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ABSTRACT

"Ensure healthy lives and promote well-being for all at all ages" is the third sustainable
development goal for the United Nations Agenda of 2030. This doctoral thesis fully
embodied this objective by targeting stroke, a leading cause of death and disability
worldwide. Indeed, around 80% of stroke survivors experience motor deficits and around
20% of them remain severely impaired, preventing them to perform activities of daily
living and reintegrate in society. Finding an effective rehabilitation strategy for this
specific group of patients is critically needed and was the focus of this work.

Within the AVANCER proof-of-concept clinical trial (clinicaltrials.gov NCT04448483), we
have designed and developed an interventional protocol to enhance upper-limb functions in
severely impaired chronic stroke patients. Our goal was to use a combination of synergistic
neurotechnologies applied in a hierarchically organized and personalized fashion. All
recruited patients underwent a cumulative personalized intervention consisting of two
phases: the first used a brain-computer interface (BCI) to trigger a variety of patient-
tailored movements supported by multi-channel functional electrical stimulation in
combination with a hand exoskeleton. The second interventional phase added non-
invasive brain stimulation by means of anodal transcranial direct current stimulation
to the motor cortex to the initial approach. Each phase lasted a minimum of 11 daily
sessions and was continued as long as there was an improvement. Clinical-behavioural
and multimodal systems neuroscience assessments were acquired, before the first, at the
switch to the second and at the end of the second interventional phase.

Results from the first eleven patients were promising showing safety, feasibility, and
potential efficacy of this novel personalized approach acting synergistically on the nervous
and musculoskeletal system. The primary outcome of the study (i.e., 4-point improvement
in the Fugl-Meyer assessment of the upper extremity) was met with an average increase
of 6 points. Clinical motor improvements were paralleled by changes in motor-network
function and structure. Functional changes were observed both in resting-state and
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during motor tasks. Structural changes were seen in the re-appearance of motor-evoked
potentials.

In AVANCER, the dosage of the therapy and the functionalities of the BCI set-up
were tailored to each patient, while neuromodulation was applied in a non-personalized
manner in terms of brain-state dependence. In the second part of this work, we have
set the fundamentals for a personalized brain-state-dependent stimulation. Specifically,
we made the first steps in view of a brain-to-brain computer interface (BBCI) where
specific brain signals are corresponded by the response of both peripheral machines and
neuromodulation. We have thoroughly analysed and compared the brain state estimation
methods to find the most accurate one and understand the implications of different
signal processing parameters and steps. We have also looked at the applicability of such
stimulation on stroke patients and finally discussed the importance of personalizing such
stimulation in terms of temporal and spatial targets in relation to the stroke-recovery
stage.

We hope that future interventions for motor rehabilitation after stroke will employ a
BBCI and that a great numbers of patients will improve their well-being.

Keywords: Stroke, Motor rehabilitation, Neurotechnologies, Personalized
therapy, Brain-Computer Interface, Brain-state-dependent stimulation



SINOSSI

"Garantire vite sane e promuovere il benessere per tutti a tutte le età" è il terzo obiettivo
dell’Agenda 2030 per lo sviluppo sostenibile. Questa tesi di dottorato vuole essere un
contributo in questa direzione ponendo l’attenzione sull’ictus, una delle principali cause
di morte e disabilità a livello mondiale. Circa l’80% delle persone colpite da ictus presenta
deficit motori e per il 20% di queste diventa impossible svolgere attività quotidiane.
Trovare una strategia efficace di riabilitazione è stato l’obiettivo di questo lavoro.

Nell’ambito dello studio clinico AVANCER (clinicaltrials.gov NCT04448483), abbiamo
ideato un protocollo interventistico per ridurre i deficit motori degli arti superiori nei
pazienti con ictus cronico. Il progetto ha utilizzato una combinazione di neurotecnologie
somministrate gerarchicamente e in modo personalizzato. Tutti i pazienti sono stati
sottoposti a un intervento personalizzato cumulativo composto da due fasi: nella prima
un’interfaccia cervello-computer (ICC) attivava una serie di movimenti su misura per il
paziente, supportati da una stimolazione elettrica funzionale multicanale in combinazione
con un esoscheletro per la mano. La seconda fase aggiungeva la stimolazione cerebrale
non invasiva mediante la stimolazione anodica transcraniale a corrente continua della
corteccia motoria. Ogni fase ha avuto una durata minima di 11 sessioni e altre sono state
aggiunte se il paziente mostrava miglioramenti motori. Valutazioni cliniche e multimodali
sono state acquisite longitudinalmente, prima della prima fase, al passaggio alla seconda,
e al termine della seconda fase.

I risultati dei primi undici pazienti sono molto promettenti: hanno dimostrato la sicurezza,
la fattibilità e la potenziale efficacia di questo nuovo approccio personalizzato che agisce
sinergicamente sul sistema nervoso e su quello muscolo-scheletrico. L’esito primario dello
studio (definito pari ad un miglioramento di 4 punti nella valutazione di Fugl-Meyer per
l’arto superiore) è stato raggiunto con un aumento medio di 6 punti. I miglioramenti
motori a livello clinico sono stati accompagnati da cambiamenti nella funzione e nella
struttura della rete motoria.
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In AVANCER, il dosaggio della terapia e le funzionalità del set-up ICC sono stati
adattati a ciascun paziente. Diversamente, la neuromodulazione non è stata applicata
seguendo dei segnali provenienti dal cervello, né i suoi parametri sono stati personalizzati.
Nella seconda parte di questo lavoro, abbiamo preparato le basi per una stimolazione
personalizzata dipendente dallo stato cerebrale. Abbiamo esaminato e comparato diversi
metodi di stima dello stato cerebrale individuando il più accurato al fine di comprendere le
implicazioni delle diverse elaborazioni di segnale. Infine, abbiamo discusso l’importanza di
personalizzare i parametri e i target della stimolazione per età e fase di recupero dell’ictus.
L’insieme di queste fasi crea la base per un’interfaccia cervello-cervello-computer (ICCC)
in cui a specifici segnali cerebrali corrisponde l’attivazione di macchine periferiche e di
stimolazione cerebrale per potenziare gli effetti plastici.

Ci auguriamo che futuri interventi possano includere un’ICCC e coinvolgere sempre più
di pazienti per migliorare il loro benessere.

Parole chiave: Ictus, Riabilitazione motoria, Neurotecnologie, Terapia perso-
nalizzata, Interfaccia cervello-computer, Stimolazione dipendente dallo stato
cerebrale
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INTRODUCTION

Mrs. Smith started a new life at age seventy-two, but probably not the one you would
expect. One year ago, she suffered a stroke. Since the ictal event she can no longer move
her right upper limb. Physio- and occupational therapy are not leading to a relevant
improvement of her arm and hand functions. Mrs. Smith is a fictional character, but she
represents an important proportion of stroke survivors, who remain severely impaired
and for whom, to-date, there is no effective treatment.

According to the last World Stroke Organization report, stroke is the second cause of
death and the third-leading disease in terms of disability-adjusted life years (DALYs)
(Feigin et al., 2022; Collaborators, 2021). Figure 1.1 shows relevant epidemiological and
health-economical numbers related to stroke in our society. Although death rates are
increasing globally, they are decreasing in high-income countries (Feigin et al., 2022)
where acute stroke treatment has seen enormous advancements, especially thanks to
new procedures such as thrombolysis and thrombectomy and to specialized stroke units
(Winstein et al., 2016). The burden of stroke for our society, in addition of being computed
in terms of deaths and DALYs, is extraordinary in terms of economic impact: 891 billion
USD (i.e., 1.2 of world GDP) (Anwer et al., 2022; Feigin et al., 2022). For Switzerland,
Snozzi et al. (2014) estimated a cost of CHF 62K per stroke patient per year, for a total
of CHF 5.5 billion spent per year, including primary, outpatient, emergency, and hospital
care and medications (Fernández, 2021). This sum does not include indirect costs such
as employment rate, wages, and productivity loss, which further weight on the burden of
stroke.
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US$721 billion spent

(0.66% global GDP)

In 2019, 63% of  stroke occurred

in people younger than 70 yo

12 million new stroke 

every year worldwide

1 every 3 seconds

101 million living stroke survivors
25% of  people will have a stroke in their life

Figure 1.1: Infographics showing key numbers related to the burden of stroke. Numbers
have been retrieved from (Collaborators, 2021).

1.2 What is Stroke and what are its consequences?

Stroke is a cerebrovascular disease causing the death of a variable extension of brain
tissue. Two main types of strokes exist: ischemic and haemorrhagic, the former results
from a thrombotic or stenotic blockage of blood vessels which prevents parts of the brain
to be perfused and oxygenated. The second type consists in the rupture of a vessel,
leading to dispersion and accumulation of blood in a brain region while preventing other
regions to be perfused (Sacco et al., 2013). Regardless of the type, stroke will infer
a lesion in the brain (i.e., dead tissue) which disrupts structural and functional brain
networks (Figure 1.2). Recently, stroke has been defined as a brain network disease
suggesting that lesion location and lesion volume are not the only relevant features
to determine clinical impairment, but also the impact of the lesion on whole brain
connectivity should be investigated (Guggisberg et al., 2019). Brain connectivity can be
studied at the structural (i.e., physical white matter connections between brain regions)
and functional (i.e., correlation between regions that are activated in a time-related
fashion) level. Regarding the former, studies have shown a relationship between the
features of both the connectome (i.e., overall brain connectivity) and the disconnectome
(i.e., the network formed by nodes and edges that have been affected by the lesion) and
motor recovery (Koch et al., 2021; Egger et al., 2021; Talozzi et al., 2021; Dulyan et al.,
2022). In terms of functional connectivity disruption, it has been demonstrated that local
lesions can affect regions in both hemispheres not directly connected to the lesioned area
(Saenger et al., 2018). Furthermore, one lesion may affect several functional networks,
each in charge of different tasks (Guggisberg et al., 2019).

Network disruptions often lead to disabilities. After stroke, deficits may be seen in the
language, vision, memory, attention, and general cognition domains, with motor and
somatosensory domain-related deficits being the most-common ones, afflicting around
80-85% and 40-45% of patients respectively (Lawrence et al., 2001; Langhorne et al., 2009).



Introduction 3

ISCHEMIC STROKE HAEMORRHAGIC STROKE NETWORK DISRUPTION

Figure 1.2: Schematic of the two main stroke types, ischemic (left) and haemorrhagic
(center). On the right, the brain is depicted as a network. A lesion due to stroke, the
pink dot, disrupts both nodes and edges of the network. The network depicted here can
be seen as both structural and functional. In this figure, the black dots and lines explain
the healthy connectome; the pink dots and lines the disconnectome, and the full group
of dots and lines the connectome.

Importantly, impairments in different domains may be present at the same time resulting
in larger disabilities and handicaps that prevent the performance of activities of daily
living (ADL) and the participation in society. Rehabilitation strategies to decrease these
impairments are being developed and tested with a special focus on motor rehabilitations
given their prevalence and strong impact on ADLs (Stinear et al., 2020).

Motor impairments Motor dysfunctions after stroke can present different features at
different time points from stroke-onset, yet they all result in some level of motor control
impairment. Motor control can be quantified with movement smoothness, speed, and
activated muscles and synergies (Krakauer, 2009) and can be affected by changes in
muscle tone and cortical and corticospinal excitability.

Muscle tone abnormalities are frequently represented by spasticity (i.e., enhanced muscle
tone) or flaccidity (i.e., reduced muscle tone). Spasticity is thought to be due to a loss
of brain motor control to spinal modulation, which can lead to an hyperexcitability of
stretch reflexes and inhibition of flexor reflexes. Around 40% of chronic stroke patients
are affected by some level of spasticity (Sommerfeld et al., 2004). Flaccidity is the
opposite effect of spasticity and results in weakness of muscles. Specifically, loss of
muscle activation can lead to joint laxity, which can evolve to risky consequences such as
shoulder subluxation - one of the most common aftereffects of stroke paresis. The effects
of spasticity and flaccidity in motor control are complicated and controversial, with
spasticity possibly helping in some movements. Brunnstorm tried to relate the spasticty-
flaccidity combination to motor control and defined six stages of motor impairment that
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we reproduced in Fig 1.3C (Brunnstrom, 1966).

The necessity of the patient to overcome these impairments often leads to the creation of
compensatory strategies, which though useful in ADLs, are often a sign of maladaptive
plasticity and do not represent recovery.
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Figure 1.3: Steps of recovery after stroke. A) schematic of motor natural recovery as
suggested by (Langhorne et al., 2011). Beneath the time axis, the timelines of expected
brain-mechanisms (Cramer, 2008) differentiated between the contralesional (CL) and
ipsilesional (IL) hemispheres. B) schematic of the proportional recovery rule; in orange
the fitters and in green the non-fitters. C) Representation of the Brunnstorm diagram:
the six steps of motor recovery related to spasticity and motor control are represented.

1.3 Stroke recovery: a matter of time and initial severity

The ictal accident is an acute event to which the brain responds immediately with pro-
tective, reparative and reorganizational actions. The molecular and cellular mechanisms
that are initiated have been nicely summarised in current reviews (e.g., (Cramer, 2008;
Hermann and Chopp, 2012)). Briefly, the brain starts a cascade of processes that include
axonal sprouting, neurogenesis, and angiogenesis aiming at dealing with loss of function
due to dead tissue. Glial cells activity also adapts to provide an extracellular space
successful for cell-growth and plasticity (e.g., removal of excitatory transmitter and
release of specific proteins) - see Fig. 1.3A. Taken together, these actions open an atypical
window of high brain plasticity that usually lasts for around twelve weeks (Cramer, 2008).
Within the framework of this exceptional endogenous activity, it has been shown that
patients usually present a steep improvement curve during the first three months after
stroke, until reaching a plateau (Fig. 1.3A) (Langhorne et al., 2011). Because these
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mechanisms are internally triggered, the observed improvement is often called natural -
or spontaneous - recovery.

Not everyone recovers in the same way due to the heterogeneity of the patients and the
lesions. Research has therefore started to design prognostic models where biomarkers are
found to predict motor recovery (Coupar et al., 2012; Kwakkel and Kollen, 2013; Stinear
et al., 2014; Boyd et al., 2017; Koch et al., 2021). Baseline clinical impairment is often
included as explanatory variable of such models. Other biomarkers that are relevant are
presence of motor evoked potential (MEPs) as an indicator of corticospinal excitability,
demographical variables (e.g., age and sex), time post-stroke, internal capsule fractional
anisotropy (FA) asymmetry, and lesion size and location, and connectomics measures.

Initially published in 2008 (Prabhakaran et al., 2008) the proportional recovery rule
states that most patients will recover around 60-70% of their initial motor impairment
evaluated with the Fugl-Meyer Assessment for the upper extremity (FM-UE) (Fugl-Meyer
et al., 1975). This prognostic tool, although recently criticized in terms of the underlying
math (Hope et al., 2018) and over-simplification (van der Vliet et al., 2020), has been
widely used and reproduced and is not limited to the motor domain. In addition to
showing this linear trend of improvement for the patients who show this pattern of
recovery, the so called fitters, it is reported that around 30% of patients will not follow
this progression - the non-fitters (Fig 1.3B). Only 10-15% of stroke survivors fully recover
within the first months; 20% live with moderate disabilities and around 30% of chronic
stroke patients are left with severe impairments (Kwakkel et al., 2003).

What are the expectations for the 30% of patients with severe impairment once they
are outside the natural recovery timeline? Although during the acute/subacute phase
(i.e., within the first 3, up to 6 months after stroke) the motor recovery trend is steeper
(Langhorne et al., 2011), this does not preclude additional improvements in the chronic
phase, which have been demonstrated under adequate and intensive treatments (Cramer,
2008). In fact, the plasticity window does not irremediably close after the first months, and
by combining the efforts from clinicians, engineers, and scientists, efficient rehabilitations
for the chronic phase are being tested and optimized.

1.4 Leveraging on neurotechnologies for enhancing rehabil-
itation outcome

Severely impaired chronic stroke patients are the subgroup of stroke survivors with the
least expectations of improvement in their ADL since: 1) they have reached the plateau
of natural recovery and high plasticity, and 2) current therapeutic approaches do not
offer effective, nor feasible options leading to satisfactory improvements. Yet, this group
of patients needs an effective treatment the most. New technologies and their therapeutic



6 Introduction

application may provide novel and more effective solutions.

Since the beginning of time, and increasing rapidly since the industrial revolutions,
humans have designed and built external machines to improve the outcomes of tasks
and to eventually automate them. The field of medicine and rehabilitation is no less.
Technologies and automation of tasks can reduce the active-time requirement of trained
clinicians and offer the possibility to directly interact with the nervous system - the main
target in stroke rehabilitation. It is this feature that makes neurotechnologies attractive
for severely impaired stroke patients.

Different types of neurotechnologies exists and have been summarised in Fig. 1.4. All of
them have already been applied in the rehabilitation settings, individually or combined.
In the next paragraphs, we discuss their use and outcomes in the framework of upper-limb
stroke rehabilitation. Specifically, we will describe non-invasive technologies that have
been applied to a broad range of stroke patients.

Robotic devices

Among the most-widely used neurotechnologies there are robotic devices. Two main
categories of this kind exist: end-effectors and exoskeletons (Fig. 1.4). The first usually
consists in an electro-mechanically driven robot which can mobilise the patient’s hand
and drive the movement from there. The second one refers to a robotic device that
follows entirely or partially the patient’s upper limb and can move various articulations
thanks to the many degrees of freedom. All robotic assistive devices are able to move
the patient’s arm in space; however, if end-effectors require users to have some mobility,
exoskeletons have the advantage of being accessible to everyone; still, high spasticity may
still be an exclusion criterion for some exoskeletons. Notwithstanding that robotic devices
can be very different among each other, a recent network meta-analysis found that no
device was outperforming the others (Mehrholz et al., 2020), whereas other reviews found
either a trend for improved motor function with exoskeletons instead of end-effectors
(Mehrholz et al., 2020; Bertani et al., 2017), or the opposite trend (Veerbeek et al., 2017).

Several randomized clinical trials (RCTs) have investigated the applicability, and possible
superiority, of robotic devices compared to standard therapy for upper-limb motor
rehabilitation after stroke. Results from meta-analyses suggest that in chronic stroke
patients, robotic devices significantly improve arm function (Bertani et al., 2017); however,
robots did not help in decreasing spasticity, nor in improving performance in ADL (Bertani
et al., 2017) in neither subacute nor chronic patients. Another meta-analysis from the
same year (Veerbeek et al., 2017), reproduced the inability of robotic devices to act on
muscle tone and improvement of ADL, which was instead reported for standard therapy.
Conversely, Veerbeek et al. (2017) found a positive effect of robotic intervention on the
decrease of hand impairment for subacute patients, but not chronic ones. Finally, Coscia
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et al. (2019) reported, in a systematic review, that the average motor impairment of the
shoulder and elbow articulations in severely impaired chronic stroke patients following a
robot-assisted intervention was between a 3.4- and 7.7-point improvement on the FM-UE.

Functional electrical stimulation (FES)

Another established technology is functional electrical stimulation (FES), also called
neuromuscular electrical stimulation (NMES). This technique works by placing two
electrodes over a muscle of interest, usually in a belly-tendon configuration, and letting
current in the order of mA flow between the two. This current activates both afferent
and efferent pathways. The latter is activated bidirectionally: orthodromically towards
muscle spindles that can achieve muscle contraction if a high enough intensity is deliv-
ered, and antidromically towards the spinal cord (Milosevic et al., 2020). Similarly to
exoskeletons, FES technology is continuously developed with new stimulation procedures
and patterns (Crema et al., 2018, 2022) and by combining multiple channels for achieving
more complex, but also smoother movements (Schick et al., 2022).

Meta-analyses on the use of FES in stroke motor rehabilitation showed an improvement
in quantitative ADL as well as in motor outcome computed with the FM-UE (Eraifej
et al., 2017); however, results seemed to be carried by subacute patients compared to
chronic ones. No specific trend for spasticity was seen. A more recent review (Yang et al.,
2019) reported that most included RCTs were actually performed on chronic subjects,
and they still observed a superior effect of FES-assisted compared to standard therapy in
the FM-UE; moreover, they observed a similar effect in severely and moderately impaired
patients. Indeed, Coscia et al. (2019) reported an increase between 6.5- to 14.8-point in
the FM-UE in severely impaired chronic stroke patients.

Virtual Reality

Virtual reality (VR) is a rather recent technique that aims at immersing patients in a
virtual environment where they can simulate a variety of activities. Two main features
can describe and differentiate VR systems: presence and immersion. The former describes
how much the user feels part of the simulated environment and the second one refers to
how much the set-up can focus the attention of the subjects in the virtual environment
while detaching them from the real one (Weiss et al., 2006).

The effectiveness of VR in stroke rehabilitation has been longitudinally studied through
meta-analyses and gave alternating contradictory results (Saposnik et al., 2011; Lohse
et al., 2014a; Laver et al., 2017; Mekbib et al., 2020), of which we mention here the latest.
A Cochrane review reported effectiveness of intervention only when it was combined
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with standard therapy, but not alone (Laver et al., 2017). Yet, a more recent meta-
analysis found a significant difference between VR therapy and control in terms of
motor impairment, function, and ADL (Mekbib et al., 2020). For the latter, significant
differences were observed only in the subacute cohort but not in chronic one and they
were not able to differentiate between severity of impairment. How different VR systems
influence performance remains unclear; for example, the level of immersion does not seem
to directly correlate with performance, but might increase level of enjoyment and thus
adherence (Rose et al., 2018).

Non-invasive Brain Stimulation (NIBS)

Robots, FES, and VR indirectly interact with the central nervous system; brain stim-
ulation techniques allow for a direct communication, or rather modulation, of brain
activity. Although brain stimulation may be performed in several ways and at different
levels of invasiveness, we here focus on transcranial stimulation only (Wessel et al., 2015;
Draaisma, 2022; Coscia et al., 2019). We refer the reader to (Motolese et al., 2022),
(Elias et al., 2018), (Levy et al., 2016), for reviews on vagus nerve stimulation, deep-brain
stimulation (DBS), and epidural stimulation respectively.

The use of NIBS in stroke rehabilitation is relatively new compared to exoskeletons and
FES. Similarly to the other neurotechnologies, results on efficacy are quite heterogeneous.
However, specific stimulation paradigms have received a level A and B classification
for therapeutic efficacy after stroke (Lefaucheur et al., 2020). Moreover, the promising
preclinical and clinical results made the precise use of NIBS one of the focuses of the 3rd

Stroke Recovery and Rehabilitation Roundtable (SRRR), from which new guidelines are
expected to be published in summer 2023.

There are two main types of transcranial stimulation: transcranial magnetic stimulation
(TMS) and transcranial electrical stimulation (tES). TMS works by applying a magnetic
pulse over the scalp able to induce a current reaching the underlying targeted tissue
that in turns affects the electric field. This voltage change depolarizes the membrane
potentials of cortical neurons and, if the potential reaches a certain threshold, action
potentials are triggered (Siebner et al., 2022). Differently, tES works by applying a low
amplitude (1-2, up to 4mA) current between two (or more, e.g., high-density tES (Reckow
et al., 2018)) electrodes (i.e., a cathode and an anode). The applied currents are not able
to trigger action potentials, but it do change the tissue electric field and thus membrane
potentials. Specifically, tES can change neuronal excitability by changing the threshold
required by the neurons to fire; directionality and size of effects depends on current
intensity, polarity, and dosage, to name a few (Nitsche and Paulus, 2000; Fertonani and
Miniussi, 2017). tES can be divided into transcranial direct (tDCS) and alternating
(tACS) current stimulation, depending on the type of current applied. Although the
mentioned features of tES are common to both tDCS and tACS, their working principles
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Figure 1.4: Neurotechnologies used in stroke rehabilitation with their advantages and
disadvantages in upper-limb motor rehabilitation. On the left technologies that focus
mostly - but not only - on the peripheral system; on the right technologies that are
targeting the central nervous system. At the bottom, combined technologies targeting the
peripheral and the central nervous systems through brain computer interfaces where the
brain activity modulated by the patient can trigger various types of external machines.
For explanation of working principles of each, please refer to Section 1.4.
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are different, with tDCS aiming at modulating membrane excitability and tACS aiming
at entraining ongoing oscillations. Here-below we review the results of these three NIBS
typologies used in stroke rehabilitation.

tDCS: A recent meta-analysis (Bornheim et al., 2022) found a general positive effect
of tDCS on functional motor outcome, though a very high heterogeneity in protocols
was highlighted. Conversely, a Cochrane review (Elsner et al., 2020) found no evidence
of tDCS improving motor function, but low-to-moderate evidence of tDCS improving
ADLs. These contradictory results might be due to the variability of multiple tDCS
trials features, as presented in (Feng et al., 2018). Amongst others, the highly different
protocol-specifics dosage, patient phenotype, choice of peripheral therapy, and outcome
scale are mentioned. Moreover, results were reported for tDCS in general, but two types
of tDCS can be delivered, anodal and cathodal, to excite and inhibit respectively. The
former is usually delivered to the affected hemisphere, and the latter to the unaffected
one. A low, but significant positive effect on stroke motor recovery was gathered from
a meta-analysis on anodal tDCS (Butler et al., 2013), whereas no effect was found for
cathodal tDCS vs. sham tDCS (Chen et al., 2021). Anodal together with cathodal
tDCS can also be delivered. Such bihemispheric montage showed the efficacy of tDCS
as adjuvant technique to constraint induced movement therapy (CIMT) in acute stroke
patients (Garrido et al., 2023) and to standard physical therapy in chronic patients
(Lindenberg et al., 2010).

tACS: tACS usage in motor recovery is drastically lower compared to tDCS and only
a few studies have investigated its effects (Naros and Gharabaghi, 2017; Yuan et al.,
2022). The main effect of tACS is to entrain brain oscillations and thus might be used to
enhance specific signals thought to be useful for motor recovery, e.g., to enhance learning
(Naros and Gharabaghi, 2017). Overall, its potential efficacy in stroke is not known
(Motolese et al., 2022).

Repetitive TMS: TMS for stroke recovery is delivered using repetitive pulses (rTMS).
According to the frequency of these pulses, low-frequency (≤1 Hz) rTMS or high-frequency
(≥5 Hz) rTMS can be given. rTMS is also often delivered as theta bursts (i.e., 3 pulses of
stimulation at 50 Hz, repeated every 200 ms). In the intermittent theta burst stimulation
paradigm (iTBS), a 2 s train of TBS is repeated every 10 s; whereas in the continuous
pattern (cTBS), a 40 s train of uninterrupted TBS is given (Huang et al., 2005) .High-
frequency rTMS and iTBS seem to have excitatory effects, while low-frequency rTMS and
cTBS inhibitory effects (Fitzgerald et al., 2006). Specifically, the inhibitory paradigms
seems to have a positive effect on the outcome when delivered to the M1 of the unaffected
hemisphere, while the excitatory protocols should be delivered to the M1 of the affected
hemisphere (Hummel and Cohen, 2006). The most-recent guidelines on the use of rTMS,
reported A-level evidence for the use of low-frequency rTMS and B-level evidence for
the high-frequency TMS use for stroke motor recovery (Lefaucheur et al., 2020). The
authors also documented that higher evidence was obtained for sub-acute patients.
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Brain Computer Interface (BCI)

Finally yet importantly, another recent neurotechnology is BCI, which tries to leverage
on the principles of goal-oriented tasks and on active patient participation for motor
rehabilitation. It provides a method to fully engage the patients by letting them become
their own therapists and be in control of performing tasks. This is achievable thanks to
a computer (and an algorithm) able to detect the patients’ motor intention from their
brain signals (e.g., electroencephalography (EEG), magnetoencephalography (MEG),
near-infrared spectroscopy (NIRS)) and to trigger the activations of external devices (i.e.,
exoskeletons or FES) based on the occurrence of motor intention signals. Motor intention
may be represented by motor movement, motor attempt or motor imagery (MI). Although
different, previous research showed the similarity of activated pathways between MI and
actual movement (Hanakawa et al., 2003; Gerardin et al., 2000). When either of these
tasks are performed, a decrease in power (compared to rest) in the sensorimotor rhythm
(8-30 Hz) is observed in the EEG data (Pfurtscheller and Lopes da Silva, 1999; Neuper
et al., 2005). This decrease of power is called event related desynchronisation (ERD),
whereas when increase of power is seen, we talk about event related synchronisation
(ERS), e.g., after movement in the beta band (13-30 Hz). These activities have been
demonstrated to be reliable and present in both healthy and stroke subjects.

In the last fifteen years, BCI systems have paved their way into stroke rehabilitation
with a few RCTs showing their potential, as summarized in meta-analyses (Cervera
et al., 2018; López-Larraz et al., 2018). No strong difference in terms of external machine
triggered, nor modality of brain signal acquisition, nor type of brain signal detected have
been observed and no strong conclusion can yet be made on BCI efficacy (Bigoni and
Hummel, 2019; López-Larraz et al., 2018). The effect of stroke stage in terms of distance
from the ictal event is also is also difficult to conclude; however, it seems that BCI may
be a useful tool for severely impaired chronic stroke patients, where improvements of
around 6 to 7 points on the FM-UE have been reported (Coscia et al., 2019).

Brain-to-brain-computer-interface Most RCTs involving BCIs have as triggered
machine either FES or robotic devices. However, more central machines could be coupled
with a BCI. If the machine directly targets also the brain (e.g., by NIBS), we can talk
about a brain-to-brain computer interface (BBCI), Fig. 1.5. Only few studies have tested
this approach so far. In a case study, Gharabaghi et al. (2014) triggered single-pulse
TMS along with hand-opening assistance from an exoskeleton in a stroke patient and
showed significant increase in corticospinal excitability post-intervention. In a follow-up
larger study with 17 chronic stroke patients, in which the exoskeleton was removed, the
authors observed a comparable result only in patients receiving TMS during beta-ERD,
but an opposite trend (i.e., a decrease in corticospinal excitability) in patients receiving
TMS at rest (Kraus et al., 2016a). Similar results were obtained in (Takemi et al.,
2013), where MEP amplitude (i.e., corticospinal excitability measure) increased with
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stronger alpha-beta ERD. Another study showed that healthy participants could learn
to modulate their brain signals using neurofeedback to increase or decrease their MEP
amplitude. Power modulation seemed to occur in the alpha and gamma bands (Ruddy
et al., 2018). Finally, a novel pilot RCT used extremely low frequency and extremely low
intensity electromagnetic fields to tune the endogenous brain activity in a BCI fashion
in subacute moderately-to-severely impaired stroke patients (Weisinger et al., 2022).
The authors reported a statistically significant difference in FM-UE scores at half-way
through the therapy between the active and sham control, which was not seen by the
end of the treatment - possibly due to ceiling effects. A significant difference between
groups was observed at the end of treatment in other functional scales.

Brain-state dependent brain stimulation - State of the Art BBCI with the
goals of rehabilitation and assistance have not been thoroughly tested yet, however
a similar set-up has gained great interest in the NIBS field. Highly intra- and inter-
subject variability in the NIBS literature was suggested to be partially caused by the
brain endogenous oscillations, which were not accounted for in the first experiments
(Ziemann and Siebner, 2015; Guerra et al., 2020a). This led to a switch in protocols,
where the brain activity cannot be treated as a black box anymore, but it needs to be
included as a parameter of the model to describe the variance in the results. In the last
fifteen-twenty years, research has tried to correlate the brain-state at the TMS delivery
timepoint with MEP amplitudes. Specifically, brain-state has been described according
to the power and the phase of oscillations in frequency bands of interest in the motor
system: alpha (8-12 Hz) and beta (13-30 Hz). Following some offline analyses, the first
online set-ups for brain-state dependent stimulations have been developed in the last
five years (Zrenner et al., 2018; Madsen et al., 2019; Wischnewski et al., 2022; Ozdemir
et al., 2022; Ding et al., 2022). Nonetheless, results remained controversial, with distinct
groups obtaining contradictory results (Madsen et al., 2019). Researchers have often
suggested that differences in stimulation paradigms and subjects are responsible for
results discrepancies. Interestingly, protocol characteristics include the method used for
brain-state estimation. Indeed, the role of EEG preprocessing has already proven critical
(Keil et al., 2014a; Pernet et al., 2020) and standardized pipelines are being defined with
the goal of removing, or at least considering, this added effect of variance.
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Figure 1.5: A brain-to-brain-computer-interface model. At the top we represent the
ideal working mechanism of a brain-to-brain computer interface. Similarly to a standard
BCI, the brain signal is recorded in real-time. Biomarkers of the current-brain state are
then extracted or future brain-state forecasted (see bottom figure for possible biomark-
ers). According to the current brain-state, brain-stimulation parameters may be tuned.
Similarly, peripheral machines may be also be triggered for movement performance.
Brain-stimulation is expected to affect the current brain-state in the desired direction.
Once the trial is over, the loop begins again. In the bottom part, some features that
may describe the brain state are plotted: phase and amplitude in frequency bands of
interest and connectivity-based measures. The methodology with which such features
are extracted is of key relevance and may critically change the output values.

Combination of neurotechnologies

BCIs are inherently a combination of neurotechnologies, but they are not the only ones.
Many other combinations of two - or more - technologies have been tested. Indeed,
modularity is one of the great characteristics of neurotechnologies as combining them
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might give the opportunity to have additive effects of the different techniques and
providing an overall better improvement. Although this is not granted, we could expect
that using peripheral machines (i.e., robots and FES) can help in re-activating the
muscolo-skeletal system, VR in enhancing enjoyment and adherence to therapy, NIBS in
modulating brain activity, and BCI in having brain signals that are contingent to sensory
and motor feedback. In such synergistic combination, the singular mechanism of action
of each neurotechnology can be beneficial in a rehabilitation strategy.

In a review from Coscia et al. (2019), we can observe that only a maximum of five studies
per combination have been included in the analysis. Among the combinations presented:
robotics+FES, robotics+tDCS, FES+NIBS, BCI+tDCS+exoskeleton. Given the small
number of studies investigating the efficacy of combining neurotechnologies, deriving
guidelines on their use is not yet possible. Nonetheless, the authors suggest that severely
impaired chronic patients may benefit the most from combinations, but an understanding
and learning of the individual neurotechnology may be advisable first.

1.5 Neurotechnologies mechanisms of actions

Neurotechnologies are a promising tool for decreasing motor impairment in stroke
patients; nevertheless, this thesis has not yet discussed the underlying mechanisms of
such improvements. Observable changes are often due to plastic changes within brain
networks. Here, we further review this important topic, which was introduced when
describing the mechanisms triggered by the brain to respond to the newly created lesion
(Section 1.3).

Learning, including motor learning such as the acquisition of a new skill, sport, or musical
instrument, comes with brain plastic changes. Similar changes can be expected to take
place with therapeutic interventions after stroke. Indeed, rehabilitation interventions
often target the re-learning of skills and thus, comparable mechanisms of motor learning
in healthy subjects may be present. Kleim and Jones (2008) described this as experience-
dependent neural plasticity and defined a series of principles that rehabilitation sessions
should cover to promote plasticity such as repetition, intensity, increased difficulty, and
transferability.

All the neurotechnologies that we have listed above try to facilitate brain plasticity to
allow for brain reorganization and eventually regain motor functions. Robotic devices,
given their passive interaction with the body, aim to follow the principles of experience-
dependent plasticity: they allow high number of repetitions, performance of progressively
complex movements, and can focus on either one or multiple articulations at the same
time. The last principle is shared by FES as well. Conversely, FES may lead to
fatigue with high repetitions and cannot easily achieve fine movements for technological
limitations. However, FES provides additional factors that can enhance plasticity.
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Specifically, the antidromic excitation from the stimulation is thought to be relevant
for neurorehabilitation. In the framework of Hebbian learning, where synapses that fire
together get stronger together through long-term potentiation (LTP), if the efferent brain
motor command reaches the spinal pre-synapse at the same time as the FES elicited
action-potential in the post-synapse, a stronger connection can be generated, helping
in restoring function (Rushton, 2003; Hara, 2015). Indeed, this becomes even more
important when FES is triggered by brain-activation with BCIs or muscular activation
with electromyography(EMG)-triggered FES (Monte-Silva et al., 2019). It follows that
BCI-based interventions in general use a similar pattern for facilitating plasticity. When
a central down-regulating signal of motor command is timely matched with peripheral
afferent feedback, Hebbian plasticity may take place (Soekadar et al., 2015b). With
respect to BCI, three RCTs have demonstrated the importance of the contingency BCI
creates between motor intention and feedbacks by comparing the motor outcomes of
active-BCI groups with sham-BCI (i.e., patients receiving the same rehabilitation with
same devices and instructions, but for whom initiation of movement is given randomly)
(Biasiucci et al., 2018; Ramos-Murguialday et al., 2013; Frolov et al., 2017a). Furthermore,
BCI-based rehabilitation may play a role on the motivational aspect, to which additional
factors may be added according to the external machine triggered (e.g., intensive use).

iTBS cTBS

Anodal tDCS Cathodal tDCS

+ -+

High frequency rTMS Low frequency rTMS 

Figure 1.6: Interhemispheric competition model and NIBS application. After a stroke
(brain lesion in black), the brain reorganizes itself to overcome loss of function. Such
endogenous reorganisation often leads to an excitability imbalance not seen in the healthy
brain. Specifically, the contralesional hemisphere is over excited while the ipsilesional
one is inhibited (left image). NIBS tries to address this issue by either helping the
ipsilesional hemisphere with excitatory paradigms such ashigh-frequency rTMS, iTBS, or
andodal tDCS (middle image) or by affecting the contralesional hemisphere activity with
low-frequency rTMS, cTBS, or cathodal tDCS (right image). Double-site stimulation
targeting both hemispheres synchronously is also a viable option.



16 Introduction

In contrast to the previous technologies, NIBS does not follow any of the experience-
based principles, but its role is the modulation of brain activity and the facilitation of
neural plasticity to support functional reorganization and recovery. One of the biological
basis of NIBS lies in the idea of interhemispheric imbalance after stroke (Hallett, 2001;
Hummel et al., 2008; Di Pino et al., 2014; Murase et al., 2004; Hummel and Cohen, 2006).
Focusing on the motor cortex, it has been shown that the contralesional hemisphere
is often over activated and the ipsilesional one is inhibited (Fig. 1.6), possibly due to
some transcallosal transmission (Meyer et al., 1995; Voineskos et al., 2010; Casula et al.,
2021). This is a simplified view of the problem and other important aspects may be
taken into account, e.g., related to patient stratification (i.e., recover stage, age, lesion,
and severity) and type of NIBS used (Wessel et al., 2015). Nonetheless, positive effects of
NIBS inhibiting the unaffected hemisphere, exciting the affected hemisphere or both have
been observed (Lefaucheur, 2009; Lefaucheur et al., 2020; Takeuchi and Izumi, 2012).
Moreover, NIBS has been found to act on motor learning principles on healthy subjects.
Considering stroke rehabilitation to also be dependent on motor re-learning, the effect of
NIBS can be dual to improve plasticity – see Wessel et al. (2015) for a review.

1.5.1 Evaluating regional and interregional changes in brain activity

Brain reorganisation during rehabilitation and recovery can be assessed multimodally
and non-invasively. Imaging, such as (functional) magnetic resonance imaging ((f)-MRI),
and neurophysiological techniques, such as EEG and NIBS, have often been exploited to
understand and evaluate brain reorganisation changes (Fig. 1.7).

Neuroimaging through acquisition of MRI images can address both structural and
functional changes. Structural changes after the acute phase can be seen in both the grey
matter and the white matter tracts. With tractography analyses derived from diffusion
tensor imaging (DTI) and diffusion weighted imaging (DWI), the macro fibre bundles
can be obtained and the structural integrity, connections between brain regions can
be investigated (Hagmann et al., 2008). Blood- oxygenated-level-dependent (BOLD)
imaging allows to indirectly record the activation level of brain regions in time during
resting-state or a task (Favre et al., 2014). Pairwise correlations of these time series per
region of interest result in functional connectivity (Friston, 1994). A schematic of these
techniques is reported in Fig. 1.7 bottom-right.

Local activation patterns or functional connectivity can also be investigated with EEG
(or MEG or NIRS) which provide higher temporal resolution at the cost of lower spatial
specificity compared to fMRI. Moreover, with electrical signals, time-frequency analyses
are often computed to study neural oscillations, i.e., to evaluate the strength in power
in specific frequency bands related to distinct tasks and networks, e.g., the alpha (8-12
Hz) and beta (13-30 Hz) bands are important frequencies for the sensorimotor network.
Similarly, ERD and ERS have been used as markers of plasticity (Mane et al., 2019).
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Figure 1.7: Noninvasive methods to assess neuroplasticity. Different techniques can be
used to probe brain plasticity following recovery. Among the most-used ones, we find
TMS coupled with EMG and EEG (top). When TMS is coupled with EMG, corticospinal
excitability and reaction times can be studied with the computation of MEP amplitude
and latency respectively. TMS coupled with EEG can give information about cortical
excitability, reactivity, and connectivity through the study of TEP features. Among
them, the response curve and envelope can be studied as well as the amplitude and the
latency of specific deflections. Neuroimaging (bottom-left) can provide information on
structural and functional activation. The subplot, taken from (Sporns, 2013), shows
the fundamental steps to perform network analysis. Local and global activation, as
well as functional connectivity information can be gathered from EEG/MEG analyses
(bottom-right). As examples, we report the brain topographical activation (top) and the
functional connectivity (bottom) for the high beta band in stroke patients. Both figures
are taken from (Snyder et al., 2021).
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NIBS for assessments is usually performed with (non-repetitive) TMS. TMS allows
to probe in-vivo the corticospinal and intracortical excitability and give information
regarding the excitation-inhibition balance in the targeted area. Two main types of
stimulation protocol in this regard have been established, single pulse or paired pulse
TMS (Kujirai et al., 1993; Siebner et al., 2022), the latter of which provides two stimuli
within a few milliseconds. The first stimulation type gives information about the cortical
and corticospinal excitability through the study of evoked responses at the muscle level
and at the brain level. These responses are called motor evoked potentials (MEPs)
and TMS evoked potentials (TEPs); specifically, if an MEP is elicitable, it means that
the corticospinal tract is (partially) intact. TMS delivered to the M1 is thought to
perturb longitudinally oriented pyramidal cells which in turn fire action potentials.
These signals propagate downstream to the muscles of interest, but also activate the
excitatory and inhibitory circuits in the target regions and in interconnected cortical and
subcortical regions (Lefaucheur, 2009; Siebner et al., 2022), which can be investigated with
TEPs. Paired-pulse TMS consists in conditioning the brain prior to the real stimulation.
According to the inter-stimuli interval (ISI) and the ratio of intensities between the first
(conditioning) and second (test) stimuli, inhibition or excitation can be enhanced. When
the conditioning stimulus (CS) is given sub-motor threshold (and lower compared to the
test stimulus), this is thought to activate inhibitory interneurons which in turn suppress
the excitability of the pyramidal cells for the following milliseconds. If the test stimulus
(TS) is delivered 1-5 ms after the CS we talk about short interval intracortical inhibition
(SICI), if it is delivered 10-15 ms after the CS we talk about intracortical facilitation
(ICF) (Kujirai et al., 1993). In SICI, a decrease in MEP amplitude through the activation
of the GABA-A receptor modulators is observed, while in ICF an increase in MEP
amplitude is thought to follow NMDA activation (Ziemann et al., 1996b; McDonnell
et al., 2006). When the ISI between CS and TS is in the range of 30 ms and the CS
is supra-motor threshold we talk about long interval (200 ms) intracortical inhibition
(LICI) which activates GABA-B receptor modulators (McDonnell et al., 2006).

1.5.2 Neural correlates of motor recovery

A change in any of the measures described above could be a marker of neural plasticity
and a neural correlate of recovery. From the literature, we can extract neural features
that have been correlated with motor improvement after stroke (Boyd et al., 2017) and
we report here a few.

Structural connectivity and structural reserve (Di Pino et al., 2014) are the baseline
need for further plastic changes (i.e., you need the actual neurons and their connections
to make any functional change). Structural changes following learning and experience
can appear in both the white matter (e.g., thickening axon myelination) (Scholz et al.,
2009) and in the grey matter (Draganski et al., 2004, 2006). In terms of white matter
plasticity, an increased corticospinal tract (CST) integrity of the affected hemisphere and
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an increased ratio of CST integrity between the unaffected and the affected hemisphere
have been defined among the most important biomarkers for good stroke prognosis at
the subacute stage (Stinear et al., 2007; Boyd et al., 2017). CST integrity can be directly
measured with DWI and DTI and indirectly with MEPs elicited by TMS. Higher MEP
amplitudes and lower latencies during single pulse TMS have been previously correlated
with good recovery and prognosis (Karatzetzou et al., 2022; Rapisarda et al., 1996;
Beaulieu and Milot, 2018). Responses to TMS can also be studied at the cortical level
with EEG through TEPs. The TEP dynamics have been found to be different from
healthy controls and some of its features can be predictive of stroke recovery (Tremblay
et al., 2019; Hordacre et al., 2017, 2019; Tscherpel et al., 2020; Cadic-Melchior et al.,
2022). As mentioned in Section 1.5.1, multiple TMS paradigms can be performed, which
allow to study the local and interregional excitation/inhibition balance. With SICI,
an MEP amplitude decrease is observed in healthy participants following inhibition; in
chronic stroke patients, an abnormal inhibition at rest and persistence of inhibition during
movement preparation was observed (Hummel et al., 2009; Liuzzi et al., 2014). SICI
probes the GABAergic system, which has an important role in stroke recovery (Laaksonen
and Ward, 2022). Beta oscillations recordable through EEG are also dependent on GABA
modulation and their changes in resting state and during task are important in view of
stroke rehabilitation. Other changes in the functional motor network are also relevant,
where a more balanced activation between the two hemispheres is expected. This can
also be quantified with specific the interhemispheric inhibition TMS paradigm where
a conditioning pulse to one M1 is followed by a pulse to the other M1(Murase et al.,
2004; Duque et al., 2005). Moreover, asymmetry indices from either fMRI or EEG/MEG
related measures can too give information about interhemispheric imbalance (Keser et al.,
2022; Milani et al., 2022). Broad and local functional and structural network connectivity
can also correlate with functional recovery (Bistriceanu et al., 2022; Wu et al., 2014).

1.6 From one-size-fits-all to one-size-each

Recovery is not the same for every stroke patient: spontaneous recovery varies with each
individual, not everyone responds to the same neurotechnological intervention, every
patient has a different maximal achievable improvement, and they all need a different
amount of training to gain it. Patients enrolled for the same intervention can be different
on many levels such as age, gender, lesion, recovery stage, and being or not a fitter, to
name a few.

Meta-analyses and RCTs investigating the efficacy of neurotechnologies in rehabilitation
often resulted in low evidence for one intervention or another and many studies reported
heterogeneous results. A source of outcome variability certainly stems from the protocol
features (Bigoni and Hummel, 2019); another large source of variance is inherent in the
patients themselves (Cervera et al., 2018; Eraifej et al., 2017; Veerbeek et al., 2017).



20 Introduction

NIBS-based interventions also report variability in efficacy. Indeed, their outcome may
be strongly dependent on the available functional and structural brain network they are
targeting – which can be different for every individual; see (Morishita and Hummel, 2017;
Raffin and Hummel, 2018) for reviews. Indeed, most studies have not been controlled
in terms of patient phenotype, e.g., baseline severity and type of network disruption
(Bernhardt et al., 2019a,b; Hayward et al., 2021b). There is now a consensus to tackle
this relevant variance by moving from “one-suits-all” therapies to personalized medicine,
which is based on between-subject differences and whose main goal is to create protocols
able to adjust specific parameters to the need of the patients. Recent research has thus
focused on patient stratification for choosing the better rehabilitative option (Stinear
et al., 2020; Boyd et al., 2017; Bonkhoff and Grefkes, 2022; Coscia et al., 2019; Micera
et al., 2020). In addition to grouping patients into different interventions according to
their potential of recovery, the intervention itself should be personalized to the patient, a
paradigm often used in standard therapy, where clinicians look at the most important
aspect to be trained at each session (Krakauer, 2006).

Personalisation of intervention may comprehend the type of therapy offered (e.g., robotic
devices or FES), the application methodology of a neurotechnology (e.g., excitation of the
ipsilesional hemisphere or inhibition of the contralesional hemisphere), and the duration
of such intervention. In the next paragraph we focus on the main effects of treatment
dosage.

1.6.1 Tailoring the dose

The dosage of an intervention in stroke rehabilitation setting appears to be a critical
parameter for anticipating recovery (Lang et al., 2015; Lohse et al., 2014b; Housley
et al., 2019; Kwakkel, 2006, 2009; Ballester et al., 2022) - yet no precise guidelines, nor
consistent results from meta-analyses are available.

In a phase IIb trial aiming at testing the effect of dose, moderately-to-mildly impaired
chronic stroke patients were divided into four groups, according to the amount of arm and
hand therapy they would receive over three weeks. The authors found a positive effect
of the dose X week factor, showing a positive linear trend between Motor Log Activity
(MAL) difference and dosage; results were not reproduced with the Wolf Motor Function
Test (WMFT) showing a participation but not an activity level increase (Winstein et al.,
2019). In another phase II trial (Lang et al., 2016), where the number of repetitions, but
not total hours differed between groups, no dose-response relationship was observed on
the Action Research Arm Test (ARAT) in a similar group of patients. Focusing on the
use of neurotechnologies, Hsieh et al., (Hsieh et al., 2012) found a higher improvement
in the FM-UE score with high intensity training with an end-effector device, which was
particularly significant in moderately impaired patients compared to severe ones. In
terms of FES, a study showed no significant difference between groups receiving different
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daily doses of therapy (Hsu et al., 2010). However, comparing more recent studies,
Coscia et al. (2019) suggest that when dose is increased, larger improvements seem to
be possible. Also for BCI-systems triggering FES, a positive dose-response relationship
was found for the strength section of the Stroke Impact Scale (SIS) (Young et al., 2015).
An overall dose importance within BCI studies was also observed, for review see (Bigoni
and Hummel, 2019). Finally, a meta-analysis on the use of tDCS in stroke recovery,
also found a positive relationship between dose and FM-UE improvement, especially in
chronic patients (Chhatbar et al., 2016).

This brief review on the dose-response relationship with standard and neurotechnology-
based therapies seems to indicate a positive correlation, however it is complicated to make
strong statements. According to the SRRR, a main difficulty in concluding the effect
of dose comes from the poor trial reporting, and especially the lack of details (Walker
et al., 2017; Bernhardt et al., 2019a). The group has pressured on the need of good
reporting and monitoring of clinical trials to be able to extract the necessary information
for further well-hypothesized and larger trials. Possibly related to poor-reporting is also
the unclear definition of dosage (Hayward et al., 2021a).

Overall, the great amount of research put in the study of dosage, suggests that most
researchers are convinced of the positive relationship between motor improvement and
dosage - an opinion that we also share. However, we believe that two main points may be
key in further explaining and studying the dosage effect: 1) the need of a precise definition
of dose - which is being extensively investigated (Hayward et al., 2021a) and 2) the need
of an individually personalised dose (Coscia et al., 2019). Regarding the first point, we
acknowledge the multidimensionality of dose suggested by Hayward et al. (2021a), to
which an important dimension within the session density should be added. When using
neurotechnologies and patient-triggered activity episodes (e.g., patient’s control of the
BCI system), a differentiation between actually triggered tasks and non-triggered tasks
should be taken into account. The second point is inherent in personalized-recovery
designs, in which the main goal becomes the maximization of the recovery for each patient
and not showing the superiority of an intervention. With this new aim, protocols need
not be strict in terms of dosage, but rather each patient should be allowed to continue
the intervention as long as some improvements are observed.

1.7 Objectives of this thesis

This thesis finds its place at the core intersection of neuroengineering and translational
neuroscience. The main goal of my PhD was to apply engineering-based techniques to
impact on stroke rehabilitation. This introductory chapter aimed at demonstrating the
key role neurotechnologies might play for neurorehabilitation and recovery, especially for
the subgroup of severely impaired chronic stroke patients.
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Figure 1.8: Main principles for successful motor rehabilitation after stroke. The new
framework of interventions aims at placing the patient and his/her needs at the core
of activities and therapies to be performed. For chronic stroke patients, rehabilitation
sessions should be assisted by neurotechnologies that help in performing functional tasks
that may be useful for ADLs. Moreover, neurotechnologies should give access to exercises
that are both engaging and that may increase complexity according to the capability of
the patient. The final goal of motor training is to achieve motor improvement through the
acquisition or re-learning of skills that are matched with neuroplastic changes. Finally,
given the patient-centred view, a personalized therapy should be offered, where a different
dosage may be prescribed to each individual according to their improvements.

Centrality of patient, exploitation and combinations of neurotechnologies, and personal-
ization are key elements for the future of neurorehabilitation (Fig. 1.8 shows the key
underlying principles). With these three points in mind, we developed a new upper-limb
stroke rehabilitation intervention. This approach was evaluated within the AVANCER1

proof-of-concept clinical trial, which aims to reduce upper-limb motor impairment in
severely impaired chronic stroke patients. Two main pillars - and novelties - of this trial
led us to the hypothesis that even this group of patients will see a reduction of impairment:
1) hierarchical use and combination of neurotechnologies and 2) personalization of the
intervention.

1Accident Vasculaire cérébrale et Apport des Neurotechnologies individualisées chez le patient sévère
Chronique: une Etude clinique prospective visant à Restaurer la mobilité du membre supérieur - Cere-
brovascular accident and contribution of individualized neurotechnologies for severely impaired patient: a
prospective clinical trial aiming at restoring the upper-limb mobility
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The rehabilitation skeleton of AVANCER is a BCI triggering the movement of the whole
upper-limb through an exoskeleton and multiple-channel FES. Given the key role of the
brain, tDCS is used for neuromodulation; specifically, anodal tDCS is applied to the
motor cortex of the ipsilesional hemisphere to increase its excitability. A "one-size-fits-
one" type of therapy is obtained on two-levels: in terms of dosage and within-session
goals. Regarding the former, we let each patient perform the intervention as long as
improvements in motor impairment are observed. Regarding the second, we allow the
therapist in charge of the interventional session to choose the training targets of the
day, by asking the patient to perform exercises that vary in terms of difficulty and
functionality.

We hypothesize patients will show some motor improvement thanks to the additive effects
of the combination of neurotechnologies. The musculoskeletal system will be trained
with the exoskeleton and FES. Synaptic plasticity between central motor commands and
peripheral activation will be enhanced with the BCI and further cortical modulation and
potentiation is expected to occur thanks to anodal tDCS. Motor improvement is expected
to be seen in clinical scales as well as in kinematics features (e.g., lower compensation,
larger range of motion, and smoother movement). Reducing motor impairment is the
primary objective of the AVANCER trial, but we also aim to investigate the underlying
mechanisms of such changes and determine factors that could be potentially associated
with the treatment response. For this, I will mostly use electrophysiological measures
such as EEG, EMG, and the responses to TMS recorded with these two techniques.
Differently, another PhD work will evaluate neuroimaging-based factors such as structural
and functional MRI. We believe plastic changes will be found in the brain activity during
a motor task, but also at rest, e.g., increase in lateralisation during a task, and increase
of interhemispheric balance at rest.

Although confident in the outcomes of the trial, we acknowledge that stroke is a disease
that affects first and foremost the brain and that the brain should be the key target in
the rehabilitation strategies. In the AVANCER set-up, the brain role is paramount as it
orchestrates the activation of the peripheral machines; similarly, brain-stimulation modu-
lates and directly perturb the brain to enhance plasticity. However, brain-stimulation is
here given in an open-loop and impersonal fashion. If the contingency between brain-state
and the receival of afferent inputs is critical, the brain-state at the brain stimulation time
should be just as relevant. Therefore, the next logic step is to combine BCI set-ups with
brain-state-dependent stimulation set-ups where the brain activates not only peripheral
machines, but also a direct and explicit response to itself and its networks.

To achieve this upgraded set-up of a BBCI, we assume to deliver neuromodulation with
TMS (possibly rTMS), given its higher temporal and spatial resolution compared to
tDCS and its ability to perturb the brain oscillations instantaneously. I have conducted
preliminary studies to overcome technical obstacles and to investigate important brain
states; these analyses were the focus of the second part of this thesis. Specifically, I have
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concentrated on the methodologies to extract brain dynamics from EEG. First, I studied
the effect of different preprocessing pipelines on the estimation of phase and PSD for
a given brain oscillation to define an accurate processing pipeline. Second, I examined
the effects of such phase and PSD on MEP and TEP features on three cohorts: young,
elderly and stroke patients. Results from this project and the comparison of effects
between cohorts will help us define which brain states that could be used to enhance
corticocortical and corticospinal excitability. The evidence of specific high excitability
states could then be exploited in the rehabilitation set-up for stronger and faster motor
learning.

Finally, with this PhD I pave the way to the definition of a BBCI coming from the
combination the BCI and brain-state dependent stimulation set-ups. The desired goal is
to have a new and effective device for motor rehabilitation in stroke patients.

1.8 Thesis Outline

This work is divided into two main parts: first, I describe a novel, innovative, personalized
interventional strategy based on neurotechnology for upper-limb motor rehabilitation
of severely impaired chronic stroke patients. Second, I present fundamental engineering
steps to bring forward new neurotechnologies based on state-dependent NIBS for future
interventions.

The first part is dedicated to AVANCER clinical trial (clinicaltrials.gov NCT04448483)
and is divided into three chapters.

Chapter 2: "A Novel Patient-Tailored, Cumulative Neurotechnology-Based Therapy for
Upper-Limb Rehabilitation in Severely Impaired Chronic Stroke Patients: The AVANCER
Study Protocol" (Bigoni et al., 2022b). Protocol paper describing the design and the
developed set-up.
Personal contribution: conceptualization, set-up development, writing and editing of the
manuscript.

Chapter 3: "A Novel personalized treatment strategy for chronic stroke patients with
severe upper extremity impairment: insights from the first patient of the AVANCER
trial" (Bigoni et al., under revision). Case report with multimodal results from the first
patient finishing the clinical trial.
Personal contribution: conceptualization, data acquisition, data analysis, results inter-
pretation, writing and editing of the manuscript.

Chapter 4: "AVANCER Preliminary Group Analyses". Preliminary multimodal group
(n=11) analyses from the clinical trial.
Personal contribution: conceptualization, data acquisition, data analysis, results inter-

https://clinicaltrials.gov/ct2/show/NCT04448483
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pretation, writing.

The second part of the thesis describes the first steps performed in view of a BBCI.
It focuses on the importance of EEG processing pipelines in forecasting brain-state
and in making subsequent explanations on corticospinal and corticocortical excitability.
Moreover, it shows differences between cohorts - healthy young, elderly and stroke
patients in terms of brain-state in relation to MEP and TEP features, considered proxies
for corticospinal and cortical excitability and reactivity.

Chapter 5: "Optimization of phase prediction for brain-state dependent stimulation: a
grid-search approach" (Bigoni et al., 2023). Thorough analyses of EEG preprocessing
and forecasting methods to accurately predict the phase in the alpha oscillation in young
healthy subjects and stroke patients.
Personal contribution: conceptualization, data analysis, results interpretation, writing
and editing of the manuscript.

Chapter 6: "MEP and TEP features variability, is it just the brain-state? A young,
elderly and stroke cohort analysis" (Bigoni et al., in preparation). Evaluation of EEG
processing pipelines and brain-state on MEP and TEP features in young healthy subjects.
Brain-state is defined in terms of power and oscillatory phase in the alpha band.
Personal contribution: conceptualization, data analysis, results interpretation, writing of
the manuscript.

Chapter 7: "Beta oscillation modulation of cortical and corticospinal excitability: a
young, elderly and stroke cohort analysis" (Bigoni et al., in preparation). Evaluation of
brain-state on MEP and TEP features in three cohorts: healthy young, healthy elderly
and longitudinally assessed stroke patients. Brain-state is defined in terms of power and
oscillatory phase in the beta band. Modulatory effects of beta oscillations are evaluated
during single pulse and SICI.
Personal contribution: conceptualization, data analysis, results interpretation, writing of
the manuscript.

A general discussion follows this second section, where we draw conclusions from the
results obtained in the two parts and suggest future steps.

Finally, in the Appendix two additional studies are described: a short systematic review
on the application of BCI for stroke upper-limb motor rehabilitation (Bigoni and Hummel,
2019) and a new derivative-based methodology to automatically compute the MEP latency
(Bigoni et al., 2022a). The former is an important analysis made in view of the AVANCER
protocol; the methodology described in the second study has been used throughout the
thesis.

Appendix A: "BCI Therapies Triggering Sensory Feedback for Motor Rehabilitation After
Stroke: A Systematic Review" (Bigoni and Hummel, 2019).
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Personal contribution: conceptualization, literature review, data analysis, results inter-
pretation, writing and editing of the manuscript.

Appendix B: "An Automatized Method to Determine Latencies of Motor-Evoked Po-
tentials Under Physiological and Pathophysiological Conditions" (Bigoni et al., 2022a).
Implementation of an automatized tool to compute MEP latencies. It has been bench-
marked on manually inspected data and on previously published algorithms and works
successfully on healthy young and stroke data.
Personal contribution: conceptualization, data analysis, results interpretation, writing
and editing of the manuscript.
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2.1 Abstract

Effective, patient-tailored rehabilitation to restore upper-limb motor function in severely
impaired stroke patients is still missing. If suitably combined and administered in a
personalized fashion, neurotechnologies offer a large potential to assist rehabilitative
therapies to enhance individual treatment effects.

AVANCER (clinicaltrials.gov NCT04448483) is a two-center proof-of-concept trial with
an individual based cumulative longitudinal intervention design aiming at reducing upper-
limb motor impairment in severely affected stroke patients with the help of multiple
neurotechnologies. AVANCER will determine feasibility, safety, and effectivity of this
innovative intervention.

Thirty chronic stroke patients with a Fugl-Meyer assessment of the upper limb (FM-
UE) <20 will be recruited at two centers. All patients will undergo the cumulative
personalized intervention within two phases: the first uses an EEG-based brain-computer
interface to trigger a variety of patient-tailored movements supported by multi-channel
functional electrical stimulation in combination with a hand exoskeleton. This phase
will be continued until patients do not improve anymore according to a quantitative
threshold based on the FM-UE. The second interventional phase will add non-invasive
brain stimulation by means of anodal transcranial direct current stimulation to the motor
cortex to the initial approach. Each phase will last for a minimum of 11 sessions. Clinical
and multimodal assessments are longitudinally acquired, before the first interventional
phase, at the switch to the second interventional phase and at the end of the second
interventional phase.

The primary outcome measure is the 66-point FM-UE, a significant improvement of at
least four points is hypothesized and considered clinically relevant. Several clinical and
system neuroscience secondary outcome measures are additionally evaluated.

AVANCER aims to provide evidence for a safe, effective, personalized, adjuvant treatment
for patients with severe upper-extremity impairment for whom to date there is no efficient
treatment available.

Keywords: stroke, rehabilitation, brain computer interface, upper limb, tDCS,
personalized

https://clinicaltrials.gov/ct2/show/NCT04448483
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2.2 Introduction

Stroke-related disabilities are highly heterogeneous, with frequent occurrence of motor
deficits, affecting around 80% of stroke survivors (Lawrence Enas S. et al., 2001). The
severity of impairment is diverse, with around 25% of patients showing little to no motor
recovery of the upper-limb (Hendricks et al., 2002; van der Vliet et al., 2020). There
is now a bouquet of different types of treatments for upper-limb motor rehabilitation
(Hatem et al., 2016; Pollock et al., 2014; Raffin and Hummel, 2018; Teasell et al., 2020)
ranging from mirror and constrained-induced movement therapy to neurotechnology-based
approaches, such as robotics, non-invasive brain stimulation, peripheral nerve stimulation
or virtual reality (Coscia et al., 2019; Micera et al., 2020). However, most of these therapies
may only be applied successfully to subgroups of patients; in particular, treatment
strategies for severely impaired patients are limited and non-effective. Specifically, this
population may benefit from neurotechnology-based interventions as they will allow
these patients personalized, high-intensity and repetitive training (Micera et al., 2020).
Neurotechnologies for stroke motor rehabilitation comprise robot- and exoskeleton-,
functional electrical stimulation (FES), brain stimulation- and brain computer interface
(BCI)-based interventions. We refer the reader to (Coscia et al., 2019; Hummel and
Cohen, 2006; López-Larraz et al., 2018; Micera et al., 2020; Pollock et al., 2014; Ramos-
Murguialday et al., 2019; Vafadar et al., 2015; Webster et al., 2006) for detailed reviews
on the use of these technologies in motor rehabilitation for stroke patients. In addition
to the above-mentioned characteristics, these assistive devices are modular, allowing
their use singularly or in combination with each other. With the second approach,
better results might be achieved due to the potential of synergistic, additive/supra-
additive effects of complementary features and interventional targets (Coscia et al., 2019).
Robot- and FES-based strategies target the peripheral nervous system by activating
muscles, inducing movements and providing sensory feedback. In addition, FES allows
for activation of the efferent pathways if used with supra motor threshold amplitudes
(Baker, 2000). Brain stimulation and BCI target the central nervous system. The former
attempts to modulate the underlying excitability and achieve neuro-plastic effects crucial
for learning and reorganization (Fritsch et al., 2010; Hummel and Cohen, 2006; Wessel
et al., 2015); the second one aims to enhance the engagement of the task-specific brain
regions to perform the impaired functional tasks. Moreover, the BCI set-up orchestrates
the other neurotechnologies to reinstate a coherent interaction of efferent and afferent
activity essential for behavioral improvement by decoding the recorded brain activity
associated with the attempt to move the paretic upper extremity. The peculiarity of
BCI is that it allows for functional efferent-afferent contingency, immediate feedback
and reinforcement even without any movement capacity (Biasiucci et al., 2018; Frolov
et al., 2017b; Ramos-Murguialday et al., 2013). Albeit promising, BCI as a therapy
for upper-limb rehabilitation is still at its infancy and most of the randomized clinical
trials (RCTs) are heterogeneous in terms of brain-directed machines used, movements
performed, intervention duration and targeted population (Bertani et al., 2017; Bigoni
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and Hummel, 2019; Cervera et al., 2018; Eraifej et al., 2017). These variabilities are not
specific to BCI therapies, but have also been reported in other stroke-related upper-limb
rehabilitation treatments (Quandt and Hummel, 2014). As highlighted by the Stroke
Recovery and Rehabilitation Roundtables (SRRR) (Bernhardt et al., 2019b,a) and a
recent meta-analysis (Hayward et al., 2021b), trials controlled in terms of time point
post-stroke and patient phenotype are still lacking. Precision medicine approaches are
needed with the clear goal of creating treatment protocols able to adjust the therapy and
its specific parameters to the condition and needs of the individual patient to maximize
the effects. Meta-analyses have demonstrated a positive effect of dose-response in stroke
motor-rehabilitation (Lohse et al., 2014b), yet choosing the correct dosage for each
patient a-priori remains a challenge (Bernhardt et al., 2019a; Hayward et al., 2021b;
Lang et al., 2015). Therefore, intervention duration should be individually adjusted
along the therapy to allow every patient to achieve the maximum treatment response.
Furthermore, the intervention itself may be dynamically adjusted by adding adjuvant
treatments. This becomes of relevance when multiple neurotechnologies (or different
approaches such as pharmacology) are combined. If each device has a precise target, they
should be gradually combined in a patient-tailored fashion to maximize the results; for
example starting from peripheral interventions with exoskeleton and FES to allow the
training of upper extremity movement, towards a central, orchestrated engagement with
the BCI-based approach, followed by further support of non-invasive brain stimulation
for neuroplastic and reorganization processes in the large-scale network (Bastani and
Jaberzadeh, 2012; Hummel et al., 2005; Nitsche and Paulus, 2000).

With the AVANCER (Accident Vasculaire cérébrale et Apport des Neurotechnologies
individualisées chez le patient sévère Chronique: une Etude clinique prospective visant
à Restaurer la mobilité du membre supérieur)1 proof-of-concept trial, we propose a
personalized neurotechnology-based therapy for upper-limb motor rehabilitation in severe
chronic stroke patients. To maximize treatment effects, we propose two main pillars. The
first is the combination of neurotechnologies to leverage their synergistic effects. The
second is the personalization in the intervention duration and in a therapy assisted by
a hierarchical sequence of non-invasive neurotechnologies, i.e., BCI, FES, exoskeleton
and transcranial direct current stimulation (tDCS). To acknowledge high-dimensional
heterogeneity in the investigated population (e.g., lesion location and dose-response) and
because we expect no natural recovery, a within subject design is the most appropriate
and has been chosen to evaluate the following hypothesis: the proposed cumulative
neurotechnologies-based intervention leads to an increase of at least 4 points on the
Fugl-Meyer assessment for the upper extremity (FM-UE) (Fugl-Meyer et al., 1975) on
average across the targeted population, at end of the sequential treatment.

The main objective of AVANCER is to maximize upper-limb motor improvement in
severely impaired stroke patients by the end of the cumulative tailored treatment. Sec-

1Cerebrovascular accident and contribution of individualized neurotechnologies for severely impaired
patient: a prospective clinical trial aiming at restoring the upper-limb mobility
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ondary aims are to investigate the rehabilitation process in terms of time, intervention,
and patients’ specifics; and to determine underlying neural and clinically relevant behav-
ioral mechanisms by means of a multi-modal evaluation. Moreover, given the novelty of
the protocol, we aim to study the feasibility and safety of this set-up and design.

2.3 Methods and Analysis

AVANCER is a sponsor-initiated, national multicenter (Campus Biotech, Geneva and
Clinque Romande de Réadaptation, SUVA, Sion, Switzerland) proof-of-concept trial with
an individual based cumulative longitudinal intervention design. All recruited patients
undergo the intervention.

2.3.1 Inclusion criteria

For patients to be recruited in the study, they must fulfill the following requirements: be
in a chronic stage and severely impaired. The former means that the stroke must have
happened at least six months before enrollment; the second is defined by the FM-UE of
below 20 points. Specifically, we include patients with limited residual voluntary finger
extension measured with the FM-UE score of "hand mass extension" for which we accept
a score below or equal to 1. Moreover, patients’ MRIs are analyzed to assess that the
hand-knob of the lesioned hemisphere is intact. The latter is evaluated case by case as
follows: 1) if the stroke lesion does not affect the hand knob area, the hand knob is
considered intact; 2) if the stroke lesion affects the hand knob, but the grey matter is
not affected, the hand knob is considered intact; 3) if the grey matter of the hand knob
area is affected, the hand knob is considered as non-intact and the patient is excluded.
A patient is only eligible to participate if he/she understands the protocol and is able to
consent. With each patient a cognitive screening with the Montreal Cognitive Assessment
(MoCa) (Nasreddine et al., 2005) is performed. Although there are no well-established
cut-off scores due to limited reliability with patients with speech and languages problems,
with a score of 18 or lower, upon consent with the patient, contact with the treating
physician is made to verify if the patient is capable of understanding the study content.
Full inclusion and exclusion criteria are reported in Fig. 2.1.

2.3.2 Recruitment

The two study sites (Geneva, Sion) are in continuous contact and close proximity to
the respective hospitals (University Hospital of Geneva - HUG; Hôpital Valais de Sion -
HVS). Moreover, the project has collaborations with three rehabilitation clinics in the
areas (Clinique Romande de Réadaption – CRR; Berner Klink Montana, Crans-Montana;
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Clinique La Lignière, Gland). Recruitment is done through multiple channels such as
patients’ contact through hospitals, study presentation to patients by partnered clinics
and leaflets at physicians’ cabinets.

2.3.3 Study procedure

All thirty planned patients will receive a cumulative neurotechnologies-based intervention:
(1) Interventional phase 1 (IP1) uses a BCI to control supra-motor threshold FES for
the upper-limb and a hand exoskeleton for flexion and extension of the fingers with arm
support; (2) Interventional phase 2 (IP2) adds tDCS to IP1.

The duration of both interventions is tailored for each patient and is determined according
to improvement monitored through a short version of the FM-UE (sFM-UE) (Fugl-Meyer
et al., 1975), consisting of 54 points excluding reflexes and coordination items. This short
FM-UE is assessed every second session of intervention. The patient is considered to
have no further prospect of recovery when no improvement in terms of sFM-UE is seen
in the current session (Si), defined by:

sFMUESi ≤ median(sFMUESi−2, sFMUESi−4, sFMUESi−6) (2.1)

When this condition is met, the intervention changes to a second stage and the same
procedures take place to determine the end of IP2. A minimum of 11 sessions per
intervention is provided and equation (1) is thus applied from the eleventh session of
both phases. The session counting of IP1 begins when the patient can govern the BCI
(i.e., reaching 70% of accuracy in offline model validation); this choice is made to have a
similar amount of valid therapy sessions in the two interventional phases. In addition to
the therapies, every subject participates in three multimodal assessment visits: before
IP1 (T0), at the change to the second interventional phase (T1), and at the end of IP2
(T2). A follow-up visit is scheduled three months after the end of IP2. The full procedure
can be seen in Fig. 2.1. Visits and interventions are conducted at the centers, in our
laboratory spaces. Only screening and observation visits may be done at the patient’s
place of residence.

2.3.4 Interventions

The heart of our interventional set-up is a non-invasive electroencephalography (EEG)-
based BCI that governs the activation of two actuators: a robotic glove and multi-channel
FES.
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Figure 2.1: Flowchart of the AVANCER study with patient inclusion/exclusion criteria.
The procedure flow shows the timeline with maximum delays between steps in terms of
weeks. Abbreviations are as follow. MoCA = Montreal Cognitive Assessment (Nasreddine
et al., 2005), Bells = Bells cancellation test (Oliveira de et al., 2016), AST = apraxia
screening of TULIA (Vanbellingen et al., 2011), LAST = language screening test for
aphasia (Nader, 1976), MI = motricity index (Cameron and Bohannon, 2000), NIHSS
= NIH Stroke Scale (Ortiz and L. Sacco, 2014), CIRS = Cumulative Illness Rating
scale (Linn et al., 1968), FM-UE = Fugl-Meyer Assessment for the upper limb(Fugl-
Meyer et al., 1975), MAS = modified Ashworth scale (Bohannon et al., 1987), MRC
= Medical Research Council scale, ARAT = Action Research Arm Test (Van der Lee
et al., 2001), RASP = Rivermead Assessment of Somatosensory Performance (Winward
et al., 2002) TAP = test of attentional performance (subsections of phasic alertness and
divided attention)(Nideffer, 1976), SIS = Stroke Impact Scale (Carod-Artal et al., 2008),
BDI-II = Beck Depression Inventory scale (Beck, 1961), MFI=Multidimensional Fatigue
Inventory (Smets et al., 1995), PSQI = Pittsburgh sleep quality index (Carpenter and
Andrykowski, 1998). sFM-UE is a short version of the FM-UE where the maximum is 54
and reflex items are removed.
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Materials

Brain activity is recorded from a 16-channel electroencephalogram (16 Channel V-amp
system, Brain Products GmbH, Gilching, Germany; Ag/AgCl electrodes on ActiCAP
10-20 system) covering the motor cortex of both hemispheres. The signals are sent to an
external decoder that classifies if the incoming signal corresponds to a motor intention
for the affected limb. When this condition is met, the two actuators (the exoskeleton
and the FES) are triggered. The exoskeleton is a Gloreha Sinfonia (Idrogenet, Brescia,
Italy) consisting of a cable-driven glove that can be used to flex and extend fingers
(Borboni et al., 2017). Thanks to the embedded stretch-sensors, we are able to monitor
voluntary activation and perform assisted-as-needed movements. The proximal upper-
limb can be activated by supra-motor threshold FES (Rehastim, Hasomed Germany with
PALS electrodes, Axelgaard, Denmark) at seven different muscles: rhomboids, deltoid
anterior and medialis, biceps brachialis, triceps, brachioradialis and extensor digitorum.
Stimulation can be given to each muscle individually or in combination.

During IP2, anodal tDCS (DC-stimulator, Neuroconn, Ilmenau, Germany) is focally
applied to the motor cortex of the lesioned hemisphere. The stimulation is applied
through a 4x1 montage (Kuo et al., 2013) where the anode is placed over the C3 (or
C4) position according to the 10-20 EEG-system. The 4 cathodes are equally distanced
around it and placed at the positions of CP5, CP1, FC1, FC5 (or CP6, CP2, FC2,
and FC6). EEG electrodes and tDCS electrodes will be exchanged during therapy and
custom-made hybrid holders have been created. The exact position of the electrodes
is based on simulation results using SimNIBS 3.0 (Thielscher et al., 2015). In these
simulations, we aimed at optimizing electrodes’ location in terms of highest current
density peak and broad and strong activation of primary motor and somatosensory
cortices, while considering physical constraints for placing electrodes without creating
bridges. The Ag/Ag-Cl electrodes (12mm diameter) are placed, with electrolytic gel,
in the EEG cap used for brain activity recording. More details on the functioning and
set-up of these different technologies are reported in Section 2.6.

The hand exoskeleton acts on the mobilisation of the hand, and specifically on the fingers.
It allows for a training of the hand muscles, while activating the nervous afferent sensory
feedback. The multi-channel FES acts on the whole upper-limb, from the shoulder to
the wrist. Mostly big and superficial muscles are targeted. FES works similarly to the
exoskeleton in terms of muscle activation, but also achieves active muscle contraction. The
effects of FES in terms of delivering feedback are even stronger considering the antidromic
excitation that it delivers (Milosevic et al., 2020). In particular, in the framework of
Hebbian learning, where synapses that fire together get stronger through long-term
potentiation (LTP), an efferent brain motor command that reaches the spinal pre-synapse
at the same time of the FES elicited action-potential in the post-synapse, a stronger
connection can be generated, helping in restoring function (Rushton, 2003). Indeed, this
become even more important when FES is triggered through a BCI. Notably, to obtain
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full movements in flaccid and untrained muscoloskeletal systems, antigravity supports are
necessary, especially in view of functional movements. Most of the exercises involve both
actuators and therefore the training of the hand is a focus of the training, where different
hand closures and hand extensions are performed; the latter is significantly helped by the
stimulation of the extensor digitorum medialis. More proximally, shoulder stabilisation
is very often targeted, except for exercises training the hand only. Training exercises
may focus on specific articulations or in complex movements. Functional movements
are also performed to make the training pertinent in addressing activities of daily living.
During IP2, neuromodulation is applied at rest with anodal tDCS. Indeed, the after
effects of tDCS have been shown to be long-lasting, up to one hour or more (Nitsche and
Paulus, 2000), which is more than the time allocated for the actual rehabilitation (i.e.,
45 minutes of the patient using the BCI to trigger movements). A similar approach has
already been applied in previous clinical trials (Ang et al., 2014; Kasashima-Shindo et al.,
2015) and it has been shown that tDCS may enhance the excitability of the underlying
network, and specifically to BCI, to increase the strength and the performance of the
classifier (Mane et al., 2019; Chew et al., 2020).

Interventional session

One interventional session lasts approximately 2.5 hours and includes set-up, calibration,
therapy, and assessment of the sFM-UE, if required. The full session is performed by a
trained study therapist and run from a graphical user interface (see Section 2.6).

Set-up

The patient sits in a comfortable chair in front of a screen. The impaired arm is placed
on an antigravity support (Armon arm, integrated with Gloreha Sinfonia system) with
the elbow flexed at around 90°. Electrodes for FES are placed over the bellies of the
muscles of interest and the impaired hand is inside the glove exoskeleton in anatomical
rest position (Fig. 2.2).

Calibration procedure

At each new session, both the BCI and the actuators need to be calibrated. For the
former, we seek a high accuracy (i.e., at least 70% offline) in classifying motor intention
of the affected upper-limb. For the latter, given the synergistic work of the exoskeleton
and the FES, we aim at combining them to artificially generate smooth movements that
strongly resemble natural ones. This requires a fine-tuning of the actuators in terms of
activation time and intensity. See Section 2.6 for further details.
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Figure 2.2: Interventional set-up. The patient is sitting on a comfortable chair with
the arm resting on an anti-gravity support; multiple FES electrodes are placed over the
upper-limb; and the hand is placed in the robotic glove, which the therapist is adjusting.
The subject is wearing an EEG cap for the BCI. On the computer screen the in-house
application through which the therapy session can be run is visible.

tDCS

If in IP2, anodal tDCS is given at 2mA (with 8 seconds ramp-up and ramp-down at the
beginning and end respectively) for 20 minutes when the patient is at rest before the
BCI-based rehabilitation.

Therapy

For each session, the study therapist chooses the exercises from a broad range of possibili-
ties including simple movements (e.g., hand opening and closing) and functional exercises
(e.g., reach and grasp a cup); the full list is available in Section 2.6. The patient then
receives instructions on a video screen indicating the exercises that he/she has to follow.
For each repetition of each exercise, as soon as the BCI decoder classifies a movement
intention the actuators are initiated.
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2.3.5 Assessments

Longitudinal multimodal data is gathered during the different visits. The full procedure
and tests can be seen in Fig 2.1. Baseline characteristics describing patients’ demographics
are performed right after the inclusion. Clinical assessments are performed at the
observation visits, the full evaluation visits as well as at follow-up (i.e., three months
after end of treatment). Neural correlates of motor impairments are performed at the
full evaluation visits in T0, T1, and T2 (see Fig. 2.1 for full procedure).

Observational period

Given the absence of a control group, 10 randomized patients will also do, in addition to
the standard protocol, a three-month observational period prior to the intervention to
further validate that the targeted population is in the plateau phase of recovery with a
stable level of motor impairment, as suggested in the literature.

Upon recruitment, patients are randomized with a one-to-two distribution into the
waiting or the starting group. The waiting group (n=10) corresponds to the patients
doing first the observational period and then starting the treatment phase; the starting
group (n=20) will directly begin with the treatment phase. The waiting group undergoes
an observational period of three months prior to beginning the treatment, whereas the
starting group begins the treatment immediately. Once the intervention starts, both
groups continue the procedure in the same way and receive the same treatment described
in the previous paragraphs.

The assignment of patients (waiting or starting group) is performed per center and takes
age group (before 50, between 50 and 65, and over 65) and side of impairment into
account (Frane, 2016).

Blinding procedures

Complete blinding cannot be achieved in this study design (i.e., patients know in which
group they have been placed – waiting vs. starting group, though the treatment phase
is identical for both groups). The therapist performing the interventions is blinded to
the scores given at the evaluation visits by the assessor. Within the protocol, there is
at least one trained therapist per study site. The therapist assigned to one study site
performs the intervention and assesses the sFM-UE for all patients belonging to the same
site. An assessor, not involved in any way in the treatment (i.e., blinded to therapies’
outcomes and sFM-UE) conducts the assessments at the full evaluation visits (T0, T1,
and T2). The therapist of one site takes the assessor role for the other site for the clinical
measures.
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Baseline characteristics

At baseline, descriptive information such as: age, time since stroke, affected side, medi-
cation use, and comorbidities are acquired. Furthermore, the MoCa (Nasreddine et al.,
2005), a full neurological exam, the NIHSS (Ortiz and L. Sacco, 2014), the Cumulative
Illness Rating scale (Linn et al., 1968), the Bells cancellation test (Oliveira de et al.,
2016), apraxia screening of TULIA (Vanbellingen et al., 2011), language screening test
for aphasia (Nader, 1976), and the motricity index (Cameron and Bohannon, 2000), are
conducted.

Clinical assessments

An assessment battery covering motor impairment at the functional, activity and partici-
pation level and several relevant other domains is conducted at each time point. The
battery consists of: FM-UE (Fugl-Meyer et al., 1975), Action Research Arm Test (Van
der Lee et al., 2001), modified Ashworth scale (MAS) (Bohannon et al., 1987), Medical
Research Council scale (MRC), subsections of phasic alertness and divided attention of
the test of attentional performance (Nideffer, 1976), Stroke Impact Scale (Carod-Artal
et al., 2008), Beck Depression Inventory scale (Beck, 1961), Rivermead Assessment
of Somatosensory Performance (Winward et al., 2002), and Multidimensional Fatigue
Inventory (Smets et al., 1995). During the full evaluation visits (T0, T1, T2), sleep is
monitored with an ActiGraph device (wGT3X-BT, Florida, USA) combined with the
Pittsburgh sleep quality index (Carpenter and Andrykowski, 1998) and a sleep diary.
The FM-UE is instrumented with wearable 3D motion capture sensors (Xsens MVN,
Enschede, Netherlands) and electromyography (EMG) sensors (Noraxon, Arizona, USA),
and videotaped. The instrumented FM-UE can provide kinematic data and thus further
evaluation of motor improvement on the same movements of the primary outcome scale;
for example, information regarding smoothness and speed of movement (Pierella et al.,
2020; Schwarz et al., 2019) will be retrieved and analyzed. Having recordings of the
FM-UE will give the possibility (if necessary) to have an additional assessor evaluating
the scale used for the primary outcome. For more information on the instrumented
FM-UE, see the related paragraph in Section 2.6. Finally, an in-house self-questionnaire
is used to evaluate how patients felt about the therapy and their expectancies.

Neural correlates of motor improvement

In addition to the clinical scales, we will use multi-modal neuroimaging and electrophysi-
ological techniques to study the underlying mechanisms of rehabilitation. We perform
structural and functional (resting-state and task-related) magnetic resonance imagin-
ing (MRI). Electrophysiological parameters will be measured with EEG, transcranial
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magnetic stimulation (TMS), TMS-EEG and EMG. See Section 2.6 for details of the
MRI-based neuroimaging and the electrophysiological protocols. Analyses of TMS/TMS-
EEG evoked potential features, such as motor evoked potentials (MEPs) global and
local mean field power will be determined. Regarding the neuroimaging data, factors
such as the corticospinal integrity, whole brain connectivity and disconnectivity will be
investigated with structural MRI; resting state fMRI allows to determine changes in
resting state connectivity and with task-based fMRI, functional connectivity analyses will
be performed. Electrophysiological and neuroimaging exams are performed by trained
scientists and study therapists.

2.3.6 Population size

The study aims to recruit 40 patients, which by taking into account an estimated 20%
dropout, leads to 30 patients completing the study with 10 starting in the waiting group
(2:1 design). This number was obtained through an a-priori power analysis for sample
size in G-Power (Faul et al., 2007) for a paired Wilcoxon Signed Rank test considering
an alpha and beta of 0.05 and expecting an effect size of 0.64 (i.e., considering a mean
FM-UE of 15, standard deviation of 4.7 (Lee et al., 2020) and expected improvement of
4 points). The sample size is also in agreement with previous neurotechnology-related
studies and considering that the study is a proof of concept.

2.3.7 Primary and secondary outcome measures

The primary outcome measure is the change in the 66-point FM-UE. The null hypothesis
will be rejected when a statistically significant improvement between pre-intervention (T0)
and the end of the cumulative treatment (T2) of at least 4 points is found. A medically
clinically improvement difference (MCID) lower than the commonly used 5.25 point was
chosen based on three current studies addressing the MCID (Arya et al., 2011; Hiragami
et al., 2019; Page et al., 2012). The three studies involve different stroke subgroups:
chronic and moderately impaired (Page et al., 2012), subacute and moderately impaired
(Hiragami et al., 2019), and subacute and severely-to-moderately impaired (Arya et al.,
2011). As suggested by (Hiragami et al., 2019), being in the chronic state makes the
MCID drop significantly (5 vs. 9-11 points) and further reduction (around 2 points) is
observed with severity. A lower MCID is also supported by (Gladstone et al., 2002) that
suggests a decrease in the standard error in the reliability and validity of the FM-UE
with severely affected subjects as there are less uncertainties when no movement can be
performed.

Secondary outcomes look at the effectiveness of the two interventional phases separately
and at the general benefit of the rehabilitation compared with the natural course deter-
mined from the waiting group; the latter is expected to be negligible in the chronic state.
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This comparison will be done through the clinical scales evaluated during the observa-
tional period of the waiting group. To evaluate if the recovery is long-lasting, all patients
will be assessed on clinical scales (including FM-UE) 3-months after T2. Moreover, to
study the underlying mechanisms of motor recovery during treatment, we will base our
analyses on longitudinal multi-modal assessments data: motor and cognitive scales scores
will be evaluated together with neural correlates from neuroimaging techniques including
MRI and a combination of electrophysiological measures, as detailed above. Secondary
outcomes also include safety, feasibility, and tolerability of the experiment.

2.3.8 Statistics

To evaluate if significant motor improvement of the upper-limb is achieved, the FM-UE
scores of all the 30 patients will be compared between the final (T2) and the initial
(T0) evaluation visits: we will use a two-tail paired Wilcoxon Signed Rank test, with
the probability value set at 0.05. The null hypothesis is H0=‘FM-UE scores at T2 and
FM-UE scores at T0 follow the same distribution’, H1=‘FM-UE scores at T2 do not
follow the same distributions of scores at T0; the distributions are significantly different’.
H0 will be rejected if a p-value<0.05 is obtained. This evaluation will be considered
together with the expected four-point improvement on average.

To assess if the observed changes in the FM-UE are long-lasting, we will compare with
the same test (Wilcoxon Signed Rank, alpha=0.05) the FM-UE scores at T2 with those
acquired at the follow-up (3 months after T2). Another related secondary outcome
regards the validation of motor function stability of chronic stroke patients (i.e., no
FM-UE improvement during the observation period). We will use a Kruskal-Wallis test
with alpha at 0.05 to investigate differences in the FM-UE scores at the three time points
of the observation period. We do not expect to reject the null hypothesis for which the
three groups are said to come from the same distribution.

Among the most important secondary outcomes is safety and feasibility; for these,
descriptive statistics will be provided. One major safety outcome is incidence of epileptic
seizures during the intervention period with tDCS, as well as other SAEs. Furthermore,
feasibility will be determined by the drop-out rate, usually in clinical trials set to up to
20%.

Important exploratory analyses will focus on the difference between the two interventional
phases; such investigation might give an insight on the role of tDCS in the rehabilitation.
To test the effect of dose and intervention type on the FM-UE we will use a mixed effects
linear model with random effect of subject and fixed effects of session, intervention type
and the interaction of the two. If significant results will be observed, we can then build
on this initial model by adding more independent variables such as lesion location and
time post-stroke. Other analyses will correlate the multimodal data acquired during the
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three full evaluations (T0, T1, T2), such as corticospinal tract integrity and the TMS
evoked potential, with the clinical scales.

Statistical analyses will be performed in a per protocol way using only the data of patients
who have finished the study protocol (i.e., drop-out and excluded patients will not be
included in the main analyses).

2.3.9 Data and safety monitoring

An independent data safety and monitoring board (DSMB) is implemented and will be
informed about adverse events (AE), potentially related to the use of the device, any
serious adverse events (SAE), device deficiencies, and the progress of the trial. (S)AEs
follow the definition of ISO 14155:2020 3.2 and 3.45. All SAE and device deficiencies
will be reported to the Sponsor within 24 hours. The Sponsor is obliged to report to
the former to the Competent Ethics Committee (Commission cantonale d’éthique de
la Recherche sur l’être humain in Vaud) and the second one to Competent Authority
(Swissmedics) within 7 calendar days. The trial will be stopped if there is a medically
relevant increase in major, unexpected AE with the intervention compared with the
waiting group. Moreover, the study has implemented a monitoring plan involving 10 site
visits, including the site-initiation and close-out visits. The monitoring will cover the
conduct of the study, the completeness of files and documents as well as data security,
(S)AE and device deficiencies.

2.4 Discussion

The AVANCER protocol proposes two important novelties to enhance neurorehabilitation
and to bring forward the current therapeutic options in severely impaired stroke patients:
a combination of neurotechnologies and a highly personalized treatment intervention.
We believe that the present interventional strategy, combining several neurotechnologies
in a personalized fashion, will have a large potential to be translated into clinical
settings, if successful. We hypothesize that the personalized, sequential multi-technology-
based interventions will further support behavioral restitution of impaired functions
in this group of patients with limited treatment options in the chronic stage. We
expect that this treatment will mechanistically not only act on brain plasticity and
functional reorganization (BCI and tDCS), but will also show beneficial effects on the
musculoskeletal system in a synergistical way. Specifically, with the support of FES and
exoskeleton, a multitude of repetitive upper extremity movements can be performed by
the patient allowing full upper limb movements (not possible in these patients without the
present interventional strategy). Such movements are performed thanks to an exoskeleton
that passively extends and flexes the fingers and supra-motor threshold FES on seven
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muscles. The continuous movements might help decreasing possible spasticity, atrophy
and hopefully reverse some of the changes that resulted from months of no movements
performed.

Regarding brain plasticity, previous BCI studies have reported cortical reorganization
alongside the clinical motor improvement (Ang et al., 2015; Biasiucci et al., 2018; Ramos-
Murguialday et al., 2013). These results are thought to be partly due to the brain
engagement needed for the BCI to work (Shindo et al., 2011) and we hypothesize that
the underlying plastic changes can further be enhanced with tDCS, which was reported
to have a positive effect on the strength of event related desynchronizations (Hong et al.,
2017; Hu et al., 2021; Kasashima-Shindo et al., 2015) and motor outcome (Elsner et al.,
2020; O’Brien et al., 2018). We assume that behavioral restitution of function, induced
by the combined neurotechnology approach will go alongside with cortical reorganization
processes, which we plan to capture by a multimodal evaluation by means of (f)MRI, DTI
and TMS-EEG related outcome measures. These combined measures will allow to show
if the present approach can induce changes on multiple levels of the phenomenological
model (Kwakkel et al., 2004) underlying recovery after stroke.

The study outcome is evaluated with the 66-point FM-UE, currently seen as the gold
standard measure for motor impairment and function of the upper extremity. Following
the suggestions of the SRRR (Bernhardt et al., 2019b), we also instrument this scale with
EMG and IMUs to gather further data such as kinematic information, able to better
characterize movement quality and functional changes.

The expected primary outcome is a four-point improvement in the FM-UE on average
across patients and this is set to be the MCID in this study. Although this is lower
than previously suggested (Page et al., 2012), it is of note that this suggestion was
based on less impaired stroke patients in the acute phase post-stroke, we believe it is an
appropriate MCID for the present population of severely impaired patients (Hiragami
et al., 2019; Gladstone et al., 2002).

The FM-UE, together with the other longitudinal assessed scales and neural correlates
will provide important data for understanding the effects of the intervention at a group
level and to identify patients who will potentially benefit from this intervention.

2.5 Summary and conclusion

The experimental and technological set-up of the present clinical trial, where an exoskele-
ton, multi-electrode FES, BCI and non-invasive brain stimulation are used together in
a personalized fashion in a clinical trial aimed at improving upper limb impairment in
severely affected stroke patients with so far very limited treatment options. We propose
a personalized, patient-tailored interventional strategy, where the targeted population is
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provided with advanced neurotechnologies to achieve maximized interventional effects,
without restraining with one type of intervention, but rather have an add-on, synergistic
continuous therapy following the individual needs and improvement. We aim to achieve
motor improvement due to the central engagement given by BCI and later enhanced
by tDCS and the peripheral activation of natural afferent and efferent pathways by the
concomitant action of actuators and further enriched through the performance of a variety
of functional exercises. The trial will allow the collection of longitudinal multi-modal
neurophysiological data constituting a precious dataset for studying motor recovery in
the target population.
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2.6 Supplementary Material

Graphical user interface

The software used to govern the different devices, with the exception of tDCS, is developed
in Python 3.7. To ease the procedure, we created a graphical user interface (GUI) to
attend to the different steps of a session: patient selection, calibration of exoskeleton
and functional electrical stimulation (FES), fine calibration of exercises combining the
two actuators, tuning and training of the brain-computer interface (BCI) decoder and
selection of exercises for the current session. Each step is done on a specific window of
the GUI. Safety measures to avoid co-activation of different elements of the GUI and
warnings related to the connected devices are implemented.

Calibration

The calibration of each actuator is done through specific windows of the GUI, one for
each device (Fig. 2.3).

Exoskeleton The Gloreha Sinfonia (Idrogenet, Brescia, Italy) robotic glove is able to
flex and extend each finger independently by elongating or shortening five mechanical
wires placed into the guides of the glove worn by the subject (Borboni et al., 2017).
In addition, it has embedded stretch sensors for each finger. Therefore, two types of
calibrations are possible: sensor calibration and wire calibration. The former is used
to evaluate the active and passive range of motion (ROM) where fingers are moved by
the patient or by the therapist, respectively. The latter is needed to tune the flexion of
the fingers for each exercise. The combination of the two calibrations can be used to
perform assisted-as-needed movements. With this approach, the glove does not passively
perform the movement immediately, but waits for an active movement of the fingers for
several seconds. If a movement of at least one fifth of the active ROM is detected, the
exoskeleton will close or open the hand by the same fraction of ROM. If no movement is
detected, the glove will passively perform the full movement.

The maximum extension of each finger is fixed manually, and all the flexions are calibrated
through the software as a percentage of it: the maximum extension is always seen as
100% by the software. The rest anatomical position is also tuned through software as for
the exercise flexions (Fig. 2.3A).

Functional electrical stimulation (FES) The maximum intensity (mA) to have
an active contraction of the muscle of interest is adjusted in the FES-dedicated window
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Figure 2.3: AVANCER GUI windows screenshots for calibration of neurotechnologies: A)
exoskeleton calibration; B) FES calibration; C) single task calibration; D) BCI calibration
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of the GUI. Here, each muscle and associated channel can be configured independently.
When the appropriate intensity is found, it is saved to all the exercises (Fig. 2.3B).

FES and exoskeleton Fine-tuning of all the exercises that combine the two actuators
is achieved through the time-planner window in which the timing of each actuator can be
configured. Here, each channel of the FES is considered independently, whereas fingers
are considered as a whole, i.e., the glove. Each exercise has a predefined default, which
defines the duration of the exercise and the subdivision of the exercise into sequential
tasks. Each task has the following properties for each channel: 1) ON/OFF; 2) initial
position (or intensity); 3) final position (or intensity); 4) time of beginning of transition
(decimal of second precision; i.e. time-point in subtask when the intensity or ROM start
changing for the FES or glove respectively); 5) time of end of transition (decimal of
second precision; i.e. time-point in subtask when the intensity or ROM stop changing for
the FES or glove respectively). See Fig. 2.3C. Exercises start and finish with the subject
in rest position, and with the FES stimulation turned off. An example of exercise with
tasks division is shown in Fig. 2.4.

Brain-computer interface (BCI) As for the actuators, the BCI has its own calibra-
tion window in the GUI (Fig. 2.3D). The calibration of the decoder (i.e., the classifier)
requires a labelled training set, which is acquired at each therapy session by asking the
patient to perform three actions for a minimum of 20 repetitions: move the affected hand,
move the non-affected hand, and relax. These instructions are given from a screen placed
in front of the patient and are synchronized with triggers sent to the EEG amplifier. If
moving of the affected hand is not possible, the patient is instructed to try to move,
without making compensatory movements, even if this attempt does not lead to an actual
movement.

Once this labelled dataset is gathered, a machine learning algorithm based on linear
discriminant analysis is trained to find the features that best discriminate the "move
the affected hand" class from the "relax" one. The class "move the non-affected hand" is
acquired for post-hoc analyses of lateralization, but it is not used for the online model.
The features to decode the different classes are based on the power spectral density (PSD)
of the ipsilesional channels (i.e., nine channels over the motor cortex of the ipsilesional
hemisphere) at each frequency band (2 Hz wide) ranging from 2 to 40 Hz. Features, as
well as hyper-parameters, are tuned using cross-validation.

The offline results (i.e., performance of the classifier based on the training set alone)
aid in choosing whether to save or discard the current model. A model is considered
good if at least 70% accuracy for both classes is reached. If the model has a good offline
performance, it is then tested online in the validation phase. Similarly to the model
training, the patient will be asked to move the affected hand and rest for at least 10
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repetitions. On top, neurofeedback can be added at patient discretion. This is used to
give online feedback to the patient and is in the form of a bar, whose height changes
according to the probability that the current signal (i.e. movement intention vs. rest) is
classified correctly by the automatic decoded.

List of exercises

The combination of multiple-channel FES and exoskeleton allowed us to create a broad
list of movements. The full list is reported hereunder; some are simple movements
involving only few joints (e.g., shoulder flexion), while others can be considered as full
exercises (e.g., reach and grasp an object).

• Shoulder flexion (only FES),

• Shoulder flexion with supination,

• Shoulder abduction (only FES),

• Shoulder abduction with elbow extension

• Hand to mouth (only FES),

• Hand to mouth with grip,

• Hand to mouth with grasp,

• Hand to mouth with pinch,

• Wrist dorsiflexion,

• Hand opening and grasp,

• Hand opening and pinch,

• Hand opening and tripod pinch,

• Hand opening and cylindrical grip,

• Finger counting,

• Finger tapping,

• Reach and grasp a cup,

• Reach and grasp a pen,

• Reach and grasp a ball,

• Clean the table.
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Figure 2.4: Example of task division for exercise "Hand to mouth". A) GUI display
showing the sequential (de-)activation of different channels. B) Video-clips of actual tasks
performed with multi-channel FES. Task names are written at the top, activated channels
at the bottom and default task duration in the lowest line. Rhom=rhomboids; dant: del-
toids anterior; bic= biceps; sup=supinator muscles (i.e., brachioradialis); edm=extensor
digitorum medialis
.
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Simulation for electrodes placement for high definition focal tDCS

The gold standard montage for tDCS over the motor cortex is considered to be the large
sponge-based set-up, with the active electrode placed at the motor cortex and the return
electrode on the frontal contralateral cortex with a surface area of 25cm2, and a current
intensity of 1mA (Zimerman et al., 2012). In the last decade, novel montages have
appeared. Among others, the high definition montage has already been used in several
clinical studies (Boratyn et al., 2013; Edwards et al., 2013; Hill et al., Oct; Kindred et al.,
2019; Kuo et al., 2013; Minhas et al., 2010; Zandvliet et al., 2018). In this montage the
active electrode, with a small surface area is placed on the target region with multiple
return electrodes on a fixed distance surrounding it (Kuo et al., 2013); because the
electrodes used have a rather small diameter (10-20mm), they provide focal stimulation.

Figure 2.5: Brain stimulation simulation results. On the right side, current density
induction result with color scale; on the left electrodes positioning over the brain and
the 10-20 system. A) Gold-standard electrode positioning; the maximum peak intensity
reached is 0.126A/m2 for an input current of 1mA; B) Chosen focal high-density montage;
the maximum peak intensity reach is 0.126A/m2 for an input current of 2mA.

The exact positioning of the high definition 4x1 montage electrodes is however not fixed
and we used simulations to find the best placement of all of them, using as benchmark the
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gold standard. Simulations were done using SimNIBS 3.0 (Thielscher et al., 2015) which
computes the electric field and current density induced by transcranial stimulation using
Finite-Element Methods. Specifically, we aimed at positioning Ag/AgCl lentil electrodes,
as developed for the DC-stimulator (Neuroconn, Ilmenau, Germany). As starting position
we placed the anode (i.e., central electrode) near C3, and the four cathodes around it at
the same distance, rotated at 45 degrees. From there, we manually translated the anode
around the motor cortex, as well as rotated the cathodes around it to evaluate if major
differences were obtained in the induced electric field. Different distances between the
anode and the cathodes were also tried. The goal of this optimization was to achieve
focal motor and sensory cortices stimulation, and a high current density peak in those
regions. The final choice was then restricted by the physical impossibility of cutting the
EEG cap too close to EEG electrodes needed for the BCI.

Fig. 2.5A, shows the results of the gold-standard montage. The active electrode is
positioned over the left motor cortex (C3 in the international 10-20 EEG system) with
an orientation of approximately 45° to the midline. The return electrode is placed over
the right frontal cortex (F4 international 10-20 system). Current intensity was 1 mA.
Fig. 2.5B shows the simulation results with the chosen 4x1 montage, where the anode
is placed over C3 and the 4 cathodes are around it at CP5, CP1, FC1, FC5. Current
intensity is 2 mA. We can observe that the current density peak is in both cases far
below the presumed threshold for tissue damage (Antal et al., 2017).

TMS-EEG protocol

At T0, T1 and T2 the patient will also attend a transcranial magnetic stimulation
(TMS)-EEG session. During the experiment, the subject will be seated in a comfortable
chair. We will record EEG activity through 64 Ag/AgCl TMS-compatible electrodes in
a 10-20 system (ActiCap 64 channels, Brainvision, Gilching, Germany). Sampling rate
will be put at 2.5 kHz, with a high cut-off of 1 kHz. The reference will be placed at AFz
and the ground at Fpz. Electromyography (EMG) activity will be acquired using a pair
of disposable Ag-AgCl electrodes. The signal will be amplified and sampled at 3 kHz
using a Noraxon DTS Receiver (Scottasdale, Arizona, United States) with the band-pass
filter from 10 Hz to 1000 Hz (analog Sallen-Key for high-pass filter and digital FIR filter
with order 128 for the low-pass; the gain will be set at 500), and will be digitized at 5
kHz using Signal software (Cambridge Electronic Design Limited, Cambridge, UK) for
further processing on a laptop. Seven muscles on the affected upper limb will be recorded
throughout the experiment: the first dorsal intraossei (FDI), abductor digitor minimi,
abductor pollicis brevi, flexor carpi ulnaris, flexor carpi radialis, extensor carpi radialis
longus and brevis, extensor carpi ulnaris. The FDI of the non-affected hand will also
be recorded. Transcranial magnetic stimulation will be delivered with a MagPro X100
stimulator connected to an MC-B70 coil (Magventure, Farum, Denmark). Moreover,
stimulation will be applied using Neuronavigation (Localite GmbH, Bonn, Germany)
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along all the experiment. This will use the T1 image of the patient previously acquired
(see (f)MRI paragraph on SM for specifics).

A minimum of four and a maximum of six stimulation blocks will be delivered at every
session. Each block will be composed of thirty single-pulse and thirty short-interval
intracortical inhibition (SICI) pulses placed in a pseudo-randomized manner; two pseudo-
randomized sequences will be used. The stimulation location will be the FDI hotspot
of the affected hand. This will be searched on the affected hemisphere as the location
that elicits the highest motor-evoked potential (MEP). If no MEP can be elicited, the
hotspot will be chosen from the anatomy as the hand-knob of the affected hemisphere.
Stimulation intensities will be found from the non-affected hemisphere. Single pulses
will be delivered at the test intensity, which is the intensity consistently giving an MEP
with peak-to-peak amplitude of at least 0.5mV. SICI will also be delivered at the same
intensity, with the conditioning stimulus at 80% of the resting motor threshold (RMT).
The latter is defined as the intensity that elicits an MEP with peak-to-peak amplitude
of at least 0.05mV five times out of 10. Pulses will be applied every 4 seconds with
a 25% jitter. During the stimulation blocks, patients will be wearing noise-cancelling
headphones providing white noise to cover the "click" provided by the stimulator.

Before and after the stimulation blocks we will acquire three minutes of resting state
with eyes open (fixating a cross) and eyes closed.

(f)-MRI protocol

The imaging session will be performed in a 3T MAGNETOM PRISMA scanner (Siemens,
Erlangen, Germany). Structural T1-weighted images will be acquired by 3D MPRAGE
sequence with the following parameters: TR = 2.3s; TE = 2.96 ms; flip angle = 9°; slices
= 192; voxel size = 1 × 1 × 1 mm, FOV = 256mm. T2 images will be also collected
with the following parameters: TR = 3s; TE = 409 ms; slices = 208; voxel size = 0.8 ×
0.8 × 0.8 mm, FOV = 256mm. Echo-Planar Imaging (EPI) sequences will be used to
obtain resting-state and task-based functional images. Resting state sequences will be
acquired with the following parameters: TR = 1.25s; TE = 32ms; flip angle = 58°; slices
= 75; voxel size = 2 × 2 × 2 mm; FOV = 224mm. Task-based images will be obtained
by applying the following parameters: TR = 1s; TE = 32ms; flip angle = 50°; slices
= 66; voxel size = 2 × 2 × 2 mm; FOV = 224mm. Diffusion-weighted images (DWI)
will be obtained by collecting seven T2-weighted images without diffusion weighting
(b0;b=0s/mm2), including one in opposite phase encoded direction, and 101 images with
noncollinear diffusion gradient directions distributed equally over the half-sphere covering
5 diffusion gradient strengths (b-values=[300.0,700.0,1000.0,2000.0,3000.0] s/mm2; shell-
samples=[3,7,16,29,46]). These images will be acquired using pulsed gradient spin echo
technique, with the following parameters: TR = 5000ms; TE = 77ms; slices = 84; voxel
size = 1.6 × 1.6 × 1.6mm; FOV = 234mm. No medication or contrast agents will be
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given.

The assessment protocol will consist in around 8 minutes of resting state data, around 9
minutes of visual control task, around 9 minutes of motor task and additional structural
sequences. During the motor task participants are required to attempt to perform or
perform hand force generation involving the paretic and non-paretic hand. For this, the
participant is first provided with the gripper(s) to be used in the task and instructed to
look at an initially black screen and follow the instructions. The first set of instructions
requires the participant to let go of the trigger activating the gripper while holding the
device in a comfortable position. A relaxation value is obtained at this time, to serve
as a lower bound during the task. The participant is then instructed by a message on
the screen to exert and hold as much force possible on the gripper. An average of the
applied maximum force is calculated over three repetitions. After the rest and maximum
force values have been obtained, the participant may start with the task. During the
task, two concentric rings are presented, with a fixation cross at their center. The rings,
normally gray, are given a white shade to indicate the target ring. An additional ring
(dark gray, here referred to as the output ring), changes its size proportionally to the
force applied by the participant. The goal of the participant is, then, to match the size
of the output ring to that of the white, target ring. The outer ring corresponds to no
force applied, whereas the inner ring is reached when applying a preset percentage of the
maximum voluntary contraction (i.e. 20%). The target rings switch continuously so that
the participant needs to apply force and release rhythmically over time. If participant
have not enough force to perform the task, a standard visual feedback is shown with the
theoretical movement of the output ring. Rest periods (during which only the fixation
cross is shown) are allowed between blocks. The visual control condition consists of
the same display of switching target rings, with the difference of the participant being
instructed not to apply force at all (the output ring is not shown), but only to look at
the ring which becomes white.

Instrumented Fugl-Meyer Assessment protocol

Recently the Stroke Recovery and Rehabilitation Roundtable (Bernhardt et al., 2017)
suggested the potential of kinematic measures to evaluate motor improvement. Following
the increased interest in the topic, we decided to instrument the assessment of our primary
outcome: the Fugl-Meyer Assessment of the upper limb (FM-UE) (Fugl-Meyer et al.,
1975). The assessment will see the patient wear wireless EMG sensors as well as inertial
motor units (IMUs) (Xsens MVN, Enschede, Netherlands). The former will be placed to
cover the following muscles of both upper limbs: trapezius, deltoid, biceps long head,
teres major, triceps, pectoralis, pronator teres, extensor carpi radialis, flexor ulnaris. The
signal will be amplified and sampled at 3 kHz using a Noraxon DTS Receiver (Scottasdale,
Arizona, United States) with the band-pass filter at 10 Hz to 1000 Hz (analog Sallen-Key
for high-pass filter and digital FIR filter with order 128 for the low-pass; the gain will
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be set at 500). The 3D motion capture sensors based on IMUs will be place on the
forehead, both hands, both wrist and upper arms (placed right below the deltoids), on
the sternum and on the sacrum, at the level of S1; on the shoulders at 1cm lateral from
the scapula border and on top of the spinal scapula. Following the instructions from the
manufacturer (Myn et al., 2021), a calibration step will be performed before starting
the real assessment. The Noraxon receiver will receive a trigger as soon as the Xsens
software begins and ends to record the data. The assessment will also be videotaped.
For each FMA item, the patients will be asked to perform it five times.



CHAPTER 3

THE AVANCER FIRST PATIENT - A CASE REPORT

Novel personalized treatment strategy for chronic
stroke patients with severe upper extremity im-
pairment: insights from the first patient of the
AVANCER trial
Claudia Bigoni1,2, Elena Beanato1,2, Sylvain Harquel1,2, Julie Hervé1,2, Meltem Oflar1,2,
Andrea Crema3,4, Arnau Espinosa5, Giorgia G. Evangelista1,2, Philipp Koch6,7, Christophe
Bonvin8, Jean-Luc Turlan9, Adrian Guggisberg10, Takuya Morishita1,2, Maximilian J.
Wessel1,2, Sarah B. Zandvliet1,2,11, Friedhelm C. Hummel1,2,3.

1 Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain
Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva,
Switzerland.

2 Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain
Mind Institute (BMI), Ecole Polytechnique Fédérale de Lausanne Valais (EPFL Valais),
Clinique Romande de Réadaptation,1951 Sion, Switzerland.

3 Clinical Neuroscience, University of Geneva Medical School, 1202 Geneva, Switzerland.

4 Bertarelli Foundation Chair in Translational Neuroengineering, Neuro-X Institute (INX)
and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Lausanne, Switzerland.

5 Wyss Center for Bio and Neuroengineering, Chemin des Mines 9, 1202 Geneva, Switzer-
land.



58 Chapter 3. The AVANCER first patient - a case report

6 Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger
Allee 160, 23562 Lübeck, Germany.

7 Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck,
Ratzeburger Allee 160, 23538 Lübeck, Germany.

8 Division of Neurology, Wallis Hospital, Sion, Switzerland.

9 Department of Neurological Rehabilitation, Clinique Romande de Réadaptation SUVA,
1951 Sion, Switzerland.

10 Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, Univer-
sity Hospital Berne, Switzerland.

11 Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour,
Radboud University Medical Centre, Nijmegen, the Netherlands.



Chapter 3. The AVANCER first patient - a case report 59

3.1 Abstract

Background: There is still no effective upper-limb motor rehabilitation strategy for
severely impaired chronic stroke patients, who account for around 25% of the stroke
population. The AVANCER proof-of-concept clinical trial tackles this issue by proposing
an intensive treatment with a personalized-dosage cumulative intervention exploiting
multiple non-invasive neurotechnologies.

Methods: The therapy is administrated in two sequential interventions, lasting as long
as the patient shows motor improvement, for a minimum of 11 sessions each. The first
interventional phase is based on a brain-computer interface governing an exoskeleton and
multi-channel functional electrical stimulation to perform full upper-limb movements.
The second phase adds anodal transcranial direct current stimulation delivered to the
motor cortex of the lesioned hemisphere. Clinical, electrophysiological, and neuroimaging
examinations are performed before, between and at the end of the two interventions (T0,
T1 & T2). Here, we report the results from the first patient of the study.

Results: The primary outcome of the study (i.e., 4-point improvement in the Fugl-Meyer
assessment of the upper extremity) was met in the first patient with an increase from
6 to 11 points from T0 to T2. This improvement was paralleled by changes in motor-
network function and structure. Brain functional changes were observed in resting-state
and transcranial magnetic stimulation-evoked electroencephalography; structural and
task-related functional changes were determined by magnetic resonance imaging (MRI)
measures.

Conclusions: Results from the first completed patient are promising, showing feasibility,
safety, and potential efficacy of this novel personalized approach acting synergistically on
the nervous and musculoskeletal system. Combining analyses of the multimodal data
may provide detailed insights into the mechanisms underlying the improvements and
information to predict treatment response and outcome.
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3.2 Introduction

Effective therapeutic approaches for patients after a stroke, such as constrained induced
movement therapy, require residual hand function, which about 25% of patient do not
regain after six months post stroke (Hendricks et al., 2002) leaving the options for more
severely affected chronic patients scarce. Intensive training matched with appropriate
neurotechnologies and personalized strategies might offer a rehabilitative prospect for this
specific patient group (Coscia et al., 2019). The AVANCER proof-of-concept clinical trial
(clinicaltrials.gov NCT04448483) aims at exploiting the combination of neurotechnologies
together with a personalized cumulative intervention design to reduce upper-limb motor
impairment in severely impaired chronic stroke patients. Neurotechnologies allow to
directly interact with the nervous system and to perform movements even when no
residual movement is present. Given the different targets and working principles of each
technology, we aim at using multiple devices, hierarchically introduced, to leverage on
their individual strength and obtain synergistic, additive effects. Maximization of gains
from the therapy is achieved with a personalized dosage. The complete rationale for
the development of this approach and the protocol are described in detail in (Bigoni
et al., 2022b). Secondary goals of this trial extend to the study of the neurorehabilitation
process through multimodal assessments, including electrophysiology and neuroimaging.
We here describe the results from the first patient finishing the intervention to provide
information on the feasibility and safety of the study. Moreover, we provide first insights
into neural correlates that are potentially associated to the observed behavioural changes.

3.3 Methods

3.3.1 Patient

A patient in their 70s with no severe cognitive impairment impairment (Montral Cognitive
Assessment score equal to 24) was included in the study in March 2021 upon signing
an informed consent. She had a first-ever ictal accident one year prior to her inclusion
that led to a lesion in the left basal ganglia spreading from the pars opercularis of the
frontal lobe to the tail of the left caudate nucleus (Fig. 3.2 lesion in red). Before starting
the trial and while actively participating in AVANCER, she attended two home-based
physiotherapy and one occupational therapy session per week; each session lasted 45
minutes. According to the clinical reports, she was in a stable impairment stage in terms
of motor and cognitive functions.

https://clinicaltrials.gov/ct2/show/NCT04448483
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3.3.2 Interventional phases

The protocol included two sequential and cumulative interventional phases (IP1 and IP2)
consisting of a minimum of 11 rehabilitation sessions per interventional phase. Each IP
was continued until the patient reached a plateau in the motor improvement recorded
every second session with a short version of the Fugl-Meyer assessment of the upper
extremity (FM-UE) assessed every second session (Bigoni et al., 2022b; Fugl-Meyer et al.,
1975). Specifically, from the 11th session onwards, if the current FM-UE score was higher
than the median of the last three scores (i.e., 9th, 7th, and 5th session), two more sessions
were added to the therapy. If the current FM-UE was equal or lower than the median of
the last three scores a plateau in recovery was considered reached. Both IPs used a BCI
to trigger a hand-exoskeleton and seven-channel functional electrical stimulation (FES)
for both simple movements and functional exercises covering the full upper-limb. IP2
introduced, in addition to what was done in IP1, 20 minutes of anodal tDCS targeting
the motor cortex of the lesioned hemisphere prior to the rehabilitation. Long-term effects
of tDCS are expected to increase excitability and support neuroplastic effects (Nitsche
and Paulus, 2000; Hummel and Cohen, 2006). One therapy session lasted between 2.5 to
3 hours and for each session the therapist in charge chose the target exercises according
to the patient need.

3.3.3 Clinical scales

The patient was assessed at five time points: at baseline, before starting IP1 (T0), at
the change from IP1 to IP2 (T1), at the end (T2) and 3 months after (follow-up) the
end of IP2. During these visits the patient was evaluated by a blinded assessor on motor
and cognitive domains (Table 3.1, (Bigoni et al., 2022b)). The primary outcome measure
was the FM-UE for which an increase of at least 4 points was considered a relevant
improvement for this severely impaired patient group (Bigoni et al., 2022b; Page et al.,
2012). No threshold was defined for the other scales.

3.3.4 Neural correlates

BCI therapies act on the contingency between brain motor engagement and peripheral
feedback (Soekadar et al., 2015a). We therefore expect to observe a modulation of the
sensorimotor rhythm and network, which can be studied under different aspects using
multiple modalities. Resting-state EEG (rsEEG) recordings, neuronavigated transcranial
magnetic stimulation (TMS)-EEG and anatomical, structural (sMRI) and functional
magnetic resonance imaging (fMRI) scans were performed at T0, T1 and T2 (Bigoni
et al., 2022b). Spectral features of spontaneous brain activity and brain asymmetry
indices were drawn from rsEEG. TMS allowed to study both the peripheral and the
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brain responses to the stimulation of the lesioned motor cortex, through the evaluation
of motor evoked potential (MEPs) and TMS-evoked potentials (TEPs) using EEG.
Indirect electrophysiological measures were retrieved from the BCI classifier performance
and feature selection based on the power spectral density at the electrode level in the
sensorimotor rhythm. MRI scans comprised structural, including diffusion weighted
imaging, and functional images acquisition. The former allowed computation of fractional
anisotropy (FA), as an index of structural integrity, whilst functional images measured
blood oxygenation level dependent (BOLD) activity in a block design experiment, during
a visuo-motor task using a force gripper (Bigoni et al., 2022b; Wessel et al., 2020).
Detailed pipelines used for analyses are reported in Section 3.7 and in (Bigoni et al.,
2022b). The analysis of these key features, widely used in the stroke field, aims at
showing if behavioral outcomes are associated with brain plasticity. If plastic changes are
occurring, we compare them with the trends observed in the stroke recovery literature.

The detailed description of the AVANCER clinical trial protocol can be found at (Bigoni
et al., 2022b). The study was approved by the ethics committee of the Canton of Vaud
(no. 2019-00094) and Swissmedic (no. 10000577).

3.4 Results

The patient completed 13 IP1 (from April 28th, 2021 to June 12th, 2021) and 11 IP2
(from June 29th, 2021 to August 11th, 2021) sessions. No adverse events were reported at
any visit.

3.4.1 Motor improvements

The patient reached the primary outcome with a 5-point increase in the FM-UE from T0
to T2. The improvement was seen in the first FM-UE exercise (i.e., voluntary movements
within synergies) and was mostly retained at the follow-up (Table 3.1). In particular, in
the latter, a point was gained in the hand mass flexion, which was null before; however,
no functional distal improvement was observed. Motor improvements were also recorded
using the Medical Research Council scale of the upper limb, specifically in the flexion
of fingers, wrist, and elbow, and in shoulder abduction and adduction (Table 3.1). An
additional positive index was obtained from the gripper task performed in the MRI,
ranging from absence of force at T0 to fully controlled grip-and-release sequences at T2
(Fig. 3.1C). Kinematics results for this patient were not available for T0 and T1 due to
the patients’ request and technical difficulties, respectively.
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Figure 3.1: Modulation of motor-network function and structure. A) Evolution of
abnormal brain asymmetries in resting-state oscillatory patterns from T0 to T2. Top:
topographies of the five frequency bands power showing asymmetries at T0 before
beginning the intervention. Bottom: evolution of the Electrode Directional Asymmetry
(EDA) from T0 to T2, quantifying the asymmetry for each frequency band ant time point,
see Supplementary Material. B) Evolution of TMS-evoked potentials at the whole brain
level, from a local and monophasic response (T0) to distributed and complex dynamics
(T1-T2); the bold curve corresponds to the average of the electrodes near the stimulation
site. On the right, topographies are presented for the time regions of activity peaks. C)
The first column shows regions activated during the visuo-motor gripper task (corrected
FEW, p=0.05, and corrected FDR); the second column depicts the grip force evolution
over time during three trials per time point. At the top, a drawing of the hand holding
the gripper used during the visuo-motor task and the image with the two circles shown
to the patient during MRI. D) at the top, tractography projections on a coronal slice
with visible lesion; at the bottom, evolution of the fractional anisotropy (FA) within
the CST over the timepoints. FA is shown for the affected hemisphere (orange), the
unaffected hemisphere (blue) and the ration between affected and unaffected (green).
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3.4.2 Patient’s perception of intervention

The patient frequently reported to her physiotherapists to enjoy the therapy and to
perceive some unprecedented improvements in conducting her daily life activities; she
also stated "I feel my arm suppler and it is easier for me to take my arm out of a sleeve".
Moreover, by the end of the intervention she was able to put on and off her arm actively
on the wheelchair’s armrest and felt a better sensibility (mirrored by an increase in the
Rivermead Assessment of Somatosensory Performance (Winward et al., 2002), Table 3.1)
together with a decreased fatigue along sessions (reflected by an increased number of
exercises - from 30 to 110).

3.4.3 Neural correlates of improvements

In addition to clinical motor improvements, longitudinal changes were observed in
electrophysiological and neuroimaging readouts, with modulation of the sensorimotor
rhythm during motor tasks and at rest.

During the interventions, the offline accuracy of the BCI classifier based on the power
spectral density increased longitudinally from 70% (accepted minimum) to 85%. The
most relevant features for discriminating movement intention from baseline became more
lateralized along the two interventions, and shifted from low frequency (theta, 4-8 Hz) to
higher frequency bands (alpha, 8-12 Hz, and beta, 12-30 Hz, Fig. 3.3). Neural oscillation
modulations were also found in spontaneous brain activity at rest. First, we observed
abnormal asymmetries within all frequency bands at T0, except for alpha as can be
appreciated from the topographies in Fig. 3.1A, top. Notably, the brain oscillations power
over the lesioned motor cortex sensors dropped from beta to theta frequencies. These
asymmetries and shift towards low frequencies decreased along time points, quantitatively
shown in Fig. 3.1A, bottom, the modulation being stronger in high frequencies (beta
and gamma bands).

TMS over the lesioned motor cortex failed to evoke MEPs on the affected limb at any
time point. However, an increase in TEPs complexity was observed over time points,
with the increase of both the number of signal deflections and the spatial spread of the
EEG activity at significant time regions in healthy subjects (e.g., P60) (Ahn and Fröhlich,
2021) (Fig. 3.1B). fMRI data showed an increase of activation in both hemispheres after
treatment, especially in the motor cortices (Fig. 3.1C). Structural data exhibited an
increase of the FA of the cortico-spinal tract (CST) in the affected side, especially from
T0 to T1 (Fig.3.1D).
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Table 3.1: Clinical scales across time points. maximum of each scale is reported in brack-
ets; † indicates inverse relationship between value and motor outcome (the lower the value
the better the outcome). The patients was taking the following medicaments: Tramadol,
Lisinopril and Trambex constantly throughout participation in the trial. Abbreviations:
MOCA=Montreal Cognitive Assessment (Nasreddine et al., 2005), AST= apraxia screen-
ing of TULIA (Vanbellingen et al., 2011), APHASIA= Language screening test for aphasia
(Nader, 1976), NIHSS=NIH Stroke Scale (Ortiz and L. Sacco, 2014), CIRS=cumulative
illness rating scale (Linn et al., 1968), FM-UE= Fugl-Meyer of the upper extrem-
ity (Fugl-Meyer et al., 1975), MAS=Modified Ashworth Scale (Bohannon et al., 1987),
ARAT=Action Research Arm Test (Van der Lee et al., 2001), RASP=Rivermead(Winward
et al., 2002), MRC=medical research council scale, BDI=Beck Depression Index (Beck,
1961), SIS=Stroke Impact Scale (Duncan et al., 1999).

BASELINE T0 T1 T2
FOLLOW

UP
MOCA (30) 24 - - - -
AST (12) 12 - - - -
APHASIA (15) 15 - - - -
NIHSS (42) 7 - - - -
CIRS (48) 7 - - - -
MOTRICITY INDEX
OF LOWER LIMBS (52)

33 - - - -

FM-UE (66) 6 9 11 10
MAS (4) † 11 11.5 9 10
FINGERS
FLEXOR/EXTENSOR

2/0 2/0 1/0 1/0

WRIST
FLEXOR/EXTENSOR

3/0 3/0 3/0 2/0

ELBOW
FLEXOR/EXTENSOR

1+/1+ 1/0 1+/1 1+/1

SHOULDER ABDUC-
TION/ADDUCTION

0/1 0/1+ 0/1 0/1+

SHOULDER
INNER/OUTER
ROTATION

1/0 2/0 1/0 1/0

SHOULDER
ANTEROVER-
SION/RETROVER-
SION

0/1 0/2 0/1+ 0/2

ARAT (54) - 3 3 3 3
RASP (216) - 40 65 55 60
MRC (5) - - 3/0
FINGERS
FLEXORS/INTRINSIC

0/0

MUSCLES OF THE
HAND

2/5

ELBOW FLEXION/EX-
TENSION

0/0 3/0

WRIST FLEXION/EX-
TENSION

0/0 1/3

SHOULDER ABDUC-
TION/ADDUCTION

0/0

BDI (63) † - 5 5 10 7
SIS (100) (AVERAGE) - 47.1 51.4 46.9 56.1
PHYSICAL
PROBLEMS

- 0 0 12.5 12.5

MEMORY - 90.6 93.6 81.2 93.8
MOOD - 91.7 91.7 77.8 58.3
COMMUNICATION - 92.9 96.4 85.7 96.4
DAILY ACTIVITES - NA 39.6 45.8 52.1
MOBILITY - 35 55 42.5 50
MOVE HAND - 0 0 0 0
ACTIVITIES - 19.4 22.2 22.2 86.1
SELF-EVALUATION
(72) †

- - 13 18 -

MULTIDIMENSIONAL
FATIGUE INVENTORY
(100)

- 80 82 74 85

GENERAL 18 19 16
PHYSICAL 14 14 12
ACTIVITIES 11 14 13
MOTIVATION 17 15 13
MENTAL 20 20 20
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3.5 Discussion

The results from the first patient of the AVANCER clinical trial are promising. Primarily,
reduction of motor impairment was mirrored by the improvement in motor scales’ scores.
Dose personalization and hierarchical use of neurotechnologies, both pillars of the trial’s
design, appeared to have played an important role in reducing impairment and enhancing
residual motor functions: although a plateau in the recovery was achieved in IP1,
continuation of the intervention with additional tDCS further increased the FM-UE score.
The increased motivation of the patient, also reflected by the MFI score (Table 3.1),
suggests that although this is an intensive and complex treatment, patients can stay
motivated. Moreover, the intervention does not interfere with the standard therapy, which
was equally intensive, and the patient successfully participated in both. Interestingly,
the patient showed motor improvements not only proximally, but also distally. The
improvement at the hand level is small and not functional; however, it is relevant on two
levels: first, it shows how the training, which strongly involved the hand, enhanced hand
and wrist movement, and second, minimal, yet present movement could allow the patient
in participating in other trials and therapies that do require residual hand movement.
All these elements, together with the absence of adverse events and the positive reporting
of the patient, suggest that the trial is safe and feasible.

Results from electrophysiology and imaging data were also auspicious. First, the decrease
in power spectral interhemispheric asymmetry in rsEEG can be seen as an index of
brain functional improvement. Interhemispheric balance in rsEEG is typical of healthy
adults and a stronger symmetry has been found as a biomarker of recovery and motor
rehabilitation in both (sub-) acute and chronic patients (Mane et al., 2019; Sebastián-
Romagosa et al., 2020; Snyder et al., 2021). The asymmetry decrease is supported by
the indirect measure of the BCI classifier selected features for a motor task. Specifically,
the latter suggests that the imbalance was originating from both contralesional over
activation and inhibition of ipsilesional activity in the alpha and beta bands. Second,
the longitudinal increase in TEP complexity that we observed may underline functional
reorganization processes within motor networks. The initial low complexity of the TEP
in T0 was in line with the results reported by (Tscherpel et al., 2020), in which severely
affected patients presented very simple responses. More complex responses, similar to
healthy adults, have been reported for mildly impaired patients and for (sub-) acute
patients, who showed more motor function recovery (Hordacre et al., 2019; Pellicciari
et al., 2018; Tscherpel et al., 2020). Motor task-based fMRI results support a functional
reorganization of the motor network underlying the motor task. Moreover, structural
data showed a longitudinally increase of the affected CST FA. Given the small size of
this increase and the presence of only one subject, this measure should be taken with
caution. Nonetheless, such increase has already been reported in neurorehabilitation of
chronic stroke patients and could be explained by axonal sprouting and synaptogenesis
(Zolkefley et al., 2021). The latter could result from the BCI training that creates a
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contingency between brain activation and sensorimotor feedback (Soekadar et al., 2015a).
Discrepancy between MEP presence and increase in CST integrity is not surprising given
the improved yet severe impairment of the patient; on the contrary it supports the idea
that in absence of MEP, CST FA ratio correlates exponentially with functional potential
(Stinear et al., 2007).

3.5.1 Limitations

This report only presents the results from the first patient of the study; group analyses
must be waited for to be able to draw clear conclusions in terms of outcomes like safety,
feasibility, and efficacy. Furthermore, AVANCER has a within-subject 2:1 study design,
where patients are their own control. Specifically, one third of patients undergoes a
three-month observational period prior to beginning the therapy. This patient was
not part of the observational group, but her physicians confirmed she was in a stable
state. Moreover, the trial design does not include a control arm where patients are given
standard therapy in the same quantity, without any additional assistance and guidance
from neurotechnologies. However, this patient was attending three standard therapy
sessions per week before and while participating in the clinical trial. Three standard
sessions correspond to the same amount of time of the actual rehabilitation duration of the
AVANCER (i.e., patient governing the BCI to trigger movements, without preparation
and calibration). In addition, we leverage on the literature on stroke recovery and
neurorehabilitation where no effective treatment strategy for severely impaired chronic
patients is present. The combination of these aspects suggests that improvement may be
possible if intensive treatment is combined with personalized neurotechnologies.

3.6 Conclusion

The first results of the AVANCER proof-of-concept clinical trial hold potential for upper
limb motor rehabilitation in severely impaired chronic stroke patients, for whom to date
there is no rehabilitation strategy available. The first patient results suggest feasibility for
the study together with safety. Outcomes from clinical scales and multimodal assessments
will have to be further analyzed at the group level to provide, if any, evidence for the
present concept and to gain further insights into rehabilitation mechanisms underlying
the effects of the present innovative therapy approach.
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3.7 Supplementary material

Image preprocessing

Structural diffusion images were analysed using FSL(Smith et al., 2004) and MRtrix3
(Tournier et al., 2019) software. As a first step, denoising was applied through the MRtrix3
function dwidenoise, followed by Gibbs ringing artefact removal (Kellner et al., 2016).
Motion, susceptibility induced fields, eddy-current induced distortions, and bias field were
computed and images were then corrected (Andersson and Sotiropoulos, 2016). Finally,
fractional anisotropy maps were extracted by fitting a diffusion tensor model to the
corrected data. Average values were extracted within the CST, at the level between the
mesencephalon and the cerebral peduncle (Montreal Neurological Institute coordinates,
z=-25 to -20) (Schulz et al., 2017). Functional images acquired during both visual and
motor task were preprocessed using the software Statistical Parametric Mapping 12
(SPM12; The Wellcome Department of Cognitive Neurology, London, UK ) in MATLAB
R2018a (Mathworks, Sherborn, MA). Images were slice time corrected and realigned with
respect to the first acquired image. Normalization to MNI space and smoothing with a 6
mm full-width half-maximal Gaussian kernel were then applied. The deformation field
used to normalize the functional data was obtain via T1 anatomical image segmentation
performed on the co-registered structural image to the mean functional image. A visual
check in order to ensure quality check was performed on all coregistered, normalized
and smoothed images and framewise displacement was computed to assess motion levels.
Changes in activity during the motor or visual task with respect to rest periods were
estimated by building a general linear model. Six motion parameters and normalized
time series in the white matter and the corticospinal fluid were also included as confounds.
Contrasts between the motor and visual tasks were computed to extract motor-related
activity only.

EEG signal processing

EEG data were processed with MATLAB (The MathWorks, USA), using Fieldtrip toolbox
(Oostenveld et al., 2010).

Resting-state EEG The 3 minutes of continuous data from the resting-state condition
were first band-pass filtered between 1 and 50 Hz and split into fixed 2-second epochs.
Bad trials and channels were then visually detected based on atypical characteristics
of the signal dynamics, such as absolute maximum amplitude and variance (using the
summary approach of the ft_rejectvisua” Fieldtrip’s function), and removed. Additional
noise from ocular movements, muscular contractions and/or other electrical defects were
then cleaned from the signal using independent component analysis (ICA, using fastica).
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The ICA-cleaned signal was visually inspected on last time to discard any remaining noisy
channels or trials, and bad channels were reconstructed using their average neighbouring
signal. Finally, the clean EEG dataset was re-referenced using average reference.

The spectral power (3-50 Hz) was computed from the clean EEG signal using multitapers
(based on discrete prolate spheroidal sequences) and then normalized within each frequency
band of interest in respect to the sum of power across the whole spectrum. The asymmetry
index regarding power difference across hemispheres in each frequency band was computed
using the Electrode Directional Asymmetry (EDA) (Snyder et al., 2021). In short, EDA
computes the signed difference (normalized in %) between the normalized power of the
homologous electrodes in the ipsilesional hemisphere and the normalized power of the
homologous electrodes in the contralesional hemisphere. The advantage of EDA lies in
its ability to directly inform on the directionality of the asymmetries, towards ipsi or
contralesional hemispheres.

TMS-EEG coupling TMS-EEG signals were processed according to the method
published in Rogasch et al. (2014), which is based on two rounds of independent component
analysis (ICA) (see e.g.(Raffin et al., 2020) for the detail of the procedure). In short, data
were epoched around the TMS pulse, using a -1 to +1 s time window of interest. Bad
channels were visually discarded, and signal containing the TMS stimulation artifact was
cut out in the -5 to +15 ms period surrounding the pulse. Two rounds of independent
component analysis (ICA) were then applied in order to remove noise sources from the
signal, such as muscle and decay artifacts, and artifacts related to ocular activity. In
between the two ICA, the signal was spline interpolated over the -5 to +15 ms period,
band-pass filtered (1-80 Hz), re-referenced using the average reference, and cleaned from
bad trials. TEPs were finally computed for each time point (T0 to T2) by averaging the
EEG signal across trials, using a baseline normalization (z-score) over the -500 to -5 ms
period.
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Figure 3.2: T1 MRI scan of the patient in the three planes. In red is highlighted the
lesion.
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Figure 3.3: R2 coefficients power discriminating trials when the patient was asked to
move the affected hand and trials when the patient was asked to remain at rest. The
right hand was the impaired limb and thus, the BCI classifier used the ipsilesional
and midline channels, in this figure the first 9 rows (From FC3 to CPz).The classifier
looked at frequency bins betwwn 6 and 30 Hz to fully cover the alpha and beta bands,
both important in the sensorimotor rhythms. Interventions 1-13 belong to the first
interventional phase (i.e., only BCI to trigger exoskeleton and multiple-channel FES) and
from 14 to 24th, interventions belong to the second interventional phase where anodal
tDCS is delivered to the ipsilesional M1 prior to rehabilitation. The classifier was trained
at every session with new training data. The latter was always gathered before applying
the stimulation.



CHAPTER 4

AVANCER PRELIMINARY GROUP RESULTS

The AVANCER clinical trial is an ongoing study with open recruitment; the latter
will end in April 2023 and the study will close in September 2023. Here, I present the
preliminary group analyses with the finalized patients as of January 2023 (n=11). Two
additional patients are currently participating in the study and we expect to enrol in
total n=15 patients.

In this chapter, methods of multimodal data analyses are provided, some of which have
been already described in Chapter 3. Results of the individual mode of assessment and
their combination follow.

As a reminder, data acquisition occurs during the therapy sessions and during the full
evaluations. In the former, the sFM-UE is evaluated every second-session and BCI-EEG
data is recorded every session. In the full evaluations (T0, T1, and T2) we acquire
clinical, kinetic and kinematic, neurophysiological and neuroimaging data. See Chapter
2 for the full description of the protocol and the acquired data.

4.1 Methods

4.1.1 Clinical scales

Clinical data, gathered during the full evaluations was analysed in terms of time point.
Moreover, the effect of the patient group (i.e., those who did and did not reach the
primary outcome is investigated) was assessed for all the clinical scales except the FM-UE.
If an assessment had subscales, differences at the lower levels were also looked into.
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Statistically, we used a linear mixed effect model (LMM) having as random intercept
the patient and as fixed factor the time point. Among fixed factors, the patient group
and the eventual subscale may be added. The dependent variable was always the score
of the scale. Post-hoc analyses were run with estimated marginal means (EMM) with
Tukey correction unless differently specified. Only for the primary outcome of the study
a Wilcoxon test was exploited to evaluate the FM-UE difference between T2 and T0.

For the sFM-UE score (assessed by the therapist every second session), an LMM was also
used. The fixed factor were the session number (total) or the session number interacting
with the intervention time. The obtained time-series of sFM-UE was studied by looking
at curve trends differences.

4.1.2 Neurophysiology

With neurophysiology we reunite both electrophysiological and neuroimaging methods.
The latter studies the data acquired during the MRI session (structural and functional),
while electrophysiology studies brain activity recorded during EEG and EMG recordings.
EEG relates to the brain activity, that can be read as oscillations of large neuronal
populations; EMG provides information related to motor units (MU).

EEG

Initial analyses focused on quantitative EEG (QEEG) features. These are features based
on the power spectral density (PSD) extracted at the electrodes level for the standard
frequency bands: delta (1-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (13-30 Hz), and
gamma (31-45 Hz). Our main interest relies in the motor system, which is mostly driven
by the sensorimotor rhythm that covers the alpha and beta band, where the latter may
be further divided into low (13-20 Hz) and high (21-30 Hz) beta. Ratios of PSD between
frequencies have also been studied as they may differ in pathological conditions. When
the PSD is studied at a space level, brain symmetry can be derived. Here-below the
features used in the analyses are reported:

• Power ratios

– Delta-alpha ratio (DAR) DAR = δ
α

– Delta-beta ratio (DBR) DBR = δ
β

– Theta-alpha ratio (TAR) TAR = θ
α

– Theta-beta ratio (TBR) TBR = θ
β

– Power ratio index (PRI) PRI = δ+θ
α+β
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• Brain symmetry indices

– Revised brain symmetry index (rBSI) rBSI = 1
N

∑N
i=1 | Ri−Li

Ri+Li
|, Ri =

1
N

∑M
j=1 rij

– Pairwise-dervided brain symmetry index (pdBSI) pdBSI = 1
NM

∑N
i=1

∑M
j=1 |

rij−lij

rij+lij
|

– Whole head electrode directional asymmetry (EDA) EDA = ∑N
i=1

Li−Ri
|Ri|+|Li|

– Laterality coefficient (LC) LC = c−i
c+i

Where rij is the PSD in frequency j at channel i in the right hemisphere and lij is its
symmetric channel in the left hemisphere. In terms of brain symmetry indices, the EDA
is the only one giving information of directionality with positive numbers describing a
stronger power in the affected hemisphere. The LC is only used for movement-task EEG
and it is based on the event related (de)synchronisation (ERDS): c is the contralesional
ERD and i the ipsilesional ERD. All the EEG data have been flipped to always have the
lesioned hemisphere as the left one.

EEG was acquired with 64-channel at rest with eyes open and closed during the full-
evaluation. During the intervention, EEG data is task-based (move the affected hand,
move the unaffected hand, rest) and is recorded from 16 electrodes covering the motor
cortex. Although the same measures are extracted from these dataset, the expected
results differ. In particular, at rest, a symmetry between hemisphere in all frequency
bands is expected, whereas during a movement task an event related desynchronisation
(i.e., decrease in PSD) in the sensorimotor rhythm of the controlateral hemisphere occurs.
After the movement, a beta rebound (i.e., high PSD values) are often visible.

As for the clinical scales, changes in time of the mentioned features were studied with
LMMs with fixed factor the time point (or session number) and the patient group. Given
the typology of the dependent variables, frequency band and hemisphere have also been
added to the fixed factors. Post-hoc analyses used EMM.

TMS-EEG analyses were presented for the case report in Chapter 3, but have not yet
been inspected at the group level.

EMG

Within the TMS-EEG experiment, EMG is recorded from seven ipsilesional muscles. The
target of the stimulation is the first dorsal intraosseus (FDI) muscle, but in case no motor
evoked potential (MEP) can be elicited here, other muscles of the hand are tested: the
adductor pollicis brevis (APB) and the abductor digiti minimi (ADM). MEPs are studied
as an implicit measure of CST integrity and excitability. Two features are of interest:
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the peak-to-peak amplitude and the latency, measured automatically as explained in
(Bigoni et al., 2022b). Indeed, a main feature was the presence/absence of such signal, as
MEPs are not always elicited in stroke patients.

Features changes were studied with LMM and post-hoc EMM. Moreover, we tried to
correlate the features with the structural values of the CST integrity.

Neuroimaging

The CST integrity can be measured from neuroimaging data. Specifically, it can be
extracted from DWI images looking at both FA and MD, see Section 3.7 for details.

In addition to acquiring structural images, fMRI is also performed both at resting state
and during a visuomotor task, where the patient is asked to grip and release a gripper
for four times following a visual motion. The task was designed and developed in the
framework of another PhD thesis and details in (Wessel et al., 2020; Draaisma, 2022).
Although the BOLD activation remains to be analysed, the gripper force curves in
time were extracted and features computed. Among those, we evaluated the correlation
between the ideal and the real curve with dynamic time warping (DTW). The time spent
in grip and rest, as well as the time necessary to change status (i.e., grip or rest) were
computed.

4.1.3 Instrumented FM-UE

Kinematics and kinetics have been suggested to offer valuable and complementary
information to clinical scales to study motor neurorehabilitation (Bernhardt et al.,
2019b). In the AVANCER trial we decided to record these types of data during the
assessment of our primary outcome: the FM-UE. In T0, T1, and T2 the assessment is
performed while the patient is wearing EMG and motion capture sensors and is being
recorded by a video camera. We call this setup and evaluation the "instrumented FM-UE".

This set-up provides four types of data: EMG recordings from sixteen sensors placed on
upper-limb muscles; seven motion capture sensors for different articulations; a video; and
the scores of the FM-UE scale. Each modularity can inform us on different aspects of the
motor impairment: muscle activity can be related to strength; motion capture data offer
the possibility to make kinematic analyses and the clinical scale help us in understanding
what type of relationship can be made and let us understand what additional information
EMG and kinematics can provide. Detailed description of the EMG and kinematic
dataset, specifying the data acquisition, the pre-processing, and feature extractions is
reported in Section 4.4. We give here an overview of the features used to study motor
improvement.



Chapter 4. AVANCER Preliminary Group Results 77

With kinematic data we can retrieve both the range of motion (ROM) in terms of
displacement in the 3D space for limb segments or in terms of angular motion for the
joints. Smoothness of movement performed can be extracted from the velocity profile of
a 3D movement - given that the hand is the most distal upper-limb segment, its velocity
profile is considered as it accounts for the movements of the more proximal segments.
Specifically, we extracted: the number of peaks in velocity profile (i.e., expected to be
equal to 1 in smooth movements), the Spectral Arc Length (SAL), the dimensionless
jerk (DJK), the logarithmic DJK (Log DJK), the speed of movement, and the time to
perform it.

In this preliminary analysis the root mean square (RMS) and some envelope features
were extracted from the EMG data to have information about the strength produced by
each muscle during a movement.

4.1.4 Statistics

Statistics used in these analyses followed those presented in Section 2.3.8; however, the
sample used here is smaller than the expected one and does not include the final sample
of the clinical trial. Therefore, the statistical power is not as high as initially planned.
We anyway report the results found thus far.

4.2 Results

The AVANCER clinical trial is still ongoing; in the following paragraphs, I will report the
preliminary results of the currently analysed patients (n=11). So far, the intervention
has proven to be safe, with no (S)AE related to the protocol. Moreover, the therapy
seems feasible with only one patient dropping-out just before the last full evaluation (see
Fig. 4.1).

4.2.1 Demographics

Table 4.1 presents the baseline assessments of the 11 patients included in the analyses
thus far. Patients were balanced in terms of gender and affected side and they all had a
subcortical lesion. Most patients were also attending some hours of standard physio- and
ergotherapy while actively participating in the study.
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Screened
N=124 (G=48)

Included
N=18 (G=9)

Finalized
(with follow-up)

N=9 (G=4)

Subjects included in 
analyses

N=11 (G=6)

Excluded: N=5 (G=2)
Drop-out: N=1 (G=1)

Waiting group
N=5 (G=2)

Waiting group
N=5 (G=2)

No MRI: AVC_106, AVC_116
No T2: AVC_114

Figure 4.1: Recruitment and inclusion flowchart as of January 2023. The pool of patients
from which the screening started was of about 500 patients. Patient AVC_106 and
AVC_116 were claustrophic and did not perform and MRI at any time point. Patient
AVC_114, did not perform the last evaluation time point. Numbers are given as overall
and for the Geneva site (G) only).

4.2.2 Clinical Results

During the full evaluations (T0, T1, and T2) and the follow-up (i.e., 3 months after the end
of the intervention), patients were assessed in various clinical scales (Bigoni et al., 2022b).
These evaluations were made by an assessor different from the therapist performing the
rehabilitation sessions; the latter scored the sFM-UE every second interventional session.

Primary outcome - FM-UE

The primary outcome of the study is based on the FM-UE, for which an average
improvement of at least 4-point was hypothesized. Fig. 4.2A shows the longitudinal
changes in this clinical scale for the 11 patients. Considering the current sample, the
primary outcome is met with a mean improvement of 6 points; the difference between
the FM-UE score at the end and at the beginning of the intervention was statistically
significant (p=0.006, Wilocoxon-singed rank test). Precisely, 6 patients (i.e., 55%) met
the primary outcome, and the maximum observed increase was of 21 points (AVC_215);
only one patient (AVC_204) did not show any improvement and one patient (AVC_109)
showed a decrease of FM-UE. The latter was due to a very low motivational state - indeed,
during the therapies the sFM-UE did not observe this drop (Fig. 4.4, light-blue line) and
this is the only patient who showed an improvement between T2 and the follow-up.

A Friedman test reported a significant and large effect of time on the FM-UE score
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Table 4.1: Demographics of patients included in the AVANCER trial. Patients whose
code begins with 2 were treated in Sion, otherwise in Geneva. If (S) patient is in
starting group, otherwise waiting (W); Sex is defined as male (M) or female (F); time
post-stroke at the time of inclusion is reported in days; affected side refers to the body
side and all patients were right-handed prior the stroke. Additional standard therapy that
patients received while being enrolled in the study is reported by sessions (i.e., 45min)
per week (OT=occupational therapy, PT=physiotherapy). AVC_103 changed from 1 to
two sessions of OT from T0 to T1; ; for AVC_204 no information on frequency of OT;
AVC_114 moved from no PT at T0 to two sessions per week at T1; AVC_215 moved
from 1-2 OT per week to zero. Abbreviations and references MoCA = Montreal Cognitive
assessment (Nasreddine et al., 2005), AST= praxia screening of TULIA (Vanbellingen
et al., 2011), language screening test for aphasia (Nader, 1976), CIRS = cumulative
illness rating scale (Linn et al., 1968), NIHSS = National Institute of Health stroke scale
(Ortiz and L. Sacco, 2014), FM-UE=Fugl-Meyer Assessment for the upper-extremity
(Fugl-Meyer et al., 1975).
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(p<0.001). Wilcoxon post-hoc pairwise comparisons showed significant differences between
all pairwise comparisons; however, only the T0-T2 comparison remained significant after
a Bonferroni adjustment for multiple comparisons. When comparing the follow-up scores
to the T2 score, no significant difference was observed (p=0.490, Wilcoxon signed-rank
test, n=8).
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Figure 4.2: A) FM-UE longitudinal changes for the 11 patients that have finished all the
interventional sessions. Two patients showed a decrease in FM-UE, that are explained
by specific reasons: AVC_105 at T1 had shoulder pain that prevented the subject to
make some movements and AVC_109 at T2 was in a very low motivational state. B)
FM-UE longitudinal changes according to proximality of item.

Looking at the specific FM-UE scale items (Fig. 4.2B), no changes were observed
in the reflex-based tasks, and only one patient improved in the coordination exercise.
Specifically, patients obtained the points in the items related to tremor and dysmetria
only if the coordination movement could be performed (i.e., at least one point). We then
divided the remaining items according to their main target area: proximal, distal, or
both. Using a LMM having as fixed factors the time point of evaluation, the item target,
and their interaction, we obtained a significant effect for the main factors, but not their
interaction. Post-hoc tests using EMM, showed a significant higher score in time (T0<T1,
p=0.024; T0<T2 p<0.001; T1<T2 p=0.043) and a significant difference between all
targets, with proximal scores having an overall higher score, followed by the scores of
combined targets. The absence of significance in the interaction factor suggests that all
targets improved longitudinally. The same effects were observed when the scores of each
target were normalized by the achievable maximum. Looking at specific movements,
most patients gained points in the voluntary movement within synergies.

Finally, we evaluated if baseline characteristics could explain the variance observed thus
far. In particular, we looked at the effect of sex, age, time post stroke, lesion load, and
initial impairment based on the FM-UE. Results are summarised in Fig. 4.3 and only
gender had a significant effect, with males improving more than women (p=0.049).
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Figure 4.3: Relationship of delta FM-UE (between T2 and T0) and baseline characteris-
tics.

FM-UE along sessions The FM-UE was not only the primary outcome scale, but
also the quantitative method to decide whether a patient should continue or stop the
therapy - for which a shorter version with a maximum of 54 points is used. Fig. 4.4
shows the longitudinal scores of the 11 patients while participating in the two sequential
interventions. A significant positive relationship between session number (not considering
the intervention type) and sFM-UE was found (estimate=0.387, p<0.001). When the
session number was considered as a categorical variable, thus removing the between-
therapy distance aspect, but counting only on the number of sessions done, we still
observed a significant effect of session with a significant difference between the first five
sessions (i.e., around the end of the first intervention) and the later ones. The first
sessions of the second intervention were also significantly different from the last ones (i.e.,
not considering extended therapies).

The subject factor explained 95% of the variance, and its relevance was significantly
reduced when the sFM-UE was normalized to the first score of each subject. Indeed,
the positive relationship of time and motor improvement remained. When introducing
the intervention type to the fixed factors (and changing the total session number to
the intervention relative sequence), we observed a main effect of both intervention
(p<0.001) and session number (p=0.005), but not of their interaction. This suggests that
improvement in time may be observed in both interventional phases and that during
the second intervention there is an overall higher score. The group-level effect of session
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number relative to interventional phase is not observed in all subjects: from Fig. 4.4 it
can be seen that most patients present different recovery patterns, with some improving
only in the first or in the second intervention, and others in both. This is in line with
the LMM results where no interaction effect of intervention X session number is present.

The sFM-UE curves in time for each patient were inspected to find possible patterns.
No clear cluster based on DTW distance was found. Curve shape-based features, such as
number of deflections, first derivative, and length of time series, were also not able to
differentiate the two interventions.

Most patients performed only the minimum amount of 11 sessions per interventional
phase; three patients had a longer phase 1, two patients a longer phase 2, and one patient
had a longer duration for both interventions - patient AVC_114 could have increased
the number of interventions of the second phase, but dropped-out. Of the five patients
who had a greater number of therapies, four reached the primary outcome of the study.
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Figure 4.4: Motor improvement during the AVANCER sequential interventions. A short
version of the sFM-UE (max=54 points) is assessed every second session by the therapist
performing the rehabilitation session.

Observational period

The design of this trial is a 2:1 within-subject design. Therefore, five patients underwent
a 3-month observational period prior to begin the intervention. Such period was designed
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to confirm that patients in the chronic stage (at least 6-month post-stroke) were in a
stable state of impairment. Randomisation was based on mainly affected body side and
age group. Within the randomly picked patients, we observed an average and maximum
of 2 points improvement during the 3-month period.

Of the patients in the waiting group, only one reached the primary outcome, whereas
the others remained rather stable. It must be pointed out that the two patients in which
we observed a decrease in FM-UE were both in the waiting group. Results from a LMM
having as fixed factors the time point (i.e., 1, 2, 3) and the period (i.e., observation
or intervention) did not show a significant effect of period. Moreover, there was no
significant difference between observational T2 and interventional T0. To evaluate motor
stability, we designed for each patient a constant evolution of FM-UE in three time points
(i.e., the expected values of the observational period) and significant main effect of "ideal
vs. real" was observed (p=0.036). However, the small changes observed in the FM-UE
are possibly due to the change of assessor along the observational period (Fig. 4.5)

When analysing baseline measures differences between the waiting and starting group,
only the time post-stroke at the time of inclusion was found to be significantly smaller
for the waiting group.
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Figure 4.5: FM-UE longitudinal changes in the observational period. The figure shows
the longitudinal FM-UE scores for the five patients belonging to the waiting group. On
the left scores from an ideal stability are shown; in the middle the actual scores assessed
during the three months of observational period, and on the right the scores during the
full evaluations of the interventions. It must be noted that a change of assessor occurred
for AVC_202 between T1 and T2, for AVC_204 between T0 and T1, and for AVC_210
between T1 and T2.



84 Chapter 4. AVANCER Preliminary Group Results

Additional motor measures

The main goal of motor impairment reduction was measured with the FM-UE. However,
other motor-related scales were assessed at the same time points: the ARAT, the MAS,
and the MRC. Moreover, patients were asked to perform a functional gripper task during
the fMRI.

Only 6 patients were able to perform at least one item in the ARAT. Although some
subjects show an improvement on this scale as appreciable from Fig 4.6A, at the group
level there was no significant difference in time.

Spasticity was measured at different upper-limb joints. Although changes were observed
in time (Fig. 4.6B), the latter had no significant effect. Correlation of FM-UE with MAS,
showed a significant negative correlation between spasticity of the shoulder retroversion
(r=-0.24, p=0.041) and a positive trend with spasticity of shoulder abduction (r=0.20,
p=0.078). No other trends were observed.

Muscle strength Strength was evaluated for different muscles during the full evaluation
using the MRC scale. Targets were muscles of fingers, elbow, and wrist during both
extension and flexion, and shoulder muscles for abduction and adduction. Group trends
for the different muscles are reported in Fig. 4.6C. An overall significant effect of time
was observed, with scores at T2 being bigger than those at T0 (p=0.001). The muscle
target was also a significant effect, with the wrist having smaller scores than the elbow
and the shoulder, but higher compared to the intrinsic muscles of the hand. The latter
were significantly smaller compared to all the other muscles, including the fingers flexors.
A strong positive and significant correlation was seen between the MRC for all muscle
groups and FM-UE.

Muscle strength and force was also evaluated during the task chosen for the fMRI.
Patients were asked to perform a grip-release task and the output gripper curves were
then evaluated for each block, patient, and time point. Two patients, who both reached
the primary outcome, did not undergo the MRI evaluation because claustrophobic and
thus did not perform the gripper task. For other two patients, T2 was not available due
to drop-out and technical issues.

We observed a stronger correlation in time between the grip-release curve and the expected
behaviour (Fig. 4.7B). In particular, the DTW was significantly smaller in T1 and T2
compared to T0 (p<0.001). When looking at specific parts of the curve (Fig. 4.7C),
we observed significant differences in the number of changes between grip and release
status, with T0 having a significantly lower amount of grip-release repetitions (p=0.001,
p=0.028 for T1 and T2 comparison). The duration patients were able to keep the grip
also increased in time (p<0.001 for both comparisons of T0 with T1 and T2). Conversely,
no change in stability during either the grip or rest zones, nor in time needed to achieve
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Figure 4.6: Motor scales scores changes along the AVANCER protocol. A) Individual
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86 Chapter 4. AVANCER Preliminary Group Results

the full grip or release was observed. An increase of maximum achievable force in time
was also reported, with patients having the least force in T0 (p<0.001 for T1, p=0.004
for T2).

Three out of nine patients were able to perform the task from T0, two of which gained
more than 10 points in the FM-UE by the end of the intervention. Only the patient with
no FM-UE improvement was never able to perform the task. Patient AVC_109, who
showed a decrease in FM-UE from T1 to T2, also reported a lower performance in the
grip-task.
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Figure 4.7: Evolution of the grip-release task performance in time. A) Examples of real
and ideal curves; B) Dynamic time warping (DWT) changes in time across subjects.
DTW and not pure correlation was used to take into account possible phase shifts; DTW
was run between the ideal and real output curves. C) Change in time of other grip-release
curves features. In red the ideal value.
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Other clinical scales

Before, at the change, and at the end of the interventions other clinical scales were assessed
to evaluate sensation (RASP), fatigue (MFI), sleep quality (PQSI), and depression (BDI).
The SIS was also assessed.

Responses from the latter are pictured in Fig. 4.8A. The LMM on the SIS score divided
per subscale showed a significant main effect of time point and group, but not of their
interaction. Regarding the former, an overall score increase was observed between T0 and
the follow-up, whereas the difference between T0 and T1 was not significant (p=0.146).
In terms of group, we saw that communication, memory, mood, and mobility had always
the highest scores, which remained rather constant in time. Scale subgroups involving
activities and physical problems had significantly lower scores, but they all seemed to
improve in time. When focusing only on those groups, we observed a significant effect
of time with T0 having the lowest scores compared to all the subsequent time points.
Questions related to the hand had the lowest scores overall, followed by those of about
physical problems and activities (p<0.001).

In terms of fatigue, there was no significant change in time. Most patients showed chronic
fatigue in the subscales of activities and general fatigue (Fig. 4.8C). Although there
was no time effect at the group level, individual responses changed longitudinally. The
subscales describing physical fatigue and motivation had a trend for decreasing between
T0 and T2.

Most patients had a minimal range in the BDI score (i.e., between 0-13) as shown in Fig.
4.8D. Two of three patients who reported mild to moderate scores had a decrease in the
BDI score in time, whereas one patient (i.e., the only patient with no improvement on
the FM-UE showed an increase of score). At the group level, no significant change in
score was observed longitudinally. The same holds true for the sleep quality (Fig. 4.8B).

Patients’ feedback

In addition to clinical scales, patients were also asked to answer questions related to the
intervention itself through an in-house made questionnaire. Moreover, along the sessions,
the therapists asked the patients if they were observing improvements in their daily life
and if they were appreciating the therapy sessions.

Responses in the self-evaluation questionnaire were very positive and most patients did
report to enjoy the therapies. It was often said that coming to the therapy was motivating.
All the patients reported perceiving some motor and sensory improvement along the
intervention. Among the feedback received, patients said to observe improvements in the
ADLs such as in dressing and drying themselves. Mobility was also improved in some
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Figure 4.8: Motor scales scores changes along the AVANCER protocol. A) Stroke Impact
Scale (SIS) score changes according to subscales; the maximum per subscale is 5 and
higher scores are related to better recovery. B) Pittsburgh Sleep Quality Index (PSQI)
score changes according to subscales; C) Multidimensional fatigue inventory (MFI) score
changes according to subscales per individual. The maximum per subscale is 20. For
activities and general fatigue a dashed line shows the cut-off value for clinical fatigue.
Smaller scores indicate less fatigue. D) Beck-Depression Index (BDI) score changes in
time for each patient. Dashed lines show cut-off scores where minimal depression is
between 0-13, mild between 14 and 18, moderate between 19-28, and severe between 29
and 63.
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patients who managed to ride a bike after the intervention and started running and going
to the swimming pool.

4.2.3 Therapy sessions

Along the therapy sessions we expected to see improvements on multiple features, such
as the sFM-UE (described above), but also in terms of ability to govern the BCI.

BCI-related measurements

Every therapy session began with a calibration step including the acquisition of a training
set to create a classifier for the BCI. If with the daily training set no accurate model could
be created, a previous model from the same patient could have been used. Ideally, an
offline accuracy of at least 70% and an online accuracy of at least 60% were searched. Here
we describe the BCI classifier features in terms of the classifier used for the rehabilitation
step (i.e., some classifiers may be proposed repetitively in time if a previous model
was used). The offline accuracy was always above 61.4% and remained rather stable
in time, with a mean of 77.7% and a median of 77.8%. In the validation step, the
online accuracy also did not seem to change significantly in time, but a significant
difference between detection of move and rest was observed (p<0.001, Fig. 4.9A). This
was possibly due to the fact that there was a bias into discovering movement rather than
rest. In the rehabilitation step, which only looked at movement-detection performance, a
positive relationship between session number and accuracy was found (p=0.002). When
the intervention factor was added, the session number and its interaction effect were
significant, with a trend of accuracy increase in the second intervention. When the
first and last session of each intervention were analysed, only the two last sessions were
significantly different (p=0.050). When looking at single-subjects (Fig. 4.9B), we can
see that most patients showed an increased governance over the BCI working principles,
with higher accuracy in time, with two patients starting with an optimal control (i.e.,
AVC_109 and AVC_116, who had previously joined a BCI-based trial; AVC_114 who
participated in the same trial did not start with such high values) and two patients with
a stable non-optimal control (i.e., AVC_202 and AVC_204). Velocity of the classifier in
detecting movement also decreased in time (p=0.030).

Together with a better BCI accuracy, there was a significant increase of number of
exercises proposed by the therapist in time (p<0.001) as can be seen in Fig. 4.10A.
Likewise, the same trend was observed for the actual amount of exercises that were
triggered (p<0.001). Similar effects were seen when the sFM-UE was used as the fixed
factor instead of the session number (p=0.013 for triggered exercises).

Therapists could choose from a broad range of exercises that focused on either specific
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Figure 4.9: Classifier online accuracy in time. A) Validation online accuracy per subject
according to detection of movement (yellow) ad rest (light-blue) per subject. Normally,
for a validation set, 10 trial per classes per used. B) Movement detection online accuracy
during the validation (pink) and rehabilitation (red) steps per subject.
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Figure 4.10: A) Increased number of proposed exercises and percentage of those that
were actually triggered by patients. The bold lines show the group average and the
shaded area the confidence interval at 95%. B) Average amount of exercises triggered
per session according to the main target of the exercise: proximal, distal, or combined
parts of the upper-limb. The bold lines show the group average and the shaded areas the
confidence interval at 95%.

articulations (e.g., grasping) or on functional movements (e.g., reach and grasp an object).
Along the sessions there was not a difference between focus of exercises, meaning that a
similar amount of proximal, distal, and combined exercises was triggered at each therapy
(Fig. 4.10B). However, the three-most triggered exercises were distal: "wrist dorsiflexion",
"finger counting", "hand opening and spherical grasp"; the next three were more proximal
and functional: "shoulder abduction", "clean the table" and "reach and grasp a ball".

BCI classifier features The BCI classifier features choice was automatized and based
on the R2 factor differentiating the movement signals from the rest ones. The higher the
value, the stronger the feature in differentiating the two classes. Features were classified
in terms of PSD in channel and frequency bin.

In our analyses we looked at the maximum and mean R2 values for the alpha and beta
frequency bands in the two hemispheres. With regard to the maximum R2, a trend of the
interaction effect frequency X session number X patient group was observed (p=0.089)
with a negative effect of session number for both frequencies and groups which seemed
to be more prominent for the beta band of the group achieving the primary outcome.
The average R2 was not affected by such interaction factor and neither was the R2

mean-max ratio, which gives an information about the spread of the important features
(i.e., ratio=0 there is only one important feature, ratio=1 all the features are equally
important). Finally, to observe lateralisation of the classifier, we looked at the R2 ratio
between hemispheres, where a value bigger than 1 implies that the feature in the affected
hemisphere is stronger. A significant increase of ratio was observed in both frequencies
of the group not achieving the primary outcome, while for the other group, the ratio in
the beta band decreased in time (Fig. 4.11A).



92 Chapter 4. AVANCER Preliminary Group Results

In terms of preferential feature, we observed that the beta band had a higher R2 compared
to alpha (p<0.001) (Fig. 4.11B) and that the main frequency remained rather stable
across time. Channel-wise, different subjects had different trends, but central channels
were mostly present as can be gathered from Fig. 4.11C.
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Figure 4.11: Classifier features selection according to patient group (0=patients did not
achieve the primary outcome, 1=patients achieved the primary outcome). A) Estimated
marginal means looking at the maximum R2 change in time and according to frequency
band. B) Estimated marginal means looking at the ratio of the maximum R2 between
the two hemispheres (value bigger than 1 means that the value is stronger in the affected
hemisphere). C) Amount of time a specific channel had the highest R2 for each sessions.
Blue-green color are more lateralized channels, while red colors are central channels.
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Trends observed from the classifier selected features are only implicit measures of the
underlying brain activity; we therefore looked directly at the EEG data and report the
results in following Section.

4.2.4 Neurophysiology and neuroimaging

EEG

EEG analyses were performed on data acquired during the intervention (task-based
during BCI training) and the full evaluation (resting-state). The changes of QEEG
measures based on the PSD were analysed.
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Figure 4.12: Brain symmetry indices during movement of the affected hand. On the four
rows, four symmetry indices are present. On the first column a division based on the
frequency band is proposed, on the left the evolution of each index in time according
to the frequency band. On the second column, each point is the average of that index
across all patients.

EEG BCI Task-based QEEG features were evaluated across the therapy sessions.
Specifically, the training-set was used given that all trials had the same length; this
comprised around 20 trial per class for three classes: move the affected hand, move the
unaffected hand and no move. Here we only focus on the first class. During movement,
a desynchronisation is normally observed in the sensorimotor rhythm, here described
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by the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands. Therefore, we used
symmetry indices and relative power changes to evaluate the presence of a lateralised
desychrnoisation during movement or movement attempt.

In terms of asymmetry, a negative trend of session number was observed for pdBSI
only (i.e., higher symmetry in time). In pdBSI, alpha had a higher asymmetry than
beta, which was also observed in EDA: here, alpha was positive (i.e., higher power in
affected hemisphere) and beta negative (i.e., higher power in unaffected hemisphere).
The opposite trend was seen in rBSI. The interaction factor frequency X session number
was significant for the three indices with the asymmetry values decreasing in time in
beta, while remaining stable or increasing in alpha. A main effect of group was observed
in the pdBSI, with patients achieving the primary outcome having a lower pdBSI. For
the other indices the main factor was not significant, but the interaction factors were. By
looking at Fig. 4.12, we see that patients achieving the primary outcome have a stable
asymmetry value in the beta band, while the alpha band increases.
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Figure 4.13: Event related (de-)synchronisation during movement attempt in the affected
hemisphered. On the left ERD during the actual task is shown, negative values indicate
a stronger desynchronisation; on the right the post-movement synchronisation, positive
values indicate stronger synchronisation. Patients have been divided according to the
primary outcome: 0=primary outcome not achieved, 1=primary outcome achieved.

Symmetry indices are based on the relative power in the two hemispheres. Thus, to
further investigate the results, we looked directly at the relative alpha and beta power
changes in time in the two hemispheres (where left is always the affected hemisphere).
The affected hemisphere had a higher power in both frequency bands (p<0.001) and
the alpha power was lower than the beta one (p<0.001). While the beta band power
decreased in time, the alpha band increased in both hemispheres. When the patients were
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divided according to the primary outcome, no main effect of group was seen. However, it
seemed that powers remained more stable in time in patients who improved.

We finally looked at the overall ERD/S in the affected hemisphere. The analyses were
separated in terms of task time: during and after task; overall results are plotted in
Fig. 4.13. As for the relative power, there was a main effect of frequency, with alpha
having a lower ERD than beta during the task. After the task, the interaction factor of
session number X group X frequency was significant. Specifically, it seems that only for
the group achieving the primary outcome there is an increase in post-movement beta
rebound (4.13 B). ERDS comparison between the two hemispheres were inspected with
LC, but no significant effect was found.

In the presented analyses, the intervention type was not considered as the training sets
were always acquired prior the tDCS.

Resting-state EEG Conversely from movement, during resting-state an interhemi-
spheric balance is expected in physiological conditions. However, at T0 an imbalance
was observed across frequencies, especially for the group not achieving the primary
outcome (Fig. 4.14). No effect of time was seen in any symmetry index. For rBSI,
although patients who did not achieve the primary outcome decreased significantly their
asymmetry between T1 and T2 (p=0.015), their rBSI at T2 was higher (as a trend) than
the other group (p=0.077). The difference between groups was not significant in the
other indices, though a trend seemed to be present.

Looking at the individual frequencies relative powers, we observed the following. The
delta power was smallest at T0 and strongest at T1, with higher values for patients not
achieving the primary outcome (p=0.007). Differently, the theta relative power did not
see changes in terms of time point nor group. In alpha, the relative power decreased from
T0 to the other time points; however, an increase in T2 compared to T1 was seen for
the group achieving the primary outcome, while a decrease was seen for the other group.
The beta frequency was considered as a whole or as low and high beta. In the overall
band, a significant lower power was seen in the affected hemisphere compared to the
unaffected one in all subjects. The same was seen for the low-beta where an interaction
effect of time and group was also present: patients in the primary outcome group had
a higher low-beta power in T2 compared to T1 (p=0.066). Also for higher beta, this
group showed the same trend (p=0.07 between T2 and T1 and p=0.032 between T2 and
T0). Again, similar trend was seen for gamma (p=0.007 between T2 and T0 for patients
achieving the primary outcome).
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Figure 4.14: Resting state EEG PSD spatial distribution according to frequency band,
time point and patient group. Columns represent the frequency band of interest: theta
(5-7 Hz), alpha (8-12 Hz), beta1 (13-20 Hz), beta2 (21-30 Hz), and gamma (31-45 Hz).
In the rows the time point of acquisition. The top block shows the data averaged per
subjects who achieved the primary outcome, while the bottom block the averaged data
for subjects not achieving the primary outcome. The color scale goes from blue to red,
with blu showing the lowest power and red highest power.

Given the longitudinal changes in power for some frequency bands, we looked at some
known ratios - plotted in Fig. 4.15. We saw that DAR changed according to time and
group: patients without the primary outcome had a higher value (p=0.005) and T1 had
the highest value, while T0 the lowest. The same group and time point trends were
seen for TAR and PRI. The group effect was also seen in TABR (p=0.073), but not
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TBR. There, a time point effect was seen with T0 having the highest ratio (p<0.04); also
the unaffected hemisphere had a significant higher TBR (p=0.006). Only in patients
achieving the primary outcome the TABR decreased significantly between T2 and T1
(p=0.050).

both left right

T0T1T2 T0T1T2 T0T1T2
0.0

0.4

0.8

1.2

1.6

D
A

R

both left right

T0T1T2 T0T1T2 T0T1T2

0.25

0.50

0.75

1.00

1.25

T
A

R

both left right

T0T1T2 T0T1T2 T0T1T2

0.25

0.50

0.75

T
A

B
R

both left right

T0T1T2 T0T1T2 T0T1T2

0.4

0.8

1.2

1.6

D
T

R

both left right

T0 T1 T2 T0 T1 T2 T0 T1 T2

1

2

3

Time point

T
B

R

both left right

T0T1T2 T0T1T2 T0T1T2

0.5

1.0

1.5

P
R

I

Primary outcome met 0 1 

Figure 4.15: Resting state EEG power ratios according to hemisphere and patient
group (primary outcome met=1, primary outcome not met=0). DAR=delta-alpha
ratio, TAR=theta-alpha ratio, TABR=theta-alpha+beta ratio, DTR=delta-theta ratio,
TBR=theta-beta ratiom PRI=delta+theta/alpha+beta ratio.

Cortico-spinal tract integrity

The CST integrity FA and MD was extracted for both hemispheres and the ratio between
the two was computed. A trend was observed for higher affected CST FA in T1 compared
to T0, although this was not reproduced forbut no significant difference between T2 and
the previous time points was seen. The healthy CST FA remained constant, and so did
the ratio between the two hemispheres . No effect of patient group was observed. When
MD was used instead of FA, no main effect nor interaction was seen.

An implicit measure of CST integrity is the given by the MEPs elicited during TMS.
MEPs were elicited in six patients only, depicted in Fig. 4.16. For half of them, MEP
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were not present at the first evaluation, but were elicited later in time (1 patient by T2
and 2 patients by T1). Only three of the subjects that reached the primary outcome
had an MEP by the end of the intervention and only one patient had an elicitable MEP
before starting the intervention. Conversely, three patients that showed MEPs did not
show a significant improvement on the FM-UE; one of which passed from absence to
presence of MEP.
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Figure 4.16: MEP features of the patients who presented MEPs in at least one time
point. Only single-pulse condition was studied. On the left the peak-to-peak amplitude
is shown; on the right the MEP latency. If no latency was found by the automatized
algorithm, no value is reported on the graph. Division into 0 and 1 is whether patients
achieved (1) or not (0) the primary outcome in terms of FM-UE.

MEP features (i.e., amplitude and latency) were studied in terms of time point, patient
group and pulse (single-pulse or SICI). Only subjects where MEP were present in at least
one time point were included in the analysis and only from the EMG channel that was
elicited. The peak-to-peak amplitude was significantly smaller in SICI than single-pulse
condition (p<0.001). The three time points were significantly different between each
other with T0 having the smallest amplitude and T1 the highest, no matter the patient
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group (p<0.004 for all pairwise comparisons). Interaction analyses showed that the time
effect was valid for both pulse conditions, though there was no significant difference
between T0 and T2 in SICI. When the MEP latency was studied instead (only for single
pulse), we found it to be longest in T1 compared to the other two points.

As a final step, we tried to correlate the CST FA with MEP measures. We found a
negative relationship between affected FA and latency, which was mostly significant in
T0 and T1. No relationship was found with the peak-to-peak amplitude.
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Figure 4.17: MEP features and CST integrity correlation. At the top, correlation between
MEP peak-to-peak amplitude and CST FA at the different time points is shown; at the
bottom the same relationships for the MEP latency. Only subjects where MEP was
elicited in at least one time point are reported; single-pulse condition was used for this
plot.

4.2.5 Instrumented FM-UE

The FM-UE exercises were evaluated through sensors measuring the movement (i.e.,
motion-capture sensors and EMG) during the full evaluations (T0, T1, T2). Thanks
to motion capture sensors, movement was studied in terms of range of motion and
smoothness for three body segments (joints): shoulder, forearm (elbow), hand (wrist).
Because multiple exercises were studied, they were divided according to whether a
movement / rotation was supposed to occur for each segment / joint.
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Movement decrease when no movement is expected

In none of the FM-UE items the shoulder should move in the 3D space. We observed an
overall decreasing shoulder displacement in time, with movement at T0 being significantly
bigger than that of T1 and T2 (p<0.001). Specifically, this change seemed to be significant
for patients not reaching the primary outcome. Indeed, at T0 this group had a larger
shoulder displacement compared to the other patients (p=0.068). A decrease in joint
rotation was observed along the x axis, which was mostly due to the group of patients
who met the primary outcome ; in the y-axis patients who improved showed a significant
decrease between T1 and T2 (p=0.008). For the forearm, a decrease of displacement was
observed in the y-axis for everyone and only for the group who met the primary outcome
in the z-axis. In terms of elbow joint rotation, a decrease of ROM was observed across all
subjects. The same trends were observed for the hand and wrist: a significant decrease
in displacement in time was observed on the x-axis (T0-T1 p=0.010, T0-T2 p<0.001);
when the time point was studied with the patient group interaction, the time effect was
seen only for the group not reaching the primary outcome.

Movement increase when movement is expected

For the shoulder joint, a main effect of time was observed on the y and z axes, with
T0 having smaller ROM compared to T1 and T2 (p<0.02). Also for the elbow joint,
which can only perform flexion and extension, an increase between T2 and T0 (p=0.017)
was seen no matter the group; for patients who did not reach the primary outcome T2
also reached higher values than T1 (p=0.002). For the wrist, time had a positive effect
along the y-axis for the primary outcome group. For the x- and z-axes, not enough
time points for both groups were available. Indeed, only few subjects could perform the
wrist dorsiflexion task. Considering displacement in space, interaction of time point and
patient group was reported for the forearm where in the x and z-axes only patients in the
primary outcome group increased their ROM (x-axis: T2>T0, p=0.013; z-axis: T1>T0,
p=0.005), whereas in the y-axis only the other group increased their ROM from T0 to
T1 (p=0.010). Also for the hand the time effect was observed only for patients with a
positive primary outcome, with a significant bigger displacement at T2 compared to T0
(p<0.001) along the x-axis.

Movement smoothness

Smoothness features were analysed starting from the hand movement and its velocity
profile. Fig. 4.18 shows the longitudinal change of some features when considering
only task where a movement from the hand is expected. It can be observed that often
in T0, better results than following time points are obtained. However, this is often
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due to the fact that almost no movement was performed (e.g., no velocity and thus
very low probability of having multiple peaks in the velocity profile). Therefore, the
following features were normalized by the range of motion for that trial, subject, and time
point: nPK, SAL, DLJ, LogDJK, task duration. After the normalization, we observed a
significant effect of time for nPK with T0 having more peaks than T1 (p=0.067) and T1
more than T2 (0.014); task duration also changed in time, with T1 having the longest
durations (p=0.049 compared to T0, p=0.014 compared to T1). The mean velocity also
observed a positive outcome, with tasks in T1 being performed more slowly than in T2
for patients achieving the primary outcome.

EMG activity

EMG data was analysed in a comparable manner, by looking at the activation of the
different muscles, according to the expected contraction per task. Results are reported
in Fig. 4.19. Overall, a main effect of group was observed in the RMS and the mean
envelope, with the group achieving the primary outcome having bigger values. For
both features, the interaction factor (time X group) was also significant: the primary
outcome group showed a significant increase between T0 and T1 (p<0.001) and T1 and
T2 (p<0.001); the increase between T1 and T2 for the primary outcome group was
observed also for the maximum contraction achieved. In addition, for the mean evelope
feature, a main effect of time was also observed with T1 having the largest value.

When analyses were divided per muscle group, the main effect of group in the RMS was
observed only in the biceps, where the group achieving the primary outcome had the
highest RMS. The main effect of time was observed for the triceps, with RMS being
significantly bigger in T1 compared to T0 (p=0.001) and T2 (p=0.002), and the extensor
carpi radialis (ECR), with T1 being smaller than T2 (p=0.024). For the ECR and the
flexor ulnaris no active task was made in T0 for the group who did not achieve the
primary outcome. For all, but the Prontator and Triceps muscles, the interaction factor
was significant, with the primary outcome group showing an increase of RMS in time,
except for the Trapezius, where T2 had the smallest RMS and the Teres Major where
T2 was bigger than T1, but smaller than T0.
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Figure 4.18: Movement smoothness features changes in time. Number of peaks in the
velocity profile (nPK) on the top row, task duration on the second row and maximal
velocity on the bottom row are presented for FM-UE tasks that expect a movement in
space for the hand. On the left column raw data are shown, while on the right one the
data has been normalized with the ROM achieved. For velocity, the normalisation was
not necessary. Results are divided according to patient group (0=primary outcome not
achieved, 1=primary outcome achieved).

4.2.6 Combination of features

It remains to be analysed if some features have a stronger relevance for predicting or
describing motor improvements. As an example, we have plotted in Fig. 4.20A the radar
plot with some baseline features and their relevance for the patients who did and did not
reach the primary outcome. The same graph was plotted using the delta values between
T0 and T2 (Fig. 4.20B). Not all features analysed have been included, but rather one
feature per modality. The PMBR (i.e., the beta ERDS after movement) seemed to be
discriminative at baseline and as acquired difference.
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Figure 4.19: Root-mean square change in time according to patient group (0=primary
outcome not achieved, 1=primary outcome achieved) and muscle. Only tasks where the
muscle is supposed to contract are considered.
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Figure 4.20: Baseline and delta features differences between patients who reach the
primary outcome (1, in light blue) and those who do not (0, in red). A) baseline features
are proposed; B) delta between T2 and T0 features are proposed. Hand movement is
measured as the average movement across axes for all the FM-UE tasks with a large
ROM; shoulder compensation is measured as the average movement across axes for
all the FM-UE tasks; MEP is measured as the average peak-to-peak amplitude in the
target EMG channel during single-pulse, only for patients where MEP was elicited in at
least one point; CST integrity measured through affected CST FA; PMBR is the beta
post-movement event related synchronisation (i.e., post-movement beta rebound); beta
EDA refers to the index measured during resting state with eyes closed.
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4.3 Discussion

The results reported are preliminary; therefore, no statement in terms of clinical trial
efficacy, underlying mechanisms, or predictors can be made. We will however discuss
briefly the preliminary results based on the current sample and in relation to what has
been observed in the literature.

4.3.1 Personalization and neurotechnologies for motor recovery

The goal of this trial is to decrease motor impairment in severely impaired chronic stroke
patients. The current sample suggests that the designed protocol is positively reaching
the expected primary outcome, with an average of 6-point improvement in the FM-UE.
Results looking at the location (i.e., upper-limb segment and joint) of this improvement
are also very promising: although proximal items had overall more FM-UE points, a
reduction of impairment was seen across proximal and distal parts (Fig. 4.2B).

Results from the sFM-UE highlight the potential benefits of the two main pillars of the
protocol: a personalized therapy duration and the hierarchical exploitation of non-invasive
neurotechnologies. The current dataset suggests that personalizing duration may be
beneficial, with most patients continuing either of the interventional phases reaching
higher motor scores. The different trends in improvement between the two interventional
phases (Fig. 4.4) also indicate that personalized therapies are necessary.Why some
patients improve in either of the phases or both remains to be analysed with a larger
sample.

The quantification of motor improvement on which the dose personalization is based
has also shown some drawbacks: indeed, the FM-UE, although widely used, is a grossly-
grained scale blinded to more subtle, yet important, improvements. Many patients were
in fact improving, but not yet reaching the threshold required by the clinical scale and
were obliged to stop the therapy. Moreover, the sFM-UE was assessed at the end of
the therapeutic session and this seemed to have opposite effects on different patients:
some patients were tired after the rehabilitation and did not perform at their maximum
capacity (e.g., AVC_215), whereas others were more mobile after the training compared
to the full-evaluations (e.g., AVC_210). The MRC scale has a larger range of points
and showed significant improvements along the full evaluations. Moreover, it was highly
correlated with the FM-UE and it has been used in other BCI-based studies (Biasiucci
et al., 2019). A follow-up study could try to combine such scale with the FM-UE, for
example.
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4.3.2 Brain plasticity

Lesions caused by stroke have been shown to impact the distribution of brain oscillations
power and thus the interhemispheric (im)balance. Specific training and rehabilitation
techniques may help in reducing such impairment. Differences in functional and structural
connectivity, as well as PSD changes, are markers of occurring plasticity, as explained in
Section 1.5.1. With these preliminary analyses we looked at CST measures and brain
oscillations changes at rest with whole-scalp EEG and during a motor task at the motor
cortex level.

The sensorimotor rhythm was our main target of investigation, given its importance
in the motor system. Two main hypotheses were made according to the task at the
recording: 1) increase in lateralisation of desynchronisation during task, followed by a
synchronisation after task; 2) increase of interhemispheric balance at rest.

From our BCI-related analyses, we observed an increase in symmetry through the pdBSI
and rBSI, but an increase in asymmetry in EDA, with alpha power being more pronounced
in the ipsilesional hemisphere and the beta power in the contralesional one. Combining
EDA with the other two scores, we can speculate that a decreased asymmetry in time
in the non-directional indices may be due to a lower deactivation of the contralesional
hemisphere, and thus point to an initial return to lateralisation. Full lateralisation was not
obtained, but it must be reminded that central electrodes, not included in the symmetry
indices, were often the ones best differentiating rest from movement according to the BCI
classifier (Fig. 4.11). The BCI classifier features gave a further lateralisation indication
by showing that the best feature of the classifier (i.e., the channel and frequency with
highest R2) shifted from the contralesional to the ipsilesional hemisphere. Specifically,
this last point was only evident in patients achieving the primary outcome, suggesting
the importance of lateralisation during task (Sebastián-Romagosa et al., 2020). Another
positive result from the BCI data, was the improved modulation of sensorimotor rhythm
in time, with an increasing strength of ERD in time. This is in line with previous BCI
studies, showing the BCI training effect (Buch et al., 2008). It is also in agreement with
the increase in BCI performance in time.

Although this was not yet studied, BCI-based data may help in disentangling the effect
of neuromodulation from training dosage. In terms of EEG, previous studies have shown
that tDCS applied to M1 increases the effects of motor imagery used for governing a BCI
in chronic stoke patients (Chew et al., 2020; Ang et al., 2015; Kasashima-Shindo et al.,
2015; Shindo et al., 2011) and helps retaining learned activity (Soekadar et al., 2015b).
Moreover, differences in brain reorganization through QEEG features were observed in
an RCT with BCI and BCI+tDCS interventions (Mane et al., 2019). So far, we have
only analysed the training BCI set, which is always performed at the beginning of the
therapy sessions; future analyses will look into the rehabilitation dataset, acquired right
after the stimulation period.
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Our second hypothesis for interhemispheric balance is based on rsEEG. Here we observed
a trend effect for time with a reduction of asymmetry, pointing to the direction of our
hypothesis. Indeed, reduction in asymmetry has been already related with increase in
motor improvement (Agius Anastasi et al., 2017; Saes et al., 2020; Sheorajpanday et al.,
2011).

Additional results from rsEEG studying the power ratios are also in line with the literature.
The decrease in DAR reported was shown to be significantly higher in subacute stroke
patients compared to age-matched controls and that diminishes with recovery (Hussain
and Park, 2021; Saes et al., 2020). The decrease in TABR is also important and has been
related to motor rehabilitation by different groups (Mane et al., 2019; Sheorajpanday
et al., 2011).

Finally, it must be pointed out that differences in results across the non-directional
symmetry indices for both task and rest data, need further investigation. Yet, we may
speculate that their difference is due to some paired channels driving the changes in one
case, but that are cancelled at the average level (Saes et al., 2020). The same holds true
for differences between symmetry indices and statistical model results studying relative
power in the two hemispheres.

The beta band

Most of the plastic changes were observed in the beta band. The beta band is indeed
a very relevant feature for motor control and it was initially suggested to describe an
idling state (Pfurtscheller et al., 1996), while more recently it was hypothesized to
represent the active maintenance of the status quo (Engel and Fries, 2010). Indeed, when
a change in the motor state is anticipated or occurring, the beta power decreases (i.e.,
the movement related beta desynchronisation MRBD), as it has been observed in our
BCI dataset. After the movement, the beta oscillation presents what has been called
a post-movement beta rebound (PMBR), which has been related to error detection of
the finished movement and found to be dynamically increasing in motor learning tasks
(Barone and Rossiter, 2021). If we follow these hypotheses, the increased PMBR observed
in the patients reaching the primary outcome (Fig. 4.13B), may indicate a learning of
the BCI mechanism. Follow-up analyses looking at the PMBR in the validation and
rehabilitation sets according to classifier outcome may provide interesting results at this
regard. In our data we observed an increase in PMBR, but not a big decrease in MRBD.
This trend has already been seen in another stroke populations during motor learning
and motor recovery (Espenhahn et al., 2020; Laaksonen et al., 2012). Such difference
MRBD and PMBR may be explained by an unbalanced GABA-A neurotransimmiter
presence (Hall et al., 2011). Indeed, the key role of beta oscillations after stroke, is also
due to its relation to GABA neurotransmitters (Jensen et al., 2005), which may present
significant changes compared to healthy physiology (Laaksonen and Ward, 2022; Hummel
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et al., 2009; Clarkson et al., 2010; Liuzzi et al., 2014).

Finally, the beta band showed important effects also in rsEEG, with a significant difference
in the beta and low-beta powers between the two hemispheres. This asymmetry, with
higher PSD in the unaffected hemisphere seemed to be more relevant in the patients not
achieving the primary outcome, as can be retrieved from the topoplots in Fig. 4.14 and
it is in line with previous analyses (Snyder et al., 2021).

From brain to periphery - the corticospinal tract

Brain plasticity was also studied at the level of the CST. Although CST structural changes
were not significant, the re-appearance of MEP from initial absence is critical and does
hint to an impact of the therapy on the CST. Indeed, BCI-based therapies are thought
to work through Hebbian learning and thus have implicitly the CST projections as one of
their primary target; it is there that central descending commands are contingent with
peripheral responses from FES (Biasiucci et al., 2019). MEP features did not change
significantly in time, although two patients showed a decrease in latency, which is one
of the most-reported changes according to a systematic review on the topic (Beaulieu
and Milot, 2018). Additional analyses will look at the area under the curve of the MEPs:
(Kraus et al., 2016b) used this feature, in opposition of the peak-to-peak amplitude to
disentangle if the observed changes were due to more synchronized neurons within the
same pool of neurons or if neurons outside the initial pool were recruited.

4.3.3 Kinematics and strength

Analyses from the instrumented FM-UE showed multiple interesting results: in terms of
ROM, a positive decrease in movement compensation was observed across subjects for
different upper limb segments and joints. Similarly, a higher ROM in time was achieved
when required.

Changes in smoothness features were not as evident, and their exploitation was rather
complex for this group of patients. Our patients were never instructed to perform the
tasks as fast as possible, but they were asked to perform it as smooth as possible, with
the main goal to reach the end position without compensating movements. Therefore, it
is not surprising that changes do not follow the ideal trend, but rather the opposite: a
longer movement duration and a rough movement may easily signify that the patient
is transitioning from no movement to achieving some displacement. Indeed, when
smoothness features were normalised by ROM, a positive reduction in number of peaks
and task duration was seen. A recent review (Schwarz et al., 2019) has presented multiple
features to evaluate kinematic, some of which have been extracted in this analysis.
However, we suggest that for severely impaired chronic stroke patients, the study of
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ROMs may be the most suited.

Finally, our results also support the importance of kinematic and kinetic analysis. Often
changes were observed across all subjects, but sometimes just for the patients that did
not achieve the primary outcome. This points to the inability of the FM-UE to catch
many improvements.

4.3.4 The importance of the initial status

Baseline features such as initial impairment and time-post stroke have been used as
strong predictors of motor recovery in (sub-) acute patients (Stinear et al., 2020). In
our dataset the significant of neither was observed, but a trend was indeed visible and
the small sample size might be hiding a significant effect. The only important baseline
factor so far was gender, which had been reported to have a trend for better recovery
prognostic (Coupar et al., 2012).

Multimodal assessments may also help in identifying further biomarkers of recovery.
From the preliminary plots (Fig. 4.20), it seems that nor CST FA, nor MEP amplitude,
both important biomarkers for the acute stage (Stinear et al., 2014) are relevant in
differentiating chronic patients that improve with this specific intervention. PMBR on
the other hand seem to be a relevant factor. Further speculations are arduous given the
small sample size and considering that for some features not all patients were available.
However, once the sample will be complete, we hope to find interesting relationships.
Moreover, patients’ heterogeneity at baseline was not very high and not much different
between the group that improved and that which did not. Thus, not having specific
parameters that clearly differentiates the two groups may not be surprising.

4.3.5 Comparison with the state of the art of stroke upper-limb reha-
bilitation

The AVANCER clinical trial is a complex study in terms of design and set-up, where for
the first time to my knowledge, all of these neurotechnologies are combined. In terms of
trial feasibility and practicability, it is important to understand if the increased complexity
results in added value and increased potential improvement compared to simpler set-ups.
Critically, RCTs evaluating individual, or a combination of, neurotechnologies did often
not include severely impaired chronic stroke patients, or at least not exclusively. A
recent review on the topic (Coscia et al., 2019), reported a total of 11 studies. Four
experiments used robotics alone, to train shoulder and elbow, and achieved an average
improvement between 3.4 and 7.7 points on the FM-UE. One trial using a novel FES
system where stimulation is self-paced observed an average 6.5 point improvement over
five patients (Carda et al., 2017). The same clinical trial where the robotic arm achieved
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7.7 gain, reported an average 8.8 point increase in the FES arm (McCabe et al., 2015).
In BCI-based experiments, when BCI was combined with an exoskeleton for the proximal
upper-limb, an average 6.3 improvement was reached (Ang et al., 2014); whereas when
BCI was combined with FES, an improvement of 7.8 points was obtained (Kim et al.,
2016). Only one study used (bilateral) tDCS combined with anaesthesia and passive-
movement therapy, achieving an average 6.0 points improvement (Koh et al., 2017). In
three trials, where some neurotechnologies were combined, an improvement between
3.0 and 6.0 points was observed (Kasashima-Shindo et al., 2015; Koyama et al., 2014;
Di Lazzaro et al., 2016). Overall, the amount of sessions per study was between 10
and 24, with one outlier study providing 60 sessions (McCabe et al., 2015). Session
duration ranged between 30 and 90 minutes, with the study providing 60 sessions having a
duration of 5 hours for three patients at the same time. For all the experiments, subjects
enrolled in the same trial were given the same dose of therapy. The AVANCER design
and preliminary results seem to be in line with these studies, both in terms of average
dosage (within and across sessions) and outcomes. A main difference is in personalized
dosage: from the literature it can be seen that the intervention with the highest amount
of therapy achieved the greatest improvement (i.e., 7.7 and 8.8 points in robotics and
FES interventions, respectively) (McCabe et al., 2015). Notwithstanding the differences
across trials, the positive relationship between dosage and improvement seems to be
kept. Specifically, because we do not know the improvement between sessions, it could be
speculated that the study of McCabe et al. (2015) saturated the dosage personalisation
by providing that many sessions (i.e., more than half of those of AVANCER).

Interestingly around 75% of these studies had a more intensive treatment than the one
proposed in AVANCER (i.e., 2-3 times per week). If patients are allowed to follow
standard therapy while participating in the study, having a therapy with higher intensity
would easily become infeasible. This problem may be overcome if the clinical trial
organisation would be in charge of the standard therapy as well. This initial comparison
suggests that with a lower intensity, but more complex set-ups, a similar improvement
can be achieved. This point becomes important in view of fatigue and distance to be
travelled to receive the intervention. Overall direct comparisons are not straightforward
as both our current results, and finalized results from the literature often involve a very
small sample size, around 15 patients per interventional group.

Moreover, the location (proximal or distal) where the improvement is observed will need
to be further discussed, as it is a feature not always easily extractable. Different studies
focused either on proximal or distal parts, whereas in AVANCER the goal is to focus on
the hand, while training the proximal upper-limb as well. Having a complete training
of the upper-limb can be useful, especially considering the subjectivity of patients - a
previous review showed that in BCI set-ups, those which targeted the full upper limb had
a significantly higher recovery than when either distal or proximal parts were targeted
(Bigoni and Hummel, 2019). Often, distal training might have a positive impact on
proximal parts too; with a smaller probability and proximal training could have a positive
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impact on distal parts. In AVANCER we have seen a significant improvement in the
FM-UE score of hand and wrist, which although not directly translated to functional
improvement suggest that the AVANCER therapy may allow to regain some mobility in
the hand. This is relevant as it indicates the presence of some residual movement, which
can be a requirement for participating in other trials or standardized therapies in the
future. Moreover, it gives the opportunity to the patient to further train at home and
help in some daily living activities. Indeed, it must be pointed out, that the average
FM-UE baseline of these studies was between 11 and 28, often milder than the one of
AVANCER, averaging at 12. Importantly, it seems that with a significant lower average
baseline, with the AVANCER therapy we can achieve a similar FM-UE improvement
thanks to which patients my participate in further and simpler trials to keep improving.

A different set-up

The preliminary comparison with the state of the art points to the possibility of testing
a simplification of the set-up, which might however need to be combined with a more
intensive training. Focusing on the peripheral machines (i.e., FES and exoskeleton),
in the AVANCER trial we aimed at using technologies already tested individually and
ideally CE-marked. The exoskeleton had to allow for fine movements of the hand. These
movements could ideally also be performed by FES as well. However, to obtain the
same result, a different FES system may be used, such as those presented in (Koutsou
et al., 2016). The downside of FES is induced fatigue. In our intervention, where already
seven muscle groups are stimulated, adding more stimulation may lead to faster fatiguing.
Moreover, the calibration time would need to be evaluated as we believe it should not
be longer than the current one (i.e., around 20 minutes for both actuators and their
combination). On the contrary, removing the FES to keep only the exoskeleton may not
be advisable for severely impaired patients: a great advantage of robotic devices is the
possibility of increasing difficulty and often perform fine movements; however, for severely
impaired patients this may not be the most important point. In particular, I would
speculate that for these patients, the active muscle contraction, together with afferent
and efferent neural pathways activation is more critical. A recent work, compared motor
improvement in chronic stroke patients between a therapy using FES, FES with a hand
exoskeleton (the same used in AVANCER), and hand exoskeleton alone. In particular, a
novel FES stimulation paradigm was used, which was showed to be superior, alone or
in combination with the hand exoskeleton, to the exoskeleton alone, not only in motor
but also sensory improvement. Nonetheless, the anti-gravity support should be kept, no
matter the peripheral machine to be used as it enables to perform actual movements.

Moving towards the central nervous system, we consider the BCI system, which orches-
trates the activation of the peripheral machines. Previous studies suggest the use of
EMG-triggered machines as a muscle-to-muscle interface instead of a brain-to-muscle
interface. The exploitation of EMG could be useful in view of a more precise decoding
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between movements (Losanno et al., 2023). However, for the severely impaired patients,
the use of EMG is not ideal as strength and voluntary contraction is minimal at best
and may be very different between different muscles. Differently, when muscles are not
weak, but spastic, attention will need to be taken into account to avoid hyper-spasticity
following voluntary attempt of contraction. On a technical point of view, a good decod-
ing will need to be created to differentiate between baseline continuous activation and
voluntary movement attempt. In addition, decoding between activity of the machines
from voluntary movement once the action has started is complicated (Losanno et al.,
2023).

In terms of neuromodulation, different approaches and techniques could be used. tDCS
at rest was chosen for its long-term effects (Nitsche and Paulus, 2000); however, rTMS
could also be an available set-up. Specifically, rTMS could be advantageous in view of
a brain-state-dependent stimulation. This choice would make more coherent the whole
set-up as all the technologies used will be triggered based on the brain signals. The
option of brain-state-dependent stimulation is further discussed in Part II of this thesis.

4.3.6 Limitations

These preliminary analyses are only based on n=11 patients. In addition to being a
rather small sample, it does not correspond to the final sample of the clinical trial. We
acknowledge that the statistical power of the tests performed here is not very strong
and that the results presented and discussed may change with the introduction of new
patients in our population. Indeed, the comments provided in this thesis are speculative
and only relative to the evaluated sample. It is however interesting to see already some
correspondences between our results and the literature.

4.3.7 Future analyses

The AVANCER trial has been collecting a large longitudinal amount of multimodal
data. In addition of still being acquired, not all the modalities of the dataset have been
thoroughly inspected yet.

From a clinical side, an open question that remains to be answered is related to motor
recovery prediction based on some specific characteristics as it is done for acute stages of
stroke. Moreover, it would be interesting to understand why patients show completely
different trends in improvements in the two interventions. Correlations between neuro-
physiological data at each time point and improvement per intervention will be evaluated
as next steps.

Neurophysiological data are yet to be fully investigated. From both EEG resting-state and
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fMRI data, connectivity analyses will be performed. Connectivity measures have been
found to be biomarkers for plasticity after stroke (Wu et al., 2015; Biasiucci et al., 2019;
Snyder et al., 2021) From MRI-based data we can also extract structural connectivity
data and study the effect of the disconnectome to understand the importance of lesion
location, as already shown in previous analyses (Egger et al., 2021). Indeed, the lesion
volume did not help in predicting patients who would improve, but its location might.
TMS-EEG data also need to be analysed. Results on the first patient are promising at
that regard 3 and new longitudinal analyses underline the interesting features that can
be extracted to study motor recovery (Cadic-Melchior et al., 2022).

Kinematic and kinetic data are to be further exploited as well. Specifically, for the EMG
data, synergies analyses will follow.
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4.4 Supplementary Material

Instrumented FM-UE

Data acquisition During the instrumented FM-UE, the patient’s EMG activity of
the evaluated upper-limb is recorded from eight pairs of disposable Ag-AgCl electrodes
placed over the trapezius, the deltoid, the biceps long head, the teres major, the triceps,
the pectoralis, the pronator teres, the extensor carpi radialis, and the flexor ulnaris. The
signals are amplified and sampled at 3 kHz using a Noraxon DTS Receiver (Scottasdale,
Arizona, United States) with the band-pass filter at 10 Hz to 1000 Hz (analog Sallen-Key
for high-pass filter and digital finite infite response FIR filter with order 128 for the
low-pass; with the gain set at 500). Kinematics activity is retrieved from the data
recorded from seven motion capture sensors based on inertial motor units (IMU) (Xsens
MVN, Enschede, Netherlands). Specifically, sensors are placed on the forehead, the hand,
the wrist the upper arm (i.e., right below the deltoids), the shoulder (1cm lateral from
the scapula border and on top of the spinal scapula), the sternum and the sacrum (at the
level of S1). The FM-UE is assessed for both unaffected and affected upper-limb; if not
enough, EMG electrodes can be displaced from one side to the other, whereas enough
motion capture sensors are present already on both limbs. Each side is done separately,
and different recordings are acquired for EMG, IMUs and videos. The EMG recording
starts prior and stop after the IMUs’ so to receive a trigger when the latter begins and
ends to record. These triggers are necessary for synchronization (see next paragraphs).
Additional triggers can be sent by the assessor by pressing on a pedal to give information
about the beginning of an item (e.g., movement with synergies) and about the beginning
of each repetition of each item, each item needs to be repeated five times. The pedal has
been introduced only later in the trial.

Calibration For the IMUs only, the input of some anatomical patient’s features (e.g.,
height, arm span, distance between joints) as well as an initial calibration step are
required. The latter consist in having the patient walk back and forth along a line. If
patients were sitting on a wheelchair two options for calibration were available: if they
could stand up they were asked to standing still and move their arms as if they were
walking (i.e., swinging movement); if they could not stand, they were asked to do the
arm swinging movement as far as possible (i.e., as far as their impairment could allow).

The analyses of the IMUs and EMG data explained here below were done using Matlab
21b (MATLAB, 2021).

Synchronization The pipeline to analyse the kinetics and kinematics data begins
with a synchronization step of the two datasets: EMG and IMUs. Synchronization is
achieved thanks to triggers sent from the second to the first when it starts and stops its
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own recording. Practically, the EMG data is cut so to keep only the data within the two
triggers. The result is always checked visually; if only one trigger is found the one is used
for synchronization. If no trigger is found due to recording issues, synchronization must
be done manually. In all cases, synchronization results are visually inspected. Evaluation
of good synchronization is done by plotting on the same time axis the deltoid and the
trapezius activity (i.e., EMG) with the shoulder joint angle (from IMUs).

Segmentation The second step of the pipeline, necessary to extract features from both
datasets is segmentation. With this process, we divide the time-series into FM-UE items
first, and then into repetitions. Segmentation is the most critical and time-consuming
step of the pipeline because all the other features are based on a good segmentation, and
it requires visual inspection and manual adaptation (when triggers were introduced) or a
fully manual division. For understanding the beginning and end of an item, in which the
movement is repeated on average 5 times, the data of joint angles and the 3D position
of some segments are looked at. For the different items, we know if a joint/segment is
expected to move (e.g., in movement with synergies, the hand and the elbow should move
in space), so we look for differences from the baseline (in an ideal case, full stillness should
be represented by a straight line) which are repeated in a short interval before going to
baseline again. The detection of these deflections is double checked with the video. The
video is in fact also manually segmented into items, so that the duration of each item
(not repetition) is known and can be used as a helpful parameter in segmentation. Since
the pedal for triggering the beginning and end of items and repetitions was introduced,
the sent triggers was also used as a helpful factor. Once the items have been identified,
the segmentation in repetitions follows. This step is done in a semi-automatic manner by
looking at the velocity profile of the hand (or wrist). The hand was used given its distal
position and thus always moving even if not actively. According to the item inspected,
we look at either the angular or linear velocity (see Table 4.2). Velocity is used because
segmented movements velocities have a bell shape: at the beginning of the movement
the velocity is zero, it then increases up to a peak, before decreasing again to go back to
stillness for the end of the movement. Based on this knowledge, the velocity is filtered
using a Savitzky-Golay filter (filter length of 31 samples, filter order 4; for the affected
limb the values were sometimes changed to higher number of frames and lower order given
the higher noise) and peaks are automatically detected using an in-built Matlab function.
Once a peak is found, beginning and end of movement (for a repetition), is again found
in a semi-automatic manner by looking at the threshold the 10-15% (Liebermann et al.,
2012) of each peak. Because this did not always lead to desirable results, movement
initiation and end was sometimes manually adjusted (especially for the affected limb
movements). Both the timings of item segmentation and their repetitions were saved
and transferred to the EMG dataset.
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Table 4.2: Velocity type and FM-UE item. The table show if linear or angular velocity
was used for specific movements of the instrument FM-UE during both the segmentation
and the analyses of kinematic features.

Linear velocity flexor synergy, extensor synergy, hand to lumbar spine,
shoulder flexion, shoulder abduction, and coordina-
tion/speed tasks

Angular velocity wrist pronation, wrist repeated dorsiflexion, and cir-
cumduction tasks

IMU analysis The Xsens software (REF) directly provides (angular) velocity and
(angular) accelerations for all the (joints) segments in addition to their position in a
3D Cartesian space and as quaternions. No pre-processing was necessary; the only
pre-processing can be related to the filtering of velocity, using a Savitzky-Golay filter as
described above. With 3D motion capture sensors, we can extract multiple information
regarding the movement quality. We have divided features according to end-point and
joint kinematics. The former relates to the position of the end-point, in our case the
hand and can describe the smoothness of the movement. Joint kinematics can provide
information about the movement performed in terms of range of motions (ROM).

EMG analysis Differently from IMU data, in which raw data may be used, EMG data
requires an initial pre-processing and we followed the one proposed in (Pierella et al.,
2020). To summarize it, the EMG raw data (not divided into tasks) is first detrended (i.e.,
the mean from each channel is removed), secondly it is band-pass filtered between 50-500
Hz (zero-phase Butterworth order 7), the filtered data is then rectified and low-pass
filtered at 10 Hz is applied (zero-phase Butterworth order 7) and finally the output signal
is normalized by its median.

Video data analysis Video recordings of the evaluation have been used to help in the
segmentation step. Moreover, they can provide additional information for future analyses
using computer vision, e.g., deepLabcut (Mathis et al., 2018).
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5.1 Abstract

Objective: Sources of heterogeneity in non-invasive brain stimulation literature can be
numerous, with underlying brain states and protocol differences at the top of the list.
Yet, incoherent results from brain-state-dependent stimulation experiments suggest that
there are further factors adding to the variance. Hypothesizing that different signal
processing pipelines might be partly responsible for heterogeneity; we investigated their
effects on brain-state forecasting approaches.

Approach: A grid-search was used to determine the fastest and most-accurate combination
of preprocessing parameters and phase-forecasting algorithms. The grid-search was
applied on a synthetic dataset and validated on electroencephalographic (EEG) data
from a healthy (n=18) and stroke (n=31) cohort.

Main results: Differences in processing pipelines led to different results; the grid-search
chosen pipelines significantly increased the accuracy of published forecasting methods.
The accuracy achieved in healthy was comparably high in stroke patients.

Significance: This systematic offline analysis highlights the importance of the specific
EEG processing and forecasting pipelines used for online state-dependent setups where
precision in phase prediction is critical. Moreover, successful results in the stroke cohort
pave the way to test state-dependent interventional treatment approaches.

Keywords: grid-search, state-dependent stimulation, EEG-triggered TMS,
closed-loop, non-invasive brain stimulation, stroke
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5.2 Introduction

Most experiments with non-invasive brain stimulation (NIBS) techniques, such as tran-
scranial magnetic stimulation (TMS), aim at demonstrating the methodology’s validity,
understanding different stimulation parameters by comparing responses in different pop-
ulations, and eventually suggesting new clinical applications. Yet, these investigations
are treating the brain as a black box and do not consider the role of underlying brain
activation, or state, variability. The resulting literature shows relevant heterogeneity,
both intra- and inter-subject, which has triggered a shift in concept towards protocols,
where the brain can no longer be considered as a black-box (Bergmann, 2018; Guerra
et al., 2020a; Ziemann and Siebner, 2015; Zrenner et al., 2016), but its ongoing activity,
state, and oscillatory properties must be taken into account as they might strongly
impact the response to TMS at the cortico-spinal (e.g., motor-evoked potentials, MEP
(Hussain and Park, 2021; Madsen et al., 2019; Zrenner et al., 2018)) and cortical level
(cortical-evoked potentials) (Bai et al., 2022; Desideri et al., 2019; Momi et al., 2022).
Several studies have begun to include the brain state to reduce heterogeneity, especially
when looking at MEPs peak-to-peak amplitudes. The research has followed two lines of
approaches: offline and online. In the former, acquired data is post-hoc sorted according
to oscillations-based biomarkers such as the power spectral density (PSD) Ferreri14,
Iscan16, Ogata19, Sauseng09, Schutter11, Zarkowski06, the phase of the wave (van
Elswijk et al., 2010) or both (Berger et al., 2014; Hussain and Park, 2021; Keil et al.,
2014a; Mäki and Ilmoniemi, 2010; Ozdemir et al., 2022; Schilberg et al., 2021; Torrecillos
et al., 2020). The second approach, which has been applied only more recently, uses
the same biomarkers to choose when to trigger the TMS pulse in real-time (Ding et al.,
2022; Madsen et al., 2019; Mansouri et al., 2018; Ogata et al., 2019; Schaworonkow and
Triesch, 2018; Thies et al., 2018; Wischnewski et al., 2022; Zrenner et al., 2018). In this
methodology, to integrate endogenous brain oscillations, the instantaneous brain state
in terms of phase and power at the stimulation time must be extracted and predicted
from the last acquired information. To estimate power at the stimulation time, the latest
acquired data can be used given the relatively low frequency resolution of power (Iturrate
et al., 2018). However, to stimulate at a specific phase of an oscillatory period, future
prediction is required as the last samples acquired will already be in the past.

Only a few research groups have so far applied such an approach within TMS experiments
targeting the motor cortex, however, notwithstanding a brain-state-dependent protocol,
initial publications reported controversial results (Bergmann et al., 2019; Madsen et al.,
2019; Ogata et al., 2019; Zrenner et al., 2018). Although the protocol, intended here as
the general experimental design, is an important factor for explaining outcome differences,
we believe that the processing pipelines (i.e., signal preprocessing and phase prediction) to
forecast the brain state are also important determinants. So far, different research groups
have applied different pipelines in terms of filtering procedures and phase forecasting
methods. The preprocessing role has already proven essential in functional magnetic
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resonance imaging (fMRI) analyses (Botvinik-Nezer et al., 2020), and great attention is
invested as well in the electroencephalography (EEG) community (Cohen, 2017a; Robbins
et al., 2020). For different types of EEG analyses, standardized pipelines have begun to
be proposed (Keil et al., 2014a; Pernet et al., 2020) and analyses studying the effects of
choices at different steps of those pipelines are being published (Robbins et al., 2020).
With the goal of creating a standard pipeline for online brain-state-dependent stimulation
setups, we analysed if a specific combination of preprocessing parameters and forecasting
algorithms would be outperforming the others in terms of accuracy in phase prediction
and computational cost.

5.3 Methods

To evaluate if a specific combination of preprocessing parameters was more accurate than
others, we used a grid-search approach: for each parameter of interest (e.g., filter type,
order, etc.), a set of values were chosen based on previous knowledge (Table 5.1); then,
all possible combinations of values and parameters were created. Each combination was
tested on the same dataset. All the filters used were applied in a zero-phase manner to
reduce errors deriving from filters phase shifts.

The grid-search was applied on a synthetic dataset and the combinations leading to
the most-accurate results were verified on another synthetic dataset. Subsequently,
the same combinations were validated on real resting-state EEG data. A similar
grid-search was also applied directly to the real dataset to analyze the importance
of subject-specifics. The code was run on Python 3.8 and the full scripts can be found at
www.github.com/clovbig/grid_search_phase.

5.3.1 Synthetic dataset

A synthetic dataset was used to have a real ground truth and was considered comparable
to EEG (Zrenner et al., 2020b). We generated a sinusoid at 10 Hz, to focus on alpha
oscillations, on which we added pink noise, i.e., proportional to 1/f. The raw signal for
each time point t was given by:

rawsignal(t) = k ∗ sin(10 ∗ 2π ∗ t) + pinknoise(t) (5.1)

Where the amplitude k of the underlying signal is related to the signal-to-noise ratio
(SNR).

Different trials from the same signal were used for verification. For this step, we also
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Table 5.1: Preprocessing hyperparameters tested with grid-search. The chosen ranges
for each parameter cover values that can be commonly found in EEG studies. In filter
bandwidth, for IIR filter we have added stop-band ripple (used for both Elliptic and
Chebyshev type1) and pass-band ripple (used for both Elliptic filter and Chebyshev type
II filters). For the other filters the bandwidth is only based on the two cut-off frequencies.
All filters are applied in a zero-phase manner. IIR=infinite impulse response; FIR=finite
impulse response.

Design parameter # parameters Bounds/Values
Sampling frequency (Hz) 3 500, 1000, 5000

Filter name 6
IIR: Bessel, Butterworth, Chebyshev type I,
Chebyshev type II, Elliptic
FIR: Hanning window

Filter order
IIR
FIR

5
2

2-5
0.22 – 0.33 % of window length

Filter bandwidth
IIR
Stop-band ripple
Pass-band ripple
FIR

4
2
2
4

1-4
20, 40
0.1, 1
1-4

Window duration (s) 11 0.3 – 0.75
Padding pre-filtering 2 Yes No
Cutting edge of window post-filter 3 0-0.3 (% of window duration)

increased the complexity of the raw signal by adding sinusoids near the 10 Hz frequency.
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5.3.2 Real dataset

The real dataset included 3-minute resting-state EEG with eyes open and eyes closed
from 18 young healthy right-handed subjects and 31 stroke patients; the latter were
evaluated longitudinally at 4 time points: within 1 week (T1), 3 weeks (T2), 3 months
(T3) and 1 year (T4) after the ictal event - demographics of the included subjects can
be retrieved from Table 5.3. Resting-state data were acquired before and after TMS
stimulation blocks, making the dataset comparable to the online EEG that could be read
in a real-time brain-state-dependent TMS study. All subjects signed a written informed
consent and the study was approved by the ethics committee of the Canton of Vaud,
Switzerland (no. 2018-01355). The protocol of the study can be found at (Fleury et al.,
2022).

During the experiment subjects were sitting and a fixation cross was placed in front of
them. EEG signal was acquired from 64 Ag/AgCl TMS-compatible electrodes in a 10-20
system (EEG BrainCap-MR BrainVision LLC, North Carolina, USA); sampling rate
was 5 kHz, with a high cut-off of 1 kHz. The EEG signal was not further pre-processed.
Spatial filters were not applied; for this analysis we chose C3, C4, Fz, Cz, and Oz
channels so to cover the sensorimotor, frontal, and occipital areas. Specifically, both
hemispheres were checked for the motor cortices as stroke patients may have one or the
other hemisphere lesioned.

5.3.3 Phase-forecasting algorithms

Two main types of phase-forecasting algorithms have been proposed in the literature:
signal forecasting (SF) and time-point forecasting (PF). The former predicts the full
signal in a window in the future and thus can compute the phase for all the points (Chen
et al., 2013; Ding et al., 2020; Mansouri et al., 2017; Zrenner et al., 2018); the second one
simplifies the approach and instead of predicting the signal, it only forecasts the future
time point where the phase of interest will be met (Shirinpour et al., 2020; Tomasevic and
Siebner, 2018). Although the prediction follows different methods, the overall approach
to estimate a desired phase in the future is similar: 1) take the last available window of
data, 2) filter it in the frequency band of interest, 3) predict the next time point when
the wanted condition is met (Fig. 5.4).

We evaluated two SF and two PF methods. The former differed in the signal prediction
approach. In one case, an autoregressive model was used on the filtered signal (Zrenner
et al., 2018) (SF-AR); in the other, the EEG signal was approximated as a sine wave with
frequency and phase given by the Fast Fourier Transform (FFT) (SF-FFT) (Mansouri
et al., 2017). An example of PF comes from Tomasevic and colleagues (Tomasevic and
Siebner, 2018), who proposed to find the last peak and trough of the given filtered window
and use their distance to define the period of the main frequency. The period is then
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added to the last peak to predict the next one (PF-PT). We also tested a variation of
this method where only the last peak is searched and the period is obtained from the
main frequency of the FFT (PF-FFT).

5.3.4 Performance evaluation

Algorithms were compared based on their performance in terms of accurate phase
detection and computational time. In particular, the processing time of each algorithm
was considered while making the prediction to ensure that the forecasted point was still
in the future.

Accuracy was defined as the mean plus standard deviation of the phase error along trials
for the different conditions. For each condition 50 trials were used. The phase error was
computed as the difference between the actual phase expected during a peak (i.e., 90°
for a sine wave) and the phase of the signal at the predicted time point. If for a trial, no
peak could be forecasted (e.g., the filter or the AR did not converge), the phase error
was set to the maximum of 180°).

For real data, the ground truth was computed on the full resting state dataset using the
same preprocessing as the one used for the phase estimation.

5.3.5 Statistics

We used a linear mixed effect model (LMM) to study the effect of each individual factor
and their combinations on the overall performance in phase forecasting. We used a
random intercept for each subject. When studying categorical variables (i.e., resting state
eye condition, channel of readout and approach used) we used as dependent variable the
mean + standard deviation of the phase errors of all the trials per subject per condition.
Individual data points (i.e., each trial independently) were used when the power spectral
density (PSD), a numerical variable, was added to the fixed factors. PSD was computed
with the Welch method over the window predefined by the grid-search parameter and with
four different bandwidths (1-4 Hz); the value of PSD per trial was equal to the integrated
area under the curve of the power spectra in the frequency band of interest. Post-hoc
analyses were carried out with estimated marginal means with a Bonferroni correction.
Comparison between the original published methods (Mansouri et al., 2017; Tomasevic
and Siebner, 2018; Zrenner et al., 2018, 2020b) and the newly found preprocessing was
done with a paired Wilcoxon signed-rank test, with alpha=0.05. Statistical analyses were
run in R, version 4.1.1; among the packages used are stats, emmeans and lmerTest.
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Figure 5.1: Performance of phase-forecasting approaches on synthetic data. A) verification
of the ten best combinations found with the grid-search on the synthetic signal according
to different signal-to-noise rations (SNR). Here each point corresponds to error of each
of the 50 trials tested in the 10 different combinations, meaning that there are 500
points per boxplot. B) computational cost of each forecasting algorithm. Each block
is made by 50*10 points, each corresponding to the error of each trial according to
the 10 different combinations used. For all the boxplots in this figure, the horizontal
lines represent the interquartile range and the median; outliers are defined as such if
they are smaller (or bigger) than 1.5 times the interquartile range than the first (third)
quartile. Abbreviations of algorithms are: PF-PT=point forecasting with peak and trough
(Tomasevic and Siebner, 2018), PF-FFT=point forecasting with FFT, SF-AR=signal
forecasting with autoregressive model (Zrenner et al., 2020b), SF-FFT=signal forecasting
with FFT (Mansouri et al., 2017).
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5.4 Results

The examination of preprocessing hyperparameters for different forecasting algorithms
through a grid-search revealed that many combinations can lead to accurate results, with
a preference for padding the signal before filtering and then cut the original window to
avoid edge effects. Regarding the original window duration, longer ones (i.e., 0.7, 0.75s)
seemed to provide better results. Algorithms-wise, PF-PT (Tomasevic and Siebner, 2018)
and SF-AR (Zrenner et al., 2018) worked best, whereas the SF-FFT (Mansouri et al.,
2017) performed poorly, no matter the preprocessing. Table 5.4 (A-B) reports the 10
best combinations for PF-PT and SF-AR and Fig. 5.5 the effect of each parameter of
the grid-search while keeping the other constants. For most forecasting methods, the
accuracy increased with the SNR (Spearman’s corr=-0.56, p<0.0001); above an SNR of
0.5 results were not significantly different (Fig. 5.1A). The verification on synthetic signal
showed that addition of near-by sinusoids did not jeopardize the results. Computational
cost wise, the SF-AR was the most demanding, taking up to 100ms, whereas the other
approaches were in the units of few milliseconds (Fig.5.1B).

5.4.1 Validation on real dataset

The 10-best combinations per algorithm (see Table 5.4 A-B for examples) were first
validated on healthy resting-state EEG. Phase errors increased for all methods compared
to the synthetic dataset and the best approach for the latter was not necessarily the most
performant on real data. For subsequent validation, we chose the new best combination
and run it on both cohorts. Results are shown in Fig. 5.2; the preprocessing parameters
chosen are reported in Table 5.2. Due to its poor performance, SF-FFT was not considered
for the following analyses.

Table 5.2: Combination of preprocessing performing at best for each forecasting algo-
rithm after verification on synthetic data and initial validation on healthy resting state
EEG. Abbreviations used: PF-PT = point-forecasting peak-trough (Tomasevic and
Siebner, 2018), PF-FFT = point-forecasting using FFT, SF-AR = signal-forecasting with
autoregressive model (Zrenner et al., 2018), SF-FFT = signal-forecasting using FFT
(Mansouri et al., 2017); RS = stop-band ripple, RP = pass-band ripple (these parameters
are necessary only for Chebyshev and elliptic filters).

ALGORITHM FILTER
NAME

FILTER
ORDER

BAND-
WIDTH (Hz)

EDGE
CUT (%) PADDING RS RP FS WINDOW (s)

PF-PT Bessel 2 1 0.3 1 na na 5000 0.75
PF-FFT Butter 4 2 0.1 1 na na 5000 0.75
SF-AR Butter 3 2 0.1 1 na na 5000 0.75
SF-FFT Bessel 2 2 0 1 na na 5000 0.75

The LMM on the healthy data looking at categorical variables only, reported a significant
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main effect of channel, algorithm, and eye condition, but of no interaction (Table 5.5A).
Regarding the former, Fz was the worst performant (Table 5.5C, p<0.001 for all pair-
wise comparisons), whereas other channels did not differ significantly. When looking
at differences due to forecasting algorithms, PF-FFT was statistically worse than the
other approaches (p<0.001 for all pair-wise comparisons); moreover, there was a trend of
PF-PT being more accurate than SF-AR (EMM= 3.3 degrees or 0.06 radians, p=0.041,
Table 5.5D). When subjects have their eyes closed, the accuracy also seems to increase,
but with a negligible effect size (from Table 5.5B we can observe that the EMM is of
around 2.3 degrees or 0.04 radians, p=0.037). Because according to eye condition and
channel, a variable that is expected to change is the PSD in alpha (e.g., higher alpha
PSD is expected in occipital areas during eyes closed), and because PSD is an important
factor when filtering data, we have added to the equation the relative PSD in alpha
(i.e., the area under the curve of the power spectra in alpha over the area under the
curve in the 1-50 Hz band) and the bandwidth size. Indeed, the relative power in the
frequency of interest is a significant factor that may lower the error in phase prediction,
as reported by the results of the LMM (p<0.001, Table 5.6). In general, it seems that the
inverse relation of PSD and phase error holds true independently of the categorical factors
studied (i.e., channel, eye condition, algorithm, and bandwidth used for computing the
PSD) as can be extrapolated for Fig. 5.6. This point becomes even more evident when
taking as factor the absolute alpha PSD divided into quartiles per subject. By taking as
an example PF-PT on young healthy subjects, we observe that if only very high PSD
trials are considered (i.e., only PSD above the 75th percentile for the different subjects),
the interquartile difference is decreased to less than 45 degrees, compared to almost 90
degrees when all trials are considered (Fig. 5.7B). Nonetheless, some outliers are still
present, probably due to the subject, channel, and eye condition variabilities. Similar
effects were seen in the stroke dataset (Tables 5.7-5.11) and the two populations had
overall similar accuracies when the same approach was applied in the same conditions
(Fig. 5.2).

5.4.2 Grid-search on real data

To confirm that the chosen combinations were not biased by their training on a synthetic
dataset, we ran the same grid-search on trials from ten randomly picked healthy subjects.
Preferred filter choices remained consistent, but the window duration shortened ( Table
5.4C-D). Nonetheless, when running the best combination from the synthetic grid-search
with shorter window durations on the healthy dataset, larger errors were obtained
compared to the longer windows.

In the comparison of the parameters from the individual and synthetic grid-search on a
validating set of healthy subjects, no significant difference in accuracy was found.
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Figure 5.2: Performance of preprocessing pipelines chosen with a grid-search approach.
Validation of the best combination found after an initial validation on a healthy dataset
on both the healthy and the stroke cohort. Performance is divided according to the eye
condition of the resting state (eyes open - RS_EO, eyes closed - RS_EC) and the channel
used. An effect of channel, algorithm, and eye condition was observed (Tables 5.5A-D).
For all the boxplots in this figure, the horizontal lines represent the interquartile range
and the median; outliers are defined as such if they are smaller (or bigger) than 1.5 times
the interquartile range than the first (third) quartile.
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5.4.3 Comparison with original algorithms’ preprocessing

When the forecasting algorithms were tested with their original preprocessing, we found
a significantly better performance for the optimized PF-PT and SF-AR on all data
and conditions (Fig. 5.3A). Figure 5.3B shows on the actual signal how the optimized
preprocessing differs from the original, suggesting why we are obtaining so different
results. Notwithstanding the better performance of optimized approaches, the accuracy
interquartile is still in the range of 45 to 135 degrees; similar plots to Fig. 5.3A where
trials are labelled according to their PSD, we can see that accuracy can be improved with
very high PSD (i.e., only PSD above the 75th percentile for the different subjects) with
an interquartile range up to 45 degrees (Fig. 5.7). This highlights again the relevance of
high PSD already reported by the results of the LMM (Table 5.6 and Fig. 5.6).

5.5 Discussion

Protocol differences, such as stimulation parameters and other experimental design choices,
are often held responsible for heterogeneity in brain-state-dependent experiments’ results.
The present work highlights the relevance of signal processing, often arbitrarily decided by
the researcher. Indeed, different choices in EEG filtering can lead to importantly diverse
results in phase-forecasting accuracy (Fig. 5.8). Two main points should be emphasized:
1) outcome comparisons with different processing pipelines must be analyzed with care
as applied functions on the raw signal can change its look at a very early stage of the
data analysis; 2) no matter the forecasting method chosen, optimization of preprocessing
is critical and can significantly improve precision (Figure 5.3A).

Our grid-search approach for finding a suited preprocessing combined background knowl-
edge and empirical data. All the combinations were valid, but tests on synthetic and real
data rejected some while keeping others. In particular, this work highlighted important
steps that should be followed in the EEG preprocessing: padding the signal before
filtering is probably the most important step to perform at the beginning to avoid most
of the edge effects that will be introduced by the filter itself. Regarding the latter, IIR
filters with low-order are to be preferred; bandwidth-wise narrower bands were suggested
by the grid-search, although wider ones may still be tested on real data. In terms of
sampling frequency, this work suggests one between 1 and 5 kHz. Finally, algorithm-wise
FFT-based ones (both point and signal forecasting) had the lowest performance, which
may be due to the intrinsic stationarity of FFT, from which minimal discrepancies from
the ground-truth can lead to large errors when moving away from the initial window.
Rejection of tested combinations was based on accuracy, but also on computation cost
given that time is a main constrain in online set-ups. Except for the SF-AR, forecasting
approaches took less than 5ms, a good value that accounts for only a 25th of cycle in
the alpha band (and maximum a 6th of cycle in the highest beta band). The present
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Figure 5.3: Comparison of original and optimized preprocessing for the same forecasting
algorithm. A) Performance of the published forecasting algorithms with their original
preprocessing and the one found with the grid-search. Results are divided according to
data type (synthetic, healthy and stroke); in real data, the error comes from the different
channels and eye conditions. If the desired phase (e.g., peak) could not be found in the
future (e.g., the filter did not converge), a maximum error of π (i.e., 180degrees) was used.
In the boxplots, the horizontal lines represent the interquartile range and the median;
outliers are defined as such if they are smaller (or bigger) than 1.5 times the interquartile
range than the first (third) quartile. Points, here thick areas are the outliers. Stars
represent the value of significance after a paired Wilcoxon test. *=p<0.05, **=p<0.01,
***=p<0.001, ****=p<0.0001. B) Steps of peak forecasting using the original (red colors)
or optimized (blue colors) preprocessing for the 3 algorithms. The input trial is noisy
synthetic data with SNR=0.5. Abbreviations of algorithms are: PF-PT=point forecasting
with peak and trough (Tomasevic and Siebner, 2018), PF-FFT=point forecasting with
FFT, SF-AR=signal forecasting with autoregressive mode (Zrenner et al., 2020b), SF-
FFT=signal forecasting with FFT (Mansouri et al., 2017).

.
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analyses did not aim at optimizing the speed of processing, but rather looked at the
cost of the different pipelines when the same level of code optimization is used. Re-
garding phase-forecasting precision, results from this grid-search showed that newly
found preprocessing combinations significantly increased the accuracy of some of the
published forecasting methods in both the healthy and the stroke cohort data. Outcomes
from the latter were indeed very positive: to our knowledge this is the first time that
phase-forecasting algorithms have been tested on such a large dataset of stroke patients
in different time points after the ictal accident. The achieved accuracy, comparable to
that of healthy subjects, implies that these algorithms can be applied even in situations
with impaired brain functions, such as after a stroke. Moreover, we have observed
that personalizing a grid-search for single subjects does not significantly improve the
performance. Suggesting that the optimized method found works similarly on different
subjects. Altogether, this provides an important step forward using state-dependent
TMS-approaches as interventional tools to e.g., enhance the effects of neurorehabilitation.

In addition to highlight some important aspects and effects of EEG preprocessing, the
goal of this study was to find optimized parameters for phase forecasting. The synthetic
grid-search returned similar filters for different prediction algorithms that were also
confirmed and strengthen by the individual grid-search on real data. Another relevant
outcome of the analysis is the importance of the PSD, which can be read on two levels:
firstly, for a filter and subsequently for a forecasting algorithm to perform well, a relatively
strong signal (and SNR) is required (Fig. 5.5-5.6); secondly, the PSD strength can help
defining if a neural oscillation is actually present. In this study PSD was only analysed
as a factor on accuracy as our aim was to determine the performance of the respective
approaches with unbiased/unselected real data. However, given the strong effect PSD
has on accuracy, we believe that in future steps towards online experiments, PSD may
be used to define if a trial is eligible, as suggested by (Donoghue et al., 2022).

Finally, we acknowledge that other parameters and forecasting approaches (e.g., machine-
learning based (McIntosh and Sajda, 2020)) could have been added to the grid-search, but
were beyond the scope of the present study. The grid-search approach as an optimization
tool, is one of several others available. We believe it is a good starting point due to
its simplicity and when most of the parameters studied are categorical, rather than
continuous, and are based on theoretical knowledge.

As future perspective, we believe that original and optimized approaches should be applied
on the same TMS-EEG-EMG dataset and evaluate the actual effect of pre-processing
and thus phase labelling on outcomes such as the MEP amplitude.
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5.6 Conclusion

The present grid-search results underline the key role of EEG preprocessing steps and
demonstrate that this methodology can be a tool for optimizing signal processing pipelines
crucially important for brain-state-dependent or closed-loop NIBS approaches. Although
the analyses focused on phase forecasting for brain-state-dependent stimulation exper-
iments, the experience from it can be extended to other EEG analytical approaches.
Finally, brain-state-dependent approaches were successfully tested on resting-state EEG
data from patients after a stroke, paving the way to being able to determine critical
factors relevant for brain-state-dependent novel interventional approaches even in patients
with brain lesions.
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Figure 5.4: Steps of phase-forecasting, to be read from top to bottom. To predict the next
time-point in the feature when the wanted phase (e.g., peak) will be met the following
steps need to be taken: 1) Take a window of signal (in an online setup this will be the
latest available window); 2) Filter the noisy signal in the frequency band of interest (in
this case around 10 Hz); 3) Predict the next peak using a forecasting algorithm. Finally,
you can check with the actual "future" signal if the prediction was accurate enough.
In this figure, the black vertical lines are the border of the window to process. The
ground-truth is the 10 Hz light-blue signal, on which we have added pink noise. In the
real scenario, we would only obtain the noisy signal.
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Figure 5.5: Effect of parameters choices on phase accuracy for PF-PT (top row) (Toma-
sevic and Siebner, 2018) and SF-AR (bottom row) (Zrenner et al., 2018) From left to
right: effect of padding before the filter and cutting of edges after filtering; effect of
sampling frequency; effect of window duration; effect of filter parameters. For all plots,
the parameters not tested are kept constant and the ones of the best combination of each
algorithm are used.
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Figure 5.6: Effects of PSD on phase prediction error. Following results from Table 5.5,
we visualize how the PSD relates to the phase prediction error while keeping some fixed
conditions only in optimized algorithms on healthy data. In particular, for all subfigures
we differentiate according to a categorical variable while keeping the possibilities of all
the others. Each plot is trial of a subject under a certain condition. A) PSD X phase
error relationship according to the channel of readout; B) PSD X phase error relationship
according to bandwidth used to compute the PSD; C) PSD X phase error relationship
according to the algorithm used; D) PSD X phase error relationship according to eye
condition. Relative PSD is here computed as the ratio between the PSD in alpha (area
under the curve of the spectra) and the PSD in the 1-50 Hz bandwidth (area under
the curve of the spectra). Data points are from optimized algorithms in healthy data.
Abbreviations: RS_EC = resting state eyes closed, RS_EO = resting state eyes open.
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Figure 5.7: Effects of subject and PSD on optimized vs. original approaches. a)
comparison between optimized and original preprocessing for SF-AR (Zrenner et al., 2018)
and PF-PT (Tomasevic and Siebner, 2018) according to healthy subjects. b) comparison
between optimized and original preprocessing for PF-PT and SF-AR according to PSD
in alpha (computed as the absolute value). PSD was divided in quartiles for each subject,
method (original or optimized) and algorithm (SF-AR, PF-PT). c) comparison between
optimized (in blue) and original (in red) preprocessing for PF-PT and SF-AR according
to healthy subjects and PSD. Division and labelling of PSD in in quartiles per condition
was done as follows: very low PSD is lower than the 25th percentile, low PSD is between
the 25th and 50th percentile, high PSD is between the 50th and 75th percentile and
very high PSD is above the 75th percentile. Abbreviations: opt=optimized (optimized
preprocessing according to grid-search), orig=original (originally published preprocessing)
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Figure 5.8: Importance of the pre-processing parameters. The figure shows the filter and
forecasting outputs for two different pre-processing pipelines using the same forecasting
method (PF-PT). Filter method 1 (red in figure) used a Butterworth filter order 2, with
bandwidth h= 2 Hz, without padding and no edge cutting on a 0.75ms input window.
Filter method 2 (blue in figure) used a Chebyschev Type I filter order 2, with bandwidth
= 3 Hz, with zero-padding and no edge cutting. It can be seen that especially by
the end of the input window the filter results differ more and more, highlighting the
problematic of the filters’ edge effects and in general the different outputs provided by
similar filters. Because the forecasting was made using PF-PT (Tomasevic and Siebner,
2018), we marked with small crosses the last peak and trough identified for both filtered
signals. The big crosses on the ground truth signal mark the forecasted peak with the
two methods. As the filter outputs differed, so do the forecasting results, with method 2
being able to better forecast the next peak. The SNR for this example is 0.5. The input
signal was created as: inputsignal = 0.5 ∗ sin(10 ∗ 2π ∗ t) + pinknoise(t).

Table 5.3: Demographics of included subjects (healthy and stroke patients) who were
assessed. Recruited stroke patients were assessed with the same TMS protocol within one
week (T1), at three weeks (T2), three months (T3) and one year (T4) after the accident.
The table reports the number of subjects per time-point, the gender, age, lesioned
hemisphere and the Fugl-Meyer Assessment for the upper extremity (FM-UE)(Fugl-
Meyer et al., 1975) of the affected body side.

N (FEMALE) AGE (MEAN±SD) N LEFT
LESIONED HEMISPHERE

FM-UE AFFECTED SIDE
(MEAN±SD)

HEALTHY 18 (7) 27.0 ± 2.8
STROKE, T1 26 (7) 66.1 ± 0.5 12 54.5 ± 11.4
STROKE, T2 23 (5) 68.4 ± 0.4 11 56.3 ± 3.4
STROKE, T3 9 (3) 68.9 ± 0.5 4 62.8 ± 4.4
STROKE, T4 8 (2) 71.9 ± 0.4 3 54.8 ± 11.0
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Table 5.4: Best 10 combinations for PF-PT and SF-AR algorithms. A-B) Best combi-
nation of parameters for PF-PT and SF-AR based on synthetic data grid-search; C-D)
Best combination of parameters for PF-PT and SF-AR based on combined results from
grid-search run on ten randomly picked subjects. Abbreviations: FS=sampling frequency,
BW=bandwidth of the filter, RS=stop-band ripple, RP=pass-band ripple. References:
SF-AR (Zrenner et al., 2018), PF-PT (Tomasevic and Siebner, 2018).

A)
FS (Hz) Filter order Bandwidth (Hz) Window (s) Filter name RS RP Edge cut (%) Padding Mu (rad) SD (rad) MU+SD (rad)

1000 2 1 0.75 Butter NA NA 0.1 1 0.0013 0.0910 0.0924
1000 3 1 0.7 Cheby2 40 NA 0 1 1 0.0008 0.0926 0.0934
1000 3 1 0.7 Cheby2 20 NA 0.1 1 0.0008 0.0946 0.0954
1000 2 1 0.75 Bessel NA NA 0.3 1 0.0008 0.0969 0.0978
1000 3 1 0.7 Cheby2 40 NA 0.3 1 0.0008 0.0977 0.0986
1000 4 1 0.6 Cheby2 20 NA 0.3 1 0.0008 0.0979 0.0987
1000 4 1 0.6 Cheby2 40 NA 0.1 1 0.0008 0.0994 0.1003
1000 2 1 0.75 Bessel NA NA 0.1 1 0.0015 0.0997 0.1012
1000 3 1 0.6 Cheby2 40 NA 0 1 0.0021 0.0993 0.1015

B)
FS (Hz) Filter order Bandwidth (Hz) Window (s) Filter name RS RP Edge cut (%) Padding Mu (rad) SD (rad) MU+SD (rad)

1000 4 2 0.7 Bessel NA NA 0 1 0.0019 0.0828 0.0848
1000 3 2 0.75 Butter NA NA 0.1 1 0.0008 0.0940 0.0948
1000 3 2 0.7 Butter NA NA 0 1 0.0012 0.0963 0.0975
1000 3 2 0.7 Bessel NA NA 0.1 1 0.0021 0.0993 0.1015
1000 3 3 0.5 Cheby1 NA 1 0.1 1 0.0019 0.1099 0.1118
500 2 1 0.75 Cheby2 20 NA 0 1 0.0630 0.0534 0.1164

1000 2 2 0.5 Bessel NA NA 0 1 0.0014 0.1184 0.1198
250 2 1 0.65 Cheby1 NA 0.1 0.1 1 0.0633 0.0569 0.1202
250 2 1 0.65 Cheby1 NA 1 0.1 1 0.0634 0.0571 0.1205
250 2 1 0.55 Elliptic 20 0.1 0.1 1 0.0634 0.0581 0.1215

C)
FS (Hz) Filter order Bandwidth (Hz) Window (s) Filter name RS RP Edge cut (%) Padding Mu (rad) SD (rad) MU+SD (rad)

5000 2 2 0.5 Bessel NA NA 0.1 1 0.6500 0.6731 1.3232
500 2 2 0.6 Bessel NA NA 0.1 1 0.7127 0.6225 1.3352

1000 2 2 0.65 Bessel NA NA 0.1 1 0.8121 0.6370 1.4491
5000 2 1 0.7 Bessel NA NA 0 1 0.7834 0.6809 1.4642
5000 2 3 0.6 Butter NA NA 0 1 0.7580 0.7116 1.4696
500 2 1 0.6 Bessel NA NA 0 1 0.7945 0.6754 1.4699

5000 2 2 0.6 Bessel NA NA 0 1 0.8586 0.6269 1.4855
500 4 1 0.45 Elliptic 40 0.1 0.1 1 0.8300 0.6581 1.4881

1000 4 1 0.7 Bessel NA NA 0.3 1 0.8470 0.6759 1.5229
5000 2 1 0.7 Butter NA NA 0.3 1 0.8473 0.6762 1.5235

D)
FS (Hz) Filter order Bandwidth (Hz) Window (s) Filter name RS RP Edge cut (%) Padding Mu (rad) SD (rad) MU+SD (rad)

500 2 1 0.75 Butter NA NA 0 1 0.8564 0.6686 1.5250
500 3 1 0.4 Elliptic 40 0.1 0.1 0 0.8427 0.6881 1.5308

1000 2 1 0.7 Butter NA NA 0.1 1 0.8489 0.6871 1.5360
1000 2 2 0.6 Bessel NA NA 0 1 0.8635 0.6787 1.5422
500 2 3 0.3 Bessel NA NA 0.1 1 0.8843 0.6772 1.5616
500 2 1 0.5 Bessel NA NA 0 1 0.8304 0.7342 1.5647

1000 3 2 0.65 Bessel NA NA 0.1 1 0.8480 0.7183 1.5663
500 2 2 0.4 Bessel NA NA 0 1 0.8275 0.7417 1.5693

1000 2 1 0.7 Bessel NA NA 0 1 0.8668 0.7124 1.5792
500 2 1 0.45 Butter NA NA 0 1 0.8545 0.7253 1.5798
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Table 5.5: Effects of categorical, fixed variables on forecasted phase accuracy on healthy
resting-state EEG. A) Linear mixed effects model results; all interactions of effects are
considered. The dependent variable was the mean + standard deviation of the phase
error for each subject and condition. B) Post-hoc analyses looking at eye condition; C)
post-hoc analyses looking at channel effect; D) post-hoc analyses looking at forecasting
(pre-processing + prediction) approach. If a factor was not significant from the linear
mixed model, post-hoc analyses were not performed. The linear mixed model was
run with lme4; post-hoc analyses looked at estimated marginal means wit Bonferroni
correction. In the post-hoc tables, the top table represents the distribution according
to each factor and the lower table the estimated difference. Abbreviations: RS_EC =
resting state eyes closed; RS_EO = resting state eyes open. References: SF-AR (Zrenner
et al., 2018), PF-PT (Tomasevic and Siebner, 2018).

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.226 0.226 1 522 4.372 0.037
Channel 3.500 0.875 4 522 16.915 <0.001
Algorithm 9.142 4.571 2 522 88.370 <0.001
Eye condition : channel 0.398 0.990 4 522 1.921 0.105
Eye condition : algorithm 0.173 0.087 2 522 1.677 0.188
Channel : algorithm 0.658 0.082 8 522 1.589 0.125
Eye condition : channel : algorithm 0.422 0.053 8 522 1.102 0.420

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

RS_EC 1.730 0.020 29.5 1.69 1.77
RS_EO 1.770 0.020 29.5 1.73 1.81

Estimate Standard Error Degrees of
freedom

t-ratio p-value

RS_EC – RS_EO -0.040 0.019 522 -2.091 0.037

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.69 0.03 78.2 1.64 1.74
C4 1.70 0.03 78.2 1.65 1.75
Cz 1.72 0.03 78.2 1.67 1.77
Fz 1.92 0.03 78.2 1.85 1.96
Oz 1.75 0.03 78.2 1.70 1.80

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3-C4 -0.011 0.030 522 -0.368 1.000
C3-Cz -0.032 0.030 522 -1.059 1.000
C3-Fz -0.215 0.030 522 -7.132 <0.001
C3-Oz -0.059 0.030 522 -1.955 0.512
C4-Cz -0.021 0.030 522 -0.691 1.000
C4-Fz -0.204 0.030 522 -6.764 <0.001
C4-Oz -0.048 0.030 522 -1.587 1.000
Cz-Fz -0.183 0.030 522 -6.072 <0.001
Cz-Oz -0.027 0.030 522 -0.896 1.000
Fz-Oz 0.156 0.030 522 5.176 <0.001

D)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 1.93 0.02 43.6 1.88 1.97
PF-PT 1.64 0.02 43.6 1.59 1.68
SF-AR 1.69 0.02 43.6 1.65 1.74

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.293 0.023 522 12.549 <0.001
PF-FFT – SF-AR 0.235 0.023 522 10.076 <0.001
PF-PT – SF-AR -0.058 0.023 522 -2.473 0.041
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Table 5.6: Effects of categorical (i.e., eye condition, channel, algorithm, and bandwidth
size considered for alpha) and continuous (i.e., PSD) fixed variables on forecasted phase
accuracy on healthy resting-state. A) Linear mixed effects model results; all interactions
of effects are considered; each trial was considered individually to study the effects of
the PSD. Post-hoc analyses are not run; for interpretability and visualization of the
results and to understand how PSD, interacting with other factors, is acting on the phase
accuracy, see Fig. 5.6.

Sum of
Squares

Mean of
Squares

Numerator
Degrees of

Freedom

Denominator
Degrees of

freedom
F value Pr(>F)

PSD 52.374 52.374 1 331538 82.340 <0.001
Bandwidth 3.866 3.866 1 331538 6.078 0.0137
Eye condition 0.203 0.203 1 331538 0.319 0.572
Channel 93.060 23.265 4 331538 36.574 <0.001
Algorithm 313.561 156.781 2 331538 246.484 <0.001
PSD : bandwidth 313.561 24.127 1 331538 37.931 <0.001
PSD : eye condition 2.367 2.367 1 331538 3.722 0.054
Bandwidth : eye condition 1.498 1.498 1 331538 8.862 <0.001
PSD : channel 22.547 5.637 4 331538 8.862 <0.001
Bandwidth : channel 2.950 0.739 4 331538 1.159 0.326
Eye condition : channel 9.291 2.323 4 331538 3.652 0.005
PSD : algorithm 2.066 1.033 2 331538 1.624 0.197
Bandwidth : algorithm 0.615 0.307 2 331538 0.483 0.617
Eye condition : algorithm 4.870 2.435 2 331538 2.829 0.023
Channel : algorithm 19.115 2.389 8 331538 3.756 <0.001
PSD : bandwidth : eye condition 1.770 1.770 1 331538 2.783 0.095
PSD : bandwidth : channel 9.610 2.402 4 331538 3.777 0.004
PSD : eye condition : channel 5.302 1.325 4 331538 2.084 0.080
Bandwidth : eye condition : channel 0.676 0.169 4 331538 0.266 0.900
PSD : bandwidth : algorithm 2.163 1.082 2 331538 1.701 0.183
PSD : eye condition : algorithm 2.505 1.234 2 331538 1.969 0.139
Bandwidth : eye condition : algorithm 0.211 0.106 2 331538 0.166 0.847
PSD : channel : algorithm 8.742 1.093 8 331538 1.718 0.089
Bandwidth : channel : algorithm 4.891 0.611 8 331538 0.961 0.464
Eye condition : channel : algorithm 16.725 2.091 8 331538 3.287 <0.001
PSD : bandwidth : eye condition : channel 1.101 0.275 4 331538 0.433 0.785
PSD : bandwidth : eye condition : algorithm 1.864 0.932 2 331538 1.465 0.231
PSD : bandwidth : channel : algorithm 6.178 0.772 8 331538 1.214 0.286
PSD : eye condition : channel : algorithm 11.161 1.395 8 331538 2.193 0.025
Bandwidth : eye condition : channel : algorithm 5.792 0.724 8 331538 1.138 0.333
PSD : bandwidth : eye condition : channel : algorithm 8.723 1.090 8 331538 1.714 0.089



Chapter 5. Phase prediction optimization 143

Table 5.7: Effects of categorical, fixed variables on forecasted phase accuracy on stroke
resting-state EEG – all time points are considered together. A) Linear mixed effects
model results; all interactions of effects are considered. The dependent variable was
the mean + standard deviation of the phase error for each subject and condition. B)
Post-hoc analyses looking at eye condition; C) post-hoc analyses looking at channel
effect; D) post-hoc analyses looking at forecasting (pre-processing + prediction) approach;
E) post-hoc analyses looking at the interaction effect of channel and eye condition; F)
post-hoc analyses looking at the interaction effect of algorithm and eye condition. If
a factor was not significant from the linear mixed model, post-hoc analyses were not
performed. The linear mixed model was run with lme4; post-hoc analyses looked at
estimated marginal means wit Bonferroni correction. In the post-hoc tables, the top table
represents the distribution according to each factor and the lower table the estimated
difference. Abbreviations: RS_EC = resting state eyes closed; RS_EO = resting state
eyes open. References: SF-AR (Zrenner et al., 2018), PF-PT (Tomasevic and Siebner,
2018)

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.605 0.605 1 3375.8 12.810 <0.001
Channel 8.747 2.187 4 3375.8 46.339 <0.001
Algorithm 79.089 39.545 2 3375.8 837.984 <0.001
Eye condition : channel 0.728 0.182 4 3375.8 3.859 0.004
Eye condition : algorithm 0.469 0.235 2 3375.8 4.971 0.007
Channel : algorithm 0.503 0.063 8 3375.8 1.331 0.222
Eye condition : channel : algorithm 0.168 0.021 8 3375.8 0.444 0.895

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

RS_EC 1.78 0.02 Inf 1.75 1.82
RS_EO 1.81 0.02 Inf 1.78 1.84

Estimate Standard Error Degrees of
freedom

t-ratio p-value

RS_EC – RS_EO -0.027 0.007 Inf -3.579 <0.001

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.77 0.02 Inf 1.74 1.81
C4 1.78 0.02 Inf 1.74 1.81
Cz 1.82 0.02 Inf 1.79 1.86
Fz 1.88 0.02 Inf 1.85 1.92
Oz 1.74 0.02 Inf 1.70 1.77

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 – C4 -0.005 0.02 Inf -0.466 1.000
C3 – Cz -0.053 0.02 Inf -4.500 <0.001
C3 – Fz -0.111 0.02 Inf -9.528 <0.001
C3 – Oz 0.034 0.02 Inf 2.891 0.038
C4 – Cz -0.047 0.02 Inf -4.034 <0.001
C4 – Fz -0.106 0.02 Inf -9.061 <0.001
C4 – Oz 0.039 0.02 Inf 3.357 0.008
Cz – Fz -0.059 0.02 Inf -5.028 <0.001
Cz – Oz 0.086 0.02 Inf 7.391 <0.001
Fz – Oz 0.145 0.02 Inf 12.419 <0.001
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D)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 2.01 0.02 Inf 1.97 2.04
PF-PT 1.65 0.02 Inf 1.62 1.68
SF-AR 1.74 0.02 Inf 1.71 1.77

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.356 0.009 Inf 39.344 <0.001
PF-FFT – SF-AR 0.267 0.009 Inf 29.470 <0.001
PF-PT – SF-AR -0.089 0.009 Inf -9.874 <0.001

E)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 RS_EC 1.76 0.02 Inf 1.72 1.80
C4 RS_EC 1.78 0.02 Inf 1.74 1.82
Cz RS_EC 1.82 0.02 Inf 1.78 1.85
Fz RS_EC 1.87 0.02 Inf 1.83 1.91
Oz RS_EC 1.70 0.02 Inf 1.66 1.74
C3 RS_EO 1.78 0.02 Inf 1.74 1.82
C4 RS_EO 1.77 0.02 Inf 1.73 1.81
Cz RS_EO 1.83 0.02 Inf 1.79 1.87
Fz RS_EO 1.90 0.02 Inf 1.86 1.94
Oz RS_EO 1.78 0.02 Inf 1.74 1.81

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 RS_EC – C4 RS_EC -0.019 0.016 Inf -1.180 1.000
C3 RS_EC – Cz RS_EC -0.054 0.016 Inf -3.243 0.053
C3 RS_EC – Fz RS_EC -0.105 0.016 Inf -6.374 <0.001
C3 RS_EC – Oz RS_EC 0.064 0.016 Inf 3.868 0.005
C3 RS_EC – C3 RS_EO 0.018 0.016 Inf -1.091 1.000
C4 RS_EC – Cz RS_EC -0.034 0.016 Inf -2.064 1.000
C4 RS_EC – Fz RS_EC 0.086 0.016 Inf -5.195 <0.001
C4 RS_EC – Oz RS_EC 0.083 0.016 Inf 5.048 <0.001
C4 RS_EC – C4 RS_EO 0.010 0.016 Inf 0.610 1.000
Cz RS_EC – Fz RS_EC -0.052 0.016 Inf -3.131 0.078
Cz RS_EC – Oz RS_EC 0.118 0.016 Inf 7.111 <0.001
Cz RS_EC – Cz RS_EO -0.016 0.016 Inf -0.968 1.000
Fz RS_EC – Oz RS_EC 0.169 0.016 Inf 10.242 <0.001
Fz RS_EC – Fz RS_EO -0.030 0.016 Inf -1.816 1.000
Oz RS_EC – Oz RS_EO -0.078 0.016 Inf -4.738 <0.001
C3 RS_EO – C4 RS_EO 0.009 0.016 Inf 0.520 1.000
C3 RS_EO – Cz RS_EO -0.052 0.016 Inf -3.121 0.081
C3 RS_EO – Fz RS_EO -0.117 0.016 Inf -7.100 <0.001
C3 RS_EO – Oz RS_EO 0.004 0.016 Inf 0.221 1.000
C4 RS_EO – Cz RS_EO -0.060 0.016 Inf -3.641 0.012
C4 RS_EO – Fz RS_EO -0.126 0.016 Inf -7.620 <0.001
C4 RS_EO – Oz RS_EO -0.005 0.016 Inf -0.300 1.000
Cz RS_EO – Fz RS_EO -0.066 0.016 Inf -3.979 0.003
Cz RS_EO – Oz RS_EO 0.055 0.016 Inf 3.341 0.037
Fz RS_EO – Oz RS_EO 0.121 0.016 Inf 7.320 <0.001

F)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT RS_EC 1.99 0.02 Inf 1.95 2.02
PF-PT RS_EC 1.65 0.02 Inf 1.62 1.69
SF-AR RS_EC 1.72 0.02 Inf 1.68 1.75
PF-FFT RS_EO 2.03 0.02 Inf 1.99 2.06
PF-PT RS_EO 1.65 0.02 Inf 1.61 1.68
SF-AR RS_EO 1.76 0.02 Inf 1.73 1.80

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT RS_EC – PF-PT
RS_EC

0.333 0.013 Inf 26.00 <0.001

PF-FFT RS_EC – SF-AR
RS_EC

0.270 0.013 Inf 21.036 <0.001

PF-FFT RS_EC –
PF-FFT RS_EO

-0.040 0.013 Inf -3.151 0.024

PF-PT RS_EC – SF-AR
RS_EC

-0.063 0.013 Inf -4.960 <0.001

PF-PT RS_EC – PF-PT
RS_EO

0.006 0.013 Inf 0.498 1.000

SF-AR RS_EC – SF-AR
RS_EO

-0.045 0.013 Inf -3.546 0.006

PF-FFT RS_EO – PF-PT
RS_EO

0.380 0.013 Inf 29.645 <0.001

PF-FFT RS_EO – SF-AR
RS_EO

0.264 0.013 Inf 20.641 <0.001

PF-PT RS_EO – SF-AR
RS_EO

-0.115 0.013 Inf -9.004 <0.001
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Table 5.8: Effects of categorical, fixed variables on forecasted phase accuracy on stroke
resting-state EEG at time point T1 (i.e., within 1 week from the ictal accident) N=26.
A) Linear mixed effects model results; all interactions of effects are considered. The
dependent variable was the mean + standard deviation of the phase error for each subject
and condition. B) Post-hoc analyses looking at eye condition; C) post-hoc analyses
looking at channel effect; D) post-hoc analyses looking at forecasting (pre-processing
+ prediction) approach. If a factor was not significant from the linear mixed model,
post-hoc analyses were not performed. The linear mixed model was run with lme4 ;
post-hoc analyses looked at estimated marginal means wit Bonferroni correction. In the
post-hoc tables, the top table represents the distribution according to each factor and
the lower table the estimated difference. Abbreviations: RS_EC = resting state eyes
closed; RS_EO = resting state eyes open. References: SF-AR (Zrenner et al., 2018),
PF-PT (Tomasevic and Siebner, 2018).

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.581 0.581 1 1189 12.262 <0.001
Channel 3.557 0.890 4 1189 18.772 <0.001
Algorithm 29.635 14.817 2 1189 321.780 <0.001
Eye condition : channel 0.176 0.044 4 1189 0.9301 0.445
Eye condition : algorithm 0.187 0.094 2 1189 1.977 0.139
Channel : algorithm 0.487 0.061 8 1189 1.285 0.247
Eye condition : channel : algorithm 0.192 0.024 8 1189 0.508 0.851

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

RS_EC 1.78 0.02 53.9 1.74 1.81
RS_EO 1.82 0.02 53.9 1.78 1.85

Estimate Standard Error Degrees of
freedom

t-ratio p-value

RS_EC – RS_EO -0.043 0.012 1189 -3.502 <0.001

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.76 0.02 102 1.72 1.80
C4 1.79 0.02 102 1.75 1.83
Cz 1.81 0.02 102 1.77 1.85
Fz 1.89 0.02 102 1.85 1.93
Oz 1.72 0.02 102 1.69 1.77

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 – C4 -0.035 0.019 1189 -1.816 0.696
C3 – Cz -0.056 0.019 1189 -2.899 0.038
C3 – Fz -0.130 0.019 1189 -6.688 <0.001
C3 – Oz 0.025 0.019 1189 1.276 1.000
C4 – Cz -0.021 0.019 1189 -1.084 1.000
C4 – Fz -0.094 0.019 1189 -4.872 <0.001
C4 – Oz 0.060 0.019 1189 3.091 0.020
Cz – Fz -0.073 0.019 1189 -3.788 0.002
Cz – Oz 0.081 0.019 1189 4.175 <0.001
Fz – Oz 0.154 0.019 1189 7.963 <0.001

D)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 2.01 0.02 68.3 1.97 2.05
PF-PT 1.65 0.02 68.3 1.61 1.69
SF-AR 1.73 0.02 68.3 1.70 1.77

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.358 0.015 1189 23.865 <0.001
PF-FFT – SF-AR 0.277 0.015 1189 18.414 <0.001
PF-PT – SF-AR -0.082 0.015 1189 -5.452 <0.001
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Table 5.9: Effects of categorical, fixed variables on forecasted phase accuracy on stroke
resting-state EEG at time point T2 (i.e., 3 weeks after the ictal accident), N=23. A) Linear
mixed effects model results; all interactions of effects are considered. The dependent
variable was the mean + standard deviation of the phase error for each subject and
condition. B) Post-hoc analyses looking at eye condition; C) post-hoc analyses looking at
channel effect; D) post-hoc analyses looking at forecasting (pre-processing + prediction)
approach. If a factor was not significant from the linear mixed model, post-hoc analyses
were not performed. The linear mixed model was run with lme4; post-hoc analyses
looked at estimated marginal means wit Bonferroni correction. In the post-hoc tables,
the top table represents the distribution according to each factor and the lower table
the estimated difference. Abbreviations: RS_EC = resting state eyes closed; RS_EO =
resting state eyes open. References: SF-AR (Zrenner et al., 2018), PF-PT (Tomasevic
and Siebner, 2018).

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.054 0.054 1 928 10.864 0.001
Channel 2.679 0.670 4 928 13.891 <0.001
Algorithm 20.403 10.202 2 928 211.576 <0.001
Eye condition : channel 0.298 0.075 4 928 1.546 0.187
Eye condition : algorithm 0.102 0.05 2 928 1.059 0.347
Channel : algorithm 0.204 0.025 8 928 0.529 0.835
Eye condition : channel : algorithm 0.226 0.028 8 928 0.585 0.791

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

RS_EC 1.77 0.02 38.2 1.72 1.82
RS_EO 1.82 0.02 38.2 1.77 1.86

Estimate Standard Error Degrees of
freedom

t-ratio p-value

RS_EC – RS_EO -0.046 0.014 928 -3.296 0.001

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.76 0.03 60.1 1.70 1.81
C4 1.77 0.03 60.1 1.71 1.82
Cz 1.82 0.03 60.1 1.77 1.88
Fz 1.88 0.03 60.1 1.82 1.93
Oz 1.73 0.03 60.1 1.68 1.79

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 – C4 -0.012 0.022 928 -0.536 1.000
C3 – Cz -0.067 0.022 928 -3.034 0.025
C3 – Fz -0.122 0.022 928 -5.517 <0.001
C3 – Oz 0.022 0.022 928 0.987 1.000
C4 – Cz -0.055 0.022 928 -2.497 0.127
C4 – Fz -0.110 0.022 928 -4.981 <0.001
C4 – Oz 0.034 0.022 928 1.523 1.000
Cz – Fz -0.055 0.022 928 -2.484 0.132
Cz – Oz 0.089 0.022 928 4.0221 <0.001
Fz – Oz 0.143 0.022 928 6.504 <0.001

D)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 1.99 0.02 45 1.94 2.04
PF-PT 1.65 0.02 45 1.60 1.70
SF-AR 1.74 0.02 45 1.69 1.79

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.337 0.017 928 19.735 <0.001
PF-FFT – SF-AR 0.255 0.017 928 14.893 <0.001
PF-PT – SF-AR -0.083 0.017 928 -4.834 <0.001
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Table 5.10: Effects of categorical, fixed variables on forecasted phase accuracy on stroke
resting-state EEG at time point T3 (i.e., 3 months after the ictal accident), N=9. A)
Linear mixed effects model results; all interactions of effects are considered. The dependent
variable was the mean + standard deviation of the phase error for each subject and
condition. B) Post-hoc analyses looking at channel effect; C) post-hoc analyses looking
at forecasting (pre-processing + prediction) approach. If a factor was not significant from
the linear mixed model, post-hoc analyses were not performed. The linear mixed model
was run with lme4; post-hoc analyses looked at estimated marginal means wit Bonferroni
correction. In the post-hoc tables, the top table represents the distribution according
to each factor and the lower table the estimated difference. Abbreviations: RS_EC =
resting state eyes closed; RS_EO = resting state eyes open. References: SF-AR (Zrenner
et al., 2018), PF-PT (Tomasevic and Siebner, 2018).

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.032 0.032 1 725 0.734 0.392
Channel 1.676 0.419 4 725 9.500 <0.001
Algorithm 19.445 9.723 2 725 220.492 <0.001
Eye condition : channel 0.410 0.103 4 725 2.326 0.055
Eye condition : algorithm 0.201 0.100 2 725 2.276 0.103
Channel : algorithm 0.450 0.056 8 725 1.274 0.254
Eye condition : channel : algorithm 0.117 0.015 8 725 0.331 0.954

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.79 0.03 48.2 1.73 1.85
C4 1.76 0.03 48.2 1.71 1.82
Cz 1.84 0.03 48.2 1.78 1.89
Fz 1.88 0.03 48.2 1.82 1.93
Oz 1.75 0.03 48.2 1.69 1.81

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 – C4 0.025 0.024 725 1.072 1.000
C3 – Cz -0.045 0.024 725 -1.892 0.588
C3 – Fz -0.085 0.024 725 -3.597 0.003
C3 – Oz 0.040 0.024 725 1.681 0.931
C4 – Cz -0.070 0.024 725 -2.965 0.031
C4 – Fz -0.111 0.024 725 -4.670 <0.001
C4 – Oz 0.014 0.024 725 0.609 1.000
Cz – Fz -0.040 0.024 725 -1.705 0.886
Cz – Oz 0.085 0.024 725 3.574 0.004
Fz – Oz 0.125 0.024 725 5279 <0.001

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 2.02 0.03 35.7 1.96 2.07
PF-PT 1.64 0.03 35.7 1.59 1.70
SF-AR 1.75 0.03 35.7 1.70 1.80

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.375 0.018 725 20.387 <0.001
PF-FFT – SF-AR 0.268 0.018 725 14.554 <0.001
PF-PT – SF-AR -0.107 0.018 725 -5.834 <0.001
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Table 5.11: Effects of categorical, fixed variables on forecasted phase accuracy on stroke
resting-state EEG at time point T4 (i.e., 1 year after the ictal accident), N=8. A) Linear
mixed effects model results; all interactions of effects are considered. The dependent
variable was the mean + standard deviation of the phase error for each subject and
condition. B) Post-hoc analyses looking at eye condition effect; C) Post-hoc analyses
looking at channel effect; D) post-hoc analyses looking at forecasting (pre-processing
+ prediction) approach. If a factor was not significant from the linear mixed model,
post-hoc analyses were not performed. The linear mixed model was run with lme4;
post-hoc analyses looked at estimated marginal means wit Bonferroni correction. In the
post-hoc tables, the top table represents the distribution according to each factor and
the lower table the estimated difference. Abbreviations: RS_EC = resting state eyes
closed; RS_EO = resting state eyes open. References: SF-AR (Zrenner et al., 2018),
PF-PT (Tomasevic and Siebner, 2018).

A)
Sum of

Squares
Mean of
Squares

Numerator
Degrees of Freedom

Denominator
Degrees of freedom F value Pr(>F)

Eye condition 0.201 0.201 1 377 4.194 0.041
Channel 1.235 0.309 4 377 6.450 <0.001
Algorithm 9.750 4.875 2 377 101.824 <0.001
Eye condition : channel 0.221 0.055 4 377 1.156 0.330
Eye condition : algorithm 0.070 0.035 2 377 0.733 0.481
Channel : algorithm 0.324 0.041 8 377 0.857 0.553
Eye condition : channel : algorithm 0.259 0.032 8 377 0.676 0.713

B)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

RS_EC 1.83 0.04 15.7 1.75 1.90
RS_EO 1.78 0.04 15.7 1.71 1.86

Estimate Standard Error Degrees of
freedom

t-ratio p-value

RS_EC – RS_EO 0.044 0.021 377 2.048 0.041

C)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

C3 1.81 0.04 25.2 1.73 1.89
C4 1.77 0.04 25.2 1.68 1.85
Cz 1.83 0.04 25.2 1.75 1.91
Fz 1.89 0.04 25.2 1.81 1.97
Oz 1.73 0.04 25.2 1.65 1.81

Estimate Standard Error Degrees of
freedom

t-ratio p-value

C3 – C4 0.041 0.034 377 1.226 1.000
C3 – Cz -0.022 0.034 377 -0.660 1.000
C3 – Fz -0.080 0.034 377 -2.383 0.177
C3 – Oz 0.078 0.034 377 2.309 0.215
C4 – Cz -0.064 0.034 377 -1.886 0.600
C4 – Fz -0.122 0.034 377 -3.608 0.003
C4 – Oz 0.037 0.034 377 1.083 1.000
Cz – Fz -0.058 0.034 377 -1.722 0.858
Cz – Oz 0.100 0.034 377 2.970 0.032
Fz – Oz 0.158 0.034 377 4.692 <0.001

D)
Estimated

marginal mean
Standard Error Degrees of

freedom
Lower confidence

interval
Upper confidence

interval

PF-FFT 2.01 0.04 18.7 1.94 2.09
PF-PT 1.65 0.04 18.7 1.58 1.73
SF-AR 1.75 0.04 18.7 1.67 1.83

Estimate Standard Error Degrees of
freedom

t-ratio p-value

PF-FFT – PF-PT 0.360 0.026 377 13.762 <0.001
PF-FFT – SF-AR 0.265 0.026 377 10.151 <0.001
PF-PT – SF-AR -0.094 0.026 377 -3.611 0.001
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6.1 Abstract

Objective: Several earlier studies have investigated the effect of alpha oscillations on
corticospinal excitability. Yet, the literature is divergent. Here, we aim at giving a further
look on the brain state effect on both cortical and corticospinal excitability, with a focus
on the EEG processing methodology.

Approach: Corticospinal excitability was measured using motor evoked potential (MEP)
peak-to-peak amplitude elicited with transcranial magnetic stimulation (TMS); cortical
responses were studied through TMS-evoked potentials (TEPs) features. A TMS-EEG-
EMG dataset of 18 young healthy subjects who received 180 single-pulse and 180
short-intracortical inhibition (SICI) pulses was investigated. We defined the brain-state
based on different phase and power combinations, only in trials where a neural oscillation
was present. Each brain state, estimated with three published methods, was related to
the MEP and TEP features variability. The relationship between TEPs and MEPs was
also evaluated.

Main results: The presence of neural oscillations resulted in more consistent results
regardless of the EEG processing approach. Nonetheless, the latter still critically affected
studies outcomes, making conclusive claims complex. From our results, the brain state
correlated with the MEP amplitude, and cortical dynamics features. With respect to
corticospinal excitability, the brain-state had a modulatory effect only in single-pulse.
Differently, for TEPs the same brain-state modulation was seen for both pulse conditions.
TEP features and MEP size correlated more strongly with each other than with any
brain state combination

Significance: The alpha oscillation state seems to explain some of the variability observed
in cortical and corticospinal responses to TMS. We believe that further studies should only
include trials with a neural oscillation in the frequency band of interest and hypotheses
be benchmarked on offline studies given the heterogeneity of results originating from
different EEG processing strategies.

Keywords: brain-state-dependent TMS, TMS-evoked potential, motor evoked
potential, EEG processing, alpha oscillations
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6.2 Introduction

The introduction of non-invasive brain stimulation (NIBS) and its use in clinical settings
(Chen et al., 2008; Stinear, 2017) has opened the way to new technical developments,
protocols, and therapies. Along with innovations and improvements, the wide use of
these techniques has also raised further questions on their working principles as a high
heterogeneity in results and an overall small effect size have been highlighted (Guerra
et al., 2020a,b; Huang et al., 2017; Ziemann and Siebner, 2015). The brain oscillatory
activity has been suggested as one of the main causes of such variability (Bergmann, 2018;
Thut et al., 2017; Ziemann and Siebner, 2015). It is just in recent years that researchers
have begun to inspect behavioural and electrophysiological responses to stimulation in
relation to cortical activity (Table 6.1, top rows); and as more studies hinted to an effect
of oscillatory activity, the first brain-state-dependent stimulation protocols started to be
published (see Table 6.1, bottom rows).

The most-widely used techniques for such experiments are transcranial magnetic stimula-
tion (TMS), electroencephalography (EEG), and electromyography (EMG). The former
allows to perturb endogenous oscillations. The second permits to both read and predict
the brain state for stimulation and record the cortical response to the stimulation (i.e.,
TMS evoked potentials - TEPs). The third one evaluates the corticospinal excitability
by studying motor evoked potentials (MEPs).

In previous studies the brain state has been defined through the power spectral density
(PSD) and the oscillation phase (from now referred to just as phase) of the sensorimotor
system covering the alpha (or mu, 8-12 Hz) and the beta (13-30 Hz) bands. Specifically,
the PSD relates to the size of the neural population that is firing synchronously (Biasiucci
et al., 2019; Cohen, 2017b), whereas the phase rather represents the state of the population
(e.g., excitation or inhibition) (Buzsáki and Draguhn, 2004; Haegens et al., 2011; Jensen
et al., 2014).

The introduction of the brain state to explain MEP variability did not convey much
homogenization - see results from Table 6.1. For example, if we look at the relationship
between MEP amplitude and PSD in the alpha band when subjects are at rest, three out
of fourteen offline studies reported a negative relationship, seven of those did not find
any effect and the remaining found a positive relationship. When extending to online
studies, two out of seven experiments found a negative relationship, four a positive one,
and the remaining no effect. Only very few online studies have been performed (N=10)
and of these, 60% came from the same research group, where the same preprocessing
and inclusion criteria have been applied - importantly, reproducibility within this group
was high. The discordant outcomes between groups were often attributed to stimulation
protocol differences, such as number of trials and subjects, stimulation intensity, and
inter-stimulus interval (ISI). In addition to that, all the signal processing steps, involving
both data cleaning and filtering, have been shown to play a critical role (Bigoni et al.,
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2023). As we report in Table 6.1, different studies use different lengths of pre-stimulus
window, spatial and frequency filters, and power estimation methods, and have often
not reported the exact processing, especially in the earlier works. Finally, the statistical
methods used for comparison also differed across studies.

Significantly fewer experiments have focused on the relationship between brain state
and cortical responses through TEPs (see Table 6.2). This can be explained by the
complexity of TMS-EEG and its rather recent conceptualisation. As for the MEP results,
heterogeneity is still present.

This work results as a follow-up of our analysis on the effect of EEG processing on phase
prediction (Bigoni et al., 2023). Here, we would like to provide evidence of the role of
EEG processing on the outcomes of brain-state-dependent stimulation studies: MEP
and TEP features. Moreover, we would like to give an additional contribution to the
current state of the art, hoping to clarify the effect, if any, of the stimulated motor cortex
brain-state on the TEPs and MEPs in terms of phase and power in the alpha band. The
relationship between MEPs and TEPs is also evaluated.

Table 6.1: Synoptic table of literature review regarding articles where MEP features
(amplitude and latency) have been considered in relation to the brain state at the time
of TMS stimulation. Both offline and online studies are reported; the type of protocol
is highlighted in bold in the column "Experiment condition". In this table we report in
a summary the following information: reference paper and subjects demographics (i.e.,
sample size, age, and additional information); experiment condition (i.e., protocol with
information of activity performed by subject, TMS related parameters and EEG and
EMG electrodes used); EEG processing pipelines including both preprocessing, choices
of hyperparameters (e.g., window duration of epoch) and how PSD and phase have been
estimated); results in the alpha and beta bands to related MEP features in terms of
phase (PH), PSD or interaction effect (PH x PSD); statistics used. If an analysis was not
performed by the article, results are reported as NA (not applicable); if a method was not
specified, it is reported as NR (not reported). Abbreviations and units used going from
left to right and top-bottom: N is the sample size, F is the number of female subjects;
age is reported in years, either mean ± SD (range) if available; SP = single-pulse, SICI
= short-intracortical inhibition; ICF = intracortical facilitation; TI = test intensity,
rMT = resting motor threshold, ISI = inter-trial stimulus, reported in seconds; EMG
related muscles are reported with r=right, l=left and the abbreviation of the muscle
(APB=abductor pollicis brevis, FDI=first dorsal intraosseous, FCR=flexor carpi radialis,
ADM=abductor digiti minimi). Additional abbreviations: EOG=electrooculography,
ERD=event related desynchronization, ETP= Educated Temporal Prediction, FIR=finite
impulse response filter, FFT=Fast-Fourier Transform, IO = input-output, PCA=principal
component analysis, MVC=maximal voluntary contraction.
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Continuation of Table 6.1
Reference
and
sample

Experiment
condition

EEG processing Results in
alpha

Results in beta Statistics
used

Zarkowski
et al. (2006)
healthy,
N=4 (F=0)
Age=35-59

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 100+ SP trials,
TI=100% rMT, ISI=10
EEG = 3-ch C3,
posterior and anterior,
EMG = rAPB

WINDOW = -2 - 0
SPATIAL F = NR
FREQ F = NA
PHASE EST = NA
PSD EST = NR

PHASE = NA
PSD = High
alpha (10-13 Hz)
negative
relationship
PH x PSD = NA

PHASE = NA
PSD = high beta
(21-30 Hz)
negative
relationship
PH x PSD = NA

Multiple
regression
analyses
with
adjustment
for subjects

Mitchell
et al. (2007)
healthy,
N=20
(F=NR),
Age=NR

PROTOCOL = offline
ACTIVITY = gripping
finger and thumb +
visual feedback, eyes
open
TMS = 100 trials,
TI=visible responses
during abduction; 1.1,
1.3, 1.5 x TI,
ISI=5.98-6.078
EEG = 3-ch M1,
EMG = FDI

WINDOW = NR
SPATIAL F = NR
FREQ F = None
PHASE EST = novel
asymmetric wavelet
PSD EST = novel
asymmetric wavelet

PHASE = None
(oscillation)
PSD = None
(oscillation)
PH x PSD = NA

PHASE = None
(oscillation)
PSD = None
(oscillation)
PH x PSD = NA

Multiple
linear
regression.
Comparison
between real
and shuffled
data

Kičić et al.
(2008)
healthy
right-
handed,
N=9 (F=4),
Age=23-32

PROTOCOL = offline
ACTIVITY = thumbs
movement and rest in
reaction-time task,
eyes open
TMS = NR trials,
TI=120% MT,
ISI=3.3-4
EEG = 60-ch,
EMG = lAPB

WINDOW = -0.1 - 0.3
SPATIAL F = CAR
FREQ F = responses
averaged + low-pass at
40 Hz
PHASE EST = NR
PSD EST = NR

PHASE = NA
PSD = negative
relationship
(preparation =
ERD = lower
PSD)
PH x PSD = NA

PHASE = NA
PSD = negative
relationship
(preparation =
ERD = lower
PSD)
PH x PSD = NA

t-test or
ANOVA +
Neuman-
Keuls
post-hoc

Sauseng
et al. (2009)
healthy,
N=6
(F=NR)
Age=25.7
(21-37)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 300 SP trials,
TI=100%rMT, ISI=4-6
EEG = 29-ch,
EMG = rFDI

WINDOW = -0.5 -0
SPATIAL F = PCA +
sLORETA source
localisation
FREQ F = NR
PHASE EST = NA
PSD EST = NR

PHASE = NA
PSD = negative
relationship
lower PSD in
central areas in
higher vs. lower
MEPs
PH x PSD = NA

PHASE = NA
PSD = None
PH x PSD = NA

Wilcoxon-
test +
bootstrap-
ping

Mäki and
Ilmoniemi
(2010)
healthy
right-
handed,
N=16
(F=2),
Age=25 ±
2.4 (21-29)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 60+ SP trials,
TI = 100% rMT, ISI =
2-3s
EEG = 60-ch,
EMG = rADM

WINDOW = 3 cycles
SPATIAL F = NR
FREQ F = 2nd order
Butterworth bandpass
+ rectify + smoothing
+ down-sample
PHASE EST = 706ms
filtered with 200th
order Kaiser-windowed
FIR at relevant
frequency
PSD EST = temporal
spectral evolution

PHASE = None
PSD = None
PH x PSD = NA

PHASE = None
PSD = in
mid-range beta,
negative
relationship,
smaller PSD for
higher MEP
PH x PSD = NA

Spearman’s
correlation.
Paired
t-tests with
Bonferroni
correction.
three-way
rmANOVA
(MEP size,
frequency
range, area)
+
Bonferroni-
corrected
post hoc
tests

van Elswijk
et al. (2010)
healthy,
right- and
left-handed
N=13
(F=5),
Age=23-31

PROTOCOL = offline
ACTIVITY = 15%
MVC contraction, eyes
open
TMS = 420 SP trial,
TI=110% activeMT
(MEP at 15% of
contraction), ISI=5.1
EEG = 24-ch,
EMG = FDI

WINDOW = -1.1 - 1.1
SPATIAL F = Hjort
FREQ F = one-pass
4th order Butterworth
10-400 Hz
PHASE EST = Hilbert
transform, no
demodulation
PSD EST = Hilbert
transform, no
demodulation

PHASE = None
PSD = NA
PH x PSD = NA

PHASE = None
PSD = NA
PH x PSD = NA

Cosine
fitting with
shuffling,
non-
parametric
randomiza-
tion
Spearman’s
rank
correlation
coefficients
+ bias
estimation



154 Chapter 6. Brain state estimation effects on outcomes

Continuation of Table 6.1
Reference
and
sample

Experiment
condition

EEG processing Results in
alpha

Results in beta Statistics
used

Schutter
and
Hortensius
(2011)
healthy,
N=8 (F=3),
Age=
24±3.39
(21-28)

PROTOCOL = offline
ACTIVITY =
isometric contraction
thumb and index (30%
of MVC), eyes closed
TMS = 60 biphasic SP
trials, TI=120% rMT,
ISI=5-10
EEG = 9-ch,
EMG = rAPB

WINDOW = -1.01 -
-0.01
SPATIAL F = NR
FREQ F = 1-30 Hz
bandpass
PHASE EST = NA
PSD EST = FFT with
Hanning window with
10% length - average
amplitude for each
trial

PHASE = NA
PSD = None
PHASE x PSD =
NA

PHASE = NA
PSD = negative
correlation with
contralateral M1,
positive
correlation with
ipsilateral M1
PHASE x PSD =
NA

Stepwise
linear
regression

Berger et al.
(2014)
healthy,
right-
handed
N=10
(F=4),
Age=24.1
(28-37)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 300 SP trials,
TI=100% rMT,
ISI=4-6
EEG = 29-ch,
EMG = rFDI

WINDOW = -0.5 - 0
SPATIAL F = Loreta
source localization
FREQ F = NA
PHASE EST = 5-cycle
Morlet wavelet
PSD EST = 5-cycle
Morlet wavelet

PHASE =
prediction
during the last
30ms
PSD = None
PH x PSD = NA

PHASE =
prediction
during the last
30ms
PSD = None
PH x PSD = NA

Circular
linear
correlation
+
permutation
t-tests
Pearson’s
correlation
+ shuffling /
permutation

Ferreri et al.
(2014)
healthy,
right-
handed N=8
(F=8),
Age=18-30

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 120 SP trials,
TI=120% rMT,
ISI=4-6
EEG = 32-ch + EOG,
EMG = rFDI

WINDOW = -3 - 3
SPATIAL F = CAR
FREQ F = NA
PHASE EST = NA
PSD EST = Welch
with Hanning window,
zero-phase +
functional connectivity
with spectral coherence
analysis

PHASE = NA
PSD = None
PH x PSD = NA

PHASE = NA
PSD = positive
relationship
with spectral
coherence in
stimulated area
PH x PSD = NA

4-way
ANOVA
(MEP size,
hemisphere,
electrode
pairs,
frequency
band)

Keil et al.
(2014b)
healthy,
right-
handed
N=25
(F=16),
Age=24
(18-31)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 60 SP trials,
TI=110% of smallest
intensity producing
movement, ISI=2.5-4.5
EEG = 64-ch + EOG,
EMG = rFDI

WINDOW = -1.5 - 1.5
SPATIAL F = NR
FREQ F = 60 Hz
Notch + one-pass 8th
order Butterworth
17-19 Hz
PHASE EST = Hilbert
transform
PSD EST = Hilbert
transform
OTHER = removal
linear trend
CMC = complex FFT
of EEG and EMG

PHASE = None
PSD = None
PH x PSD = NA

PHASE = in M1
positive
correlation at 18
Hz. At t peak &
trough phases
(90°, 180°), higher
MEP amplitude
PSD = negative
correlation at 18
Hz in parietal
electrode cluster
PH x PSD = NA

circular
correlation
Pearson’s
correlation -
correlations
Fisher’s z-
transformed

Schulz et al.
(2014)
healthy,
right-
handed
N=16
(F=12),
Age=24 ±
3.74

PROTOCOL = offline
ACTIVITY =
reaction-time task;
right-after task, eyes
open
TMS = 120 SP trials,
TI=110% rMT,
ISI=3-3.5+80
EEG = 128-ch,
EMG = FDI

WINDOW = -2 - 2
SPATIAL F = Source
localisation +
electrode level
FREQ F = NR
PHASE EST = NA
PSD EST = ERD +
post-movement
rebound -
time-frequency analysis
(3-40 Hz); FFT and
Hanning window
OTHER = demean
with -1.5-0

PHASE = NA
PSD = None
PH x PSD = NA
CMC = Strong
linear
correlation with
MEP amplitude:
When looking at
multiple sources
including
sensorimotor.
ALPHA
considered 8-15
Hz

PHASE = NA
PSD = negative
correlation in
-500ms to 0
(earlier in frontal,
then posterior)
PH x PSD = NA

Correlation
dependent
t-tests with
cluster-
based
nonparamet-
ric
permutation

Iscan et al.
(2016)
healthy,
right-
handed
N=17
(F=6), Age
= 24 ± 4
(19 - 34)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 101-114 SP,
SICI, ICF (ISI=2ms
and 12ms) trials,
TI=110% rMT
(conditioning = 90%
RMT), ISI=3-10
EEG = 91-ch + 3
EOG,
EMG = rAPB

WINDOW = -1.2 -0.01
SPATIAL F = NR
FREQ F = NR
PHASE EST = NA
PSD EST = FFT with
Hanning window.
computation of
coefficient of quartile
variation (CQV)

PHASE = NA
PSD = None in
single-pulse, SICI,
ICF. In ICF
higher variability
of high alpha
(10-12 Hz)
associated with
higher variability
of MEP
amplitude
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

rmANOVA
Wilcoxon
signed-rank
test
Spearman
correlation
+ cluster-
based
permutation
statistics for
multiple
comparison
correction
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Continuation of Table 6.1
Reference
and
sample

Experiment
condition

EEG processing Results in
alpha

Results in beta Statistics
used

Hussain
et al. (2019)
healthy
N=20
(F=6), AGE
= 30 ± 1.59

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 600 SP trials,
TI=120% rMT,
ISI=5+15% jitter
EEG = 32-ch,
EMG = lFDI

WINDOW = -3-0.002
SPATIAL F =
C4-Hjort
FREQ F = padding +
25000 order
Blackmann-Harris FIR,
8-12 and 13-20 Hz
PHASE EST = Hilbert
transform
PSD EST = Burg AR
on -0.150 -0.002s
window.
Log-transformed

PHASE = None
PSD = None
PH x PSD =
positive
MEP-PSD
amplitudes
correlation in
trough trials

PHASE = None
PSD = Positive
relationship
PHASE x PSD =
None

Linear
mixed effect
model.
Bootstrap-
ping with
10000
iterations.

Ogata et al.
(2019)
Experiment
1 healthy
right-
handed
N=18
(F=7), Age
= 26.5
(21-50)

PROTOCOL = offline
ACTIVITY = rest,
eyes open and closed
TMS = 100+ NR
trials, TI=to induce
0.5-1.5mV, ISI=5-7
EEG = 19-ch,
EMG = rFDI

WINDOW = -3 -0
SPATIAL F =
C3-Hjort
FREQUENCY F =
PHASE EST =
PSD EST = 1s
zero-padding + wavelet
analysis
OTHER = demean

PHASE = NA
PSD = positive
relationship
higher power
with higher
MEPs in eyes
open in alpha
PHASE x PSD =
NA

PHASE = NA
PSD = positive
relationship
higher power
with higher
MEPs in eyes
open in low beta
PHASE x PSD =
NA

paired t-test
looking at
PSD with
high- and
low-MEPs +
cluster
permutation
analysis

Ogata et al.
(2019)
Experiment
2 healthy,
right- and
left-handed
N=26
(F=11), Age
= 24.8
(20-40)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 200+ trials,
TI=100% rMT or
intensity to induce
0.5-1.5mV, ISI=NR
EEG = 19-ch,
EMG = rFDI

WINDOW = -3 -0
SPATIAL F =
C3-Hjort
FREQ F = NR
PHASE EST = NR
PSD EST = 1s
zero-padding + wavelet
analysis
OTHER = demean

PHASE = NA
PSD = positive
relationship
with high TMS
intensity only
PH x PSD = NA

PHASE = NA
PSD = positive
relationship
with high TMS
intensity only
PH x PSD = NA

NA

Torrecillos
et al. (2020)
healthy
right-
handed,
N=17
(F=10), Age
= 35.3 ± 13
(19-58)

PROTOCOL = offline
+ online at high beta
power
ACTIVITY = rest,
eyes open
TMS = 36 SP trials,
TI=120% rMT,
ISI=7-8
EEG = 19-ch,
EMG = rFDI

WINDOW = 2 cycles
of frequency of interest
SPATIAL F = NR
FREQ F = NR
PHASE EST =
Hanning winodw FFT.
7 overlapping bins -pi
+pi
PSD EST = Hanning
window FFT using
200ms prior pulse

PHASE = NA
PSD = NA
PHASE x PSD =
NA

PHASE =
smaller MEP
amplitude CV
at optimal
phase. None for
MEP latency.
PSD = NA
PH x PSD =
phase-
dependency
increased whit
trials with PSD
higher than
median for
both MEP
amplitude and
latency -
antiphase.
Results confirmed
with online
experiment.

circular
linear
correlation
+ fitting
sine
function to
phase-
dependent
modulation
cluster-
based
permuta-
tions
(n=2000 for
MEP
amplitude)
for multiple-
comparison
corrections
t-test
rmANOVA
with
Huyn-Feldt
correction.
Two-sample
Kolmogorov-
Smirnov
test

Ahn and
Fröhlich
(2021)
healthy
right-
handed,
N=19 (F=0)
, AGE =NR

PROTOCOL = offline
with tDCS-based
modulation
ACTIVITY = rest,
eyes NR
TMS = 100 biphasic
SP trials, TI=120%
rMT, ISI=2-3
EEG = 128-ch,
EMG = rFDI

WINDOW = NR
SPATIAL F = source
localization
FREQUENCY F = NR
PHASE EST = NA
PSD EST =
time-frequency maps
with Morlet wavelets

PHASE = NA
PSD = increase
in MEP
amplitude after
anodal M1
tDCS;
lower MEP after
cathodal M1
tDCS
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

linear
mixed-
effects
model
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Continuation of Table 6.1
Reference
and
sample

Experiment
condition

EEG processing Results in
alpha

Results in beta Statistics
used

Schilberg
et al. (2021)
healthy
right-
handed
N=27
(F=16),
AGE = 24.1
± 3

PROTOCOL = offline
ACTIVITY = rest
TMS = 240 SP trials,
TI=120% rMT,
ISI=7+
EEG = 30-ch,
EMG = rFDI

WINDOW = 3 cycles
SPATIAL F = NR
FREQ F = NR
PHASE EST =
two-pass Butterworth
filter of 8-12 Hz +
Hilbert function
PSD EST = FFT with
Hanning tapers
OTHER = resampled,
demeaned

PHASE = None
(correlation of 0.1
at 10 Hz)
PSD = None
(correlation of
0.02 for 10.4 -16.7
Hz); no
interaction of
alpha-beta
PH x PSD =
alpha phase
modulation
around 10 Hz
only in high
power

PHASE = None
PSD = None
(correlation of
0.02 for 10.4 -
16.7 Hz); no
interaction of
alpha-beta
PH x PSD =
None

circular
linear
correlation
Pearson’s
correlation
+
permutation
test
cluster
statistics to
correct for
multiple
comparison
rm ANOVA

Ozdemir
et al. (2022)
healthy
right-
handed,
N=41
(F=24), Age
= 35.87 ±
15.63 (19 -
65)

PROTOCOL = offline
ACTIVITY = rest,
eyes
TMS = 150 SP trials,
TI=120% rMT,
ISI=3-5
EEG = 64-ch,
EMG = FDI

WINDOW = -1 - 0
SPATIAL F =
C3-Hjort
FREQ F = Notch filter
+ 4th order
Butterworth 1-50 Hz +
mirror padding
PHASE EST = Hilbert
transform
PSD EST = Hamming
window 1s with 50%
overlap. Epoch of 2s.
Between 8-12 Hz. PSD
in highest quintile and
in lowest quintile used

PHASE = None
PSD = positive
relationship
PH x PSD = in
high power,
MEP in trough
higher than in
peak; highest
correlation of
MEP amplitude
and power in
trough phase.

PHASE = NA
PSD = NA
PH x PSD = NA

Repeated
measures
ANOVA +
post-hoc
with
Bonferroni
correction.

Zrenner
et al. (2022)
healthy
right-
handed,
N=60
(F=39),
Age=24.4±3.6
(18-36)

PROTOCOL = offline
ACTIVITY = rest,
eyes NA
TMS = 800 pulses,
TI=110% rMT,
ISI=2-2.5
EEG = 64-ch,
EMG = rFDI, rAPB

WINDOW = -0.604 -
-0.004
SPATIAL F = 4
different spatial filters,
C3-Hjort or
beamforming with and
wihtout SOUND
cleaning
FREQ F = detrend +
downsample zero-phase
FIR filter (9-13 Hz)
PHASE EST = 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST = 1s
pre-TMS,
Hanning-window FFT
with removal of
aperiodic component

PHASE =
highest MEPs
at rising
PSD = NA
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

sinusoidal
circular-to-
linear
regression
between
phase and
excitability
index (PCA
from MEP
amplitude
from rAPB
and rFDI)

Takemi
et al. (2013)
healthy, N=
20 (F=5),
Age = 21.8±
1.2

PROTOCOL = online
ACTIVITY = motor
imagery (ERD
percentage-based), rest,
eyes open
TMS = 50+ SP, SICI,
ICF trials, TI=120%
rMT (80% rMT
condition stimulus),
ISI=6±0.5
EEG = 5-ch around
C3,
EMG = rFCR or rECR

WINDOW = 1.0
SPATIAL F = Hjort
FREQ F =
PHASE EST =
PSD EST = FFT
Hamming window with
480 point overlapping.
Amplitude as square of
FFT. Reference for
ERD is PSD in 3s
before cue

PHASE = NA
PSD = negative
relationship in
SP and SICI
(increase of MEP
amplitude with
ERD). Not in
ICF
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

one-way
ANOVA
with
Bonferroni
post-hoc

Schaworonkow
et al. (2018)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak
N=18
(F=14),
Age=24.99±3.53

PROTOCOL = online
ACTIVITY = rest,
eyes NR
TMS = 1800 biphasic
SP trials, TI=112%
rMT, ISI=1.75+
EEG = 64-ch,
EMG = rFDI, rAPB

WINDOW = NR
SPATIAL F = 2
individual SSD &
C3-Hjort
FREQ F = NR
PHASE EST = 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST = NR

PHASE =
trough > peak
with both spatial
filters
PSD = NA
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

pairwise
computa-
tion of
positive
negative
peak-to-
peak
amplitude
Wilcoxon
signed-rank
test
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Thies et al.
(2018)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak ,
N=16
(F=12),
Age=25±3.6

PROTOCOL = online
targeting ten
percentiles of alpha
PSD
ACTIVITY = rest,
eyes open
TMS = 1000
monophasic SP trials,
TI=half of maximum
MEP according to
recruitment curve,
ISI=around 4s
EEG = 64-ch,
EMG = rFDI or rAPB

WINDOW = 0.5
SPATIAL F =
C3-Hjort
FREQ F = zero-phase
FIR 8-12 Hz
PHASE EST = 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST =
autoregressive model
Yule-Walker, order 200
OTHER = demean

PHASE = NA
PSD = weak
positive
relationship
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

one-way
rmANOVA
with
post-hoc
t-tests
correlation
per subject
tested with
one-sample
t-test

Zrenner
et al. (2018)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak,
N= 12
(F=0), Age
= 26.5±7.5

PROTOCOL = online
targeting alpha phase
(peak, trough, random)
ACTIVITY = rest,
eyes open
TMS = 300 biphasic
single cosine cycle with
400µs period pulse
trials, TI=100% rMT,
ISI=2+
EEG = 64-ch,
EMG = rFDI or rAPB

WINDOW = 0.5
SPATIAL F =
C3-Hjort
FREQ F = zero-phase
FIR 8-12 Hz
PHASE EST: 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST:
autoregressive model
Yule-Walker order 200
OTHER: demean

PHASE =
trough > peak;
random phase
> peak
PSD = None
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

two-tailed
paired t-test
in
single-pulse
rmANOVA
with rTMS

Bergmann
et al. (2019)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak,
N=23
(F=11), Age
= 26.1±5.8

PROTOCOL = online
(lowest quintile PSD
and random phase;
highest quintile PSD
and peak, trough,
rising, falling phases)
ACTIVITY = rest,
eyes open
TMS = NR
monophasic SP and
SICI (ISI=2ms) trials,
TI=to obtain MEP of
1mV (50% for
condition stimulus),
ISI = depends
EEG = 64-ch,
EMG = rFDI

WINDOW: 512ms
SPATIAL F: C3-Hjort
FREQ F: two-pass
(zero-phase) FIR order
128, 2 Hz around
individual alpha
frequency
PHASE EST: 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST:
Hanning-windowed
FFT

PHASE = MEP
maximal in
trough and
rising and
minimal in
peak and falling
in SP. No effect
in SICI
PSD = positive
relationship
PH x PSD = NA

PHASE = NA
PSD = NA
PH x PSD = NA

one-way
rmANOVA
with
post-hoc
t-tests
Bayes factor

Desideri
et al. (2019)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak,
N=12
(F=8), Age
= 27.5±7.7

PROTOCOL = online
target alpha phase
(trough, peak, random)
in high power
ACTIVITY = rest,
eyes open
TMS = 900 biphasic
SP trials, TI=110%,
90% rMT, ISI=2+
EEG = 64-ch,
EMG = rAPB

WINDOW = 0.5
SPATIAL F =
C3-Hjort
FREQ F = zero-phase
FIR 8-12 Hz
PHASE EST: 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST:
autoregressive model
Yule-Walker order 200
OTHER: demean

PHASE =
trough > peak,
trough >

random
PSD = NA
PHASE x PSD =
NA

PHASE = NA
PSD = NA
PHASE x PSD =
NA

Kruskal-
Wallis test

Madsen
et al. (2019)
healthy,
N=14
(F=5), Age
= 22.9±2.3

PROTOCOL = online
target alpha phase (0,
90, 180, 270) in high
power
ACTIVITY = rest,
eyes open
TMS = 60 (per
condition) monophasic
SP trials, TI=100%
rMT (1mV), ISI=2+
EEG = 63-ch,
EMG = rFDI

WINDOW: 500ms
SPATIAL F: source
localisation
FREQ F: detrend
PHASE EST:
continuous wavelet
(estimated at -140ms)
+ projection
PSD EST: fraction of
power with FFT

PHASE = None
PSD = negative
correlation
PH x PSD =
None

PHASE = NA
PSD = NA
PH x PSD = NA

rmANOVA
linear mixed
effects
model
Bayesian
analysis of
covariance
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Ogata et al.
(2019)
Experiment
3 healthy,
right- and
left-handed,
N= 18
(F=3), Age
= 26.1
(21-47)

PROTOCOL = online
target very 90th
percentile and 10th
percentile PSD in
alpha or beta
ACTIVITY = rest,
eyes open
TMS = 80+ SP trials,
TI=NR, ISI=4+
EEG = 5-ch over M1,
EMG = rFDI

WINDOW: 1s
SPATIAL F: C3-Hjort
FREQUENCY F: NA
PHASE EST: NA
PSD EST: FFT
centered around peak
from resting-state

PHASE = NA
PSD = positive
relationship
PH x PSD = NA

PHASE = NA
PSD = None
(18-24 Hz)
PH x PSD = NA

linear mixed
effects
model

Schaworonkow
et al. (2019)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak,
N= 17
(F=12), Age
= 25.4±2.6

PROTOCOL = online
ACTIVITY = rest,
eyes open
TMS = 1800 SP trials,
TI=10, 30, 50, 70,
90EEG = 64-ch,
EMG = rFDI or rAPB

WINDOW = 500ms
SPATIAL F =
C3-Hjort
FREQ F = zero-phase
FIR filter (8-12 Hz)
PHASE EST: 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST:
autoregressive model
Yule-Walker order 200
OTHER: demean

PHASE =
IO-curve shifts to
the left for trough
compared to
peaks; difference
between peaks
higher at lower
stimulation
intensities
(around
100%rMT) and
smaller at higher
intensity (around
138%rMT). It
peaks at 50%
max IO-curve
PSD = NA
PH x PSD =
None

PHASE = NA
PSD = NA
PH x PSD =NA

Wilcoxon
rank-sum
test within
participant,
repeated
10000 times

Wischnewski
et al. (2022)
healthy
right-
handed, N=
20 (F=11),
Age =
22.7±2.9

PROTOCOL = online
targeting alpha and
beta phases (peak,
falling, trough, rising
as cosine)
ACTIVITY = rest,
eyes NA
TMS = 600 biphasic
SP per frequency trials,
TI=120% rMT,
ISI=2-3
EEG = 64-ch,
EMG = rFDI

WINDOW = 500ms;
cycle length adjusted
online
SPATIAL F =
C3-Hhort with 8
neighbours
FREQ F = birck-wall
filter with removed
edges
PHASE EST = ETP
algorithm
PSD EST = -1-0
window bandpass 2-50
Hz + FFT Hanning
window. Division of
periodic and aperiodic
signal. Average PSD in
band

PHASE = MEP
maximal in
trough and
rising and
minimal in
falling, peak. At
falling, rising,
trough alpha
significantly
different from
beta
PSD = positive
correlation.
None for
aperiodic
component
PH x PSD =
None

PHASE = MEP
maximal in
peak and
falling and
minimal in rising
and trough. At
falling, rising,
trough alpha
significantly
different from
beta
PSD = None
(nor aperiodic)
PH x PSD =
None

General
linear
mixed-
effects
model
rmANOVA
+ paired-
samples
t-tests
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Table 6.2: Synoptic table of literature review regarding articles where TEP features have
been considered in relation to the brain state at the time of TMS stimulation. Both
offline and online studies are reported; the type of protocol is highlighted in bold in the
column "Experiment condition". In this table we report in a summary the following
information: reference paper and subjects demographics (i.e., sample size, age, and
additional information); experiment condition (i.e., protocol with information of activity
performed by subject, TMS related parameters, EEG and EMG electrodes used and
targeted cortex area); EEG processing pipelines including both preprocessing, choices
of hyperparameters (e.g., window duration of epoch) and how PSD and phase have
been estimated) to extract the brain-state; EEG processing (PREP) for TEP features
(FEATURES) extraction; results in the alpha band to related TEP features in terms of
phase (PH), PSD or interaction effect (PH x PSD); statistics used. If an analysis was
not performed by the article, results are reported as NA (not applicable); if a method
was not specified, it is reported as NR (not reported). Abbreviations and units used
going from left to right and top-bottom: N is the sample size, F is the number of female;
age is reported in years, either mean ± SD (range) if available; SP = single-pulse, SICI
= short-intracortical inhibition; ICF = intracortical facilitation; TI = test intensity,
rMT = resting motor threshold, ISI = inter-trial stimulus, reported in seconds; EMG
related muscles are reported with r=right, l=left and the abbreviation of the muscle
(FDI=first dorsal intraosseus, APB=abductor pollicis brevis) . Additional abbreviations:
TESA=TMS-EEG signal analyser (Rogasch et al., 2017), ERSP=evoked related spectral
perturbation, GMFP=global mean field potential, ICA=independent component analysis,
ITPC=inter-trial phase coherence.

Reference
and
sample

EEG processing TEP preprocessing
features

Results in
alpha

Statistics used

Kičić et al.
(2008)
healthy
right-
handed
N=9 (F=4),
Age=23-32

PROTOCOL = offline
ACTIVITY = thumbs
movement and rest in
reaction-time task,
eyes open
TMS = NR trials,
TI=120% MT,
ISI=3.3-4
EEG = 60-ch, EMG =
lAPB

WINDOW = -0.1 - 0.3
SPATIAL F = CAR
FREQ F = responses
averaged + low-pass at
40 Hz
PHASE EST = NR
PSD EST = NR

PREP =
responses
averaged;
low-pass filter 40
Hz

FEATURES =
N100 amplitude
and latency

PHASE = NA
PSD = negative
relationship
with N100
prominence
(N100 attenuated
during task of
either hand, in
both
hemispheres)
PH x PSD = NA

t-test or
ANOVA +
Neuman-
Keuls
post-hoc

Desideri
et al. (2019)
healthy,
right-
handed
pre-selected
in rMT and
alpha-peak,
N=12
(F=8),
Age =
27.5±7.7

PROTOCOL = online
target alpha phase
(trough, peak, random)
in high power
ACTIVITY = rest,
eyes open
TMS = 900 biphasic
SP trials, TI=110%,
90% rMT, ISI=2+
EEG = 64-ch, EMG =
rAPB

WINDOW = 0.5
SPATIAL F =
C3-Hjort
FREQ F = zero-phase
FIR 8-12 Hz
PHASE EST: 64ms
edge removal +
autoregressive model
Yule–Walker order 30
+ Hilbert transform
PSD EST:
autoregressive model
Yule-Walker order 200
OTHER: demean

PREP = TESA
algorithm

FEATURES =
P25-N45
component at
different channels
Deflection of
interest at
different channels
(P25, N45, P70,
N100, P180,
N280)
TFR with Morlet
wavelets

PHASE = P60,
N100
topographies
differ according
to phase
All TEP
components
amplitude:
trough > peak
PSD = NA
PH x PSD = NA

channel-
wise
paired-
sample
two-tailed
t-test with
cluster-
based
permutation
approach
Cohen’s d
and
minimum
detectable
change
(MDC) with
0.8 power
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and
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preprocessing
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Results in
alpha

Statistics
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Ahn and
Fröhlich
(2021)
healthy
right-
handed
N=19
(F=0),
Age = NR

PROTOCOL = offline
with tDCS-based
modulation
ACTIVITY = rest,
eyes NR
TMS = 100 biphasic
SP trials, TI=120%
rMT, ISI=2-3
EEG = 128-ch, EMG
= rFDI

WINDOW = NR
SPATIAL F = source
localization
FREQUENCY F = NR
PHASE EST = NA
PSD EST =
time-frequency maps
with Morlet wavelets

PREP = removal
of -10-20ms
around TMS.
Period replaced
by a constant
value;
Bandpass 1-50 Hz
Artifact subspace
reconstruction
ICA and bad
channel and trials
removal

FEATURES =
amplitudes of
deflections and
their ratio: P25,
N45, P60, N100,
P180, N280

PHASE = NA
PSD = tDCS
selectively
modulated P25,
N45 in polarity-
dependent
manner.
Anodal tDCS
modulated
positively P60
PH x PSD = NA

linear
mixed-
effects
model

Bai et al.
(2022)
healthy
right-
handed
N=31
(F=0),
Age=25.2±2.9
(21-36)

PROTOCOL = offline
ACTIVITY = rest,
eyes open
TMS = 125-150
monophasic SP trials,
TI=100% rMT,
ISI=4-6
EEG = 62-ch, EMG =
rAPB

WINDOW = -3.5 –
-0.002
SPATIAL F = source
localization
FREQUENCY F =
zero-padding +
bandpass 1-40 Hz +
downsample + edge
removal
PHASE EST = NA
PSD EST = division
into high and low PSD

PREP = baseline
correction;
removal of
-1-12ms around
TMS. Period
replaced by cubic
interpolation;
downsample;
double-ICA

FEATURES =
amplitudes of
deflections and
their ratio: P25,
N45, P70, N100,
P180

PHASE = NA
PSD = higher
P25 in high
alpha
PH x PSD = NA

rmANOVA
+ post-hoc
t-tests with
Bonferroni
correction

Ding et al.
(2022)
healthy,
N=30
(F=15),
Age=25.2 ±
2.7

PROTOCOL = online
targeting alpha phase
from O1 (0°, 90°, 180°,
270 °), stimulating M1
ACTIVITY = rest,
eyes closed
TMS = 200 SP trials,
TI=100% rMT,
ISI=3-4
EEG = 32-ch, EMG =
NR

WINDOW = -1 - 0
SPATIAL F = NR
FREQ F = 2nd order
zero-phase bandpass
filter 1-100 Hz +
autoregressive model
(0.5s) + 4th order
zero-phase band-pass
filter
PHASE EST:
autoregressive model +
Hilbert transform
PSD EST: NR

PREP = TESA
algorithm

FEATURES =
ERSP, GMFP,
ITPC analysis,
N100 analysis,
topographies at
P25, N45, P70,
N100, N180

PHASE =
- ERSP: 0° >

180° especially in
central and
parietal lobe
- ITPC:
closed-loop >

open-loop,
highest ITPC at
N100
-
N100prominence:
90° > 270°
- N100latency:
90° > 270°in C3
- Topographic
differences for
different
deflections
PSD = NA
PH x PSD = NA

t-test with
Bonferroni
correction
ANOVA
with
post-hoc
t-test with
Bonferroni
correction

Granö et al.
(2021)
healthy,
N=3 (F=1),
Age=28,41,
43

PROTOCOL =
online,
stimulating M1 and
pre-SMA
ACTIVITY = rest,
eyes open
TMS = 250 SP pulses,
TI=90% rMT,
ISI=2-2.3
EEG = 32-ch, EMG =
APB

WINDOW = -1 - 1
SPATIAL F = average
potential + source
localization
Tikhonov-regularized
minimum-norm
estimates
FREQ F = 3rd order
zero-phase
Butterworth 1-45 Hz
PHASE EST = manual
with filtered and raw
data at C3 and F2
PSD EST = NA

PREP = Filter +
double ICA
Correction of
TEP background
oscillatory
activity
Source analysis

FEATURES =
GMFP (only if in
the 95th
percentile of
difference in
GMFP compared
to pre-stimulus)

PHASE = in 2/3
subjects higher
GMFP in peak vs.
trough in alpha;
in beta opposite
trend.
PSD = NA PH x
PSD = NA

NA,
qualitative
study
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6.3 Methods

6.3.1 Data acquisition

The dataset was acquired in the framework of the TiMeS project, of which the full
protocol can be found at (Fleury et al., 2022). TMS-EEG experiments were run with 18
healthy young right-handed participants (7 females, 27.0 ± 2.8 years old). All participants
signed an informed consent in accordance with the Declaration of Helsinki and a sheet
related to the risks of TMS. The study was approved by the ethical committee of the
Canton of Vaud, Switzerland (no. 2018-01355).

The experiment was performed in a Faraday cage, the subjects were sited in a comfortable
chair, with elbows flexed at 90° and hands relaxing on a table; when with eyes open,
participants were instructed to look at a fixation cross in front of them. At the beginning
and end of the session, three minutes of resting state with eyes open and eyes closed were
recorded. The EEG system consisted of 64 Ag/AgCl TMS-compatible electrodes in a
10-20 system (EEG BrainCap-MR BrainVision LLC, North Carolina, USA) with 5 kHz
sampling rate and 1 kHz high cut-off. Synchronously, muscle activity was recorded from
the left first dorsal intraosseous (FDI). EMG at each muscle was captured with a pair of
disposable Ag-AgCl electrodes; the signal was amplified and sampled at 3 kHz using a
Noraxon DTS Receiver (Scottasdale, Arizona, United States) with the band-pass filter
at 10 Hz to 1000 Hz (analog Sallen-Key for high-pass filter and digital FIR filter with
order 128 for the low-pass; the gain was set at 500), and digitized at 5 kHz using Signal
software (Cambridge Electronic Design Limited, Cambridge, UK).

TMS was delivered with a MagPro X100 stimulator connected to an MC-B70 coil
(Magventure, Farum, Denmark) at rest. The hotspot was defined as the coil location and
orientation delivering the highest MEP peak-to-peak amplitude. Along the experiment,
a neuronavigation system (Localite neuronavigation software, Localite GmbH, Germany)
was exploited to register the hotspot and all the coil positions at stimulation.

Subjects underwent 6 stimulation blocks with 60 pulses each, with two alternating
pseudo-randomised sequences containing single-pulses (n=30) and short-intracortical
inhibition (SICI) conditions (n=30). The latter were programmed as two pulses with
3ms inter-pulse interval (IPI) with the conditioning stimulus at 80% of the resting motor
threshold (rMT) and the stimulus at test intensity (TI). RMT was defined as the minimal
intensity to evoke 5 out of 10 MEP with peak-to-peak amplitude larger than 0.05mV
(Rossini et al., 1994); TI was defined as the minimal intensity giving consistently a
peak-to-peak amplitude of at least 0.5 mV, if this was not found, 120% of the rMT was
used. The inter-stimuli interval (ISI) was of 4 seconds with a 25% jitter. During the
stimulation blocks, subjects were asked to stay relaxed and keep their eyes open and look
at the fixation cross. The full length of the experiment was around 2.5 hours.
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6.3.2 EEG data analysis

Visual inspection was performed to manually remove and interpolate bad trials and
channels. EEG processing was done using EEGLAB (Delorme and Makeig, 2004) and
Fieldtrip (Oostenveld et al., 2010) in Matlab 2021.b (MATLAB, 2021) and Python 3.8
(Van Rossum and Drake, 2009) with scipy, numpy, and mne as main packages.

Power and phase extraction was done following the preprocessing found previously by
a grid-search (Bigoni et al., 2023): epoch length of 0.75 s prior to the TMS pulse, 2nd

order bandpass Bessel filter with a bandwidth of 1 Hz around main frequency of the
epoch. The filter was applied after zero-padding the epoch of the same length of the
original signal; after filtering, 30% of the end of the signal was cut and the phase at
the stimulation point estimated by using as period the double the distance between
the last peak and trough found and as starting phase the phase found with the Hilbert
function (Tomasevic and Siebner, 2018). Before applying any filter and because our
interest resided in the stimulation location (i.e., left hand-knob area), we spatially filtered
the signal in C3 with a Hjort-Laplacian (i.e., remove the mean of the neighbours FC1,
CP1, FC5, CP5) (Hjorth, 1975). PSD was estimated using the Welch approach and by
summing the magnitude of the spectra in the whole frequency band of interest. From the
power spectra, we then evaluated if a peak was present in the band of interest using the
approach and code proposed by (Donoghue et al., 2022); the binary output was used to
define whether a neural oscillation was present in each trial. We first evaluated the effect
of the presence/absence of a neural oscillation and then only considered trials with neural
oscillations for the subsequent analyses. In addition to the pipeline described above, we
have reproduced the methodology of (Hussain et al., 2019; Zrenner et al., 2018) and
(Madsen et al., 2019) to test their results on our dataset and evaluate the importance of
EEG processing choices on outcome measures.

According to the estimated phase in radians between -π and +π, this was categorized
into four groups following a sine wave: trough (-3π/4 - -π/4), rising (-π/4 - π/4), peak
(π/4 - 3π/4) and falling (>3π/4, <-3π/4). For PSD, we categorized it into quartiles
per subject and time point to have the very low (below 25th percentile), low (between
25th-50th percentile), high (between 50th-75th percentile), and very high (above 75th

percentile) classes. PSD was kept as a continuous variable for studying single-trial MEPs,
while it was categorized to study averaged TEPs.

EEG was further processed to derive TEPs; we followed the pipeline suggested by
(Rogasch et al., 2017) and reported in (Cadic-Melchior et al., 2022). Briefly, EEG was
epoched between -0.5 to 1s around the TMS pulse, the signal between -0.005 and 0.020s,
removed and interpolated. Two rounds of ICA were run on the epochs, before and after
data interpolation. Once TEPs were obtained, the single trials were labelled according to
the feature of interest (i.e., categorical phase, categorical PSD, or MEP size), averaged
per subject and time point. Numerous features from time and frequency domain were
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extracted, summarized in Table 6.3.

Table 6.3: Features from TEPs. On the left column the group of features according to
the analysis, on the right the respective specific features extracted. All features, except
those for the time domain, were measured in the TOI = 20-80ms after stimulation.

Specific features

TEP in time domain Amplitude and latency of ideal peaks (P25, N45, P60, N100, P
180, N250); complexity index; first found peak amplitude and
latency.

Global / Local mean field power
(G/LMFP)

GMFP area (first, second half and all); LMFP area; LMFP
peak amplitudes and latencies at ideal peaks (P25, N45, P60);
amplitude and latency of first available peak; LMFP complexity
index.

Time-frequency analysis Amplitude and latency of max and min power; mean power;
zero-crossing.

Inter-trial coherence (run for theta,
alpha, low beta, high beta, beta and
all frequencies)

Mean and maximum ITC and latency of maximum ITC. Mean
evoked power.

Regression quality score (RQS) (Raf-
fin et al., 2020)

Feature that studies the overall TEP dynamics by regressing
single-trial TEPs onto an averaged one. It is described by the
resulting regression t-score (the higher, the more similar the two
curves). We talk about paired RQS (pRQS) when single-trials
TEP and averaged TEP belong to the same class; in the other
scenario we talk about unpaired RQS (uRQS).

6.3.3 EMG data analysis

EMG data was first manually cleaned with a custom graphical user interface for prepro-
cessing. Rejection criteria were as follows: trials with muscle pre-activation exceeding ±
25 µV from baseline less than 100 ms before TMS onset (Muellbacher et al., 2001) and/or
± 100 µV from baseline 500-100 ms before the pulse were rejected. Trials containing
artifacts or with documented suboptimal coil placement were also rejected from further
analysis. Secondly, automatized pre-processing related to background activity before
stimulation and MEP amplitude was applied following the approach of (Hussain et al.,
2019). Peak-to-peak amplitude was computed as the absolute difference between the
minimum and the maximum voltage achieved in the window 10-50 ms after the pulse
and the latency was automatically computed with the method proposed in (Bigoni et al.,
2022a).
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6.3.4 Statistics

Effects of presence of neural oscillation, phase, and power of the brain state in the alpha
band were studied using generalized linear mixed effect models (glmer function in R
(Team, 2021)) with independent fixed variables of phase (categorical), power (continuous
for MEPs and categorial for TEPs) and their interaction; and random intercept given
by the subject. The dependent variable was the peak-to-peak amplitude or latency
of the MEPs. Only trials with neural oscillation and where neither EMG nor EEG
artefacts were present were considered. Different analyses were run for the two pulse
conditions. Post-hoc analyses used estimated averaged means (emmeans package in R).
The supplementary information (Section 6.7) provides important details on how specific
GLMM were chosen, together with specific transformation of variables and how results
can be interpreted. A GLMM with gamma distribution was used to describe the MEP
amplitude and a log-linear model to describe the MEP latency.

Investigation of brain-state effect on averaged TEP per subject was done using Bayesian
ANOVAs with post-hoc Bayesian paired t-tests in JASP (Team, 2022). Pulse conditions
were evaluated with separate models.

6.4 Results

6.4.1 Dataset

On average there were 178.3 ± 7.0 trials per subject and stimulation type (both for
SICI and single pulse); however only 61.5% of trials were retained after EMG and EEG
preprocessing. The EMG preprocessing removed 30% (44% for SICI) of trials. An
additional 10% of trials were removed if no MEP latency was found in single-pulse,
following an automatized algorithm (Bigoni et al., 2022a). Finally, another source of
trials removal came from the binarization of trials according to the presence of neural
oscillation. In the alpha band, only around 27% of them had a neural oscillation, when
the PSD was computed over the 0.75 s window.

6.4.2 Effects of EEG preprocessing on PSD and phase estimation

A first step aimed at analysing the effect of different EEG processing steps on phase
and PSD estimation. We looked at the steps of spatial filtering (here designed as a
Hjort, common average reference CAR, or no filter applied), PSD estimation (Welch,
Fast Fourier transform FFT, autoregressive model using Burg) and overall approach
(methods proposed here, in (Hussain et al., 2019), and in (Madsen et al., 2019)). We
discovered that spatial filter selection was rather critical, especially concerning phase
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estimation (Fig. 6.4A, D), whereas PSD choice, though creating some differences, gave
overall similar results achieving a high correlation for both PSD estimation method and
overall approach (Fig. 6.5A, D). In terms of phase estimation, differences were significant
(Fig. 6.5G). We then performed the same analyses by grouping trials according to the
presence/absence of a neural oscillation in the alpha band. Although the number of trials
with a neural oscillation in alpha was considerably smaller compared to trials without, a
higher correlation between different approaches was obtained for spatial filter, PSD, and
overall methodology choices on both PSD and phase estimation (Fig. 6.5B, E; Fig. 6.5
B, E, H); the same was not always obtained with trials without a neural oscillation (Fig.
6.4C, F; Fig. 6.5 C, F, I).

A significant difference between PSD distributions according to the presence of neural
oscillation was found, with trials having a neural oscillation having stronger PSD values.
Given the higher accordance of results using neural oscillations, for the next analyses
we first looked at the effect of presence/absence of neural oscillations on the variable of
interest and then performed analyses with only trials with oscillations.

6.4.3 MEP and brain alpha oscillatory activity

Brain-state effect on the MEP peak-to-peak amplitude, a proxy for corticospinal ex-
citability, was studied using the methodology suggested in (Bigoni et al., 2023). Separate
analyses were performed for SICI and single-pulse conditions. Presence of neural oscilla-
tion was considered as a binary effect. We used a permutation test to evaluate if there
was an effect on the MEP peak-to-peak amplitude: a significant smaller amplitude was
observed with neural oscillations during single-pulse only (p=0.007).

In the same condition, we found a significant different MEP-PSD relationship in falling
trials compared to rising (p=0.049) and trough trials (p=0.009), With the former giving
higher MEPs compared to the other two (Fig.6.1 top-row). During SICI stimulation,
the rising phase elicited bigger MEPs than the peak phase (p=0.065), though the
effect disappeared when more trials where used (i.e., window for computing neural
oscillation=0.5s). When MEP latency was used as dependent variable, no effect was
found in the alpha band.

6.4.4 Effects of brain-state extraction method on MEP

Given the contradictory results of some online brain-sate-dependent stimulation exper-
iments and the differences introduced by the EEG processing pipeline, we used our
dataset to reproduce the results of (Hussain et al., 2019) and (Madsen et al., 2019),
here referred to as the Tübingen and Copenhagen methods following their main city of
provenance. The former had observed a significant effect of phase X PSD interaction,
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with PSD positively correlating with MEP size only in trough trials. The second, only
observed an effect of PSD, negatively correlating with MEP amplitude, when only high
PSD were considered. For the two approaches, we run their models only with trials
with alpha neural oscillations. However, given the different window length and PSD
estimation method, there were n=603 trials for the Tubingen method and n=851 trials for
the Copenhagen method (n=508 for our methodology). The trials further reduced after
following the steps of the statistical methods (e.g., removal of some phase labels or of some
power labels). We reproduced the results of (Hussain et al., 2019) (Fig.6.1 middle-row);
moreover we observed a main effect of phase, with trough trials eliciting bigger MEPs
- this effect was not observed directly by (Hussain et al., 2019), but by other studies
performed by the same research group (Bergmann et al., 2019; Schaworonkow et al., 2018;
Zrenner et al., 2018). The main positive effect of PSD was also seen; observed by the
same research group in another study (Thies et al., 2018). Results from (Madsen et al.,
2019) were not reproduced and neither main nor interaction factors had a significant
effect on the MEP amplitude (Fig.6.1 bottom-row).

6.4.5 TEP and brain state

TMS coupled with EEG allows to study cortical responses to perturbations. Similarly
to cortico-spinal responses, we investigated if the brain-state could affect TEP features
(Table 6.3). Again, after studying the effect of presence/absence of neural oscillations,
only trials with an alpha peak were considered.

In the time-domain, the presence of neural oscillations related to a moderately higher
complexity index (CI) in both single-pulse (BFincl=3.6) and SICI (BFincl=5.4). In single-
pulses, the N100 was more prominent (BFincl=11.3) in trials without neural oscillations.
Moving to time-frequency analysis we observed that a smaller mean and maximum ITC
was reported in trials with neural oscillations (BFincl=inf for both features and pulse
conditions). In terms of evoked power, higher mean power was observed during alpha
neural oscillations (BFincl>4.8).

Effects of oscillation phase were only visible on ITC of trials delivered during a trough
phase produced the smallest ITC with a huge BFincl for all pairwise comparisons; and
the falling phase produced the highest ITC in both single-pulse and SICI conditions.
PSD divided into quartiles per subject (very low, low, high, and very high), seemed to
have stronger effects on TEP features, compared to phase. We observed higher PSD
providing higher evoked powers. We used the RQS to illustrate the PSD and phase
dependencies on TEPs as it reflects the full dynamics of the evoked response in the time
domain. pRQS were bigger than uRQS with strong-to-extreme effects when the averaged
TEP used was built on low and very high power trials (Fig.6.2middle). In contrast, no
difference in regression scores were obtained when the averaged TEP used was built on
the four phase trials (Fig.6.2left).
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Figure 6.1: Brain-state effect on MEP peak-to-peak amplitude in single-pulse condition
according to different approaches. The figures show the results from the generalized linear
mixed models for the alpha band. On the left we show a main effect of phase and on
the right the interaction effect of PSD and phase. The MEP amplitude was subject-wise
log-normed for the Tübingen (Hussain et al., 2019) and Copenhagen methods (Madsen
et al., 2019), while for our method, we used the raw MEP, but plotted in log-norm for
consistency. Significant differences are reported. If the main effect of PSD was observed,
it is reported, together with its trend at the top left corner of the phase-PSD interaction
plot. In the phase-plot, dots represent the mean and the bars the standard errors. Color
legend: trough phase: green, rising phase: orange, peak phase: violet, falling phase: pink.
Significance abbreviations: p<0.1: ".", p<0.05: "*", p<0.01: "**", p<0.001: "***".
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6.4.6 TEP and MEP correlation

MEP peak-to-peak amplitude and some TEP features have been previously found to
be correlated (Ahn and Fröhlich, 2021). We sorted TEP trials according to the MEP
size (quartiles per subject and time point) and studied if any relationships were present;
analyses were performed separately for single-pulse and SICI conditions. MEP size
correlated with the 1st positive and negative deflections amplitudes, with low and very
low MEPs being related to higher amplitudes in both cases with a moderate-high effect
(BFincl=5-19). Relationships were also seen in the time domain and field potential areas:
the TEP mean and area were higher in the very high MEPs compared to the other MEP
sizes with moderate effects (BFincl=3-6). Similar trend and effect size were observed
for the 2nd half of the GMFP and the LMFP areas. The mean evoked power was also
higher with very high and high MEPs compared to lower ones and ITC was highest in
the very high MEPs. Effects were seen mostly in the single-pulse condition. Congruently,
we observed an effect of MEP-size on the RQS, with pRQS being higher than uRQS for
most MEP sizes (Fig. 6.2 right).
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Figure 6.2: TEP RQS scores according to TEP division: on the left TEP have been
divided according to phase at the stimulation (trough=violet, rising=orange, peak=violet,
falling=pink); in the middle TEP have been divided according to the PSD size (very
low PSD=dark blue, low=light blue, high=yellow, very high=orange); on the right TEP
have been divided according to the MEP peak-to-peak amplitude (very low=dark green,
low=light green, high=light purple, very high=dark purple). For MEP and PSD size, the
division was made in quartiles according to the subject. Stars in the graph highlight if
the pRQS (i.e., RQS of single-trial TEP regressed on the averaged TEP of the same label)
is different from the uRQS (i.e., RQS of single-trial TEP with different label compared
to the averaged TEP on which they are regressed). The higher the t-score the more
similar are the single trials with the TEP used for regression. Significance is based on the
Bayesian inclusion factor (BFincl): 3 ≤BFincl<10: ".’", BFincl≥10: "*", BFincl≥30: "**",
BFincl≥100: "***".
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6.5 Discussion

In this work, we have analysed the effect of the brain-state on MEPs and TEPs features in
young healthy subjects. Brain-state is here meant as the presence of neural oscillation and,
in the positive case, it is described by the phase and PSD of the alpha band oscillations
in the motor cortex. Two TMS pulse conditions were analysed: single-pulse and SICI.
Given the key importance of EEG preprocessing (Bigoni et al., 2023; Karabanov et al.,
2021), a focus was set on the methodology with which the brain-state was extracted.

6.5.1 Processing and brain-state

To the authors’ knowledge, this is the first time that EEG processing steps outcomes
have been assessed according to the presence (absence) of neural oscillations in specific
frequency bands. We observed a higher similarity in results (i.e., phase and PSD
estimation) across different pipelines when only trials with neural oscillations were used
compared to using all trials or only those without neural oscillations (Fig. 6.4, 6.5).
Given that the presence of neural oscillations is determined according to the presence of
a peak in the PSD spectrum in the frequency of interest when periodic and aperiodic
signals are separated, the higher correlation between outcomes across processing pipelines
may derive from a higher signal-to-noise ratio (SNR) in these trials. This is in line
with previous studies showing the importance of PSD and SNR in phase determination
(Bigoni et al., 2023; Tomasevic and Siebner, 2018; Zrenner et al., 2020b), who suggested
for instance to measure the phase with multiple filters and looking at the robustness
of results (Sameni and Seraj, 2017; Zrenner et al., 2020b). Also, we acknowledge that
separating periodic and aperiodic components of the power spectra is becoming a new
trend in the field (Hussain et al., 2022; Wischnewski et al., 2022; Zrenner et al., 2022).

However, having trials with neural oscillations does not remove the relevance of specific
parameters of EEG preprocessing. When evaluating the effect of brain-state in the
alpha band on MEP peak-to-peak amplitude in young adults during single-pulse TMS,
we obtained different results when three different EEG processing pipelines were used.
Specifically, in addition to our pipeline, we tried to reproduce results of (Hussain et al.,
2019), who performed an offline analysis and (Madsen et al., 2019), who had designed
an online brain-state dependent experiment. It must be pointed out that, the different
pipelines used different epoching windows and PSD estimation methods, leading to
additional discrepancies in the identification of neural oscillations for the same trial. We
were able to obtain very similar results to that of (Hussain et al., 2019) and of related
research (Schaworonkow et al., 2019; Thies et al., 2018; Zrenner et al., 2018); but not those
of (Madsen et al., 2019). Moreover, the three tested models outcomes were not consistent.
This result is of critical importance as it highlights the relevance of EEG preprocessing
and makes it impossible to compare previous results if different methodologies were used
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to extract the independent variables (i.e., phase and PSD). Furthermore, it becomes more
complicated to draw conclusions related to electrophysiology, as different pipelines give
different labels in terms of phase for the same trial and no real ground truth is available.
Therefore, we underline the relevance of offline analyses to make hypotheses before
designing and running online experiments. We suggest that new brain-state extraction
pipelines should be first benchmarked with published approaches on pre-recorded data.
Secondly, the chosen pipeline should be tested on a dataset, if available, to evaluate
preliminary results to make further hypotheses. Only as a last step, should online
brain-state-dependent experiments be designed.

Finally, we acknowledge that the statistical model used may also have a significant
effect on the reported results (Fig. 6.3). Certainly, previous studies have used different
tests to evaluate and describe the results, which could conceal further variance. In this
analysis we have opted for a linear mixed-effect model, which was the one chosen by the
approaches used for comparison.

6.5.2 Neural oscillations effects

In the motor cortex, but also more broadly at the whole-brain level the resting state usually
presents a peak in the alpha band, which h diminishes during activity (Pfurtscheller and
Lopes da Silva, 1999). From our dataset, only around 30% of trials were reported having
a neural oscillation in this band, though an opposite trend was expected considering that
participants were instructed to be at rest. This result may be explained by the length
of the signal on which the PSD is primarily computed: for example, when comparing
results from different EEG pipelines, where different epoch lengths were used, discrepant
results in terms of trials with neural oscillations were obtained. Additionally, the low
percentage could be due to the small bandwidth used, in fact around 75% of the same
trials had an oscillation in the beta band, where the bandwidth was four times larger
than the alpha one used here.

Another view on the low percentage of trials with alpha neural oscillations, may be
explained by saying that subjects were not really at rest, but might be anticipating the
stimulation. Regardless of the reason for this low percentage of trials, an important future
step will be to look into the delays for having a neural oscillation in each stimulated trial
(i.e., how much longer will the ISI be?). On the same note, if trials are more consistent
during brain oscillations (e.g., EEG processing less important, Fig.6.4,6.5), it might be
possible to decrease the number of necessary stimuli.

In our analyses relating MEP and TEP features to the brain-state, we focussed only
on trials with neural oscillations; therefore, we first looked at the effect of the neural
oscillations themselves. In MEP amplitude, we observed an effect of presence of alpha
neural oscillations with lower amplitude when an oscillation was present. This is not
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surprising if we consider that a peak in alpha is more prominent during rest and that
MEPs are smaller at rest (compared to active contraction) (Ngomo et al., 2012). Neural
oscillation effect was seen also in some TEP features across stimulation conditions.
Specifically, a higher CI was observed in alpha neural oscillations, suggesting that if a
neural oscillation is present, the network activation is more complex. Higher CI has been
previously related to a balance of functional differentiation and integration in neural
network and it is specific to states of consciousness (Casali et al., 2013). The ITC
was smaller during alpha oscillations; this was a main effect, not interacting with the
frequency band.

6.5.3 MEPs and brain-state

Many studies have found an effect of brain state on MEP peak-to-peak amplitude, though
not all with the same trends (see differences across Table 6.1). In our analyses we have
also seen some brain state effects: in terms of PSD, we observed a positive trend on MEP
amplitude; a trend of trough phases being higher than peak ones was also seen. Moreover,
we observed a higher MEP-alpha PSD relationship in trough and rising compared to
falling. These results recall the one observed by (Hussain et al., 2019; Thies et al., 2018;
Zrenner et al., 2018; Wischnewski et al., 2022).

During SICI, we did not see the same effects. This may be due to the decreased intra- and
inter-subject MEP amplitude variability during SICI, as also suggested by (Bergmann
et al., 2019). This outcome puts in perspective the importance of brain-state as compared
to experimental manipulation: acting on the GABAergic system with paired-pulse
stimulation has a much greater effect than the brain-state at the stimulation time. On
the same line, previous studies have also shown the influence of the stimulation intensity
on the brain-state effects on MEP amplitude (Ogata et al., 2019; Schaworonkow et al.,
2019), although again with different trends.

No effects of brain-state on MEP latency were reported. Considering the stronger stability
of latency compared to MEP amplitude, the results are not surprising. Torrecillos et al.
(2020), who focussed on MEP latency found a specific phase-latency relationship only in
the beta, but not the alpha band.

6.5.4 TEPs and brain-state

The literature on brain-state and TEP features is still very limited compared to the
one targeting MEPs (see Table 6.2); indeed, the effect of neural oscillations on cortical
responses to TMS is still widely unclear. Previous studies have often focused on few
features, belonging to one general class such as time-domain (Bai et al., 2022; Desideri
et al., 2019) or mean field potential (Granö et al., 2021); only Ding et al. (2022) performed
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an analysis covering different features domains. However, their protocol was significantly
different from ours as they used the occipital cortex, and not the motor cortex, to define
brain-states. In our analyses we appreciated the effect of phase or PSD in the alpha
band on few domains of TEP features. Interestingly, the two brain-state qualities did not
modulate the same features, suggesting that they have specific roles in cortex modulation.
Nonetheless we did not reproduce any of the effects reported in Table 6.2. This might
also arise from additional differences in EEG processing for TEP analyses.

6.5.5 MEP and TEP relationship - going beyond the brain-state

In a final step of our analyses, we decided to directly relate TEP features to MEP size,
without directly addressing the brain state. For simplicity, we tried to explain TEP
variability in terms of MEP size, but the inverse relationship could have also been made
since we do not expect a causal relationship between the two. Although this is correct
for most features, some TEP peaks amplitude (N45, P60) may be an exception. The
latter have in fact been related to peripheral sensory input (Ahn and Fröhlich, 2021). In
our outcomes, the expected positive correlation between TEP and MEP amplitudes was
observed in terms of TEP mean and area under the curve as well as GMFP, LMFP and
evoked power. The first positive and negative deflections during single-pulse were also
related to MEP-size, though surprisingly lower MEP correlated to higher amplitudes.
Having the first positive peak not positively correlated with MEP size could be due to
different reasons, among which the fact that the first peak in different subjects may be
found in different TOIs - in fact we here speak about the first available positive peak
and neither P25, nor P60 were directly affected by MEP size. Finally, we observed a
strong effect of MEP size on the RQS. In most comparisons the pRQS was significantly
higher than the uRQS (Fig.6.2 right). This result suggests that cortico-cortical and
cortico-spinal responses are strongly correlated: if we remove some variability from
MEP peak-to-peak amplitude, we also remove it from the overall TEP dynamics (and
vice versa). Specifically, pRQS t-scores values were often higher when labelling TEP
according to MEP size, compared to brain PSD. These strong relationships might raise
the attention to another quality of brain-state that we are not yet controlling, whether a
frequency band, a more general microstate, or a different source from where to extract
the brain-state (e.g., source localisation) (Bai et al., 2022). A future study may try to
investigate other frequency bands (e.g., beta oscillations) or to exploit machine learning
algorithms to extract potential features. On a similar line, a recent study showed how
healthy young adults are able to regulate their MEP amplitude using neurofeedback and
not by directly controlling brain states (Ruddy et al., 2018). Their results, together with
our MEP-TEP correlations, suggest that future closed-loop brain stimulations protocols
could use specific TEP or MEP features as a read-out for choosing how to adjust the
stimulation parameters. In such a framework, the brain signal could either be bypassed
or still used to define the brain-state; in the second case, the MEP and TEP features
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would then only work as feedback information to adjust the stimulation.

Most of these MEP-TEP relationships were not reported with SICI condition. We believe
that again, this might be due to lower MEP variability in SICI compared to single-pulse.
Interestingly, TEP features affected by brain-state did so in both single-pulse and SICI
conditions, differently from the MEP amplitude. Nonetheless, differences between pulses
have previously been reported on TEP features (Cash et al., 2017; Ferreri et al., 2011). It
could be speculated that the activated GABAergic inhibition has stronger effects on the
corticospinal excitability than on the whole brain-state (Premoli et al., 2018). Moreover,
the fact that often for TEP feature we observed similar effects in the different pulse
conditions, puts again in perspective the importance of brain state: when looking only
at the MEP peak-to-peak amplitude we had partially belittled the importance of the
brain-state compared to the effects achievable with experimental manipulation (e.g.,
pulse type and intensity); on the cortical response the situation seems instead to be
reversed.

6.6 Conclusion

This work helped shedding light on the effect of EEG processing and brain-state on MEP
and TEP features in young healthy adults. Four main points can be drawn: 1) EEG
processing is key and minor changes in pipelines steps can lead to major differences in
outcomes; yet choosing only trials with neural oscillations in the frequency band of interest
may help diminish EEG processing relevance and help in hypothesising neurophysiological
mechanisms; 2) experimental manipulation (e.g., SICI pulses) seem to affect more cortico-
spinal than cortico-cortical responses, with brain state modulation of MEP, but not
TEP disappearing during SICI; 3) alpha phase and PSD as descriptors of brain-state
are not sufficient to fully explain intra and inter-subjects MEP and TEP variabilities;
4) brain-state dependent stimulation should definitely be further investigated. For this,
we suggest to benchmark hypothesis with offline analyses prior to moving to online
brain-state-dependent experiments; a key step in view of therapeutic experiments with
pathological cohorts.
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6.7 Supplementary Material

Statistics

Choice of statistical model and output readability MEP features analyses used
generalized linear mixed effect models (GLMM). The choice of a GLMM derived from
both previous papers (Hussain et al., 2019; Madsen et al., 2019; Wischnewski et al., 2022)
and from the possibility of studying factors effects while considering random effects of
different subjects and the possibility of missing data. Given the always-positive, yet
skewed distribution of MEP amplitudes, we hypothesized a Gamma distribution to be
the most representative; a log-transformation of the MEP amplitudes (Hussain et al.,
2019) should work similarly. On the dependent-variables side, variable transformation
may be required for the model to converge and/or to remain consistent with the model
assumptions (e.g., normality of residuals). We evaluated the effect of four different,
yet similar, statistical models on the same dataset (single-pulse condition when neural
oscillations are present). The models were: linear mixed effect model with the raw MEP
amplitude as dependent variable and as fixed factors the phase (categorical) and the PSD
(untransformed); log-linear mixed effect model with log-transformed MEP amplitude
and as fixed factors phase and subject-wise z-score transformed PSD; GLMM with
Gamma distribution with raw MEP values, categorical phase and subject-wise z-scored
PSD. PSD-transformation in the last case was necessary for model convergence, and for
consistency between models, the same transformation was used for the log-linear model.
Variables transformations were applied just before running the statistical model, once
the dataset was fully clean. For each model we looked at the qqplot of the residuals and
their Akaike (AIC) and Bayesian (BIC) information criteria values. Their result in terms
of significance effects of different factors was also looked at. Model selection from the
four was then based in terms of lowest AIC, BIC and linearity of residuals according to
the qqplot.

Results interpretability of GLMM with categorical variables containing more than two
levels can be complicated. This is because both main and interaction effects will depend
on the level of the categorical factor of reference. Therefore, we used the following
procedure: 1) Run the model of choice with only main effect of PSD; 2) run the model of
choice with the main effect of phase, PSD, and their interaction three times; at each run
change the phase of reference (i.e., start with trough, then rising, then peak). Results are
then combined to give an overall view of the brain-state effect on the MEP peak-to-peak
amplitude.

Statistics modelling effects Fig. 6.3 shows the qqplots, AIC and BIC values for
the four models testes. It is clear that both linear models have the worst fit, whereas
the log-linear and the Gamma ones are comparable, with the latter having a visually
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better fit. This visual inspection is confirmed by both the AIC and BIC values, which
are much lower in the Gamma model. Interestingly, results from the models in terms
of significant effects were not always consistent. In the linear model a trend for higher
MEP in trough compared to peak trials was observed (p=0.077). In the linear z-score
and gamma models a significant effect of phase x PSD interaction was seen: for both a
positive PSD-MEP relationship was present in the falling phase and this was significantly
different from the one in trough (p=0.003 in linear z-score model, p=0.009 in gamma
model), and from in the rising one (p=0.014 in the linear z-score and p=0.049 in the
gamma model); the peak phase did not show any PSD-MEP correlation. No factor was
significant in the log-linear model. For all models, no significant effect of PSD was found.

The same procedure was applied for modelling the latency of the MEPs, in this case the
best model was the log-linear one.
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Linear
AIC=877.9, BIC=920.1

Log-linear
AIC=2554.4, BIC=2596.7

Gamma
AIC=467.9, BIC=510.2

Linear z-score
AIC=846.4, BIC=888.7

Figure 6.3: Residuals distributions for different statistical models. The figure shows the
Q-Qplots from four generalized linear mixed effects models, ran on the same dataset.
The dependent variable is the MEP peak-to-peak amplitude (may be transformed), the
independent fixed factors are the phase (categorical) and PSD (numerical) extracted
from the EEG signal. The random intercept is the subject. For the models to work
under their assumptions, residuals should be normally distributed and follow the plotted
diagonal. In addition, when undecided between two models, the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) can be employed. The model
with the lowest values should be preferred. For each figure, we report the name of the
model used together with the AIC and BIC in the top left corner. A) Linear model,
with dependent variable the raw MEP amplitude and independent variables phase and
raw PSD; B) Linear z-score model with dependent variable the raw MEP amplitude
and independent variables phase and subject-wise z-scored PSD; C) log-linear model
with dependent variable the log-transformed MEP amplitude and independent variables
phase and log-transformed PSD; D) gamma-family generalized linear mixed model with
independent variable the raw MEP amplitude and independent variables phase and
subject-wise z-scored PSD.
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All trials Trials with alpha NOs Trials without alpha NOs

A) B) C)

D) E) F)

Figure 6.4: Effect of spatial filter on PSD and phase estimation related to presence of
neural oscillations. Each subplot is to be read as follows: on the diagonal the name
of the spatial filter used, on the upper panel the scatterplot describing the correlation
between values computed using the spatial filter on the left and that on the bottom
of the graph; on the lower panel the R coefficient of the Pearson’s correlation and the
p-value. A) PSD estimation, all trials considered; B) PSD estimation, only trials with a
neural oscillation in alpha considered; C) PSD estimation, only trials without a neural
oscillation considered; D) phase estimation, all trials considered; E) phase estimation,
only trials with a neural oscillation in alpha considered; F) phase estimation, only trials
without a neural oscillation considered.
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All trials Trials with alpha NOs Trials without alpha NOs

A) B) C)

D) E) F)

G) H) I)

Figure 6.5: Effect of PSD estimation method and overall approach (i.e., pipeline described
in the manuscript and those of (Hussain et al., 2019; Madsen et al., 2019) on PSD and
phase estimation related to presence of neural oscillations. Each subplot is to be read
as follows: on the diagonal the name of the spatial filter used, on the upper panel the
scatterplot describing the correlation between values computed using the spatial filter
on the left and that on the bottom of the graph; on the lower panel the R coefficient
of the Pearson’s correlation and the p-value. A) PSD estimation, all trials considered;
B) PSD estimation, only trials with a neural oscillation in alpha considered; C) PSD
estimation, only trials without a neural oscillation considered; D) PSD estimation based
on overall pipeline, all trials considered; E) PSD estimation based on overall pipeline,
only trials with a neural oscillation in alpha considered; F) PSD estimation based on
overall pipeline, only trials without a neural oscillation considered. G) phase estimation
based on overall pipeline, all trials considered; H) phase estimation based on overall
pipeline, only trials with a neural oscillation in alpha considered; I) phase estimation
based on overall pipeline, only trials without a neural oscillation considered.
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7.1 Abstract

Background: Beta oscillations have a key role in the stability and governance of the motor
system. Indeed, they show modulation in preparation of, during, and after a movement.
Moreover, specific oscillatory states affect corticospinal excitability in young adults. The
beta rhythm is also tightly related to the GABAergic system, which constitutes the
main inhibitory system in the brain. The latter is affected by both healthy ageing and
pathological conditions, such as after a stroke.

Objectives: Here, we aim at studying how the beta oscillations affect cortical and
corticospinal responses to transcranial magnetic stimulation (TMS) in three cohorts.

Methods: For these analyses we exploited a unique TMS-electroencephalography (EEG)-
electromyography (EMG) dataset in which the same protocol was applied in healthy
young (N=18), healthy older (N=15), and stroke patients (N=66) longitudinally assessed.
Participants received 180 biphasic single-pulse and short-interval intracortical inhibition
(SICI) stimulations. Corticospinal and cortical response features were investigated in
terms of phase and power in the beta band at the stimulation time.

Results: A phasic beta modulation of the corticospinal excitability was observed in
the young and older healthy populations and in chronic stroke patients. Corticospinal
conduction velocity was only affected by the brain state in young healthy subjects. At
the cortical level, stroke patients’ responses, but not healthy populations’, were affected
by the beta brain state, especially in terms of power. Conversely, beta power positively
influenced corticospinal excitability in the healthy but not the stroke cohort.

Significance: Beta phase and power are important modulators of response to TMS. Effects
observed across cohorts and time points indicate that the beta brain state regulatory
effects could help in further understanding cortical and corticospinal dynamics after
stroke, especially in relation to the GABAergic system.

Keywords: brain-state-dependent TMS, TMS-evoked potential, motor evoked
potential, beta oscillation, stroke, GABAergic system
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7.2 Introduction

Beta oscillations (∼13-30 Hz) have been predominantly observed in the sensorimotor
cortex (Jensen et al., 2005; Kopell et al., 2011; Kramer et al., 2008; Miller et al., 2010;
Roopun et al., 2006; Yamawaki et al., 2008) as well as in the supplementary motor area
and basal ganglia, suggesting their involvement in the cortico-basal ganglia-thalamo-
cortical loop (Holgado et al., 2010; McCarthy et al., 2011; Mirzaei et al., 2017; Tachibana
et al., 2011). While beta oscillations at rest appear to ensure stability and the "status
quo" of the motor system (Engel and Fries, 2010), they show typical dynamics during
sensorimotor processing (Baker, 2007; Pfurtscheller and Lopes da Silva, 1999). A decrease
in beta activity across sensorimotor areas is usually seen prior to and during movement
execution. Conversely, an increase in beta activity is observed following movement
cessation. These typical features have been referred to as movement related beta decrease
(MRBD) and post-movement beta rebound (PMBR), respectively. MRBD is present
during spontaneous and triggered movements, while successful movement cancellation is
associated with an increase in beta (Jana et al., 2020; Swann et al., 2009, 2012; Wagner
et al., 2019). MRBD also occurs during covert actions such as motor imagery or action
observation (Miller et al., 2010). Beta oscillations have also been associated with learning
new motor skills (Barone and Rossiter, 2021; Haar and Faisal, 2020; Tan et al., 2014,
2016; Torrecillos et al., 2015). Together, these findings propose a central role for beta
oscillations for multiple sensorimotor functions. However, it remains unclear whether the
motor cortex output directly depend on these oscillations. More precisely, do cortical
and corticospinal excitability fluctuate with respect to the phase and power of each wave
of beta oscillations?

Recent studies have started to address the question of brain state effects on corticospinal
outputs elicited with transcranial magnetic stimulation (TMS), but mostly focused on
alpha oscillations, see Table 6.1. While alpha waves do not seem to have an obvious link
with corticospinal excitability (see for review Table 6.1), beta activity might instead be
directly related to pyramidal neurons activity, as shown in previous studies measuring
corticomuscular coherence (Conway et al., 1995; Kristeva et al., 2007). State-dependent
TMS works showed a modulation of motor evoked potentials (MEPs) after single-pulse
TMS according to the phase and power in beta in both movement and at rest (van
Elswijk et al., 2010; Hussain et al., 2019, 2022; Khademi et al., 2018; Ogata et al., 2019;
Wischnewski et al., 2022). However, the relationship between MEP amplitude and power
was heterogeneous, ranging from positive to negative correlations depending on the
study. Moreover, earlier studies showed that MEPs were modulated by the beta phase of
electromyographic(EMG) oscillations too (van Elswijk et al., 2010; Keil et al., 2014b).
Furthermore, a recent paper showed that near motor threshold TMS intensities delivered
at a particular phase of cortical beta oscillations benefit from not only stronger but
also more rapid and consistent corticospinal transmission as evidenced by the greater
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amplitude, shorter latency, and lower variability of MEP (Torrecillos et al., 2020). The
few studies in the literature all focused on young healthy populations, whereas responses
in healthy ageing and pathological conditions, such as after a stroke, remain unknown.
The growing evidence supporting a tight relationship between beta oscillations and
the γ-aminobutyric acid (GABA)ergic system (Jensen et al., 2005; Hall et al., 2011),
together with known changes in GABAergic intracortical neurotransmission conductance
in ageing (Rossiter et al., 2014b; Heise et al., 2013, 2014) and stroke (Carmichael, 2012;
Clarkson et al., 2010; Liuzzi et al., 2014) points to the important open questions whether
corticospinal and cortical responses to TMS in these populations will be affected by the
state of beta activity.

Pharmacological studies have shown a concurrent increase in resting beta oscillations and
MRBD. In a pharmacological and modelling study, Jensen et al., (Jensen et al., 2005)
found that enhancement of GABAergic conductance led to an increase of beta-power
oscillations in the bilateral primary sensorimotor regions. In another pharmacological
study in healthy young, GABA-A-ergic modulation positively affected MRBD (i.e.,
increase of GABA, higher prominence of ERD), but not PMBR, which is probably
modulated by GABA-B receptors (Hall et al., 2011; Muthukumaraswamy et al., 2013).
The literature suggests that the GABAergic system may be a key regulator of beta
oscillations and motor function.

In older adults, resting beta power has been shown to increase (Heinrichs-Graham and
Wilson, 2016; Rossiter et al., 2014b). During movement execution, MRBD prominence
also results in higher modulation in older adults compared to younger (Xifra-Porxas
et al., 2019), whereas PMBR is reduced (Bardouille and Bailey, 2019; Liu et al., 2017).

In stroke patients, GABA levels have been found to be altered and dynamically change
according to the recovery stage (i.e., hyperacute to chronic) (Carmichael, 2012; Liuzzi
et al., 2014). In the subacute state, GABA concentration is significantly lower compared
to healthy controls in the motor cortex, with changes in concentration levels correlating
with motor improvement (Blicher et al., 2015). GABA concentration may be measured
non-invasively with magnetic resonance spectroscopy or through specific TMS protocols.
For example, paired pulse TMS paradigms, where the brain is conditioned prior to
the actual stimulation, are able to probe the GABA system. When a conditioning
sub-motor threshold pulse is delivered 1-5 ms before a supra-motor threshold stimulus,
we talk about short interval intracortical inhibition (SICI) (Rothwell et al., 2009; Kujirai
et al., 1993). The sub-motor threshold conditioning stimulus is thought to activate the
inhibitory interneurons of the motor cortex, which in turn inhibit the response of the
supra-motor threshold stimulus (i.e., lower MEP amplitude compared to single pulse).
The activation of the interneurons is related to the GABA-A-ergic system and SICI was
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found to elicit different responses in stroke patients and healthy controls (Hummel et al.,
2009; McDonnell and Stinear, 2017).

In this study, we explored the effect of state-dependent TMS of the motor cortex, in terms
of beta phase and power, on cortical and corticospinal reactivity. We simultaneously
studied responses at the cortico-spinal level (MEPs) and at the cortical level through
TMS evoked potentials (TEPs), as well as the relationship between the two. For these
analyses we exploited a unique TMS-electroencephalography (EEG)-EMG dataset in
which the same protocol was applied in three different cohorts: healthy young, healthy
older and stroke patients.

7.3 Methods

7.3.1 Data acquisition

The protocol within which the dataset was acquired can be read at (Fleury et al., 2022).
TMS-EEG-EMG experiments were run on 18 healthy young participants, 15 healthy
older adults and 66 stroke patients. The latter were evaluated at four time points: one
week within (T1), three weeks after (T2), three months after (T3) and one year after
(T4) the ictal accident. Not all patients were assessed in the four time points; more
detailed subjects’ demographics can be found in Table 7.1. All participants signed an
informed consent and a sheet related to the risks of TMS. The study was approved by
the ethical committee of the Canton of Vaud, Switzerland (no. 2018-01355).

The experimental framework has already been thoroughly described elsewhere (Chapter
6), please find here a brief summary. During the experiments, the subjects were at rest
and with eyes open for the full duration of the experimental blocks. Six blocks were
planned, with 30 single-pulse and 30 SICI stimulations each, given in a quasi-randomized
manner. Biphasic TMS was delivered to the right (affected for stroke patients) first
dorsal intraosseous (FDI) muscle hotspot with a MagPro X100 stimulator connected to
an MC-B70 coil (Magventure, Farum, Denmark) at test intensity (i.e., intensity giving
consistently a peak-to-peak amplitude of at least 0.5 mV). Brain activity was recorded
from 64 Ag/AgCl TMS-compatible electrodes in a 10-20 system (EEG BrainCap-MR
BrainVision LLC, North Carolina, USA) with 5 kHz sampling rate and 1 kHz high
cut-off. Muscle activity was tracked from seven muscles on the left (affected for stroke
patients) upper limb, including the FDI. EMG at each muscle was captured with a pair
of disposable Ag-AgCl electrodes; the signal was amplified and sampled at 3 kHz using
a Noraxon DTS Receiver (Scottasdale, Arizona, United States) and digitized at 5 kHz
using the Signal software (Cambridge Electronic Design Limited, Cambridge, UK). The
coil position was adjusted with stereotaxic navigation (Localite GmbH, Germany).
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Table 7.1: Demographics of included subjects (young, older, and stroke patients) who
were assessed. Recruited stroke patients were assessed with the same TMS protocol
within one week (T1), at three weeks (T2), three months (T3) and one year (T4) after
the accident. The table reports the number of subjects per time-point, the gender, age,
lesioned hemisphere and the Fugl-Meyer Assessment for the upper extremity (FM-UE)
(Fugl-Meyer et al., 1975) of the affected body side. Regarding the stroke population,
12 patients have 4 time points, 19 patients have 3 time points, 20 patients have 2 time
points, and 15 patients have only 1 time point.

N (female) Age (mean±SD)
N Left

lesioned hemisphere

FM-UE
affected side
(mean±SD)

Young adults 18 (7) 27.0 ± 2.8
Older adults 15 (11) 67.0 ± 4.8
Stroke, T1 53 (7) 66.1 ± 0.5 12 54.5 ± 11.4
Stroke, T2 43 (5) 68.4 ± 0.4 11 56.3 ± 3.4
Stroke, T3 35 (3) 68.9 ± 0.5 4 62.8 ± 4.4
Stroke, T4 21 (2) 71.9 ± 0.4 3 54.8 ± 11.0

7.3.2 Data analysis

Estimation of the brain state in the beta band followed the method explained in Chapter
6 and (Bigoni et al., 2023) for the alpha band. Briefly, the epoched signals were spatially
filtered with a Hjort-Laplacian at C3 (or C4 depending on the affected hemisphere for
stroke patients) (Hjorth, 1975) and subsequently bandpass filtered in the beta band
(13-30 Hz). The power spectral density (PSD) in the same channel was estimated with the
Welch method and only trials where a peak in the periodic component of the PSD spectra
was present were considered; the latter was computed using the approach and code
explained in (Donoghue et al., 2022). The oscillation phase was categorized into trough,
rising, peak and falling and all had a range of 90°. PSD was used as a continuous variable
for describing the brain-state for the MEP, whereas it needed to be categorized for the
TEP trials labelling. Therefore, it was divided into very low (below 25th percentile),
low (between 25th-50th percentile), high (between 50th-75th percentile), and very high
(above 75th percentile) PSD per subject and time point. The same approach was used
for dividing trials according to the MEP size.

Once TEPs were obtained (see Chapter 6 and (Cadic-Melchior et al., 2022)), the single
trials were labelled according to the feature of interest (i.e., categorial phase, PSD, or
MEP size) and averaged per subject and time point. Classical TEP analyses based on
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components’ amplitude modulation is questionable because one component might be
absent, reversed in terms of polarity, or delayed (Lioumis et al., 2009). Here, we focus on
a different approach based on the linear regression of TEP in single trials for each subject
(Cadic-Melchior et al., 2022; Raffin et al., 2020). This method allows to fully consider
the inter-subject variability of the dynamics of the evoked response, since subject-specific
dynamical contents of TEPs will not influence the regression process. Practically, this
method regresses single trials TEPs onto an averaged TEP to evaluate their similarity
with the averaged one. Single trials may be regressed on the averaged TEP having their
same label (i.e., paired RQS or pQRS) or on an averaged TEP that was created for
single trials having a different label (i.e., unpaired RQS or uRQS). The time region of
interest (TOI) for computing RQS was between 20 and 80 ms after the stimulation, to
cover the period related to motor response. However, for the stroke patients, a longer
TOI between 20 and 300 ms was used to take into account the slower responses in this
cohort (Cadic-Melchior, 2023; Tscherpel et al., 2020). The method has already proven
useful for studying brain-state dependence on cortical responses for the alpha band in
young healthy adults (Chapter 6) and longitudinal changes after stroke (Cadic-Melchior
et al., 2022). Further analyses were performed with conventional TEP features to study
cortical reactivity (global/local mean field potential (G/LMFP), and evoked dynamics
(complexity index CI) as presented in Fig. 7.1.
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Figure 7.1: Features explaining cortical and corticospinal response to TMS. Cortical
responses are evaluated with TMS evoked potential (TEP) features. Specifically, we
are interested in studying the cortical reactivity and evoked dynamics. The former can
be studied with the global and local mean field potential (G/LMFP) which only differ
in terms of electrodes chosen. Dynamics can be studied by looking at the number of
deflections in either the averaged TEP or from the G/LMFP curve. Both dynamics and
reactivity can be studied with the regression quality score (RQS). The right side of this
figure has been adapted with permission from (Cadic-Melchior et al., 2022).
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The peak-to-peak MEP amplitude and MEP latency were extracted from the FDI EMG
data after manual and automatic cleaning and preprocessing fully described in Chapter
6.

EEG and EMG data analyses were done in Matlab 2021.b (MATLAB, 2021) (EEGLAB
(Delorme and Makeig, 2004) and Fieldtrip (Oostenveld et al., 2010)) and Python 3.8
(Van Rossum and Drake, 2009) (scipy, numpy, and mne).

7.3.3 Statistics

Effects of beta phase, power, and their interaction on MEP features (amplitude and
latency) were studied using generalized linear mixed effect models (glmer function in R
(Team, 2021)) with independent fixed variables of phase (categorical), power (continuous)
and their interaction; the random intercept was given by the subject. Estimated marginal
means were used for post-hoc analyses with Tukey correction for multiple comparisons
(emmeans package). Brain state effects on TEP features were studied with Bayesian
ANOVAs with post-hoc Bayesian paired t-tests in JASP (Team, 2022). For both types
of analyses, statistics were divided per pulse condition, cohort, and time point.

7.4 Results

7.4.1 Dataset

On average 178, 118, and 169 trials per condition, subject, and time point were acquired
for young, older, and stroke respectively; exact numbers are reported in Table 7.2. After
manual and automatized pre-processing 30 (51)%, 23 (47)% and 41 (57)% trials were
removed for young, older, and stroke in single-pulse (SICI) condition. Most of the trials
were removed due to the EMG signal (Table 7.3). Around 9.4, 5, and 14.5% of single-pulse
trials were further removed in young, older, and stroke, if no latency could be found
using an automatized algorithm (Bigoni et al., 2022a). Finally, 79% of cleaned trials
presented a peak in the beta band in the periodic spectrum (Donoghue et al., 2022)
(Table 7.4). After pre-processing there were on average 78.2 (67.8), 61.6 (51.8), 67.0
(65.5), 63.2 (60.1), 66.5 (58.3), 76.1 (69.1) trials were available for the single-pulse (SICI)
condition in the young, older, and stroke cohort at the four time points.

7.4.2 MEP and beta oscillations

Brain-state was defined according to the instantaneous phase and PSD in the beta band.
We studied the differential brain-state relation to the MEP peak-to-peak amplitude and
latency. Separate analyses were performed for the stimulation type (only single pulse for
latency) and the three cohorts; for stroke patients, we also divided according to time-post
stroke.
A significant main effect of both phase (p=0.029) and PSD (p=0.007) was observed in the
young cohort (Fig. 7.2). The trough class elicited significantly smaller MEPs compared
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Figure 7.2: Brain-state effect on MEP peak-to-peak amplitude in single-pulse condition.
The figures show the results from the generalized linear mixed models. On the left we
show main effect of phase and on the right the interaction effect of PSD and phase. For
easiness of view, the MEP amplitude was subject-wise z-scored, although the raw value
was used in the model. Significant differences between groups are reported. If the main
effect of PSD was observed, it is reported, together with its trend at the top left corner
of the phase-PSD interaction plot; interaction effects are reported at the bottom-left
corner. In the phase-plot, dots represent the mean and the bars the standard errors.
Color legend: trough phase: green, rising phase: orange, peak phase: violet, falling phase:
pink. Significance abbreviations: p<0.1: ".", p<0.05: "*", p<0.01: "**", p<0.001: "***".
Abbreviations: T1=within 1-week post-stroke; T2=3-week post-stroke; T3=3-month
post-stroke; T4=1-year post-stroke.



188 Chapter 7. Beta modulation of cortico(spinal) excitability

to the other phases (p=0.005 rising, p=0.025 in peak, p=0.038 falling). A positive
MEP-PSD relationship was observed no matter the phase. Replicating the results of
the young cohort, the older group showed a main effect of phase and a trend for a main
positive effect of PSD. The peak phase provided significantly bigger MEPs compared
to all the other classes (p=0.097 falling, p=0.052 trough, p=0.008 rising); MEPs were
smaller in the trough and falling phases. Moreover, a significant phase X PSD interaction
was observed, with the peak phase behaving differently than falling (p=0.032) and trough
(p=0.059), see Fig. 7.2. The same main effect of phase was observed at T4 in the stroke
cohort, with the peak phase having the largest MEP compared to all the other phases
(p=0.095 for trough, p=0.010 for rising, p=0.043 for falling). No main factors effects,
nor consistent patterns were found in the previous timepoints (Fig. 7.2).

When a SICI protocol was used, the main effect of phase remained only in young healthy
subjects, with the peak phase eliciting the strongest MEPs. A negative effect of PSD
was observed in young and as a trend in T2 and T3 for stroke patients, but not at T4
where instead a positive relationship appeared. Main and interaction effects disappeared
in the older population (Fig. 7.3).

When MEP latency was used as dependent variable, a negative trend effect of PSD was
seen (p=0.094) as well as an effect of the phase X PSD interaction where a positive
PSD-latency slope was observed for the peak phase and a negative one for trough phase
(p=0.019). These effects were only observed in the young cohort (Fig. 7.5).

7.4.3 TEP and beta oscillations

In parallel, we investigated if the brain-state could affect cortical responses in terms of
reactivity and dynamics. Our results showed that phase influenced the overall dynamics
of the TEP measured with the RQS in the stroke cohort only, where in almost all tested
conditions the pRQS was higher than the respective uRQS with huge factors (Fig. 7.4,
left column); this was especially valid in the TOI20-300. No effect of phase was observed
in neither the young nor the older group (BFincl<3, Fig. 7.4). Similarly, PSD did not
seem to have a large effect on the healthy populations (Fig. 7.4, middle column), whereas
the effect in stroke patients was strong. PSD was also seen to affect the global mean field
potential (GMFP) in the stroke patients and age-matched controls (Fig. 7.6 left). In
stroke patients, the complexity index (CI) of the LMFP was also found to be bigger in
higher powers with moderate to huge effects (Fig. 7.6 right); stronger effects were seen
in the TOI20-300 and in the earlier time points. When SICI trials were used, very similar
trends were seen for the stroke patients.

7.4.4 Relationship between MEP amplitude and TEP

Finally, the MEP size was also used to label TEP trials and find a correlation between the
two features. Indeed a positive relationship between cortical and corticospinal excitability
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Figure 7.3: Brain-state effect on MEP peak-to-peak amplitude in SICI condition. The
figures show the results from the generalized linear mixed models. On the left we show
main effect of phase and on the right the interaction effect of PSD and phase. For easiness
of view, the MEP amplitude was subject-wise z-scored, although the raw value was used
in the model. Significant differences between groups are reported. If the main effect of
PSD was observed, it is reported, together with its trend at the top left corner of the
phase-PSD interaction plot; interaction effects are reported at the bottom-left corner.
In the phase-plot, dots represent the mean and the bars the standard errors. Color
legend: trough phase: green, rising phase: orange, peak phase: violet, falling phase: pink.
Significance is based on the Bayesian inclusion factor (BFincl): 3leq BFincl <10: ".", BFincl
geq10: "*", BFinclgeq30: "**", BFincl geq100: "***". Abbreviations: T1=within 1-week
post-stroke; T2=3-week post-stroke; T3=3-month post-stroke; T4=1-year post-stroke.
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has been previously observed (Ahn and Fröhlich, 2021), Chapter 6. For all the cohorts we
observed an effect of MEP-size on the RQS, with pRQS being higher than uRQS for most
MEP sizes, especially the higher ones (Fig. 7.4, right column). The difference between
the regressions of paired and unpaired conditions, as well as the absolute T-scores were
much higher in the earlier time points of the stroke cohort. Division according to MEP
size in SICI did not correlate with p-/u-RQS for the healthy cohorts but did so for the
stroke cohort.

GMFP correlated with MEP size in single pulse in young healthy, as previously shown
(see Chapter 6), whereas no correlation was found with the CI in no cohort nor stimulation
condition.

7.5 Discussion

This work aimed at understanding the modulation effects of endogenous beta oscillations
in the motor cortex on corticospinal and cortical outputs in response to TMS. Similarities
and differences in response regulations were evaluated between three cohorts: young
adults, older adults, and stroke patients. Furthermore, the effects of beta brain states
were related to the interaction with the GABAergic system.

7.5.1 Corticospinal excitability and reactivity modulation

Beta oscillations had an effect on MEP features in young healthy participants: in terms
of PSD, we observed a positive effect on MEP amplitude, which was also observed in
some (Ferreri et al., 2014; Hussain et al., 2019; Torrecillos et al., 2020), but not all (Keil
et al., 2014b; Khademi et al., 2019) previous studies (see Table 6.1 for detailed review).
In terms of phase, applying TMS during the peak phase elicited higher MEPs and during
the trough trials lower ones; a similar result has already been observed in young adults
(Wischnewski et al., 2022). There, the authors appreciated a difference in phase effect
between the alpha and beta band, which was seen in our healthy populations as well
(Fig. 7.7). Moreover, the authors grouped the trough and rising phases as inhibitory
states and peak and falling phases as excitatory ones for the beta band (Wischnewski
et al., 2022). If we consider the peak and falling phases together, the present results are
also similar to those of (Hussain et al., 2022) that described the importance of the beta
falling phase during voluntary movement. The authors have also related the effect of
beta phase from EMG data of previous studies with the falling phase read out from the
EEG signal.
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Figure 7.4: Effect of phase, PSD, and MEP size on RQS score. Rows describe the cohort
and time point of interest. On the left, TEPs have been divided according to phase at
the stimulation (trough=violet, rising=orange, peak=violet, falling=pink); in the middle
TEPs have been divided according to the PSD size (very low PSD=dark blue, low=light
blue, high=yellow, very high=orange); on the right TEPs have been divided according
to the MEP peak-to-peak amplitude (very low=dark green, low=light green, high=light
purple, very high=dark purple). For MEP and PSD size, the division was made in
quartiles according to the subject (and time point). Stars in the graph highlight if the
pRQS (i.e., RQS of single-trial TEP regressed on the averaged TEP of the same label) is
different from the uRQS (i.e., RQS of single-trial TEP with different label compared to
the averaged TEP on which they are regressed) having the same color as the stars. The
higher the t-score the more similar are the single trials with the TEP used for regression.
Dots represent the mean and the bars the standard errors. Significance is based on
the Bayesian inclusion factor (BFincl): 3≤ BFincl <10: ".", BFincl ≥10: "*", BFincl≥30:
"**", BFincl ≥100: "***". Abbreviations: T1=within 1-week post-stroke; T2=3-week
post-stroke; T3=3-month post-stroke; T4=1-year post-stroke.

The present results on the role of the beta rhythm state are extended for the first time
to the healthy ageing population. In stroke patients, a phasic modulation of the beta
oscillation was only observed at the chronic (1-year post-stroke, i.e., T4) stage, but not in
(sub-)acute stroke patients (between 1-week and 3-months post-stroke, i.e., T1-T3). This
outcome can be helpful in explaining the role of the beta band in motor recovery. Indeed,
the beta oscillations undergo significant changes after the ictal accident, with reduced
power at rest and a decreased MRBD strength correlating with poorer motor function
(Tecchio et al., 2007; Rossiter et al., 2014a). Our results show that at the chronic stage,
a return to corticospinal excitability beta phasic dependence is possible. It could be
argued that through recovery and return to a stable state in the chronic phase, the M1
→ muscle → M1 loop, which is governed centrally and peripherally by beta oscillations
(Aumann and Prut, 2015) is restored.

The TMS SICI condition is representative of the recruitment of GABA-A inhibitory
neurons (Di Lazzaro et al., 2006; Ziemann et al., 1996a). For the young healthy population,
a beta phasic modulation was still observed in this condition, with the peak phase having
significantly higher amplitudes than falling and trough phases (Fig. 7.3). Previous
results found no MEP alpha modulation during SICI, though observed in single-pulse
(Bergmann et al., 2019) and Chapter 6. Among the suggested hypotheses for explaining
no alpha phasic dependence on MEP amplitude during SICI, the lower intra-subject
variability, and thus lower variance to be explained, was raised. The current results
suggest that such hypothesis may not hold as the same healthy subjects were used as in
Chapter 6; but they agree with a second proposed theory related to the different role
and origin of alpha and beta oscillations (Stolk et al., 2019). Moreover, beta and not
motor alpha oscillations have been shown to be related to the GABAergic system (Barone
and Rossiter, 2021; Hall et al., 2010, 2011; Jensen et al., 2005), here probed with SICI.
It has been suggested that the sensorimotor beta rhythm arises from the alternating
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depolarization and hyperpolarization of layer V pyramidal cells that are dependent on
phase-locked GABA mediated interneuron inputs (Siebner et al., 2022). Our results
suggest that the phasic beta modulation remains unchanged regardless of the stimulation
condition whereas the PSD-MEP relationship shows a switch from single-pulse to SICI: if
a higher beta-power relates to higher inhibition, this will lead to a lower MEP amplitude,
therefore stronger SICI effects.

In addition to being an important factor to explain beta oscillations, the GABAergic
system is also relevant to explain differences between cohorts: in older adults the GABA
neurotransmitter was suggested to be present at higher concentrations, thus leading to
higher beta power at rest (Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014b).
Although this result was observed with beta oscillations at rest and during movement, it
was not always confirmed by SICI paradigms, where both higher disinhibition and higher
inhibition compared to the younger cohort were observed (Heise et al., 2013). For this
cohort, no phasic nor power modulation on the MEP peak-to-peak amplitude was observed
in SICI trials. After stroke, the levels of GABA concentration change significantly in
time and in comparison to healthy controls, with an overall hyper-inhibition during the
acute stage, going towards a disinhibition in later stages (Cadic-Melchior et al., 2022;
Carmichael, 2012; McDonnell and Stinear, 2017). In the dataset used, a corticospinal
inhibition following SICI was observed across all time points (Fig. 7.8), but with the
peak-to-peak amplitude significantly increasing in this pulse condition from T1 and T2
to T3 and T4, reflecting decreased SICI modulations. In the sub-acute stage (T2 and
T3), we observed a negative beta PSD modulation on MEP amplitude (as for young
healthy subjects); differently, at the chronic stage (T4) a positive modulation was seen.
It seems that at in the high disinhibition period (i.e., subacute stroke), a similar trend to
that observed in young healthy subjects is observed, whereas at later stages of recovery,
when GABA concentration is also expected to restore, the trend is not consistent, yet it
is similar to that of aged-matched controls. The observed differences are complicated
to be speculated upon with the current data. However, we can say that corticospinal
excitability is related not only to the cortical excitability directly probed with TMS, but
also depends on the overall motor network and spinal excitability, which may change
with age and pathology. The hypothesis of added circuitry (i.e., not only cortical level)
is also in line with the fact that TEP features modulation did not change between pulse
conditions. Overall, the beta PSD corticospinal excitability modulation remains to be
further investigated.

Regarding the MEP latency, which was studied for the single-pulse condition only, we
have found an effect of phase X PSD interaction in young healthy adults. Only Torrecillos
et al. (2020) focused on MEP latency and found that in the beta band there were specific
phases that elicited faster and more consistent MEPs; specifically this was more prominent
in high beta power. Our results are therefore in agreement and confirm the importance of
the beta band in the latency, although some important methodological differences need to
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be pointed out such as the pulse waveform or the stimulation intensities. However, these
outcomes were not reproduced in the other cohorts. Indeed, if we consider older adults
and stroke patients having different levels of GABA, it may change how interneurons
are elicited. Specifically, interneurons were not included in the model of Torrecillos et al.
(2020).

7.5.2 Cortical reactivity and evoked response modulation

The field studying brain-state modulation of TMS cortical responses is still at its infancy
and previous studies have only focused on the effect of alpha, but not beta, oscillations
(Bai et al., 2022; Desideri et al., 2019; Ding et al., 2022; Granö et al., 2021) and Chapter
6. In our analyses we appreciated the effect of PSD in the beta band on the local evoked
response (LMFP CI) and at the whole-brain level cortical reactivity (GMFP) in stroke
patients (Fig. 7.6). For the latter, effects were also observed in the older group. Moreover,
reactivity and dynamics were also studied with the RQS; Fig. 7.4 shows that both phase
and PSD defined specific response patterns only in stroke patients. Overall, these results
suggest that stroke patients have a higher susceptibility of cortical excitability on beta
oscillations, especially in terms of power.

The relationship between beta oscillations and the GABAergic system discussed above,
becomes more challenging here. Recalling that higher beta powers are related to higher
GABA levels and thus inhibition, more simplistic evoked responses (i.e., lower LMFP CI)
would have been expected, while the opposite has been observed. In particular, we would
have anticipated the opposite for the sub-acute stage (i.e., T2 and T3) when the brain is
in a hyper-excitable period, whereas the observed response seems more valid for for T1
(i.e., hyper-inhibition period) and T4 (i.e., chronic state and return to a physiological
GABAergic system). Our result could also be explained by the longer TOI used, which
covers multiple sensory responses in the healthy cohorts (Ahn and Fröhlich, 2021) and
thus introduces the complexity of the global network inputs; indeed, if we look at the
TOI20-80, no effect of PSD is seen anymore. Nonetheless, the different responses in stroke
patients, and especially their longitudinal changes, make it difficult to choose an exact
window of interest. A previous study looking at the same stroke cohort used for instance
the first 200ms after stimulation as TOI (Cadic-Melchior et al., 2022). The authors
observed that smaller deflections at T1 (regardless of the brain state), and an increase
of number of deflections from T1 to T3, related to better motor recovery. The same
authors suggest that the different number of deflections in time could be studied in terms
of local and global network topology; further analyses could also try to relate different
brain states to the segregation and integration balance. Results on GMFP follow the
same line of discussion.

The similar trends observed in both single pulse and SICI suggest that the GABAergic
system does not strongly affect the cortical response. This could also be related to the
results from the study mentioned before (Cadic-Melchior et al., 2022) that found even
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stronger p-/u-RQS in SICI compared to single-pulse when the typical large component
of TEPs, implicated with the GABAergic system, was removed.

7.5.3 Correlation between MEP size and TEP features

The use of MEP size to study TEP features variability removes the brain-effect factors
studied (i.e., phase and PSD of beta oscillations), yet provides a brain-state that cor-
responds to a specific corticospinal excitability level. Strong MEP-TEP correlations
were found and described for the healthy young population (Chapter 6). Similar effects
were seen in the newly added cohorts of healthy older adults and stroke patients. The
previously hypothesized theory is consistent with current results for which the strong
MEP-TEP correlations, often stronger than those with brain state, may be due to some
brain state features we are not yet considering (e.g., connectivity-based, cross-frequency
interactions, etc.) (Chapter 6).

7.5.4 Limitations and next steps

At an analytical level, this work presents some limitations: TEP features assessments
are not exhaustive, for which more standard measures could have been looked into as
well (such as inter-trial coherence, evoked power and some timing and amplitudes of
well known deflections, e.g., P25, N45, N100). Moreover, for all the subjects, the same
channel C3 (or C4 if mirrored) were used, but looking at the specific channel (i.e., most
modulated or closest to stimulation point) could change results, for example (Hussain
et al., 2022) only saw beta oscillations dependence in channels specific for each individual
and not a generalized one. Finally, a different number of subjects was available for the
different cohorts. Especially, a big difference between time points in the stroke population
was observed, which may lead to uncertain results.

Follow-up analyses will be necessary to study inter-patients’ differences; information about
resting-state EEG and peaks in power spectra, functional and structural connectivity, and
clinical scales should be added to the model explaining MEP and TEP variability. On
the same line, a more heterogeneous population is desired to inform on changes of brain
state and motor recovery; the stroke cohort used here had in fact low motor impairments
already at the early stage (Table 7.1). Moreover, we have here focused on the relationship
between the beta oscillations and the GABAergic system, whereas additional changes can
occur in healthy ageing and stroke that can affect the beta rhythm, such as dopamine
level differences and structural integrity.

7.6 Conclusion

This work highlighted the importance of beta oscillation states on TMS-induced
cortical and corticospinal output. A phase and power modulation were observed for the
corticospinal excitability in the healthy cohorts and recovered chronic stroke patients
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showed a similar phasic modulation; no corticospinal beta regulation was observed in the
acute and subacute stage. Differently, at the cortical level, brain response measured
with TEPs RQS showed how beta phase and power states elicit specific and consistent
dynamics that differ across states. A response found to be persistent across time points
in stroke patients, but not healthy subjects.

Another interesting finding of this study is that beta regulation during SICI was not
the same as during single pulse. In young healthy subjects a phasic modulation of
corticospinal excitability was still visible, but a reversed correlation with power was
observed. The same negative correlation was observed in the subacute stroke patients.
Moreover, at the cortical level, if a brain-state was found to regulate any feature with
single pulses, the modulation persisted with SICI. These results suggest that beta phase
and PSD do not regulate the motor network in the same way, with PSD being more
affected by interactions with the GABAergic system.

Focusing on the pathological cohort, it is known that after stroke, the beta oscillation
(especially the beta power) is not comparable to that of healthy subjects and the
GABAergic system is found to dynamically change with periods of strong inhibition and
disinhibition. These notions together with the knowledge of a tight interaction between
the beta band and the GABAergic system and the present results suggest that the beta
brain-state modulation could help in further understanding cortical and corticospinal
dynamics after stroke. Moreover, we can speculate that different beta states may be
explaining higher excitability states according to the stroke recovery stage.
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7.7 Supplementary Material

Table 7.2: Number of trials per condition acquired. For the three cohorts (healthy young,
healthy older, and stroke patients), we report the sample size and the number of trials
recorded, prior to any preprocessing and data cleaning. The average number of trials
for older subjects are lower than that of young because in the stimulation blocks three
conditions instead of two were performed (i.e., single-pulse, SICI, condition stimulus
only) for the same total number of 300 pulses; the same holds true for some of the stroke
patients and time points.

Young Older Stroke (T1, T2, T3, T4)

Tot. no. subject 18 14 67 (58, 44, 36, 22)

No.trials

Single pulse

SICI

6420

3120

3120

3322

1662

1660

53769 (19070, 14760, 12176, 7763)

26908 (9470, 7380, 6175, 3883)

26861 (9600, 7380, 6001, 3880)

Single-pulse trials

per subject

(mean + SD)

178.3 ± 7.1 118.6 ± 4.8
169.2 ± 22.7

(166.1 ± 26.2, 167.7 ± 22.7,

171.5 ± 21.3, 176.5 ± 11.6)

SICI

per subject

(mean + SD)

178.3 ± 7.0 118.6 ± 5.0
169.1 ± 22.8

(165.8 ± 26.2, 167.7 ± 22.7,

171.4 ± 21.5, 176.4 ± 12.2)
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Table 7.3: Percentage of trials removed after visual inspection and automatized prepro-
cessing of EEG and EMG signal.

Young Older Stroke (T1, T2, T3, T4)

Single-pulse
EMG
EEG
total

30
11
38

23
14
34

41 (45, 43, 42, 38)
13 (11, 13, 13, 12)
48 (51, 50, 50, 46)

SICI
EMG
EEG
total

44
10
51

39
14
47

47 (45, 48, 49, 43)
12 (11, 12, 13, 12)
53 (51, 54, 56, 51)

Table 7.4: Percentage of trials kept after checking if a peak in the periodic component of
the PSD spectra was present in the beta band (13-30 Hz) according to (Donoghue et al.,
2022) approach. In parenthesis SICI condition.

Young Older Stroke

Single pulse 78.1 (76.7)% 82.5 (82.9)% 78.1 (78.2)

Total number of subjects 17 (17) 12 (14) 66 (63)
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Figure 7.5: Brain-state effect on MEP peak-to-peak latency in single pulse condition.
The figures show the results from the generalized linear mixed models. On the left we
show main effect of phase and on the right the interaction effect of PSD and phase. For
easiness of view, the MEP amplitude was subject-wise z-scored, although the raw value
was used in the model. Significant differences between groups are reported. If the main
effect of PSD was observed, it is reported, together with its trend at the top left corner of
the phase-PSD interaction plot; interaction effects are reported at the bottom-left corner.
In the phase-plot, dots represent the mean and the bars the standard errors. Color
legend: trough phase: green, rising phase: orange, peak phase: violet, falling phase: pink.
Significance is based on the Bayesian inclusion factor (BFincl): 3leq BFincl <10: ".", BFincl
geq10: "*", BFinclgeq30: "**", BFincl geq100: "***". Abbreviations: T1=within 1-week
post-stroke; T2=3-week post-stroke; T3=3-month post-stroke; T4=1-year post-stroke.
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Figure 7.6: Beta PSD effect on global mean field potential (GMFP) area and complexity
index of local mean field potential (LMFP CI) during single-pulse. For stroke patients
two time regions of interest (TOI) are studied: 20-80ms after TMS and 20-300ms after
TMS. GMFP gives an index of response reactivity, while the LMFP CI described the
evoked response. Significance is based on the Bayesian inclusion factor (BFincl): 3leq
BFincl <10: ".", BFincl geq10: "*", BFinclgeq30: "**", BFincl geq100: "***". Abbreviations:
T1=within 1-week post-stroke; T2=3-week post-stroke; T3=3-month post-stroke; T4=1-
year post-stroke.
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Figure 7.7: Brain-state effect according to alpha oscillations on MEP peak-to-peak
latency in single pulse condition. The figures show the results from the generalized linear
mixed models. On the left we show main effect of phase and on the right the interaction
effect of PSD and phase. For easiness of view, the MEP amplitude was subject-wise
z-scored, although the raw value was used in the model. Significant differences between
groups are reported. If the main effect of PSD was observed, it is reported, together with
its trend at the top left corner of the phase-PSD interaction plot; interaction effects are
reported at the bottom-left corner. In the phase-plot, dots represent the mean and the
bars the standard errors. Color legend: trough phase: green, rising phase: orange, peak
phase: violet, falling phase: pink. Significance abbreviations: p<0.1: “.”, p<0.05: “*”,
p<0.01: “**”, p<0.001: “***”. Abbreviations: T1=within 1-week post-stroke; T2=3-week
post-stroke; T3=3-month post-stroke; T4=1-year post-stroke.
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Figure 7.8: Difference in MEP peak-to-peak amplitude in single-pulse Vs. SICI condition
in the three cohorts. Colors explain the time point of evaluation, only valid for stroke
patients who were evaluated within 1-week post-stroke (T1), 3-week post-stroke (T2),
3-month post-stroke (T3), and 1-year post-stroke (T4). The young and older population
were evaluated only once. Linear mixed-effects models with fixed factor the pulse
condition and time point for the stroke patients and random intercept the subject were
run. A significant effect of pulse was observed in the healthy populations, with p<0.001
for both. The same main effect of pulse was observed in the stroke population. Moreover,
in the stroke cohort a significant effect of time was seen, as well as a significant effect of
the interaction factor time point X pulse. Post-hoc analyses using estimated marginal
means with Tukey corrections showed that MEP amplitude were significantly higher in
later time points compared to earlier ones with p<0.001 except for the T2-T1 comparison
(p=0.419). From the interaction factor, we observed higher amplitudes in T4 compared
to T2 and T1 (p<0.001) and in T3 compared to T2 and T1 (p<0.001) in SICI. In
single-pulse, later time points always presented a higher amplitude compared to earlier
time points, except for the comparison between T2 and T1 which was not significant
(p=0.868).



GENERAL DISCUSSION

The present thesis has addressed the topic of a personalized use of non-invasive neurotech-
nologies to enhance upper-limb motor rehabilitation after stroke in severely impaired
chronic patients. The first part of this work suggests that a combination of neurotech-
nologies might have a positive impact in reducing motor impairment in this subgroup of
patients. The interventional approach consisted in a BCI governing a hand exoskeleton
and multi-channel FES to perform movements involving the whole upper-limb; neuromod-
ulation in the form of tDCS was also delivered in an open-loop fashion, without being
regulated by the brain state. The second part of this dissertation has tackled important
technical issues for a further improvement of the current set-up in view of a BBCI, where
the brain not only commands peripheral machines, but triggers a direct return (i.e.,
stimulation) to itself. Mechanistic considerations were also raised and discussed.

8.8 Personalized use of neurotechnologies

Neurotechnologies offer the opportunity to directly interact with the nervous system.
Preliminary results from the AVANCER clinical trial point to the importance of hierar-
chically adding neurotechnologies in a personalized manner to maximize gains in motor
rehabilitation. Why some patients improve in either or both types of therapies (Fig. 4.2,
4.4) remains to be investigated, possibly with a much larger cohort. What can be said
based on the preliminary results is that the personalised design might be a novel and
successful strategy. Indeed, more than half of the patients have reached the primary
outcome and 90% of them showed some motor improvement, which was retained at the
follow-up (i.e., 3-month after end of intervention).

Results are in line with previous studies using BCI-based rehabilitation (Ramos-
Murguialday et al., 2013; Frolov et al., 2017b; Biasiucci et al., 2018) and BCI-based
rehabilitations coupled with tDCS (Ang et al., 2015; Kasashima-Shindo et al., 2015). The
novelties and differences lie in the targeted patient sample of only severely impaired stroke
patients and in the combination of all the neurotechnologies used. To our knowledge it is



204 General discussion

the first time that both an exoskeleton and multiple-channel FES are triggered together
by means of a non-invasive BCI in a clinical trial for stroke rehabilitation, although set-up
developments had been shown previously (Grimm and Gharabaghi, 2016; Elnady et al.,
2015). We believe that the opportunity to perform a broad range of exercises, adjusted
to the current capabilities of the individual patient, is a very important aspect of the
AVANCER therapy and follows important principles of a patient-centred, personalized
rehabilitation (Fig. 1.8). Overall, the literature and current results point towards the
efficacy of activating sensory and motor feedbacks with BCIs.

Two concepts build the pillars of AVANCER: neurotechnologies and personalisation.
The interaction of the two is also important. In our set-up all interventional steps were
tailored to the individual patient: the BCI classifier is trained every session on the
individual’s sensorimotor rhythm and exercises are calibrated to the patient’s needs
(e.g., antigravity support and range of motion to be achieved). Differently from the
BCI set-up, neuromodulation was not controlled by the brain state, nor its parameters
personalized. Neuromodulation has a strong potential for stroke rehabilitation, with some
rTMS paradigms having received a level A and B classification for efficacy (Lefaucheur
et al., 2020). Anodal tDCS was also found to be a successful adjuvant therapy in stroke
motor rehabilitation, though with heterogeneous results (Allman et al., 2016; Butler et al.,
2013; Hummel et al., 2005). The preliminary results from the AVANCER trial seem to
point towards the positive effects of tDCS, with patients gaining additional points in
the FM-UE after having reached a plateau in recovery with the BCI-based intervention
(Fig. 4.2). The observed motor improvements could be due to the higher plasticity
state of the brain while performing the BCI rehabilitation and thus boost the standard
BCI effects. Indeed, anodal tDCS to the lesioned hemisphere causes an upregulation of
excitability that outlasts the stimulation (Hummel and Cohen, 2006; Nitsche and Paulus,
2000). Although positive results are suggested from Part I, we believe that the current
AVANCER set-up could be further optimized with the upgrade from an open-loop tDCS
to a brain-state-dependent neuromodulation. Part II of the present thesis made the first
steps for establishing this new approach.

There, we have switched the focus from tDCS to TMS. Indeed, TMS has higher temporal
and spatial resolutions compared to tDCS; moreover, it allows for an instantaneous
perturbation of endogenous brain oscillations. Importantly, this switch does not imply
a wrongly application of tDCS in the AVANCER clinical trial, but rather the different
working principles of these NIBS techniques. Additionally, the analyses of Part II focused
on single and paired-pulse TMS, while in a rehabilitation setting these paradigms would
probably be replaced by short bursts of rTMS. An upgraded AVANCER set-up, where
neuromodulation is given with brain-state-dependent stimulation and rTMS could have
positive returns on two main lines. One hypothesis is that by stimulating at specific
instants, the excitability state of the motor network may be enhanced further, compared
to what is achieved with tDCS. The other hypothesis, considers the whole BBCI set-up:
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knowing that an important principle on which BCIs are based is Hebbian learning, having
a synchronous peripheral and central feedback returning to the sensorimotor cortex
may work on various synapses to make them stronger. More in detail, this could be an
interesting solution to have a synchronisation between the antidromic firing of FES and
the efferent (orthodromic) activation of the CST by the rTMS.

Combining the literature with the results reported in Part I and II, I discuss in the
following paragraphs the concept of a BBCI, with a focus on the personalized brain-state-
dependent stimulation for advancing stroke rehabilitation.

8.8.1 The importance of brain signals and their contingency with
external modulations

Results from both parts of this work have highlighted the importance of understanding
and considering the brain state anytime we try to interact with it. This is relevant
regardless of the task and the body region to be externally activated. In part I, we saw
the working-principles of a standard BCI, where the brain state during an active task (i.e.,
movement attempt) was synchronised with peripheral feedback. In part II, we observed
the importance of endogenous fluctuations at rest (i.e., during TMS-EEG studies) on
the cortical and corticospinal output. In addition to the mentioned discrepancies, the
definition of brain state in the two parts was different. In AVANCER the targeted state
was only dependent on the sensorimotor rhythm PSD, specifically in terms of ERD/S.
The offline analyses looking at brain oscillations at rest, reported an important aspect
of phasic modulation too. It could be argued that the brain state to be targeted and
its features might be dependent on the environmental task required. Indeed, studies
involving an active contraction or an MI task, have often reported a negative correlation
between the PSD and the MEP amplitude (Kičić et al., 2008; Schutter and Hortensius,
2011; Takemi et al., 2013; Keil et al., 2014a; Schulz et al., 2014; Khademi et al., 2018;
Ruddy et al., 2018). At rest, the same trend (Madsen et al., 2019; Zarkowski et al.,
2006), the opposite trend (Thies et al., 2018; Bergmann et al., 2019; Hussain et al.,
2019; Ogata et al., 2019; Wischnewski et al., 2022), and no trend (Zrenner et al., 2018;
Berger et al., 2014) were also observed. The more consistent results during a covert or
active motor task are in line with the ERD literature, for which a decrease in power
(compared to the baseline) is observed during movement preparation and execution
(Pfurtscheller et al., 2006; Engel and Fries, 2010). It is not by chance that this specific
behaviour has been chosen as biomarker for most of the rehabilitative BCIs (Bigoni and
Hummel, 2019). A further discussion point relates to the importance of the phase of the
oscillations compared to the PSD if we expect to use an active task in a BBCI. Very
few studies looked at both phase and PSD effects on the MEP activity during task and
earlier offline experiments did not find any phasic modulation (Mitchell et al., 2007; van
Elswijk et al., 2010). Different results come from a recent online study by Hussain et al.
(2022) which found that voluntary movement initiation was contingent to the falling
phase of the beta band in young healthy adults. Finally, an additional level of complexity
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in defining the brain state features comes from the inclusion of injured brains, where
neurotransmitters concentration may be different and structural and functional networks
disrupted (Guggisberg et al., 2019).

8.8.2 Personalized brain stimulation - towards a BBCI

At the current stage (Table 6.1), the brain-state-dependent stimulation set-ups, the
base for a BBCI, are able to estimate and stimulate the brain at specific phase and
power states, but they are not personalized. Differently, a BCI like the one designed for
AVANCER is rather personalized as it is trained on individual data. Certainly, a BBCI
can be further personalized, both in terms of targeted brain state as well as in terms of
location of readout and stimulation (Fig. 8.9).

Personalized location

Part II of this thesis focused on a TMS-EEG-EMG study targeting M1 and specifically the
motor hotspot representing the left (affected) FDI. In the AVANCER TMS-EEG-EMG
evaluations, the same protocol was followed and a similar hotspot has been chosen by
all the other brain-state-dependent stimulation studies (see Table 6.1). When TMS is
used as the technique to stimulate the brain, M1 and a specific hand muscle hotspot
are typical choices, as the exact point of stimulation can be found with the stimulation
itself. However, M1 is not necessarily the only target. Recent studies have reported
the stimulation of the cerebellum, the supplementary motor area (SMA), the ventral
premotor cortex and the frontoparietal network; all structures related to motor learning
and networks affecting motor recovery after stroke (Koch et al., 2019; Plow et al., 2015;
Wessel et al., 2023; Morishita and Hummel, 2017; Draaisma, 2022; Wessel et al., 2015,
2020; Koch et al., 2021). Moreover, technical advancements allow to stimulate multiple
regions simultaneously or within short intervals to activate networks instead of regions
(Fisher et al., 2017; Shields et al., 2016; Nieminen et al., 2022).

As we individually guide stimulation to a hotspot, we could also localize the read-out. In
our brain-state-dependent stimulation analyses (Chapters 5, 6, 7), we have evaluated
the brain state of M1 approximated with the activity in the C3 (or C4) channel after
a Hjort spacial filter (Hjorth, 1975). Certainly, personalizing the channel could lead to
more interesting results: Hussain et al. (2022) found that the beta phase was related to
voluntary movement initiation only if it was retrieved from the most-modulated channel,
but not from a generalized one. In the AVANCER BCI, the signal of interest is acquired
from nine channels covering the sensorimotor cortex of the affected hemisphere. This
choice has the positive quality of avoiding overfitting, but it can also introduce noise to the
model if included channels are actually not reporting a modulated activity. Furthermore,
instead of looking at the electrode-level, source localisation could also be performed
to better target the actual motor cortex. This was done in a brain-state-dependent
stimulation online study (Madsen et al., 2019), though no correlation between MEP



General discussion 207

BRAIN TO TARGET

B
R

A
IN

-S
TA

T
E

&
 E

N
V

IR
O

N
M

E
N

T

phase cycle

p
o

w
e

r

S
T

R
O

K
E

 R
E

C
O

V
E

R
Y

 S
TA

G
E

stroke days 1 week 1 month 3 months 6 months

Time

motor recovery

local dysinhibition

LO
C

A
T

IO
N

o
ve

r-
in

h
ib

it
io

n
d

is
in

h
ib

it
io

n

Figure 8.9: Conceptualisation of a personalized brain-state-dependent stimulation for
stroke motor rehabilitation. When designing a BBCI for stroke patients, three main
points should be analysed to personalize the stimulation and maximize recovery. 1) The
read-out and stimulation location must be chosen by taking into account the disrupted
network; the locations of read-out and stimulation need not be the same and multiple
stimulation locations could be chosen. 2) In terms of brain state, the features of specific
oscillation should be defines and these may differ according to the environmental task
(e.g., resting state Vs. movement). 3) Finally, because the brain after stroke undergoes
dynamical changes (e.g., longitudinal change in the GABAergic system), the current
status of each patient should be included in the decision-making of the brain state. It is
important that the three personalizable aspects are considered as a whole as they are
strongly interconnected.
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amplitude and source-level brain state was reported. For such read-out, it is important
to say that more than 16 electrodes (i.e., current number used in AVANCER) would
be necessary to obtain good results, and thus feasibility of a therapeutic session should
be revised. Similarly to the stimulation location, it has been recently argued that M1
may not be the best or at least not the only read-out location for BCI (Gallego et al.,
2022). Although the authors focused on invasive BCIs, the concepts easily translate to
non-invasive set-ups, especially when other cortical regions are proposed, such as the
SMA and the dorsal/ventral premotor cortices (PMd/PMv). We acknowledge that the
location need not be restricted, but could be based on a more global state, such as with
microstates (Sulcova et al., 2023) or some connectivity features. Indeed, structural and
functional brain connectivity have been shown to be relevant in explaining responses to
TMS (Momi et al., 2021, 2022).

The choice of read-out and stimulation location becomes critical when an injured brain
is targeted, as induced electrical field may differ from the healthy condition; personalized
computational models could help in this direction (Opitz et al., 2018; Gomez-Tames
et al., 2018).

Targeting deeper structures This thesis focused on the exploitation of non-invasive
neurotechnologies. They have the advantage of being easily accessible, widely applicable
and with low risk. However, they have a low spatial and temporal resolution and
are often an indirect measure of the feature of interest, e.g., EEG measures the post-
synaptic potential from huge populations of neurons. Invasive techniques carry the
same advantages/disadvantage, but in a revered version: they allow a high spatial and
temporal resolution of neuronal populations at the cost (and risk) of necessitating a
surgery, a possible device rejection and a second surgery for device removal. Indeed,
invasive neurotechnologies have been less applied compared to their counterparts in
stroke patients, though successful case reports from the early studies have been reported
(Hochberg et al., 2012). Other neurological and motor-related diseases have seen a larger
use of invasive technologies. For example, DBS is being widely used to help patients
with Parkinson’s disease (PD) (Hartmann et al., 2019; Limousin and Foltynie, 2019) and
a recent closed-loop system was tested on a spinal-cord injury patient (Flesher et al.,
2021).

Another clear advantage of invasive techniques lies in the opportunity to interact with
deeper regions, such as the basal ganglia, the cerebellum, the striatum, and the brainstem,
which are all involved in the motor system. Progresses from the engineering and technical
field have now shown the possibility of stimulating these regions non-invasively: recently,
the striatum was successfully stimulated in humans with temporal interference (Wessel
et al., 2021, 2022; Vassiliadis et al., 2022). Another non-invasive method for targeting
deeper structures is through transcranial focused ultrasound, currently being tested in
healthy subjects and patients (Fini and Tyler, 2017; Beisteiner et al., 2020).
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Personalized brain state

Hebbian learning, followed by reward learning, is probably the most relevant mechanism
explaining the efficacy of BCI-based rehabilitations (Biasiucci et al., 2019; Soekadar
et al., 2015a; Remsik et al., 2016). Importantly, Hebbian learning principles can also
be achieved using phase-dependent stimulation (Zrenner et al., 2018, 2020b). Both
methodologies point to the need of focusing on the temporal parameters to be able to
stimulate at specific brain states precisely and synchronously. However, which state and
which brain feature needs monitoring for stimulation remains an open question.

Results from Chapter 7 highlight the importance of a phasic modulation on the corti-
cospinal output, which holds true in healthy populations and in chronic stroke patients.
Conversely, power modulation seems to be relevant only in the healthy populations, but
not in stroke. Although results summarized in Fig. 7.2 do not support the role of PSD
in stroke patients, results from AVANCER and from the cortical modulation (Fig.7.4)
point in the opposite direction. It would indeed seem that both phase and power are
aspects to be monitored to achieve high excitability and eventually support movement
and plasticity.

In this dissertation we have focused on the sensorimotor rhythm; however, frequency
bands of interest should not be reduced to the alpha and beta band. Indeed, both
higher (i.e., gamma) (Zarkowski et al., 2006; Berger et al., 2014; Ruddy et al., 2018) and
lower (i.e., theta) (İşcan et al., 2018) frequency bands were found to affect corticospinal
outputs. These results were reported for the young healthy population and it remains to
be assessed how they affect the stroke brain, where the power in the different frequency
bands differs and modulation of specific oscillations is also hampered. Results shown in
this thesis point to the importance of the beta oscillations, which could be the initial
target for a BBCI for stroke patients.

Patient personalization

Using specific beta oscillation states to trigger stimulation in a BBCI is supported by
the frequency role in the motor system and its tight relationship with the GABAergic
system (Jensen et al., 2005; Hall et al., 2011; Muthukumaraswamy et al., 2013). Indeed,
the GABAergic system is a key regulator in stroke recovery, and its concentration levels
have been related to the different recovery stages (Carmichael, 2012; Liuzzi et al., 2014;
Clarkson et al., 2010). Results from Chapter 7 reported that a beta phasic modulation
of corticospinal excitability in stroke patients was only present at the chronic stage.
Differently, a power modulation was present at the sub-acute phase during SICI condition.
The results hint that both the recovery stage and the GABAergic state should be
considered to define the beta oscillation state to target.

In addition, the network abnormalities introduced by the lesion will need to be considered
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(Morishita and Hummel, 2017; Guggisberg et al., 2019; Grefkes and Fink, 2020). In the
Introduction (Section 1.5.1), we presented how NIBS efficacy in stroke rehabilitation is
related to the interhemispheric imbalance and the structural reserve concepts (Di Pino
et al., 2014). It is also important to say that the dataset used in Chapter 7 consisted
mostly of well-recovered patients, while Part I only looked at the severely impaired
population. It needs to be analysed if the observed responses in mildly impaired patients
can be generalized to the severely impaired population.

Lessons from other diseases The use of brain-state dependent stimulation to obtain
therapeutics effects in stroke patients has not been exploited yet. However, some lessons
can be learned from interventions used in the treatment of other disorders and diseases.

Two non-invasive brain- state-dependent stimulation set-ups have been designed and
developed to target the left Dorsolateral Prefrontal Cortex (DLPFC) for major depressive
disorder (MDD) (Zrenner et al., 2020a; Faller et al., 2022). The related studies showed
the feasibility and safety of such experiments and reported successful results.

Ambitious, though interesting, parallelisms could be made between stroke BBCI and PD
closed-loop DBS. The latter were in fact introduced ten years ago (Little et al., 2013) and
now count a few studies (Bouthour et al., 2019). In PD, the depletion of dopamine in the
substantia nigra is the target of pharmacological and stimulation treatments. Dopamine,
similarly to GABA, was found to be related to beta oscillations (Jenkinson and Brown,
2011) and abnormal beta powers are found in PD patients compared to healthy controls
(Asadi et al., 2022). It follows that beta power is one of the main biomarkers used
by closed-loop DBS (Bouthour et al., 2019; Darcy et al., 2022). The correspondences
between neurotransmitters, beta oscillations, and motor disorders in PD and stroke can
lead to the speculation that if closed-loop DBS is successful in PD, a non-invasive version
of brain-state-dependent stimulation to M1 monitoring the beta oscillations could also
be effective in stroke recovery.

A set-up for the BBCI

The standard BCI set-up has already been created and exploited in the AVANCER trial.
As mentioned above, only the sensorimotor rhythm power was used to define the brain
state of movement attempt. However, for a BBCI we should be able to also estimate the
phase of specific frequency bands.

In the framework of this thesis, we have designed and tested a set-up for online brain-
state-dependent stimulation following the algorithm defined in (Bigoni et al., 2023) and by
stimulating only if a peak in the periodic component of the frequency band of interest is
present (Donoghue et al., 2022). The online EEG reading and the triggering functionalities
are based on the Brain-Streaming Layer (https://bsl-tools.github.io/index.html), while
the brain state forecasting was fully coded in-house. The set-up is modular both in
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terms of software and hardware. Regarding the former, different phases, frequency bands,
and channel (or averaged channels) can be easily defined and targeted. Regarding the
hardware, different external machines can be triggered, although so far it has only been
studied with TMS. At the moment, pilots are run to fully test the set-up and feasibility
of protocols.

With regard to the hardware development, it is worth reminding that the main working
principle of rehabilitative BCI is based on Hebbian learning and synaptic enhancements.
These set-ups have so far looked only at the PSD, which has a rather low temporal
resolution. If we keep as an example a motion task, it has been shown that a significant
decrease in the sensorimotor rhythm power is observed hundreds of milliseconds prior
to the actual movement and continues during movement execution (Müller et al., 2003).
The oscillation phasic duty cycle has a critically different resolution, with the lowest
oscillations performing a full cycle in around 120ms (i.e, 8 Hz). We believe that the
Hebbian learning principles can definitely be proposed in the framework of a brain-state-
dependent stimulation, however very precise set-ups need to be developed given the much
higher resolution required.

We have thus far reported examples of brain-state-dependent TMS, however tES may
also be used: Cottone et al. (2018) designed a new individualized tES protocol that gives
a current whose parameters are based on the neurodynamics recorded over the M1 of
each subject and Mansouri et al. (2017, 2018) proposed a phase estimation method to
further develop brain-state-dependent tACS.

The work done is a fundamental step to pave the way to a fully closed-loop paradigm,
where stimulation parameters are changed with respect to the current biomarker as
depicted in Fig. 1.5.

8.8.3 Beyond a new AVANCER set-up

While brain-state-dependent stimulation holds great potential for enhancing current
rehabilitation set-ups, its potential applications extend beyond this scope. This novel
approach has multiple opportunities of exploitation. In the rehabilitation framework, it
can be used to target many different networks, besides the motor system. Ideally, all
the cortical networks could be targeted, such as the visual system, but also the DLFPC,
as previously done for MDD (Zrenner et al., 2020a; Faller et al., 2022). In addition to
rehabilitation, this system could be exploited as an assistive set-up. In this situation, an
approach similar to DBS could be used, where a specific state should be maintained.
Finally, this type of set-up can be very useful in electro- and neuro-physiological studies,
which may be necessary to design the stimulation protocol for either rehabilitative or
assistive objectives. Examples of these studies have been reported in Tables 6.1-6.2 and
in Chapter 7.
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8.9 Future Perspectives

The main goal of this thesis was to reduce upper-limb motor impairment in stroke patients
using neurotechnologies. Results from AVANCER are not finalized yet, but are surely
very promising and underlie the relevance of neurotechnologies and personalisation, at
least at a chronic stage.
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Figure 8.10: Personalized and hierarchical use of neurotechnologies in stroke rehabilitation.
Two opposite courses of action can be envisioned to promote motor recovery in stroke
patients according to their recovery stage (i.e., subacute or chronic). In the chronic
scenario, we can present the patients with a new neurotechnology at the time, starting
from the easiest one (i.e., passive robotic devices) and increasing complexity in time
when we see that one therapy is not helpful anymore. In this process, patients who are in
a lower excitable and plasticity state have the time to learn to use each new technology
independently while keep increasing the level of difficulty and participation required.
In the subacute scenario, we should exploit the fact that most patients will be within
a rich clinical environment with easier access to neurotechnologies. During this phase,
patients are in a high excitable window and the goal would be to boost their recovery
using the most complex techniques and then continue to simplify them to gain time from
calibration. If in the chronic stage we would wait until the patient reaches a plateau
in recovery with the current set of neurotechnology to change to the next level, with
subacute patients we could wait until they reach specific motor threshold, like it is done
for inclusion criteria.

If at the chronic stage a sequential addition of neurotechnologies is proving to be
advantageous, we may expect a different trend to be used in the acute/subacute setting.
There, a sequential removal of neurotechnologies may result more feasible as already
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suggested by (Colucci et al., 2022). Right after the ictal accident, patients are within the
clinical center and stroke unit environments, where the presence of neurotechnologies and
people with related expertise may be higher than in other centers and can be profited
from all patients. With this strategy, patients would begin their rehabilitation with the
most-complete therapeutic set-up (i.e., BBCI). The more the patients regain specific
motricity in both proximal and distal parts of the upper limb, the less complicated the
set-up can become, with fewer technologies involved. This results in a shorter calibration
time as well as in a decrease of expertise required. This concept has been graphically
represented in Fig. 8.10. It is key to say that in both stroke stages (acute and chronic) the
goal of personalized neurotechnologies is to have patients reaching a threshold of motor
recovery, that will allow them to further benefit from more standard and/or home-based
rehabilitation.

8.10 Conclusion

The present work aimed at progressing the state of the art of stroke neurorehabilitation.
In the Introduction, we placed this thesis at the intersection between neuroengineering
and translational neuroscience. During these five years, we have developed and tested
the efficacy and feasibility of a multi-neurotechnology BCI-based interventional approach
to help reducing upper-limb impairments in severely impaired chronic stroke patients.
The preliminary findings describing this set-up with a personalized and patient-centred
approach point towards a potential efficacy of the introduced treatment strategy. However,
to achieve further personalisation and maximization of improvements, a BBCI is suggested.
The first steps in this direction have been made by studying the most accurate methods to
estimate and forecast brain states and understand their effects on cortical and corticospinal
excitability. A new exciting development and test awaits multidisciplinary teams and we
hope that in a few years, thanks to the continuous advances in the technical and clinical
fields, someone’s dissertation will read:

"Mrs. Smith started a new life at age seventy-two, but probably not the one you would
expect. Two months ago she suffered a stroke. Days after the accident, she has begun an
all-inclusive therapy where she has learned to modulate her brain signals to trigger robotic
devices to move her arm and stimulate her brain. Today she is living independently at
home. She still goes to therapy three times per week: she got rid of the EEG cap (and
the gel!) and now focuses on gamified functional exercises with the assistance of FES."
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A.1 Abstract

In the last two decades, brain-computer interfaces (BCI) triggering external devices to
perform movements for upper-limb rehabilitation after stroke, have proven to be successful.
However, the literature is highly heterogeneous in terms of targeted population and study
protocols.

In this systematic review, we aim at identifying those patient characteristics and protocol
features that might best explain the variance observed in treatment-induced motor
recovery.

Using the data from 15 studies and a total of 168 patients with a BCI-based intervention,
patients in the sub-acute phase and mildly impaired patients showed a significantly
stronger motor recovery. Furthermore, receiving conventional therapy additionally to the
BCI-based intervention leads to a significantly larger improvement.

In summary, early BCI-based neurorehabilitation combined with conventional therapy
might induce a synergistic effect leading to a stronger functional recovery. A larger
patients sample in studies and more information on individuals and protocol features
would be desirable in order to build a predictive model for motor rehabilitation towards
personalization of interventions.
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A.2 Introduction

In the last two decades, the use of rehabilitation technologies for motor recovery after
stroke has increased (Raffin and Hummel, 2018). Among these, BCI is a very promising
technology. Its goal is to re-create contingency between voluntary brain activation in
the motor cortex and afferent peripheral sensory feedback, often given by an exoskeleton
or functional electrical stimulation (FES). This contingent activation of the efferent
(motor) and afferent (sensory) part of movements is thought to be one of the main
neurophysiological mechanisms BCI-based therapy relies-on. This leads to neuroplastic
changes following Hebbian learning principles supporting reorganization and the recovery
process. This intended contingency is achieved with the following framework: brain
activity is continuously recorded and fed to a decoding algorithm trained to differentiate
between specific brain states (e.g. rest vs. motor intention); whenever such signal is
detected, an external device/machine is triggered to perform a motor action and provide a
well-timed sensory feedback contingent to brain engagement. BCI is still a relatively new
technology for stroke rehabilitation and the current literature is mainly based on proof-of-
principle clinical trials targeted to provide first evidence for feasibility and efficacy of this
intervention in comparison to more standard rehabilitation treatments. Meta-analyses on
the topic (Cervera et al., 2018; López-Larraz et al., 2018) have shown that BCI therapies
result in significantly stronger motor improvement compared to various controls (i.e.
standard therapy (Ang et al., 2014; Kim et al., 2016), external device alone (Ang et al.,
2014, 2015; Li et al., 2014), sham BCI where feedback is given randomly, but with the
same external device (Ramos-Murguialday et al., 2013; Biasiucci et al., 2018; Frolov
et al., 2017a). Certainly, these reviews and the respective trials highlight the potential of
BCI-based rehabilitation for motor recovery after stroke. Although a positive effect of
BCI-based rehabilitation has been suggested, the BCI protocols are not standardized
and are quite heterogeneous; the same applies to the targeted patient population in
the different trials. Therefore, the present reviewaddresses whether specific intervention
parameters relate better to stronger motor recovery in experiments using BCI-based
therapy.

Considering all the studies (controlled and non-controlled) that recruited stroke patients
for motor rehabilitation using BCIs, large differences in outcome measures, protocol
design, as well as individual patient characteristics are apparent. Main differences are
found e.g., in total intervention duration, external device used, performed movements,
and in terms of individual patient characteristics, impairment at baseline and stroke
onset. The goal of our systematic review is to determine, within BCI studies, how the
degree of motor recovery is related to these features.
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A.3 Materials and methods

A.3.1 Articles retrieval strategy and inclusion criteria

Within this review, protocols and patient characteristics which could be potential pa-
rameters for predicting motor recovery in stroke patients were evaluated. The retrieval
of relevant papers used the following keywords in Google Scholar research: braincom-
puter/machine/robotic interface, exoskeleton/orthosis/robot, functional/neuromuscular
electrical stimulation, upper-limb, stroke, rehabilitation. In addition, we looked through
the references of the retrieved papers and reviews on the topic. Papers published until
the end of 2018 were considered. Moreover, only studies that reported clinical motor
assessment were included. In particular, for this preliminary review, we only accepted
studies using the Fugl-Meyer Assessment (FMA) (Fugl-Meyer et al., 1975) or the Arm
Research Action Test (ARAT) (Van der Lee et al., 2001) since they are the most widely
used scales and because a correlation between the two has already been extensively
confirmed (Rabadi and Rabadi, 2006; Remsik et al., 2018). Given the objective of this
review, we could only include articles reporting the motor improvement for each patient
(i.e. if only the average recovery of a group was given, the study was not considered).
If the study was a randomized trial, we only considered patients in the experimental
therapy. Finally, due to this "individuality" feature we had no limitation in sample size.
Whenever an eligible article was lacking data, we tried to contact the authors multiple
times.

A.3.2 Analyses methods

In terms of study protocol, we looked at six characteristics . (1) The device giving the
sensory feedback and (2) the type of movement produced. (3) The type of instruction
to calibrate and exploit the BCI was also considered, specifically we divided into motor
imagery (with no inner subdivision, as most studies explicitly say they used the kinesthetic
type) and active motor intention (“try to move the arm/hand”). (4) The additional
feedbacks received (e.g. visual, auditory, tongue stimulation). (5) Overall intervention
therapy and (6) if any, additional standard therapy. When possible, some characteristics
of the patients were also taken into account: motor impairment at baseline and the time
after stroke in months.

In these analyses the dependent variable is always the motor improvement. For each
binary comparison, we computed non-parametric tests for the means, namely the Mann-
Whitney test and the effect size with the Cohen’s d (Cohen, 1988). For non-binary
features, such as the intervention duration, we looked at the correlation. Along the
article, we will refer to motor improvement as the difference in motor score between the
end and the beginning of the study. We will call proportional motor improvement the
motor improvement normalized by the baseline. All the values are normalized by the
maximal achievable score. This choice was made since some studies used a modified
FMA (Ramos-Murguialday et al., 2013; Tabernig et al., 2018) and because the maxima
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of the ARAT and the FMA differ.

A.4 Results

A.4.1 Search results

The pruned research gave overall 30 eligible papers. Of these, 6 were redundant reports,
1 used both motor imagery and attempt the movement as instruction, 3 used no motor
scale, 2 did not assess motor abilities with FMA nor ARAT and 3 did not report the
motor scores for each subject. This left us with 15 papers.

A.4.2 Overall characteristics of protocols and samples

A summary of study protocols and overall subject characteristics for each of the 15
articles can be found in Table A.1. In total, we included 168 patients who underwent
non-invasive BCI therapy that triggered sensory feedback. For 120 of them, the device
used was an exoskeleton. The remaining received above motorthreshold FES. Additional
feedbacks ranged in terms of visual response (6 studies), the therapist voice (2 studies)
or tongue stimulation (1 study). In some cases, more than one additional feedback was
given. Overall intervention time ranged between 5 and 64 hours(µ=17.13 σ=16.76).
Some studies also involved conventional therapy (if present, it was between 7.50 and
40 hours, sometimes in higher amount compared to the experimental therapy (Li et al.,
2014; Pichiorri et al., 2015). In terms of personal characteristics, we could not retrieve
the age and sex for most of the time. However, 83 subjects (chronic patients) had a
stroke more than 6 months before participating in the experiment (µ=53.88, σ=53.03
months) and 26 were sub-acute (µ=2.83, σ=1.06 months). For two studies (Frolov et al.,
2017a; Chowdhury et al., 2018) this parameter was not given. In terms of severity of
impairment, almost half of the subjects were severe (FMA<=20 and ARAT<=20) and
the remaining moderate-to-mild (here we refer to mild as less impaired than moderate).

A.4.3 Patient characteristics

For patient individual characteristics only stroke onset and impairment at baseline was
investigated, due to lack of data for other parameters (e.g. age, lesion side). In Fig. A.1
the difference between binarized groups of subjects is displayed: chronic vs. sub-acute
and severe vs. moderate/mild. Patients in the sub-acute phase showed significantly
better recovery compared to the other groups (Fig. A.1B), the same can be observed
for patients who are rather mildly impaired before starting the experiment (Fig. A.1A).
When combining the two groups (chronic and severe vs. sub-acute and moderately
impaired), the effect size is increasing.
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Table A.1: Characteristics of selected studies. 1 If extension or flexion, it means also
movement in the other direction. 2 The actual sample number was 19, however 5 patients
were recruited with already the maximal score (57 in the ARAT) and remained stable.
Therefore, they were not included since they did not have any window for recovery.
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A) B)

Figure A.1: Density plots for comparison between patients’ characteristics and their
motor improvement, normalized by the maximum score. We consider their impairment
at baseline (severe or not) and the chronicity (stroke occurred more than 6 months before
study). A) Impairment at baseline; B) chronicity. In blue: severe and chronic, in red:
moderate-to-mild impairment and sub-acute patients respectively. The dashed lines
represent the mean of each contribution.

A.4.4 Protocol features

One source of variance for the motor improvement comes from the subjects’ characteristics,
another from the protocol design. The 15 studies considered all differed in terms of
intervention time, duration (if any) of an additional conventional therapy, type of
instruction to command the BCI and the device exploited for sensory feedback. The type
of movement triggered by the BCI also changed among studies. We divided them into
proximal (shoulder, arm and elbow), distal ( hand and wrist) and movements combining
distal and proximal parts (e.g. reach and grasp). As motor improvement also significantly
differed according to the baseline, we decided to use proportional improvement of motor
functions as dependent variable to take into account baseline differences and give stronger
importance to improvements in severe patients. We acknowledge that there are also
other computational approaches that could have been used (Pichiorri et al., 2015).

Due to space limitations detailed technical aspects related to BCI and EEG recordings
were not addressed in the review ; also , thorough information about these aspects is
often not available. Nevertheless, it is obvious that the processing pipelines used, as well
as the classifiers, were quite heterogeneous. The targeted brain signal was mainly the
sensorimotor rhythm, but recorded from different areas; moreover, the pre-processing
pipeline varied and the decoding algorithm ranged from support vector machine to
common-spatial patterns, from naïve Bayes and Gaussian classifiers to independent
component analysis. Firstly, instruction s given to subjects to command the BCI were
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addressed. In most papers, they were asked to perform motor imagery (MI) and in fewer
to try and make the movement that the device would have then actually completed.
Patients using MI, had a better recovery compared to the other group with a moderate,
but not significant effect size (d=0.3). Attempting the movement was never tried in
studies that included non-severe subjects to avoid the possibility of some actively initiated
movements for only a subgroup. However, the results did not change when we only looked
at severe patients. This may be due to the fact that proportional improvement rather
than motor improvement was used. No significant difference in recovery was observed
when comparing the devices used, nor the number of additional feedback provided.

Interesting results can be observed when looking at the proportional improvement
according to the movement performed. All the movements were quite simple (e.g. , hand
opening, elbow flexion) and only in two study more complex ones (i.e. reaching and grasp
(Ramos-Murguialday et al., 2013; Ibáñez et al., 2017)) were attempted. For these specific
cases, complex ity goes along with an action involving distal and proximal parts. Fig.
A.2 shows significant larger improvement when the latter types are performed compared
to movements involving either part.

Figure A.2: Proportional motor improvement according to type of movement trained with
either device. There is a significant difference in recovery when a movement involving both
distal and proximal parts of the upper-limb is used compared to movements involving
only one part."**"=pleq0.001.

Other significant results arose when studying the explicit use of conventional therapy
in parallel with the experimental one. Initially, we grouped the subjects according to
whether or not they received additional standard therapy. The effect size was quite
strong (d=0.5), and the two distributions significantly different (p<0.001) with the group
receiving conventional therapy showing larger improvement . Secondly, we stratified
patients into more groups according the total amount of standard therapy received and
reported the results in Fig. A.3A. Examining correlations between the total amount
of therapy received and the respective proportional improvement, we found r=0.34,
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p<0.001. However, no significant correlation was found when looking at the total amount
of experimental therapy. Finally, we summed the total hours of therapy (experimental
with BCI and standard) and found a strong correlation (r=0.24, p<0.01). Boxplots can
be seen in Fig. A.3B.

A)

B)

Figure A.3: Proportional motor improvement after BCI therapy according to hours of
therapy. A) Additional conventional therapy; B)sum of intervention and conventional
therapy. If not explicitly specified in the study protocol, standard therapy was considered
as none.

A.5 Discussion

This systematic review aimed at looking at possible relationships between patient and
study protocol characteristics and motor improvement of the upper limb. The target
population was stroke patients who managed to control a BCI to trigger an external
device for supporting the movement and delivering sensory feedback; specifically, we
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looked at studies with FES or exoskeletons.

A.5.1 Stroke onset and severity at baseline

Chronicity and severity of impairment at baseline were found to be both important
features. As expected, the group of sub-acute patients generally improved more compared
to the chronic ones. This is probably due to the "high neuroplasticity window" that
opens for around 8-12 weeks right after the stroke incident in which also the brain
naturally starts to re-organize (Kwakkel and Kollen, 2013). During this period re-
learning processes are more efficient and efficacious (Langhorne et al., 2011). Overall, this
result is in agreement with recent meta-analyses on BCI rehabilitation (Cervera et al.,
2018). We also observed that starting at a lower level of motor capability leads to smaller
improvement, even though the range for improvement is much higher. Considering that
often larger impairment results from larger lesions, it seems reasonable that the capability
for reorganization, plastic changes and re-learning might be limited.

A.5.2 Motor imagery vs. attempted movement

Among the protocol design features, we were expecting to see larger improvement when
the instruction to command the BCI was to try to attempt the movement rather than
MI, as this should try to re-activate the "normal" motor pathways. Yet, there is a great
overlap between MI and realmovement pathways. This correspondence has been proven
both with fMRI studies (Gerardin et al., 2000) and in terms of physics law preservation
in MI, such as the Fitt’s law of timing (Lotze and Halsband, 2006). In this analysis, it
seems that MI leads to a larger, although not statistically significant, recovery. A clear
limitation here is that the number of patients for the two groups is very different, being
the group of MI almost double in size compared to the other. Furthermore, the group
attempting to do the movement is composed only of severe patients, who generally have
lower performance. Nonetheless, when focusing only on hemiparetic stroke subjects, the
results do not differ much. Therefore, a feature to look at, rather than the instruction
given, is the BCI classifier and the accuracy obtained. However, because the primary
outcome of all the included studies was motor recovery, the classifier algorithm exploited
was seldom reported in detail. Moreover, it was seen that performance, whenever reported,
had been computed in different manners (i.e. different proportions between true/false
positive/negatives), making comparisons difficult.

A.5.3 Movement type

We found significantly stronger motor recovery when the repeated movement contained
joints in both the proximal and the distal part of the upper-limb. Moreover, there was a
slight trend for which distal movements perform better than proximal ones, though the
difference is not statistically significant. Overall, findings from this section suggest that
doing more complex movements, and possibly different types of movement during the
BCI therapy, may lead to better motor improvement (Ramos-Murguialday et al., 2019);
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additive effects may be obtained with functional movements (Kim et al., 2016). At this
regard, we speculate that more movements can be achieved by combining an orthosis
with FES. Such a union has already been tested in other studies, but rarely triggered by
a BCI (Grimm and Gharabaghi, 2016).

A.5.4 Therapy quality or quantity?

In one out of three reviewed studies, for a total of 53 patients, conventional therapy was
provided in addition to the experimental one. From the current analyses, patients who
received it showed significantly better improvement, with a strong effect size. Furthermore,
the amount of training hours significantly correlated with the degree of recovery. A
similar correlation was observed when looking at the total amount of therapy, of either
type, during the study period. On the contrary, no correlation was found between the
total hours of the intervention and motor recovery. It must be pointed out that except
for (Bundy et al., 2017), the hours of intervention and additional therapy were kept
constant for patients belonging to the same study. Taken together, one could summarize
that the addition of standard therapy (1) increases the total amount of therapy and
(2) although not working on the synchrony between brain intentions and feedbacks,
helps the patient doing more types of movements and especially functional ones. Two
randomized clinical trials (Ang et al., 2014; Kim et al., 2016) evaluated the difference
between BCI and conventional rehabilitation; unfortunately, due to the lack of individual
data, they were not included in this review. Nonetheless, in (Kim et al., 2016) the
BCI group received additional therapy, having 50% more overall time of therapy with
respect to those receiving only standard. Differently, in (Ang et al., 2014) the control
with standard therapy received an overall same amount of therapy. In both studies, the
experimental group improved significantly better than their control and when reported,
kept this improvement in the follow-up measurement. To more deeply investigate the
role of standard therapy and how a BCI performs compared to it, a randomized clinical
trial should be designed in which the total duration for the BCI and the conventional
therapy are exactly the same, as well as the performed movements.

A.5.5 Limitations

In this systematic review only studies providing individual data for motor assessment
were included. Therefore, the overall sample size was limited. Moreover, the restriction
on the motor scales, led to discard some studies. Indeed, adding other motor scales would
be relevant. In terms of characteristics, we here only looked at two patients’ personal
features: motor score at baseline and stroke onset. In further analyses, it would be
interesting to add more parameters such as age, lesion site, lesion size or hemispheric
dominance and handedness. Due to space limitation technical aspects of BCIs used in
rehabilitation settings were also not in detailed scope of this review. To make BCI-based
interventions more comparable and standardize them it is of crucial importance that the
details about classifiers and analytical pipelines are provided and the different approaches
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compared. As a brief overview aspects relevant for the classifiers are both the type of
preprocessed signal fed to the decoder and the algorithm itself. Furthermore, related to
the neurophysiological mechanisms targeted , the location side from which the signal is
read is also important and may have an effect on the motor improvement.

Finally, within the present review each feature impacting on the effect of the intervention
was addressed separately, however in upcoming meta-analyses it is essential to combine
the different aspects and features to develop a strong predictive model.

A.5.6 Recommendations

Limiting factors in these analyses were related to the absence of some features, especially
for each individual. A more detailed reporting of individual therapy, BCI-based features,
patients’ characteristics and treatment durations will also help to better compare studies
and develop standards and optimized interventions to maximize the treatment effects. In
terms of BCI-therapy, it is important to develop devices which support multiple, functional,
longer, and more complex movements. However, at this concern, we acknowledge that
multi-class discrimination with non-invasive techniques may be strenuous. Therefore,
developments towards hybrid BCI or invasive techniques might pave the way towards
these goals.

A.6 Conclusion

In the present review, we identified five features that show relevance for driving motor
recovery of the upper limb in stroke patients in BCI rehabilitation. In terms of patient
characteristics, being in the sub-acute phase and mildly impaired support functional
improvement within this treatment strategy. Regarding protocol features, we observed
the importance of adding conventional therapy that can be related to both longer
rehabilitation duration and more variety and functionality of executed movements.
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B.1 Abstract

Background: Latencies of motor evoked potentials (MEP) can provide insights into
the motor neuronal pathways activated by transcranial magnetic stimulation (TMS).
Notwithstanding its clinical relevance, accurate, unbiased methods to automatize latency
detection are still missing.

Objective: We present a novel open-source algorithm suitable for MEP onset/latency
detection during resting state that only requires the post-stimulus electromyography
signal and exploits the approximation of the first derivative of this signal to find the
time point of initial deflection of the MEP.

Methods: The algorithm has been benchmarked, using intra-class coefficient (ICC) and
effect sizes, to manual detection of latencies done by three researchers independently
on a dataset comprising almost 6500 MEP trials from healthy participants (n=18) and
stroke patients (n=31) acquired during rest. The performance was further compared to
currently available automatized methods, some of which created for active contraction
protocols.

Results: The unstandardized effect size between the human raters and the present
method is smaller than the sampling period for both healthy and pathological MEPs.
Moreover, the ICC increases when the algorithm is added as a rater.

Conclusion: The present algorithm is comparable to human expert decision and outper-
forms currently available methods. It provides a promising method for automated MEP
latency detection under physiological and pathophysiological conditions.

Keywords: motor evoked potential, transcranial magnetic stimulation, latency,
derivative-based algorithm
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B.2 Introduction

Transcranial magnetic stimulation (TMS) delivered to the motor cortex can elicit muscle
responses detectable with electromyography (EMG) (Rossini and Rossi, 1998). The
outcome signal is called motor evoked potential (MEP) and its characteristics vary
according to coil orientation, stimulus location and intensity, and the underlying brain
network (Derosiere et al., 2020). MEPs have gained important scientific and clinical
relevance since it was shown that their features are associated to motor cortex excitability,
integrity and conduction velocity of the activated fibers of the motor neuronal pathway
(Chen et al., 2008). Specifically, the peak-to-peak amplitude provides insights in cortico-
spinal and intracortical excitability and the latency (or onset) provide information on
the conduction within triggered neuronal pathways. Pathological findings in either
these measures have been observed in neurological and motor disorders (Rossini and
Rossi, 1998; Udupa and Chen, 2013; Uozumi et al., 1991) such as multiple sclerosis
(Kale et al., 2009), stroke (Alagona et al., 2001; Bembenek et al., 2012), and motor
neuron disease (Miscio et al., 1999). Given the importance of these features, automatized
methods to measure them have been developed: the amplitude is easily calculated as
the difference between the positive (maximum) and negative (minimum) peaks; whereas
latency computation is less straightforward and is often still manually measured. The few
available computational methods define the onset as the first sample of the post-stimulus
EMG above a pre-defined number (or threshold) given by a combination of the mean and
standard deviation of the pre-stimulus EMG (Daskalakis et al., 2003; Garvey et al., 2001;
Hamada et al., 2013; Huang and Mouraux, 2015). If manual latency detection carries a
human bias (especially when the population studied is known) and demands the raters
long active time to register the onset for each signal (i.e., tens of seconds per MEP), the
automated methods require the definition of a hyperparameter (i.e., the threshold) as
well as the pre-stimulus EMG. Moreover, the proposed algorithms have been mostly used
during contraction protocols; yet, unbiased estimation of latency is also important at
rest, for instance in the context of stroke research, where active contraction may not be
possible. Therefore, we propose a novel solution that addresses these needs and reliably
detects the MEP onset for resting state condition in both a healthy and stroke cohort.

B.3 Methods

This novel method for MEP latency computation exploits the approximation of the
signal’s first derivative and only necessitates the post-stimulus EMG.

B.3.1 EMG acquisition and pre-processing

EMG data were recorded with the Signal software (Cambridge Electronic Design Limited,
Cambridge, UK) and then exported to Matlab files to be used with a custom graphical
interface for pre-processing. Rejection criteria were as follows: trials with muscle
pre-activation exceeding ± 25 µV from baseline less than 100 ms before TMS onset
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(Muellbacher et al., 2001) and/or ± 100 µV from baseline 500–100 ms before the pulse
were rejected. Trials containing artefacts or with documented suboptimal coil placement
were rejected from further analysis. Further automatized trial exclusion was done,
following the methods described in (Hussain et al., 2019), if 1) MEP amplitude poorly
correlates to the average 2) more than half of the sample in the baseline (-250 to -5 ms)
was above the threshold 75% + 3 × interquartile range.
Derivative-based algorithm
The proposed algorithm follows the following steps, which can be visually inspected in
Figure 1A.
Algorithm:

1. Takes the MEP window 10 to 50 ms after the stimulation;

2. Finds the peak and trough of the MEP;

3. If the trough occurs before the peak, multiplies the signal by -1;

4. Computes the approximation of the first derivative (i.e., difference between consec-
utive samples ) of the MEP until the peak;

5. Finds the longest vector of consecutive samples having a positive derivative (a
minimum length of idxpeak − idxtrough

6 is suggested).

6. The latency is the first sample of the vector obtained in 5.

The performance of this algorithm was benchmarked to the manually detected latencies
by three independent human evaluators for the same preprocessed dataset consisting
of both healthy and stroke MEPs. Three individuals with different experience with
MEP analyses (low, average, and high) were asked to visually inspect all the trials and
click, through an application, on the sample point they believed to be the MEP onset.
The raters could only see the pre-processed 10-50ms post-stimulus EMG and did not
know to which subject the trial belonged to. Moreover, the derivative-based algorithm
was compared with four other automatized methods (Daskalakis et al., 2003; Garvey
et al., 2001; Hamada et al., 2013; Huang and Mouraux, 2015), which share among them
the same underlying threshold-based approach, but differ on the computation of the
threshold. Three of the algorithms (Daskalakis et al., 2003; Garvey et al., 2001; Hamada
et al., 2013) were designed for active contraction protocols and were directly applied on
our resting-state data.

The full code for this comparison, including the application for manual latency detection
and the scripts to create compatible data to load, was written in Python 3.7 and can be
found at www.github.com/clovbig/MEP_latency. A sample dataset can be found in the
same repository.

http://www.github.com/clovbig/MEP_latency
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Table B.1: Demographics of stroke patients who were assessed in either of the four time
points. Recruited stroke patients were assessed with the same TMS protocol within one
week (T1), at three weeks (T2), three months (T3) and one year (T4) after the accident.
The table reports the number of subjects per time-point, the gender, age, lesioned
hemisphere and the Fugl-Meyer Assessment for the upper extremity (FM-UE)(Fugl-
Meyer et al., 1975) of the affected body side.

N (female)
Age

(mean±SD)
N left

lesioned hemisphere
FM-UE affected side

(mean±SD)

T1 26 (7) 66.09 ± 0.46 12 54.5 ± 11.4
T2 23 (5) 68.34 ± 0.42 11 56.3 ± 3.38
T3 9 (3) 68.86 ± 0.51 4 62.8 ± 4.4
T4 8 (2) 71.89 ± 0.44 3 54.8 ± 11.0

B.3.2 Dataset used for evaluation

The dataset used included EMG signals of 18 young healthy (age=27.0±2.8 years, 7
female) participants and 31 stroke patients; the latter were evaluated at different time
points post stroke: within a week, three weeks, three months, and one year after the ictal
event; not for all patients the 4 time points were available (for details please see Table 1).
All subjects signed a written informed consent and the study was approved by the ethics
committee of the Canton of Vaud, Switzerland (no. 2018-01355). For each subject and
time point, a maximum of 180 single-pulse trials were available, obtained in six separated
blocks. During each block, TMS was applied using a MagPro X100 stimulator connected
to an MC-B70 coil (Magventure, Farum, Denmark) at rest. Pulses were delivered over
the first dorsal intraosseous (FDI) hotspot (the right one for healthy participants and the
affected one for stroke patients) at an intensity evoking an MEP approximately between
0.5 to 1 mV, when possible (Boroojerdi et al., 1996; Rossini et al., 1994). Neuronavigation
(Localite GmbH, Bonn, Germany) was used along all the experiment. The FDI EMG
activity was recorded using a pair of disposable Ag-AgCl electrodes; the signal was
amplified and sampled at 3 kHz using a Noraxon DTS Receiver (Scottasdale, Arizona,
United States) with the band-pass filter at 10 Hz to 1000 Hz (analog Sallen-Key for
high-pass filter and digital FIR filter with order 128 for the low-pass; the gain was set at
500), and digitized at 5 kHz using Signal software (Cambridge Electronic Design Limited,
Cambridge, UK) for further processing on a laptop. For more details, please see Section
B.8; Table B.4 reports the total number of MEP evaluated after manual and automatic
pre-processing.
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B.3.3 Statistics

Algorithms’ performance was assessed on the "ground truth", here considered as the
latencies detected by the human evaluators. Our goal was to determine equivalence of
methodologies, thus we used inter-rater reliability techniques, both for the 3 human raters,
as well as for the automatic raters (i.e., the computational algorithms). Specifically, we
looked at the intra-class coefficient (ICC) for a two-way mixed effect model for the mean
of 3 (or 4, if an algorithm was added) raters maximizing absolute agreement (Koo and
Li, 2016; Shrout and Fleiss, 1979). We used a confidence interval (CI) at 95%. Moreover,
we looked at the standardized and unstandardized effect size (i.e., difference between the
means) to measure practical differences between the computational algorithms and the
human rating gold standard. All statistical tests were run on R 3.6.0.

B.4 Results

B.4.1 "Ground truth"

Three researchers GT1, GT2, GT3 with low, average and high experience (i.e., 0.5, 5, 14
years) with MEP analyses respectively, manually defined the onset of the MEPs. GT3
evaluated only half of the given trials. The average difference in their detections was of
0.42ms and the pairwise unstandardized effect sizes ranged between 0.19 and 0.40ms
(Table B.1). Considering that the sampling frequency was 3 kHz, the maximum real
error detectable has to be greater than 0.33ms which implies an almost null effect size
and strong similarity in the researchers’ responses.

The ICC between the 3 raters was 0.908 (with a 95% CI= 0.9, 0.915) for a total of
N=2436 trials. Just like standard statistical tests and their p-value, the ICC also depends
(decreases) with the increase of the sample size. Indeed, when taking the average latency
value per subject and time-point, the ICC increased to 0.995 (95% CI=0.973, 0.998) for
N=79 (Table B.2).

Given the similarity in response between raters, we used the mean value of the manual
MEP onsets as new ‘ground truth’.

B.4.2 Algorithms’ performance

Figure 2A shows the distributions of all the latencies detected by human evaluators
(average and individual) and the algorithms. At glance, we see that the new method is
very similar to human detection in terms of median, but also in variance of the distribution.
Quantitative measures are reported in Table B.1. We observe that the unstandardized
effect size for our derivative-based method is at least one order magnitude smaller than
any of the threshold-based algorithm; moreover, it is smaller than the pair-wise human
ratings effect sizes and again this error is smaller than the least detectable error.



Appendix B. Automatized method for MEP latency detection 233

Table B.2: Quantitative differences between average "ground truth" (GT) and the
computational algorithms. The algorithms are called by the first authors of the reference
paper: Daskalakis et al. (2003), Garvey et al. (2001), Hamada et al. (2013), Huang and
Mouraux (2015). On the first column we report the unstandardized effect size as the
difference between the means of the distributions. The second column reports the mean
and standard deviation of the difference between the distributions. Both measures are in
ms. Some of the errors are actually below the lowest detectable error due to the sampling
frequency at 3 kHz - they are highlighted in bold.

UNST. EFFECT SIZE µ±σ2 DIFFERENCE
All Healthy Stroke All Healthy Stroke

GT1 – GT2 0.40 0.35 0.43 0.44 ± 1.98 0.34 ± 1.97 0.48 ± 1.99
GT1 – GT3 0.19 0.11 0.24 0.24 ± 1.98 0.18 ± 2.18 0.26 ± 1.89
GT2 – GT3 -0.21 -0.23 -0.19 -0.19 ± 1.21 -0.17 ± 1.12 -0.20 ± 1.25
GT – BIGONI 0.17 0.26 0.14 0.14 ± 1.38 0.23 ± 1.08 0.11 ± 1.48
GT – DASKALAKIS -3.31 -3.11 -3.39 -3.40 ± 1.53 -3.13 ± 1.15 -3.51 ± 1.65
GT – GARVEY 5.61 2.31 6.88 5.63 ± 9.12 2.21 ± 8.24 6.96 ± 9.10
GT – HAMADA 7.88 7.38 8.07 7.84 ± 7.07 7.38 ± 6.38 8.02 ± 7.31
GT - HUANG 11.97 14.09 11.17 11.98 ± 8.31 14.12 ± 5.16 11.13 ± 9.11

By analyzing the ICC, these results are further substantiated. When all trials are used
(N=2436) and the derivative latency is added to the 3 manual raters, the ICC increases
to 0.939 (95% CI=0.934-0.943), being bigger than the ICC of the human raters as there
is no CI overlap. Conversely, the other algorithms always led to a smaller ICC with no
CI overlap; only exception for Daskalakis in which the ICC’s CI encloses the human CI,
but its large variability, suggests a low certainty in the result (Table B.2). As seen with
the ‘ground truth’ alone, the ICC for all the algorithms increased when only one point
per subject and time point was taken.

The derivative-based method provided very small errors across the full spectrum of
signal-to-noise ratios (SNR) computed as the ratio between the MEP peak-to-peak
amplitude and the maximum noise in the baseline as suggested by (Nikolov et al., 2021).
In particular, the largest errors occurred at very low SNR and never at high values, in a
comparable fashion to human raters (see Fig. B.3).

B.4.3 Population type effect

Dividing the dataset into two groups according to the cohort (Fig. 2B), we observed that
the average difference in latency per trial in the "ground truth" condition was 0.34ms and
0.46ms for healthy and stroke datasets respectively (see Fig. B.4 for qualitative boxplots).
Though the value is slightly bigger for the stroke dataset (i.e., 1.5 samples of detectable
errors vs. 1 detectable error), when we look at the ICC we have a higher agreement for
stroke than healthy. The difference becomes insignificant when the ICC is computed using
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Figure B.1: The figure shows the six steps used by the derivative-based algorithm
implemented on two example trials from a healthy subject. A) The steps follow from
left-right and top-bottom and are thoroughly described within the text. The algorithm
requires the post-TMS EMG signal (10-50ms after trigger) (step 1). The maximum (i.e.,
peak) and minimum (i.e., trough) are found on the signal and highlighted from (step
2). If the minimum occurs before the maximum, the signal is flipped on the x-axis, and
peak and trough are exchanged, if the condition is not met, the signal remains the same
(step 3). From step 4 the approximation of the first derivative (i.e., difference between
consecutive samples) is used; all the samples with positive derivative before the peak
are highlighted with a green cross and chunks of at least two consecutive samples with
positive derivative are highlighted with yellow dots in step 5. In the final step, the longest
of these chunks (which must also be longer than a fourth of the distance between the
peak and the trough) is highlighted with orange dots and the latency is defined as the
first sample of the latter with a red cross. B) Derivative based algorithm’s steps on a
trial where the latency cannot be found.
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Table B.3: Intra-class coefficient (ICC) of human raters with automatized algorithm.
We used a two-way mixed effect model for the mean of k raters maximizing absolute
agreement. Column one shows the ICC for the 3 ground-truths; the columns on the
right use the three human gold standards and add one of the automated algorithms at
the time. In parenthesis is the 95% CI. The ICC was computed only on trials where all
raters (humans and algorithms) found a latency value.

GT1-GT2-GT3 + Bigoni + Daskalakis + Garvey + Hamada + Huang

All
(n = 2436)

0.908
(0.9, 0.915)

0.939
(0.934, 0.943)

0.833
(0.482, 0.923)

0.361
(0.172, 0.496)

0.472
(0.186, 0.637)

0.156
(-0.140, 0.390)

Healthy
(n = 737)

0.831
(0.808, 0.852)

0.893
(0.879, 0.906)

0.744
(0.338, 0.874)

0.322
(0.229, 0.405)

0.253
(-0.108, 0.832)

0.105
(-0.078, 0.311)

Stroke
(n = 1699)

0.92
(0.911, 0.927)

0.945
(0.94, 0.95)

0.843
(0.49, 0.929)

0.387
(0.126, 0.553)

0.302
(-0.071, 0.532)

0.127
(-0.138, 0.335)

All avg
(n = 79)

0.995
(0.973, 0.998)

0.995
(0.99, 0.998)

0.896
(0.421, 0.964)

0.513
(0.034, 0.744)

0.490
(0.014, 0.753)

0.284
(-0.085, 0.574)

Healthy avg
(n = 18)

0.993
(0.966, 0.998)

0.994
(0.982, 0.998)

0.83
(0.264, 0.951)

0.681
(0.331, 0.867)

0.348
(-0.028, 0.69)

0.140
(-0.018, 0.419)

Stroke avg
(n = 61)

0.994
(0.971, 0.998)

0.996
(0.99, 0.998)

0.901
(0.437, 0.967)

0.514
(0.010, 0.761)

0.506
(0.018, 0.766)

0.291
(-0.101, 0.585)

the average latency per subject and time point. Similar trends are observed when the
algorithms are added. In particular, with any population, the derivative-based algorithm
always reaches the highest value with no CI overlap.

B.4.4 Non-MEP trials removal

The dataset used had been preprocessed both manually and automatically (Hussain
et al., 2019); however, some non-MEP and noisy trials remained and were assessed by
both the researchers and the algorithms. When counting the number of discarded trials,
we observed that 221 (25 of healthy data) out of 6474 (1776) trials were removed by all
researchers; of those, 67 (84)% were also discarded by the derivative algorithm, whereas
the other algorithms discarded only between 3 (4) and 34 (36)% of those non-MEP
trials. As it can be seen from Table B.5, our method discarded more trials compared
with the other algorithms: it removed 170 trials where at least one researcher found a
MEP; contrarily the threshold-based methods were almost always able to found a sample
point corresponding to their definition of latency and discarded less than 80 trials (Table
B.5). The derivative-based algorithm discarded trials if no sample was respecting the
conditions to be the latency, this occurred if there were not enough (i.e., a fourth of the
distance between peak and trough) consecutive sample with a positive derivative before
the peak (see Fig.1B).
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Figure B.2: Distribution of the latencies detected by the human raters (GT1, GT2,
GT3) and their average (GT_mean) and those defined by the automated algorithms,
here called by the first authors of the reference paper: Daskalakis (Daskalakis et al.,
2003), Garvey (Garvey et al., 2001), Hamada (Hamada et al., 2013), Huang (Huang and
Mouraux, 2015). Each point in the boxplot corresponds to one MEP trial. A) All trials
are considered no matter the population; the maximum number of points per boxplot is
6474. B) The same dataset is here divided according to the population group: young
healthy on the left and stroke patients on the right; maximum number of points per
boxplot are 1776 and 4698, respectively.



Appendix B. Automatized method for MEP latency detection 237

B.5 Discussion

The thorough analyses of different automated algorithms for computing MEP latencies
provided strong evidence that our new derivative-based algorithm is comparable to the
manual latency detection performed by human raters both in a healthy and a stroke
dataset. Specifically, we report that the ICC increases when adding our algorithm to
the human evaluation enhancing the strength of reliability and suggesting that this new
unbiased rater positions itself in the average response of three researchers with different
MEP expertise. Interestingly, such impartial algorithm also detects the trials where no
researcher found an MEP. We believe that this aspect is very important since, differently
from the threshold-based algorithms, almost no spurious latency values are added into
the dataset.

The derivative-based algorithm outperformed the threshold-based algorithms for the
determination of MEP latency during resting conditions. We would like to note that
most of the methods described in the literature were designed for active contraction
protocols, where the morphology of the signal might be different, with higher amplitudes
and more background noise compared to resting-state conditions as used here. Indeed,
in upcoming studies the described method has to be further evaluated on data acquired
during active (e.g., contraction) conditions. Besides the superior performance results,
the present algorithm carries the advantage of removing the threshold hyperparameter,
which is the element separating the currently available methodologies.

Given its simplicity and generalizability, we acknowledge that the present derivative-based
approach may be used for additional purposes than MEP onset detection and can find
uses in new contexts and signals such as EEG evoked potentials.

B.6 Conclusion

The novel open-source derivative-based method for computing MEP latencies removes the
need of manually selecting the onset of MEPs, speeding up the analysis process, as well
as removing human bias. The latter risks to be present especially when latency is used
to make comparisons: as a diagnostic measure to differentiate healthy from pathological;
or in a research setting to study stimulation paradigms effects (e.g., to evaluate the
effect of different current directions of TMS on excitability of the corticospinal tract
(Nikolov et al., 2021)). Given the high accuracy in the healthy dataset, this new tool
opens possibilities to answering further research questions related to cortico-spinal tract
conduction times and brain-network science. Moreover, the performance on the stroke
MEPs gives promise to apply this tool not only in the scientific setting, but also in the
clinical setting. Here MEP latency and related measures, such as the central motor
conduction time, are already essential in diagnosing demyelinating disorders such as
multiple sclerosis and motor neuron diseases (Kale et al., 2009; Miscio et al., 1999; Udupa
and Chen, 2013), or add to the determination of the prognoses of other neurological
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conditions, such as stroke or spinal cord injury(Bembenek et al., 2012).
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B.8 Supplementary Material

Methods - Transcranial Magnetic Stimulation

Monophasic pulses were applied on the healthy participants while biphasic pulses were
used for stroke patients to account for higher motor thresholds. Current direction was
adjusted to stimulate posterior to anterior. Pulses were delivered every 4 seconds with a
25% jitter. The intensity was chosen based on a target amplitude between 0.5 and 1 mV
in both populations. Similar intensities have been previously reported in stroke patients
(Conforto et al., 2010).

Table B.4: MEP dataset. The total number of trials used per population type and
time point is shown in column 1; column 2 to 4 report the number of trials where each
researcher identified the MEP and thus its onset. Researchers 1 and 2 labelled all the
6474 trials, whereas researcher 3 only looked at 3485 trials. The number of healthy
subjects was 18; of stroke patients 31, of these 26 subjects were evaluated in time point
1, X in time point 2, X in time point 3 and X in time point 4.

Number of trials Ground truth 1 Ground truth 2 Ground truth 3

Healthy 1776 1735 1728 754
Stroke 4698 4182 4287 1924
Time point 1 1951 1722 1764 774
Time point 2 1644 1467 1522 681
Time point 3 552 527 522 247
Time point 4 551 466 479 222

Table B.5: Counts of trials detected as not having MEP. GT3 alone is not reported
because it only labelled half of the total trials. On the diagonal the total number of
trials detected as non-MEP trials are reported; trials belonging to healthy dataset are in
parenthesis. In the other cells, we report the various combinations of algorithms.

GTmean GT1 GT2 Bigoni Daskalakis Garvey Hamada Huang

GTmean 221 (25) 221 (25) 221 (25) 148 (21) 43 (3) 75 (9) 6(2) 7 (1)

GT1 557 (41) 268 (27) 193 (26) 43 (3) 78 (10) 8 (2) 20(6)

GT2 459 (48) 179 (28) 43 (3) 76 (9) 7 (2) 17 (6)

Bigoni 318 (48) 43 (3) 76 (10) 7 (2) 17 (6)

Daskalakis 43 (3) 17 (1) 1 (1) 2 (2)

Garvey 79 (10) 5 (0) 8 (4)

Hamada 9 (2) 7 (1)

Huang 32 (6)
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Figure B.3: Relationship between signal to noise ratio (SNR) and latency detection
performance. The top panel shows the performance of the proposed derivative-based
algorithm (compared to the averaged ground truth). The bottom panel shoes the
difference in latency detection by the three human raters.
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Figure B.4: Algorithms performance compared to ground truth. A) Population type:
difference in ms from the average ground truth for the automated algorithms and pair-
wise difference between human raters. In red only MEPs from healthy participants are
considered and in blue those of stroke data (all time points). B) Time point after stroke:
the same differences are considered, but only for stroke data and the colors now indicate
the time-point of data acquisition (T1 is within a week, T2 is three weeks, T3 is three
months, and T4 is one year after the accident).
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GLOSSARY

ARAT = action research arm test
BBCI = brain-to-brain computer interface
BCI = brain-computer interface
BMI = brain-machine interface
BOLD = blood oxygenated level
CNS = central nervous system
CS = conditioning stimulus
DALY = disability-adjusted life years
DBS = deep-brain stimulation
DLPFC = Dorsolateral Prefrontal Cortex
DTI = diffusion weighted image
DTW = dynamic time warping
DWI =diffusion weighted image
EEG = electroencephalography
EMM = estimated marginal means
ERD = event related desynchronisation
ERS = event related synchronisation
FA = fractional anisotropy
FES = functional electrical stimulation
fMRI = functional magnetic resonance imaging
FM-UE = Fugl-Meyer Assessment for the upper extremity
GABA = γ-aminobutyric acid
GLMM = generalized linear mixed effect model
GUI = graphical user interface
ISI = inter-stimulus interval
ITI = inter-trial interval
LMM = linear mixed effect model
M1 = primary motor cortex
MDD = major depressive disorder
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MEG = mangnetoenchephalography
MEP = motor-evoked potential
MI = motor imagery
MRC = Medial Research Council
MRI = magnetic resonance imaging
MU = motor unit
NIBS = non-invasive brain stimulation
NIRS = near-infrared spectroscopy
PD = Parkinson’s disease
PSD = power spectral density
QEEG = quantitative EEG
RCT = randomized clinical trial
ROM = range of motion
sFM-UE = short version of Fugl-Meyer Assessment for the upper extremity
SICI = short interval intracortical inhibition
SIS = stroke impact scale
SMA = supplementary motor area
SRRR = stroke recovery and rehabilitation roundtable
tDCS = transcranial direct current stimulation
TEP = TMS evoked potential
TI = test intensity
TMS = transcranial magnetic stimulation
TS = test stimulus
VR = virtual reality
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