthermore, we in-

vestigate three prototypical alloys (CoCrFeMnNi, CoCrFeMoNi, and IrPdPtRhRu), determining

their stability and short-range order behaviour of their constituents.
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Sommario

Le simulazioni al computer basate su metodi statistici sono diventate uno strumento po-

tente per lo studio delle relazioni tra struttura e proprietà a livello atomistico. Tuttavia, per

fornire informazioni affidabili sui materiali in condizioni realistiche, è essenziale descrivere

accuratamente il loro comportamento a temperature finite. Sebbene i calcoli ab initio offrano

la flessibilità di studiare qualsiasi stechiometria e complessità chimica, la loro scalabilità e il

costo computazionale ne limitano l’applicabilità per sistemi di grande taglia e tempi lunghi. I

potenziali interatomici machine learning (ML) superano questa limitazione approssimando,

a una frazione del costo, la superficie di energia potenziale derivante da calcoli ab initio.

Nonostante questi vantaggi, i metodi ML basati sulla densità atomica sono stati finora limitati

a sistemi di al piú 4 o 5 elementi chimici.

Questa tesi si propone di affrontare i problemi sopraelencati concentrandosi su due aspetti:

1) descrivere accuratamente gli effetti di temperatura finita e 2) consentire ai modelli di ML

basati sulle rappresentazioni delle densità degli atomi di descrivere sistemi con un gran nu-

mero di elementi chimici. Per affrontare gli effetti di temperatura finita, abbiamo utilizzato

una combinazione di metodi ML e di campionamento statistico, concentrandoci sul nichel

elementare quale tipico materiale caratterizzato da un ampio intervallo di temperature di uti-

lizzo. Il nostro aproccio è in grado di trattare le proprietà del bulk, delle interfacce e dei difetti

da 100 a 2500 K, includendo, ove necessario, le fluttuazioni quantistiche nucleari e l’entropia

elettronica. Il metodo presentato è versatile e, se abbinato a un potenziale appropriato, può

essere facilmente applicato a leghe complesse e a varie classi di materiali.

Un altro problema trattato è quello della descrizione di diverse specie chimiche in un for-

malismo ML. A tal fine, abbiamo generato un dataset che copre un’ampia gamma di con-

centrazioni per 25 metalli di transizione del blocco d e abbiamo applicato uno schema per

comprimere le informazioni chimiche in uno spazio a bassa dimensionalità. Il modello risul-

tante dimostra un’accuratezza semi-quantitativa ed è stabile in regime estrapolativo. Abbiamo

utilizzato questo modello nello studio della segregazione in una lega equimolare di 25 ele-

menti, riproducendo, in ambito computazionale, gli esperimenti di Cantor et al. Sfruttando
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tali osservazioni, abbiamo definito regole di Hume-Rothery basate sui dati, in grado di in-

dirizzare la produzione di nuove leghe. Inoltre, abbiamo analizzato tre leghe prototipiche

(CoCrFeMnNi, CoCrFeMoNi e IrPdPtRhRu), determinandone la stabilità e l’ordine atomico a

corto raggio.

Parole chiave: potenziali machine learning, effetti di temperatura finita, compressione al-

chemica, leghe ad alta entropia, esplorazione dello spazio chimico
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1 Introduction

1.1 Computational modelling of materials at realistic conditions

Computational modelling has been used for several decades to gain a qualitative, mechanistic

understanding of the atomic-scale phenomena that underlie the structure-property relations

in materials[1]. Recent developments in this field have made it possible to achieve predictive

accuracy for several structural, mechanical and functional properties, assisting the design and

optimization of materials for both fundamental and technical applications [2–8].

To date, one of the most common approaches in computational modelling is static-lattice

techniques, which are employed to determine the atomic arrangement of minimum energy for

the system simulated and the corresponding elastic, energetic or functional properties. The

procedure involves the evaluation of the appropriate energy (for example, the lattice energy in

the simulation of an ionic crystals), which is then minimized with respect to all relevant degrees

of freedom, e.g. cell dimensions and atomic coordinates in condensed phase simulations.

Static-lattice methods are essentially ’zero Kelvin’ calculations with no representation of

thermal effects. The most primitive way of including the latter is via the ’harmonic’ or ’quasi-

harmonic’ approximations[9, 10]. This approach has been used to compute thermodynamic

and elastic properties of zirconium hydrides[11] and chalcogenides[12], to study melting

curves of some elemental metals[13] etc. While it was previously believed that taking into

consideration anharmonicity did not considerably increase the accuracy of the results[14],

Jörg Neugebauer and co-authors have demonstrated based on first principles methods that

anharmonic corrections play a crucial role in the accurate description of materials, notably

metals and metal alloys [15–19].

In-depth investigation of material’s properties at finite temperature becomes available with the

use of molecular dynamics (MD) simulations. By resolving Newton’s equations of motion for a
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group of particles that represent the simulated system, MD explicitly takes into consideration

the kinetic energy of the atoms. Thus, the time averages along a molecular dynamics trajectory

sampling a representative statistical ensemble can be used to derive various thermodynamic

observables under realistic conditions, such as tensile properties [20, 21], thermal transport

properties [22–24], interface properties [25, 26]. Furthermore, MD simulations can be used in

combination with the concept of thermodynamic integration [27, 28] to accurately quantify

the anharmonic contribution to free energy, which is fundamental for a fair comparison to

experiment [15–19].

The classical behavior of the atoms is implicitly assumed by the use of Newton’s equations of

motion. However, as can be observed from the thermodynamic characteristics of light metals

[29], nuclear quantum effects (NQE) become more apparent at the Debye temperature and

below, which, in the case of materials like lithium niobate (LiNbO3) and lithium tantalate

(LiTaO3), can be significantly higher than room temperature [30]. There is a range of methods

to accurately account for NQE by projecting the quantum problem onto a system with multiple

classical degrees of freedom, but doing so increases substantially the computational cost. In

path integral molecular dynamics (PIMD)[31–33], for instance, atoms are replaced by P beads

connected by harmonic potentials, which raises the computational cost to run a simulation

using the PIMD formalism P times as compared to the cost of a single trajectory and makes it

challenging to combine with ab initio methods.

All of these simulation methods rest upon the underlying description of atomic interactions,

representing the physics and chemistry of the system, and require means to compute accu-

rately and efficiently the potential energy for a given configuration of atoms – the potential

energy surface (PES) of the system. The PES can be defined from first principles by solving

the Schrödinger equation for every nuclear configuration,for example, using an approximate

form such as density-functional theory (DFT) [34, 35]. Although this approach is accurate

and transferable across different chemistries, it is computationally demanding, limiting the

size of simulations to ∼1000 atoms and time scales to hundreds of picoseconds. As a result,

large-scale and long-time simulations have historically relied on interatomic potentials (IPs),

which are, in most cases, empirical parametrizations of the PES based on physically-motivated

functional forms [36–42]. IPs acquire linear scaling with respect to the number of atoms at the

expense of accuracy and transferability.

The advent of machine learning (ML) has advanced the field of IP’s development and permit-

ted to strike a balance between computational efficiency ab initio accuracy and transferability,

introducing machine learning interatomic potentials (MLIP) based on the regression of energy

and forces from reference electronic structure calculations. MLIPs have reduced consider-
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ably the effort needed to thoroughly investigate the structural and mechanical properties

of materials [43–45], and to evaluate the finite-temperature thermodynamics of materials

with first-principles accuracy, which has made it possible, for instance, to investigate the

finite-temperature mechanical properties of iron [46] to determine the subtle difference in

free energy between different phases of water [47], or to study the phase diagram of hybrid

perovskite materials [48].

In chapter 4, we demonstrate the combination of machine-learning potentials with ther-

modynamic integration and finite-temperature sampling to compute bulk and interfacial

properties of materials from cryogenic temperatures up to above the melting point. We

also use a recently-developed scheme to predict the electronic density of states [49] to take

into account the impact of electronic excitations, without the need to perform additional

electronic-structure calculations.

1.2 Interpolation of interatomic interaction using machine learning

Data-driven approaches have been widely adopted in atomistic modelling for diverse ap-

plications spanning from advanced data analytics [50] to the generative design of materials

with optimal properties [51]. In this thesis, our primary focus will be on the application of

machine learning techniques to accelerate electronic structure calculations: predicting and

analyzing the relationship between a specific atomic configuration and property computed

from first principles [52–58]. In particular, a lot of progress has been made in building MLIPs,

in which machine learning models are trained on a few quantum mechanical calculations

to reconstruct the PES of materials. Fitting of MLIP has been done successfully for various

systems including metallic alloys [59, 60], amorphous materials[58, 61], phase change mate-

rials[62], proving it’s able to capture diverse chemistries and bonding and enable modelling

of systems with large degrees of freedom which were not accessible before with DFT [63].

Continuous improvements are being made to MLIP’s performance and efficiency, as well as in-

ternal process optimization, feature reduction[64, 65], and data utilization[66–68]. Additional

acceleration has been achieved by exploiting GPU-optimized libraries like PyTorch [69] and

TensorFlow[70].

The construction of an MLIP requires three ingredients: i) a descriptive dataset, which samples

the phase space of interest, ii) a representation (descriptors or fingerprints) of atomistic

structures, which is communicated to the algorithm, iii) the regression algorithm itself. Each

element impacts the ultimate accuracy and has been thoroughly researched, yielding a wide

range of potentials and approaches to their creation. Below, we provide a brief review of the

most common practices in the field. Among various algorithms used for MLIPs are linear
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regression (LR), kernel ridge regression (KRR), neural networks (NN), support vector machines

(SVM). Commonly used examples of the MLIPs are the high-dimensional neural network

potential (NNP) [53, 71], the Gaussian approximation potential (GAP)[72–74], the spectral

neighbor analysis potential (SNAP)[75–78] and moment tensor potentials (MTP)[79–81] among

others[82–95].

In the realm of MLIPs, the choice of descriptors is often (but not necessarily) tied to the method

employed, as developers frequently provide a comprehensive package for fitting an MLIP that

includes the internally generated and optimized descriptors for a specific workflow. Despite

distinct research efforts, a principle that is common to the majority of MLIP descriptors is the

representation of atomic properties and positions through the transformation of Cartesian

coordinates, in such a way that physically-motivated requirements like smoothness and

invariance to translations, rotations, and permutations of atoms of the same type are fulfilled.

These atom-density-based descriptors, such as atom-centred symmetry functions [96] and

the smooth overlap of atomic positions (SOAP)[72], have a wide range of applicability, from

gas-phase molecules to bulk solids, and are not limited to a specific application. These

representations can be tuned to reflect other physical and chemical principles. Recent research

has shown that MLIPs that use such representations, which closely reflect principles such as

locality, the multiscale nature of interactions, and the similarities in the behavior of elements

from the same group in the periodic table, tend to be more robust, transferable, and data-

efficient[97].

Creating MLIPs requires reference data for training, typically computed from first principles.

While most ML models focus on computing energies and forces, recent developments in the

field have expanded the range of evaluated properties to include molecular dipoles[98, 99], po-

larizabilities[100, 101], electron density[102], Hamiltonians[103, 104] and others. Additionally,

since the community aims for open, reproducible, and FAIR [105] research, a growing number

of publicly accessible datasets based on experiments and electronic structure calculations are

created, encompassing a variety of materials from molecules to inorganic materials [106–111].

However, most of these databases lack the structural variety essential for developing robust

and accurate MLIP since they comprise perfect crystal structures or a single representative of

configurations encountered experimentally. Since there is no universal approach for creating

descriptive datasets, and it typically demands manual adjustments tailored to a particular

scientific problem, numerous techniques have been proposed to enhance dataset efficiency,

such as de novo structure generation [112] and high-throughput random structure search-

ing [113]. Active learning schemes are one such approach, where the training of an MLIP is

combined with a QM workflow and the data points are generated on the fly to improve the

predictions in the areas of low confidence [67, 114, 115].
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Despite the progress made in MLIP development, these models still fall short in their transfer-

ability and ability to generalize to different systems, which is crucial for studying and exploring

the properties of materials across varying elemental compositions. One of the main challenges

in this respect is the unfavourable scaling of MLIP complexity with the number of chemical

components in a system. In this thesis, we use the chemical embedding optimization of

descriptors introduced in a prior study [97] to solve the scaling issue with the number of

chemical components. A more in-depth discussion of this issue can be found in Section 2.4.4.

1.3 Modelling of multi-component systems with machine learning

interatomic potentials

Almost 20 years have passed since independent work from the groups of Yeh[116] and Can-

tor[117] showed that mixing up to 20 metallic elements in roughly equal parts leads to a

smaller-than-expected number of distinct phases, with some corresponding to disordered

solid solutions of 4-6 elements. These so-called high-entropy alloys (HEAs) have since become

the subject of intense study.[118] On a fundamental level, the observation of the existence of

an extended single-phase stability region for alloys with multiple principal components was

surprising, and from a technological standpoint it opened up the possibility of designing new

materials that defy the limitations of conventional metallurgy and alloy engineering.[119, 120]

Besides their metallurgical and mechanical applications, HEAs have been found to be promis-

ing catalysts[121, 122], especially in electrocatalysis[123–125]. They can efficiently reduce

overpotentials and boost activities for, e.g., water splitting[126–136], the oxygen reduction

reaction [132, 135, 137–139], or the methanol oxidation reaction[137, 140–143] while exhibiting

very good stability under reaction conditions. These unusual properties are linked to their

multi-elemental character, which gives rise to four core effects[144, 145]: the entropy, ’sluggish

diffusion’ (not observed in some alloys[146]), lattice distortion and ’cocktail effect’. While

the former two enhance the stability, the latter two can explain the high activity in catalysis.

First, lattice distortions occur due to atoms being surrounded by atoms of many different

atomic radii leading to stress and strain. This alters the electronic structure of the alloy. For

example, the water splitting activity of a family of AlNiCoIrX (X = Mo, Cr, Cu, Nb, V) is superior

to IrO2 because the lattice distortion leads to shorter Ir-O bonds[131]. Second, the ’cocktail

effect’ describes unexpected, synergistic effects of the chosen composition. For instance, the

non-noble metal HEA CoCrFeMoNi shows activity for the oxygen reduction reaction similar to

that of Pt.

From the computational perspective, modelling HEAs poses a number of distinct challenges.
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The presence of multiple components requires relatively large simulation cells to unveil

microstructures or order-disorder behaviour, while sluggish diffusion requires long time scales

and accelerated sampling techniques to overcome free-energy barriers to atom diffusion.

Due to the associated computational costs of running finite temperature simulations, most

studies using ab initio methods to compute properties of high-entropy alloys (HEAs), such as

elastic constants and phase stabilities, are limited to 0K calculations [147, 148]. To address

this limitation, machine learning interatomic potentials (MLIPs) have been employed to study

phenomena in HEAs like phase transitions, melting, and dislocation dynamics through Monte

Carlo (MC) or molecular dynamics (MD) simulations, requiring time and size scales beyond

the capabilities of ab initio methods[149–151].

However, significant obstacles remain in applying MLIPs to computational studies of mul-

ticomponent alloys. One is that the complexity of modern machine learning models grows

steeply with the number of different elements due to the unfavourable scaling of their associ-

ated feature space sizes. As a result, the computational and memory requirements to evaluate

full feature vectors limit the chemistry of the system explored thus far with MLIPs to a spe-

cific combination of 4-5 components. Recently this issue has been addressed by developing

"alchemical" contractions of the Smooth Overlap of Atomic Position (SOAP)[72] features[97],

and by constructing iteratively contracted version of the high-order features [152], as well as

by introducing tensor-reduced representation [153].

Another issue relates to the importance of sampling, as large and descriptive datasets are

needed to provide a comprehensive description of the energy landscape of such diverse

systems. Most of the proposed datasets available are based on known structures, and thus

models trained using such datasets are only applicable to a limited configurational space.

For example, the Open Catalyst Project [108] have clearly stated that previous datasets are

inappropriate for their adsorption task.

In Chapter 5, we describe our strategy for tackling these challenges, detailing the construction

of an MLIP for 25 d-block elements and its application to model the finite-temperature

thermodynamics of HEAs.
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2 Machine learning methods in atom-

istic modelling

2.1 Introduction

Machine learning (ML) has transformed materials science through data-driven approaches, en-

abling advances such as the development of better Li-ion battery cathode materials using ML

algorithms[154], the prediction of the structure of unseen proteins[155], and the improvement

of synthesis conditions for novel zeolites[156], to name a few notable examples. Historically,

the material design depends on experimental trials and errors, which slows down the research

and discovery process at the expense of energy and source material. Data-driven compu-

tational chemistry has made it possible to speed up the sampling and analysis of complex

structure-properties landscapes. This progress has pushed the limits of previously accessible

time/length scales and chemical spaces, providing researchers with recommendations and

actionable insights for experiments.

ML algorithms can capture complex relationships between inputs and outputs by learning

from provided data samples without relying on a rigidly defined functional form. For example,

in materials science, ML is commonly used to predict various material properties, such as the

glass transition temperature[157], thermal conductivity[158], bulk and shear moduli[159], and

band gap[160], based on chemistry and structural information. Additionally, much progress

has been made in developing machine learning interatomic potentials (MLIPs) [59, 161, 162]

to accelerate predicting the potential energy surfaces for a given configuration of atomic

positions. While many of these applications provide deep insights in their fields of interest,

they all share a similar abstract infrastructure. The fundamental workflow for ML involves

four main steps: data collection (or generation), input characterization (feature engineering),

model selection and model validation. This chapter will cover the aspects related to feature

engineering and model selection in the context of building for atomistic machine learning
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applications. The data generation, training procedures, and model evaluation will be discussed

in the specific sections dedicated to each model.

ML models can be categorized based on the available input information, which falls into two

main categories: supervised and unsupervised learning. In supervised learning, the training

data is labelled and consists of input values (such as the structures of different materials,

e.g. the unit cell definition of a perfect crystal) and their associated output values (such as

materials property values e.g. melting temperature). The goal of the ML model is to derive

an optimized function that can accurately predict the output values from a given specific

set of input values. MLIPs are an example of a supervised learning task, where the energies

(and forces) are predicted from structural inputs. To build such a model, one could use any

supervised learning algorithm, such as linear regression, feed-forward neural networks (NN)

[163, 164], support vector regressors (SVR)[165], and kernel ridge regression (KRR)[166], to

name a few.

If the available dataset only includes input values, unsupervised learning can perform di-

mensionality reduction, identify patterns, and cluster similar data points to improve data

or feature selection. Notable unsupervised learning models include principal component

analysis (PCA)[167], CUR decomposition[65] and farthest point sampling (FPS)[168].

Designing an accurate and efficient ML model hinges on the choice of input representation

communicated to the algorithm. Features represent input data and map it to properties of

interest. In this chapter, we focus on atom density-based representations that map Cartesian

coordinates to a feature space characterizing the atomic environments contained in them[169,

170]. In addition, we will discuss the limitations of this representation, which includes un-

favourable scaling with the number of chemical elements and explore possible solutions to

address these issues.

2.2 Supervised methods

A supervised learning task aims to find a function f that can explain the relationship between

inputs X and outputs y using a set of examples. This function fω belongs to some class

of parametric functions F and it is defined by its parameters ω, which are also addressed

as model parameters. The performance of the model is measured with a loss function L .

For example, for a set of input-output (Xi, yi ), the prediction of fω(Xi ) = ŷi and the loss is

Lω(yi , ŷi ). Then the best model, defined by the best ω∗ is chosen by minimising the loss

function Lω for a given dataset:
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ω∗ = argmin
ω

Lω(y, ŷ)

The functional form of f can be very different depending on the employed algorithm. Below,

we provide a brief overview of the approaches used in the thesis.

2.2.1 Linear regression

First, we start with a linear formulation of the problem for a scalar variable y from a vector of

observations X ∈RN . Specifically, we want to determine the linear least-squares estimator

for a given input-output pair of variables (X , y), and find coefficients ω1,ω0 that yield an

estimator for y in the form:

ŷ =X⊤ω1+ω0 (estimator for y) (2.1)

It is customary to refer to this model as a linear regression model since the observations are

being combined linearly (or a linear model is being fitted to the observations in X to estimate

y). This simply corresponds to:

ŷ =
N∑
j
ω1

j X j +ω0

in terms of the individual entries of ω and X . Therefore, this construction defines the function

f (X) to the choice

f (X) =X⊤ω1+ω0

where the coefficients ω1,ω0 are now the parameters of the model. Once the optimal coeffi-

cients ω1∗ andω0∗ are determined, evaluating f (X) for a specific X , will result in an estimate

for y , i.e.,

ŷ =X⊤ω1∗+ω0∗ ( estimate for y)

To determine the function f and the coefficients ω1,ω0, different criteria could be used as the

loss function. For example, in the case of the mean-square-error criterion, the parameters of

the model can be found by minimizing the mean square error (MSE) over ω1 and ω0. Now the

loss function is Lω1,ω0 (y, ŷ) = E[
(y − ŷ)2

]
and the optimal coefficients are defined by:

11



Chapter 2 Machine learning methods in atomistic modelling

ω1∗,ω0∗ = argmin
ω1,ω0

E
[
(y − ŷ)2]

The solution formulated by equation 2.1 faces certain challenges when applied in practice due

to ill-conditioning, redundancy, and overfitting. To address these challenges, it is common

practice to introduce a so-called regularization term. This approach involves incorporating an

element that penalizes the loss function values by discouraging large valued model parameters,

thereby encouraging solutions that have specific desirable properties. Depending on the

choice of the regularization approach, linear regression models take different names. One

commonly used form of regularization is the L2 regularization, and its adoption in a linear

model is often referred to as ridge regression. In ridge regression, the cost function Lω1,ω0 is

replaced by a regularized version Lridge that includes a penalty term based on the squared

norm of the model’s weights vector:

Lridge =λ|ω|2 + 1

N

N∑
n

(
yn −X⊤

n ω
)2

(2.2)

Here, λ > 0 represents the regularization factor. The term λ|ω|2 in equation 2.2 is referred

to as a penalty term because it penalizes large values of ω. By promoting solutions with

smaller norms, ridge regression helps reduce the risk of overfitting the training data. The

presence of the penalty discourages solutions which allow the model parameters to follow too

closely the training points. This introduces a controllable amount of error over the training

data, in exchange for a more generalizable performance across unseen test points. The

aforementioned balancing exercise is commonly called the bias-variance trade-off and is key

to containing the overfitting tendency in presence of arbitrarily flexible (e.g. overparametrized)

models. Intuitively, the addition of penalty terms ensures that small variations in the observed

data do not result in significant changes in inference decisions. Another practical advantage

of introducing a penalty term is that it enters the least squares (LS) solution as an eigenvalue

lifting component. This aspect stabilizes the inversion problem in the LS formulation.

Linear models are widely used in machine learning due to their simplicity and interpretability.

However, the linear relationship they assume between input features and output variables

obviously imposes limitations on their ability to accurately model more complex relationships.

This limitation has led to the increasing importance of non-linear models in recent years.

Non-linear models are essential for modelling complex relationships and achieving high

accuracy in various machine-learning tasks. They can learn to project input data in a high-

dimensional space and capture intricate patterns and relationships between input features
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and output variables. This enables them to achieve state-of-the-art performance in various

machine learning tasks such as image and speech recognition, natural language processing,

and recommendation systems.

In the next section, we will delve into the workings of non-linear models and explore how they

can be used to model complex relationships in materials science.

2.2.2 Neural networks

Neural networks (NN) have revolutionized the field of machine learning by enabling the

modelling of complex and nonlinear relationships between inputs and outputs. At their

core, neural networks are composed of simple computational units called neurons, which

are organized into layers. These layers can learn increasingly complex representations of the

input data, enabling neural networks to excel at tasks such as image and speech recognition,

natural language processing, and time series prediction [171–173]. In this section, we will

explore a widely used architecture called a feed-forward neural network.

We start again with a collection of inputs X and outputs y. First, the input layer is fed with a

vector of observations Xi. Then it passes through several hidden layers followed by a single

node output layer. The value y j
i of a node i in a hidden layer j is given by:

y j
i = f j

i

(
b j

i +
N j−1∑
k=1

a j−1, j
k, j · y j−1

k

)
(2.3)

where N j−1 stands for the number of nodes in the previous layer j −1. The notation al1l2
n1n2

is

used for the weights connecting node n1 in layer l1 with node n2 in layer l2 where l2 = l1 +1

and the superscript 0 is assigned to the input layer. Additionally, there is a bias node connected

to all nodes in the hidden layers and to the output node by a bias weight b j
i , where j refers

to the layer of the node and i is its number within this layer. Basically, the expression in the

brackets is a linear combination of the values of the nodes in the previous layer. To add a

non-linearity, activation function f j
i is introduced, which maps the input values to a new

range of output values when passing through a node. Different non-linear functions could

be used as an "activation function", provided they are differentiable, a necessary condition

to allow for gradient-based optimization of the network’s weights. The complete analytic

expression of the output estimator could be written as a set of nested activation functions

acting on linear combinations of the values in the previous layer, e.g. the NN has 2 hidden

layers 5 nodes each and gets three features at the input layer:
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ŷn = f 3
1

(
b3

1 +
5∑

k=1
a23

k1 · f 2
k

(
b2

k +
5∑

j=1
a12

j k · f 1
j

(
b1

j +
3∑

i=1
a01

i j ·Xn)
)))

(2.4)

To fit a feed-forward neural network to a series of training data, it is customary to calculate

the derivatives of the loss with respect to the nodes’ weights by using chain rule throughout

its architecture. This approach takes the name of back-propagation [174], and it’s a key

component of training a feed-forward neural network.

2.3 Unsupervised methods

Computational materials design often involves the analysis of complex data sets that often

contain a large number of variables and relationships that are difficult to extract using conven-

tional techniques. Unsupervised methods offer a powerful approach to uncovering patterns

and structures in these data sets, without requiring prior knowledge or assumptions. In this

section, we will introduce three specific unsupervised methods that are frequently used in

materials science: CUR decomposition, farthest-point sampling (FPS), and principal com-

ponent analysis (PCA). By understanding the principles behind these techniques and their

specific applications in materials science, researchers can improve their ability to analyze and

interpret data and gain deeper insights into the underlying properties of materials.

2.3.1 CUR decomposition

CUR decomposition [175, 176] is a matrix factorization method used for dimensionality reduc-

tion of feature or data space, where the elements of the initial matrix are used to determine

the most relevant features or samples. For example, a given matrix X consisting of vectors Xn

can be approximated with a lower-rank matrix X̃ constructed from the selected k columns C

and rows R of X and U a k ×k matrix:

X ≈ X̃ = CUR (2.5)

CUR decomposition is advantageous for tasks like selecting optimal feature vectors or subsets

because it uses actual elements of the matrix. We will discuss how it can be used for feature

selection (along columns) in this overview, but the same procedure can be applied to select

the samples (along rows). First, to select columns, we compute an "importance score" for

every column of the initial matrix:

πc =
k∑
i

(v i
c )2, (2.6)
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where vc is the c-th component of the right singular vector and k is the number of columns to

be selected. Many CUR methods use a probabilistic approach to select features, which ensures

that if there are multiple similar features, they have approximately the same probability of

being selected. However, to achieve a deterministic selection process, the column with the

highest score is chosen at each step, and an orthogonalization procedure is used to avoid

selecting multiple similar features. Once the column with the highest score is selected, all

remaining columns in X are orthogonalized with respect to it.

To reduce the number of fingerprints, the CUR decomposition method is iteratively applied

by selecting the column with the highest score at each step, orthogonalizing the remaining

columns to avoid selecting nearly-identical features, and re-computing the singular value

decomposition (SVD) solution based on the orthogonalized matrix until all desired features

are chosen to build the reduced feature matrix. The accuracy of the approximation can be

computed as:

ϵ= ∥X−CUR∥F /∥X∥F

The number of features to be selected can be fixed or increased until a desired threshold is

met.

2.3.2 Farthest-point sampling

Farthest-point sampling (FPS) is a deterministic algorithm that selects the point that is farthest

away from the previously selected points in each iteration. In other words, FPS chooses points

that are as diverse as possible for the given set of inputs - allowing for uniform sampling.

The algorithm is initialized by picking any first sample. To keep its deterministic nature, it

is customary to start from the first sample present in the dataset. Then, after calculating a

distance metric between each point in the dataset, it finds the next selected point as:

k = argmax

(
min

j

∣∣X −X j
∣∣)

where j refers to all of the vectors that have already been selected. In practice, at every iteration,

one computes the distance matrix of each available point to all the samples selected thus far.

By keeping, for each point, the minimum distance separating it from the selected samples, we

have an indication of the degree of uniformity of the sampling at each step. To find the next

selection, one simply selects the point that is at the maximum of the minimum distance vector

we just calculated. It is often called min-max selection due to the operative way to obtain the

next selected indices. The process continues until all the desired points have been selected.
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This technique can be used for an effective feature selection or generating a diverse dataset.

2.3.3 Principal component analysis

Principal Component Analysis (PCA) is a widely used unsupervised technique that serves

various purposes, such as dimensionality reduction, feature extraction, and data visualization.

The primary objective of PCA is to create a new basis (usually of a lower dimensionality)

for representing data in a more insightful way that can reveal underlying low-dimensional

patterns, as the observations often include intercorrelated and noisy data. The new basis,

called principal components (PC), comprises a set of orthogonal variables that are linear

combinations of the original input variables and constructed such that the first principal

component captures the highest variance of the data when projected onto a scalar, the second

principal component captures the second highest variance, and so on.

Even though there are various methods to obtain principal components from a set of data,

in practice, it often involves solving an eigenvalue-eigenvector problem for a symmetric

matrix that is positive-semidefinite. Let us consider a mean-centered collection of inputs

X = [X1,X2...XN ], where Xn ∈ RL , then the covariance matrix is given by C = X ⊤X . By

calculating the eigenvectors E = ek of the covariance matrix, we can remap the input dataset

into an identically sized space, where the dimensions are uncorrelated to each other:

P = X E

The eigenvectors of C are represented by E, and are L-dimensional orthonormal vectors. Now

to reduce the dimensionality, the eigenvectors can be sorted according to the size of their

corresponding eigenvalues and the desired number l of principal components can be chosen

on the basis of the cumulative variance expressed. Once the number of components to keep is

decided, it is sufficient to truncate the sum of the reconstruction to the desired l features by

using a subset of the eigenvector matrix El = {ei }i<l . The initial input can thus be projected in

terms of principal components:

P = X El

The resulting embedding will have dimension N ×l , and will contain the first principal compo-

nents of the dataset. Usually such a projection is used to represent complex, high dimensional

data in few dimensions to visually inspect the presence of clusters or obvious linear correla-
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tions with available properties.

2.4 Representation of atomic structures

The previous section discussed ML methods commonly used to solve materials science prob-

lems. However, every ML workflow relies heavily on the choice of descriptors and their ability

to capture relevant information from raw data. The selection of descriptors is task-specific,

and choosing a suitable descriptor can significantly impact the ML model’s performance. This

section focuses on descriptors that are used to learn potential energy surfaces (PES). The

problem of describing a PES with a functional form has been of scientific interest for a long

time. An early example is the Lennard-Jones potential, where pairwise distances are used as

descriptors of the atomic configurations. However, as forcefields were being developed to

handle systems with increasingly complex potential energy surfaces, it became clear that the

descriptor must respect the internal symmetries of a considered structure, including transla-

tional, rotational, and permutational symmetries, as well as encode information beyond that

of a two-body problem. Finally, the descriptor should be complete, ensuring that it is unique

for every structure, and two different arrangements of atoms must yield different fingerprints.

A successful approach to address these challenges is to derive features from the structure’s

atom density, where the structure is represented as a set of "local environments" and a local

decomposition of the total potential energy is mapped to each of them by a training procedure.

One can then obtain the objective PES by summing all the contributions coming from local

environments. Several density-based descriptors have been developed, including Behler

Parinello Symmetry functions [53] and Smooth Overlap of Atomic Positions (SOAP)[72], which

have been effectively applied to various systems.

One drawback of density-based descriptors is that they scale quadratically with the number

of chemical species, posing computational constraints on the number of components evalu-

ated within a single force field. However, the scaling issue can be circumvented by creating

an embedding that maps features built for real chemical elements into a continuous lower-

dimensional space of pseudo-elements. This approach enables the development of models

that can generalize across different elements and structures and has shown promising results

in predicting the properties of materials[97]. It is built upon the atom-centred density correla-

tion framework[177], which encompasses most of the widespread descriptors for atomic-scale

ML, and that is essentially equivalent to the moment tensor potentials[178] and the atomic

cluster expansion[179].
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2.4.1 Atom density-based representations

Before discussing specific examples of atom density-based representations, we want to give a

brief overview of the formalism, generalising the description of density-based representations.

We will be using Dirac notation for the atom density descriptors to follow the footprints laid

out by the authors in Ref.[177]. For a more detailed explanation, we invite the reader to consult

the references [170, 177].

Within this notation, one can introduce a ket vector |A〉, which represents complete structural

and chemical information about structure A. For this structure A, we want to represent the

atom density field ρ in the position space x as a sum of local contributions. For this purpose,

we place smooth localised functions (i.e. a gaussian g ) on top of every atom i with coordinates

ri . In bra-ket notation it can be written it as:

〈x | A;ρ〉 = ∑
i∈A

〈
x | ri ; g

〉≡ ∑
i∈A

g (x− ri ) .

Similarly, we can rewrite the expression for every local contribution associated with an atomic

environment:

〈
ax | A;ρi

〉= ∑
j∈Ai

δaa j

〈
x | ri j ; g

〉
fcut

(
ri j

)
(2.7)

We added a channel a distinguishing different chemical elements and the cut-off function fcut,

which limits the number of considered atomic environments to those that fall within a given

cut-off. The ri j indicates the distance between the central atom i and its neighbour atom j .

Now, the representation is translationally invariant, as it is localised and centred on an atom i .

To achieve rotational invariance, one can perform a Haar integration by averaging over the

symmetry group SO(3). However, if the ket vector is directly averaged, all information about

angular, and more broadly, higher body-order correlations, would be lost. In ref [180], it is

demonstrated that in order to include high-order correlations between atomic environments,

tensor products of the ket can be taken before applying the Haar integral. Omitting for

simplicity the indication of A, this reads as follows:

〈
a1x1; . . . av xv | ρ⊗v

i

〉
= ∑

k=0,1

∫
SO3

dR̂
〈

a1x1

∣∣∣R̂ î k
∣∣∣ρi

〉
. . .

〈
av xv

∣∣∣R̂ î k
∣∣∣ρi

〉
(2.8)

where ρ⊗v
i is a tensor product of v atom-centred fields averaged over all possible improper

rotations. The sum over k indicates the inversion symmetry and the operator î represents
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inversion, while R̂ represents rotation.

2.4.2 Symmetry functions

Behler-Parinello symmetry functions (SFs) are another representative of atom density-based

descriptors. The SFs can be derived from 2.8 using the bra-ket notation by projecting the

SO(3) invariant ket onto an appropriate test function G . Below, we will consider the functional

form of two types of SFs reflecting radial (G2) and angular (G3) correlations, which have

been used in this thesis. In general, the functional form of Behler-Parrinello SF represents a

product of Gaussians and the cutoff function fc (ri j ), where ri j refers to the distance between

the atom i and its neighbour j . The cutoff function is a smooth function, which takes the

value of a monotonically decreasing function up to the cutoff radius rc and zero beyond

the cutoff radius, which reflects the decaying strength of the interatomic interactions. rc

determines the boundaries of the atomic environments and should be chosen considering

energy convergence with respect to its value.

We start the discussion with the "radial" SFs, describing the radial distribution of neighbours

inside the cutoff sphere:

G2
i =

Natom∑
j=1

e−η(ri j−rs )2 · fc (ri j ) (2.9)

Here η is a parameter which controls the width of the Gaussians and rs – a shifting radius –

displaces the center of the Gaussians improving the sensitivity of the symmetry functions at

specific radii. A family of "radial" SFs could be generated by varying these two parameters.

Fingerprints based on the radial distribution alone could not provide satisfactory accuracy of

the atomic environment description for systems with complex, directional bonding; however,

they provide essential robustness and stability to an MLIP.

To describe angular dependencies, an "angular" type of SFs is introduced, which can be

expressed as follows:

G3
i = 21−ζ ∑

j ̸=i

∑
k ̸=i , j

[(1+λ ·cosθi j k )ζ ·e−η(r 2
i j+r 2

i k+r 2
j k ) · fc (ri j ) · fc (ri k ) · fc (r j k )]

Additional angular functions depending on the angle θi j k centred at the atom i are used.

Multiplication by three cutoff functions guarantees that G3
i becomes zero if any of the pair
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distances are greater than rc . Similarly to the "radial" SFs, here η also corresponds to the width

of the Gaussians. The distribution of angles could be adjusted by varying the ζ parameter.

The λ parameter could take the values of +1 or -1, shifting the maxima of the cosine term and

providing a better description for different values of θi j k .

To sum up, the parameters rc , θ, rs , ζ and λ determine the shape of the SFs. A set of SFs is

generated by spanning these parameters over a meaningful range of values. Then, one of the

unsupervised methods, such as CUR [175, 176], is usually used to customize the set of SFs

for a specific dataset. This step allows for unbiased coverage of the configuration space while

reducing the number of SFs without compromising the precision of the PES description.

2.4.3 Smooth overlap of atomic positions

Another representation, Smooth Overlap of Atomic Positions (SOAP) [72], can be derived from

Eq. 2.8 by projecting Eq. 2.7 onto an orthonormal basis of radial functions Rn(x) ≡ 〈x | n〉 and

a basis of spherical harmonics Y l
m(x̂) ≡ 〈x̂ | lm〉. Then, the expansion coefficients of localised

atom density will be expressed as:

〈
anl m | ρi

〉= ∑
j∈Ai

δaa j

∫
dx〈nl | x〉〈lm | x̂〉〈x | r j i ; g

〉

The 3-body-order representation (the power spectrum) can be obtained from the Eq. 2.8 by

fixing the body order expansion term to v = 2:

〈
a1n1; a2n2; l | ρ⊗2

i

〉
= 1p

2l +1

∑
m

(−1)m 〈
a1n1lm | ρi

〉〈
a2n2l (−m) | ρi

〉
, (2.10)

highlighting that | ρ⊗2
i 〉 represents a symmetrized, 3-body correlation of the atom density

centred on the i -th atom. If the expansion includes nmax radial functions and a maximum

angular momentum channel of lmax, the power spectrum will consist of n2
maxlmax elements.

For a system containing multiple species, this scaling results in a significant computational

cost associated with both the size of feature vectors and the amount of data points required to

train such a model.

2.4.4 Alchemical compression of representations

As shown in Eq. 2.10, the number of components grows quadratically with the number of

species because each element is considered independently in the neighbour density. The
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generalization to higher-ν correlations leads to an even steeper increase, but for most of the

multi-component problems, the computational cost is prohibitive even for two-neighbours

correlations. Here we give a brief overview of the approach introduced in Ref. [180]. Similarities

in the behaviour of elements have inspired the construction in the periodic table[181], and

are routinely used to inform materials design and optimization. Instead, elements should be

mapped to a continuous nalch -dimensional space, where each chemical species is mapped to

nalch pseudo-species with a set of coupling coefficients ualch . Then, the density coefficients

can be contracted as 〈
bnlm | ρ̃⊗1

i

〉
≡∑

a
uba

〈
anl m | ρ⊗1

i

〉
, (2.11)

where we use ρ̃ to indicate the alchemically-compressed neighbor density (Fig. 2.1). We note

that similar ideas were applied – without optimizing the contraction coefficients – in the

context of atom-centred symmetry functions[182, 183], and that a systematic, rather than

data-driven, compression has also been recently applied to an 8-element alloy system in the

context of atomic cluster expansion potentials[184]. Moreover, there is a large design space of

variations on a theme: separate coupling coefficients could be used depending on angular

(l ) and/or radial (n) channel, and it would be possible to jointly contract over chemical and

radial components – which was shown to be effective in reducing the number of features with

minimal information loss[185].

To conclude this overview, we note that the alchemical coefficients ualch enter the expression

for the ν = 2 features in a quadratic fashion, so they cannot be directly determined using

linear algebra, even if one uses a linear model based on the contracted features. In ref. [97],

this issue was tackled with an iterative strategy, alternating a solution of the linear problem

with fixed ualch and a gradient descent on the coupling coefficients. In the thesis, instead,

we implemented the model using the PyTorch framework[69], allowing us to use automatic

differentiation and gradient descent to optimize ualch and the model weights simultaneously.

2.5 Fitting a machine learning interatomic potential

The accurate determination of potential energy surfaces (PES) is a fundamental requirement

for molecular dynamics simulations, enabling the prediction of thermodynamic properties,

reaction mechanisms, and the calculation of molecular properties. Ab initio calculations can

provide highly accurate potential energy surfaces but are computationally expensive, and

their scaling limits make their application to larger systems challenging. ML has emerged as a

powerful tool for accelerating the sampling of ab initio potential energy surfaces, enabling the

development of more efficient interatomic potentials. While it is necessary to be able to predict

atomic energies and forces as a function of atomic coordinates in order to define a potential, a
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a b

c

Figure 2.1: Different interpretations of the alchemical compression scheme. (a) In a con-
ventional density-correlation ML scheme, each type of atoms is associated with a separate
density. (b) The entries in the alchemical compression matrix ualch can be interpreted as
describing the “character” of each physical element in terms of nalch pseudoelements - a
concept that is not dissimilar from the notion of "classical elements". (c) The structure can be
also seen as described in terms of a density of pseudo-elements, for which each site contains a
contribuition from each of the compressed channels.
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subtle but basic requirement is to do so while keeping the obtained potential conservative.

This is possible, provided that forces are learnt through the positional derivatives of the

descriptors, an approach that is commonly adopted in modern machine learning potential

architectures. In this section, we discuss the use of ML for fitting interatomic potentials,

including the representation of the potential energy as a sum of local energy contributions

and the learning of forces as derivatives of the potential energy surface. We will also provide

examples of machine learning potentials and their applications.

2.5.1 Linear potentials

Since potential fitting is a straightforward supervised learning exercise, it is not surprising

that a very simple and effective way to obtain a potential is to associate a linear function to

the atomic systems’ descriptors. Linear potentials have limited fitting power and strongly

depend on the resolution of the underlying descriptors but provide, in turn, an easy-to-train

and interpret framework for forces and potential fitting.

We call the matrix of targets (containing energies E (i ) and forces f (i ) on each atom i ) as Y(i ).

Its rows will contain the information available for each structure, i.e:

Y(i ) =
[

E (i ), f (i )x
1 , f (i )y

1 f (i )z
1 , ..., f (i )x

N f (i )y
N f (i )z

N

]
where frame i contains N atoms and has a total E (i ) energy. To construct a conservative

potential, we use as a representation matrix the concatenation of the structural descriptor

(e.g. a sum of local descriptors in case of an atom density representation like SOAP) x and its

negative derivatives over the atomic coordinates. The entry for the i structure of such a matrix

will have the following form:

X(i ) =
[

x(i ),−∂x(i )

∂x1
,−∂x(i )

∂y1
,−∂x(i )

∂z1
, . . . ,−∂x(i )

∂xN
,−∂x(i )

∂yN
,−∂x(i )

∂zN

]
The ingredients needed to construct the linear problem are all defined, and thus one can

proceed to build a potential with the standard form:

Y = XW

In this formula, the W matrix contains the weight vectors relating the structural descriptors

and their derivatives to the output forces and energies. Given the high-dimensional nature

of the problem, it is customary to add a regularization term in the fitting cost function. To

account for the nature of the different numerical length scales between forces and energies, it
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is also possible to simply substitute the regularization scalar with a vector of regularizers λ,

depending on the nature of the feature (e.g, whether it pertains to a force element or energy).

The final fitting formula is simple:

W = (
XT X+λI

)−1
XT Y

The convenience of linear potentials lies in their simplicity and speed of training. The clear

limitation of this approach lies in its impossibility of capturing non-linear correlations between

input features and target properties. For this reason, the most successful linear potentials tend

to be based on high body order representation descriptors, such as MTPs[186] and ACE[179].

2.5.2 High-dimensional neural network potentials

We continue the discussion on different approaches fitting the potential energy surface with a

neural network (NN) potential as proposed in Ref. [187]. Similarly to the previous section, we

start with the matrix of targets Y, which contains structures’ energies E (i ) and atomic forces

f (i )
n . However, in this approach, a single structure energy with N atoms is represented as a

sum of the energy contributions E (i )
n determined by local atomic environments xn :

E (i ) =
N∑
n

E (i )
n (xn) (2.12)

Each contribution E (i )
n is learnt (and predicted) by a separate atomic NN and then the total

energy is recovered as a sum of the predictions, where each prediction is obtained following

Eq. 2.4.

Since the functional form of a NN is well-defined, the descriptors are differentiable with

respect to atomic positions, and the cut-off function is smooth, the analytical derivative for

one force component (here for Fx ) can be expressed by applying the chain rule as follows:

F (i )
x =−∂E (i )

∂x
=−

N∑
n=1

∂E (i )
n

∂x
=−

N∑
n=1

Nx,n∑
µ=1

∂E (i )
n

∂xnµ
· ∂xnµ

∂x
,

where Nx ,n is a number of descriptors of atom n. The term ∂E (i )
n

∂xnµ
is given by the architecture of

the model and includes the weights of the NN, while
∂xnµ

∂x depends on the construction of the

descriptor.

The weights of a NN are optimized through a process called training or learning, which usually
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involves using gradient backpropagation to iteratively adjust the weights in the direction that

minimizes the loss function. One reason why an iterative approach is necessary is that the

loss function of a NN is generally non-convex, which means that it has multiple local minima

and can be challenging to optimize. The optimization process is repeated iteratively until the

weights converge to a point where the loss is minimized.
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3 Sampling methods

3.1 Introduction

Atomistic computational methods have become an essential tool in understanding materials’

behaviour by offering insights into the structure, dynamics, and mechanisms of processes oc-

curring at the atomic scale. Such insights obtained from computational modelling have helped

to identify novel materials[188, 189] for a wide range of applications, including renewable

energy[190], catalytic energy conversion[191], and energy storage[2].

More recently, the advent of MLIPs increased the computational efficiency of atomistic simu-

lations, enabling simulations to reach large system sizes and long timescales. In the previous

chapter, we focused on the set of tools needed to construct robust potentials. In this chapter,

we provide insight on how to put them to best use to obtain realistic simulations.

Firstly, we will provide a brief overview of molecular dynamics (MD), which can be used

to calculate the dynamical and statistical properties of many-body systems by sampling all

possible states of the system classically. Additionally, we will introduce replica exchange MD,

which speeds up the sampling procedure. Secondly, we will emphasize the significance of

considering quantum nuclear effects and introduce the path integral formalism. Lastly, we

will discuss various techniques for free energy estimation, such as thermodynamic integration

(TI), interface pinning (IP), and metadynamics.

3.2 Molecular dynamics

Molecular dynamics (MD) is a computational method used to determine the equilibrium and

dynamic properties of classical many-body systems. MD simulations can be seen as computer

experiments: the material is represented as a system consisting of N interacting particles, and
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the temporal evolution of the system is described by Newtonian dynamics. The positions and

momenta of each particle can be calculated by solving Hamilton’s equations:

ṙi = ∂H(p,r)

∂pi
= pi

mi
,

ṗi =−∂H(p,r)

∂ri
=−∂V (r)

∂ri
= Fi ,

where ri , pi , and Fi correspond to the position, momentum, and force of the i -th particle,

while V represents the interatomic potential and H is the classical Hamiltonian of the N-

particle system. It is worth noting that problems can arise if the interatomic potential energy

function V is not a smooth function of the particles’ positions. This is due to the explicit

appearance of ∂H
∂r in Hamilton’s equations, which requires that at least the first derivative of

V (r) be continuous.

The system’s state at any given time is fully determined by the positions (r1, ...,rN ) and mo-

menta (p1, ..., pN ) of each particle. However, analytical solutions to the equations of motion

for complex many-body problems are not feasible, and thus MD achieves time evolution itera-

tively using a numerical integration scheme with a discrete time step ∆t . One should choose

the time step which is long enough to avoid excessively expensive simulations while still allow-

ing for the study of the system’s evolution on the time scale of interest. The typical value of ∆t

usually varies from 0.5 to 2 fs. It is important that the chosen numerical method conserves

total energy and is time-reversible, and is easy to implement in computer code. However,

no algorithm can provide a precise solution indefinitely, as errors accumulate with each it-

eration. Instead, the aim is to obtain a trajectory that is representative of the statistical and

time-dependent behaviour of the process being simulated. The velocity Verlet method[192]

satisfies all the aforementioned requirements and is commonly used in integration schemes

for MD:

v

(
t + 1

2
∆t

)
= v(t )+ 1

2
∆ta(t )

r(t +∆t ) = r(t )+∆tv

(
t + 1

2
∆t

)
v(t +∆t ) = v

(
t + 1

2
∆t

)
+ 1

2
∆t a(t +∆t )

The algorithm works in three steps: first, forces are evaluated to obtain accelerations a at

time t. Then, velocities v are calculated at time t +∆t/2. Next, positions r are updated up
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to time t +∆t . Finally, a second evaluation of forces updates velocities at time t +∆t . The

Verlet algorithm is known for accurately conserving energy with a root-mean-square error

proportional to ∆t 2.

If we run an MD simulation using the above equations, we will effectively be sampling a

microcanonical ensemble (NVE), which describes a system with a fixed number of particles,

volume, and energy. By exploiting the principle of ergodicity, we can compute the ensemble

average of any observable A by taking a time average along the simulation for a long enough

trajectory.

〈A〉ens = lim
T →∞

1

T

∫ T

0
A

(
p(t ),r(t )

)
d t .

The idea behind this is that if the system does not exchange particles or energy with the

environment, it will eventually sample all possible microstates of the phase space. This is

particularly useful in MD because it allows us to compute the averages of quantities that

are experimentally measurable based on simulations of finite-size systems. However, the

NVE ensemble is typically not the best representative of thermodynamic conditions set in

experiments, which is why MD has been extended to other ensembles, such as NVT, where

a thermostatting algorithm ensures the sampling of an ensemble at constant temperature,

or NPT, where the volume is allowed to freely fluctuate, at the constrained pressure and

temperature conditions. [193–196].

3.2.1 Replica-exchange molecular dynamics

The exploration of the potential energy landscape can be accelerated by using replica-exchange

molecular dynamics (REMD). In this approach, several system replicas are set up in paral-

lel and run at different temperatures (and/or pressures) independently. Each state of the

system could be described by a state vector s(r(1)
1 ,p(1)

1 , ...,r(i )
i ,p(i )

i , ...), where r and p refer to

the atomic positions and momenta, subscript i indicates the index of the replica and the

superscript (i ) indicates the index of the state (Ti ,Pi ). The distribution function of the system

can be expressed as a product of Boltzmann factors of all the replicas[197]:

P [s(...,r(i )
i ,p(i )

i , ...)] = 1

Z
exp

(
−∑

i

H(r(i )
i ,p(i )

i )

kB T (i )

)

where H(r(i )
i ,p(i )

i ) is the Hamiltonian of the replica i at the temperature T (i ), kB is the Boltz-

mann constant and a normalization factor Z . All the replicas are allowed to exchange the

entire configuration at every N step in accordance with the Metropolis-Teller algorithm [198].
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Basically, the system tries to perform the transfer from the state s(...,r(i )
i ,p(i )

i , ...,r( j )
j ,p( j )

j , ...) to

s(...,r( j )
i ,p( j )

i , ...,r(i )
j ,p(i )

j , ...). The probability of this transfer could be defined as:

P (i , j ) = mi n
{

1,
exp(−V (r (i )

j )/kB T (i ))exp(−V (r ( j )
i )/kB T ( j ))

exp(−V (r (i )
i )/kB T (i ))exp(−V (r ( j )

j )/kB T ( j ))

}

where V (r(i )
i ) is the potential energy of the i -th replica.

The probability of swapping between the trajectories increases as the temperature of the

replicas gets closer. To ensure the effective exploration of the state space, it is important to

have a range of temperatures, with the highest temperature being sufficiently high to allow for

escape from free-energy minima and exploration of low-probability regions, while the lower

temperature replicas probe the various stable states corresponding to free-energy minima. The

number of replicas should also be large enough to ensure proper swapping among adjacent

replicas. Common practice is to use geometric spacing to define the temperatures of the

replicas. In the thesis, we used the REMD technique to improve the convergence of ensemble

averages and also to generate less correlated states while creating datasets for MLIPs.

3.2.2 Path integral molecular dynamics

While classical MD simulations have been widely used to study the behaviour of materials

and molecules, they do not take into account nuclear quantum effects (NQE). In many cases,

this is a reasonable approximation, as the thermal energy of the system is much greater

than the energy differences between quantum states. However, NQE can have a significant

impact on certain materials and systems. For example, NQE can affect the structure and

dynamics of protons[199]. They can also have a significant impact on thermal reaction

rates at metal surfaces: neglecting the wave nature of adsorbed hydrogen atoms and their

electronic spin degeneracy can lead to a 10× to 1000× overestimation of the rate constant for

temperatures relevant to heterogeneous catalysis[200]. To accurately capture these effects,

more sophisticated simulation methods such as path integral molecular dynamics (PIMD)

have been developed, which treat both the electrons and nuclei as quantum mechanical

objects by using the imaginary time path integral formalism[32].

It is widely known that the static equilibrium properties of a quantum mechanical system

can be computed relatively easily by using the isomorphism between the path integral repre-

sentation of the quantum mechanical partition function and the classical partition function

of a fictitious ring polymer[201]. The ring-polymer is constructed of replicas (or “beads”) of

the physical system, with corresponding atoms connected by harmonic springs. Using path
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integral formalism, the quantum partition function is equivalent to the classical partition

function of an extended classical system composed of several replicas of the physical system at

an elevated temperature. This is achieved by expressing the canonical Boltzmann distribution

at β= 1/(kB T ) as a product of P high-temperature distributions at βP = β
P :

Z (N ,V ,β) = Tr[exp
(−βĤ

)
] = Tr

[(
exp

(−βP Ĥ
))P

]
(3.1)

By executing the Trotter expansion, we can write the partition function as :

ZP (β) = 1

(2πħ)P

∫
d Pp

∫
d Pre−βp HP (p,r),

where P represents the number of beads. The Hamiltonian of an extended ring polymer is

denoted by HP (p,r) and expressed as:

HP (p,r) =
P−1∑
j=0

[
N∑

i=1

p
( j )2
i

2mi
+V

(
r( j )

)
+

N∑
i=1

1

2
miω

2
P

(
r

( j )
i −r

( j+1)
i

)2
]

,

where r P = r 0 and ωP = (βPħ)−1.

With this, one can run P MD trajectories, where every quantum particle is described by P

classical particles connected with the springs. The computational cost of such a simulation

is now P times greater than the cost of a classical MD trajectory, where P is the number of

beads. The use of Trotter expansion implies that the partition function approaches the exact

description of the quantum system as the number of beads tends to infinity. In practice, an

optimal number of beads, required for reasonable accuracy of the results, strongly depends

on the investigated system. It is also interesting to note, that if the spring constant becomes

infinitely large, all the replicas will collapse into a single entity and behave according to

classical MD principles.

3.3 Free energy estimation methods

The free energy is an essential concept in thermodynamics, as it is used to determine phase

stability of materials[202], study phase transitions[203, 204] and predict the direction and

extent of reactions[205]. To accurately calculate free energy, various methods have been

developed, that use statistical mechanical principles within computer simulations, such as

molecular dynamics. Despite recent advances, the computation of free energy remains a

challenging task.
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Directly calculating the absolute free energy of a material is difficult, except for relatively

simple systems such as harmonic solids. For example, the Helmholtz free energy is related to

the canonical partition function Z as F =−kB T ln Z , where kB is Boltzmann’s constant and

T is the absolute temperature, but it involves integrations over all degrees of freedom in the

system, making direct calculation problematic. Nevertheless, the relative free energy can be

calculated by determining the work done to transform the system from one state to another,

i.e. by using thermodynamic integration methods.

In addition to thermodynamic integration methods, enhanced sampling techniques are also

commonly used to estimate relative free energies in atomic systems. These techniques modify

the probability distribution of a system to sample rarer events more efficiently, allowing for

more accurate sampling and reconstruction of the true free energy landscape. These tech-

niques include metadynamics, replica exchange molecular dynamics, and adaptive biasing

force.

In this section, we provide a brief introduction to the various free energy estimation methods

used within the scope of this thesis.

3.3.1 Thermodynamic integration

Thermodynamic integration (TI) is a method used to define the free energy difference between

two states of a system. As the free energy is a function of the Boltzmann-weighted integral over

the entire phase space and not just a function of the system’s state, the free energy differences

cannot be computed directly using the potential energies. However, one can calculate the

free energy difference by integrating the ensemble-averaged enthalpy changes along a chosen

path connecting two states. In this section, we provide a brief overview of the TI in application

to solid states.

For the case of a solid system, it is sensible to start from the free energy of the harmonic crystal

as the reference state, which can be straightforwardly computed as:

Fh (V ,T0) = kB T0

3N−3∑
i=1

ln
ħωi

kB T0
(3.2)

where ωi are phonon frequencies of the crystal with N atoms, and T0 a low temperature

chosen so that the system is close to a local minimum of the potential energy. Note that we

use the classical expression because we are ultimately interested in high-temperature values

of the free energy. If one wanted to estimate the anharmonic free energy at low temperature, it

is possible to do so by a further thermodynamic integration step [206–208]. Starting from the
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harmonic reference, one then performs the actual TI step, which involves parameterising a

Hamiltonian H (λ) in such a way that H (λ= 0) corresponds to the harmonic potential and

H (λ= 1) to the real system. One then evaluates numerically the integral

∆F = F (λ= 1)−F (λ= 0) =
∫ 1

0
dλ

〈
∂H

∂λ

〉
λ

(3.3)

to give the free energy difference between the systems, which is the anharmonic correction to

the free energy.

By choosing a sufficiently low T0, the system is very close to being harmonic, and this term is

small and can be computed easily, possibly even just by free energy perturbation. In order to

convert between constant-volume and constant-pressure boundary conditions, we perform

a constant pressure simulation in conditions that give a mean volume close to that used to

compute Fanh, and evaluate the distribution of volumes ρ(V |p,T ). The Gibbs free energy is

then given by

G(N , p,T ) = pV +Fanh(N ,V ,T )+kbT ln

[
ρ(V |p,T )

V

N

]
, (3.4)

which is based on the definition of the isobaric partition function Z = ∫
dV e−βpV e−βFanh(N ,V ,T )NV −1

discussed in Ref. [209].

To evaluate the Gibbs free energy at higher temperature, one can then perform a series of N pT

simulations at different values of T – possibly using replica exchange to enhance statistical

convergence – and evaluate a TI estimate of

G
(
p,T1

)
kB T1

= G
(
p,T0

)
kB T0

−
∫ T1

T0

〈H +pV 〉
kB T 2 dT (3.5)

where H denotes the total energy.

3.3.2 Interface pinning

The interface pinning (IP) method[210] is a special case of the umbrella sampling technique

[211], used to quantify the Gibbs free energy difference between two coexisting phases sep-

arated by a flat surface. In the IP method, a harmonic bias potential coupled to an order

parameter Φ that discriminates between the two phases of interest is used to analyze a two-

phase system and to force the interface to stay in an intermediate state. The Gibbs free energy

difference between the phases is determined by the average force that the pinning potential

exerts on the system. Let us consider a system where the solid and liquid phases coexist. If the

mean value of the order parameter in bulk solid and liquid at a given temperature is φ̄s and φ̄l ,
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and the sum over all atoms of the order parameter for a given configuration is Φ, the number

of solid atoms can be estimated as Ns = (Φ−Nφl )/(φ̄s − φ̄l ) – with the underlying assumption

of choosing the dividing surface between the solid and the liquid phase that corresponds

to zero excess for the chosen order parameter. With this definition, the Gibbs free energy

associated with a two-phase configuration is given by G(Ns) = µs Ns + (N −Ns)µl +2γsl Ax y ,

where γsl is the solid-liquid interfacial free energy and Ax y the cross-section of the simulation

box. When performing a simulation of the interface applying the pinning potential of the form

(Φ−Φr e f )2κ/2, the overall free energy reads:

G̃(Ns) =µs Ns + (N −Ns)µl +2γsl Ax y + (Φ−Φr e f )2κ/2.

Hence, in conditions above or below the melting point, the difference in chemical potential be-

tween the solid and the liquid phases leads to the interface fluctuating around an equilibrium

position for which Φ ̸=Φr e f , and one can extract:

∆µsl =µs −µl =−κ(Φ−Φr e f )(φ̄s − φ̄l ) (3.6)

By performing multiple simulations at different temperatures, one can identify the depen-

dence of ∆µsl on T . The temperature at which ∆µsl = 0 identifies the melting point Tm , and

the slope is equal to the entropy of melting. To put this method into practice, one should

choose a collective variable, which distinguishes between two phases. In this thesis, we used

the IP method to compute the melting point of elemental nickel. The results and details of the

simulations are provided in the corresponding section.

3.3.3 Metadynamics

Metadynamics[212] is another technique used to enhance MD simulations by adding to

the system’s Hamiltonian a time-dependent bias linked to some function of the internal

coordinates, also called collective variables (CVs). A bias potential helps to overcome energy

barriers and sample rare events more efficiently, and moreover, it can be used to reconstruct

the free energy surface along the explored direction in CV space. The bias potential is gradually

built up over time by depositing small Gaussian-shaped hills, which prevents the system

from getting trapped in local minima. The height and width of the hills are controlled by

the deposition frequency and the Gaussian width parameter, respectively. If the studied

phenomenon can be described with a CV Φ(r), where r defines the state of the system, then

the bias potential VG at the time t can be defined as:
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VG(Φ, t ) =
∫ t

0
d t ′ωe−

(Φi (R)−Φi (R(t ′)))2

2σ2

In this context, ω represents the bias deposition, and σ represents the width of the Gaussian

distribution for the CV Φ. The energy rate is typically expressed in terms of a Gaussian height

W and a deposition stride τG, where:

ω= W

τG

Assuming the simulation is of sufficient length, it is possible to calculate the free energy F

using the following equation:

VG(Φ, t →∞) =−F(Φ)+C,

where C is an additive constant. Metadynamics in the formulation described above has

certain limitations, such as oscillatory behaviour around true free energy surfaces and the

challenge of determining when to stop the simulation. To address these issues, well-tempered

metadynamics [213] was developed as a modification of the standard metadynamics method.

By using an adaptive bias factor γ = 1+ ∆T
T to control the height of the Gaussian-shaped

potentials deposited during the simulation, well-tempered metadynamics allows for faster

convergence to the true free energy surface. Additionally, the adaptive bias factor provides a

means of determining when the simulation has reached convergence. The bias factor is set to

decrease over time, allowing the system to escape from the shallow basins and converge to the

true free energy landscape. In practice, the well-tempered metadynamics is implemented by

rescaling the Gaussian heights by a factor as shown below:

W =ω0τGe
− VG(Φ,t )

kB∆T .

In this context, ω0 represents the initial rate, while ∆T is a parameter in temperature units

that controls the extent to which the free energy is explored. Unlike standard metadynamics,

the bias potential in well-tempered metadynamics does not converge to the negative of the

free energy, but rather to a fraction of it, as shown in the following equation:

Vb(Φ, t →∞) =− ∆T

T+∆T
F(Φ)+C

The expression ∆T
T+∆T is commonly known as the bias factor. This results in an improved

sampling of the CV space, which corresponds to an effective temperature of T +∆T . As
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∆T approaches infinity, the method approaches standard metadynamics, while for ∆T =
0, it reduces to regular molecular dynamics (MD). Additionally, it is possible to re-weight

well-tempered metadynamics simulations to obtain accurate statistics for any observable of

interest.
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4 Finite temperature modelling of

nickel1

4.1 Introduction

In the previous chapters, we have discussed various machine learning methods that are instru-

mental in building a machine learning interatomic potential (MLIP) and sampling techniques

that can be combined with an MLIP to investigate properties using a surrogate quantum me-

chanical potential energy surface. This chapter outlines the process of constructing an MLIP

and its practical integration with a wide range of statistical mechanics techniques, including

thermodynamic integration and finite-temperature sampling, using elemental nickel as an

example. Moreover, we adopt a recently-developed scheme to predict the electronic density of

states, accounting for electronic excitations without the need for additional calculations.

Nickel was selected as the reference system for two primary reasons. First, it has applications

across a wide temperature range and holds significant industrial importance, as it serves as a

key component in numerous alloys, including steel, Inconel, and Hastelloy. Second, it serves

as an ideal benchmarking system, given its extensive experimental studies and the availability

of a reasonably accurate empirical interatomic potential.

The MLIP created in this thesis is benchmarked against experiments and density functional

theory (DFT) where possible, and the results are compared to an accurate embedded atom

model (EAM) potential. We commence with Sec. 4.2, where we summarize reference cal-

culations, neural-network potential construction, and the machine-learning model for the

electronic density of states. Subsequently, in Sec. 4.3.1, we demonstrate the accuracy of

the machine-learning potential. Lastly, we present the computation of challenging finite-

temperature properties of nickel in Sec. 4.3.2.

1This chapter is an adaptation of my contribution to Ref. [214], where I was responsible for all aspects except for
the construction of the ML model for DOS.
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4.2 Constructing a machine learning interatomic potential for nickel

We begin by providing a brief summary of the methods we use to obtain reference properties

and train machine-learning models, together with the details that are necessary to reproduce

the underlying electronic-structure calculations, the construction of the training set, and the

structure of the machine-learning model.

4.2.1 Electronic-structure details

We compute all the energies and forces using density-functional theory (DFT), as implemented

in QUANTUM ESPRESSO[215]. We use the PBE exchange-correlation functional[216], together

with an ultrasoft pseudopotential[217] with 10 valence electrons for Ni, from the standard

solid-state pseudopotential library [218]. The wave function is expanded in plane waves with

a cutoff energy of 40Ry. The Brillouin zone sampling uses the Monkhorst-Pack scheme[219]

with a k-point density of 0.07 Å−1. To improve the convergence of the integral over the k-points

mesh, we use the Methfessel-Paxton first-order spreading[220] with a broadening parameter

equal to 0.0441 Ry. All the parameters are kept fixed for the whole data set and are converged

in terms of energy differences.

All the reference calculations are non-magentic, even though Nickel exhibits ferromagnetic

ordering below its Curie temperature (628K). This choice is driven by the fact that treatment

of magnetism implies associating additional degrees of freedom describing the magnetic

configuration of the system (e.g. spin polarization of atoms for a collinear treatment), that is

not compatible with the typical infrastructure of machine-learning potentials, that use only

nuclear coordinates as inputs. As an approximate alternative, one would need to perform a

separate set of reference calculations below and above the Curie temperature, for instance,

through a collinear spin-polarized approximation below the Curie temperature and more

complex approximations when the magnetic disorder occurs. However, this approach would

inadvertently introduce an undesirable temperature dependence of the potential.

Given that our main goal is to describe high-temperature conditions, where anharmonic

contributions to the free energy become important, we prioritize the description of the para-

magnetic phase. Furthermore, Ni is a weak ferromagnet, and many of its properties (such as

phonon dispersion curves, vacancy formation energies, thermal expansion[221–223]) are only

weakly affected by magnetism. Indeed, as shown in Figure 4.1, the equation of state computed

with non spin-polarized DFT (blue curve) and collinear spin-polarized DFT (spDFT) (yellow

curve, ferromagnetic ordering) exhibits very small differences. The lattice constant changes by

less than 1% (3.517Å for DFT vs 3.526 Å for spDFT) and bulk moduli differ by 5% (195GPa for
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DFT and 185GPa for spDFT). Nevertheless, there are other properties such as the heat capacity

curve shown in Figure 4.8 for which magnetism plays an important role, and incorporating

magnetic excitations in a similar way as what we do for electronic excitations is a promising

research direction.
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Figure 4.1: Equation of state of FCC nickel, (referenced to the minimum energy): blue dots
represent DFT calculations, yellow dots spin-polarized DFT (spDFT) calculations. Solid lines
indicate the corresponding fits to a Birch-Murnaghan equation of state.

4.2.2 Training set construction

The structures included into the dataset are selected by an iterative procedure, building on the

insights of existing literature in similar systems[46, 224, 225]. Each training structure provides

total energy and forces computed by DFT, with the computational settings indicated above. In

Table 4.1 we summarize the content of the final version of the dataset. Given the availability

of a reliable EAM potential[226], we used it to generate a diverse set of configurations, for

which we then recomputed energies and forces using DFT. We first performed a long replica

exchange molecular dynamics simulation[227], using the i-PI implementation[228, 229], and

including 82 NpT trajectories spanning a broad range of temperatures [100K, 3200K] and

pressures [−5GPa, 5GPa]. From these trajectories, we selected 1000 structures using farthest
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Structure type No. structures No. atoms
Selected from REMD 988 108
FCC Bulk

isotropic stress 4 108
shear stress 4 108
uniaxal stress 4 108
displacement of one atom 10 108

Single vacancy 6 107
Single intestitial 18 109
HCP Bulk 22 54
BCC Bulk 10 54
Stacking fault 299 24
Solid-Vacuum Interface

(100)AA 154 9
(100)AB 110 8
(110)AA 88 13
(110)AB 252 12
(111)AA 110 8
(111)AB 105 9

Solid-liquid interface 17 96
Liquid-vacuum interface 10 108
Other 24 7
Total 2235 –

Table 4.1: Overview of the composition of the training dataset used to fit the neural network
potential. The first column shows the number of structures included in each group, and the
second column shows the number of atoms included in each supercell.
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point sampling (FPS)[168].

On top of these baseline structures, which provide a diverse set of configurations across the

phase diagram of Ni, we incorporate targeted single-point calculations that are used to ensure

that configurations that are relevant for important structural and mechanical properties are

well represented. In particular, we include 1x1x1 FCC structures stretched and compressed by

less than 3% of the equilibrium lattice parameter – that report directly on bulk modulus and

elastic constants.

To reproduce accurately defects formation energies, we perform geometry optimization of a

single vacancy and interstitial in 3x3x3 FCC cells at 0K, and of a 3x3x1 HCP and 3x3x3 BCC cells,

describing metastable phases of Ni. We also include 1x1x6 FCC structures with the x-, y- and

z-axes oriented along [110̄], [112̄], and [111] directions, distorted to incorporate information

on the generalized stacking fault surface, as well as (111), (001), and (110) surfaces created

by rigid cleavage of the bulk, leaving a slab which is more than 12Å thick. All the steps of the

geometry optimization have been added to the reference set.

Finally, to ensure that the neural network potential (NNP) samples the repulsive part of

the interatomic potential, we add 3x3x3 FCC structures where a position of one atom has

been randomized by up to [0.5, 1.2]Å. In total, the training set contains approximately 2200

configurations[230].

4.2.3 Neural network potential

To describe the interatomic potential we train a high-dimensional neural network (NN) fol-

lowing the approach proposed by Behler and Parinello[231]. The framework of the Behler-

Parinello NNPs has been discussed extensively in the literature[231–234]. In Sec. 2.5.2, we offer

a concise introduction, wherein we show that the atomic energy contributions are represented

as a series of nested activation functions acting on linear combinations of the values in the

previous layer. The input layer, which describes the geometry of each atom-centred environ-

ment, entails a vector of atom-centred symmetry functions, that describe two and three-body

correlations between neigbours [96, 177]. The architecture of the NN and the functional form

of the symmetry function are analogous to those used in Ref. [176]. The values of the parame-

ters defining the set of symmetry functions were determined by first generating a large set of

possible features, combining cutoff distances of 8, 12, 16 and 20 Bohr, and selecting the 50

most informative ones based on a deterministic CUR algorithm, as discussed in Ref. [176]. The

parameters of the network are optimized using the N2P2 package[235, 236] to agree with the

reference DFT data. The NN architecture includes 2 hidden layers with 25 nodes each. 90% of

41



Chapter 4 Finite temperature modelling of nickel

102 103

training set size N

100

101

102

R
M
SE

(m
eV

/a
to

m
)

(a) Learning curve for the energy RMSE of the NN potential, as a function of the number of structures
included in the training set. The points and error bars indicate the mean and standard deviation of five
potentials, computed with different random choices of the training points.
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(b) The histograms of the differences between predicted with NNP energies and forces and DFT
reference for training and testing subsets. The dashed lines show the reported RMSE’s.

Figure 4.2: Performance evaluation of the NNP.
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the dataset set is used for training, with a random selection including 10% of structures being

held out for validation. The RMSEs on the training and testing subsets are 0.45meV/atom

and 0.55meV/atom for energies and 22meV/Å and 23meV/Å for forces respectively. In Figure

4.2b we show the errors distribution. These errors – as well as the errors on selected target

properties, discussed in Sections 4.3.1 and 4.3.2– are in line with state-of-the-art potentials,

and comparable with the typical error of density functional theory. As shown in Figure 4.2a,

the model accuracy is limited by the amount of training data, and not by the complexity of

the model, so it would be easy, if needed, to further reduce the error by just increasing the

train set size. The neural network weights of the model we used in the rest of this work can be

downloaded from a public repository[230].

4.2.4 Machine-learning model of the electronic density of states

A NN potential allows to sample phase space in a way that is consistent with ab initio quality

energetics. However, it does not give direct access to electronic-structure properties. Recently,

ML models have been proposed that give direct access to properties that are related to the

electronic degrees of freedom, such as the ground-state charge density [102, 237, 238] and the

density of single-particle energy levels (density of states, DOS) [49]. As a first step towards a

fully integrated, universal ML scheme that provides a complete surrogate model of quantum

mechanical calculations, we train a model relying on a fixed DOS approximation and we

use it to predict properties that depend on electronic excitations. We use an atom-centered

model for the DOS, where we expand the total DOS of a structure A over a sum of local DOS

contributions (LDOS) associated with its atomic environments Ai :

DOS(A,E) = ∑
i∈A

LDOS(Ai ,E).

The reference DFT DOS is constructed with a Gaussian broadening gb = 0.1eV, which ensures

that the curves are well-detailed. We use the Fermi energy εF of each structure as the energy

reference.

We follow the approach introduced in Ref.[239] to determine the mapping between the atomic

environment Ai and its contribution to the total DOS. In a nutshell, we introduce a positive-

definite scalar kernel k(Ai , A′
i ′) that describes the similarity between two atomic environments.

We use in practice the SOAP kernel [72], as implemented in librascal [240]. We then determine

the active set containing the M most diverse environments found in the training set, and write

a Projected Process (PP) approximation of the Gaussian Process (GP) algorithm to express the

LDOS as a function of the basis set formed by the kernel between each target environment
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and the active set

LDOS(Ai ,E) = ∑
j∈M

x j (E)k(Ai , M j ).

The expansion coefficients xM (E) are determined separately for each energy channel. We

use the pointwise representation of the DOS from Ref.[239], where we discretize the energy

axis over a finite range and take the DOS at every energy point as a target of the ML model.

Once the model is trained, the DOS of a new structure A∗ can be easily obtained from the

dot product between the kernel matrix of its atomic environments and the active set, and the

energy-dependent expansion coefficients xM . To monitor the reliability of the predictions, we

also implement uncertainty estimation based on a calibrated committee model [241]. We use

the DOS model to compute the electronic contributions to several thermodynamic properties,

such as the Helmholtz Free energy at finite temperature

F el(T ) =U el(T )−T Sel(T ) (4.1)

which is decomposed in a contribution from the hot electrons to the band energy

U el(T ) =
∫ ∞

−∞
εDOS(ε) f (ε−εF ,T )dε−

∫ εF

−∞
εDOS(ε)dε (4.2)

and an entropy term

Sel(T ) =
∫ ∞

−∞
DOS(ε)

[
f (ε−εF ,T ) log

(
f (ε−εF ,T )

)−
(1− f (ε−εF ,T )) log

(
1− f (ε−εF ,T )

)]
dε, (4.3)

and the electronic contribution to the high-temperature heat capacity

C el
v (T ) = ∂U el(T )

∂T
. (4.4)

These expressions are written in a “non-self-consistent” approximation added a posteriori,

where we consider the density of states to be fixed to that computed from the Kohn-Sham

eigenvalues obtained self-consistently at T = 0. The temperature dependence is due to the

occupation of the energy levels, which is given by a Fermi function f (ε−εF ,T ), and by the

Fermi energy εF which is computed for the DOS at each temperature by enforcing charge

neutrality. To achieve a consistent sampling of the dynamics, where the electronic excitations

are accounted for in the ions’ interatomic forces, one can follow the approach proposed in

Ref. [242].

To train a model of the DOS we use a subset containing 1069 structures of the data set in Tab. 4.1,
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Figure 4.3: Evolution of the prediction errors in the validation set as a function of the training
set size for the pointwise representation of the ML DOS (in black), as well as for quantities
derived from the DOS prediction for thermal excitations computed at Tm = 1700K (namely,
the band energy U el(Tm), the electronic entropy term TmSel(Tm), the free energy F el(Tm), and
the heat capacity, written in energy units, TmCp (Tm)).The reference DOS is generated with a
Gaussian broadening of 0.1eV. The arrows point to the axis on which the errors can be read.
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excluding those pertaining to liquid-vacuum and solid-vacuum interfaces due to their need for

more careful band alignment. We complement it with 123 independent structures extracted

from liquid and solid trajectories at the melting temperature. We use the radial cutoff r0 = 6Å

and an atomic density smoothing σat = 0.45 for the SOAP features. The active set contains

15000 environments selected by FPS out of the ≈ 127000 that are present in the training set. We

determine the regression weights xM using a regularization parameter that is optimized by a

10-fold cross-validation scheme, in order to ensure the model is not in the over-fitting regime.

The learning curves, computed by reporting errors on a fixed test set of the predictions of mod-

els trained on an increasing fraction of the remaining 1000 structures, are shown in Figure 4.3.

The figure shows both the error on the DOS, computed as the integrated root mean square

error (RMSE) of the ML DOS and DFT DOS normalized by the integrated standard deviation

of the reference DFT DOS, as well as errors for the quantities in Eqs. (4.1-4.4), computed

on the predicted DOS and checked against those obtained from the reference DFT curve.

Learning curves are not saturating, indicating that a more accurate model could be obtained,

if needed, by increasing further the train set size. In practice, this model is sufficiently accurate:

even though the normalized error on the DOS is large ( %RMSE=14.71% for the largest train

set size), this translates into sub-meV errors for the key properties at the melting tempera-

ture Tm = 1700K. For the band energy U el(Tm): %RMSE=3.30% and RMSE=0.12meV/atom;

for the entropy TmSel(Tm): %RMSE=5.81% and RMSE=0.32meV/atom; for the free energy

F el(Tm): %RMSE=9.04% and RMSE=0.32meV/atom and for the heat capacity TmC el
p (Tm):

%RMSE=4.25% and RMSE=0.36 meV/atom.

4.2.5 Sampling and thermodynamic integration

To compute finite temperature properties we perform different kinds of standard and ac-

celerated molecular dynamics simulations. Unless otherwise specified, all simulations use

a timestep of 2 fs, with a BAOAB integrator[243]. Efficient constant-temperature sampling

is achieved by combining stochastic velocity rescaling[244] and a colored-noise Langevin

thermostat[245], as implemented in i-PI [229]. Energies and forces are computed using the

n2p2 [246] package interfaced with LAMMPS [247]. In constant-pressure simulations, the

pressure is controlled with the Bussi-Zykova-Parrinello barostat[196, 248]. The time constants

parameters of the barostat and its thermostat are set to 225 fs and 100 fs respectively. To

compute self-diffusion coefficients and viscosity we applied weak global velocity rescaling

thermostat [244] with a 1 ps time constant, which improves statistical sampling without af-

fecting dynamical properties. To shrink the statistical error on computing the bulk modulus,

the heat capacity and the stability of defects, we run replica exchange molecular dynam-
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ics (REMD)[227, 249, 250] with a exchange time of 40 fs. Examples of simulations, and the

complete set of parameters chosen for interface pinning and metadynamics simulations is

provided as commented input files in [230].

47



Chapter 4 Finite temperature modelling of nickel

4.3 Applications

After having discussed the construction of the machine-learning models we use, and the details

of the reference calculations, we now present results that can be obtained when applying

them to the prediction of the atomic-scale properties of elemental Ni. We first validate the

model by comparing its predictions with explicit density-functional calculations, and then

proceed to compute a large number of finite-temperature properties, for which we compare

with experimental data and/or previous literature results. We also use an EAM potential[226]

to gauge the typical accuracy of a well-established empirical model, and to contrast it with

that of a DFT-trained ML scheme. Whenever we compare two computational schemes, we use

exactly the same simulation protocol, to ensure that any discrepancy is due to the potential

energy surface, and not to finite size effects or other simulation details.

4.3.1 Validation of the potential

To provide a first benchmark of the accuracy of the NNP we predict a few simple, static-lattice

properties that can be readily recomputed by DFT. We present bulk properties, defects and

interfacial energetics. Most of these quantities are explicitly associated with structures that are

included in the training set. For this reason, these tests serve more to demonstrate how the

training error is reflected on the properties of interest, rather than to assess the transferability

of the NN.

∆E | f cc /(meV/at.) a0/Å
NNP DFT EAM NNP DFT EAM Exp.

fcc - - - 3.5168 3.5175 3.5200 3.524
hcp 20.8 21.3 22.2 2.4873 2.4801 2.4819

(c0) 4.0829 4.0971 4.1048
bcc 98.3 98.0 67.4 2.7968 2.7962 2.7687

Table 4.2: The atomic bulk energies of hcp and bcc ideal crystalline structures with respect to
the fcc bulk equilibrated at 0K, as well as the equilibrium lattice parameters. Experiments are
taken from[251] where the measurements were carried out at 20◦C.

Structure and stability of fcc, hcp and bcc phases

The stable structure for crystalline nickel at room temperature and pressure is fcc. Higher-

energy, meta-stable phases, however, can play a role in different portions of the phase diagram,

in the presence of defects, or just to increase the transferability of the NNP. Table 4.2 shows

the 0K lattice energy of bcc and hcp configurations relative to the fcc ground state, as well as

the relaxed lattice parameters. The sub-meV accuracy of the NN is consistent with the overall
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NNP EAM DFT Exp.
B/GPa 204 180 205 183
B ′ 4.3 4.6 4.7 –
C11/GPa 275 236 277 243
C12/GPa 167 154 169 153
C44/GPa 130 127 133 128

Table 4.3: Bulk modulus, bulk modulus derivative B ′ and elastic constants for the NNP, EAM
potential, DFT compared with experimental results from Ref. [253].

test and train set errors; the large discrepancy observed for the EAM model for the bcc phase

is unsurprising, given that the empirical potential is optimized for the stable phases of Ni.

Lattice parameters are in excellent agreement with the DFT reference values.

Elastic constants and bulk modulus

The bulk modulus and the elastic constants characterise the response of a material to isotropic

and anisotropic deformations. Together with structural properties such as the zero-temperature

lattice constants they can be easily measured experimentally and do not require substantial

computational resources to obtain from electronic structure calculations, making them good

references for benchmarking. We compute the bulk modulus of fcc nickel and its derivative by

evaluating the change in potential energy when introducing finite isotropic deformations (up

to 5% of the equilibrium lattice parameter), and fitting the resulting energy-volume curve to a

Birch-Murnaghan equation[252]:

E(V ) = E0 + 9V0B0

16

{[(
V0

V

) 2
3 −1

]3

B ′
0+

+
[(

V0

V

) 2
3 −1

]2 [
6−4

(
V0

V

) 2
3

]} (4.5)

where E0 is the minimum lattice energy, V0 is the reference volume, B0 is the bulk modulus,

and B ′
0 is the derivative of the bulk modulus with respect to pressure.

For a cubic material the bulk modulus is also linked to the second order elastic constants by

the expression:

B = 1

3
(C11 +2C12) (4.6)

where the standard Voigt notation is being used for the indices. We estimate the elastic con-

stants by examining the strain energy density for orthorhombic and monoclinic deformations
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Figure 4.4: Phonon dispersion curves for the EAM potential (yellow), the NNP potential
(purple) and experiment(blue dots). DFT results from Ref. [254] are indistinguishable from
the experimental values on the scale of the figure.

which corresponds to strain tensors of the form:

Eor th(δ)/V =


δ 0 0

0 −δ 0

0 0 δ2

1−δ2

 (4.7a)

Emon(δ)/V =


0 1

2δ 0
1
2δ 0 0

0 0 δ2

4−δ2

 (4.7b)

Both matrices define deformations which preserve the volume V of the examined system.

The corresponding strain energy densities ∆Eor th(δ)/V and ∆Emon(δ)/V are given by:

∆Eor th(δ)/V = (Etot (δ)−E0)/V = (C11 −C12)δ2 +O (δ3) (4.8a)

∆Emon(δ)/V = (Etot (δ)−E0)/V = 1

2
C44δ

2 +O (δ3), (4.8b)

where Etot (δ) denotes the total energy of the deformed system, E0 is the ideal bulk energy

or Etot (δ= 0). We compute energies for values of δ≤ 10%, and estimate the elastic constants

by fitting the resulting curves to Eq. (4.8). Results, shown in Table 4.3, indicate that the

NN reproduces the DFT elastic constants with high accuracy (an error around 2%), and is

consistent with previous results for single element bulk metals [43, 46, 224] which also report

an error smaller than 4% between DFT and machine-learning potentials.
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Phonons

Phonon dispersion curves describe the elastic response of the interatomic potential to a

plane wave deformation of wavevector q, and can be measured by inelastic neutron or X-ray

scattering. DFT has been shown to reproduce closely experimental phonon curves for pure

Ni[254]. For this reason, we compare the NNP and the EAM potential with the experimental

results. The phonon dispersion curves have been obtained with the small displacement

method as implemented in the PHON package[255–257]. In the frame of this method, the

position of each atom in the primitive cell is slightly distorted. The force constant matrix is

constructed by computing forces acting on all the other atoms in the crystal, using the DFT

equilibrium volume. This force constant matrix is used to compute the dynamical matrix at

any chosen q-vector in the Brillouin zone, which is then diagonalized to yield the squares of

the phonon frequencies. The resulting dispersion curves are shown in Fig. 4.4. NNP results

are in excellent agreement with experiments and previous DFT calculations [254], while

those obtained with the EAM show a deviation up to 20% for the longitudinal mode at the

brillouin-zone edge.

Formation energies of point defects

At finite temperature any crystalline system contains an equilibrium concentration of point

defects, such as vacancies and interstitial atoms. For a static lattice, and in the case in which

bulk Ni is used as a reference state, the ab initio calculation of the single point defect formation

energies can be achieved with low effort from the expression:

E f
de f = Ede f (Nde f )− [

Nde f /N0
]

E0 (4.9)

where Ede f is the final energy of the system with a defect after full ionic relaxation, Nde f –

number of atoms in the system with a defect, while N0 and E0 indicate the number of atoms

and the energy of a reference supercell corresponding to ideal crystal.

NNP EAM DFT Experiment

E f
vac , eV 1.52 1.57 1.51 1.4(900-1400K)

E f
i nt , eV 4.17 4.01 4.2

Table 4.4: Formation energies of single vacancy and interstitial in bulk Ni for NNP, EAM, DFT
and experiment[258] .

We use a relatively large cell size (3×3×3 conventional unit cells, corresponding to 108 atoms)

which ensures that the interaction of defects through periodic boundaries is negligible. Ionic

positions have been fully relaxed using the BFGS algorithm [259–262]. As shown in Table 4.4,

51



Chapter 4 Finite temperature modelling of nickel

the NNP is in excellent agreement with reference DFT calculations, and in semi-quantitative

agreement with experimental data[258], which is however collected at finite temperature, the

effect of which is discussed in Section 4.3.2.

Generalised stacking fault

The Generalised stacking fault (GSF) energy is an important property that is related to the

response of a material to plastic deformation and fracture. The GSF reports on the energy cost

associated with the slip of the crystal along a plane of atoms, with the geometric nature of the

deformation being determined by the crystal lattice and symmetries. The only point along a

GSF curve that can be probed experimentally is the one corresponding to an intrinsic stacking

fault geometry. However it is possible to compute the full curve in simulations, by tilting the

repeat vector of an ideal crystalline lattice in a slip plane while keeping all the atoms fixed[263].

The shift of PBCs creates a stacking fault. The deformed system is then relaxed along the

direction orthogonal to the slip plane. The full GSF curve can be sampled by introducing larger

and larger tilt angles. The GSF energy is defined as:

γSF (x, y) = E [N ](x, y)− [N /N0]E0

Ax y
, (4.10)

where Ax y is the cross-section of the supercell. For reference DFT calculations we used an

elongated supercell, with a 1x1 dimension along the fixed in-plane lattice vectors, and a 4-fold

replication along the [111] direction to minimize interactions between the periodic images

of the SF. Both the EAM and the NNP reproduce to excellent accuracy the curve computed

with DFT (Fig. 4.5), with a slightly more pronounced overestimation of stable and unstable

stacking fault energies by the EAM.

Rigid surface separation

The surface energy of solids controls many technologically-relevant phenomena such as

fracture, morphological surface properties etc. Experimentally this property is affected by the

presence of defects and impurities, and by surface reconstruction. Computationally, a rigid

cleaving of the ideal bulk makes it possible to easily determine whether a potential provides a

satisfactory description of the formation of a free surface.

The cleaving potential is computed by evaluating the energy of a bulk solid configuration,

in which the lattice spacing between two planes is artificially increased by a separation d .

Given the energy E (N ,d) of a supercell with N atoms and cross-section Ax y , the rigid-surface
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Figure 4.5: Generalized stacking fault curve for bulk Ni along the [112] direction computed
using DFT (blue dots), EAM potential (yellow curve), and the present NN potential (purple
dots).

Surfaces, m J/m2 NNP EAM DFT Experiment
(110) 2468 2087 2440 2280
(001) 2351 1936 2337 2280
(111) 2004 1759 1995 2280

Table 4.5: The surface energy of different surface orientations for NNP, EAM, DFT and experi-
ment. The experimental value is averaged over orientations[264].
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Figure 4.6: The energy vs rigid separation across different surface orientations for DFT (blue
dots), EAM (yellow curves) and NNP (purple curves).
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cleaving potential is defined as

γsur f (d) = E(N ,d)− [N /N0]E0

2Ax y
(4.11)

where E0 is the energy of a reference bulk configuration with N0 atoms. For our reference

calculations, we consider supercells elongated along the (111), (001), and (110) directions, with

8 atomic layers in the direction orthogonal to the surface. The EAM potential captures correctly

the order of surfaces stability (table 4.5), although with poor quantitative agreement with

DFT, which matches well the experimental estimate[264] (which is an average over multiple

orientations). Similar to what was observed for Al in Ref. [265], the EAM cleaving potential

displays an unphysical step-like behavior.

4.3.2 Finite temperature properties

Benchmarks on static lattice calculations, such as those discussed in the previous Section, give

confidence on the accuracy of the MLP, as they can be compared with little effort with reference

DFT calculations. This Section, instead, focuses on properties that require the evaluation of

thermodynamic averages at finite temperature. In the low-T regime, quantum fluctuations of

the nuclei are also important, while at high temperature magnetic and electronic excitations

also play a role in determining the thermophysical properties of Ni. Given that most of the

simulations we report in this Section would be impractical when coupled to explicit quantum

calculations, we cannot directly compare our results to the DFT reference. We do however

compare with existing force fields and with experiments, even though we cannot disentangle

the errors associated with the underlying electronic-structure approximations, and those

stemming from the NN fit.

Structural and elastic properties at finite temperatures

We begin by revisiting the bulk properties of Ni incorporating the effect of fluctuations. The

Debye temperature of Nickel is around 400 K, and so one can expect a significant effect

associated with quantum fluctuations of the nuclei up to and above room temperature. For

this reason, we perform simulations using both classical molecular dynamics (that are valid in

the high-temperature limit) and with path integral molecular dynamics (PIMD)[31–33] (that

incorporate nuclear quantum effects in the low temperature limit). To accelerate convergence

of PIMD simulations, we use a finite-difference integrator [269] for the fourth-order Suzuki-

Chin factorization of the path integral partition function, [270, 271] as implemented in i-

PI[229], that yields converged observables down to about 100K with only four replicas.
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(b) Bulk modulus of Ni as a function of temperature for EAM and NN. Shaded areas represent corre-
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Figure 4.7: Finite-temperature structural and elastic properties of pure Ni, comparing simula-
tions and experiments.
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The top panel of Fig. 4.7a shows the behavior of the lattice parameter with temperature,

as obtained from REMD simulations of a box of 108 atoms, run for approximately 150ps

at each temperature with a possibility to swap between replicas every 40fs. The thermal

expansion is similar between the NN and EAM simulations, and both are in good agreement

with experiments [266, 267]. Both the EAM and the NN cannot capture the effects of the

ferromagnetic transition: the EAM is fitted to low-temperature structural parameters and

underestimates the lattice parameter in the high-T regime, while the NN, that is fitted to a

non-polarized DFT reference, shows a better agreement above the Curie temperature, and

overestimates the lattice parameter in the ferromagnetic phase. Quantum effects on the lattice

parameters are small even below the Debye temperature, which justifies using a classical

expression to estimate the bulk modulus in this temperature range by considering the volume

fluctuations at constant pressure:

B(T ) = 〈V 〉kB T〈
V 2

〉−〈V 〉2
. (4.12)

As shown in Fig. 4.7b, the bulk modulus shows a substantial dependency on temperature, with

EAM and NN bracketing experimental observations, and exhibiting a similar trend up to the

melting point.

Heat capacity

The constant-pressure heat capacity Cp of a ferromagnetic metal such as Nickel is a very

challenging quantity for modelling, because it contains features that are associated with

excitations on different degrees of freedom and energy scales [46]. As shown in Fig. 4.8, the

experimental curve shows a low-temperature limit which is dominated by quantum nuclear

effects, tending to zero at low temperature, a peak around the Curie temperature, associated

with the ferromagnetic phase transition, and a pronounced increase above the Dulong-Petit

limit at high temperature, that is linked to thermal expansion, anharmonic fluctuations, but

also to electronic excitations, that make up for half of the deviation at the melting point. Thus,

a very accurate interatomic potential is not sufficient to accurately predict the full Cp curve.

Within the adiabatic approximation, ionic, electronic and magnetic contributions to the heat

capacity could be described separately, provided one can treat them explicitly, as one would do

in ab initio molecular dynamics. Here we present a first application of an integrated ML model

that incorporates properties beyond the interatomic potential, to have access to contributions

beyond those controlled by ionic fluctuations. We focus in particular on the electronic effects,

that can be estimated, within a rigid band approximation, from the knowledge of the electron

density of states (DOS). The contribution to the internal energy associated with electronic
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Figure 4.8: Constant pressure heat capacity Cp as a function of temperature. Triangles indicate
experimental observations, as well as electronic and vibrational contributions computed by
first-principles calculations in Ref. [272], combining quasiharmonic approximation results at
low-temperature, and classical ab initio MD at high temperature. Gray lines indicate the heat
capacity computed within harmonic and quasiharmonic approximations using the NNP. Solid
lines represent the heat capacity computed in this article with PIMD, and including electronic
corrections based on a ML model of the DOS. Crosses show the heat capacity computed using
an EAM, and without including electronic corrections.
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excitations can be computed as in Eq. (4.2). We used a recently-introduced machine learning

model of the DOS [239], trained as discussed in Section 4.2.4, to predict the electronic density

of states (DOS) for every frame of the REMD simulation, which was then used to estimate the

electronic energy UDOS and, by finite differences, the electronic contribution to Cp .

In Figure 4.8 we show the heat capacity as a function of temperature computed from classical

molecular dynamics (purple dashed line) using the fluctuation formula

Cp = 〈H 2〉−〈H〉2

kB T 2 (4.13)

that deviates dramatically from the experimental curve at low temperature. Results from PIMD,

that are evaluated with a fourth order double virial operator heat capacity estimator[273], (pur-

ple solid line) display the correct low-temperature behavior, but underestimate by ≈20% the

experimental observations at high temperature. The discrepancy (which is also observed in

explicit first-principles molecular dynamics[272] and in simulations that use the EAM) is due

to electronic contributions, and indeed the curve that incorporates these using the ML model

of the DOS (yellow solid line) are in almost perfect agreement with high-temperature mea-

surements, and with previous results obtained, with heroic efforts, using density functional

theory and quasi-harmonic simulations in the low-temperature regime [272]. Incorporat-

ing quantum nuclei and electronic fluctuations lead to remarkably good agreement with

experiments, except for the region around the Curie temperature, where magnetic excitations

become important. Even though we do not include them in this model, adding a description

of magnetism constitutes an interesting direction for future studies.

59



Chapter 4 Finite temperature modelling of nickel

200 400 600 800 1000 1200 1400 1600
T (K)

1.1

1.2

1.3

1.4

1.5

G
va

c
(e

V
)

EAM Anh

NN Anh

[Gong et al.]

exp

Figure 4.9: The fully anharmonic Gibbs free energy G(p,T ) of a single vacancy in fcc nickel
obtained with thermodynamic integration. Curves are shown together with the potential
energy difference at 0 K. Results for EAM and NN are compared with the DFT curve reported
in Ref. [223] based on ab initio calculations (we reproduce the curve that does not include
electronic or magnetic excitations), and available experimental data[274–277]. Dashed lines
indicate the level of 0K energy of formation for NN, EAM and DFT calculated in this work.
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Stability of defects

Finite-temperature and quantum fluctuations also affect the stability of defects. We estimate

their contribution using thermodynamic integration (TI) [33, 278, 279] that makes it possible to

estimate the absolute free energy of a thermodynamic state by a sequence of transformations,

and use the values for two different states to estimate their relative stability. For instance, the

Gibbs free energy of a single point defect can be easily found with an expression analogous to

Eq. (4.9):

Gd =Gdefect −
Ndefect

Nperfect
Gperfect, (4.14)

where Gdefect and Gperfect refer to the absolute free energies of two supercells, one of which

includes the defect.

In Section 3.3.1 we describe a thermodynamic path along which the Gibbs free energy of

defects can be computed. Since this topic is already covered, we omit the details of thermody-

namic integration here.

As shown in Fig. 4.9, at high temperature the contribution from finite-temperature free-energy

terms is sizable on the scale of the static defect formation energy (which is around 1.5 eV

for the vacancy, see Table 4.4). Even though TI makes it possible to compute this correction

with ab initio molecular dynamics [28, 207, 280], the use of a NN potential reduces the cost

dramatically, making it feasible to estimate defect formation free energies for more complex

defects and for materials with more diverse chemistry and crystallography.

Structure of the melt

One of the simplest and most direct diagnostics of the accuracy of an interatomic poten-

tial in the high-temperature limit involves computing the pair correlation function, g (r ) =
〈δ(r − ri j )〉/(4π2r 2ρ). As shown in Fig. 4.10, there is an excellent agreement between the

NN, the EAM and the experimental results from neutron scattering data [281]. Although the

pair correlation function provides only partial information on the structure, the near-perfect

agreement indicates that both the EAM and the NN provide an excellent description of the

liquid phase of Ni.

Self-diffusion coefficients and viscosity

The self-diffusion coefficient and the viscosity underlie mass transport and convection in the

melt. They can be computed rather easily from constant-energy (or weakly-thermostatted)
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Figure 4.10: Radial distribution function g (r ) of liquid nickel. The experimental curve corre-
sponds to Fourier transform of a structure factor obtained from neutron scattering for liquid
nickel at T = 1873K [281]. G(r)’s for EAM and NN models are computed from NVT trajectories
at V |P=0GPa and T = 1873K .

62



Finite temperature modelling of nickel Chapter 4

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575
T 1 103 (K 1)

101

4 × 100

6 × 100

D
 1

0
9
 (

m
2
 s

1
)

DFT

exp

exp

NN

EAM

Figure 4.11: Self-diffusion coefficient of liquid nickel as a function of temperature. The
triangles [282] and the star [283] indicate experimental measurements, dots indicate the result
of AIMD simulations reported in Ref. [284]. NNP and EAM results are shown with statistical
errorbars.
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Figure 4.12: Shear viscosity of molten Ni as a function of temperature. The triangles indicate
different sets of experiments collected in Ref.[285], while lines with errorbars correspond to
NNP and EAM predictions.
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molecular dynamics, evaluating the slope of the mean square displacement,

Dsim = lim
t→∞

∂

∂t

〈|r(t )−r(0)|2〉
6N

(4.15)

that we compute averaging 10 trajectories of 100-100-50(500-500-50)ps each for NN(EAM)

simulations involving 108-256-2048 atoms respectively. The self-diffusion coefficient has

a pronounced dependency on the system size which originates from hydrodynamic self-

interaction through the periodic boundary conditions. Thus, comparing the results for a

cubic simulation box of length L, the diffusion coefficient should be corrected for finite size

effects[286, 287]:

D0 = Dsim +2.837297kB T /(6πηL) (4.16)

where Dsi m is the diffusion coefficient calculated in the simulation, kB the Boltzmann con-

stant, T the absolute temperature, and η the shear viscosity of the liquid. Thus, performing

simulations at different system size at each temperature makes it possible to extract the viscos-

ity as a fitting parameter of the equation (4.16) together with D0. The diffusion coefficient and

viscosity as a function of temperature are shown in Fig. 4.11 and Fig. 4.12, respectively. The pre-

dicted values for EAM and the NN potential agree with each other, and are in semi-quantitative

agreement with experimental measurements.

Surface tension

The liquid-vapor surface energy γlv plays an important role in determining wetting and

capillary forces, that are relevant e.g. for additive manufacturing. Contrary to solid-vapor

surface energies – that can be reasonably estimated by single-point calculations – the liquid-

vapor surface tension requires averaging over liquid configurations, and simulations size and

time scale that are prohibitive for first-principles molecular dynamics. A practical simulation

protocol involves simulating a planar liquid slab, with two free planar surfaces parallel to xy

plane, and computing the integral across the slab of the normal and tangential components of

the stress σn and σt [289, 290]

γlv =
1

2

∫ Lz

0
[σn(z)−σt(z)]dz (4.17)

where Lz is the length of the simulation box. Given the slab geometry, this is equivalent

to computing the mean value of the stress of the entire simulation box, using σn = 〈σzz〉
and σt = 〈(σxx +σy y )/2〉. To evaluate γlv, we use a slab containing 927 atoms, with a square

cross-section of ∼ 1000Å2 and ∼ 10Å spacing between the surfaces, averaging over 400ps of

molecular dynamics simulations. As shown in Fig. 4.13, there is a rather large discrepancy
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Figure 4.13: Surface tension of a planar interface as a function of temperature, as computed
with NN and an EAM, compared with experimental data from Ref. [288].

between theoretical and experimental results for the surface tension, with experimental

values being much closer to the solid-liquid interface energy. The NN potential reduces a

discrepancy by a third, relative to the EAM, but is still 20% below the measured value at Tm. The

observed underestimation of surface tension at temperature Tm aligns with the corresponding

underestimation of Tm itself, a deviation that potentially stems from reference calculations

using the PBE functional.

Melting point and solid-liquid entropy

Having separately characterized the properties of liquid and solid Ni at finite temperature,

we can now turn to the determination of the relationship between the two phases and their

interaction. We begin by characterizing the relative stability of the two phases and identifying

their coexistence temperature. In order to achieve this, we employ the interface pinning

(IP) method[210] (refer to Section 3.3.2). This method operates by applying a harmonic bias

potential to a two-phase system, which is coupled to an order-parameter Φ that distinguishes

between the two phases of interest. The Gibbs free energy difference between the phases

is determined by the average force that the pinning potential exerts on the system. As an
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order parameter to differentiate between solid and liquid, we use the same collective variable

discussed in Ref. [292], that uses cubic harmonics to identify environments that are fcc-like

and distinguish them from those that are liquid-like.

We performed several simulations at various temperatures to identify the temperature depen-

dence of the chemical potential ∆µsl defined by Eq. 3.6. The temperature at which ∆µsl = 0

identifies the melting point Tm , and the slope is equal to the entropy of melting.

As shown in Figure 4.14, the computed melting points for EAM and NNP are 1700K and 1695K

respectively – only 2% off the experimental value which is equal to 1728K. The slope of the

two curves is also in good agreement with that of the experimental curve, corresponding

to ∆Ssl = -9.48 (EAM) and -11.5 (NN) mJ/K, to be compared with the experimental value of

-10.11[293]/-10.22[294] mJ/K. The excellent agreement with experiments might be somewhat

fortuitous, given that a recent DFT-based determination of the melting point of Ni reports Tm =
1570 K for calculations ignoring the magnetic contributions and using a GGA functional[295].

The discrepancy might be due to the use of pseudopotentials in our calculations, or in the

accumulation of errors associated with the calculation of absolute free energies by a series of

thermodynamic integrations in Ref. [295]: earlier results obtained by coexistence simulations

yield a value of 1637 K,[296] which is closer to the one we find here.

Solid liquid interface free energy

The solid-liquid interface free energy plays a crucial role in determining the solidification

behavior of materials, both in terms of controlling homogeneous nucleation, and in driving

the formation of microstructure that, in turn, influences greatly the final materials properties.

Measuring γsl is however notoriously difficult, which triggered the development of several

different methods to estimate it from atomistic modeling[297–299]. Here we use an approach

that was first introduced in Ref. [292], that relies on a bias potential to enable the reversible

melting of a portion of an elongated simulation box (we use a box that is equivalent to 6×6×18

fcc unit cells, with the interface aligned along the (100) direction), and determine the constant

γsl term in Eq. (3.3.2) based on the free energy difference between a perfect solid and the

configurations with two separate solid-liquid interfaces

γsl =
Gs|l −Gs(l )

2Ax y
. (4.18)

This expression is valid at T = Tm, and for a planar interface – whereas in out-of-equilibrium

conditions [300] or for a finite-size nucleus [301] further subtleties arise including the depen-

dency of the surface excess on the precise location of the solid-liquid dividing surface.
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meV/at. U el (Tm) TmSel (Tm) ∆F el (Tm)
solid 66.59±0.07 155.37±0.11 −88.78±0.06
liquid 69.55±0.08 157.76±0.27 −88.21±0.25
∆liq−sol 2.96±0.15 2.39±0.36 0.57±0.29

Table 4.6: Average band energy, entropy contribution and free energy of solid and liquid
phases at the melting temperature of Nickel Tm = 1700K , together with their difference. The
values are computed from the ML DOS estimated for ≈ 15000 snapshots extracted from
an NNP simulation of the liquid and solid phase at Tm . The uncertainties are derived by
separately computing each quantity using a separate prediction of the calibrated DOS model,
and computing the standard deviation of the end results.

We build the bias that compensates for the interface free energy in an adaptive, history-

dependent way, using the well-tempered metadynamics [212, 213] technique as implemented

in PLUMED[302, 303]. Bias is built from repulsive Gaussians that are 0.007 eV high, have a

width equal to 5 CV units (the sameΦ order parameter used for the pinning potential) and that

are added every 0.5ps. The well-tempered metadynamics bias factor (γ= 1+ ∆T
T ) is chosen

to be 90. Given that, at the melting point, the depth of the well associated with the fully

solid and the fully liquid states are equal, a restraint is also applied to restrict sampling and

prevent complete melting. A sample PLUMED input is provided with the data record that

accompany this publication [230]. As shown in Fig. 4.15 the free energy shows a minimum at

large Φ, corresponding to the fully-solid cell, and a plateau close to the restraining potential,

corresponding to the presence of a solid/liquid interface. The free energy of this plateau makes

it possible to estimate γsl = 0.272 and 0.253 Jm−2 for the EAM and the NN potentials. The

results are in a good agreement with previous calculations based on the capillary fluctuation

method: 0.234 Jm−2 and 0.325 Jm−2 (calculated for the (100) surface in Refs. [304] and [305],

respectively); 0.287 Jm−2 (averaged over different orientations, Ref. [306]).

Finite-electron-temperature effects

Electronic and magnetic fluctuations contribute substantially to the high-temperature ther-

mophysics of nickel, as evidenced for instance by the heat capacity curve in Fig. 4.8. We can

use the ML model of the DOS to compute the contributions to the free energy associated with

electronic excitations, Eq. (4.1), averaged over trajectories of the bulk solid and liquid phases

at temperatures around Tm . The difference ∆F el(T ) = F el
l (T )−F el

s (T ) could shift the chemical

potential curve in Fig. 4.14, leading to a change in the predicted Tm . As shown in Table 4.6,

even though the electronic excitations give a very substantial contribution to the free energy

of Ni around Tm , the contributions from the solid and the molten phases cancel out almost

perfectly, so that the impact on the melting temperature is less than 10K – in agreement with
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the observations made in Ref. [295]. It should also be noted that converging these quantities

to the level required to resolve the small difference between solid and liquid phases is far from

trivial – both in terms of the statistical error over a MD trajectory, and in terms of the ML error

computed following Ref. [241], by first generating a committee of predictions for the DOS, and

then using each curve to obtain a separate estimation of ∆F el(T ).

The averaged DOS over the solid and liquid phases at Tm , shown in Fig. 4.16, demonstrate

that the cancellation between F el
l (T ) and F el

s (T ) is to be expected, given the small differences

observed in the density of states, particularly in the vicinity of the Fermi level. Larger effects

could appear in systems that, upon melting, undergo a substantial change in electronic

properties, e.g. from semiconducting to metallic.
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Figure 4.14: Chemical potential difference between solid and liquid phases of pure Ni as a
function of temperature for EAM, NN and experiment[291]. The intersection of the yellow
and purple lines with the black abscissa identifies the melting point for the corresponding
potential.
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Figure 4.15: The curves show the converged free-energy profiles obtained by performing
metadynamics simulations of a two-phase Ni system, and using a one-dimensional CV that
measures the number of solid-like atoms. The curves are aligned with respect to the free-
energy of the bulk solid state, and scaled by the surface area so that the depth of the well
corresponds to the interfacial free energy.

71



Chapter 4 Finite temperature modelling of nickel

Figure 4.16: Average predicted DOS curve for the solid and liquid trajectories at the melting
temperature Tm = 1700K . The shaded area represent the standard deviation of DOS(E) over
the considered trajectories, and the inset shows a close-up of the region around the Fermi
energy. The dashed curve represents the Fermi-Dirac function f (ϵ−ϵF ,Tm)
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5 High-entropy alloys1

5.1 Introduction

In the previous chapter, we demonstrated how machine learning models can be employed

to account for thermal excitations of electrons and ions at high temperatures, as well as for

quantum effects at low temperatures. The workflow presented does not assume a specific

system of choice and can be applied to different systems, provided an interatomic potential is

available.

However, constructing a potential for an arbitrary system with an arbitrary number of ele-

ments presents a significant challenge: most ML frameworks are limited to 4-5 species due to

poor scaling and the inability to learn chemistry regularities, treating chemical elements as

uncorrelated entities. To overcome these limitations, we adopt the approach first introduced

in Ref. [97].

Using this scheme, we developed a general-purpose ML model for studying bulk high-entropy

alloys (HEAs). The first step was to generate a dataset containing 25 transition metals, covering

a wide range of stoichiometries. To ensure the dataset’s diversity and insightfulness, we

established a protocol similar to quasi-random structures.

The model trained on this dataset offers an accurate and transferable ML potential for 25

transition metals, along with an intuitive interpretation of their relationships. The model’s val-

idation indicates accuracy comparable to electronic-structure methods across a vast chemical

space.

1This chapter is an adaptation of my contribution to Ref. [307], where I was responsible for dataset generation
and curation, contributed to the model implementation, and carried out the tuning, training, and validation of the
model.
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We use this potential to reproduce computationally the seminal Cantor experiments on the

decomposition of multi-element mixtures, and find a qualitative behavior in the affinity

between different species that is consistent with well-known HEAs, allowing us to introduce

a data-driven version of the Hume-Rothery rules to guide alloy design. We then study three

alloy compositions: the prototypical Cantor alloy CoCrFeMnNi, the Mn→Mo counterpart with

enhanced catalytic performance, and PdPtIrRuRh, another promising catalytic composition.

In all cases, we observe a tendency for phase separation at low temperatures and short-range

order indicative of the thermodynamic drive to de-mix in high-temperature conditions.

5.2 Computational details

We start with a concise summary of the details of the calculations we perform in this work,

covering the reference electronic-structure calculations, the construction of the training set,

the architecture of the ML model, as well as the details of the sampling protocol that we use

for simulations in Sections 5.5 and 5.6. In the Appendix of Ref. [307] we provide representative

examples of the typical simulation setup, and additional convergence tests.

5.2.1 Electronic-structure details

All the reference energies and forces are computed using density-functional theory (DFT), as

implemented in the VASP code [308], with the PBESol exchange-correlation functional [309].

The core electrons are treated implicitly using projector augmented wave (PAW) potentials

[310]. We choose conservative values for the convergence parameters of the electronic struc-

ture calculation (see the Appendix of Ref. [307] for details): the wave function is expanded in

plane waves with a cutoff energy of 550 eV, and the Brillouin zone sampling uses a Γ centered

Monkhorst-Pack scheme [311] with an interval between k-points along reciprocal lattice vector

0.04 π Å−1. Even though transition metals often exhibit magnetism, either in the pure phases

or in alloys, we perform all our calculations without spin polarization. Even disregarding

the fact that ML models that can deal with magnetism are still at a very early stage[312], one

should consider that we aim to cover a broad chemical range, that includes materials which

require different types of approaches to describe accurately their magnetic behavior - band

magnetism within the local spin density approximation,[313] non-colinear magnetism,[314]

Hubbard-U calculations[315], etc. This makes non-polarized calculations a reasonable ap-

proximation within the scope of the present work (see also the Appendix of Ref. [307]), even

though this limits the accuracy of our reference and our model for magnetic systems - which

for example would not be able to predict the stabilization of bcc iron over the close-packed

polymorphs.
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5.2.2 Training set construction

We generated an original dataset including 25 d-block elements, i.e. all transition metals

excluding those that are not listed in Ref. [316] as relevant for HEAs (Tc, Cd, Re, Os, Hg). We

generate a total of 25 thousand structures, following a protocol that ensures quasi-random

sampling of this high dimensional phase space. We created four subsets of structures based on

bcc and fcc lattices containing 36 or 48 atoms, respectively. All lattice parameters are defined

by the average atomic volume of the elements in a structure and scaled up or down by up

to 10% at random to simulate compression and expansion. The structures in the first three

classes include from 3 to 8 randomly selected elements, and in the fourth – from 3 to 25. In

the first class, we included only perfect crystal structures, with random compositions. For the

three remaining classes, we shuffled atomic positions around their ideal lattice sites (using

a Gaussian distribution of atomic displacement with a standard deviation of 0.2 Å in the

second and fourth classes, and 0.5 Å in the third), to incorporate the information about finite

positional deviations in crystals.

For every class of structures, we generated 100’000 random configurations and selected around

7’000 of the most diverse from every subset using Farthest Point Sampling (FPS)[176] in radial

spectrum feature space.

5.2.3 Machine-learning model

We build ML models based on density-correlation representations, combining an atomic-

energy baseline, ridge regression based on pair and 3-body correlation features, and a multi-

layer perceptron[317] based on the 3-body features. Here we discuss briefly the functional

form of the different terms, and outline the training strategy we followed. The atomic-energy

baseline is simply a linear model that depends exclusively on the nature of the atom at the

centre of each environment, ai

V (aeb)(Ai ) = w (aeb)
ai

. (5.1)

Even though we train on atomization energies (and so the large dependency of the atomic

energies on the details of the pseudopotentials is not an issue) we still find that V (aeb) captures

a large fraction of the target variance, and facilitates learning. The second term we consider is

a set of pair energies. We use 12 GTO basis functions, with a Gaussian width of 0.25Å, a cutoff of

6Å and radial scaling following Ref. [97]; we expand the density in spherical harmonics and in

12 radial function, enumerated by the n index, and obtained by orthogonalizing Gaussian-type

orbitals that cover the range of distances up to the cutoff radius (see e.g. Ref. [170] for a precise

definition). We use different weights depending on the nature of the two atoms, so that in
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practice the contribution to the potential reads

V (2 B) (Ai ) =
∑
an

w (2 B)
ai an

〈
an | ρ⊗1

i

〉
. (5.2)

The third term involves 3-body correlations (SOAP features), computed on top of alchemically-

contracted density coefficients, with a linear model

V (3 B) (Ai ) =
∑

bnb′n′l
w (3 B)

bnb′n′l

〈
bnb′n′l | ρ̃⊗2

i

〉
. (5.3)

We use the same set of weights irrespective of the atom type, because in a 3-body descriptor

the nature of the central atom is encoded in the density associated with the Gaussian at r = 0,

so that the compression of the dependency of potentials on the central atom type is achieved

implicitly and with the same contraction coefficients used for the neighbor density.

Finally, we include a non-linear term that takes the compressed power-spectrum as input,

and feeds it into a Behler-Parrinello-style[231] multi-layer perceptron[317]. First, a linear filter

projects the power-spectrum features into 80 input neurons, ξ(0), to which hyperbolic tangent

activation functions are applied. A second linear layer combines the outputs of the neurons,

feeding them to one hidden layer of the same size. Finally, the outputs are linearly combined

to yield the atomic energy

ξ(0)
q (Ai ) = ∑

bnb′n′l
w (N N ,0)

qbnb′n′l 〈bnb′n′l |ρ̃⊗2
i 〉 ,

V (NN)(Ai ) =F (ξ(0)(Ai ))

(5.4)

We use this simple neural network — built on top of the compressed power-spectrum features

— because we want a simple and well-understood term that can incorporate non-linearity

without exploding the design space, and because we want to show that our alchemical com-

pression scheme can be readily applied to several well-established ML schemes. It is possible

(and likely) that alternative frameworks, e.g. increasing further the body order, may allow

for a better-performing model, but as we shall see this approach is sufficient to achieve

state-of-the-art accuracy together with a stable and interpretable model.

The parameters of V (3B) and V (NN) implicitly include the alchemical coupling matrix ualch;

for this reason, we optimize all models with gradient descent, relying on backpropagation as

implemented in PyTorch[69]. A ridge penalty term is included on all weights, to reduce the

risk of overfitting. We find that (possibly due to the presence of large linear components that

contribute a quadratic term to the L2 loss) a deterministic L-BFGS optimizer[318] performs

much better than stochastic gradient descent.
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5.2.4 Sampling details

Molecular dynamics (MD) is well-suited to describe structural relaxation of the atomic coordi-

nates. However, long-range diffusion in the solid phase occurs through vacancies, and is too

slow to be simulated explicitly by MD. To overcome this time scale problem, we use a combi-

nation of techniques to facilitate thorough sampling of atomic ordering. Our base protocol

involves performing molecular-dynamics simulations in the constant-temperature/constant-

pressure NpT ensemble[319]. We use a conservative time step of 2 fs, an isotropic barostat [196]

with a time constant of 200 fs coupled to an optimal-sampling colored-noise thermostat[245],

and an aggressive thermostat for the ions, alternating an optimal-sampling Langevin equation

with a stochastic velocity rescaling[244] with a time constant of 10 fs. We accelerate sampling

of the compositional (dis)order by performing Monte Carlo steps in which the nature of two

atoms in the system is exchanged, with a Metropolis acceptance criterion[320]. We perform on

average one exchange attempt per MD time step. Both the MD and the MC step conserve the

Boltzmann distribution (except for a negligible finite time-step error), and so the combined

MD/MC protocol is consistent with canonical sampling. In order to further accelerate sam-

pling, we also use replica exchange molecular dynamics (REMD)[321] – a technique in which

multiple trajectories at different temperatures are performed in parallel. Periodically, struc-

tures are exchanged between temperatures, using a Monte Carlo procedure that preserves the

Boltzmann distribution for each thermodynamic state. The fact that each trajectory is brought

through cycles of heating and annealing accelerates conformational sampling and reduces the

correlation time of observables that are associated with activated events at low temperature.

Unless otherwise specified, we use temperature replicas distributed according to a geometric

progression between two extremal values Tmin and Tmax. For all MD/MC simulations we use

the i-PI universal force engine[229], that includes an implementation of element exchange

moves[322] and a flexible implementation of replica exchange[323].

5.3 Alchemical learning

As discussed in the methods section 2.4.4, the compression scheme in Eq. (2.11) is just one of

the many approaches one could take to reduce the dimensionality of the density expansion

coefficients. One of the appealing features of this specific implementation is that it can be

interpreted relatively easily, and that it allows us to extract physical-chemical insights through

an introspection of the model parameters and performance.
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Figure 5.1: Learning curves for different models. Full lines correspond to models built using
only V (aeb) and V (3B), with nalch pseudo-elements (all optimized iteratively). The dotted green
curves are obtained with a ualch filled with uniform random numbers (rnd.) and with the
weights we use as an initial guess for the optimized models (base), that are built based on
physical priors following the scheme discussed in Ref. [97]. The dashed green line corresponds
to a model that includes V (aeb) and V (3B), as well as the full set of pair potentials and a non-
linear term built on top of the contracted power spectrum features V (NN).
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5.3.1 Learning curve analysis

We begin by considering linear models based on contracted power-spectrum features, sup-

plemented by an atomic energy baseline term, V (aeb) +V (3B). We perform separate training

exercises, using only energy as targets, and restricting the alchemical contraction to 2, 3, 4,

5 pseudoelements. For each model we compute learning curves by converging the loss at

a given number of training structures ntrain, then increase the train size and continue the

optimization restarting from the previous weights. Given that the optimization procedure

is rather demanding, we do not perform multiple train/test split, but use consistently the

same shuffle with up to 25’000 structure used for training and a hold-out set containing 500

configurations used for testing. Even though the accuracy does depend slightly on the shuffle,

and on the initialization of the weights, we find that the qualitative observations we present

here are robust.

Figure 5.1 shows a behavior similar to that observed in Ref. [97] for an analogous exercise on

the elpasolites data set[324]: at the smaller train set sizes a very aggressive compression is

effective at obtaining a robust model, but with more training data the learning curves saturate.

Increasing the number of pseudo-elements nalch delays saturation, but the improvement

going from nalch = 3 to nalch = 4 is negligible, and the learning curves for nalch = 5 sits almost

exactly at the same value. This indicates that, from the point of view of 3-body interactions, 3-4

pseudo-elements are sufficient to saturate the descriptive power of a linear model. Note that

the optimization of ualch is critical to achieve such efficient compression: a model that uses

fixed, random values for the contraction weights, as well as one that uses a fixed, physically-

inspired initialization of ualch, lead to an order of magnitude increase in the saturation error,

even with nalch = 4 (Fig. 5.1).

Given the saturation of V (3B), we proceed to increase the effective body-order of the poten-

tial adding a non-linear NN layer on top of the contracted power spectrum, V (NN), which

introduces about 160′000 additional model parameters, mostly associated with the contrac-

tion of the |ρ̃⊗2
i 〉 features to the 80 input features of the NN. Furthermore, we also include a

non-compressed two-body potential V (2B), for which we also consider a slightly larger cutoff

distance. This 2-body term, on its own, does not improve significantly the limiting accuracy

of the model (reinforcing the notion that the alchemical contraction is converged) but we

include it because it is inexpensive to compute, and has been shown in the past to lead to more

stable models, whose performance degrade more gently in the extrapolative regime[325, 326].

Incorporating a non-linear term in the model allows to overcome the saturation of the learning

curve (Fig. 5.1, dashed green line). The non-linear nalch = 4 model reaches a validation-set

mean absolute error (MAE) below 10 meV/atom. We discuss further the accuracy of this model
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(that we will refer to as the HEA25-4-NN) in Section 5.4.

5.3.2 A 3D periodic table for the transition metals

The alchemical coupling matrix associates to each of the physical elements a vector of size

nalch, that can be regarded as the “composition” of that element in terms of a set of pseudo-

elements (Fig. 2.1b). Thus, different atomic species can be seen as points in a continuum

space, and can be visualized as such to gain insights into the data-driven similarities that arise

from the optimization of ualch to achieve the most accurate regression of the target. To make

the visualization independent on unitary transformations of the weight matrix, we perform a

principal component analysis.

The eigenvalues of the covariance matrix indicate the magnitude of the various components

(their explained variance), and provide another indication of the importance of successive

increases in the dimensionality of the alchemical space. We observe a quick decrease of the

explained variance, with the fourth component typically amounting to less than 2% of the

variance (Fig. 5.2, inset). This confirms that the first three components provide sufficient

descriptive power to capture the difference in behavior between transition metals. We can

then look at how the d-block elements appear when projected along the top three principal

components of ualch (Fig. 5.2). We focus on the weights from the HEA25-4-NN model, but

the qualitative features of the alchemical projections are similar also for other models in

Fig. 5.1 (see the Appendix of Ref. [307]). The elements are arranged in a way that is strongly

reminiscent of their placement in the d block: the third principal direction corresponds to

the period, while the first two dimensions are associated with a semicircular arrangement,

with the elements appearing in the same order as the columns in the conventional periodic

table. Interestingly, this arrangement is reminiscent of that used for the d block in some of the

alternative representations of the periodic table, such as the Benfey spiral[327]. It indicates

that, from the point of view of the construction of an interatomic potential, zinc is closer to

scandium then it is to the atoms in the middle of the transition metals block.

5.3.3 Alchemical interpolation

The elements we have not considered leave a clear gap in the arrangement of the alchemical

coupling weights, and it is interesting to see how accurate a model that places rhenium and

osmium between tungsten and iridium fares in predicting their properties without additional

fitting.

We pick 60 structures from the hold-out set, containing distorted configurations with random
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Figure 5.2: Top-3 principal components of the alchemical coupling matrix ualch for the HEA25-
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are indicated by black thin lines. Interpolated positions for Re and Os are indicated with empty
circles. The inset shows the decay of the explained variance for the four principal components.
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composition. The MAE for these structures when using the nalch = 4 model using only V (aeb)

and V (3B) is 13 meV/atom. We then substitute some random atoms with Re and Os, without

changing the positions, and re-compute their energies with analogous DFT settings.

We then build a model in which we simply take the parameters optimized for the 25-elements

dataset, and complete them by adding atomic-energy baselines for Re and Os (obtained by

training on the residual a two-parameter model that depends exclusively on the Re and Os

content) and by adding pseudoelement weights that interpolate linearly between W and Ir

(see Fig. 5.2):

ubRe =
2

3
ubW + 1

3
ubIr, ubOs =

1

3
ubW + 2

3
ubIr. (5.5)

The powerspectrum model weights are unchanged: we are effectively interpolating in pseu-

doelement space. The resulting model yields exactly the same predictions for structures that

do not contain Os and Re, and has a MAE of only 24 meV/atom for the test structures that

include the two species (see also the Appendix of Ref. [307]). The model is also sufficiently

stable to run molecular dynamics simulations for Re and Os containing structures.

This example underscores the advantages of the interpretable functional form we use to im-

plement alchemical dimensionality reduction. It also opens up the possibility of designing

simulation protocols that include smooth “alchemical transformations”, in a similar spirit as

the framework pioneered by von Lilienfeld et al.[328]. For example, one could use thermody-

namic integration to compute the change in chemical potential associated with an element

substitution by running simulations with a mixed potential, in which the alchemical coupling

weights are gradually transformed between the values associated with two elements.

5.4 Validation of the potential

We now assess the accuracy and stability of the model we use in the rest of this work, which

combines a 4-pseudoelement contraction of the powerspectrum with a multi-layer perceptron.

We aim to provide benchmarks that are easy to reproduce, but that reflect the performance of

the model in relevant simulation tasks, and we envisage that any comparative study would

include most of these and not only cross-validation statistics. To contextualize and provide

a reference scale for our results, we report in the Appendix of Ref. [307] similar validation

results for the general-purpose, universal graph neural network M3GNet[329]. In all cases

HEA25-4-NN, which admittedly has a narrower scope of applicability, outperforms M3GNet

by a large margin.
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Figure 5.3: Parity plot between reference energy and forces and the values computed with the
HEA25-4-NN model, for a hold-out set of 500 structures, randomly selected from the training
set. Energy error: 10 meV/atom mean absolute errror (MAE), 14 meV/atom root mean square
error (RMSE), Force error: 190 meV/Å MAE, 280 meV/Å RMSE.
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5.4.1 Hold-out validation of the HEA25-4-NN model

We train the HEA25-4-NN potential by progressively increasing the train set size, until we run

the final optimization on 25’000 structures, including forces for 2’000 of them. We hold out

500 structures and use them for validation. The parity plot between targets and predictions

demonstrates the accuracy of the model (Fig. 5.3), which is remarkable given the diversity of

the dataset, that contains random combinations of up to 25 elements, and highly-distorted

structures.

5.4.2 Binary convex hulls

Even though the HEA25-4-NN is clearly geared towards multi-component simulations, it is

important that it also provides reasonable results for simpler compositions, as these may

appear spontaneously when complex alloys de-mix and form precipitates. We collect 1438

binary intermetallic structures out of more than 146k crystal structures from the Materials

Project database[330], and re-compute their energies with single-point calculations using

our DFT setup, as well as with the HEA25-4-NN model. We discard 23 structures for which

our DFT calculations did not converge and 10 that correspond to configurations that are

too dissimilar from the bulk structures we consider here (see Appendix of Ref. [307]). For

the remaining structures, the MAE error for the cohesive energy is 62 meV/at. and for the

formation energies is 63 meV/at, which is higher than the cross-validation error, but still

remarkably accurate for extrapolative predictions. It is worth noting that the MAE discrepancy

between our DFT calculations and those saved in the MP records is 65 meV/at.; this is due

to the significant difference in the details of the electronic structure calculations, e.g. the

use of Hubbard U corrections for some structures in the MP protocol, and neglect of spin

polarization in ours. This observation underscores that the details of the electronic structure

calculations can have an impact comparable to the accuracy of our ML model. We then use

this data to compute binary convex-hull diagrams for all element pairs. In Fig. 5.4 we show

a representative example for the Ti–Pt system. The overall shape of the hull is usually well-

reproduced, but often HEA25-4-NN predicts different stable polymorphs than DFT, and/or

mis-predicts the stability of certain compositions (as it is the case for TiPt2 in the figure).

However, these qualitative errors are usually associated with situations in which a small energy

shift can bring a composition above the hull boundary, and even in a fully ab initio study it

would not be possible to determine conclusively its thermodynamic stability. The full list of

hulls is included in the Appendix of Ref. [307]. Fig. 5.4 also shows an overview of the accuracy

of the prediction of formation energies for all phases (stable and unstable) as a function of

composition. Errors are not uniform: some elements such as Mn, that have the tendency of
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Figure 5.4: MAE for the formation energy of binary compounds from the Materials Project
database. The inset shows a representative hull plot for the Ti–Pt system, highlighting the hulls
obtained from the single-point DFT calculations and the ML predictions. The dashed line
identifies the structures that are stable based on the energies available in the Materials Project
database.
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forming complex crystal structures, yield larger errors, while others such as Cu or Ni usually

yield errors comparable to the validation set. It would be trivial to improve the accuracy of the

model for binary structures and pure element polymorphs by including this small number of

additional structures in the training set. We chose not to do that to avoid introducing biases in

the accuracy depending on the different abundance of structures in the MP database. In the

future, we plan to extend systematically our training set to incorporate disordered and liquid

structures.
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Figure 5.5: Equation of state for the random relaxed (RR) and fully relaxed (FR) structures (see
text for the full definition), computed with the HEA25-4-NN potential and with the reference
DFT. Birch-Murnaghan parameters for cohesive energy (E0), equilibrium volume (V0), bulk
modulus (B0), bulk modulus derivative (B ′

0) are given in the table.
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5.4.3 Energy and equation of state

We prepare a 5×5×5 fcc supercell, containing 5 atoms of each of the 25 elements, arranged

randomly on the lattice. We relax the geometry of the structure, and the volume of the

supercell, using the HEA25-4-NN potential. We refer to this structure as the random relaxed

(RR) structure. Starting from the same configuration, we also perform a slow annealing

trajectory, combining molecular dynamics and atom exchange moves, to obtain a structure

in which the arrangement of elements is not random, but more energetically favourable. We

refer to this structure as the fully-relaxed (FR) structure. In both cases, the atoms relax away

from fcc lattice positions, and the resulting structure within the supercell is rather disordered.

We then introduce an isotropic compression or expansion of the two structures, relaxing the

coordinates of the atoms within the cell, and fit a Birch-Murnaghan equation of state to the

resulting energy-volume curves. We repeat the fixed-cell relaxation with the reference DFT,

and compare the resulting equations of state (Fig. 5.5). The error on the cohesive energy E0

is comparable to the test error (24meV for E (RR)
0 , 3meV for E (FR)

0 ), and much smaller than the

energy gain associated with the annealing of the lattice occupations (E (RR)
0 −E (FR)

0 is about 150

meV/atom), indicating that HEA25-4-NN is reliable for assessing the energetics of ordering in

a random alloy. The equilibrium volume and bulk modulus for the two structures are also in

good agreement, with errors below 1% and 10 %, respectively – comparable with the typical

discrepancy between different DFT approximations or between DFT and experiments.

5.4.4 Molecular dynamics

As a further demonstration of the accuracy and the stability of this potential, we perform two

constant-pressure MD/MC trajectories, one at T = 300K and one at T = 5000K, each starting

from a random arrangement of 5 atoms for each of the 25 elements (a total of 125 atoms)

arranged on an fcc lattice. The trajectories are 10ps long, with on average one attempt at

exchanging a pair of atoms every 2fs. We save a configuration every 100fs, and perform DFT

calculations to compare energy and forces with those obtained from the ML potential. Fig. 5.6

shows that the low-temperature trajectory, where major rearrangements of the atoms occur

but the structure remains approximately fcc, has an accuracy comparable to that measured

on the validation set. The high-temperature run exhibits a higher error. However, the main

component of the error is a rigid shift of the energies, and the trajectory remains stable – which

is remarkable given that we observe complete melting, and the potential is trained exclusively

on distorted solid structures.
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Figure 5.6: Comparison between the potential energy evaluated along two 10ps MD/MC
trajectories, and that recomputed by DFT for 100 snapshots. The inset shows the parity plot
for the force components computed for those structures. Energies have a MAE of 14 (48)
meV/atom and forces a component MAE of 0.23 (0.29) eV/Å for the 300 (5000) K trajectory.
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Figure 5.7: Trajectories of the potential energy for the 40 replicas used in one of the REMD
simulations of a 864-atoms box of the HEAall. Each color corresponds to a different initial
configuration, that goes through cycles of heating and cooling due to REMD exchanges, accel-
erating the equilibration of the simulation at each temperature. The collection of trajectory
segments corresponding to the extremal temperatures T = 300 K and T = 1253 K are high-
lighted with thicker, black lines. The logarithmic time scale refers to the MD integration time,
but should not be interpreted as physical time given the presence of MC steps and replica
exchange moves.
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5.5 Temperature-dependent segregation in a Cantor-style alloy

In a seminal experiment, Cantor et al.[117] investigated the development of microstructure

during the solidification of equimolar mixtures of 16 and 20 elements. We aim to perform a

similar experiment in a computational setting, assessing the propensity of different elements

to pair together or segregate, while covering the full component palette allowed by our model.

This poses considerable challenges beyond the chemical complexity: kinetic trapping plays an

important role in the physics of HEAs, and simulating vacancy-assisted atom diffusion requires

time scales that are unattainable in brute-force atomistic modelling. In order to accelerate

sampling and achieve (partial) equilibration, we run replica exchange simulations combining

molecular dynamics and atom swap moves (REMD/MC), as described in Section 5.2.4.

Fig. 5.7 shows a representative trajectory for a 864-atoms cell, starting from fcc configurations,

and including equimolar composition of all 25 elements (a composition we will refer to as

HEAall). The slow, logarithmic relaxation of the low-temperature replica is indicative of the

glassy dynamics of the system, which does not equilibrate completely even after millions of

MD/MC steps (see the Appendix of Ref. [307]). For this reason, we perform multiple indepen-

dent (and longer) simulations with a smaller box size (see the Appendix of Ref. [307]). The

qualitative observations on the local ordering are robust, even though the precise arrangement

of atoms in the low-temperature regime, as measured by the element-resolved pair correlation

functions, differ noticeably between trajectories.

5.5.1 Relative pair probabilities for the HEAall alloy

The pair correlation functions (Fig. 5.8) display broad, liquid-like peaks at both the highest

and the lowest temperature we considered. In fact, simulations show little diffusion (except

for some occasional bursts of activity at the high end of the temperature range) and the system

can be characterized as an amorphous (or nano-crystalline) solid. The broadening of the peaks

can be at least in part attributed to the diversity of pair distances between atomic species:

some, like Cr-Cr, peak at distances as short as 2Å, others, such as Y-Y, peak at about 3.7Å.

Note that typical distances in same-element pairs do not always match those found in the

pure solid, underscoring the fact that the HEA25-4-NN can capture the effects arising from

the heterogeneous chemical environments found in this alloy. For this reason, and given

the disordered structure that develops in the supercell, we analyze structural correlations

using a coarse-grained definition in which the first coordination shell extends up to a distance

r = 3.75 Å, the second up to r = 6.25 Å and the third up to r = 8 Å, which is the largest distance

we consider given the size of the box. We then define a variation on a theme of the short-range
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Figure 5.8: Pair correlation functions computed on a the T = 300 K (full) and T = 1253 K
(dashed lines) replicas of a HEAall box. Black lines correspond to the unresolved pair correla-
tion, while red (Cr-Cr) and blue (Y-Y) lines provide representative examples of pair correlations
resolved by species. The vertical dotted lines indicate the regions used in the definition of the
pair ordering.

order parameter [331], which we dub the relative pair probability (RPP)

RPP∆r (A,B) = p∆r (A,B)

p∆r (⋆,⋆)

ρ2

ρAρB
(5.6)

which computes the number of pairs between species A and B that occur within a range ∆r of

distances, divided by the number of all pairs found in that same region, and normalized by the

number density of the two species, ρA,B and the overall number density ρ. RPP = 1 indicates

that the two species are as likely to be found within a given separation range than any atom

pair. RPP > 1 (< 1) indicate that they are more (less) likely to be found in that distance range.

Qualitatively, the value of the RPP in the first coordination shell is indicative of the propensity

of two elements to cluster together or to separate from each other. However, the values cannot

be interpreted in isolation, without considering the overall setup of the simulation: the finite

size of the supercell, the imperfect equilibration, and the many-body interactions between all

25 species mean that the strong affinity between Y and Au, or the poor compatibility of Mn

and Pd, do not necessarily imply the same quantitative effect when considered as part of a

different overall composition. Fig. 5.9 shows a heat-map representation of RPP∆r (A,B) for the

HEAall at 300 K and 1253 K, and for the three regions indicated in Fig. 5.8. A few qualitative
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Figure 5.9: A plot of the relative pair probability for all atom pairs and the three regions
corresponding to the first, second, and third peaks in the total pair correlation function (
Fig. 5.8). Each plot shows results for simulations of HEAall at both 300 K (lower-left corner)
and 1253 K (top-right corner), averaged over the trajectories and discarding the first 100 ps
(50’000 combined MD/MC steps).
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observations can be made. First, in our simulations HEAall evolves to be far from random.

Certain atom pairs have a strong tendency to associate or separate at low temperature, and

the high-temperature samples (which are well equilibrated) show similar, even though less

pronounced, trends. This correspondence is interesting, as it suggests one may use high-

temperature trajectories, that are easier to converge, to extract insights on the propensity of

different species for association. The trends observed in the second and third region are very

similar to those in the first-extended-neighbor shell, although progressively less pronounced:

given the finite size of the simulation, and incomplete equilibration, the simulation does not

generate clear-cut phase-separated regions.

Considering the RPP along the elements, one can observe a clear periodicity in behavior. Sc,

Y, Hf, as well as the noble metals, Cu and Zn, tend to separate from V, Cr, Mn, Fe, which on

the other hand have a tendency to cluster together, and also have positive associations to

their heavier counterparts Nb, Mo, Ta, W. On the other hand, Sc, Y and (to a lesser degree) Hf

associate strongly with noble metals, Cu, and Zn. The noble metals, Cu and Zn also tend to

cluster together. Ti, Co, Ni, Zr, Ru, Ir have less clear-cut associations, and are closer to having

a random distribution throughout the box. Another way of looking at the association plots

in Fig. 5.9 is to check for consistency with known high-entropy alloys. The Cr-Mn-Fe-Co-Ni

system is one of the prototypical sets of HEA formers, and indeed we observe strong mutual

association tendency between Cr-Mn-Fe in the first shell, and also with Co and Ni in the

second extended shell. Second-shell mutual association is also observed for noble-metal

based compositions such as Ni-Cu-Pd-Pt-Au. Let us reiterate that strong mutual association

for a group of elements in the HEAall runs is a necessary, but not sufficient, conditions for that

group of elements to be good HEA-forming candidates. For instance, some elements may

have a strong tendency to form ordered intermetallics and might separate out of the mixture.

5.5.2 Data-driven Hume-Rothery rules

This analysis allows us to substantiate and quantify some of the empirical principles that are

used in the design of HEAs, such as Hume-Rothery rules[332] that stipulate what elements

can be substituted for each other with little effect on the HEA-forming propensity. We use the

first-neighbor affinity of each species to all the other elements in the alloy to define a measure

of dissimilarity as

dRPP(A,B)2 =∑
X

[
log10

RPP1(A,X)

RPP1(B,X)

]2

, (5.7)

that, roughly speaking, measures the relative strength of interactions between the two species

and the other components. Two elements with a small distance are predicted to behave

similarly, and vice versa. Fig. 5.10 paints a picture that is consistent with the observations
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Figure 5.10: (a) Element similarity matrix based on the RPP distance (5.7) for the nearest-
neighbor shell, in the HEAall simulation at T = 1253 K. (b) The element similarity map (color-
coded based on the group of the various transition metals) is built by applying metric multi-
dimensional scaling to the distance matrix, and provides a visual aid to recognize groups of
elements that have similar affinity patterns to the other d-block metals.
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we made on short and mid-range order between the elements in the HEAall, and with much

of the common wisdom in HEA research.We base this analysis on the high-temperature

simulations to obtain a statistically-converged, and somewhat more nuanced, definition,

but the qualitative features of the map are similar to those one would obtain from the RPP

computed at T = 300 K. Elements in the same group usually show strong similarity, but

this is not always the case: for example, Cu is more similar to Zn than to Ag. The similarity

matrix can also be converted to a 2D map, in which the Euclidean distance between elements

approximates their RPP-based similarity (also shown in Fig. 5.10), which provides an easy-to

interpret visual representation of a set of data-driven rules to design HEAs. The element

similarity that can be inferred from the RPP-based map differ – both quantitatively and

conceptually – from that associated with the alchemical coupling matrix in Fig. 5.2. Whereas

the weights are associated with the similarity in terms of the interatomic potential, the RPP

similarity is a result of the collective behavior of the HEAallat the prescribed thermodynamic

conditions, not unlike the relation between a pair potential and the potential of mean force.

This means, for example, that one could compute dRPP for a different alloy composition

(extending or refining the assessment of alloying behavior), from a different type of interatomic

potential, or even from experimental data on partial structure factors.

5.6 Bulk structure of high-entropy alloys for catalysis

Having demonstrated the accuracy of the HEA25-4-NN model, and used it to investigate

the mutual affinity of the full set of 25 transition metals we considered in a Cantor-type

computational experiment, we now turn our attention to a more focused study of three

specific equimolar compositions. The first is the prototypical CoCrFeMnNi alloy, which was

reported by Cantor et al.[117] in their seminal paper. This alloy is also known to be effective as

a catalyst[333–335]. Furthermore, we investigate CoCrFeMoNi[126, 336, 337],as an example

of an alloy obtained by element substitution that has been broadly studied for its improved

mechanical and tribological properties [338, 339], as well as a catalyst of oxygen evolution

reactions. We then consider IrPdPtRhRu[128, 340–343] as an example of an alloy based on

sixth period elements that has recently received much attention as a catalyst for hydrogen

evolution, and is often synthesized in the form of nanoparticles.

To model the alloys, we used fcc lattices with 500 atoms per cell (5×5×5 super cell). We ran

two independent REMD/MC runs according to Section 5.2.4 with a timestep of 2 fs and 32

temperature replicas, logarithmically spaced between 300 K and 1253 K. We discard the first

100ps for equilibration. Given that all these alloys maintain a regular fcc structure throughout

the simulation, we analyze their structure in terms of Cowley’s short-range order[331] (SRO),
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Figure 5.11: a. Cowley’s short-range (SRO) parameters for the first shell in CoCrFeMnNi HEA,
shown for the 10 replicas between 300 and 1253 K, averaged over the last 1000 steps and two
independent runs. At low temperatures, a tendency of Fe-Mn segregation can be seen. In
contrast, Cr is very well mixed. There are two phase transformations around 400 K and 900 K.
The y-axis is adjusted to the example shown in Fig. 5.13 to facilitate comparison. b,c. snapshot
from MC/MD simulations at T = 300K and at T = 720K, respectively. In the 300 K snapshot,
two planes of Ni can be seen, while in the higher temperature snapshot, Cr order is evident
(see the Appendix of Ref. [307]).
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which is commonly used in the study of HEAs and takes a value of zero when atoms are

distributed fully randomly, becomes negative for pairs of atoms that tend to cluster together,

and tends to one when two atom types never appear as first neighbours. In the Appendix we

also report an analysis in terms of the RPP that incorporates second-neighbor and long-range

correlations. In interpreting these results, one should consider similar considerations to those

we discussed for the HEAall simulations: (1) the SRO (and the RPP) are only meaningful for

homogeneous phases, and in case of phase separation the values computed for the whole cell

serve only to signal the occurrence of a phase transition; (2) a combination of finite-size effects

and glassy behavior can hinder reaching full equilibrium in simulations; (3) since they allow

for atom exchanges, our simulations cannot give quantitative indications on whether different

phases are only metastable, nor on the kinetics of diffusion processes that are required for

precipitation.

We start by analyzing the Cantor alloy CoCrFeMnNi. The SRO computed at different tempera-

tures (Fig. 5.11a, plotted for all element combinations) indicate the presence of at least two

phase transitions. The high-temperature phase is homogeneous and disordered, but shows

substantial ordering, particularly for the Cr-Cr pair. At approximately 900 K we observe a first

transition, that is associated with the ordering of Cr atoms. The SRO for the Cr-Cr pair tends to

one (as there are almost no first-neighbor chromium atoms) but the RPP show a clear increase

of second-neighbor Cr-Cr pairs, consistent with the formation of a simple cubic sublattice.

The other elements remain relatively disordered, and no discontinuous behavior is observed

in the SRO. As the temperature is reduced further, a second transition occurs around 400 K.

The most prominent structural transformation is the formation of (100) Ni planes, separated

by (Co,Fe,Mn)-rich regions forming a layered superstructure. Fig. 5.11b,c show snapshots of

the simulations at 300 K and 720 K, that give an idea of the partially-ordered structure of the

two phases.

Substituting Mn with Mo changes the segregation behavior significantly (Fig. 5.12a): the SRO

parameters are generally smaller, with the largest segregation tendency found for the Mo-Ni

atom pair. The tendency of Cr to form a cubic sublattice is less pronounced than CoCrFeMnNi,

and one only sees the increase of SRO parameters at around 500 K. At low temperature,

(100) planes of Ni form that are very similar to those observed in the Mn-based counterpart

(Fig. 5.12b,c), that are separated by (Co,Fe,Mo)-rich regions. Given the sizable energy errors of

the ML models, as well as those of the underlying DFT reference, one should not overinterpret

the details of the structures we observe. Even if fcc CoCrFeMnNi is paramagnetic, neglect of

magnetism in the presence of several elements which form ferromagnetic phases is worrisome

(see e.g. Ref. [344] for a thorough discussion of magnetism in CoCrFeMnNi and CoCrFeMoNi).

That said, our observations provide strong indications of the tendency to form partly ordered
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Figure 5.12: a. Cowley’s short-range (SRO) parameters for the first shell in CoCrFeMoNi
HEA, shown for the 10 replicas between 300 and 1253 K, averaged over the last 1000 steps
and two independent runs. Good mixing of atomic species can be assumed due to the
small values of SRO parameters. The y-axis is adjusted to the example shown in Fig. 5.13 to
facilitate comparison. b,c. snapshot from MC/MD simulations at T = 300K and at T = 1253K,
respectively. In the 300 K snapshot, two planes of Ni can be seen.
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phases with a complex structure, which, together with the low vacancy-mediated diffusiv-

ity[345], help explain the observed stability of HEAs that contain (Co,Fe,Cr,Ni). A tendency

to develop short-range ordering is consistent with previous simulations in other classes of

HEAs[346], and with observation of phase separation in equimolar CoCrFeMnNi in high-

mobility environments such as grain boundaries[347] or under deformation[348].

While the leading effect in CoCrFeMnNi and CoCrFeMoNi is the appearance of partial ordering

at low temperatures, in the case of IrPdPtRhRu we observe clear-cut phase separation betwen

a (Pd,Pt) and a (Ru,Ir,Rh) phase, with Rh accumulating preferentially at the interface between

the two phases (see Fig. 5.13b,c). The strong tendency to segregate is already evident in

the high-temperature regime, where the system is visually well-mixed, but with large SRO

parameters. This is in contrast to the experimental observation that this HEA forms a complex

solid solution with random atom distribution[128, 342]. As shown in the Appendix of Ref. [307],

the large enthalpic gain arising from demixing is not an artefact of HEA25-4-NN, and the

ML error on the free-energy change upon ordering is of the order of 3 meV/atom. These

observations suggest that kinetic trapping, or finite-size effects associated with the synthesis

in the form of nanoparticles, might be key to stabilize a homogeneous phase.
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Figure 5.13: a. Cowley’s short-range parameters for the first shell in IrPdPtRhRu HEA, shown
for the 10 replicas between 500 and 933 K, averaged over the last 1000 frames and with an error
estimation from independent repetition runs. The most pronounced local order can be seen
for the Pd-Pd atom pair (light green line, mathematically smallest SRO). Demonstration of the
phase segregation tendency by highlighting the b. PdPt and c. IrRhRu atoms in an MC/MD
snapshot.
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Grasping the implications of finite temperature effects is essential for a precise description

of heat transport, mechanical response, microstructure, and phase formation, which are all

important factors in guiding the design and synthesis of materials. Traditional methods of

studying materials at finite temperatures can be prohibitively expensive for studying phenom-

ena which require large time and length scales, such as interfacial properties. To overcome

these constraints, this thesis has tackled two primary challenges: 1) building a workflow

based on an ML model to compute finite temperature properties accurately and 2) present-

ing a model capable of generalizing and transferring the knowledge learned from different

chemistries to model materials of real-life interest.

By addressing the problems of finite temperature description and chemical complexity sep-

arately, this work has made substantial progress in both areas. To tackle the first problem,

we focused on a simple, single-element system – nickel, which is an important component

in several industrial alloys. We began by constructing a high-dimensional neural network

potential based on the approach proposed by Behler and Parinello. For this purpose, we

generated a dataset using an exploitation/exploration strategy, encompassing bulk and liquid

phases, as well as surfaces and defects. The developed MLIP achieved accuracy comparable to

DFT for pure nickel across a wide range of properties.

Using a simple system as an example, we demonstrated a general workflow independent of the

system’s choice combining machine learning models with statistical mechanics techniques

to account for quantum effects and electronic excitations. Additionally, we provided an

example of how MLIP enables accurate sampling of free energy surfaces with enhanced

sampling techniques to compute interfacial properties. Moreover, we calculated the stability of

defects using MLIP for thermodynamic integration, significantly reducing the computational

cost compared to ab initio calculations. This approach presented promising prospects for
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estimating defect formation free energies in more complex defects and materials with a wider

range of chemistry and crystallography.

Building on the achievements in addressing finite temperature descriptions, this thesis also

tackles the challenge of the transferability of ML models across different chemistries by adopt-

ing the method of alchemical learning. This approach is based on the principle that chemical

elements close to each other in the periodic table often exhibit similar behaviour, a fundamen-

tal concept in chemistry that plays a vital role in the design of new materials. To this end, an

ML framework was developed that incorporated this principle through linear compression

of chemical space. This framework was applied to regress the potential energy surface of a

dataset containing 25 d-block elements. To ensure the necessary level of phase space sampling,

a training set was generated using a protocol specifically designed for quasi-random sampling

in the high-dimensional phase space.

The ML framework successfully trained a potential capable of describing bulk phases of

arbitrary combinations of represented chemical elements with semi-quantitative accuracy.

The intuitive, functional form of the contraction facilitated a critical analysis of the model’s

performance, revealing that only 3-4 dimensions were necessary for capturing the diverse

behaviour of transition metals.

The optimized combination weights of the model unveil relationships between elements that

correspond to their arrangement in the periodic table. This insight allows the prediction

of properties for missing elements with only a moderate loss in accuracy. This capability

demonstrates the potential of the ML framework in expanding our understanding of complex

chemical systems.

Utilizing the potential, the thesis explores an ambitious experiment involving the equilibration

of an equimolar mixture of all 25 elements. This process results in a disordered structure

characterized by strong element segregation. The observed affinity between elements is

consistent with known high-entropy alloys, providing a foundation for defining a data-driven

version of the Hume-Rothery rules. These rules can be adapted to subsets of elements relevant

to specific applications, further enhancing the utility of the developed framework.

The thesis investigates three specific compositions: the Cantor alloy, one Mn→Mo substitution

alloy, and one noble metal alloy. Each of these compositions exhibits unique phase behaviors,

showcasing the versatility and applicability of the developed ML framework in studying diverse

material systems.

As the field of materials science advances, there are several directions for future work that can

build upon the achievements of this thesis. One such direction involves extending the dataset
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to include a more diverse range of compounds and structures, such as molten and defective

configurations. Additionally, expanding the dataset to encompass not only bulk phases but

also surfaces would offer valuable insights into surface segregation and surface reactivity of

multi-component materials, which are relevant for corrosion and catalytic applications.

Considering the generality of the presented model, another impactful extension would be to

tackle the organic space of chemistry. By applying this approach to systems of biomolecular

relevance, researchers could gain a deeper understanding of complex biological systems and

their interactions with materials invaluable in drug discovery, biomaterials, and biotechnology.

Further improvements to the methods employed in this thesis are also possible. For instance,

the compression scheme could be enhanced by optimizing the chemical embedding inde-

pendently for different central species of the atom-centred representation. Exploring the

transferability of the method to other datasets is another intriguing research direction. By

assessing if the compressed matrix can be effectively applied to various datasets, with only the

need to fit model weights, new opportunities for investigating a wide range of materials might

be unveiled.

Application-focused research, such as studying 4 and 5-element high-entropy alloys, can also

build upon the work presented in this thesis. The HEA25-4-NN model will provide valuable

insights into the stability range of multi-principal-component alloys and guide synthetic

efforts in developing novel materials with desirable properties.

To conclude, this thesis highlights the benefits of combining machine learning predictions

with physics and chemistry-based methods, creating a versatile hybrid modelling approach.

By using the strengths of both machine learning and sampling techniques, more accurate

and efficient models can be developed to study the stability of multi-component alloys. This

approach has the potential to lead the production of a new generation of materials with en-

hanced properties, finding applications that substantially impact industries such as aerospace,

biomedical, energy, chemical processing and electronics.
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