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Résumé
La présence d’agents conversationnels — ou chatbots — dans des contextes éducatifs n’a cessé

d’augmenter au cours des dernières années. Des enquêtes récentes ont montré un intérêt

généralisé pour l’utilisation des chatbots dans l’éducation, à la fois pour la recherche et la

pratique. Bien que ces enquêtes mettent en évidence des avantages tangibles et des applica-

tions futures prometteuses des chatbots éducatifs, plusieurs défis limitent notre capacité à

les intégrer dans des contextes éducatifs réels, notamment des défis technologiques, pédago-

giques, d’interaction et de conception. Dans cette thèse, nous motivons notre approche pour

relever ces défis en formulant une question de recherche globale : Comment pouvons-nous

accompagner l’intégration des chatbots dans des contextes d’apprentissage spécifiques à un

domaine ? Pour répondre à cette question — et s’attaquer à certains des défis identifiés dans la

littérature spécialisée — nous proposons un cadre conceptuel couvrant quatre dimensions

différentes.

Notre enquête commence par aborder les fondements technologiques de notre cadre à travers

une architecture de développement et un pipeline d’analyse d’apprentissage visant à soutenir

la création d’applications interactives pour les plateformes d’éducation numérique et à don-

ner accès aux données générées lorsque les apprenants interagissent avec ces applications.

À l’aide de notre architecture, nous nous focalisons ensuite sur un domaine — la formation

en génie logiciel — et développons les outils numériques nécessaires pour échafauder des

scénarios pédagogiques dans lesquels ces chatbots pourraient interagir avec les apprenants.

Plus précisément, nous proposons le cahier de revue de code, un modèle de construction

de scénarios technopédagogiques pour soutenir l’enseignement des meilleures pratiques

de programmation. Les cahiers de révision de code ressemblent aux interactions que les

développeurs ont sur les plateformes sociales de codage et, compte tenu de la popularité des

chatbots sur ces plateformes, ils sont a fortiori adaptés aux chatbots éducatifs.

Dans une série d’études en ligne, d’observation et de retours de terrain, nous explorons

ensuite différentes stratégies d’interaction qui pourraient être exploitées par les chatbots édu-

catifs dans leurs échanges avec les apprenants. Les résultats de ces études sont pertinents pour

les enseignants qui cherchent à intégrer les chatbots éducatifs dans leur pratique quotidienne

et ont servi à éclairer deux contributions finales proposées dans cette thèse. Ces contributions

portent sur le processus de conception et comprennent un modèle pour guider la conception

participative de chatbots éducatifs, ainsi qu’un schéma technique pour définir comment ces
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Résumé

chatbots pourraient être intégrés dans des applications d’apprentissage numérique. En faisant

un zoom arrière les deux contributions finales visent à généraliser nos résultats à d’autres

domaines éducatifs.

Alors que les interfaces de programmation d’applications vers de puissants modèles de lan-

gage génératif deviennent largement accessibles, nous ne pouvons que nous attendre à ce que

des chatbots éducatifs de plus en plus complexes deviennent omniprésents dans les années à

venir. Comprendre comment les apprenants interagissent avec ces chatbots et fournir le sou-

tien nécessaire pour encadrer leur développement est donc primordial. Notre travail s’oriente

sur cet axe de recherche.

Mots clés

agents conversationnels, chatbots, éducation numérique, génie logiciel, interaction homme-

machine, intelligence artificielle, plateformes d’expérience d’apprentissage, formation en

génie logiciel, études empiriques, conception participative
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Abstract
The presence of conversational agents—or chatbots—in educational contexts has been steadily

increasing over the past few years. Recent surveys have shown widespread interest in the

use of chatbots in education, both for research and practice. Although these surveys high-

light tangible benefits and promising future applications of educational chatbots, several

challenges limit our ability to integrate these chatbots into educational contexts, including

technological, pedagogical, interaction, and design challenges. In this thesis, we motivate our

approach to these challenges by formulating one overarching research question: How can

we guide the integration of chatbots into domain-specific learning contexts? To address this

question and, in turn, tackle some of the challenges identified in the literature, we propose

a conceptual framework spanning four different dimensions. Following the design-based

research methodology, we address each dimension in a corresponding phase of our design

process, undertaking multiple iterations of the design cycle within each phase.

Our investigation starts by addressing the technological foundations of our framework through

an application development architecture and a learning analytics pipeline aimed at supporting

the creation of interactive applications for digital education platforms and providing access

to the data generated when learners interact with these applications. Using our architec-

ture, we then zoom in on one domain—software engineering education—and develop the

applications needed to scaffold pedagogical scenarios in which these chatbots could interact

with learners. Specifically, we propose the code review notebook, a template for building

technopedagogical scenarios to support teaching programming best practices. Code review

notebooks resemble the interactions developers have on social coding platforms and—given

the popularity of chatbots on these platforms—are especially suitable for educational chatbots.

In a series of online, observational, and field studies, we then explore different interaction

strategies that could be harnessed by educational chatbots in their conversations with learners.

In particular, we conducted three field studies to assess the effects that educational chatbots

following (i) Wizard of Oz, (ii) rule-based, and (iii) large language model-based conversational

strategies could have on different aspects of the learning experience. Findings from these

studies are relevant to instructors looking to integrate educational chatbots into their practice

and served to inform two final contributions proposed in this thesis. These contributions focus

on design processes and comprise a model to guide the participatory design of educational

chatbots, as well as a technical blueprint to define how these chatbots could be integrated into
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Abstract

digital learning applications. Zooming out from the software engineering education use case,

the two final contributions aim to generalize our findings to other educational domains.

As application programming interfaces to powerful generative language models become

widely accessible, we can only expect that increasingly complex educational chatbots will

become ubiquitous in the years to come. Understanding how learners interact with these

chatbots and providing the support necessary to guide their development is therefore of

paramount importance. Our framework aligns itself closely with this line of research.

Keywords

conversational agents, chatbots, digital education, software engineering, human-computer

interaction, artificial intelligence, learning experience platforms, software engineering educa-

tion, empirical studies, participatory design
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1 Introduction

CONVERSATIONAL agents, commonly known as chatbots, are computer programs that can

interact using natural language (Abu Shawar et al., 2007a). Conceptualized by Alan

Turing (1950), chatbots have evolved from early keyword matching implementations such as

ELIZA (Weizenbaum, 1966), to pattern matching agents such as A.L.I.C.E. (R. S. Wallace, 2009),

to systems powered by large language models trained on corpora comprising billions of words,

including Google’s Meena (Adiwardana et al., 2020), Facebook’s BlenderBot (Shuster et al.,

2022), and—most notably—OpenAI’s ChatGPT (OpenAI, 2022). Nowadays, chatbots come

in a variety of architectures (Cahn, 2017) and permeate a wide range of application domains,

including e-commerce (Cui et al., 2017), banking (Trivedi, 2019), and healthcare (Laranjo et al.,

2018).

The use of chatbots in educational settings has also been rising steadily over the past decade.

Recent surveys have shown active research on the development and use of chatbots for

education (Quiroga Pérez et al., 2020). These chatbots aimed at educational settings—also

referred to as educational chatbots—have been incorporated into applications aimed at several

subjects, spanning science, technology, engineering, and mathematics (STEM), as well as

languages, business, and the arts (Hwang et al., 2021). Able to assume different pedagogical

roles (Wollny et al., 2021), educational chatbots have the potential to support educators with

various tasks, including answering frequently asked questions (Quiroga Pérez et al., 2020),

encouraging learning (Graesser et al., 2005), and providing personalized tutoring (Clarizia

et al., 2018).

To assess the value that educational chatbots can add to the learning experience, several

empirical studies have been conducted, often employing questionnaires to evaluate learners’

perceptions of these chatbots (Quiroga Pérez et al., 2020). The results of these empirical

studies are promising, suggesting that educational chatbots can help teach basic concepts

and provide educational resources to students (Chen et al., 2022), encourage students’ social

presence online (Huang et al., 2022), and serve to scaffold programming exercises (Winkler,

Hobert, et al., 2020). Nevertheless, there is ample need for more field research to ground the

use of chatbots in education on solid results. Indeed—as recently as 2021—researchers have
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Chapter 1. Introduction

raised the issue that there are “few empirical studies investigating the use of effective learning

designs or learning strategies with chatbots” (Hwang et al., 2021). Conducting these empirical

studies, however, is not trivial. Designing, implementing, deploying, and evaluating a chatbot

within an educational context requires expertise in multiple domains (Okonkwo et al., 2021),

often involving several stakeholders (Durall Gazulla et al., 2023), including software developers,

educators, educational researchers, and—of course—learners.

One strategy to address this challenge has been to adopt a participatory design methodol-

ogy (Kensing et al., 1993) for designing educational chatbots (Durall et al., 2020; Gabrielli et al.,

2020). Participatory design advocates for the inclusion of end users in the design process

and involves collaboration between all stakeholders, which is often facilitated through work-

shops (Robertson et al., 2012). In education, participatory design has been harnessed to create

digital technologies and learning spaces, as well as to explore issues of student agency and

empowerment (Cumbo et al., 2022). However, as highlighted by Durall Gazulla et al. (2023),

the collaborative design (or co-design) process for educational chatbots—and educational

technologies in general—entails a particular set of challenges, including the diverse needs of

different stakeholders and the difficulties associated with going from abstract ideas to concrete

implementations. In light of these challenges, Durall Gazulla et al. “advocate that researchers,

designers and developers engage in a collective reflection on big and small decisions in collab-

orative design, and co-create strategies to overcome the obstacles that hinder collaboration

and mutual understanding when designing learning technologies”.

Moreover, although technical frameworks for integrating chatbots into educational contexts

exist (Griol et al., 2013; Sjöström et al., 2018; Villegas-Ch et al., 2020), there is no standard

approach to building and deploying chatbots for these contexts. As highlighted by Quiroga

Pérez et al. (2020), “there exists as much technology used in the development of chatbots

as there are educational chatbots”. This lack of standard adds a layer of complexity when

translating the outcomes of design sessions into software solutions that can be deployed and

evaluated. This challenge was also echoed by Følstad, Araujo, et al. (2021), who highlighted

the need for solutions to support chatbot development.

Therefore, while there is a tangible need to study the impact of integrating chatbots into

educational contexts, we currently lack the support tools to efficiently and systematically

design and deploy these chatbots. This need was neatly captured by a recent survey of the

principles grounding the design of educational chatbots, which emphasized that “researchers

should explore devising frameworks for designing and developing educational chatbots to

guide educators to build usable and effective chatbots” (Kuhail et al., 2023). Our work aims

to address this gap by developing a conceptual framework that can serve to scaffold the

integration of educational chatbots into digital education platforms.

The remainder of this chapter is structured as follows. Section 1.1 introduces the research

context that informs our problem statement, namely that there is a lack of conceptual and

technical design tools for integrating educational chatbots into learning contexts. We motivate
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and formally define this problem statement in Section 1.2. In Section 1.3 we formulate the

research questions that emerge from our problem statement and map them to the correspond-

ing objectives that we address in this thesis. Section 1.4 presents the research methodology we

followed to approach these questions and objectives, while Section 1.5 provides a summary

of our contributions, as well as how they were validated and disseminated to the research

community. Finally, in Section 1.6, we outline the overall structure of this thesis.

1.1 Research Context

The topics covered in this thesis span different disciplines, including (i) digital education,

(ii) software engineering, (iii) human-computer interaction (HCI), and (iv) artificial intelli-

gence (AI). Our work stems from specific areas within each of these disciplines—learning

experience platforms, social coding platforms, conversational agents, and large language

models, respectively—and focuses on the intersections between these areas. As shown in

Figure 1.1, these four disciplines and their intersections serve as the pillars that underpin our

focus on four more specific research domains: (i) educational application development, (ii)

software engineering education, (iii) educational chatbots, and (iv) chatbot design. Related

work conducted in each of these four specific domains will be presented at the beginning

of each of the following four parts of the thesis, which respectively address the parts of our

research corresponding to the domain in question.

In this section, we provide an overview of how the four underlying pillars serve as the basis for

the research conducted in this thesis. For each pillar, we highlight the research opportunities

that ultimately informed our problem statement, which we will present in Section 1.2.
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Figure 1.1: Our work is underpinned by specific areas of research spanning four disciplines.
The intersections of these areas give rise to four more specific domains of research (shown in
bold) that guide the approach undertaken in this thesis. The four guiding research opportuni-
ties identified (RO1, RO2, RO3, RO4) span the four research domains underpinning our work.
Further opportunities emerge in the intersections of these guiding opportunities.
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1.1.1 Digital Education

Our research is primarily framed by recent advances in digital education, where a myriad of

technological solutions has been proposed in response to novel teaching practices. One of

the key trends in education over the last decade has been the shift to using blended learning

models, where traditional face-to-face learning is complemented by digital interactions, in

class or at distance (Adams Becker et al., 2017). The importance of these interactions is mainly

informed by the success of active learning in pedagogical practices (Prince, 2004). Active

learning calls for engaging students in the learning process through strategies that go beyond

merely a one-way transmission of information. While there is no “identifiable origin or a

common definition” for the term active learning, these strategies often involve placing an

emphasis on developing skills, higher-order thinking, integrating activities, and encouraging

self-reflection (Bonwell et al., 1991).

The rise of blended and online learning has also influenced the availability and types of digital

platforms aimed at supporting active learning through technological solutions. One advantage

of using digital technologies for blended learning is the opportunity to integrate learning

analytics (LA) into the instructor’s awareness and reflection processes. LA has been defined by

the Society for Learning Analytics Research (SoLAR) as “the measurement, collection, analysis

and reporting of data about learners and their contexts, for purposes of understanding and

optimising learning and the environments in which it occurs” (Ferguson, 2012). Indeed, LA

has been shown to have concrete practical applications in the learning process, including as

potential early predictors of student success or failure (Van Goidsenhoven et al., 2020). These

practical applications have motivated LA-driven approaches to designing learning activities,

which most often take place on digital learning platforms (Mangaroska et al., 2019),

One type of platform, the learning experience platform (LXP), has embodied this data-driven

approach and gained considerable traction in recent years. Learning experience platforms

depart from the traditional structure of learning management systems (LMSs) and online

courses to provide more flexibility to both learners and educators. As such, learning experience

platforms (LXPs) are more focused on the personalization of the learning experience, allowing

the integration of nontraditional learning material and acting as content aggregators for both

instructors and students (Valdiviezo et al., 2020). This emphasis on personalization makes

LXPs an ideal environment for recommender systems and other AI techniques that can tailor

the content to the needs and expectations of different learners (Ritz et al., 2022). Educational

chatbots align themselves closely with this approach to the learning experience, as they have

the potential to support learners through personalized conversational scripts.

Another strength attributed to LXPs is their support for interactive content. This interactivity

is often achieved through the inclusion of embeddable web applications. Through these inter-

faces, learners can actively interact with both their peers and their educators, contributing

to “a social media type stream of information” that also supports the content creation pro-

cess (Cockrill, 2021). The fact that chatbots interact with learners through natural language—a

4



1.1 Research Context

key element in social interaction—could also ease their integration into LXPs.

Research Opportunity

Our first research opportunity emerges in the context of digital education, namely the possi-

bility of studying the integration of educational chatbots into LXPs (RO1).

1.1.2 Software Engineering

A second domain of research framing our work is the domain of software engineering. More

specifically, our work builds on software engineering best practices, how they are supported

by conversational agents, and how they can be incorporated into educational settings. Al-

though there are several definitions of what best practices entail in the context of software

engineering (Marques et al., 2018), conducting peer reviews for software verification and

validation is one of the skills highlighted by the IEEE Computer Society and Association for

Computing Machinery’s Joint Task Force on Computing Curricula (2015). Indeed, code reviews

are an integral part of the software development process (Wiegers, 2002) and while there are

several tools to support code reviews (Baum et al., 2016; Hedberg, 2004), most collaborative

software development involving the code review process currently takes place on social coding

platforms.

Well established in the software engineering industry, social coding platforms (e.g., GitHub,

GitLab, Bitbucket) are collaborative workspaces focused on software development (Dabbish

et al., 2012). These platforms are based on version control software and provide bespoke

interfaces to support reviewing code, leaving comments, visualizing changes, and carrying

out other related tasks. Chatbots can help with some of these tasks and have thus become a

common feature of the social software development process (Lebeuf et al., 2018), helping to

reduce manual labor, improve code quality, and increase productivity (Abdellatif et al., 2020;

Peng et al., 2019; Wessel, Serebrenik, et al., 2020a, 2020b). A study by Wessel, de Souza, et al.

(2018) revealed that nearly 26% of popular open-source projects on GitHub used chatbots.

Moreover, a significant proportion of these chatbots were involved in tasks related to the code

review process. That is, among the 48 chatbots identified in the study, 14 chatbots (29.2%)

were used to review code and pull requests, highlighting the suitability of chatbots for code

review tasks on social coding platforms. Although these chatbots are principally designed to

support development tasks, they are nonetheless interactive, communicating with human

users via the various discussion interfaces available on GitHub.

Research Opportunity

Building on RO1, a second research opportunity that emerges at the intersection of digital

education and software engineering is the possibility of developing tools to support software

engineering education (RO2). More specifically, there is an opportunity at the intersection of
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RO1 and RO2 to make these tools compatible with LXPs and capable of integrating educational

chatbots.

1.1.3 Human-Computer Interaction

A third pillar underpinning our research is the domain of human-computer interaction (HCI).

Given that chatbots are interactive, user-facing systems, researchers agree that the design and

evaluation of such systems involve both their technical and social aspects (Feine, Gnewuch,

et al., 2019). The study of how these social aspects affect the way users interact with and

perceive chatbots is usually framed by the Computers Are Social Actors (CASA) paradigm (Nass,

Steuer, et al., 1994). According to CASA, user interactions with computers are fundamentally

social in nature and, therefore, many social conventions that guide interpersonal behavior are

also evident in HCI (Fogg et al., 1997; Nass, Moon, et al., 1997).

The CASA framework posits that interactive computer interfaces—of which chatbots are a

prime example—are regarded as social actors and that this effect becomes even more pro-

nounced when anthropomorphic traits are conveyed by the interface (Moon, 2000). As high-

lighted by Feine, Gnewuch, et al. (2019), chatbot design is often aligned with the implications

put forth by CASA, with chatbots harnessing a wide array of social cues (e.g., eye movement,

photorealism, small talk) in their interactions. In fact, several studies (Moon, 2000; Schanke

et al., 2021) have discussed the impact of anthropomorphic cues on HCI. A recent study by Go

et al. (2019) specifically investigated the effects of visual, identity, and conversational cues on

humanness perceptions of chatbots, and analyzed the correlations between the cues.

In the context of conversational agents, De Angeli et al. (2001) defined personality as a stable

set of traits that determines the agent’s interaction style, describes its character, and allows the

end user to understand its general behavior. Shum et al. (2018) claimed that social chatbots

need to present a consistent personality to gain the confidence and trust of users. Furthermore,

in a study conducted by Jain et al. (2018), several participants found humorous chatbots with

distinct personalities more engaging and enjoyable, while Brandtzaeg et al. (2017) argued

that entertainment and socialization may be seen as aspects of the relationship between

humans and chatbots, since nearly 20% of their study’s participants reported using chatbots

for entertainment. These results highlight how a chatbot’s design and interaction style can

have an impact on user experience, making user interactions more enjoyable and fulfilling.

Nevertheless, computers expressing human-like traits can arouse anthropomorphic percep-

tions that could lead to unintended consequences (Duffy, 2003), such as setting unattainable

expectations in their users (Schanke et al., 2021) or triggering the uncanny valley effect. This

effect—identified by Mori (2012)—predicts that as artificial agents approach human-like

resemblance, imperfections in this resemblance might evoke negative reactions. A recent

psychophysiological study by Ciechanowski et al. (2019) observed the uncanny valley effect

when comparing a text-based chatbot to a human-like avatar. Their results link this effect

to more intense emotional reactions, as evidenced by data from electromyography, instanta-
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neous heart rate, and electrodermal activity. The effect was also negatively correlated with how

competent participants found the chatbot to be, further highlighting the perils of the uncanny

valley on users’ perceptions of chatbots. In light of these findings, the authors proposed

that as “bots become increasingly more popular in the professional and personal sphere, the

task of understanding how they are perceived and what drives [these perceptions] becomes

urgent and necessary” (Ciechanowski et al., 2019). Assessing the extent and effect of such

perceptions—especially in educational settings that often include young learners—is therefore

imperative and is a key motivating factor behind our empirical studies and the development

of our framework.

Research Opportunity

The need to better understand human-chatbot interaction highlights a third research op-

portunity that builds on RO1 and RO2, namely the possibility of creating models to guide a

chatbot’s design (RO3) and evaluate how different designs can affect users’ experiences with

chatbots in educational contexts, software engineering, and software engineering education.

The intersection of these three key research opportunities provided a central motivating factor

for the approach undertaken in this thesis.

1.1.4 Artificial Intelligence

The final pillar grounding our work is the domain of artificial intelligence (AI). Although the

scope of AI is very broad, our research focuses on advances in methods from natural language

processing (NLP), and particularly on the success of large language models (LLMs) in a variety

of language-based tasks.

LLMs fall into a general class of AI models referred to as foundation models, which are “trained

on broad data at scale and can be adapted (e.g., fine-tuned) to a wide range of downstream

tasks” (Bommasani et al., 2021). The latest generation of these models is based on the Trans-

former architecture (Vaswani et al., 2017), a deep learning architecture that allows—most

crucially—for increased parallelization during training. The process of training these models

has also benefited from advances in self-supervised learning, whereby the training tasks are

derived from the training data itself and do not require any annotations. An example of this

type of task would be to mask a word within a sequence and ask the model to predict the miss-

ing word (e.g., it is raining and dogs). The ability to harness unannotated data

alongside powerful parallelization that can make use of cutting-edge hardware has paved the

way for language models to be trained on increasingly larger datasets and incorporate a larger

number of parameters. The GPT-3 model, for instance, comprises 175 billion parameters (T.

Brown et al., 2020).

While LLMs are used for a wide array of language tasks, they can also be used to power chat-

bots. As mentioned at the beginning of this introduction, notable examples of LLM-powered

7
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chatbots include Google’s Meena (Adiwardana et al., 2020), Facebook’s BlenderBot (Shuster

et al., 2022), and OpenAI’s ChatGPT (OpenAI, 2022). Without any further configuration, these

open-domain chatbots are able to interact with users about diverse topics through unre-

strained conversation. Nevertheless, understanding how these models can be harnessed to

create task-oriented chatbots aimed at specific domains is still ongoing.

A recent position paper by Kasneci et al. (2023) outlined opportunities and challenges of

incorporating LLMs in education. Among the challenges identified, the authors highlight

(i) the possible biases that LLMs can perpetuate and amplify, (ii) the need for open educational

resources (OERs) to guide educators on how to access and use these models, (iii) the need

to ensure data privacy and security, and (iv) the lack of adaptability to align the models with

the objectives of individual learners and educators. Addressing these challenges could open

the door to more powerful applications of LLMs in education. Finally, Kasneci et al. call for

further research at the intersection of AI and HCI, to ensure that the interfaces used to interact

with these models are aligned with the needs of different types of learners (e.g., age-related

differences, accessibility requirements).

Another important factor to consider when assessing the applicability of these LLMs to edu-

cation is the process through which they can be configured for more specific (downstream)

tasks, such as generating the responses that an educational chatbot can use in its interactions.

This process can be supported by prompting, which consists in providing the model with a

few examples of how it should respond to a query. Finding the most appropriate prompts

is a complex task and using inefficient prompting strategies can result in worse results than

using no prompt at all (Reynolds et al., 2021). Identifying optimal prompts—or prompt en-

gineering—is an active area of research in NLP. Recent work has focused on automating the

generation of these prompts (Z. Jiang et al., 2020), understanding the biases that prompting

can be susceptible to (T. Z. Zhao et al., 2021), and providing the appropriate infrastructure

to generate prompts (Bach et al., 2022). Nevertheless, there is little guidance for performing

prompt engineering with domain-specific applications in mind, as is the case with educational

chatbots.

Research Opportunity

An opportunity to integrate AI into our research arises at the intersection of RO2 and RO3.

That is, the possibility of exploring how to incorporate the functionalities offered by LLMs

in the design of educational chatbots RO4, with a focus on how to appropriately configure

these models through efficient prompting strategies. This opportunity also extends to the

domain-specific case of designing chatbots for software engineering education, completing

the full landscape of research opportunities that emerged from our four pillars, as depicted in

Figure 1.1.
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1.2 Problem Statement

The research context highlighted in Section 1.1 motivated our approach to the study of human-

chatbot interaction in digital education by leading us to the intersections of the research

opportunities illustrated in Figure 1.1. These research opportunities serve as a starting point

for our investigations, which first focus on the case of integrating chatbots for software engi-

neering education—and more specifically to support the code review process in educational

settings—before generalizing to the domain of educational chatbot design.

P
ro

b
le

m Pedagogical Challenges
(e.g., providing scaffolding,

staying on task,
measuring learning

outcomes)

Interaction Challenges
(e.g., avoiding the uncanny
valley, limiting the novelty
effect, processing natural

language) 

Technological Challenges
(e.g., integrating with LXPs,

ensuring privacy,
tackling steep learning

curves)

Lack of conceptual and technical design tools for integrating educational chatbots into domain-specific learning contexts. 

Barriers to integrating chatbots into software engineering education.

Design Challenges
(e.g., addressing diverse

needs, supporting
collaboration, translating

research into practice) 

Figure 1.2: Our initial problem statement can be broken down into four types of challenges
that in turn guide the formulation of our overarching problem statement.

As depicted in Figure 1.2, we start by considering the challenges that limit the development,

deployment, and use of educational chatbots for software engineering education. Guided

by the intersections of the research opportunities we identified, our preliminary problem

statement can be formulated as the existence of barriers to integrating chatbots into software

engineering education. Addressing this problem requires tackling some of the challenges

highlighted in the literature. These challenges can initially be grouped into three categories:

(i) technological challenges, (ii) pedagogical challenges, and (iii) interaction challenges.

Technological challenges encompass the lack of development frameworks and standards

aimed at integrating applications and educational chatbots into LXPs. Building a custom

chatbot architecture, for example, requires complex computer programming skills (Luo et al.,

2019). If external platforms—such as social coding platforms—are used, there are also privacy

considerations to address (Feliciano et al., 2016), as well as these platforms’ steep learning

curves (Fiksel et al., 2019).

Pedagogical challenges are most evident when general-purpose chatbots are used for learning.

To avoid the challenge of building custom chatbots from scratch, educational chatbots are of-

ten powered by technologies not necessarily aimed at education, such as Textit (Pottier, 2013),

Pandorabots (R. Wallace, 2002), Messenger (Facebook, 2008), or Dialogflow (Google, 2012).

While chatbots built with these technologies have been successfully applied in educational

settings (Smutny et al., 2020), they often lack the pedagogical scaffolding required to easily

design context-dependent dialog flows that can be integrated into formal learning. This lack

of pedagogical scaffolding makes it difficult to ensure that the interaction between the chatbot
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and the learner is focused on achieving a particular learning goal (Kumar, 2021) and stays on

topic (Fryer et al., 2019)—a task that is particularly complex when using free-form dialog and

natural language. Furthermore, whether chatbots are general-purpose or custom-built, there

is always the challenge of extrapolating from the conversations held between a learner and a

chatbot to empirical measures of learning gains or outcomes (Winkler & Soellner, 2018).

Finally, interaction challenges include avoiding the uncanny valley (Mori, 2012), addressing

the novelty effect (Huang et al., 2022), and ensuring that chatbots exhibit consistent personality

traits (Shum et al., 2018). There are also challenges associated with the different techniques

that chatbots can use to harness natural language in their interactions. On the one hand,

chatbots limited by rule-based scripts could be perceived as repetitive or be unable to provide

relevant responses (Haristiani, 2019). On the other hand, chatbots harnessing large generative

language models such as those powering ChatGPT (OpenAI, 2022) might provide a more

natural user experience, but risk going off-topic (J. Edwards et al., 2021; Johansson, 2021) as

well as replicating biases present in the data they are trained on (Bender et al., 2021). Finding

the right balance between focus and naturalness requires consideration of the pedagogical

and technological contexts in which the chatbot is interacting.

By breaking down our initial problem statement into these categories of challenges, we can

generalize from the specific case concerning educational chatbots for software engineering

education to the more general case of educational chatbot design. Indeed, while each of these

challenges—or categories of challenges—could be independently tackled, an overarching

problem is how to address these challenges holistically and in a way that satisfies the needs of

all stakeholders involved. By all stakeholders, we refer to educators, developers and researchers

in education, as well as learners. In considering this overarching problem, we identify a

fourth category of challenges—(iv) design challenges—concerning the process of designing

educational technologies.

As highlighted by Durall Gazulla et al. (2023), challenges related to the co-design process in

education include—but are not limited to—(i) addressing the stakeholders’ diverse needs,

(ii) ensuring a certain level of technological literacy among all stakeholders, (iii) moving

from abstract ideas to concrete implementations, and (iv) translating research into practice.

These challenges span across the three aforementioned categories and are directly related

to the need for a conceptual framework to guide how these stakeholders collaborate in the

design of educational chatbots, as encapsulated in RO3. More concretely, a generalized

problem statement can be formulated as the lack of conceptual and technical design tools for

integrating educational chatbots into domain-specific learning contexts. This problem hinders

the adoption of chatbots by educators, complicates the development of technical solutions by

developers, and limits the access learners have to this technology. The aim of this thesis is to

tackle this problem.
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1.3 Research Questions and Objectives

In the previous section, we noted how the lack of conceptual and technical design tools to

integrate chatbots into educational contexts poses a problem for the adoption of educational

chatbots. In this section, we translate this problem into our overarching research question

(RQ⋆) and then break this research question down into the four questions (RQ1, RQ2, RQ3,

RQ4) that guided our approach to tackling this problem. We then work our way back to our

overarching objective (O⋆) by first defining the partial objectives (O1, O2, O3, O4) that arise

from each of the guiding research questions and then combining them to tackle RQ⋆. These

research questions and objectives are outlined in Figure 1.3.
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How can we guide the integration of conversational agents into domain-specific learning contexts?
(RQ⋆)
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Design, implement, and validate a conceptual framework for integrating
conversational agents into domain-specific learning contexts. (O⋆)

Design pedagogical
scenarios that simulate how
users interact with chatbots

in task-oriented settings.
(O2)

Define conversational
strategies that educational

chatbots can harness in
their interactions.

(O3)

How can we facilitate
the development of the

tools required to integrate
chatbots into LXPs?

(RQ1)

How can we scaffold
pedagogical scenarios

suitable for educational
chatbots?

(RQ2)

How can we equip
educational chatbots

with effective interaction
strategies?

(RQ3)

How can we support
the collaborative

design of educational
chatbots?

(RQ4)

Provide an application
development architecture

to build learning
applications for LXPs.

(O1)

Propose conceptual and
technical tools to guide
the collaborative design
of educational chatbots.

(O4)

Figure 1.3: Our overarching research question (RQ⋆) was broken down into four questions
that mapped onto four partial objectives, which in turn informed our overarching objective
(O⋆).

Our approach to the aforementioned problem statement leads us to formulate our guiding

research question.

• How can we guide the integration of chatbots into domain-specific learning contexts?

(RQ⋆)

To approach this overarching research question, we first break it down into four—more

specific—research questions. Each of these questions corresponds to one of the categories of

challenges highlighted in Section 1.2.

• Technological Challenges: How can we facilitate the development of the tools required

to integrate chatbots into LXPs? (RQ1)

• Pedagogical Challenges: How can we scaffold pedagogical scenarios suitable for educa-

tional chatbots? (RQ2)
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• Interaction Challenges: How can we equip educational chatbots with effective interac-

tion strategies? (RQ3)

• Design Challenges: How can we support the collaborative design of educational chat-

bots? (RQ4)

These research questions map, respectively, to the four partial objectives tackled in this thesis,

which constitute the four dimensions addressed by our conceptual framework.

• Provide an application development architecture to build learning applications for LXPs.

(O1)

• Design pedagogical scenarios that simulate how users interact with chatbots in task-

oriented settings. (O2)

• Define conversational strategies that educational chatbots can harness in their interac-

tions. (O3)

• Propose conceptual and technical tools to guide the collaborative design of educational

chatbots. (O4)

By addressing these guiding research questions and objectives, we iteratively built and tested

the technological, pedagogical, and interaction design tools that we could harness to create,

deploy, and evaluate educational chatbots. Together, these four partial objectives served our

overarching objective:

• Design, implement, and validate a conceptual framework for integrating conversational

agents into domain-specific learning contexts. (O⋆)

The outcome of this objective is a complex design object comprising conceptual and technical

tools that address four dimensions of educational chatbot design: (i) technological foundations,

(ii) pedagogical scenarios, (iii) interaction strategies, and (iv) design processes. This conceptual

framework aims to address the needs of all stakeholders and is particularly useful for educators

looking to integrate educational chatbots into their practice, as well as for developers in

education who need to provide the technical solutions to allow such integrations.

1.4 Research Methodology

The work carried out in the context of this thesis followed the methodology proposed by

design-based research (DBR). DBR has been defined as “a systematic but flexible methodology

aimed to improve educational practices through iterative analysis, design, development, and
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implementation, based on collaboration among researchers and practitioners in real-world

settings, and leading to contextually-sensitive design principles and theories” (F. Wang et al.,

2005). This methodology supports the use of mixed methods over multiple iterations and has

been particularly successful in framing the development of technological tools for learning

across academic disciplines (Anderson et al., 2012).

While there are several approaches to DBR, we specifically followed Reinmann’s holistic DBR

model, which was proposed for research and teaching in higher education (Reinmann, 2020).

Reinmann’s model defines five semantic fields that constitute the base of the holistic DBR

model: (i) goal-setting (GS), (ii) conceptualization (CO), (iii) development (DE), (iv) testing (TE),

and (v) analysis (AN). These fields are presented as a cycle, as shown in Figure 1.4.

Reinmann then defines three types of iterations of the DBR cycle. Iteration type I (see Fig-

ure 1.4) refers to the full cycle of the DBR process. Iteration type II (see Figure 1.5) breaks the

cycle down into fields of action, defined as the segments between each pair of semantic fields.

Within each of the five fields of action, smaller cycles can take place, capturing how there can

be faster feedback processes between semantic fields. Finally, iteration type III considers not

only pairs of adjacent semantic fields but triads, which Reinmann refers to as playing fields.

Three iteration type III triads were used in this thesis: (i) creative conceiving (goal-setting ↔
conception ↔ development), (ii) concrete developing (conception ↔ development ↔ testing),

and (iii) practical testing (development ↔ testing ↔ analysis). These cycles are depicted in

Figure 1.6.

In short, the holistic model elegantly captures the intricacies of the DBR process when de-

signing complex objects. Designing complex objects can require multiple cycles of the DBR

process, each cycle tackling different parts that together constitute—or lead to—a primary

design object (Tammeleht, 2022). In this thesis, the primary design object was defined by our

overarching objective, namely to design, implement, and validate a conceptual framework

for integrating conversational agents into domain-specific learning contexts. As outlined in

Section 1.3, the approach to our overarching objective was to first tackle four partial objectives,

each focused on a dimension of our primary design object. Hence, this approach required

four iteration type I cycles. We label each cycle according to the dimension addressed: (i) tech-

nological foundations, (ii) pedagogical scenarios, (iii) interaction strategies, and (iv) design

processes.

The technological foundations cycle tackled O1, aimed at providing an application devel-

opment architecture (ADA) to build online learning applications for LXPs. The pedagogical

scenarios cycle tackled O2, namely to design a pedagogical scenario that simulates how users

interact with chatbots in a task-oriented setting. The interaction strategies cycle tackled

O3, which consisted in defining different conversational strategies that educational chatbots

can harness in their interactions. Finally, the design processes cycle tackled O4, proposing

conceptual and technical tools to guide the collaborative design of educational chatbots.

Figure 1.7 illustrates how these four cycles constitute the main DBR process followed in this

13



Chapter 1. Introduction
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Figure 1.4: Iteration type I in the holistic DBR
process refers to the full cycle comprising
the five semantic fields. (Adapted from Rein-
mann (2020).)
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Design
Object

Figure 1.5: Iteration type II in the holistic DBR
process breaks a full DBR cycle into five fields
of action, which consist of shorter cycles be-
tween two semantic fields. (Adapted from
Reinmann (2020).)
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Design
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Analysis
Design
Object

Creative Conceiving Concrete Developing Practical Testing

Figure 1.6: Iteration type III in the holistic DBR process breaks the full DBR cycle into
playing fields, which refer to triads of adjacent semantic fields. The three iteration type III
cycles used in this thesis are (i) creative conceiving (goal setting ↔ conception ↔ devel-
opment), concrete developing (conception ↔ development ↔ testing), and (iii) practical
testing (development ↔ testing ↔ analysis). (Adapted from Reinmann (2020).)

thesis. Within each of these cycles, depending on the objective, shorter iteration type II or

iteration type III cycles served to tackle different aspects of the dimension in question. In

the next section, we provide an outline of the contributions that were output throughout this

process, as well as the evaluations through which these contributions were validated.

1.5 Contributions

Although our work was aimed at delivering our framework as an overarching contribution,

each iteration of the DBR cycle resulted in one or more contributions that could also, in-

dependently, be of interest to the research community. In this section, we summarize the

contributions put forth by this thesis. These contributions are also highlighted in Figure 1.8.

The main contribution (C⋆) of this thesis is a conceptual framework for integrating task-

oriented conversational agents into digital education platforms. This framework comprises

seven individual contributions (C1, C2, C3, C4, C5, C6, C7), which we describe below.

First, we designed an application development architecture to support the implementation of

online applications that can be integrated into LXPs (C1). To evaluate this architecture, we
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Figure 1.7: The main DBR process followed in this thesis comprised four cycles, each focusing
on one of the objectives highlighted in Section 1.3. Our work mainly progressed incrementally
from left to right (solid arrows), but outcomes from each phase also served to refine the work
that had been conducted in previous phases (dashed arrows).

A Conceptual Framework for
Integrating Task-Oriented
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A Conceptual Model to Guide

the Participatory Design
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Figure 1.8: This thesis puts forth one overarching contribution (in bold) that comprises seven
individual contributions.

implemented an application development kit (ADK) based on our design and conducted a

qualitative study comprising semi-structured interviews with 12 developers who used the

ADK. This architecture is presented in Chapter 2 and is featured in the following publication:

• Farah, J. C., Ingram, S., & Gillet, D. (2022). Supporting Developers in Creating Web Apps

for Education via an App Development Framework. HEAd'22 Conference Proceedings,

893–890. https://doi.org/10.4995/HEAD22.2022.15652

Second, we outlined an end-to-end learning analytics pipeline to support the full data man-

agement cycle for research in education (C2). To validate the feasibility of integrating this

pipeline into an LXP, we implemented a proof of concept and harnessed it to access the data

produced by the applications used in our empirical studies. This data pipeline is presented in

Chapter 3 and is featured in the following publication:

• Farah, J. C., Soares Machado, J., Torres da Cunha, P., Ingram, S., & Gillet, D. (2021). An

End-to-End Data Pipeline for Managing Learning Analytics. 2021 19th International

Conference on Information Technology Based Higher Education and Training (ITHET).

https://doi.org/10.1109/ITHET50392.2021.9759783
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Third, we developed Code, an application to write and execute JavaScript and Python code

directly in the browser. We used this application to scaffold learning activities following the

integrated computational notebook template, a template aimed at providing browser-based

computational notebook solutions within LXPs (C3). These activities served as the foundation

for the development of the pedagogical scenario used in our empirical studies with chatbots.

The design of this application and its evaluation with 67 university students is presented in

Chapter 4 and is featured in the following publication:

• Farah, J. C., Moro, A., Bergram, K., Purohit, A. K., Gillet, D., & Holzer, A. (2020). Bringing

Computational Thinking to non-STEM Undergraduates through an Integrated Notebook

Application. In T. Broos & T. Farrell (Eds.), Proceedings of the Impact Papers at the 15th

European Conference on Technology-Enhanced Learning (EC-TEL 2020)

Fourth, we designed the code review notebook template to simulate social coding platforms in

educational contexts (C4). To validate this template, we conducted a case study that included

an online lesson on code quality standards, which was completed by 25 university students.

This case study focused on the effects that the code review notebook had on usability, learning

gains, self-reflection, and feedback. The design of the code review notebook, as well as findings

from our case study, are presented in Chapter 5 and are featured in the following publications:

• Farah, J. C., Spaenlehauer, B., Rodríguez-Triana, M. J., Ingram, S., & Gillet, D. (2022).

Toward Code Review Notebooks. 2022 International Conference on Advanced Learning

Technologies (ICALT), 209–211. https://doi.org/10.1109/ICALT55010.2022.00068

• Farah, J. C., Spaenlehauer, B., Rodríguez-Triana, M. J., Ingram, S., & Gillet, D. (2023). In-

tegrating Code Reviews into Online Lessons to Support Software Engineering Education.

In M. E. Auer, W. Pachatz, & T. Rüütmann (Eds.), Learning in the Age of Digital and Green

Transition (pp. 815–826). Springer. https://doi.org/10.1007/978-3-031-26190-9_84

Fifth, we defined strategies to configure how educational chatbots interact with learners (C5).

We validated these strategies incrementally through an online experiment, an observational

study, one pilot case study, and three in-class field experiments with students at the University

of Neuchâtel and the School of Engineering and Architecture of Fribourg, in Switzerland. These

studies are presented in Chapters 6–10 and have been featured in the following publications:

• Farah, J. C., Sharma, V., Ingram, S., & Gillet, D. (2021). Conveying the Perception of Hu-

mor Arising from Ambiguous Grammatical Constructs in Human-Chatbot Interaction.

Proceedings of the 9th International Conference on Human-Agent Interaction (HAI '21),

257–262. https://doi.org/10.1145/3472307.3484677

• Farah, J. C., Spaenlehauer, B., Lu, X., Ingram, S., & Gillet, D. (2022). An Exploratory Study

of Reactions to Bot Comments on GitHub. 2022 IEEE/ACM 4th International Workshop

on Bots in Software Engineering (BotSE). https://doi.org/10.1145/3528228.3528409
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• Farah, J. C., Spaenlehauer, B., Sharma, V., Rodríguez-Triana, M. J., Ingram, S., & Gillet,

D. (2022). Impersonating Chatbots in a Code Review Exercise to Teach Software Engi-

neering Best Practices. 2022 IEEE Global Engineering Education Conference (EDUCON),

1634–1642. https://doi.org/10.1109/EDUCON52537.2022.9766793

• Farah, J. C., Spaenlehauer, B., Bergram, K., Holzer, A., & Gillet, D. (2022). Challenges and

Opportunities in Integrating Interactive Chatbots into Code Review Exercises: A Pilot

Case Study. EDULEARN22 Proceedings, 3816–3825. https://doi.org/10.21125/edulearn.

2022.0932

• Farah, J. C., Spaenlehauer, B., Ingram, S., Purohit, A. K., Holzer, A., & Gillet, D. (2023). Har-

nessing Rule-Based Chatbots to Support Teaching Python Programming Best Practices

[In Submission]

• Farah, J. C., Ingram, S., Spaenlehauer, B., Lasne, F. K.-L., & Gillet, D. (2023). Prompting

Large Language Models to Power Educational Chatbots [In Submission]

Sixth, we proposed a model to guide the participatory design of educational chatbots (C6).

To validate this model, we first conducted two pilot studies comprising a workshop with

eight researchers and developers in education, as well as a case study with an undergraduate

student completing a semester project on designing educational chatbots. We then conducted

an illustrative study whereby 25 students—enrolled in a course on software design—took part

in a participatory design session to ideate an educational chatbot. Our model is presented in

Chapter 11 and is featured in the following publication:

• Farah, J. C., Spaenlehauer, B., Ingram, S., Lasne, F. K.-L., Rodríguez-Triana, M. J., Holzer,

A., & Gillet, D. (2023). TRACE: A Conceptual Model to Guide the Design of Educational

Chatbots [In Submission]

Finally, we proposed a technical blueprint for a system that facilitates the integration of

chatbots into digital learning applications (C7). We validate this blueprint through a proof of

concept implementation of our architecture to showcase how it can support a learning activity.

This blueprint is presented in Chapter 12 and is featured in the following publication:

• Farah, J. C., Spaenlehauer, B., Ingram, S., & Gillet, D. (2022). A Blueprint for Integrating

Task-Oriented Conversational Agents in Education. 4th Conference on Conversational

User Interfaces (CUI 2022). https://doi.org/10.1145/3543829.3544525

To summarize our work, Figure 1.9 provides an overview of the research context, problem

statement, research questions, objectives, and contributions that constitute the core of this

thesis.
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1.6 Structure

1.6 Structure

The remainder of this thesis is structured as follows. Each of the four subsequent parts focuses

on one main cycle of the DBR process, as presented in Section 1.4.

Part I covers the first series of DBR cycles, during which we developed the technological foun-

dations underpinning our work. We start in Chapter 2 by presenting the design and evaluation

of the ADA used to create the learning applications employed in this thesis. Chapter 3 then

outlines the LA pipeline that provided access to the data generated during our empirical

studies.

In Part II, we address the pedagogical scenarios in which the educational chatbots will be em-

bedded through a second series of DBR cycles. Chapter 4 presents the design and evaluation of

the Code application, as well as a template to provide browser-based computational notebook

solutions within digital education platforms. This evaluation informed the development of

the Code Review application and the code review notebook template, which we introduce in

Chapter 5.

Part III investigates interaction strategies for educational chatbots through a third series of

DBR cycles. In Chapter 6, we report on an online experiment exploring how chatbots can

harness humor to improve user perception of certain anthropomorphic qualities. Findings

from this study motivated an observational study of how users interact with chatbots on

social coding platforms, which we present in Chapter 7. Chapters 8–10 then present our core

empirical studies, in which we explore how educational chatbots can be integrated into code

review notebooks through four case studies that evaluated the effects of using Wizard of Oz

(Chapter 8), rule-based (Chapter 9), and language model-based (Chapter 10) mechanisms to

power these chatbots.

Our final series of DBR cycles is presented in Part IV, which builds on the findings that emerged

from the first three research cycles to propose conceptual and technical tools to support the

co-design of educational chatbots. Chapter 11 outlines a model that can serve to guide

participatory design workshops aimed at designing educational chatbots. Chapter 12 then

presents a blueprint for a technical architecture that can assist in the implementation of

outcomes from design sessions guided by our model.

Finally, Chapter 13 provides a conclusion for the thesis, summarizing how the individual con-

tributions come together to constitute a conceptual framework for integrating task-oriented

conversational agents into digital education platforms.
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IN the first part of this thesis, we investigate how to enhance an online learning platform

with the features required to efficiently host educational chatbots. Taking a learning expe-

rience platform (LXP) as a starting point, we begin by outlining the application development

architecture (ADA) that we propose as a way to standardize the implementation and deploy-

ment of web applications aimed at educational contexts. In Chapter 2, we present this ADA

and an evaluation consisting of semi-structured interviews conducted with 12 developers

in education. We then introduce an end-to-end learning analytics (LA) pipeline, which was

implemented in an LXP to support the collection, visualization, export, anonymization, and

storage of the LA data that were generated during our empirical evaluations. In Chapter 3, we

present the design and implementation of this pipeline. In this brief introduction, we highlight

related work.

Related Work

Educational design approaches, frameworks, and software proposed in the literature often

focus on the production of learning content (Puggioni et al., 2020) or the design and develop-

ment of tools to support learning activities (Hohenwarter, 2002). Furthermore, frameworks

supporting software development for education generally target specific platforms or subject

matter. Although some learning management systems (LMSs) (e.g., Moodle) support the de-

velopment and integration of custom plugins (Moore et al., 2010), there are no standard ADAs

to develop web applications for LXPs. Plugins directed at specific LMSs are tightly coupled

with the content hosted on the respective platform and cannot be deployed externally without

custom software, such as the Learning Tool Interoperability (LTI) adapter developed by the

IMS Global Learning Consortium (2019). As is the case with the LTI adapter, there have been

attempts to tackle the challenge of interoperability by proposing standards that allow tools

to work across learning environments. The OpenSocial standard (Häsel, 2011), for example,

defined a social API specification that was adopted by some open education platforms (Gillet,

de Jong, et al., 2013), but has been deprecated since 2018. Similarly, Alario-Hoyos et al. (2013)
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proposed GLUE!, an architecture for the integration of external tools in Virtual Learning Envi-

ronments (VLEs). However, their proposal focuses more on the architecture needed to support

interoperability and less on supporting developers in building applications that adhere to

those interoperability standards.

A few toolkits to develop interoperable solutions that are compatible with LXPs exist, but

these are also limited by different factors. On the one hand, some online simulation providers,

such as the PhET Interactive Simulations project (Perkins et al., 2006), provide access to their

development frameworks, but these are specifically tailored for certain subjects (e.g., STEM,

in the case of the PhET Interactive Simulations project). On the other hand, the H5P project

supports the creation of reusable interactive HTML content that is both platform- and subject-

agnostic. Nonetheless, while H5P is widely used in education (Amali et al., 2019), it targets

publishing platforms in general and is designed primarily for content creators, not developers.

Furthermore, the creation of open educational resources (OERs) with H5P can be limited

by issues regarding compatibility, reusability, and “costs associated with [H5P’s] integration

in a learning management system and hosting services” (Scott et al., 2021). These issues

underscore the need for an accessible, platform-agnostic ADA that can be used by developers

in education to create applications that support blended learning scenarios across academic

disciplines. Implementations of this ADA could be designed to create applications that natively

support educational chatbots, thus providing the technological base for the integration of

these chatbots into LXPs. Furthermore, understanding how developers in education use ADAs,

what they value and what they find challenging, could help improve the design of technological

tools to support their practice.

Facilitating the development of applications aimed at LXPs also concerns the need to address

how data produced by these applications—and the platforms they are hosted on—are man-

aged. As educational institutions continue to adopt digital education solutions, the volume

of educational data recorded on digital platforms continues to rise (Pardo et al., 2014). The

availability of these data, along with improvements in computational capacity, has led to an

increase in the resources available for LA and educational data mining. This steep rise in the

generation of LA data has motivated the development of ethical frameworks that address how

learner data should be collected, stored, and accessed (Slade et al., 2013).

The importance of addressing ethical and privacy issues in the context of digital education

is illustrated by projects such as LEA’s BOX (Steiner et al., 2016) and the Learning Analytics

Community Exchange (LACE) (Ferguson et al., 2016). On the one hand, Steiner et al. (2016)

proposed a set of eight principles to devise a data protection framework for LA, which in-

formed the design of the tools used in LEA’s BOX. Nevertheless, Steiner et al. acknowledged

that “it is very difficult (if not impossible), to translate a general ethical mind-set into direct

recommendations for technical designs and architectures” and concluded by highlighting

broad aspects without providing specific guidelines for implementation. On the other hand,

as reported by Ferguson et al. (2016), LACE spearheaded the organization of workshops to

identify challenges, define goals, and share work conducted in the field of ethics and privacy
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for LA, including how to manage the growing amount of data collected for LA.

Proper data management is one of the key dimensions of LA associated with corresponding

privacy and ethics risks, as noted by Greller et al. (2012). These risks also create barriers to

the adoption of digital technologies in education. To promote trust in LA solutions, Drachsler

et al. (2016) proposed DELICATE, a list of requirements for LA implementations, highlighting

educational data management as one of the aspects to be taken into account. Moreover,

within a general framework, the European General Data Protection Regulation (EU GDPR

2016/679) (European Union, 2016) defined a number of requirements regarding the collection

and processing of personal data.

However, standards for data models and data collection in digital education are still lacking (del

Blanco et al., 2013; Hoel et al., 2014) and pose a barrier to the scaling and interoperability of LA.

Indeed, the development of privacy-preserving standards and technical blueprints for LA has

been somewhat eschewed. Instead, researchers have focused on other approaches to tackling

these barriers. This focus is captured by Drachsler et al. (2016), who noted—in their work

presenting DELICATE—that they would “refrain from solving a weakness in a new learning

technology by proposing technical fixes or technological solutions, such as standardisation

approaches”, and instead propose addressing “human factors, such as angst, scepticism,

misunderstandings, and critical concerns”.

Data privacy issues are also a major challenge to promoting open data in education (Dietze

et al., 2016). Although anonymization is a common strategy to protect data privacy, there

are some obstacles that hinder its adoption in practice (Gursoy et al., 2017). First, there is an

inherent trade-off between achieving privacy and preserving the utility of an anonymized

data set, since the granularity of anonymization can hinder the envisioned data analysis. For

example, a well-documented limitation of the k-anonymization algorithm (W. Jiang et al.,

2005) is that—when processing a dataset to ensure that individual data points are no longer

distinguishable—it removes useful information from the data set (Komarova et al., 2017).

Anonymization algorithms based on encryption also have well-documented limitations, such

as the vulnerability to attacks in which bad actors potentially reverse engineer a hash function

using brute-force algorithms against hashed data attributes that have common unhashed

values (Demir et al., 2018). Second, anonymization approaches depend on the data being

anonymized and are not easily generalizable. For example, techniques to anonymize geoloca-

tion data will differ from those for anonymizing usernames, and two platforms may generate

different formats for the same data attribute. Third, automatically identifying sensitive at-

tributes in a data set is a complex problem, meaning that researchers need to be familiar with

a dataset and its schema beforehand (Chicaiza et al., 2020).

Several techniques have been proposed to address these challenges. Privacy-preserving

LA tools often include simple methods such as suppressing or hashing identifiers (Gursoy

et al., 2017; Heurix et al., 2015; Steiner et al., 2016). Other robust techniques include the

aforementioned k-anonymity (W. Jiang et al., 2005), which ensures that the quasi-identifiers
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map to at least k users, and l-diversity (Machanavajjhala et al., 2006), which guarantees that

the sensitive values are diversified enough for each set of users with the same quasi-identifiers.

Finally, t-closeness (N. Li et al., 2007) adds the property that the distribution of sensitive values

must be similar for each of these sets. Although previously proposed LA data management

solutions include different anonymization strategies in their design (Chicaiza et al., 2020;

Majumdar et al., 2019), there is no approach that generalizes to the diversity of formats and

data types present on educational platforms.

Finally, the lack of incentives and infrastructure for data sharing poses a challenge to the

adoption of open data practices in digital education. One of the issues limiting this adoption

is the fact that existing data sharing platforms for digital education are not integrated into a

full data life cycle (Nicholson et al., 2017), making dataset sharing cumbersome. Incorporating

sharing functionality alongside data visualization and anonymization tools—without the need

to switch between different platforms and tools—could help promote open data practices and

foster collaboration in the spirit of open science.
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2 Application Development Architecture

WHEN educational activities are conducted on digital education platforms, educators

often harness interactive web applications (apps) to support these activities. These

apps are often created by web developers or by researchers, educators, and even students with

programming experience. As a first step toward integrating educational chatbots into LXPs,

we designed an application development architecture (ADA) aimed at supporting developers

in creating apps for education. Our goal was to provide a systematic and efficient way to

develop apps compatible with LXPs. While these apps could serve different purposes and

cover several educational domains, following a standardized architecture could ease the

integration of chatbots into these apps. Finally, we wanted to shed light on how developers

used an implementation of our ADA, the apps they created, and the challenges they faced. In

this chapter, we present our ADA and report the results of a study comprising interviews with

12 developers who used an implementation of our architecture for a production-ready LXP.

Our findings highlight that while the creation of web apps for education can be facilitated

by a purely software-based application development kit (ADK) following our architecture,

effectively exploiting such ADK requires domain knowledge that was not captured in the ADA

but could be acquired through in-depth documentation, tutorials, and collaboration between

developers and educators.

By laying out the technical groundwork for developing apps that will be able to host educa-

tional chatbots, this chapter partially addresses RQ1:

How can we facilitate the development of the tools required to integrate chatbots

into LXPs?

The content of this chapter was partially presented in the following publication:

1. Farah, J. C., Ingram, S., & Gillet, D. (2022). Supporting Developers in Creating Web Apps

for Education via an App Development Framework. HEAd'22 Conference Proceedings,

893–890. https://doi.org/10.4995/HEAD22.2022.15652
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Chapter 2. Application Development Architecture

2.1 Introduction

In this chapter, we present the design of an open-source application development architec-

ture (ADA) aimed at supporting the creation of apps for education. The design of our ADA

proposes a series of components in conjunction with a software engineering process that can

facilitate the development of apps specifically aimed at deployment within a digital learning

environment. To provide a proof of concept, we implemented an application development kit

(ADK) following this architecture for a production-ready LXP. Between 2019 and 2021, this

implementation was used by 20 developers to create over 35 apps. To evaluate how our ADA

could assist in the creation of apps for education, we conducted a qualitative study comprising

semi-structured interviews with 12 developers who used this ADK between 2019 and 2021.

The transcripts of these interviews were analyzed using thematic analysis, shedding light on

the (i) technical, (ii) educational, and (iii) licensing aspects of our architecture, as well as on

how to make app development for education more accessible. Our results point toward the

need for collaboration between developers, researchers in education, and educators, which

could be facilitated by extensions of our architecture.

This chapter addresses two needs that were presented in the introduction to this part of

this thesis. First, the need for an accessible, platform- and subject-agnostic, ADA to help

developers create apps for education. Our ADA exclusively targets educational contexts and

is designed for developers working on creating web apps for such contexts. Second—to the

best of our knowledge—no study has focused on gathering feedback from developers on their

experience in creating apps for education. By tackling these needs, we propose and validate

one of our contributions, namely an ADA to support the implementation of apps that can

integrate with LXPs (C1).

This chapter is structured as follows. We start in Section 2.2 by presenting the design of the

components and the process that make up our proposed ADA. In Section 2.3, we then outline

how we implemented this design to create an ADK to support the development of apps for

a production-ready LXP. Our evaluation with developers that used the ADK is presented in

Section 2.4. Key results from this evaluation are highlighted in Section 2.5 and discussed in

Section 2.6. Finally, we conclude in Section 2.7.

2.2 Design

Our ADA is designed following a headless and decoupled structure similar to that of the

popular Gatsby framework (Gatsby, 2022). Gatsby is a JavaScript framework for creating and

deploying websites. It allows developers to use a command-line interface (CLI) to create

websites based on templates, some of which are featured in a public repository. Developers

can then build on those templates and deploy their websites to their own infrastructure or

to one provided by Gatsby. Our design adopts and adapts this strategy to digital education

platforms, focusing on two key dimensions. First, on the key components that are required to
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2.2 Design

implement an ADK following our architecture. Second, on the software engineering process

that these components support. In this section, we present these two dimensions in detail.

2.2.1 Components

We start by defining the six core components of our architecture: (i) context, (ii) applica-

tion programming interface (API), (iii) templates, (iv) command-line interface (CLI), (v) local

development, and (vi) repository.

Context

Our ADA is primarily designed to create apps that are to be incorporated into a digital learning

context, which we refer to as running in contextual mode. Specifically, apps should be loaded

by calling the URL where the app is hosted, either in an iframe (if embedded directly in a

learning activity) or as a standalone web page (if opened as a separate link). To inform an app

of its context, the URL should include a query string that contains its unique identifier (ID)

within the learning platform, as well as the IDs of the activity that it is a part of (i.e., its context)

and of the user that is interacting with it. The query string also informs the app whether it is

running within the platform’s educator or learner interface and provides the endpoint that

the app needs to call to access the platform’s application programming interface. Apps can

then render role-specific views or components, such as a settings panel that is only available

to educators. If this context is missing, apps can fall back to running in standalone mode (i.e.,

without support from a digital learning platform). The standalone mode is particularly useful

for apps that do not have to persist user-generated data across sessions (e.g., simulations) or

to perform demonstrations with sample data.

Application Programming Interface

Apps running in contextual mode are aimed at communicating with digital learning platforms

and therefore need access to data hosted by these platforms, such as learning resources and

activity traces. Access to these data is often made possible via application programming

interfaces (APIs). While different platforms can define their API differently, our goal was to

identify the core data required to support educational apps and design our API specifications

accordingly. To do this, we propose a permissioned API (i.e., one that only allows access to

users with the appropriate permissions). This API should expose endpoints for the app to

perform the following actions:

• fetch information about the user that is currently logged in,

• fetch a list of learners that have interacted with the app or the lesson in which the app is

embedded,
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• fetch and update its settings,

• create, fetch, update, and delete its own resources, which include user-generated learn-

ing outputs, and

• create, fetch, and delete LA generated by users while interacting with the app.

These endpoints are loosely based on the OpenSocial standard (Häsel, 2011), which—as

mentioned in the introduction to Part I—defined a social API specification that was adopted

by some open education platforms (Gillet, de Jong, et al., 2013). Once the API is set in place,

apps can exploit it to get access to the content they require to run.

Templates

Although it should be possible to develop an app from scratch, templates allow developers to

maximize code reusability and focus on app- and use-case-specific code. Templates are code

repositories that serve as a starting point for the development of an app. An ADK based on

our architecture should provide default templates and developers should be able to create

custom templates, either from scratch or by building on previously created templates. This

reduces the amount of boilerplate that developers need to write in order to create apps. That is,

templates allow for the basic structure of a particular type of app to be only written once. The

structures provided by templates can facilitate many development tasks, including enforcing

code style, setting up development and testing frameworks, providing design components,

and abstracting the API through ready-made functions that pre-establish the link between

the app and the platform(s) it will be hosted on. Furthermore, templates can be generated in

various frontend development languages (e.g., JavaScript, TypeScript, Elm) and frameworks

(e.g., React, Angular, Vue) to attract a wider community of developers.

Command-Line Interface

To make it straightforward to get started with a template, an ADK following our architecture

should provide a command-line interface (CLI) that can guide developers through the pro-

cess of bootstrapping an app. In particular, the CLI should provide a command to prompt

developers for information concerning the template they want to use, the name of their app,

and optional identifiers (IDs) required for access to any permissioned APIs and deployment

to external infrastructure. The CLI should also be used to test an app locally, package it as a

compressed file, deploy it, and publish it to open repositories.

Local Development Environment

Local development should be supported by tools that provide a mock API resembling how

apps will interact with the LXPs in which they will be deployed. These tools should also
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2.2 Design

allow developers to quickly switch between contexts in order to develop, visualize, and test

how different stakeholders will interact with their apps. Finally, if development requires a

full running version of the LXP, integration with an online or local sandboxed version of the

platform should be made accessible.

Open Educational App Repository

A final component of our design is the app repository. While the code for the apps could

be hosted in any source code repository (e.g., GitHub, GitLab), these repositories are not

specifically aimed at education. To allow educators to more easily discover and use apps built

with an ADK following our architecture, the ADK should integrate with a repository of open

educational resources that could host these apps and provide information about them in a

way that is accessible to nontechnical users. Tagging published versions of apps following

standards such as Semantic Versioning (SemVer) could allow LXPs to perform automatic app

updates without disrupting existing deployments of the app in learning activities.

2.2.2 Process

The components that make up our architecture come together to provide developers with a

process to manage the full life cycle of an app aimed at educational contexts. In this section,

we outline the key steps in this process, which is primarily supported by the CLI component.

The complete process, which features the components presented in Section 2.2.1, is illustrated

in Figure 2.1.

Template
Repository

OER
Repository

Developers

Educators

Command Line Interface

$ <command>

Developers

Browser

Educator Learner

Contexts

Mock
API

Local Development Environment

Local DevelopmentTemplate Selection

Development

Educators Learners

LXP (Contextual Mode) LXP Backend

API
Educator Learner

Contexts

Standalone

Deployment Live Testing Publication

Staging

Production

Figure 2.1: Our application development architecture defines key components and a software
engineering process to facilitate the development of apps specifically aimed at deployment
within a digital learning environment.
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Template Selection

The development process starts with the selection of a template that will bootstrap the de-

velopment of the app. Once the appropriate template has been identified, the developer

can harness the CLI to set up a local development environment as defined by the selected

template.

Local Development

Development of the app should take place in the developer’s local environment. Setting up

this local development environment should be facilitated by the CLI, which interfaces with the

corresponding lower-level tools that are required for development (e.g., Docker, Git, Node.js).

Local development also allows developers to preview the different contexts they would like

the app to support, namely those contexts aimed at educators and those aimed at learners.

This preview functionality facilitates development without the need to deploy to an external

environment.

Deployment

Once the app is ready to be tested internally by other stakeholders, the CLI allows the developer

to deploy a version of the app to different external environments. These environments can be

provided by one or more LXPs that the app is targeting, by the developers themselves, or by

an external third party. Crucially, this deployment step allows developers to test their app in

multiple environments (e.g., development for initial validation, staging for quality assurance)

and validate the app before it is sent to a production-ready environment.

Live Testing

When the app is deployed to production, it is ready for educators to integrate it into their digital

activities for use with learners. This constitutes the live testing phase of this process, which

validates that the app can serve educators in their practice. Incorporating error monitoring

tools can serve to detect issues with the app once it is live, as they can provide ways for end

users to send feedback and crash reports back to the developer.

Publishing

An app can be published once it is ready to share with the community. Published apps can be

featured in repositories of OERs so that educators can test them before incorporating them

into their lessons. These repositories can also be directly linked to LXPs in order to facilitate the

creation of learning activities with the apps featured in the repository. Note that this process is

iterative. That is, once an app is first published, changes and updates can be incorporated

through the same process before a new version is published again in the repository.
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Figure 2.2: The Graasp ecosystem consists of four interfaces, each addressing a different aspect
of the digital learning experience. (Adapted from Gillet, Vonèche-Cardia, et al. (2022).)

2.3 Implementation

One of the central aims of this thesis is to advance our ability to integrate educational chatbots

into apps designed for LXPs. In order to maximize ecological validity, we chose to develop the

technological ecosystem needed for this integration using a production-ready LXP as a base.

Hence, to frame this development and support our work, we chose Graasp1 (Gillet, Vonèche-

Cardia, et al., 2022), a free, open-source LXP jointly developed by the École Polytechnique

Fédérale de Lausanne and the Graasp Association.

2.3.1 Graasp

Graasp is a learning experience platform aimed at supporting educators with the creation

and dissemination of learning resources. Designed following a quadriptych model, Graasp

provides four main user interfaces, each focused on a particular aspect of the digital learning

experience. This model is summarized in Figure 2.2.

First, there is the Graasp Builder interface (see Figure 2.3), which allows educators to prepare

learning activities using multimedia content. Graasp Builder provides educators with the

ability to integrate and configure the resources they will use to create their digital learning

activities. Learning activities can be scaffolded into step-by-step exercises that can be con-

textualized with text, images, links, and other interactive content. Once a learning activity

1Work conducted in this thesis spanned two different versions of Graasp. While the core functionalities remained
the same, certain parts of the user interface changed radically. In most cases, we have chosen to include screenshots
of the latest version. Nevertheless, where applicable, screenshots of the previous version have been included.
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Figure 2.3: Graasp Builder is aimed at educa-
tors looking to create learning activities with
resources from across the web.

Figure 2.4: Once an activity is ready, a link to
access it via Graasp Player can be shared with
learners. (Comic strip by Munroe (2015).)

has been prepared, it can be shared with learners through the Graasp Player interface (see

Figure 2.4). This second interface is an environment directed at learning and is accessible

through a link. Using this link, learners can take part in the learning activity, navigating

through pages containing the exercises prepared by the educator. A third interface—Graasp

Analytics—focuses on visualizing and providing access to data capturing how both educators

and learners interact with the learning activity. This interface allows educators and researchers

using Graasp to access a high-level overview of how a learning activity is created and exploited.

It contains charts of actions by day, time of day, and type, as well as an interactive map

of actions coarsely clustered by geolocation. Finally, there is the Graasp Library interface,

which allows educators to share their content as OERs with the community as a whole. Using

the Graasp Library, educators can easily discover, adapt, and reuse learning resources and

activities that have been created with the Graasp Builder.

Given that Graasp has been active since 2006 and—as of 2022—had over 400,000 users, it serves

as an appropriate educational platform on which to scaffold our technological environment.

Hence, we implemented an ADK following the proposed ADA to support the creation of

apps for Graasp. Henceforth, we refer to this implementation as the Graasp Application

Development Kit (Graasp ADK).

2.3.2 Templates

The default templates provided by the Graasp ADK were written in TypeScript and JavaScript

and cover multiple frontend development frameworks. These templates encapsulate the core

structure of an app targeted at Graasp, including—on top of the aforementioned development

tasks—privacy and role-aware data access and visualization modes, state management, an

open-source license, and compatibility with an offline desktop environment. These templates
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also have a minimal user interface, allowing developers to customize the visual appearance of

their apps as they deem best. Nevertheless, the Graasp ADK provides basic integration with

the user interface libraries used by Graasp, promoting consistency between the apps and the

platform they are hosted on. Examples of these templates are shown in Figures 2.5–2.6.

Figure 2.5: A simple template can serve to bootstrap an app on Graasp.

Figure 2.6: By default, a more advanced template provides developers with insight into how
data is generated and stored on Graasp.

2.3.3 Command-Line Interface

We implemented Graasp ADK’s CLI as a Node.js tool that could compile to any major operating

system requiring only minimal external dependencies. Following the recommendations of our

design, the new command allows developers to access and customize app templates through

a simple prompt. Once the required information is provided, the CLI fetches the selected

template and installs all the packages needed for the app to run locally and be compatible with

Graasp’s deployment process, which uses GitHub Actions to deploy to a cloud infrastructure
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hosted on Amazon Web Services. These commands harness lower-level utilities (e.g., git,

npm, aws) and custom shell scripts, abstracting this logic from the developer. An example of

the bootstrapping process using the CLI prompt to select the default template is shown in

Figure 2.7.

Figure 2.7: Creating an app is facilitated by the CLI’s new command, which fetches a template
and bootstraps a local development environment.

2.3.4 Local Development

To facilitate the setup of a local development environment, a series of tools were included

with Graasp ADK’s default templates. These tools help developers follow best practices from

the JavaScript and TypeScript communities, including the use of libraries such as Prettier

and ESLint (Zakas, 2013) for code style, as well as Cypress for running end-to-end browser

tests. The mock API was based on Mirage JS, which runs directly alongside the frontend

code, requiring no running backend. Nevertheless, for developers requiring a more complete

local environment, we adapted and packaged Graasp’s various frontend and backend services

using Docker containers. These containers simplify deployment and provide a consistent

experience across environments. Finally, mock data were included by default in the templates

in order to provide validated examples of the structure developers should expect to encounter

in production environments.

2.3.5 Repository

The implementation of the app repository was aligned with the development of the Graasp

Library interface. As such, the Graasp Library was enhanced to support the inclusion of

individual apps as well as collections of apps. Collections allowed external developers to
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Figure 2.8: An app created with the Graasp Application Development Kit—which is an im-
plementation of our application development architecture—can be featured on the Graasp
Library, a repository of open educational resources.

showcase their apps and facilitate their discovery. This followed the approach used by other

app repositories such as Go-Lab (de Jong et al., 2014), whereby educators can quickly search

for, filter, and test apps that are relevant to their practice. Figure 2.8 depicts how an app can be

featured in the repository.

Over 35 apps were created with the Graasp ADK between 2019 and 2021. These apps range

from virtual labs targeting physics education, to learning analytics visualizations for both

educators and learners, to interactive chatbot interfaces. Figure 2.9 illustrates four examples

of apps that were created using the Graasp ADK:

1. Sticky Notes (top left) allows learners to brainstorm ideas using multicolor sticky notes.

2. Task Management (top right) provides task management features for collaborative

learning activities (La Scala et al., 2022).

3. Greenhouse Effect (bottom right) helps learners visualize the effects of global warming.

4. Light Pollution Simulator (bottom left) aims to raise awareness of the effects of light

pollution on the night sky (Gomes et al., 2019).

More importantly, the Graasp ADK served to create the apps used in the work carried out for

this thesis. These apps notably include the three apps around which our pedagogical contexts

were scaffolded:
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1. Code, which allows learners to write and execute Python and JavaScript code in the

browser.

2. Code Review, which allows learners to annotate code and supports interactions with

chatbots following rule-based scripts.

3. Code Capsule, which incorporates the functionalities of Code and Code Review into one

app and supports interactions with chatbots powered by large language models.

Other supporting apps, such as Text Input, Linear Scale, File Drop, and Submit Answer, were

also developed with the Graasp ADK and incorporated into the pedagogical contexts that were

used in our empirical evaluations.

Figure 2.9: Four example apps (clockwise from top left): Sticky Notes for design thinking, Task
Management for collaboration (La Scala et al., 2022), Greenhouse Effect for climate change
awareness, and Light Pollution Simulator to visualize the effects of light pollution (Gomes
et al., 2019).

2.4 Methodology

To validate our ADA, we conducted a qualitative evaluation focused on how developers had

used the implementation of our architecture for Graasp. Our evaluation addressed the follow-

ing research question, which is an extension of RQ1:

• How can our ADA facilitate the creation of apps for education? (RQ1a)
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Specifically, we focus on three aspects of this research question: (i) technical, (ii) educational,

and (iii) licensing aspects.

2.4.1 Participants

Following the total population purposive sampling method, we contacted all developers

who were identified as having worked with the Graasp ADK as of January 2022. A total of 13

developers agreed to participate and were interviewed in January and February 2022. One

interview was excluded from our analysis due to technical issues with the transcript. The 12

developers (2 female, 10 male) included in our final analysis include two researchers, two

software engineers, four bachelor’s, two master’s, and two doctoral students. Participants were

based in five different countries.

2.4.2 Instruments

We followed a qualitative approach to addressing our research question. This approach

harnessed semi-structured interviews, given their applicability to small-scale research (Drever,

1997). The interviews lasted approximately 30 minutes, took place using an online video

conference tool, and were loosely guided by 15 questions covering four topics: (i) developer

background, (ii) experience with the ADK, (iii) educational context, and (iv) importance of

open-source code. The interviews were recorded with the consent of the participant.

2.4.3 Data Analysis

We analyzed our qualitative data using thematic analysis, performing line-by-line coding (Char-

maz, 2006) on the interview transcripts to identify emergent themes with respect to the three

aspects of our study.

2.5 Results

In this section, we highlight the key findings of our qualitative analysis, focusing on the three

aspects of our research question.

2.5.1 Technical Aspect

Concerning the technical aspect, all 12 developers were overall positive about the support

received by the ADK, although five developers expressed that they found it challenging to

get started due to their lack of experience either with JavaScript (two developers) or React

(three developers). Five developers noted that the boilerplate provided by the default template

was helpful, while nine developers alluded to the consistent and adequate structure of the

code. Eight developers highlighted the need for more technical support, with five developers
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suggesting the creation of video tutorials. These tutorials were suggested as a way to explain

what was included in the template (two developers) and to help developers create a sample

app (two developers). Four developers also noted the need for more templates to support

other technology stacks (one developer), keep the code up-to-date with current standards

(three developers), and make parts of the code optional (one developer).

2.5.2 Educational Aspect

Concerning the educational aspect, all developers were overall positive about the ADK’s impact

on helping create apps for education, with six developers noting that the ADK’s support for

LA was an important feature. Nevertheless, five developers reported that understanding

the educational context and nomenclature of the ADK was challenging. To address this

challenge, four developers highlighted the importance of collaboration between developers

and educators. Two developers specifically suggested incorporating requirements elicitation

and validation processes into the ADK. The importance of collaboration is best illustrated by a

quote from one of the developers.

“One of the challenges is that very often it’s not really about the code and how

skilled the coders are... it’s more [about] the teachers and the teachers who know

the [subject matter] and who know how the students will receive [the app] and

what they will find challenging and what they will find interesting... I’m not a

teacher, so I wouldn’t have that knowledge. I don’t know the [subject matter]...

maybe I could learn it, but I’m not going to learn it in a way that someone who’s

been teaching it for 5–10 years knows it, and also [knows the] students.”

2.5.3 Licensing Aspect

Finally, concerning the licensing aspect, all 12 developers were positive about the fact that the

ADK encouraged open-source. Reasons put forth for the importance of open-source included

(i) not reinventing the wheel (two developers), (ii) making knowledge and examples accessible

(seven developers), and (iii) building a community (three developers).

2.6 Discussion and Implications

The results of our evaluation show that on the one hand, developers found the Graasp ADK use-

ful in terms of the technical advantages it provided through convenient boilerplate, the ease

of use of the CLI, and the consistent structure of the code. On the other hand, the Graasp ADK

failed to fully support developers in understanding the educational aspects involved in the

development of apps aimed at learning contexts. The need to better support and encourage

collaboration between the different stakeholders in education is aligned with work by Tavares

et al. (2020), who proposed a participatory design process to bring together researchers in ed-
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ucation and end users of educational mobile apps. In the context of designing an educational

chatbot, Durall Gazulla et al. (2023) also emphasized the need to support collaboration when

developing learning technologies. Indeed, our findings suggest that collaboration should

also be established between software developers, researchers in education, and educators.

This collaboration could be facilitated by the ADA, which could include educational aspects

in its documentation and tutorials, incorporate an automated validation process, provide a

library of reusable components that are strongly linked to pedagogical interfaces, and follow

nomenclature defined through a co-design process involving both developers and educators.

These findings have concrete implications for the work conducted in the rest of this thesis and

significantly inform five of the other contributions. First, we harnessed the implementation

of our ADA to create the apps that were used in our empirical studies. In turn, these apps

were used to scaffold the pedagogical scenarios that served to contextualize these studies,

including both the integrated computational notebook (C3) that we introduce in Chapter 4

and the code review notebook to simulate social coding platforms in educational contexts

(C4), which we present in Chapter 5. Second, findings suggesting the need for collaboration

between developers and educators inform our approach to designing a model for facilitating

participatory design sessions (C6), which will be presented in Chapter 11. Third, the need

to incorporate elements from education into our technical tools guided the design of our

data analytics pipeline (C2) and our technical blueprint for integrating educational chatbots

into learning applications (C7). Presented in Chapter 3 and Chapter 12, respectively, these

technical architectures are more closely tied to educational concepts than the ADA presented

in this chapter.

2.7 Conclusion

In this chapter, we presented the design and evaluation of an ADA aimed at supporting

developers in creating apps for educational contexts. Our results suggest that developers

would benefit from support from experts in education, which could be facilitated by the ADA.

These results have important practical and theoretical implications for the rest of the work

carried out in this thesis, serving to create the tools presented in the following chapters as well

as providing concrete guidance for the design processes that will be discussed in Part IV.

Nevertheless, our evaluation has some limitations worth noting. First, while the sample size

is appropriate for a qualitative study using semi-structured interviews, it would be useful to

complement these findings with a larger sample size, along with a quantitative analysis of

the actual usage of the ADA. Second, our ADA allows apps to be deployed in standalone or

contextual mode. However, our proof-of-concept implementation tested contextual mode

only with Graasp. To increase portability, contextual mode should be compatible with multiple

platforms. In future work, we aim to address these limitations and incorporate the feedback

received into the next iteration of our architecture.
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IN the previous chapter, we presented an architecture for implementing ADKs that can

support the creation of apps for LXPs. When educators and learners interact with these

apps, their actions are often recorded for learning analytics (LA). This data-driven approach

to analyzing how learners interact with educational technologies also applies to the con-

versations and interactions that learners can have with educational chatbots. Nonetheless,

despite the importance of LA in digital education, there is limited support for researchers to

generate, access, and share experimental data while complying with ethical guidelines and

privacy legislation. To address this need, we propose an architecture for a pipeline to support

researchers with these data-related tasks and present a blueprint for how this architecture can

be integrated with existing platforms, enabling researchers to conduct experiments within

learning environments, adhere to legal and ethical privacy frameworks, and share their data

with a wider audience. In this chapter, we present the design of our architecture and the

proof-of-concept implementation of the pipeline on Graasp.

By laying out the technical groundwork for collecting, extracting, anonymizing, and visualizing

data from the applications that will host the educational chatbots, this chapter partially

addresses RQ1:

How can we facilitate the development of the tools required to integrate chatbots

into LXPs?

The content of this chapter was partially presented in the following publication:

• Farah, J. C., Soares Machado, J., Torres da Cunha, P., Ingram, S., & Gillet, D. (2021). An

End-to-End Data Pipeline for Managing Learning Analytics. 2021 19th International

Conference on Information Technology Based Higher Education and Training (ITHET).

https://doi.org/10.1109/ITHET50392.2021.9759783
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3.1 Introduction

Digital education platforms often record learner interactions within online lessons and ac-

tivities, providing educators and researchers with detailed learning analytics (LA) (Kellogg

et al., 2015). LA offer significant potential to improve educational experiences and can support

content personalization, the provision of real-time feedback, and the early detection of at-risk

learners (Siemens et al., 2011). Although work has been done to promote data sharing in

education and make education-focused open data repositories publicly available, ethical

concerns and recent privacy legislation pose a challenge to the wider adoption of open data

practices in education (Dietze et al., 2016). Furthermore, data interoperability and contextual-

ization issues make it particularly difficult to support cross-platform LA (Ruipérez-Valiente

et al., 2020).

In this chapter, we propose a comprehensive LA data pipeline architecture aimed at support-

ing open research in education and present the implementation of this architecture on Graasp.

The goal is to outline the pipeline’s architecture and the practical considerations encountered

when incorporating the pipeline into a web-based LXP, thereby demonstrating the technical

feasibility of developing and deploying this architecture and validating our second contri-

bution, namely an end-to-end LA pipeline to support the full data management cycle for

research in education (C2). Given that flexibility is often required for such implementations,

we focus both on how our pipeline’s components can be used as part of an integrated system

and individually as standalone units. Our architecture aims to address the need for technical

designs providing end-to-end solutions to manage LA, as highlighted in the introduction

to Part I of this thesis. By integrating sharing functionality alongside data visualization and

anonymization tools, LA management solutions following our architecture could also help

promote open data practices and foster collaboration in the spirit of open science.

This chapter is structured as follows. We begin in Section 3.2 by providing an outline of the

design considerations that guided our work. We then present the architecture of our data

pipeline in Section 3.3. Section 3.4 presents a discussion of our implementation as well as

its implications for the rest of the work conducted in this thesis. We conclude, highlighting

limitations and future work, in Section 3.5.

3.2 Design Considerations

To guide the design of our pipeline, we build on our review of related work—as presented

in the introduction to this part of this thesis—and on a previous requirements elicitation

process comprising a survey conducted with 40 researchers in education (Machado et al.,

2019). Outcomes from this elicitation process showed that researchers were most interested

in 19 features across five different processes related to LA data collection, management, and

dissemination. Table 3.1 summarizes these features.

Informed by this requirements elicitation process, our goal was to provide educators and
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Table 3.1: Features Requested to Support Research on Digital Education Platforms (Adapted
from Machado et al. (2019).)

Process Features
Bootstrapping
Research Studies

• Allow researchers to ask teachers to participate in research
studies.

Ensuring Consent
• Allow participants to provide consent.
• Allow researchers and participants to view signed consent

forms.
• Allow participants to withdraw consent.

Gathering Data
• Configure the data-related parameters of an experiment.
• Collect data generated inside the educational platform.
• Provide contextual information.

Managing
Datasets

• Dedicated access for participants to view data collected
about them.

• Automatic removal of data from participants who withdraw
consent.

• Compliance with data privacy protection requirements.
• Store data in a custom location.
• Verification of the authenticity of the data generated on the

platform.

Supporting
Open Research
and Collaboration

• Repository to expose datasets and associated resources.
• Different levels of exposure and granularity to share

datasets.
• Citable identifier for datasets.
• Data export in multiple formats.
• Data import from external repositories and new contribu-

tions.
• Clear specification of rights and terms of use of the dataset.
• Interaction with datasets in the repository.
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researchers with a holistic pipeline to work with these data from the moment of capture to

the moment they are being openly shared with the pedagogical and educational research

community. The pipeline design was therefore driven by three primary considerations:

1. An integrated, end-to-end approach. Although many digital platforms in education

and beyond provide the functionality to store, visualize, and otherwise work with data,

one of our contributions was to combine these functionalities into a unified and co-

hesive architecture for managing data over their life cycle. With the tools proposed by

our architecture, users should be able to capture and visualize learning data, download

complete datasets for offline analysis, and anonymize datasets to make them share-

able. However—although designed as part of an integrated process—educators and

researchers should also be able to use whichever subset of these tools is appropriate for

their workflows and use cases.

2. A versatile technical toolkit. The pipeline’s audience includes educators and researchers

with different backgrounds and levels of technical experience. By design, tools should

be accessible and useful for such a broad audience. For example, a user-friendly graph-

ical user interface (GUI) could be complemented with functionalities enabling more

technical users to directly customize certain features.

3. Transparency and openness. Given the sensitivity of working with private data, the

architecture encourages full transparency at every step of the pipeline. For example,

data should only be collected after user consent is given, and users should be able

to download and view all collected data directly through a web dashboard, without

intermediary requests. Simultaneously, the architecture promotes and encourages open

data practices and principles, and therefore provides tools that encourage data sharing.

These three considerations guide our architecture’s design and implementation, which we

discuss in the following section.

3.3 Architecture

Our architecture was conceived and designed as an integrated end-to-end pipeline to capture,

visualize, anonymize, and share the data generated by educational platforms. The blueprint

outlined in Figure 3.1 summarizes our architecture and shows how data flow through the

different stages of the pipeline, satisfying the design considerations presented in Section 3.2. In

this section, we present the five stages of our pipeline and demonstrate how we implemented

and integrated these stages into Graasp.

Our implementation addressed the following research question, which is an extension of RQ1:

• Is it possible to integrate our LA pipeline into an LXP? (RQ1b)
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Figure 3.1: The user flow in our architecture involves five main stages. First, there is a request
for experiment, followed by consent gathering, data gathering, data management, and finally
collaboration. The tools that we propose support stakeholders across all stages and are
highlighted in blue.

The design of our pipeline follows a loosely coupled, modular approach. That is, each stage

has one or more key components or tools that have standalone purposes and can function

as discrete units. As an example, certain users may entirely forego the tools described in

Sections 3.3.1–3.3.3 and Section 3.3.5 and use only the data anonymization tool described

in Section 3.3.4. However, combining the tools into an integrated process offers a more

comprehensive set of solutions for working with LA data. Indeed, although many digital

platforms incorporate some of these functionalities, one of the innovations in our approach

is combining them into a unified and cohesive architecture for managing data over their life

cycle.

3.3.1 Request for Experiment

The pipeline begins by allowing researchers to bootstrap experiments on the platform. This

process is mediated by an Experiment Tool, which establishes a connection between re-

searchers and educators. Using the tool, a researcher invites educators to participate in their

experiment, specifying parameters such as the experiment’s purpose and duration, the data

collected, and privacy and legal disclosures (see Figure 3.2). The tool allows the researcher to

distribute this invitation to multiple educators and makes setting up research experiments

quick and efficient.

47



Chapter 3. Learning Analytics Pipeline

3.3.2 Consent Gathering

Having accepted the invitation to participate in the experiment, educators use the Consent

Management Tool to review the details of the experiment and provide their consent for partici-

pation and data collection. The tool timestamps and saves this consent, and therefore acts as

a central repository for both researchers and educators to review consent forms. The tool also

supports an alternative, reversed workflow in which teachers invite researchers to participate

in their experiments. In that case, teachers can specify the conditions under which they accept

granting access to their data.

In the proof-of-concept implementation of our pipeline on Graasp, the Experiment Tool and

the Consent Management Tool were presented together in the Membership via Consent panel,

as shown in Figure 3.2.

Figure 3.2: The Experiment Tool and the Consent Management Tool of our architecture were
implemented within the Membership via Consent panel on Graasp.

3.3.3 Data Gathering

Provided consent has been given, the Data Gathering Tool enables the platform’s learning

activities and the applications within them to capture LA. Predefined user interactions with a

learning activity or app, such as navigation between lessons or typing text into an input box,

generate data points known as actions, which are sent to the Data Gathering Tool. This tool

validates that the data can be stored before persisting them in the platform’s database.
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To integrate this Data Gathering Tool into Graasp, we extended Graasp’s API to receive, filter,

and process user-generated actions. Each action is defined as a JavaScript Object Notation

(JSON) object. These objects are based on the Experience API (xAPI) standard (Berg et al., 2016)

and contain information about a discrete interaction, including its type, date, time, and

content, as well as the username of the user performing the interaction. Actions also contain

information regarding the context in which they occurred, such as the lesson, learning
phase, or activity, as well as an approximate geolocation based on the user’s IP address.

3.3.4 Data Management

The data management stage covers three key areas: (i) data exposure, (ii) data visualization,

and (iii) data anonymization.

Data Exposure

A Data Exposure Tool enables seamless access to the LA data stored on the platform’s servers.

On Graasp, we implemented this as a dedicated API to expose data in a structured and well-

defined format. The API includes endpoints for retrieving data on a learning activity, as well as

on the learners who participated in and the actions generated during this activity. Returned as

a JSON object, the data can be analyzed by researchers in a well-supported and recognized

format, in addition to being easily consumed by frontend client interfaces.

Data Visualization

Once the LA data is made accessible via an API, a Data Visualization Tool provides a way

for educators and researchers to get a high-level idea of the type of information recorded

during the data gathering stage. On Graasp, we built a web dashboard to visualize these

data (Figure 3.3). The dashboard was designed to provide a high-level overview of any given

learning activity and contains charts of actions by day, time of day, and type, as well as an

interactive map of actions coarsely clustered by geolocation. Additionally, the dashboard has

functionalities that allow users to filter the actions displayed by one or more of the users who

participated in the learning activity.

The dashboard is particularly useful for nontechnical stakeholders who would not otherwise

be able to manipulate and extract insights from the JSON data returned by the API. For more

advanced users, the dashboard includes an export functionality to request and download an

activity’s complete dataset for offline analysis.

Local Data Anonymization

An integral component of the pipeline is a Data Anonymization Tool to transform, filter, and

anonymize the datasets downloaded via the web dashboard. This tool allows researchers
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Figure 3.3: A web dashboard serves to visualize the learning analytics data collected by the
educational platform, providing high-level insights into a learning activity’s usage for technical
and nontechnical users alike.

to make their datasets more open and shareable, for which the ability to anonymize data is

critical. In our design, this tool should be implemented as an offline desktop application. The

choice of platform for this data anonymization tool was an essential architectural decision for

this component of the pipeline, as this allows users to anonymize and process their datasets

entirely in their local environment, without needing to share them with third-party services.

Our proof-of-concept implementation of this tool on Graasp is a cross-platform desktop

application. The application, which we named Graasp Insights, works as follows:

1. Dataset: The JSON dataset downloaded from the web dashboard is loaded into the

application, where it can be viewed alongside summary statistics and visualizations

(Figure 3.4).

2. Schema: A schema describing the dataset’s structure is generated via the application’s

Schemas tab. This allows datasets with a given schema to be automatically identified

and tagged.

3. Algorithms: The application contains a number of precomposed anonymization algo-

rithms written in Python (Figure 3.5). Some of these algorithms are optimized for the
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Figure 3.4: The Datasets tab, where users load the datasets they want to work with. A schema
has been generated for each of these datasets, which are tagged with that schema’s label.

dataset schema generated by Graasp, but others work on general datasets. A user can

review these algorithms and their code in a dedicated section of the application, where

they can also add their own custom algorithms and scripts. A further discussion of these

anonymization algorithms follows below.

4. Executions: Having loaded their dataset(s) into the application and reviewed and

added anonymization algorithms, users proceed to an in-app Executions tab where they

can run selected algorithms against their dataset(s) (Figure 3.6). Users can view the

generated results in the application (Figure 3.7), or export the underlying JSON file to

another location on their device.

5. Pipelines: In the Executions tab, users can run only one anonymization algorithm at a

time against a single dataset. Via the application’s Pipelines tab, users can chain multiple

algorithms to be executed sequentially against a dataset, allowing them to efficiently

perform various operations (e.g., hash or suppress fields) on their dataset in one quick

step.
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6. Validation: Before making their data available, users can select verification algorithms

to run against the anonymized dataset. These algorithms will check for the presence

of sensitive attributes. Examples of such algorithms include k-anonymity verification,

l-diversity verification, and username scan based on regular expressions, among others

(Figure 3.8). If a test fails, additional anonymization algorithms can be applied, as

previously described.

7. Sharing: Finally, users can share their anonymized datasets and algorithms in a reposi-

tory of open educational datasets.

As highlighted above, the application contains precomposed anonymization algorithms, some

of which are optimized for the platform’s schema, and others that can be used on general

JSON datasets. The diversity of learning platform data and the complexity of JSON datasets,

with deeply nested and potentially inconsistent structures, make composing generalized

algorithms a challenging problem and necessitates the composition of platform-specific

algorithms. The algorithms built into the application are the following:

• Data Suppression: With a dataset’s schema identified by the application, users can

select the fields to be suppressed (i.e., completely removed) from the dataset. For

example, users may choose to suppress the name field from the action data, given its

highly sensitive nature.

• Data Hashing: With the dataset schema as a reference, users can select the fields to

which they would like to apply a SHA-256 hash. For example, users may hash the

actionId field from the action data.

• Geolocation k-anonymization: Optimized for the educational platform’s schema, this

algorithm gradually suppresses the country, region, and city keys within an action’s

geolocation key, until there are at least k users containing each combination, satisfying

k-anonymity (Sweeney, 2002) on the premise that, for the purposes of this algorithm,

geolocation is the only identifying attribute.

• User Cleansing: Optimized for the educational platform’s schema, this multistep algo-

rithm (i) replaces userIds in a dataset’s actions key with a SHA-256 hash of each userId,

(ii) removes identifying information, which may include names and emails, from a

dataset’s users key.

• Advanced User Cleansing: This algorithm scans the entire dataset to detect remaining

instances of identifying user information, such as names and IDs, replacing them

with hashed versions thereof. This handles edge cases in which the data contains,

for example, identifying information captured via user-generated inputs. The scan is

performed using regular expressions, hence matching close representations of user

information (e.g., John Doe matches variations like john.doe@institution.domain).

52



3.3 Architecture

Figure 3.5: The Algorithms tab, where
users can add, edit, and delete pre-
composed or custom anonymization al-
gorithms.

Figure 3.6: The Executions tab, where users
can select the datasets they have imported
and run pre-composed or custom algo-
rithms against them.

Figure 3.7: A built-in JSON editor al-
lows users to view and edit original and
anonymized datasets within the applica-
tion. Datasets can also be exported to be
viewed and edited using external tools.

Figure 3.8: The Validations tab, where
users can run anonymity verification algo-
rithms against the resulting datasets and
see the outcomes of the tests (success,
warning, or failure).
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Where applicable, algorithms were structured to support in-app parameterization, allowing

users the freedom to select to which data attributes to apply these algorithms. Within the

application, the algorithms are presented alongside plain language descriptions, allowing

nontechnical users to understand them. Additionally—in order to promote transparency—the

code of each algorithm can be accessed within the application. More technical users can

review and edit this code. Finally, as shown in Figure 3.9, the application allows users to add

their own custom algorithms, selected from their file system or written using the in-app editor.

Figure 3.9: Users can add their own custom algorithms using the built-in code editor. Algo-
rithms can also be loaded from a file.

3.3.5 Collaboration

Our architecture proposes a number of tools for collaboration. An Open Data Repository is

aimed at sharing datasets and associated contextual resources, such as metadata from learning

activities that were part of an experiment. Resources and datasets in the repository should

support being tagged using a DOI Generation Tool, facilitating their citation in subsequent

publications. To support researchers in providing the appropriate terms of use for the datasets

they are looking to share, a License Advisor Tool should provide recommendations for how to

license the data. Once a dataset is shared, the Access Control Tool should allow researchers

to grant or deny access to their datasets according to how open they would like them to be.

Optionally, the Data Certification Tool could ensure that even if the data is stored outside the

platform, its authenticity can be verified through a certification mechanism.

In our implementation, we enhanced the Graasp Library to support publishing data alongside

a copy of the learning activity in which the data was generated. We also incorporated a Creative

Commons license advisor to support and encourage users to make their data and learning
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activities open. Finally, for researchers looking for more granular data sharing, the Graasp

Builder supports sharing data with individual users from within the learning activity in which

the data was generated.

3.4 Discussion and Implications

The three design considerations outlined in Section 3.2 fundamentally shaped our pipeline’s

architecture. First, the architecture encompassed a complete toolkit for managing experi-

mental data, from seeking appropriate consent to being able to openly share anonymized

datasets. Second, every individual component—as well as the pipeline as a whole—was de-

signed to be accessible to nontechnical users, without limiting the tools’ ability to also provide

more technical users with advanced features and customization. Third, transparency was

rigorously enforced throughout the pipeline, from ensuring that data was gathered only after

appropriate approvals, to making the data available to users without intermediary requests,

to openly displaying the anonymization scripts built into the desktop application. The aim

is to encourage feedback and audit reports from the users of these tools, promoting an open

assessment mechanism by which our pipeline becomes more robust and at the same time

more pertinent to both educators and researchers.

In essence, our architecture provides an extensible blueprint on how a digital education

platform can be enhanced to include more comprehensive LA data management tools for its

stakeholders. To highlight a few examples, in the outlined deployment we (i) created a direct

communication channel between researchers and educators, helping increase transparency

in how research is framed and conducted, (ii) provided users with on-demand access to their

complete datasets, and (iii) provided researchers with a user-friendly but versatile application

to anonymize their datasets. While the architecture targets educator-mediated contexts, its

design is readily transferable to other domains, such as digital healthcare or e-government,

and could also help support open data in these contexts. We highlight that—by design—the

data collection, processing, and sharing process is fully controlled and under the responsibility

of the educators and researchers involved. They can personalize each step of the pipeline and

validate the integrity of the final datasets using the tools and dashboards provided, or with

custom-made visualization and validation algorithms.

We validated our architecture through a proof-of-concept implementation on Graasp. The

implementation of our architecture on Graasp had significant practical implications for the

rest of the work conducted in this thesis and beyond. First, the end-to-end nature of the

pipeline ensured that we (i) had all the necessary tools to manage their data over their life

cycle, (ii) did not need to find, configure, and adapt tools designed by different entities,

and (iii) benefited from a consistent user experience and interface design, which simplified

collaboration with educators and other researchers. Second, consistent generation and access

to the data captured by LA simplified our data analysis process, allowing us to make our

apps LA-compatible and use the same analysis procedures across experiments. Third, given
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that data anonymization is a complex problem (Wagner et al., 2018) and that existing LA

anonymization tools are proposed only as proofs of concept (Gursoy et al., 2017), our desktop

application is a significant step forward in providing a starting point for anonymization of our

datasets. We harnessed these tools for all the empirical studies conducted on Graasp, which

span all the contributions put forth in this thesis.

3.5 Conclusion

In this chapter, we detailed a comprehensive architecture to manage the acquisition, visual-

ization, anonymization, and sharing of LA data. Although the potential benefits of LA are well

documented (Siemens et al., 2011), achieving these benefits is challenging due to the diversity

of the stakeholders involved (Sclater, 2016) and the tools required (Machado et al., 2019). Our

contribution is to design, develop, and implement an integrated end-to-end pipeline that

addresses these diverse stakeholders and their needs and, in doing so, helps promote open

data practices. The implementation of this pipeline had important practical implications for

the rest of the work conducted in this thesis, serving to manage the data generated in our

empirical evaluations and further emphasizing the need for collaboration between learners,

educators, developers, and researchers when designing tools for education.

One of the key limitations of the deployed architecture, as it stands, is its relatively narrow

scope. Specifically, the desktop application is optimized for the anonymization of datasets

generated by Graasp. Although some of its algorithms are generalized and can be used

on any dataset, more complete anonymization continues to require familiarity with the

underlying dataset schema. Further generalization of the desktop application’s anonymization

algorithms is an area of work with significant potential. User interface and workflow design

can allow researchers to guide the application in (i) identifying and understanding a dataset’s

schema and (ii) tagging its quasi-identifying and sensitive attributes, after which generalized

algorithms can be more accurately deployed, as implemented in ARX (Prasser et al., 2020).

More extensive tests and validation regarding the effectiveness with which a dataset has been

anonymized are other promising and important areas for future work. Even after removing

direct identifiers from a dataset, it is critical to perform deidentification checks to ensure that

no record can be used to identify an individual. To that end, the application could introduce

comprehensive data anonymity checks that quantify the privacy levels attained after applying

anonymization algorithms, displaying such outcomes to users. In particular, deep learning

solutions in the domain of natural language processing have been recently proposed for

generically detecting values in text that could potentially be sensitive, achieving promising

results (Hassan et al., 2019; Xu et al., 2019). Those solutions could be an important asset

in digital education but have not yet been tested in this domain. Finally, as data literacy

grows, there is significant potential in making the desktop application available directly to

individual users, who can use the application to view, understand, and potentially anonymize

the personal datasets they acquire via subject access requests on the internet platforms they

use. As issues surrounding data privacy become more widespread, educating users about
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the nature of the data that are collected by online platforms—and helping both researchers

and end users protect these data—could assist in the prevention of accidental disclosures of

sensitive information. Following these and other use cases, we believe that our pipeline’s tools

can inform the design of responsible data collection and dissemination policies not only for

digital education but also for other domains where guaranteeing user privacy is essential.
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IN the second part of this thesis, we investigate how to harness our technological foundations

to design the pedagogical scenarios that will be used for our empirical evaluations with

educational chatbots. As outlined in Chapter 1, our aim was to integrate chatbots into software

engineering education. We start by exploring a preliminary pedagogical scenario resembling

computational notebooks using Code, an app focused on writing and executing Python code

in the browser. In Chapter 4, we present this app, the introductory programming pedagogi-

cal scenario it supported, and a case study conducted with 67 students at the University of

Neuchâtel. We then introduce the code review notebook. The code review notebook is sup-

ported by a series of apps built with our application development framework and, particularly,

by Code Review, one of the apps that will host the educational chatbots studied in this thesis.

In Chapter 5, we present the design of Code Review and the code review notebook template,

as well as an empirical evaluation with 25 university students addressing how code review

notebooks could serve to teach programming best practices. In this brief introduction, we

highlight related work.

Related Work

Introductory programming courses are prime candidates for blended learning (Boyle et al.,

2003) and the simplicity and readability of Python have made it an attractive introductory pro-

gramming language (Radenski, 2006). For instance—in the context of learning programming—

Chu et al. (2018) used a blended learning approach and discovered that the majority of their

students accessed their learning platform outside of class to study and improve their Python

programming knowledge. Although there are a large number of online Python tools avail-

able (Kim et al., 2017), computational notebooks (e.g., Jupyter Notebooks) have become

common in introductory Python courses (Cardoso et al., 2018; Chapman et al., 2015; Zastre,

2019). Computational notebooks are online tools that combine resources (such as text or im-

ages), executable code, and both textual and graphical outputs. The combination of an online

coding environment that does not require external software and the possibility to run code
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embedded in text and multimedia content is particularly well suited to teach introductory

computer science topics, such as computational thinking (O’Hara et al., 2015).

Computational thinking can be defined as the different thought processes used in computer

science to solve problems (Yadav, Stephenson, et al., 2017). Among the main concepts used

are modeling problems using abstractions, division of problems into subproblems, design

of solutions through sequential steps (algorithms), and identification of patterns. Over the

past decade, computational thinking has become a tool to solve problems in virtually every

field of study (Barr et al., 2011). Learning computational thinking thus becomes crucial not

only for engineers and computer scientists but also for students in domains outside science,

technology, engineering, and mathematics (STEM). In line with this trend, computational

thinking courses have been introduced not only for a wide array of university degrees but also

in secondary schools (Grandell et al., 2006; Yadav, Zhou, et al., 2011) and all the way down to

early childhood education (Bers et al., 2014).

Previous work has explored the usage of online notebooks to teach computational thinking in

different learning activities. For instance, O’Hara et al. (2015) evaluated its usage for (i) lectures,

(ii) reading, (iii) homework, and (iv) exams. Typically, among the opportunities offered by

applications such as Jupyter, students can iterate on their coding assignments on the same

platform without the need to switch between the assignment and the coding software (Project

Jupyter et al., 2019). Jupyter also includes several tools specifically designed for teaching

purposes, such as grading modules.

It should be noted that such notebooks can also have a negative impact on learning, as some

argue that they promote poor coding practices because they make it difficult to break code into

smaller reusable modules and develop and run tests on the code (Perkel, 2018). Furthermore,

there is a tension between exploration and explanation, as it requires a lot of effort for a user

to convert a messy exploratory notebook into a clean shareable notebook (Rule et al., 2018).

Moreover, such environments still lack support for a wider range of interaction, collaboration,

activity awareness, and access control mechanisms (A. Y. Wang et al., 2019). Finally, although

computational notebooks are valuable for beginners, they may be inadequate for experienced

users (Borowski et al., 2020; Chattopadhyay et al., 2020).

To address these challenges, notebooks can be personalized according to learning style, pro-

gramming level, or learning context (O’Hara et al., 2015). Other types of personalization

for computational notebooks have been undertaken in the context of artificial intelligence

classrooms. For example, O’Hara et al. (2015) developed their own computational notebook

systems—called ICalico and Calysto—and explored their use with their students. Aside from

Jupyter, other approaches focus on integrating smart content hosted on different servers to

enhance the learning experience (Brusilovsky et al., 2018), while several web-based tools for

teaching Python have also been proposed (S. H. Edwards et al., 2014; Guo, 2013; Pritchard

et al., 2013).

It is important to note, however, that self-hosted computational notebook solutions such
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as Jupyter often require a backend server infrastructure to execute code and manage users,

and directing students to cloud-based solutions such as Google’s Colaboratory (Bisong, 2019)

risks violating privacy and legal regulations—such as the European General Data Protection

Regulation (GDPR) (European Union, 2016)—which many institutions are required to adhere

to. Therefore, there is an opportunity to support less technical educators and learners with

more accessible computational notebook solutions. These solutions could be integrated

directly into digital learning platforms to provide technopedagogical scenarios for introductory

software engineering education.

A pedagogical tool that is particularly relevant to software engineering education is the code

review process. The importance of code reviews in software engineering education has long

been recognized (Towhidnejad et al., 1996). A study conducted by X. Li et al. (2005) on

effectively teaching coding standards in programming revealed that most students believe

that coding standards are important. However, students still fail to comply with them, thus

highlighting possible flaws in current teaching strategies. To that end, the authors suggested

code review as a possibly effective pedagogical tool, given that it provides an element of

learning by example and practice, as well as an opportunity to obtain feedback from teachers

and other learners. Another study conducted by Bacchelli et al. (2013) on Microsoft employees

highlighted additional benefits of code review, such as knowledge transfer, increased team

awareness, and the creation of alternative solutions to problems.

The most common approach to incorporating code reviews into educational contexts is to

include them as a peer review exercise. Peer review has been championed as a way to teach

students to provide and receive constructive criticism (Anewalt, 2005), as well as to build

collaboration skills (Trytten, 2005). In a recent systematic review of the literature, Indriasari

et al. (2020) reported that the first “use of peer code review in a programming course was

published in 2003”, with 187 studies published as of April 2019. This review highlights the

use of social coding platforms or bespoke tools to incorporate the code review process into

learning activities. Examples of these bespoke tools include CaptainTeach (Politz et al., 2014),

EduPCR (Zong et al., 2021), and Caesar (Tang, 2011). These tools are specifically designed for

peer code review. Indeed, most tools used to incorporate code review into education focus

on supporting the peer code review use case, providing features such as automatic review

assignment and anonymous reviews (Indriasari et al., 2020). For example, Y. Wang et al. (2012)

proposed an online assessment system based on code review to assess how students learn

programming languages. Empirical results from their study showed that the assessment based

on code review significantly improved student learning outcomes in several areas such as

programming skills, collaborative learning, and compliance with coding standards. Positive

results were also obtained when code review activities were tested in high school and university

settings (Kubincová & Csicsolová, 2018; Kubincová & Homola, 2017).

While peer code review is particularly useful for students to gain practical experience perform-

ing and receiving these reviews, there are some barriers to the adoption of peer code review

activities in education. In fact, it has been reported that in some peer code review studies, stu-
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dents did not have the skills necessary to satisfactorily complete code reviews (Indriasari et al.,

2020). If students are expected to review code submitted by their peers, they should be able to

do so satisfactorily, as otherwise, the exercise is neither useful for the student conducting the

review nor for the student receiving the feedback.

A few tools focus on providing individual students with a demonstration of the code review

process. Alves (2013), for instance, developed Source COde REview Learning (SCOREL), a

serious game consisting of a desktop application “to streamline and encourage the practice

of code review”. SCOREL was later migrated to web technologies and adapted to support

collaborative reviews by Ribeiro Guimarães (2016). Another serious game aimed at learning

to perform code reviews was proposed by Ardıç et al. (2020). In this game, players review

predefined code snippets, identifying lines containing defects in order to advance to the next

level. X. Song et al. (2020) developed a tool for peer code review, which they also used to

introduce the code review process by having students review code that had already been

graded. Although these tools address the need to support students in learning to conduct

code reviews, they are standalone applications that are not designed to be embedded directly

within an online lesson or lecture, limiting their compatibility with LXPs and other online

learning technologies.

Furthermore, the rising popularity of social coding platforms as pedagogical tools has resulted

in students being exposed to professional code review tools and processes as part of their

education. In fact, the use of social coding platforms in education has been widely studied (Fe-

liciano et al., 2016; Fiksel et al., 2019; Glazunova et al., 2021; Haaranen et al., 2015; Zagalsky

et al., 2015), with a recent survey of 7530 students and 300 educators concluding that the use

of GitHub “predicted better learning outcomes and classroom experiences” (Hsing et al., 2019).

However, several researchers have highlighted a number of challenges associated with the use

of social coding platforms in education, including steep learning curves and privacy consider-

ations due to the often public visibility of the interactions on such platforms (Feliciano et al.,

2016; Fiksel et al., 2019; Zagalsky et al., 2015).

Given the lack of tools to integrate the code review process directly into LXPs and the ubiqui-

tous use of social coding platforms for code review, there is therefore an opportunity for the

development of technological tools that are able to replicate the core functionalities provided

by social coding platforms and can be integrated into educational contexts. These tools could,

in turn, support pedagogical scenarios aimed at teaching the code review process, addressing

the need to better prepare students for peer code review exercises.
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4 Integrated Computational Notebooks

WE start our exploration of pedagogical scenarios suitable for integrating educational

chatbots into learning experience platforms (LXPs) by considering the computational

notebook. Computational notebooks, such as Jupyter, are popular solutions to develop the

programming skills typically taught in introductory software engineering and computer sci-

ence courses. However, these solutions often require technical infrastructure and lack support

for rich educational experiences that integrate discussion, active feedback, and learning an-

alytics (LA). In this chapter, we introduce an app designed to address these challenges. We

present blended learning scenarios supported by this app and evaluate them in an eight-week

computational thinking course comprising 67 students pursuing a Bachelor of Science in

Economics and Business at the University of Neuchâtel, Switzerland. We include in our results

the impact of the disruption caused by the COVID-19 pandemic, which forced a move from

blended to online distance learning for the second half of our evaluation.

By proposing the first iteration of the pedagogical scenario used to integrate educational

chatbots into learning experience platforms (LXPs), this chapter partially addresses RQ2:

How can we scaffold pedagogical scenarios suitable for educational chatbots?

The content of this chapter was partially presented in the following publication:

• Farah, J. C., Moro, A., Bergram, K., Purohit, A. K., Gillet, D., & Holzer, A. (2020). Bringing

Computational Thinking to non-STEM Undergraduates through an Integrated Notebook

Application. In T. Broos & T. Farrell (Eds.), Proceedings of the Impact Papers at the 15th

European Conference on Technology-Enhanced Learning (EC-TEL 2020)
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4.1 Introduction

An essential part of computational thinking is a basic understanding of programming and

therefore courses that introduce computational thinking skills to students often include a

programming component (Lye et al., 2014). Due to the complexity of providing a consistent

experience across different devices and operating systems, introductory programming courses

have traditionally required a technical setup to ensure that all students are running the

same development environment (Chapman et al., 2015). This can be a high barrier to entry

for less technical students, teachers, and even institutions lacking the proper information

technology support. To lower this barrier, computational notebooks have been proposed

as a way to minimize the amount of technical setup needed to provide a homogeneous

programming environment. However—as mentioned in the introduction to Part II—there

are technical and regulatory challenges associated with current computational notebook

solutions. Furthermore, these solutions do not easily integrate with LXPs and customizing

such notebooks to allow them to support educational chatbots is not trivial.

With these concerns in mind, we exploited the Graasp ADK presented in Chapter 2 to design a

novel app that allows students to run Python code directly in the browser. This app is free and

open source and can be integrated into online learning platforms—along with collaboration

and LA tools—to offer features present in computational notebooks and foster rich learning

experiences. We refer to these computational notebooks, which we integrated into the Graasp

LXP, as integrated computational notebooks.

This chapter addresses a particular need that was presented in the introduction to Part II. That

is, we directed the design of our app to enable computational notebooks that can be integrated

into learning environments in an attempt to lower the barrier to entry to these technologies

for less technical learners and educators. To validate this design, we conducted an analysis of

learner interactions with the app and with the learning environment in which it was deployed.

This analysis also contains insights into how the switch from a blended learning scenario

to a distance learning scenario impacted usage. In addressing this need, we put forth one

of our contributions, namely a template to provide browser-based computational notebook

solutions within digital education platforms (C3). Furthermore, our design paves the way

for apps that can support pedagogical scenarios for software engineering education that are

capable of integrating educational chatbots.

This chapter is structured as follows. We present the design of our app and the integrated com-

putational notebooks that it supports in Section 4.2. In Section 4.3, we outline the methodology

followed for our empirical evaluation. We present the results of this evaluation in Section 4.4

and discuss these results, as well as their implications on the rest of the work carried out in

this thesis, in Section 4.5. Finally, we conclude in Section 4.6.
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4.2 Design

4.2 Design

In this section, we present the design of our app. We then describe how it enables educators to

scaffold pedagogical scenarios following the integrated computational notebook template to

provide a variety of learning activities for learners.

As noted in Section 4.1, we developed an open source web app (henceforth Code) to provide

a ready-made Python environment for educators and learners. Code leverages the Pyodide

library to execute Python directly on the browser without any additional dependencies. It

supports reading and writing files, receiving input from users, and displaying graphical output

from libraries such as Matplotlib (Hunter, 2007). The app also features a CLI simulator that

serves both to display output and to allow students to navigate a virtual file system. In its

simplest form, Code can be used independently of any other software simply by accessing a

link. Nevertheless, it can leverage APIs exposed by LXPs to enable advanced features, as well

as LA. To enable these features and to provide a context resembling computational notebooks,

we designed Code to be compatible with Graasp.

Figure 4.1: A computational notebook learning activity on Graasp. Students can write and
execute code, navigate a virtual file system, and view graphics.

As noted in Chapter 2, most of the interactions on Graasp occur in two of its interfaces. The

first interface is the Graasp Builder, where educators integrate and configure the resources

they will use to create their online lessons, which we refer to as learning activities. Learning

activities can be scaffolded into step-by-step code exercises, which can be contextualized with

text, images, links, chatrooms, and other interactive content. Within this educator-centric

view, Code can be preconfigured with sample code, data files, and instructions for learners. It

also features a feedback functionality that allows educators to review the code submitted by
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each learner and provide comments in a way that is similar to code reviews on social coding

platforms such as GitHub.
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Figure 4.2: Feedback feature in the learning platform. (1) Learners write code in the app. (2)
Educator gives feedback to the learners. (3) Learners can view the feedback received.

The second interface is the Graasp Player, which is an environment directed at learners. By

accessing this environment through a unique link, learners can take part in the online lesson,

navigating through pages containing the exercises prepared by the educator. Within this

learner-centric view, Code enables learners to write, execute, and save code, review feedback

provided by the educator, and visualize graphics. The result, as shown in Figure 4.1, is a

learning activity that resembles a computational notebook and is integrated into the Graasp

LXP.

These integrated computational notebooks support active learning as defined in Chapter 1.

During lectures or while watching videos or reviewing slides, learners can execute code and

test results using Code. Graasp Player also supports a presentation mode, which the educator

can use to guide the learners through the learning activity. Several tools can be included within

the learning activity to support formative assessment. A simple input app allows learners

to submit text, while a real-time communication app enables learners to spontaneously ask

questions and respond to multiple-choice questions posed by the educator. Educators can

also use the feedback feature inside Code to provide comments to learners.

Finally, through the analytics features of the learning activity, educators can access an overview

of the progress and difficulties learners are encountering, and thus adjust their teaching

accordingly. As an example, Figure 4.3 shows a learning dashboard to track user activity. More

specifically, it shows the order in which each learner has visited the pages available in the
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Instructor Activity

Pages

Student Activity

Figure 4.3: A learning analytics dashboard to track how learners interact with an activity.

Graasp Player, as well as the time spent on each of them. If educators use the Graasp Player

at the same time, then their data can be compared against the learners’ data. Each color

represents a page inside the Graasp Player. Were learners to be perfectly synchronized with

the educator, their color patterns would all be the same.

4.3 Methodology

To better understand how Code could support the acquisition of computational thinking skills,

we put forth the following research question, which is an extension of RQ2:

• How do non-STEM students in introductory programming courses use and perceive

integrated computational notebooks as a tool for learning programming? (RQ2a)

To address this question, we incorporated integrated computational notebooks supported

by Code into a computational thinking course for students pursuing a bachelor’s degree in

economics and business at the University of Neuchâtel, Switzerland (henceforth the university).

Our initial goal was to analyze the usage and perception of the app within a blended learning

scenario. This goal focused on two aspects:

1. Engagement: How did students interact with the integrated computational notebook?

2. Usability: How usable were the tools comprising the integrated computational notebook?

However, at the end of the fourth week of our study, the university had to shut down due to

the COVID-19 pandemic, forcing us to adapt the course to a purely online distance learning

scenario. This unexpected turn of events prompted a third aspect of our analysis:

3. Modality: How is the usage of our computational notebooks different between a blended

and a distance learning scenario?
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These three aspects of our research question guided our evaluation.

4.3.1 Scenario

The evaluation took place in a first-year course on information technologies for students

enrolled in the Bachelor of Science in Economics and Business at the University of Neuchâtel.

A total of 69 students were enrolled, 31 of them female (45%). Two of the 69 students did not

opt in for the study; therefore, their data was removed. The course lasted one semester (14

weeks) and consisted of two periods (1.5 hours) of weekly lectures and two periods of weekly

lab sessions with exercises. Student presence in class was not mandatory. The first half of the

semester, which is the focus of this study, covered computational thinking, with two weeks for

general theory about concepts (e.g., abstractions, problem division, algorithms) and six weeks

of introduction to programming with Python to put the theory into practice (see Table 4.1).

Note that during these eight weeks, teaching was dramatically impacted by the COVID-19

pandemic. Indeed, all in-class lectures were suspended at the end of the fourth week of the

semester and all teaching was moved online. Teaching in the course progressed through three

main phases, as outlined below.

Week Date Lecture (Wednesdays) Lab (Thursdays) Teaching Style Data Collected

1 17.02 Concepts 1/2 Game In Class Video, Pre-Survey
2 24.02 Concepts 2/2, Python Basics 1/2 Game, Group Activities In Class Blended Video, Activity Traces
3 02.03 Python Basics 2/2 Start Lab 1 In Class Blended Video, Activity Traces
4 09.03 Python Lists Solution Lab 1, Start Lab 2 In Class Blended Video, Activity Traces

16.03.2020, COVID-19 Confinement starts. No more in-class lectures or lab sessions after that date.

5 16.03 Python Functions Solution Lab 2, Start Lab 3 Distance Video, Activity Traces
6 23.03 Python Dictionaries Solution Lab 3, Start Lab 4 Distance Video, Activity Traces
7 30.04 Python Graphs Solution Lab 4, Start Lab 5 Distance Video, Activity Traces
8 06.04 — Solution Lab 5 Distance Post-Survey

Table 4.1: Structure of the Information Technologies Course

Phase 1: Concepts (in class)

The first phase covered the first week and a half and consisted mainly of in-class lectures with

in-class interactive activities. Exercise (or lab) sessions also took place in class and focused

on getting familiar with algorithmic concepts using a game—Human Resource Machine (To-

morrow Corporation, 2015)—as well as through practical group exercises (e.g., designing an

analog algorithm to find the most frequent word in a text that was handed out on a piece of

paper).

Phase 2: Python (blended)

The second phase covered the end of the second week and the two weeks that followed and

consisted of blended learning, both for lectures and lab sessions. During the lectures, the
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instructor used the presentation mode of our learning activities. Concretely, the instructor

logged in to the Graasp Player and moved from one page to the next, typing and executing code

while providing explanations. Meanwhile, students logged in to the same learning activity

using their own credentials and thus accessed their own version of the exercises, where they

could write and execute code while the instructor was giving the presentation. During the

lectures, a real-time communication app was integrated into the learning activity. Students

asked questions and the instructor conducted several polls to see if the level of the course was

adequate. During the lab sessions, students were given a learning activity with five questions,

each one containing Code as well as an input box to provide answers to the questions. The

solutions to each exercise were presented the following week. During these first two phases,

lectures were recorded and posted on the university’s learning management system (LMS).

Phase 3: Python (distance)

The third phase was not planned and was triggered by the national response to the COVID-19

pandemic. As the government imposed partial confinement, the university had to cancel its

on-site lectures. For this last phase, lectures were prerecorded and published on the LMS. Lab

instructions were published on the LMS and a video explaining the solutions was recorded

and posted on the LMS a week later. Student interaction with teaching assistants (TAs) and

the instructor took place principally (i) through email, (ii) through the communication app,

and (iii) through the feedback feature of Code. We offered to conduct live sessions using a

video conferencing tool, but there was no interest from students.

4.3.2 Participants

At the beginning of the course, students were informed of our study and were asked to opt in

to participate. The learning experience was identical for both those who opted in and those

who did not. Of the 78 students who participated in the course, 69 were officially registered, of

which 67 provided their consent for participation in this study. Data from students who did

not opt in were excluded from this study.

4.3.3 Instruments

We employed three types of methods to collect data: online activity traces, tests, and question-

naires.

We used three forms of activity traces. The first was a measure indicating the number of edits

(e.g., keystrokes, deletions, copy/paste actions) that a student performed within the instances

of Code embedded in the learning activities. We refer to this measure as the code interaction

metric. The second form of activity traces was linked to the in-class video recordings and the

screencasts for distance learning, which were uploaded to the university’s video repository

service. The service tracked each time a student logged in and recorded how long a video
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was played. We refer to this metric as the time spent watching videos metric. The third form

was generated by tracking how students moved between the different pages of our learning

activities, as visualized in Figure 4.3.

At the beginning of the course, students were asked to fill in an optional pre-survey about their

programming experience and their attitude toward learning technologies. This pre-survey

also included an ungraded test assessing their Python knowledge. Students were not informed

of their performance. At the end of Phase 3, an optional post-survey was conducted. The post-

survey included an ungraded post-test. This test followed the same format and included some

of the questions posed in the pre-test. This time, students were informed of their performance.

To assess how students rated the learning technologies used, the post-survey included the

System Usability Scale (SUS) (Bangor, Kortum, et al., 2008), which concerned the Code app,

and a custom three-item questionnaire concerning the other components of the integrated

computational notebook. The SUS is a ten-item questionnaire using a five-point Likert scale

to measure usability. Results are presented as scores ranging from 0 to 100, with higher scores

representing better usability. The questions in the custom three-item questionnaire followed

a five-point Likert scale from Strongly Disagree to Strongly Agree: (i) I think the use of the

interactive slides on Graasp during the course was useful, (ii) I think the use of the chat feature

on Graasp was useful for the course, and (iii) I think the feedback feature on Graasp was useful.

Finally, students were presented with an open question: In your opinion, what are the pros

and cons of the digital technologies used in this course?

4.3.4 Data Analysis

Our data analysis comprised both quantitative and qualitative methods. We applied both

descriptive and inferential statistics to our quantitative data, reporting the sample sizes (n),

sample means (x̄), medians (x̃), and standard deviations (sx ), as well as Pearson correlation

coefficients (r ), results from Kruskal Wallis H tests (H ), and one-sample Wilcoxon signed-rank

tests (Z ). Qualitative data were analyzed by articulating emergent themes using line-by-line

data coding (Charmaz, 2006).

4.4 Results

In this section, we present results with respect to the three aspects considered in our evalua-

tion.

4.4.1 Engagement

Use of Code—as measured by the code interaction metric—varied widely (x̄ = 22167, x̃ =
23990, sx = 13223). However, as illustrated in Figures 4.4–4.5, usage was not significantly

correlated with students’ self-reported programming experience (r =−0.129, p = 0.309), and a
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Kruskal-Wallis H test found no significant differences by gender (H = 0.0228, p = 0.880). The

number of days that students interacted with Code throughout the duration of the course also

varied widely across students. On average, students actively interacted with Code on nine

different days (x̄ = 8.925, x̃ = 9, sx = 4.831).
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Figure 4.4: Self-reported programming expe-
rience at the beginning of the study was not
a predictor of the code interaction metric.
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Figure 4.5: There were no significant differ-
ences in the distribution of the code interac-
tion metric by gender.

4.4.2 Usability

The SUS score ranges from 0 (worst) to 100 (best). Code achieved a mean score of 71.3 (n = 57),

which indicates good usability (Bangor, Kortum, et al., 2009). A total of 56 students responded

to the three individual questions about the tools comprising the integrated computational

notebook. A one-sample Wilcoxon signed-rank test indicated the median for the first item

was significantly different from three (the neutral position), Z = 6.57, p < 0.001, with a very

strong effect size (r = 0.87). Similar significant results were achieved for the second and third

items, with Z = 4.58, p < 0.001, r = 0.61 (strong effect size) and Z = 4.47, p < 0.001, r = 0.59

(moderate effect size), respectively.

A total of 41 students provided open-ended comments on the tools integrated into the compu-

tational notebook learning activities. Here, we discuss the major themes that emerged.

1. Easy to use. The first theme that emerged was that Code was easy to use, easy to understand,

and easy to get used to. One student explained: “You get used to the [code app] service quite

quickly.” Another commented that “the positive points are the ease of use of [Code], the clarity

and the stability of the service”.

2. Ready-made. Students also appreciated the ability to execute Python in Code without any

installation requirements. One student commented: “The biggest positive point for me is that

we didn’t need to install an application. We can easily access the [code app] service. Compared

to R, it is easier to use and more modern.” Another student noted: “Easy to use / nothing to
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install / nothing is saved on our computers”.

3. Mirroring. A third theme worth noting focused on the possibility for students to mirror

what the teacher was doing using the learning activities. One student reported: “We can put

the examples we have seen into practice and we can check by ourselves the explanations given

to us during the course work. I find that it puts our computational thinking into practice and

motivates us to move forward in this course”. Another student commented that “the use of

[Code] during the course allows for a better understanding of the course. You don’t just listen,

you already assimilate the material”.

4. Multiple access. Several students asked for greater flexibility to access multiple learning

activities in parallel. Codes such as multitask and parallel control were recurrent. One student

reported: “Can’t use multiple learning activity pages without one page closing.” Another

student commented that “[Code] does not open for the lecture and for the lab, you still have

to [sign in] and it’s painful, it’s either one or the other”.

4.4.3 Modality

March 17 - Instructor Records Lecture (35 min)

9:00 12:00 15:00 18:00 21:00

March 19 - 13 students

March 20 - 9 students

March 21 - 3 students

March 22 - 1 student

March 24 - 4 students

February 4 - Instructor Conducts Live Lecture

10:00 11:00 12:00

A) Week 3 - Blended Learning Scenario C) Week 5 - Distance Learning Scenario

During the Lecture (64 students)  

10:00 11:00 12:00

B) Week 4 - Blended Learning Scenario
March 11 - Instructor Conducts Live Lecture

March 18 - 18 students

March 23 - 3 students

During the Lecture (61 students)

Figure 4.6: Comparing blended (A, B) and distance (C) learning scenarios. The educator’s
activity is shown on a thick line above and each thin line represents a student.

Using data from the learning dashboard presented in Figure 4.3, we examined usage patterns

from Week 3 and Week 4 (blended learning), and Week 5 (distance learning) (Figure 4.6).

In the blended learning scenario, where the learning platform is used by the educator and

the students at the same time, the dashboard gives the educator a visual impression of how

synchronized students are during lecture. Figure 4.6 (A) includes all student activity during

Week 3, showing that 64 students, including a teaching assistant, were active at some point

in the lecture. A visual analysis considering only active students—not those who left the

class early or arrived late—indicates that there seem to be only 5–6, approximately 10% of
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all students, who are not following the general page change pattern. Figure 4.6 (B) shows

the dashboard for Week 4. The results are very similar to Week 3, with 61 students active

on the platform, most of them—except around 5 students—following the educator’s pattern

closely. Note that for both weeks we counted the number of students physically present at the

beginning of the second part of the lecture to be 53 (24 female) on Week 3 and 50 (25 female)

on Week 4. These student counts are in line with the number of students observed online

and convey the fact that the integrated computational notebooks were used virtually by all

students present in class.

1 2 3 4 5 6 7 8
Week

St
ud

en
t

-- Confinement Starts
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Figure 4.7: Days in which there was recorded activity on Code. Each horizontal line represents
a student and each block represents a day in which the student recorded an interaction. A
change in use is evident after the switch to distance learning.

In the distance learning scenario, the dashboard allows us to see when students logged in to the

online platform to work on the course. Figure 4.6 (C) shows an overview of the lecture during

Week 5 (March 17). The educator’s video recording of the lecture was 35 minutes long (the

content was not changed compared to a 90-minute live lecture, however, the online recording

did not include interaction time). Once the video was posted, students could access it at

their discretion. Figure 4.6 (C) also shows all activity on the platform related to that particular

integrated notebook for the whole week after the video was posted. In total, 51 students

accessed the notebook and 29 spent at least 30 minutes on the platform. As expected, the

usage pattern is not synchronized across students. Nevertheless, there is a diminishing trend

of active students per day, with 18 students accessing the learning activity on the scheduled

lecture date (Wednesday, March 18), 13 students the day after, nine students on the Friday,

and a minority of students over the weekend, through to the following Monday.
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Figure 4.8: How much a student interacted with Code in the blended learning scenario pre-
dicted how the student would interact in the remote learning scenario.
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Figure 4.9: The code interaction metric and time spent watching videos metric presented a
strong positive correlation.
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Regarding the Code app specifically, as shown in Figure 4.7, before the switch from blended to

distance learning, usage was concentrated on Wednesdays and Thursdays, coinciding with

lectures and labs. Although around a third of students stopped using Code—or only used it

sporadically—after the switch, around two-thirds of students continued to use it regularly.

This pattern is relatively consistent throughout Weeks 5–8 in the same way that the long

synchronized blocks are present throughout Weeks 2–4. It is worth noting that interaction in

the blended scenario was a predictor of interaction in the distance learning scenario (r = 0.577,

p < 0.001), as shown in Figure 4.8.

Given the difference in usage before and after the switch to distance learning, we also wanted

to explore the relationship between Code and other digital tools used for distance education.

Specifically, we considered the link between Code and the video recordings that replaced

the live lectures at the start of Week 5. There was a strong positive relationship between the

code interaction metric and the time spent watching videos metric, as shown in Figure 4.9

(r = 0.444,n = 67, p < 0.001). In other words, the more students used Code, the more time they

spent watching videos and vice versa. This might be due to the fact that these resources were

meant to be used in parallel to simulate the in-class experience.

4.5 Discussion and Implications

The results of our evaluation give rise to a number of discussion points concerning the different

aspects of our research question. First, in terms of inclusion, our results show that there

are no significant differences in usage metrics related to either digital literacy or gender.

From a learning design perspective, this shows that Code did not involuntarily discriminate

against gender or programming skills. This is particularly important since there can be strong

stereotype threats that can hinder learning in computer science, where female students are

still widely underrepresented (Starr, 2018). At the University of Neuchâtel, there are typically

around 50% of female students registered in the business curriculum and thus present in all

mandatory courses, such as our information technology course. Nonetheless, this percentage

drops below 20% in the elective programming course. It is therefore imperative that the tools

employed in introductory courses do not discourage students from continuing studies that

reinforce computational thinking skills.

Second, while the usage of Code and the integrated computational notebook was synchronized

across students and heavily concentrated on lecture and lab days during the blended learning

scenario, the distance learning scenario introduced a sharp departure from that pattern of

use. Access to the learning activities became spread over the first two to three days after the

lecture was posted, with some students changing their study habits and viewing the material

during the evening, as was also highlighted by Chu et al. (2018). Similarly, the usage of Code

became scattered throughout the week. Nevertheless, it is important to highlight that around

two-thirds of the students continued to use Code regularly throughout the distance learning

period. This could signal that Code and the integrated computational notebooks could be
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successfully deployed in both types of learning scenarios. Furthermore, the usage of Code

during the blended scenario predicted its usage in the distance scenario. This could help

educators identify students who might find the switch more challenging and provide them

with adequate support, as suggested by Van Goidsenhoven et al. (2020).

Third, the results from our surveys indicate that students were generally positive regarding the

usability and pertinence of both Code and the computational notebook learning activities it

supports. Moreover, students particularly appreciated the browser-based experience, with no

required installation or setup. This serves as a crucial insight into the possible improvements

that could be done to the current computational notebook ecosystems in order to lower the

barrier to entry for non-STEM students.

These findings have practical and theoretical implications for the work conducted in the rest

of this thesis and serve to inform the design of the code review notebook. First, given that

the shift to distance learning implied that the usage of Code became scattered throughout

the week, the use of educational chatbots could alleviate the need for educators to be readily

available to support learners when completing exercises outside normal office hours. Second,

students’ positive rating of the integrated computational notebook informed our decision to

explore iterations of this format in subsequent studies, namely the design of the code review

notebook to simulate social coding platforms in educational contexts. We will introduce code

review notebooks in the following chapter. Finally—as will be presented in Chapter 9—we used

integrated computational notebooks to embed and evaluate educational chatbots following

rule-based scripts.

4.6 Conclusion

To conclude, our study provides a snapshot of how digital tools designed for blended learning

can allow both educators and learners to adapt to an unforeseen change in pedagogical

scenarios. Although our evaluation is by no means conclusive, the fact that usage of Code was

not correlated with prior programming skills and that students found it easy to use is a good

sign that it will be positively received in introductory programming courses. In future work,

we aim to study how students transition from our code app to more advanced technologies,

such as Jupyter Notebooks or integrated development environments. Furthermore, we aim to

refine our digital tools following the feedback received and continue to investigate how they

can enable computational thinking courses.
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INSPIRED by the popularity of software development bots on social coding platforms and

the reported pedagogical value of peer code review exercises, we selected the code re-

view process as an appropriate task to support with educational chatbots. Before integrating

chatbots, to ensure that the activities used in our empirical evaluations were relevant to

learners, we used the Graasp ADK to implement and test a baseline learning scenario, ad-

dressing both the technological and pedagogical dimensions required to support the code

review process within an LXP. As a matter of fact, integrating code reviews into educational

contexts is particularly challenging due to the complexity of both the process and of popular

code review tools. We proposed to address this challenge by designing Code Review, an app

aimed at teaching the code review process directly within existing digital learning platforms.

Using Code Review, educators can scaffold pedagogical scenarios that introduce the code

review process to learners through code snippets, following a template resembling integrated

computational notebooks. We refer to this template as the code review notebook. Through

a case study comprising an online lesson on code quality standards, which was completed

by 25 university students, we evaluated the effects of using a code review notebook on four

aspects of the learning experience: (i) usability, (ii) learning gains, (iii) self-reflection, and

(iv) feedback. Our mixed-method analysis suggests that the code review notebook provides

a positive user experience, encourages learners to reflect on their learning process, and can

result in short-term learning gains.

By harnessing the Graasp ADK to create the technopedagogical scaffolding to support code

review notebooks, this chapter partially addresses RQ2:

How can we scaffold pedagogical scenarios suitable for educational chatbots?
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5.1 Introduction

5.1 Introduction

Code reviews, the process by which code written by one programmer is cross-checked by

another programmer for potential bugs or issues, are standard practice in software engi-

neering. Most studies addressing the use of code reviews in education focus on peer code

reviews, in which learners complete a programming assignment and review each other’s

submissions (Indriasari et al., 2020). Nevertheless, as discussed in the introduction to Part II,

one of the challenges of using peer code review in education is the fact that learners often

lack the ability to perform code reviews (Indriasari et al., 2020). Moreover, teaching the code

review process in an educational setting can be challenging, given the complexity associated

with tools supporting code reviews. Social coding platforms, for example, have steep learning

curves that can be overwhelming for entry-level students (Zagalsky et al., 2015).

To address these challenges, we propose Code Review, an app focused on introducing learners

to the code review process. Code Review integrates with LXPs to support lessons in formats

similar to the integrated computational notebook presented in the previous chapter. In this

chapter, we present the design and evaluation of both the Code Review app and its use inside

an online lesson following a format resembling an integrated computational notebook. This

format constitutes the fourth contribution proposed in this thesis, namely the code review

notebook to simulate social coding platforms in educational contexts (C4).

This chapter is structured as follows. We start in Section 5.2 by presenting the design of the

Code Review app, as well as the code review notebook template. In Section 5.3 we present

our evaluation of our design through a case study with 25 university students. We present our

results in Section 5.4 and discuss their implications in Section 5.5. Finally, we conclude in

Section 5.6.

5.2 Design

Our aim was to design an application that incorporates code review features directly within

a digital education platform. To guide our design, we take inspiration from the integrated

computational notebook presented in the previous chapter. Our approach was to first design

Code Review as a lightweight, embeddable app focused on showcasing the code review process

using short snippets of code.

Following this approach, Code Review was designed to simulate the code review process

used in software development (Wiegers, 2002), especially as it takes place on social coding

platforms. The core of this process consists of a user submitting code for review and another

user reviewing this submission by adding comments to specific lines of code. As a starting

point, the two main features that we proposed to implement in the app were (i) supporting

code snippets and (ii) allowing users to comment on specific lines within the code snippet.

This differs from traditional computational notebooks in one key dimension. That is, the

code presented is static, since its purpose is not to be modified or executed, but rather to be
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commented on by users to start a discussion about possible improvements. In this section,

we outline the use cases that we intended to support with Code Review and describe the

interfaces implemented in the app to enable these use cases. We then present the design of the

code review notebook template, including its structure, the pedagogical patterns it supports,

and a first implementation on Graasp.

5.2.1 Use Cases

We designed Code Review to support two different use cases, which were in turn based on four

contexts in which computational notebooks have been proposed as useful tools for education:

(i) lectures, (ii) flipped classroom settings, (iii) homework, and (iv) exams (O’Hara et al., 2015).

The first use case is for explanatory purposes, which corresponds to the use of computational

notebooks for lectures and flipped classroom settings. Educators should be able to use Code

Review to demonstrate the code review process. This could be done by configuring Code

Review so that it displays a code snippet with aspects that the educator wants to illustrate.

These aspects can then be explained by the educator, who can (i) annotate the code snippet

with comments before sharing Code Review with learners—providing learners with a complete

example of a code review—or (ii) create those comments during a lecture, showing learners

how to complete the code review live.

The second use case aims to provide learners with practical experience reviewing code and

corresponds to the use of computational notebooks for homework and exams. Educators

should be able to configure the application with code snippets containing elements that

learners are then required to identify. If presented as an unmarked exercise, this configuration

is a way to provide learners with practical experience. The same configuration can also be

presented as a quiz or assessment to evaluate how well learners understand the review process

and the topic at hand.

5.2.2 Interfaces

We built Code Review using the Graasp ADK presented in Chapter 2. In this section, we

describe the application’s interfaces, including the features implemented to support our use

cases.

Educator Interface

We provide educators with an interface consisting of four main modes. The Settings Mode

allows educators to configure Code Review. As shown in Figure 5.1, educators can input a

code snippet in one of the four supported programming languages (JavaScript, Python, Java,

and MATLAB). The Annotation Mode provides educators with a preview of how learners will

view the code snippet. Educators can then seed the snippet with comments that are visible
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to all learners. This is the core feature needed to support the explanatory use case, as it can

help educators illustrate the code review process by example. To monitor overall learner

performance, educators can access the Summary Mode (see Figure 5.2), which features a table

that provides an overview of how learners have engaged with the code snippet. Finally, the

Feedback Mode allows educators to view how individual learners have annotated the code

snippet. Educators can assess learner responses and reply to them with feedback.

Figure 5.1: Educators can configure Code Re-
view to display syntax-highlighted code in
four different programming languages.

Figure 5.2: The educator interface of the app
provides an overview of how learners have
interacted with the code snippet.

Learner Interface

Once the educator has configured Code Review, learners can access it via a dedicated interface

consisting of the Review Mode. This mode presents learners with the static code snippet as

configured by the educator, including any comments that the educator might have seeded

within the snippet. Line numbers precede each line of code and syntax is highlighted based on

the programming language used. Learners can annotate the code using comments, which are

associated with a specific line of code. As illustrated in Figure 5.3, adding comments is done

by clicking the “+” icon, which opens an editor that supports the Markdown format for styling

text (Gruber et al., 2004). The editor has two modes: (i) an Edit Mode where users write and

format the content of their comments and (ii) a Preview Mode that shows how the comment

will be displayed once submitted. Once a comment is submitted, it is displayed under the

line it refers to. Providing learners with a means to annotate the code allows us to support the

practical use case, as it allows learners to get hands-on experience performing code reviews.

Figure 5.4 provides an overview of how comments are displayed.

Our application also supports interactions between learners and educators. Users can reply to

comments by clicking the arrow-shaped icon in the top right corner of a comment. Learner
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Figure 5.3: Code Review includes a Markdown editor that allows both educators and learners
to annotate the code snippet with rich text and images.

Figure 5.4: Comments can be edited, deleted, replied to, or hidden.

comments are private by default, meaning that they can only be seen by the learner and the

educator. However, to support collaboration, educators can make all learner comments visible

to all other learners. Learners can then reply to each other and engage in the collaborative

review of a code snippet.

5.2.3 Code Review Notebooks

The design of the code review notebook aims to guide educators in creating technopedagogical

scenarios for teaching various subjects related to programming education through the use of

the code review process. Inspired by the integrated computational notebook, the code review

notebook is designed to be integrated with a digital learning platform, such as an LXP. The

notebook then harnesses features provided by an app that supports the code review process

(e.g., Code Review) to explain the subject in question and gauge learners’ grasp of the subject,
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all the while providing learners with practical code review experience.

Structure

The three key elements defining a code review notebook are the following:

1. Using code snippets to present a topic in programming education.

2. Scaffolding these code snippets with multimedia content to provide motivation, expla-

nations, and other supporting material.

3. Emphasizing active learning by inviting learners to inspect the code and annotate it

with comments with respect to the particular topic in question.

As long as these key elements are followed, the actual structure of a code review notebook can

be very flexible. However, to guide educators in designing these notebooks, we define a basic

structure as follows. Note that we refer to the parts or steps of the code review notebook as its

phases, which are meant to be completed sequentially.

1. An initial phase comprising a code review exercise aimed at gauging learners’ grasp of

the topic in question before the lesson.

2. One or more introductory phases whereby the topic is motivated using multimedia

content.

3. One or more phases presenting the topic through examples featuring the code review

process.

4. A phase—similar to the initial phase—comprising an exercise to gauge learners’ grasp

of the topic after the lesson.

5. A concluding phase where learners can also reflect on their performance in the exercise.

Pedagogical Patterns

Code review notebooks can be designed to follow several pedagogical patterns that are often

used in computer science courses. A few relevant examples from those proposed by Bergin

(2000) include (i) Lay of the Land, where learners are asked to examine a large amount of code

in order to understand the complexity of a topic they are studying, (ii) Fixer Upper, where

learners are presented with code that contains certain flaws that they have to identify and fix,

and (iii) Larger than Life, where learners examine and possibly suggest modifications to code

that they are not yet able to write on their own. The focus these pedagogical patterns place on

examining code, identifying some aspect of that code (e.g., complexity, flaw, improvement),
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and reporting these aspects align closely with the code review process. Code review notebooks

can serve to provide the technopedagogical scaffolding required to facilitate the creation of

learning activities following these patterns.

Implementation

To prototype our proposed code review notebook template, we integrated Code Review with

Graasp. As explained in Chapter 3, Graasp exposes an API supporting LA, which we connected

Code Review to in order to (i) show the respective interface to educators and learners, (ii) con-

figure the code snippet and settings to be used by the application, (iii) save the educator and

user comments, and (iv) record LA when learners interacted with the application. Graasp also

supports the structure proposed for code review notebooks. Using Graasp, educators can use

Code Review to scaffold a pedagogical scenario comprising multiple phases that a learner can

explore. Each phase can include text, images, and other media that serve to support the code

review activity. Some phases can provide context (e.g., a phase introducing the lesson), while

others can feature Code Review for its explanatory use case (e.g., a phase showing examples

alongside explanations) or for its practical use case (e.g., an exercise). Once educators have

set up the code review notebook, they can share it with learners via a link. Through this link,

learners access a dedicated interface that presents them with the notebook as configured by

the educator. An example code review notebook on Graasp is depicted in Figure 5.5.

5.3 Methodology

To evaluate Code Review and the code review notebook, we conducted an online study com-

prising a within-subjects experiment that took place on Graasp. The purpose of our evaluation

was to address one main research question, which is an extension of RQ2:

• What are the effects of using a code review notebook on students’ experiences learning

to identify code quality issues in JavaScript? (RQ2b)

To frame our evaluation, we focused on four aspects of the learning experience: (i) usability,

(ii) short-term learning gains achieved, (iii) self-reflection on the learning experience, and (iv)

feedback. We evaluated our code review notebook through a case study focusing on these four

aspects. In this section, we present the methodology used for our evaluation.

5.3.1 Scenario

To perform our evaluation within an educational setting, the context for our case study was an

asynchronous online lesson on code linting. The process of linting code dates back to the 1970s

and involves the use of static analysis tools designed to detect issues in software (Johnson,

1978). Linting tools are often used in industry to enforce code quality standards and help
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Figure 5.5: In this example code review notebook, the lesson consists of seven phases that can
be explored using a vertical navigation bar. This figure highlights the Getting Started phase,
which uses Code Review to present students with an initial exercise.

automate code reviews. Therefore, it is pertinent to teach the concept of code linting using a

code review notebook, especially since the code review process has also been proposed as a

pedagogical tool for introducing students to code quality standards (X. Li et al., 2005). In our

case, we specifically introduced students to ESLint (Zakas, 2013), a prominent tool specifically

designed to find linting errors in JavaScript (Tómasdóttir et al., 2020), as well as the Airbnb

JavaScript Style Guide (Airbnb, 2012), a popular configuration for ESLint.

The lesson was structured into seven phases that the students were supposed to navigate in

order. As depicted in Figure 5.5, the first phase (Getting Started) featured the practical use

case of the Code Review app. Following the Fixer Upper pedagogical pattern (Bergin, 2000),

students were presented with an exercise comprising a code snippet and asked to annotate it

with any potential issues they could identify. This initial exercise served as a pre-test to gauge

the student’s initial knowledge of code reviews, linting, and JavaScript best practices. In the

second phase (Introduction), we formally introduced the lesson with a short text regarding

linting. The third phase (ESLint) presented ESLint and the Airbnb JavaScript Style Guide. The

fourth (Styling) and fifth (Best Practices) phases made up the core of the lesson and featured

the explanatory use case of the Code Review app. In these phases, we used the code quality

issues seeded into the pre-test as examples and walked the student through them using (i)

an explanation based on the ESLint documentation and Airbnb JavaScript Style Guide, (ii) a
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code snippet highlighting the issue, and (iii) a code snippet illustrating a possible solution.

Figure 5.6 depicts a sample explanation block.

Figure 5.6: Code quality issues were explained using text accompanied by a code snippet
highlighting the issue and another illustrating a possible solution.

In a sixth phase (Exercise), we presented an exercise that served as a post-test to gauge students’

learning gains. The exercise consisted of a snippet containing code quality issues, once again

harnessing Code Review for its practical use. A seventh phase (Conclusion) served as the

conclusion of the lesson, exploiting the explanatory use case of Code Review to present the

answers to the post-test.

5.3.2 Participants

We recruited 27 students pursuing degrees in technical subjects via our internal networks at

the École Polytechnique Fédérale de Lausanne and the School of Engineering and Architecture

of Fribourg in Switzerland. Students were informed that this was an optional, ungraded

exercise, and were asked to share the lesson with their peers. Two students did not complete

the post-test and were therefore excluded from our analysis. A total of 22 students—9 female

and 13 male—completed an optional demographics questionnaire. Of these students, 17

were currently completing a master’s degree, while 5 were enrolled in a bachelor’s program.

Participants were also asked to report on a scale of 1 to 5—with 1 being Beginner and 5

being Expert—their programming experience both overall and specifically using JavaScript.

Responses to this question show that while students’ programming experience was above

average (x̄ = 3.18, Mode = 4), they were mostly uninitiated in JavaScript (x̄ = 1.95, Mode = 1).

5.3.3 Procedure

Our study took place in January 2022 and was carried out remotely. Students were sent a link

to the code review notebook described in Section 5.3.1 and were instructed to take a total of

30 minutes to complete the evaluation. Students accessed the online lesson anonymously and

completed an initial exercise that served as a pre-test before going through the code review

notebook and then taking a post-test. Upon completion of the online lesson, students were
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directed to an online questionnaire that included an optional demographics section.

5.3.4 Instruments

To address our research question, we used the following instruments. First, usability was

measured using two standard instruments. For Code Review, we used the short version of the

User Experience Questionnaire (UEQ-S) (Schrepp et al., 2017). The UEQ-S is an eight-item

questionnaire measuring two meta-dimensions of the user experience: (i) pragmatic quality

and (ii) hedonic quality. Pragmatic quality captures a product’s efficiency, perspicuity, and

dependability, while hedonic quality captures its stimulation and originality. For the usability

of the code review notebook template, we used the SUS (Brooke, 1996). Second, learning gains

were calculated as the difference between a student’s post- and pre-test scores, with a possible

range from −100% to 100%, inclusive. That is, for a given student l , their learning gain gl was

calculated as the difference between their score on the post-test wl ,post and their score on the

pre-test wl ,pre. We refer to this metric as the learning gain (g ).

gl = wl ,post−wl ,pre

The third aspect—self-reflection—was addressed via a question asking students to provide

feedback on their performance in short answer form: Did you manage to find all of these

[issues]? If not, which ones did you miss? Did you find any of them particularly tricky/helpful?

Finally, feedback comprised two instruments. On the one hand, an open-ended question ask-

ing students to provide their thoughts on the lessons, as well as any comments or suggestions:

What did you think about this lesson? Any comments, suggestions, or feedback? On the other

hand, we asked students to rate 10 features that could be added to Code Review on a scale of

one (not interested) to five (very interested). Features were selected based on functionalities

available on computational notebooks (e.g., Executing Code), social coding platforms (e.g.,

Bots), and intelligent tutoring systems (e.g., Hints). The 10 features are listed below.

1. Automated Feedback: Provide information about code quality.

2. Peer Code Review: Comment and edit other students’ code.

3. Bots: Interact with bots within the application to get feedback.

4. Code Editing: Edit, save, and compare code versions.

5. Hints: Provide hints without giving away the answer.

6. Heat Map: Show which lines received comments from others.

7. Executing Code: Execute code within the browser.

8. Fill In The Blanks: Finish an incomplete code snippet.
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9. Dashboard: Visualize one’s activity against that of one’s peers.

10. Overview: Summarize activity across all snippets in a lesson.

5.3.5 Data Analysis

The dataset used for our analysis was extracted from Graasp using the LA pipeline presented

in Chapter 3. To analyze our data, we followed a mixed-method approach. Quantitative data

were analyzed using descriptive and inferential statistics. Specifically, we report the sample

mean (x̄), median (x̃), and standard deviation (sx ), occasionally including the minimum (xmin)

and maximum (xmax) We also performed a dependent t-test for paired samples to compare the

distributions of pre-test and post-test scores. Qualitative data were analyzed using line-by-line

data coding (Charmaz, 2006). We also performed sentiment analysis on the self-reflection

and feedback comments. For this analysis, we used VADER (Hutto et al., 2014)—a sentiment

analysis model trained on social media data—to assign a sentiment score ranging from −1 to

+1 to each comment. Responses from the UEQ-S were further processed using its standard

data analysis tool, which compares results to benchmark data (Schrepp et al., 2017).

5.4 Results

In this section, we outline our results following the four aspects of our study.

5.4.1 Usability

A total of 23 students completed the questionnaire rating the usability of both Code Review

and the code review notebook template. Code Review—evaluated using the UEQ-S—received

a mean overall score of 1.29 (x̃ = 1.25, sx = 0.81), which is considered positive and above

average (25% of results better, 50% of results worse) when compared to the benchmark. When

considering pragmatic and hedonic qualities separately, Code Review achieved mean scores

of x̄ = 1.76 (x̃ = 2.00, sx = 0.91) and x̄ = 0.82 (x̃ = 0.75, sx = 1.01), respectively. While both of

these results are considered positive, the pragmatic score corresponds to an excellent result

(top 10%) when compared to the benchmark, while the hedonic score is below average (50% of

results better, 25% of results worse). The code review notebook template was evaluated using

the SUS and received a mean score of x̄ = 84.35 (x̃ = 85, sx = 12.46), a usability score that can

be described as excellent (Bangor, Kortum, et al., 2009).

5.4.2 Learning Gains

In the pre-test, students detected 14.5% of issues on average (x̄ = 14.5%, x̃ = 9.09%, sx = 13.1%),

while in the post-test, the mean increased to x̄ = 48.6% (x̃ = 50.0%, sx = 23.1%). The differences
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Figure 5.7: Boxplots showing the differences
between the pre- and post-test scores.
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Figure 5.8: Histogram depicting the distribu-
tion of learning gains achieved. Students are
grouped by percentage achieved in steps of
10%.

between the pre- and post-test resulted in a mean learning gain of x̄ = 34.0% (x̃ = 35.7%, sx =
20.0%, xmin =−1.95%, xmax = 71.4%), with all students except one achieving positive learning

gains. To assess the distribution of learning gains (and therefore the distribution of the

differences between the pre- and post-test), we performed a Shapiro-Wilk test, which did not

show evidence of nonnormality (W = 0.967, p = 0.578). Indeed, Figure 5.8 depicts a histogram

of the learning gains achieved, grouping students in incremental steps of 10%. This histogram

visually suggests a normal distribution. A dependent t-test for paired samples showed that

there is a significant difference in the distribution of the pre- and post-test scores (t (24) = 8.51,

p < 0.001). Figure 5.7 illustrates the differences between both distributions.

5.4.3 Self-Reflection

A total of 23 students provided a short open-ended answer to a question asking them to reflect

on their performance in the post-test. Comments ranged from 34 to 553 characters in length

(x̄ = 189.1, x̃ = 151.0, sx = 131.7). Of the 23 students who provided an answer to the question on

self-reflection, 2 students did so without identifying the specific issues they found problematic,

while 17 students specifically reported issues they had missed. For students who mentioned

specific issues, they reported a mean of x̄ = 59.6% (x̃ = 55.8%, sx = 26.5%, xmin = 11.1%, xmax =
100.0%) of issues they had missed. Our sentiment analysis of these comments revealed that

they had a negative sentiment on average (x̄ = −0.278, x̃ = −0.340, sx = 0.546). Figure 5.9

shows the distribution of the sentiment scores and Figure 5.10 a plot of these sentiment

scores against their corresponding student’s learning gain. A simple linear regression was
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performed to test whether learning gains were an adequate predictor of sentiment scores

(R2 = 0.115,F (1,21) = 2.733, p = 0.113), but the results were not significant.
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Figure 5.9: While the distribution of students’
self-reflection sentiment scores was wide, it
shows a tendency towards negative scores.
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Figure 5.10: There is a negative relationship
between learning gains and self-reflection sen-
timent scores, but learning gains did not sig-
nificantly predict sentiment scores.

5.4.4 Feedback

In addition to self-reflection, 22 students provided feedback in the form of responses answering

an open-ended question about their overall satisfaction with the lesson. Comments ranged in

length from 4 to 924 characters (x̄ = 177.3, x̃ = 132.5, sx = 188.4) and the sentiment analysis

performed on these comments yielded a positive mean sentiment of x̄ = 0.556 (x̃ = 0.668,

sx = 0.374). Figure 5.11 shows the distribution of these sentiment scores and Figure 5.12 the

relationship between sentiment scores and learning gains. Once again, we performed a simple

linear regression to test whether learning gains were an adequate predictor of sentiment scores,

resulting in results that were not significant (R2 = 0.165,F (1,19) = 3.767, p = 0.0673). Finally,

using line-by-line coding, we identified prominent themes that were present in the feedback.

On the one hand, 15 students highlighted the positive aspects of the lesson, describing it as

“clear”, “good”, and “useful”. This is best summarized by one particular student, who described

the lesson as follows: “[The lesson is] very pedagogical, [it] gives a good first overview without

being too dense or discouraging, [and] makes you want to learn more by yourself!”1. On the

other hand, three students pointed out their lack of experience in the chosen programming

language as a limitation, while three different students found the lesson difficult.

1“Très pédagogique, donne un bon premier aperçu sans pour autant être trop dense et décourageant, donne
envie d’aller apprendre plus par soi-même !” (Translated from French by the authors.)
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Figure 5.11: The distribution of sentiment
scores for the feedback provided was predom-
inantly positive.
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Figure 5.12: While there is a slightly positive
relationship between learning gains and feed-
back sentiment scores, learning gains did not
significantly predict sentiment scores.

The three most requested features were Code Editing (x̄ = 4.22, x̃ = 4, sx = 1.17), Automated

Feedback (x̄ = 4.04, x̃ = 4, sx = 1.19), and Hints (x̄ = 3.87, x̃ = 5, sx = 1.79). The three least

requested features were Dashboard (x̄ = 2.52, x̃ = 2, sx = 1.73), Bots (x̄ = 2.65, x̃ = 3, sx = 1.64),

and Heat Map (x̄ = 2.91, x̃ = 3, sx = 1.56). Results for the full set of features requested are shown

in Figure 5.13.

5.5 Discussion and Implications

The design of our code review application—as well as its implementation within a code review

notebook and its use to teach software engineering best practices to undergraduate students—

is a first validation that code review functionalities offered by social coding platforms can be

simulated within digital learning environments. Students who participated in the experiment

were able to annotate the different code snippets as if they were engaging in an actual code

review process. Furthermore, the educator interface served to evaluate students’ responses

and gather part of the data used for our study.

This validation is a strong first step toward lowering the barrier to entry for novice students to

exploit functionalities offered by social coding platforms. Students are not required to pre-

install software or create accounts, and comment visibility is limited to the concerned parties.

The code review notebook template also serves educators and researchers looking to better

understand how learners behave and learn in scenarios involving social coding interactions.

By integrating code review notebooks within an LXP, instructors and researchers can gain
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Figure 5.13: Features requested for Code Review ordered by mean score (top to bottom).

insight into learners’ experiences using LA.

Indeed, the results of our study show that the overall usability scores for both Code Review

and the code review notebook template were excellent and above average, respectively. These

scores suggest that Code Review and the code review notebook template lead to positive user

experiences (UXs) within our experimental context. Additionally, Code Review received an

excellent score—top 10% when compared to the benchmark—with respect to its pragmatic

qualities. That is, users perceive its design as well-suited for a task-oriented UX. Results

for the feedback aspect of our study provide key insights into how we can improve Code

Review to support functionalities that learners will find useful. The three most requested

features (Code Editing, Automated Feedback, and Hints) illustrate how learners perceive Code

Review’s potential. Code Editing, on the one hand, would enhance Code Review to more closely

resemble the development process supported by social coding platforms. Automated Feedback

and Hints, on the other hand, focus on the educational aspect of Code Review, expanding

support for more pedagogical scenarios, such as those typically supported by intelligent

tutoring systems intended for programming education (Crow et al., 2018). Integrating these

features could also make Code Review a more novel and engaging tool, thus improving its

usability score with respect to its hedonic qualities, which were rated as below average in

the current implementation. Finally, it is important to note that while the Bots feature was

one of the least requested features for Code Review, it had the highest percentage of Not Sure
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responses, suggesting that participants might not have been able to envisage how chatbots

could be integrated into the lesson.

The results of our study also suggest that using a code review notebook to support an online

lesson on software engineering education leads to tangible short-term learning gains. The fact

that—on average—students detected 34% more code quality issues in the post-test than in

the pre-test indicates that the lesson had a considerable impact on students’ understanding

of what constitutes good quality JavaScript code and on their ability to detect and annotate

issues present in the code snippet. These results suggest that our online lesson format could

serve to address one of the issues identified by Indriasari et al. (2020), namely that learners

often lack the skills necessary to perform code reviews (Trytten, 2005). Specifically, our lesson

format could be used to address issues similar to those experienced by Stalhane et al. (2004),

who reported that during a code review exercise, almost all students found only 2–3 out of

20–30 defects (10%), even though they were expected to find around 60%. According to the

authors, one of the possible explanations for this gap could be that the “process was unfamiliar

and hence daunting” (Stalhane et al., 2004) for learners. Thus, a code review notebook similar

to the one used in this study could be exploited to guide learners through the code review

process before exposing them to more complicated code review exercises. Our work also

sheds light on how to help address some of the concerns teachers have regarding the peer

code review process. In a study of two computer science university-level courses, Kubincová

and Homola (2017) noted that teachers perceived the feedback provided by students (to other

students) as focusing mostly on minor coding issues. By harnessing a code review notebook

similar to the one used in our experiment, educators could provide specific examples of both

the type of issues that they want learners to look out for, as well as the way they want learners

to highlight these issues when they encounter them while reviewing their peers’ code.

Our analysis of the self-reflection comments provides evidence that students took the time

to reflect on the learning experience. Exercises promoting self-reflection have been shown

to be positively correlated with student success in software engineering courses (Pedrosa

et al., 2021) and students have reported finding self-reflection helpful (Minocha et al., 2007).

Educators could harness answers from these exercises in conjunction with the performance

on code reviews to identify learning gaps, and thus personalize teaching strategies targeting

students struggling with the concepts at hand. Furthermore, while the sentiment analysis of

these self-reflection comments yielded a negative score on average, this result could be due

to the way the question was posed to students. More concretely, the fact that we specifically

asked students to reflect on the issues they had not been able to identify could have negatively

biased the sentiment scores of their responses.

Conversely, the feedback provided was overall positive, indicating that the lesson content and

the code review notebook template were predominantly well-received by students. Specific

themes and comments that emerged from our qualitative analysis highlight the potential that

code review notebooks have to serve as an introduction to complicated or broad topics that

students can then go on to explore on their own. As there are a vast number of issues that can
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be encountered when performing an open-ended code review exercise, using a code review

notebook to motivate the most common ones could be useful for educators looking to prepare

students for open-ended peer code review exercises.

Finally, the regression analysis performed shows that learning gains were not a good predictor

of either the sentiment score of students’ self-reflection comments or students’ feedback on

the lesson. While this study’s sample size is limited, the results of our regression analysis could

suggest that actual performance in the code review exercises was independent of motivation

to reflect on the learning experience and of the perception of the lesson itself. This makes

these types of lessons more adequate as a first exposure to the code review process for novice

programmers, who should not feel discouraged if they do not perform as well as expected.

Our results have concrete implications for the work conducted in the rest of this thesis. First,

having validated the code review notebook as a useful technopedagogical scenario for teaching

programming best practices, we will harness it in our empirical evaluations with educational

chatbots. Second, the design and development of Code Review provides us with the context in

which the educational chatbots will be interacting with learners. We will use Code Review and

various code review notebooks to test the different interaction strategies that constitute one

of the core contributions of this thesis (C5). Finally, the features requested for Code Review

informed the development of a third app—Code Capsule—which combines Code and Code

Review into one app that allows users to edit, execute, and review code.

5.6 Conclusion

In this chapter, we presented results from a case study aimed at assessing the impact of code

review notebooks on students’ learning experiences in the context of an online lesson on

detecting code quality issues in JavaScript. Results from our mixed-method analysis provide

insight into the potential for code review notebooks to help students learn how to perform

code reviews. Our findings are particularly pertinent to practitioners who use or are looking to

incorporate code reviews into their courses. By introducing the code review process using an

online lesson following the code review notebook template, educators could prepare students

to conduct reviews that are useful both for themselves and for the student receiving the

feedback. As more educators adopt such approaches, research into how best to scaffold these

lessons for different audiences (e.g., age groups, fields of study) could shed more light on the

impact our approach could have in domains outside of software engineering education.

Our study has some limitations worth highlighting. First, while the sample size achieved in

this study is suitable for an initial within-subjects short-term learning gains analysis, data

from more subjects could allow us to consolidate our findings and draw clearer conclusions

with respect to how learning gains are related to self-reflection and feedback. Second, our

learning activity took place outside of the formal classroom, as an optional exercise. This

might have resulted in sample bias, as those students who responded to our request for

participation might have been students already motivated enough to take part in an ungraded
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exercise. To address this, the experiment should be reproduced in the context of a formal

software engineering course, possibly as a mandatory—albeit ungraded—exercise, which

would provide us with a possibly less biased cohort of students. Third, this study focuses

on one particular use of code review notebooks, which concerns introducing code linting

concepts for JavaScript programming. In order to generalize our conclusions, it is necessary

to replicate our methodology with code review notebooks tackling other subjects—such as

introducing basic programming concepts (e.g., loops, conditional statements, functions)—

that could also be applicable to software engineering education. Fourth, while the feedback

on the lesson was mostly positive, some negative comments regarding the usability of the

interface emerged during our analysis. These comments should be addressed. Furthermore,

the current evaluation was limited to students pursuing degrees in technical subjects. To

test whether code review notebooks can indeed lower the barrier to entry with respect to

the code review functionalities available on social coding platforms, future studies should

include nontechnical students following an introductory programming course. Finally, even

though our use of Graasp is suitable for a proof of concept, it is important to show how Code

Review can be incorporated into other learning platforms to highlight its portability. In future

work, we aim to address these limitations and explore the potential to expand the code review

notebook to more use cases.
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IN the third part of this thesis, we investigate different strategies that educational chatbots

could use in their interactions with learners. Having laid out the technological foundations

for integrating chatbots into digital education platforms and the pedagogical scenarios in

which we will embed these chatbots, we harnessed the Graasp ADK to build apps aimed at

testing these interaction strategies in different settings.

We start in Chapters 6 and 7 by presenting the initial exploratory studies we conducted

to better understand how anthropomorphic qualities, such as humor, arise in interactions

between learners and chatbots, both in educational and software engineering contexts. More

specifically, in Chapter 6 we make a short detour away from software engineering education

and into the domain of language learning—an area where the use of chatbots is particularly

promising and historically relevant. We present results from a controlled online experiment

with 400 participants in which we tested the effect of equipping a chatbot with the ability to

convey the perception of humor as a part of a short language learning exercise. In Chapter 7

we continue our detour—this time outside education, but within software engineering—to

report on a large-scale observational study of how developers interact with chatbots through

GitHub’s emoji reaction interface. Building on our findings from Chapter 6, we focus on the

use of the laugh reaction and its possible use to convey humor.

We then make our way back to software engineering education and present findings from a

series of empirical field studies employing code review notebooks. In Chapter 8, we present

results from a study featuring an enhanced version of the ESLint code review notebook

presented in Chapter 5. This enhanced version included static comments from chatbots, which

we embedded in Code Review. In Chapter 9, we equip Code Review with chatbots following

dynamic rule-based scripts and report the results of a week-long pilot and a semester-long

study using these chatbots to teach Python programming best practices. Finally, in Chapter 10,

we outline a strategy for prompting large language models (LLMs) to power educational

chatbots aimed at educational contexts. These LLM-powered chatbots were integrated into a

new code review notebook based on the one used in Chapters 5 and 8, which we incorporated

into a final field study. In this brief introduction, we highlight related work.
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Related Work

The use of chatbots in education dates back to shortly after the appearance of ELIZA—generally

considered to be the first chatbot (Weizenbaum, 1966)—with conversational interfaces being

incorporated into learning environments as early as the 1970s (Kaplow et al., 1973). His-

torically, particular emphasis was placed on the potential that interactive systems have for

second language learning (L2). This potential was highlighted by Nelson et al. (1976), who

stressed the inherent need for language learning programs to take advantage of the interac-

tive capabilities of the computer and proposed strategies to achieve this interactivity. Since

then, interactivity has been championed for computer-assisted language learning (CALL) sys-

tems under different names, including intelligent language tutors, dialog systems, and—most

recently—chatbots (Bibauw et al., 2019).

Early implementations of chatbots for L2, such as CSIEC (Jia, 2004), paved the way for research

incorporating them into education with a focus on learner autonomy (Abu Shawar et al.,

2007b) and open learner models supporting personalization and adaptivity (Kerly et al., 2007).

Hayashi (2015) conducted an empirical study to investigate the use of pedagogical conver-

sational agents (PCAs) to understand the effects of social facilitation on a learner’s cognitive

processes during a web-based learning activity. Tegos et al. (2016) also investigated the use of

PCAs in an online explanation activity, with a focus on analyzing the differences arising from

varied intervention modalities. In recent years, the rise of instant messaging platforms has

motivated both educators and learners to adopt chatbots across all disciplines, with recent

surveys identifying 89 educational conversational agents on the Facebook Messenger platform

alone (Smutny et al., 2020).

Recent reviews of the literature have also revealed that chatbots are often used to teach

computer-related topics (Kuhail et al., 2023; Wollny et al., 2021). Coronado et al. (2018)

proposed a personal agent to support students in learning the Java programming language.

Their empirical evaluation, which relied on both objective and subjective metrics, showed

that integrating social dialog in question answering agents increased user satisfaction and

engagement with the system in which the agents were deployed. Mad Daud et al. (2020) also

proposed a chatbot for learning Java. By generating different code control structures, the

proposed e-Java chatbot specifically helped students in learning different ways of coding

solutions for the same problem. Custom surveys were used as evaluation metrics to assess the

perceived usefulness of the proposed chatbot. Binkis et al. (2021) implemented a rule-based

chatbot, which they used in a software engineering course for undergraduate students. A

usability assessment of their chatbot using a standard questionnaire resulted in an acceptable

usability score. Laiq et al. (2020) also built and evaluated a chatbot aimed at teaching software

engineering students. Their chatbot focused on helping students learn how to perform

requirements elicitation interviews and achieved promising results. Positive results integrating

chatbots into software engineering education were also reported by Winkler, Hobert, et al.

(2020), who designed Sara—a chatbot to scaffold online video lectures—which they evaluated

using introductory Python programming tutorials. Similarly, Ismail et al. (2019) proposed a
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chatbot to support novice programmers and conducted an evaluation with students, who

reported the tool as useful.

The potential for chatbots to support programming education is best summarized by Hobert

(2020), who developed Coding Tutor—a chatbot to support university students in introductory

programming courses—which was also positively rated by students. Referring to Coding Tutor,

Hobert indicated that “such a conversational intelligent programming tutor is suited to take

over tasks of teaching assistants in times when no human teaching assistant or lecturer is

available for help”. Given our observation in Chapter 4 of the shift in students’ patterns of

interaction with the learning material as activities moved from blended to remote learning

scenarios, this is a particularly relevant feature that educational chatbots can provide.

As we explore the effect that educational chatbots can have on the learning experience, one

important dimension to consider is the strategies that these chatbots will follow in their

interactions with learners. Chatbots can be powered by rule-based, statistical data-driven, or

end-to-end neural dialog systems (McTear, 2021), or using Wizard of Oz techniques whereby

they are controlled behind the scenes by a human, unbeknownst to the end user (Dahlbäck et

al., 1993). Furthermore, as alluded to in Chapter 1, how chatbots harness different social cues

can have a considerable impact on how users perceive these chatbots. Feine, Gnewuch, et al.

(2019) proposed a taxonomy of 48 social cues, including verbal (e.g., sentence complexity),

visual (e.g., facial expression), auditory (e.g., volume), and invisible (e.g., response time) cues.

While Feine, Gnewuch, et al. do not propose humor on its own as a social cue, they do propose

joke and laughing, two cues that are strongly related to humor. Inspired by the role humor can

play in improving the learning experience (Hellman, 2007; Wanzer et al., 1999), a part of the

work presented in the following chapters explores how chatbots can harness humor in their

interaction strategies.

Humor specifically serves important social functions in conversation (Graham et al., 1992). If

chatbots are expected to act as conversational partners, recognizing and harnessing humor

in their interactions with humans should be considered an essential feature of such agents.

Indeed, strategies for equipping chatbots with humor have been the subject of a long line

of research (Loehr, 1996; Morkes et al., 1999; Nijholt et al., 2017). Often, these strategies are

linked to endowing a chatbot with a personality, as highlighted by Chaves et al. (2020).

Early attempts to develop chatbots that explicitly incorporated humor were started by Loehr

(1996), who developed a system called Elmo that used natural language and could embed

puns in conversations. Their research also suggested that if a machine did not use humor

appropriately, it might irritate users rather than amuse them. Morkes et al. (1999) introduced

humor through a conversational agent during a task-oriented interaction and found that

the presence of humor enhanced the agent’s likability in the eyes of human participants.

Nijholt (2007) discussed several factors to take into account when creating humorous chatbots,

presenting a basic architecture that could be adopted for designing humorous anaphora

systems. Based on these discussions, Dybala et al. (2009b) provided the first consistent
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definition of humor-equipped talking agents, referring to them as humoroids.

The strategies presented in the following chapters cover first the content (humor, emoji) and

second the mechanism (Wizard of Oz, rule-based scripts, large language models) of the chat-

bot interactions. The goal—as outlined in Chapter 1—is to shed light on how these strategies

apply to education (Chapter 6), software engineering (Chapter 7), and more specifically, soft-

ware engineering education (Chapters 8–10). Indeed, the core set of empirical case studies

conducted in this thesis (Chapters 8–10) focus on an application of chatbots to programming

education that has not been addressed in the literature, that is, their ability to support code

review exercises. In particular, given the widespread use of chatbots on social coding plat-

forms (Wessel, de Souza, et al., 2018), there is an opportunity to study how chatbots could

support the code review process within educational contexts, and what effect these chatbots

could have on students’ learning experiences. A better understanding of these interactions

could help inform the design of not only educational chatbots aimed at software engineering

education, but also educational chatbots aimed at other disciplines and chatbot technologies

in general.
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6 Perception of Humor

CHATBOTS have long been advocated for computer-assisted language learning systems to

support learners with conversational practice. A particular challenge in such systems is

explaining mistakes stemming from ambiguous grammatical constructs. Misplaced modifiers,

for instance, do not make sentences ungrammatical, but introduce ambiguity through the

misplacement of an adverb or prepositional phrase. In certain cases, the ambiguity gives

rise to humor, which can serve to illustrate the mistake itself. We conducted an online ex-

periment with 400 native English speakers to explore the use of a chatbot to harness such

humor. In an interaction resembling an advanced grammar exercise, the chatbot presented

participants with a phrase containing a misplaced modifier, explained the ambiguity in the

phrase, acknowledged (or ignored) the humor that the ambiguity gave rise to, and suggested a

correction. Participants then completed a questionnaire, rating the chatbot with respect to

ten traits. We performed a quantitative analysis of participants’ responses, focusing on the

effect that acknowledging the humor had on their perceptions of the chatbot. Our findings

showed a statistically significant increase in how participants rated the chatbot’s personality,

humor, and friendliness when it acknowledged the humor arising from the misplaced modifier.

This effect was observed whether the acknowledgment was conveyed using verbal, nonverbal

(emoji), or mixed cues. Implications of these findings for the personalization of educational

chatbots and the design of educational applications are discussed.

By investigating how learners perceive a chatbot’s acknowledgment of humor during an

interaction resembling a language learning exercise, this chapter partially addresses RQ3:

How can we equip educational chatbots with effective interaction strategies?

The content of this chapter was partially presented in the following publication:

1. Farah, J. C., Sharma, V., Ingram, S., & Gillet, D. (2021). Conveying the Perception of Hu-

mor Arising from Ambiguous Grammatical Constructs in Human-Chatbot Interaction.

Proceedings of the 9th International Conference on Human-Agent Interaction (HAI '21),

257–262. https://doi.org/10.1145/3472307.3484677
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Chapter 6. Perception of Humor

6.1 Introduction

In this chapter, we take a short detour away from software engineering education to present

findings from a study conducted in the form of a lesson resembling a language learning ex-

ercise. This study aimed to explore how to integrate humor into short interactions between

learners and educational chatbots. The focus on language learning allowed us to target a large

online participant base and also served to test the generalizability of our tools. Given that

chatbots harness natural language in their interactions, the interaction strategy investigated

in this chapter is also pertinent to software engineering education and to other domains.

Nevertheless, in this chapter, the pedagogical scenario used in our evaluation was informed by

challenges faced by language learning systems. A challenge for these systems, in general, is to

provide meaningful feedback for mistakes caused by ambiguous grammatical constructs (Ama-

ral et al., 2011; Morgado da Costa et al., 2016). This problem is particularly relevant for chatbot

interfaces due to the relatively unconstrained nature of the interactions they enable (Bibauw

et al., 2019). Furthermore, the ambiguity does not always arise from a grammatical mistake per

se. Sentences with misplaced modifiers, for instance, are not necessarily ungrammatical, but

can portray the wrong message due to the awkward placement of an adverb or prepositional

phrase (Lester et al., 2018). In some cases, misplaced modifiers can cause unintended humor,

as exemplified in:

My client has discussed your proposal to fill the drainage ditch with his asso-

ciates. (Fordyce-Ruff, 2011)

The humor elicited by this phrase is aligned with incongruity theories of humor, which postu-

late that “humor arises from the perception of an incongruity between a set of expectations

and what is actually perceived” (Attardo, 2008). In verbal humor, the General Theory of Verbal

Humor (GTVH) builds on incongruity theories to propose that a “text is funny if and only if

both... (i) the text is compatible, fully or in part, with two distinct scripts; and (ii) the two

distinct scripts are opposite” (Ruch, 2008). In the example above, two possible interpretations

of this sentence are (i) that the client has discussed the proposal with his associates or (ii) that

the proposal entails using the client’s associates to fill the drainage ditch. Humor arises from

the incompatibility between (i) and (ii).

If chatbots are expected to act as conversational partners or language tutors, recognizing and

handling these ambiguities appropriately is not only important for pedagogical purposes,

but also from the perspective of HCI. As discussed in Chapter 1, the Computers Are Social

Actors (CASA) framework has been successful in showing how computers are subject to the

same social conventions guiding interactions between humans (Nass, Steuer, et al., 1994).

Moreover, Moon (2000) showed that this effect becomes even more pronounced when human-

like traits such as humor—which serves important social functions in conversation (Graham

et al., 1992)—are conveyed by the computer. Following this line of research, chatbots could be

designed to recognize the humor in ambiguous grammatical constructs, convey that they have

106
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perceived it, and harness it to explain the mistake in a way that resembles the relationship a

learner would have with an educator.

The primary objective of this study was to assess the effect of acknowledging humor on an-

thropomorphic perceptions. More specifically, we examined whether a chatbot that reacted

to humorous misplaced modifiers within an interaction resembling an advanced grammar

exercise was rated more positively than one that completed the task without explicit acknowl-

edgment of the humor. To assess this effect, we first designed a simple, configurable interface

to host a short interaction between a user and a chatbot. We then used this interface in

an online experiment with 400 participants. The experiment evaluated the effect of using

verbal and nonverbal (emoji) cues to convey the perception of humor arising from ambiguous

grammatical constructs. Given that misplaced modifiers affect both English as a second lan-

guage (ESL) and native speakers (Edlund et al., 2012; Joubert et al., 2015)—and to minimize

the possibility of introducing confounding factors due to misapprehension of the phrases

used—participants were all native English speakers, born and currently living in the United

States.

This quantitative study provides contributions that are relevant to both research and practice.

We build on advances in the field of computational humor (Taylor et al., 2005; West et al., 2019)

and the design of chatbots equipped with humor capabilities (Dybala et al., 2009a; Shum

et al., 2018), as well as their application to language learning (Bibauw et al., 2019; Coniam,

2014). Our empirical results provide support for the CASA paradigm, are consistent with both

early and recent assessments of humor used by task-oriented chatbots (Medhi Thies et al.,

2017; Morkes et al., 1999), and extend this line of research to chatbots intended for CALL. We

also provide evidence that emoji-only, verbal-only, and mixed messages are all appropriate

means of conveying the perception of humor in this type of interaction. Moreover, our results

were achieved by harnessing unintended humor arising from grammatical ambiguity, a form

currently unexplored in the study of chatbots and humor.

These findings provide a first strategy that could be used to configure how educational chatbots

interact with learners, making up a part of the fifth contribution in this thesis (C5). In particular,

the approach laid out in this chapter can be used to personalize educational chatbots based

on user feedback and to augment current pedagogical scenarios with the aim of incorporating

humor into the learning process.

This chapter is structured as follows. We start in Section 6.2 by presenting the design of the

chatbot interface and the interaction harnessing humor arising from misplaced modifiers.

In Section 6.3 we present the methodology used for our controlled online experiment. We

present our results in Section 6.4 and discuss their implications in Section 6.5. Finally, we

conclude in Section 6.6.
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Chapter 6. Perception of Humor

6.2 Design

In this section, we introduce the chatbot used for our experiment. We start by motivating the

design of a simple yet interactive interface able to host a configurable exchange between a

user and a chatbot. We then outline the preliminary survey conducted to select the misplaced

modifiers employed by the chatbot in its interactions.

6.2.1 Chatbot Interface

Our objective for the interaction between the user and the chatbot was to maximize ecological

validity without threatening the internal validity of the study. To achieve this, we designed

an interface that could simulate an exchange a user might expect to have with a chatbot,

but ensuring that only the manipulated variable changed across the different conditions

addressed by our experiment. Although this control can be enforced by exposing participants

to screenshots of precomposed conversations—as used by Beattie et al. (2020)—an interactive

exchange helped us ensure that the duration of the exposure was as consistent as possible and

that attention was given to each of the messages presented by the chatbot. We achieved this

by presenting the chatbot’s messages individually and with short delays in between—as users

would expect in computer-mediated communication (CMC) with a human counterpart—and

by prompting the user for responses at predefined points in the dialogue. In turn, this allowed

us to home in on the effect of small changes in the content of the dialogue while keeping the

interactive nature of the conversation.

Figure 6.1: Our chatbot interface was configured to resemble an interactive grammar exercise.
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6.2 Design

We incorporated best practices for the design and implementation of chatbots highlighted

by Chaves et al. (2020), Ferman Guerra (2018), and Følstad and Brandtzaeg (2020) that were

relevant to our scenario. These included (i) providing the chatbot with an identity, (ii) explicitly

stating the chatbot’s purpose, (iii) following a conversational script, (iv) keeping messages

short, (v) simulating typing proportional to the length of the incoming message, and (vi)

including content that the user could find pleasant, evocative, or playful. Since our aim was

not to conceal that our chatbot was not human—and to avoid unexpected gender (McDonnell

et al., 2019) or ethnic biases—our chatbot was introduced to users under a generic name

(WordBot) alongside an avatar consisting of a text-based icon featuring the letter W on a gray

background.

Furthermore, to ensure that the interaction was as consistent as possible even among partici-

pants exposed to the same condition, the script followed by the chatbot was not contingent

on user input. This required that the wording of the questions posed by the chatbot and the

messages that followed be compatible with any response that could be specified by the user.

For simplicity, user input was limited to Yes, No, or I’m not sure. To provide these answers,

participants were prompted to reply using quick response buttons. This strategy has been used

to ensure conversational structure (Chaves et al., 2020) and although users have described

such buttons as restrictive (Duijst, 2017), they have also been reported to be appreciated (Jain

et al., 2018) and effective in nudging participants in task-oriented interactions (Tallyn et al.,

2018).

Finally, to approximate the user experience a learner would have in a CALL system, we em-

bedded the chatbot interface within a web application that resembled an exercise on an LXP.

This application contained three screens. The first screen provided the user with instructions

for the exercise and a button to start the interaction. The second screen encapsulated the

conversation with the chatbot. After the interaction was complete, users were directed to a

third screen containing a concluding message. The result of our design process—depicted

in Figure 6.1—was a customizable chatbot application that satisfied the ecological validity

requirements and could be configured to maximize consistency across the conditions of our

experiment.

6.2.2 Misplaced Modifiers

To select the sentences that our chatbot would use in the main part of our study, we conducted

a preliminary survey. This survey aimed to identify phrases in which humor arises from

the ambiguity introduced by a misplaced modifier. Ensuring that the sentences used in the

experiment were funny was essential to justify the chatbot’s reaction when presenting them

to the user. Using Prolific—which has been shown to be suitable for online experiments in

the social sciences (Palan et al., 2018)—we recruited a sample of 50 participants (23 male,

27 female) whose first language was English and who were born and currently live in the

United States. The age of the participants ranged from 19 to 59 years, with a mean age of 34.2
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(sx = 10.6) and a median age of 33.0.

We first compiled 150 examples of misplaced modifiers from English grammar textbooks,

writing guides, and academic papers on the subject. We then filtered out phrases that were

too long (> 20 words), were known jokes, depended on real-world references that could be

unknown to the participant, were repetitive, abstruse, or had other grammatical errors. This

process yielded 45 phrases from six sources (Blumenthal, 1981; Fordyce-Ruff, 2011; Hansen,

1983; Lederer, 1989; McLean, 2013; Nazario et al., 2010). We presented these 45 phrases

alongside five control phrases. These control phrases were selected from the corrected versions

of misplaced modifier examples that were not included in the final selection. Following

previous studies on the rating of humorous content (Ruch, 2008), respondents were asked

to rate each phrase using a seven-point Likert scale (1 = not funny, 7 = very funny). For each

respondent, the order of the phrases was randomized.

Ratings for each phrase were averaged across all respondents, with a higher mean rating

indicating a funnier phrase. We then ranked the phrases and selected the one with the lowest

mean rating (P1) and the one with the highest (P2) to use in our experiment. This allowed us

to test whether the effect of acknowledging humor was contingent on the intrinsic funniness

of the phrase used in the interaction. Our selection is highlighted in Table 6.1.

Table 6.1: Phrases Selected for the Experiment

Phrase Ranking Text
Rating
x̄ (sx )

P1 Least Funny The candidate was falsely accused of covering up a crime by the media. 1.48 (1.13)
P2 Funniest Each rancher must choose the appropriate method of castration for himself. 3.36 (2.15)

6.3 Methodology

The purpose of our evaluation was to address one main research question, which is an exten-

sion of RQ3:

• What is the effect of a chatbot’s acknowledgment of humor on the anthropomorphic

perceptions it elicits? (RQ3a)

To approach this research question we conducted an online controlled experiment following a

between-subjects, 2×4 factorial design, with two phrases (see Table 6.1) and four acknowl-

edgments comprising one control (no acknowledgment) and three treatments (emoji-only

acknowledgment, verbal-only acknowledgment, verbal and emoji acknowledgment). For

conditions containing an emoji, we used the rolling on the floor laughing (ROFL) emoji, as

depicted in Figure 6.3. The ROFL emoji was chosen for its ability to nonverbally express the

fact that the chatbot found the phrase funny. As summarized by Beattie et al. (2020), emoji
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6.3 Methodology

have been shown to be effective in conveying nonverbal cues in CMC. Table 6.2 summarizes

the experimental setup.

Table 6.2: Experimental Setup

Condition Acknowledgment Phrase

CP1 None P1
CP2 None P2

T1P1 Emoji-Only P1
T1P2 Emoji-Only P2
T2P1 Verbal-Only P1
T2P2 Verbal-Only P2
T3P1 Verbal and Emoji P1
T3P2 Verbal and Emoji P2

6.3.1 Participants

As in the preliminary survey, we used Prolific to recruit participants whose first language was

English and who were born and currently live in the United States, excluding participants who

had completed the preliminary survey. As explained in Section 6.1, the recruitment of native

English speakers aimed to minimize the risk of misunderstanding the phrases used in the

experiment. Additionally, we required participants to access the study on a desktop device, to

ensure a more homogeneous user experience.

For each of the eight conditions, we recruited between 50 and 56 respondents. Respondents

were paid 0.50 GBP for participating in the five-minute study, in compliance with Prolific’s

best practices at the time. The post-questionnaire included an attention check. Submissions

that failed the attention check were rejected, triggering the recruitment of a new participant.

For each condition, the first 50 complete submissions that passed the attention check were

used for analysis, summing to 400 unique respondents in total.

Before interacting with the chatbot, participants completed a short pre-questionnaire pro-

viding information regarding their familiarity and frequency of interaction with chatbot tech-

nologies. A Kruskal-Wallis H test on the results of the pre-questionnaire indicated that there

were no statistically significant differences in familiarity with chatbots (H = 2.89, p = 0.895)

or frequency of interactions with chatbots (H = 1.56, p = 0.980). However, chi-square tests

showed a slight discrepancy in gender balance for conditions T1P2 (χ2 = 5.80, p = 0.016) and

T3P1 (χ2 = 3.92, p = 0.048), while analysis of variance (ANOVA) indicated a slight deviation

from the global mean age (x̄ = 32.00, sx = 11.75) in conditions CP1 (x̄ = 36.72, sx = 13.14) and

T1P1 (x̄ = 27.1, sx = 10.38).
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6.3.2 Procedure

The experimental part of our study was conducted in August 2020 during daytime hours in the

United States. For all conditions, we configured the chatbot to run three short exchanges with

participants. The first exchange introduced the grammatical context of the interaction. The

chatbot explained that it had found a sentence that stood out in the text of an article it was

reviewing. It then presented one of the sentences in Table 6.1 and asked the participant if the

meaning of the sentence was clear. The participant could reply with Yes, No, or I’m not sure.

The second exchange varied across the experimental conditions. In the control (no acknowl-

edgment) condition, the exchange consisted solely of an explanation of the alternative inter-

pretation of the sentence introduced by the misplaced modifier. In the treatment conditions,

the chatbot reacted by (i) displaying a ROFL emoji after explaining the ambiguity caused by the

misplaced modifier (emoji-only acknowledgment), (ii) including the text “I find it hilarious!”

in its explanation (verbal-only acknowledgment), or (iii) both including the text “I find it hilar-

ious!” in its explanation and displaying the ROFL emoji (verbal and emoji acknowledgment).

Under all conditions, the explanation was followed by a question asking participants if they

agreed with the interpretation. Once more, participants could reply with Yes, No, or I’m not

sure.

Finally, the chatbot proposed a reworded version of the original sentence to address the

misplaced modifier. It then asked the participant if they thought the suggestion was good. As

with the previous two exchanges, the participant could reply with “Yes”, “No”, or “I’m not sure”.

To ensure that both phrases were corrected using a consistent strategy, the suggestion was

composed solely by rearranging the words in the original phrase. This means that although

the suggested correction fixed the mistake introduced by the misplaced modifier, it may not be

the optimal way of conveying the sentence’s meaning. Sample interactions for experimental

conditions CP2 and T3P2 can be seen in Figure 6.2 and Figure 6.3, respectively.

6.3.3 Instruments

Given the brevity and controlled nature of the interaction participants had with our chatbot,

we did not identify an established instrument to appropriately measure the effect of our treat-

ments on anthropomorphic perceptions. We, therefore, opted to operationalize the concept

of anthropomorphic perceptions with participants’ ratings with respect to different dimen-

sions or traits. We selected these traits based on the literature. First, we adapted questions

from Bartneck et al. (2009) and R. Zhao et al. (2018) addressing the perception of social traits

(e.g., likability, friendliness, attentiveness) in artificial agents. Second, we incorporated items

from Higashinaka et al. (2015) to address conversation-specific traits such as naturalness

and continuity. Third, although personality is typically broken down into subcomponents

following models such as the Big Five (Goldberg, 1993), certain subcomponents proposed

by these models (e.g., openness to experience, neuroticism) were not applicable in our case.

Hence, we included a question on personality as a whole. We followed a similar strategy
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Figure 6.2: A sample interaction with the chat-
bot for the control condition using the fun-
niest phrase (CP2). Users provided their re-
sponses via the buttons at the bottom of the
chat window.

Figure 6.3: A sample interaction with the chat-
bot for the verbal and emoji treatment using
the funniest phrase (T3P2). Note that the chat-
bot’s responses are not affected by the user’s
input.

for humor, which has been identified to be multifaceted (Ruch, 2008), but was included as

one trait in our questionnaire. Finally, we included a question on grammar, which has been

identified as a barrier to the adoption of chatbots as conversational partners (Coniam, 2014).

The result was a post-questionnaire with two main sections (see Table 6.3). The first asked the

participant to rate the chatbot using a five-point Likert scale (1 = least, 5 = most) with respect

to seven traits. The second asked the participant to respond to three statements concerning

three different traits using a five-point Likert scale (1 = strongly disagree, 5 = strongly agree).

Within each section, questions were randomly shuffled for each participant.

6.3.4 Data Analysis

Data collected through the aforementioned instruments were analyzed using descriptive and

inferential statistics. Specifically, we conducted Mann-Whitney U tests to evaluate the Likert

scores of each treatment, trait, and phrase combination against those of its respective control

condition. The Mann-Whitney U test was selected due to the nonparametric distribution of our

results and the test’s applicability to ordinal Likert-scale data. A statistically significant Mann-

Whitney test for a control/treatment pair indicated that the respective treatment resulted in a

significantly different distribution of ratings for the trait/phrase combination in question. As

our data consists of five-point Likert scale responses, medians do not capture the differences

between conditions effectively. We, therefore, report our test results alongside means for each

condition, and use means to indicate the direction of any difference between a treatment and

its respective control.
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Table 6.3: Ten Traits Rated by Participants in the Post-Questionnaire

Trait Formulation

Rating on a Scale of 1 (Least) to 5 (Most)
Naturalness Naturalness of conversation
Continuity Continuity of conversation
Personality Ability to convey personality
Empathy Ability to understand humans
Humor Having a sense of humor
Grammar Knowledge of English grammar
Common Sense Having common sense

Agreement on a Scale of 1 (Strongly Disagree) to 5 (Strongly Agree)
Attentiveness The chatbot was paying attention
Friendliness The chatbot was friendly
Likability I liked the chatbot

6.4 Results

For all ten traits considered, the results of statistically significant Mann-Whitney U tests—as

well as the differences in mean Likert scores between treatment and control conditions—are

summarized in Table 6.4. In this section, we report on the results of interest. When included,

an increase (+) or a decrease (-) in the mean Likert score is with respect to the corresponding

control condition. For brevity, we refer to conditions and phrases by the codes outlined in

Table 6.2 and all tests refer to Mann-Whitney U tests.

Both personality and humor showed consistent, highly statistically significant increases across

all treatment and phrase combinations. For personality, the largest increase in mean Likert

score for P1 (+1.02) was observed in T3 (U = 1856.0, p < 0.001), while for P2 it was (+1.10) in

T1 (U = 1940.5, p < 0.001). The smallest increase in mean Likert score for P1 (+0.78) was in

T2 (U = 1693.5, p = 0.002), while for P2 (+0.94), it was in T3 (U = 1861.5, p < 0.001). Pairwise

tests between treatment conditions did not show significant differences.

For humor, the highest increase was seen in T1, both for P1 (+1.94, U = 2199.5, p < 0.001)

and P2 (+1.96, U = 2202.0, p < 0.001). The smallest increase was observed in T3, both for P1

(+1.84, U = 2152.0, p < 0.001) and P2 (+1.72, U = 2127.5, p < 0.001). Again, pairwise tests

between treatment conditions did not show significant differences.

An increase in friendliness was also observed across all treatment and phrase combinations,

though it was not statistically significant for the T2P2 (+0.32,U = 1476.5, p = 0.085) and T3P2

conditions (+0.08,U = 1289.5, p = 0.771). Other treatment conditions had consistent increases

ranging from +0.34 (U = 1515.0, p = 0.046) for T3P1 to +0.40 (U = 1554.5, p = 0.019) for T1P2.

Pairwise tests showed a significant difference only between T1P2 and T3P2 (U = 971.0, p =
0.031).
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Table 6.4: Means and Standard Deviations for Five-Point Likert Scores by Trait and Phrase

Trait Phrase
Control Treatment

(C) Emoji-Only (T1) Verbal-Only (T2) Verbal and Emoji (T3)

Naturalness
P1 4.04 (0.88) 3.72 (1.21) 4.02 (1.08) 4.04 (0.99)
P2 4.14 (0.70) 4.12 (0.82) 4.04 (1.01) 3.82 (1.14)

Continuity
P1 4.28 (1.03) 4.34 (1.04) 4.22 (0.84) 4.16 (0.89)
P2 4.20 (0.76) 4.26 (0.75) 4.08 (1.01) 4.00 (0.95)

Personality
P1 2.94 (1.17) 3.78 (1.15)*** 3.72 (1.11)** 3.96 (1.09)***
P2 3.12 (1.06) 4.22 (0.89)*** 4.16 (0.91)*** 4.06 (0.91)***

Empathy
P1 4.18 (0.85) 4.02 (1.08) 3.82 (0.96)* 3.84 (1.02)
P2 3.88 (0.85) 4.06 (0.84) 4.02 (0.98) 3.74 (0.99)

Humor
P1 2.00 (1.09) 3.86 (1.34)*** 3.94 (1.08)*** 3.84 (1.67)***
P2 2.50 (1.28) 4.32 (0.87)*** 4.46 (0.86)*** 4.22 (0.84)***

Grammar
P1 4.30 (0.79) 4.56 (0.61) 4.44 (0.67) 4.42 (0.86)
P2 4.40 (0.76) 4.40 (0.70) 4.46 (0.68) 4.12 (0.85)

Common Sense
P1 4.06 (1.02) 4.10 (1.05) 3.92 (1.01) 4.12 (0.94)
P2 4.18 (0.87) 4.34 (0.77) 4.00 (1.12) 3.70 (0.95)**

Attentiveness
P1 4.44 (0.79) 4.24 (1.02) 4.18 (0.96) 4.14 (0.97)
P2 4.18 (0.94) 4.12 (0.82) 4.16 (1.02) 3.66 (1.15)*

Friendliness
P1 4.12 (0.92) 4.48 (0.81)* 4.48 (0.74)* 4.46 (0.76)*
P2 4.20 (0.90) 4.60 (0.61)* 4.52 (0.61) 4.28 (0.78)

Likability
P1 4.20 (0.93) 4.22 (0.95) 4.30 (0.93) 4.18 (0.87)
P2 4.18 (0.85) 4.24 (0.82) 4.26 (0.88) 3.98 (0.98)

Results in blue indicate an increase with respect to the control condition while those in red indicate
a decrease. Results in bold are statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001).
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Continuity, empathy, grammar, common sense, and likability all showed mixed effects, with

significant decreases observed in T2P1 for empathy (−0.36, U = 981.0, p = 0.050) and T3P2 for

common sense (−0.48, U = 894.5, p = 0.010). Pairwise tests between the treatment conditions

within each trait showed a significant difference between T3P2 and T2P2 for grammar (U =
975.5, p = 0.040), and T3P2 and T1P2 for common sense (U = 769.0, p < 0.001). All other

pairwise comparisons were not significant.

Finally, the results for naturalness and attentiveness showed a consistent decrease in mean

Likert scores across all conditions except T3P1 for naturalness, which remained equal. Pairwise

tests between treatment conditions for naturalness did not show significant differences. Of

particular note is condition T3 for attentiveness, which experienced the largest decrease both

for P1 (−0.30, U = 1032.0, p = 0.100) and P2 (−0.52, U = 925.5, p = 0.019). Pairwise tests

between treatment conditions for attentiveness showed a significant difference only between

T2P2 and T3P2 (U = 931.0, p = 0.021).

6.5 Discussion and Implications

Although we observed statistically significant increases across all treatments for personality

and humor, this was not the case for the other eight traits. However, there are a number of

promising results and parallels with previous findings.

First, the increases for humor across all treatment conditions indicate that the direct effect of

our manipulation—to acknowledge humor—was achieved. Moreover, the positive correlation

between the effects on humor and personality is aligned with work that has highlighted a close

relationship between both traits (Medhi Thies et al., 2017; Thorson et al., 1993). The observed

effects also have implications in practice. As personality has been found to help chatbots gain

user trust and provide a more engaging and enjoyable experience (Jain et al., 2018), chatbots

should incorporate behaviors that aim to improve the way users perceive their personalities.

If this improvement can be achieved with a simple interaction similar to those used in this

study, it would provide an alternative to the use of jokes, which have been widely used to

introduce humor in HCI (Dybala et al., 2009a; Ptaszynski et al., 2010; Schanke et al., 2021;

Wu, 2008), but might become repetitive if overused (Følstad & Brandtzaeg, 2020). In language

learning, one could envision a chatbot that sparsely incorporates the type of interaction used

in this study, either by reacting to user inputs that contain misplaced modifiers or through

short, predefined exercises on the topic. In other educational domains, such as software

engineering education, these interactions could be introduced in the context of ambiguous

variable names, comments, or in annotations that developers themselves provide within the

code review process.

Second, we did not observe any significant differences in naturalness, continuity, or grammar

under any treatment condition. Since these are traits related to the conversational capability of

our chatbot, our results suggest that the introduction of an acknowledgment did not affect the

user’s perception of the chatbot’s ability to communicate. Ensuring naturalness and continuity
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of conversation when introducing diversions is especially important for task-oriented interac-

tions, for which traditional views regarded humor as distracting and time-wasting (Morkes

et al., 1999). Taking into account only these conversational traits, our results suggest that the

interactions used in the treatment conditions pose little risk of eliciting significant unintended

negative effects. These findings could be used to argue for implementing such interactions in

task-oriented chatbots for education.

Chatbots that can provide relatable explanations through humor without sacrificing user

experience could be a positive enhancement for digital education platforms. A recent study

on the use of the writing software Grammarly suggested that it be used in conjunction with

an academic learning advisor (ALA) to provide support due to the occasionally confusing or

inaccurate feedback provided by the software (O’Neill et al., 2019). Incorporating a chatbot

that could serve this purpose when the ALA is not available, or in blended and remote learning

scenarios facilitated by LXPs, could help mitigate this issue. Nevertheless, significant decreases

in the results of three other traits (empathy, common sense, and attentiveness)—though

for each observed in only one condition/phrase combination—serve as a reminder that

playful interactions, such as the acknowledgment of humor, can introduce an overall higher

expectation of the chatbot, which the chatbot might not be able to extend to other traits (Luger

et al., 2016).

These results also have concrete implications for the work conducted in the rest of this thesis.

First, our findings suggest that chatbots could, indeed, harness humor from ambiguous gram-

matical constructs to strengthen anthropomorphic perceptions of traits such as personality

and friendliness. Equipping chatbots with ways of exploiting humor arising from ambiguity

or incongruity is one strategy that we propose as a part of our conceptual framework. As

discussed above, this strategy could help improve the learning experience without distracting

the learner from the task at hand. Second, the short, directed interactions harnessed in this

experiment provided a base for the design of our rule-based interactions. Following the struc-

ture of the interactions used in this experiment, chatbots initiate the exchange with learners

in the context of an issue present in a particular learning resource (e.g., text, code) and hook

them into the interaction through questions or comments about that issue. Third, certain

elements of this initial chatbot interface were adapted for the interface that was embedded

in Code Review and used for our empirical evaluations in software engineering education.

These include the best practices mentioned in Section 6.2.1. Finally, our results informed a

further exploration of how humor can be expressed through emoji in interactions between

developers and chatbots on social coding platforms. This exploration served to define another

interaction strategy and will be presented in the following chapter.

6.6 Conclusion

In this chapter, we presented a first study aimed at exploring how to integrate humor into the

interactions that learners have with educational chatbots. Findings from our controlled online
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experiment contribute to the design of research-informed educational applications and, more

specifically, to the implementation of strategies for incorporating humor in human-chatbot

interaction for education. Possible applications outside language learning—which we will

explore in future chapters—include adaptations to introductory programming courses, where

humor could be useful to teach best practices in software engineering, given the wide use of

chatbots on software development platforms (Wessel, de Souza, et al., 2018).

However, our study has certain limitations that are worth addressing in future work. The first

limitation stems from the use of only two phrases with possibly limited intrinsic funniness.

Phrases could have also had other unmeasured attributes (e.g., offensive, confusing), introduc-

ing biases that were not captured in the preliminary survey. Further investigating the effect

of the phrase on our results would provide more rigorous conclusions on the effects of the

treatments. A second limitation concerns external validity. To minimize misapprehension,

we only recruited native English speakers. Although misplaced modifiers also affect native

speakers (Edlund et al., 2012; Joubert et al., 2015), a logical next step would be to validate

our current findings with ESL learners. Applicability to other languages and demographic

groups should also be tested, as perceptions of human traits, especially humor, might be

contingent on cultural and linguistic factors (Alden et al., 1993). Moreover, our questionnaire

was explicitly built to complement the short nature of the interaction with our chatbot, but

traits such as humor and personality are multifaceted in nature and could be better captured

by a more robust questionnaire.

An important limitation to note concerns the interactions participants had with our chatbot.

These interactions lacked real-world context, had a fixed script, and only allowed participants

to reply using quick response buttons. Future research could benefit from embedding the

interaction within a real-world setting and providing more flexibility, such as open-ended

typing and conversational scripts that adapt to user inputs. We will investigate interactions in

real-world settings in Chapters 8–10, exploring the use of rule-based scripts and LLM-powered

chatbots in Chapters 9 and 10, respectively.
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THE widespread use of chatbots to support software development makes social coding

platforms such as GitHub a particularly rich source of data for the study of human-

chatbot interaction. Software development chatbots are used to automate repetitive tasks,

interacting with their human counterparts via comments posted on the various discussion

interfaces available on such platforms. One type of interaction supported by GitHub involves

reacting to comments using predefined emoji. To investigate how this strategy could be

adopted for interactions between chatbots and learners in the context of software engineering

education, we explored how developers react to chatbot comments on GitHub. Building on

the work presented in the previous chapter, we focus particularly on comments that elicited

the laugh reaction. The findings from our analysis suggest that some reaction types are not

equally distributed across human and bot comments and that a chatbot’s design and purpose

influence the types of reactions it receives. Furthermore, while the laugh reaction is not

exclusively used to express laughter, it can be used to convey humor when a chatbot behaves

unexpectedly. These insights could inform the way chatbots are designed and help developers

equip them with the ability to recognize and recover from unanticipated situations. In turn,

chatbots could better support the communication, collaboration, and productivity of teams

using social coding platforms, as well as of learners using code review notebooks.

By investigating how users interact with chatbots on a social coding platform, this chapter

partially addresses RQ3:

How can we equip educational chatbots with effective interaction strategies?

The content of this chapter was partially presented in the following publication:

• Farah, J. C., Spaenlehauer, B., Lu, X., Ingram, S., & Gillet, D. (2022). An Exploratory Study

of Reactions to Bot Comments on GitHub. 2022 IEEE/ACM 4th International Workshop

on Bots in Software Engineering (BotSE). https://doi.org/10.1145/3528228.3528409
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7.1 Introduction

The popularity of social coding platforms for software development has been steadily rising

over the past decade. These platforms support several tasks related to the software devel-

opment process, such as flagging issues, proposing changes to address those issues, and

reviewing the proposed changes. For some tasks, users can interact using discussion threads,

which are associated with a given issue or proposed change. Chatbots that support developers

with these tasks have become popular and their participation in discussions is increasingly

commonplace (Wessel, de Souza, et al., 2018). Those chatbots—also referred to as bots in the

context of social coding platforms—interact using natural language via comments. Users can

then respond to these comments and—in some platforms (e.g., GitHub)—react to them using

predefined emoji (see Figure 7.1).

Although researchers have separately studied the use of bots on GitHub (Wessel, de Souza, et

al., 2018; Wyrich et al., 2021) and the role of reactions in discussion threads (Borges et al., 2019;

Son et al., 2021), only a few studies have addressed how users interact with bots via the reaction

interface, and these have focused on specific bots (C. Brown et al., 2019) or on providing general

design principles (Liu et al., 2020). Furthermore—to the best of our knowledge—no study

has investigated how users interact with bot comments using the laugh reaction. Humor

has been proposed to make interactions with chatbots more enjoyable (Dybala et al., 2009b;

Jain et al., 2018)—including in task-oriented settings (Morkes et al., 1999; Niculescu, van Dijk,

et al., 2013)—and as a way for chatbots to recover from errors (Niculescu & Banchs, 2015).

Hence, a better understanding of what makes GitHub users laugh at (or with) bots could help

improve chatbot user experiences on social coding platforms and in pedagogical scenarios

that resemble these platforms, such as those provided by code review notebooks.

To address this gap, we conducted an exploratory observational study that examined user reac-

tions to over 54 million comments made on GitHub issue threads throughout 2020. Findings

from this study provide a second strategy that could be used to configure how educational

chatbots interact with learners, making up a part of the fifth contribution in this thesis (C5).

This chapter is structured as follows. In Section 7.2 we present the methodology followed

for our observational study. We then present our results in Section 7.3 and discuss their

implications in Section 7.4. Finally, we conclude in Section 7.5.

Figure 7.1: There are eight emoji reactions available on GitHub.
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7.2 Methodology

The purpose of our study was to address one main research question, which is an extension of

RQ3:

• How do developers interact with chatbots using GitHub’s reaction interface? (RQ3b)

Our analysis focused on three aspects of these interactions. First, we looked at the over-

all differences between how users react to human comments versus how they react to bot

comments. Second, we selected ten popular bots and investigated how different bots elicit

different reactions from users. For these two aspects, we first considered all reactions and then

focused on the laugh reaction. A third aspect consisted of a qualitative analysis of randomly

selected bot comments with laugh reactions and was aimed at understanding the individual

characteristics of those comments.

7.2.1 Data Acquisition

Our study used data acquired between February and May 2021 from the 2020 GitHub event

timeline, which we extracted using GH Archive (Grigorik, 2012). We focused on comments

made on issues, extracting events of type IssueCommentEvent. These data provided us with

54,394,463 events. To retrieve the reactions to these events, we used GitHub’s REST API. This

yielded 3,476,282 comments with at least one reaction and a total of 5,427,039 reactions.

Note that some comments were unavailable at the time of access via the API, possibly due to

deletion. We then used GitHub users’ type attribute to partition these comments into those

that were made by a human (3,457,495) and those that were made by a bot (18,787).

7.2.2 Data Analysis

To analyze our dataset, we followed a mixed-method approach. We used descriptive statistics

across all three aspects of our analysis. Specifically, we report counts (n), as well as sample

means (x̄), medians (x̃), and standard deviations (sx ). We also used sentiment analysis and

inferential statistics to probe whether bot comments that elicited a laugh reaction were

different from their counterparts made by humans. For our sentiment analysis, we first filtered

the comments to include only those in English and excluded those longer than or equal to

50,000 characters and shorter than or equal to 50 characters. We then applied VADER (Hutto

et al., 2014), which assigned a sentiment score ranging from −1 to +1 to each comment, and

SentiCR (Ahmed et al., 2017), which classified the comments as nonnegative or negative. We

report the results of both methods. Finally, we manually inspected the issue discussion threads

for 100 randomly selected bot comments with laugh reactions, performing a qualitative

analysis consisting of the following questions:
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1. Was the reason for the laugh reaction evident?

2. Was the explanation for the laugh reaction dependent on the comment’s context or was it

standalone (i.e., only dependent on the comment itself)?

3. Was the laugh reaction explicitly sought by the bot comment (i.e., directed at eliciting the

laugh reaction)?

4. Was the laugh reaction caused by an incongruity (i.e., an inconsistency between what

users might expect from the comment and what was actually presented in it)?

To identify common themes across the different issue discussion threads, we coded each

comment, following a strategy similar to paragraph-by-paragraph coding (Urquhart, 2012),

and proposed an explanation for the presence of the laugh reaction.

7.3 Results

We report our results with respect to the three aspects of our study.

7.3.1 Human versus Bot

Bot comments with at least one reaction were made by 311 distinct bots over 16,370 issues in

6057 repositories. Human comments with at least one reaction were made by 691,361 distinct

users, over 2,221,510 issues in 322,390 repositories.

All Reactions

We identified 5,397,646 reactions (from 955,515 unique users) to comments made by humans

and 29,393 reactions (from 14,264 unique users) to comments made by bots. These reactions

were distributed over 3,457,495 human comments and 18,787 bot comments, from a total of

38,744,040 human and 10,322,745 bot comments that were available at the time of access. This

means that 8.92% of human comments elicited reactions, while only 0.182% of bot comments

elicited reactions.

The proportion of the total number of reactions by reaction type for both comments from

human and bot users is shown in Figure 7.2. Most reactions have approximately the same

proportion for both types of users. However, while for humans, 71.6% of reactions were a +1,

+1 only accounted for 48.1% of reactions to bot comments. At the other end of the spectrum,

the proportion of the -1 reaction was higher for bots (14.5%) than for humans (2.19%).
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Figure 7.2: Proportion of reactions received—by reaction type—for both human and bot
comments.

Laugh Reaction

A total of 125,442 comments made by humans included a laugh reaction, while 1073 bot

comments included a laugh reaction. Of these comments, 83,406 human and 974 bot

comments were included in our sentiment analysis. Using VADER, human comments re-

ceived a mean score of x̄ = 0.291 (x̃ = 0.368, sx = 0.470), while bot comments received a

mean score of x̄ = 0.290 (x̃ = 0.250, sx = 0.433). As the distributions of sentiment scores were

nonparametric, we performed a Mann-Whitney U test to probe for differences between the

scores of the human and bot comments, observing no significant differences between them

(U = 40047367.0, p = 0.224). Using SentiCR, 83.4% (69,596) of human comments were classi-

fied as nonnegative while 16.6% (13,810) were classified as negative. For bot comments, 89.6%

(873) were classified as nonnegative while 10.4% (101) were classified as negative.

7.3.2 Popular Bots

We selected 10 bots for further analysis based on the number of unique users that reacted to

comments posted (see Table 7.1).
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Table 7.1: GitHub Bots that Received Reactions from the Highest Number of Distinct Users

Bot Description Distinct Users

issue-label-bot[bot] Automatically labels issues as either a feature request, bug, or question. 3564
github-actions[bot] Performs automated workflows supported by GitHub actions. 2138
stale[bot] Closes abandoned issues after a period of inactivity. 1789
github-learning-lab[bot] Helps users learn how to use GitHub. 1595
vscodebot[bot] Bot used by the VSCode repository. 966
msftbot[bot] Microsoft’s GitHub bot. 454
allcontributors[bot] Automatically adds contributor acknowledgments. 415
welcome[bot] Welcomes new users to a repository. 388
dependabot[bot] Detects and updates vulnerable dependencies. 388
codecov[bot] Provides coverage reports and helps with the code review workflow. 302

All Reactions

The proportion of the total number of reactions by reaction type for our selection of popu-

lar bots is shown in Figure 7.3. For certain reaction types, a few bots stand out. A total of

65.0% of reactions to comments by stale[bot], for example, are a -1, while the group

mean is x̄ = 14.7% (x̃ = 13.2%, sx = 18.2%). This is also the case for the heart reaction

(x̄ = 9.23%, x̃ = 8.03%, sx = 8.35%), which is more prominent in comments by welcome[bot]
(28.8%) and allcontributors[bot] (19.0%). For the +1 reaction—which has a wide distribu-

tion of proportions (x̄ = 38.7%, x̃ = 31.0%, sx = 22.8%)—issue-label-bot[bot] stands out,

with +1 representing 87.5% of reactions to its comments. Other reaction types, such as rocket
(x̄ = 3.77%, x̃ = 3.62%, sx = 2.38%), have narrower distributions.
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Figure 7.3: Proportion of reactions received—by reaction type—for a selection of popular bots.
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Laugh Reaction

For the laugh reaction, the distribution among these bots had a mean of x̄ = 6.17% (x̃ =
6.50%, sx = 3.86%). The bot with the highest proportion of laugh reactions was github-
learning-lab[bot] (13.2%), while the bot with the most laugh reactions was github-
actions[bot], with a total of 398 reactions over 315 comments. Finally, the bot with the high-

est average laugh reactions per comment (including only comments with laugh reactions)

was vscodebot[bot] (x̄ = 2.33, x̃ = 2, sx = 1.66,n = 9).

7.3.3 Qualitative Analysis

The comments selected for our qualitative analysis were made by 26 different bots. For 91

of the 100 comments in the sample, the presence of the laugh reaction was evident after

going through the issue discussion thread, while for the other 9, this was not the case. For 41

comments, the explanation for the laugh reaction depended on the context, while 57 were

standalone, and for 2, this was unclear. Only 2 comments explicitly sought the laugh reaction.

Of these 2, one was a joke and the other contained a funny image. Finally, for 29 comments,

the laugh reaction could have been caused by an incongruity, while for 61 comments this

was apparently not the case, and for 10 comments, this was unclear. Figure 7.4 depicts an

example of such incongruity. In this example, a user opened an issue in the GitHub repository

of Microsoft’s Visual Studio Code—a popular code editor—to presumably post content in

support of Donald Trump during the 2020 United States presidential elections. The repository’s

vscodebot[bot], which is programmed to detect duplicates, suggested that this issue could

be a duplicate of another, completely unrelated issue, possibly due to the presence of the word

support in both issues. This incongruity results in two users reacting with the laugh emoji.

The most prominent themes were tutorial (32 comments), report (16 comments), and closing

issue (16 comments). The tutorial theme was only present in comments by github-learning-
lab[bot], while report was present in comments by 10 different bots, and closing issue in

comments by 4 different bots. Of these three themes, tutorial comments were mostly not

incongruent (Yes = 1,No = 31,Maybe = 1), while incongruity appeared more in report (Yes =
10,No = 5,Maybe = 1) and closing issue comments (Yes = 8,No = 3,Maybe = 5). Finally, some

noteworthy explanations for the presence of a laugh reaction due to incongruity included the

following: (i) reaction to a bot closing an issue that had recently been reported as still present,

(ii) reaction to a bot thanking another bot for its contribution, and (iii) reaction from a user to

being welcomed by a bot that the user himself created.

7.4 Discussion and Implications

Overall, our results show that while a far smaller percentage of bot comments receive reactions

when compared to human comments, the proportions of the types of reactions received are

mostly similar across both groups. One notable exception is the proportion of -1 reactions.
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Figure 7.4: Example of the laugh reaction to a bot comment being caused by an incongruity.
Although the issue is clearly spam, vscodebot[bot] suggests that it could be a duplicate of
something completely unrelated, possibly due to the presence of the word support.

The fact that bots receive more -1 reactions than humans could be attributed to users being

more willing to give negative feedback to bots and to the fact that some bots perform tasks

that are regarded as friction points in the software development process (e.g., closing an

issue, requesting a review), as noted by Lebeuf et al. (2017). For stale[bot], for example,

its role in closing issues results in it getting a disproportionate share of -1 reactions. On

the other hand, bots that perform tasks that are regarded as positive, such as welcome[bot]
and allcontributors[bot], naturally get a higher proportion of heart reactions than the

average. Receiving an unusually high (or low) proportion of a given type of reaction can also

be due to the design of the bot. A closer inspection of issue-label-bot[bot]’s comments,

for instance, shows that it explicitly asks for a -1 or +1 to refine the way it labels issues, as was

pointed out by Liu et al. (2020).

Focusing on the results for the laugh reaction specifically, we observe that there are no signifi-

cant differences between how this reaction is used to react to human versus bot comments.

Similarly, none of the bots in our selection stood out in terms of the proportion of laugh reac-

tions received. Although the proportion of laugh reactions to github-learning-lab[bot]
was the highest in the selection, our qualitative analysis showed that most of these reactions

were not due to any type of humor being evoked by the bot. In fact, the laugh reaction seems

to be used not only to express laughter—or as a reaction to an interaction that could be con-

sidered humorous—but also to show that a user is pleased. This could be due to the choice

of emoji used to represent the laugh reaction on GitHub, which is described as Grinning

Face with Smiling Eyes in Unicode’s Common Locale Data Repository (Unicode, 2021), and

might not be explicitly associated with humor. Indeed, Borges et al. (2019) describe the laugh
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reaction as being used to express a “fun situation or [emphasis added] happiness” (Borges

et al., 2019). Nevertheless, our qualitative results also show that the laugh reaction can be

used to express humor. In these cases, humor is usually not explicitly sought. Instead, it arises

from an incongruity and is most commonly related to an unexpected report or a bot trying

to close an issue. These findings are once again aligned with the work of Borges et al., who

also noted that laugh can be used to “express sarcasm or irony in negative situations” (Borges

et al., 2019). In these cases, the presence of the unanticipated laugh reaction could serve

as a signal that the bot’s behavior was not aligned with user expectations. Bots could then

follow issue-label-bot[bot]’s strategy and refine their behavior accordingly, potentially

even harnessing the underlying humor to recover from such situations.

These results also have concrete implications for the work conducted in the rest of this thesis.

First, our observational study showed that the reaction interface on GitHub is widely used by

developers, including in their interactions with chatbots. Therefore, we integrated a reaction

interface into Code Review, allowing learners and educators to quickly react to both human

and chatbot comments using emoji. Following our observation that the choice of emoji used

to represent the laugh reaction on GitHub might not be explicitly associated with humor, our

interface includes a ninth emoji (described as Face with Tears of Joy in Unicode’s Common

Locale Data Repository (Unicode, 2021)) for this purpose. Second, the fact that developers

reacted differently to human comments than they did to chatbot comments sheds light on

an opportunity for educators to harness chatbots in order to gain further insight into the way

learners perceive the activities they take part in. That is, learners might be more willing to

provide certain types of feedback to a chatbot than they would to a human interlocutor. Third,

the differences that arose in how developers interact with different chatbots highlight the

importance of a chatbot’s identity—and the task it is associated with—on the interactions it

has with users. This guided our use of neutral yet explicit chatbot identities in the empirical

studies presented in Chapters 8–10 and informed certain aspects of the conceptual model for

participatory design that will be covered in Chapter 11. Finally, given that when the laugh
reaction was used to convey the presence of humor, such humor was usually not explicitly

sought by the chatbot, we only included a few chatbot comments in our empirical studies that

explicitly incorporated humor.

7.5 Conclusion

In this chapter, we presented results from an observational study analyzing how users react to

comments on GitHub. Our findings suggest that while some reaction types are used differently

when reacting to human versus bot comments or across comments made by different bots, this

is not the case for the laugh reaction. Furthermore, while the laugh reaction is not exclusively

used to express humor, it can be used to express humor arising from an incongruity when

a bot behaves unexpectedly. These insights could inform the design of bots that can take

into account how users react to their comments in order to align their behavior with user

expectations. While this study explicitly considered the laugh reaction, extensions to other
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reactions could be relevant to the study of how chatbots harness social cues.

This study also has some limitations worth discussing. First, we do not take into account bot

users that are not labeled as bots. To address this, we could incorporate methods proposed

for identifying bots into our data acquisition pipeline (Dey et al., 2020; Golzadeh et al., 2020).

Second, our dataset consists only of comments made on issue threads, even though bots also

comment on pull requests (Wyrich et al., 2021). Including those comments would broaden the

scope of our analysis. Third, some bots follow predefined behaviors that bias the reactions they

receive. These behaviors should be taken into consideration to avoid arriving at misleading

conclusions. Finally, our qualitative analysis only included a sample of 100 bot comments.

Annotating a larger sample would provide a more solid base for our findings. Our aim is to

build on this study to explore this line of research and address the aforementioned limitations

in future work.
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IN this chapter, we return our focus to how chatbots can be integrated into software en-

gineering education. For this purpose, we developed a new version of the code review

notebooks presented in Chapter 5. This version featured an enhanced Code Review app that

allowed educators to interact with learners using chatbot identities. That is, educators could

impersonate these chatbot identities in their interactions with students, following the Wizard

of Oz technique. We then used this code review notebook to conduct a lesson on software

engineering best practices and evaluated it through a controlled in-class experiment. This

experiment examined the effect that explaining content via chatbot identities had on three

aspects: (i) students’ perceived usability of the lesson, (ii) their engagement with the code

review process, (iii) their short-term learning gains, and (iv) the feedback they provided. While

our findings show that the code review notebook used achieved good usability across all

conditions, our quantitative analysis did not yield significant differences between conditions

for any of the aspects considered. Nevertheless, our qualitative results suggest that students

expect explicit feedback when performing this type of exercise and could thus benefit from

automated replies provided by an interactive chatbot.

By investigating the effects of incorporating Wizard of Oz chatbots into a software engineering

lesson, this chapter partially addresses RQ3:

How can we equip educational chatbots with effective interaction strategies?

The content of this chapter was partially presented in the following publication:

1. Farah, J. C., Spaenlehauer, B., Sharma, V., Rodríguez-Triana, M. J., Ingram, S., & Gillet,

D. (2022). Impersonating Chatbots in a Code Review Exercise to Teach Software Engi-

neering Best Practices. 2022 IEEE Global Engineering Education Conference (EDUCON),

1634–1642. https://doi.org/10.1109/EDUCON52537.2022.9766793
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Chapter 8. Wizard of Oz

8.1 Introduction

In the introduction to Part III of this thesis, we noted that while several studies have evaluated

the integration of social coding features into educational contexts (Zagalsky et al., 2015), the

impact that chatbots could have on supporting these integrations has not been addressed in

the literature. In particular, although the code review process has been found to be suitable

for educational purposes (X. Li et al., 2005; Y. Wang et al., 2012), no study has assessed the role

chatbots could play in supporting code review exercises.

Outside of education, a recent exploratory study showed that adopting software agents to

perform code reviews had a positive impact on contributions to open-source software projects

and also resulted in decreased communication between maintainers and contributors (Wessel,

Serebrenik, et al., 2020a). Though preliminary, these results may imply that chatbots could

play a positive role in software engineering education. Drawing a parallel from a social

coding platform to an educational context—with contributors as students and maintainers

as instructors—we posit that chatbots might be able to increase student engagement during

code review exercises while also reducing instructors’ workloads with respect to the guidance

required during these exercises. In this chapter, we present the first of a series of empirical

studies in which we investigate the effects of using a chatbot to present content related to

code quality standards within a simulated code review exercise.

We start by presenting how we enhanced Code Review to allow educators to integrate chatbots

into the code review process. Through a new configuration panel, educators could define chat-

bot identities and then use them to provide comments in the examples selected to illustrate

the code review process. Nevertheless, it is important to note that, in this implementation,

these chatbots only participate in the code review process when impersonated by users with

access to the educator interface (e.g., instructors, teaching assistants). That is, our chatbots

cannot interact automatically with learners. This interaction strategy is referred to as the

Wizard of Oz technique. In Wizard of Oz studies, “subjects are told that they are interacting

with a computer system through a natural-language interface, though in fact they are not”,

since there is a human controlling the interface behind the scenes (Dahlbäck et al., 1993).

We then evaluated this interaction strategy in a controlled in-class experiment comprising

30 undergraduate software engineering students. Our objective was to test whether there

was an effect on perceived usability, student engagement, learning gains, and feedback if

explanations regarding code quality were provided differently. To do this, we evaluated two

treatments: (i) providing explanations as the course instructor within Code Review (instructor

condition) and (ii) providing explanations within Code Review through a chatbot that the

course instructor impersonated (chatbot condition). Finally, to provide a baseline, we also

included a condition in which Code Review was only used to display the code snippet, while

explanations of the issues therein were provided in the text preceding Code Review (control

condition).

Findings from this study provide a third strategy that could be used to configure how educa-
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tional chatbots interact with learners, making up a part of the fifth contribution in this thesis

(C5). Specifically, our objective is to shed light on whether the simple act of presenting students

with information via a static chatbot has an effect on the learning experience. Moreover—to

the best of our knowledge—no study has evaluated the impact of incorporating chatbots in a

code review exercise within a blended learning scenario. Given the widespread use of chatbots

in social platforms and the trend to incorporate these platforms into educational contexts, we

believe that our study is both timely and relevant.

This chapter is structured as follows. In Section 8.2, we present the design of our chatbot

integration. We outline our methodology in Section 8.3 and report on the results in Section 8.4.

These results are discussed in Section 8.5 alongside the implications for the rest of the work

conducted in this thesis. Finally, we summarize our conclusions in Section 8.6.

8.2 Design

In this section, we show how we integrated a chatbot interface into Code Review and present

Lint Bot, the chatbot identity used in this study.

Figure 8.1: The new Code Review app allows students to reply to comments seeded by the
educator, leading to thread-like exchanges. As depicted here, the educator can impersonate a
chatbot when annotating the code snippet.

8.2.1 Chatbot Integration

Our objective in designing our chatbot integration was to provide educators with a way of

easily configuring and impersonating chatbots in order to interact with students within a

learning experience platform. To achieve this, we designed an interface whereby an educator
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can easily create chatbots that can then be used to interact with students through the learning

app in which the interface is embedded.

Figure 8.2: Educators can create different bot identities that they can then impersonate when
interacting with students.

To guide educators, we incorporated three best practices for the design and implementation

of chatbots that are relevant to scenarios where chatbots are being impersonated by human

users (Chaves et al., 2020; Ferman Guerra, 2018; Følstad & Brandtzaeg, 2020). Namely, we

wanted to ensure that educators (i) provide the chatbot with an identity, (ii) explicitly state the

chatbot’s purpose, and (iii) can interact through messages including content that students

might find pleasant, evocative, or playful. First, with respect to (i) and (ii), the interface

provided a way to define a chatbot’s identity, which was given by its name, an optional avatar,

and an optional description, with both the name and description serving as a way to explicitly

state the chatbot’s purpose. Second, with respect to (iii), the messages sent by the educator

under the chatbot’s guise can be formatted using Markdown (Gruber et al., 2004), which

supports embedding rich text and multimedia, making it possible to easily create engaging

content.

We implemented this chatbot integration within Code Review. Figure 8.2 shows an instance

of Code Review that has been seeded with three chatbot identities. Once a chatbot identity

has been created, educators can impersonate it to provide feedback to students, as shown in

Figure 8.3. Students can then reply back, leading to interactions similar to the one shown in

Figure 8.1.

8.2.2 Lint Bot

As mentioned in Section 8.1, many social coding platforms support using chatbots to perform

a variety of tasks (Wessel, de Souza, et al., 2018). One of these tasks is to verify that code
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Figure 8.3: Educators can impersonate chatbots to seed a code snippet with comments or to
provide feedback to students.

submitted to a repository is formatted according to the repository’s respective style and

guidelines. The term linting—which we introduced in Chapter 5—refers to the use of static

analysis tools (linters) to detect bugs and other issues (lint) in software programs (Johnson,

1978). Therefore, for our evaluation, we created a bot identity using the name Lint Bot. This

identity would be used to explain code quality issues to students. As noted in Section 8.1,

it is important to note that Lint Bot was simply an identity and did not have any agency or

script to respond automatically to student comments. That is, for Lint Bot to interact with

students, educators had to manually post comments and replies using Lint Bot’s identity. In

our case, the instructor who participated in our evaluation impersonated Lint Bot to seed

the comments in one of the treatment conditions (chatbot condition). Aside from the seed

comment, there were no further interactions provided. Students assigned to this condition

were unaware that the chatbot had been impersonated by the instructor.

8.3 Methodology

The purpose of our evaluation was to address one main research question, which is an exten-

sion of RQ3:

• What are the effects of using static chatbot comments on students’ experiences learning

to identify code quality issues in JavaScript? (RQ3c)

We addressed this research question by evaluating three variations of our learning scenario.
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More specifically, we tested the effect of impersonating chatbots when presenting concepts

in software engineering education, conducting a between-subjects controlled experiment

comprising one control and two treatments. In all conditions, subjects were presented with

the learning scenario described in Section 8.3.1. The conditions differed only in the way we

explained the linting errors illustrated by the example code snippets. To frame our evaluation,

we focused on four aspects of the learning experience: (i) usability, (ii) engagement, (iii) short-

term learning gains, and (iv) feedback. In this section, we explain the methodology of our

evaluation in detail.

Figure 8.4: We prepared a lesson introducing students to the concept of code linting in
JavaScript.

8.3.1 Pedagogical Scenario

Our goal was to evaluate Code Review and the effect of equipping it with a chatbot interaction

in a real software engineering lesson. To do this, we created a lesson introducing the concept

of code linting following a similar format to the one presented in Section 5.3.1. This lesson was

structured in five phases. In the first phase, students were presented with a snippet of code.

Students were explained how to use Code Review and asked to add comments to the parts of
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the code that had potential issues. This exercise served as a pre-test to (i) gauge their level of

engagement at the start of the lesson and (ii) see if they could find six issues that had been

explicitly seeded in the code. In the second phase, students were introduced to the concept

of code linting, while in the third phase, they were introduced to ESLint (Zakas, 2013). In

the fourth phase, four specific code quality issues were presented and exemplified in detail

using Code Review. This fourth phase was the only part of the scenario that varied between

conditions (see Section 8.3.3 for more details). Finally, in the fifth phase, students were again

presented with an exercise using Code Review. This exercise served as a post-test to (i) gauge

their level of engagement at the end of the lesson and (ii) see if they could find seven issues

present in the code snippet. Figure 8.4 depicts the learning scenario, highlighting the second

phase of the lesson (Introduction).

Figure 8.5: The Examples phase of the learning scenario varied across experimental condi-
tions. This figure depicts the interface for the chatbot condition, showcasing an example
code snippet with linting errors that have been highlighted by comments from an instructor
impersonating Lint Bot.

8.3.2 Participants

We recruited 31 undergraduate software engineering students following a course on frontend

web development at the School of Engineering and Architecture of Fribourg, Switzerland.

Students consented to participate in this study. Responses from one participant were omitted

after controlling for data collection errors, resulting in a total of 30 valid participants (2 female,

28 male), with a distribution of 9 participants in the control condition, 10 participants in the

instructor condition, and 11 participants in the chatbot condition.
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8.3.3 Procedure

The experimental part of our study was conducted in November 2021. As part of an in-class

exercise, students were given 30 minutes to complete the learning scenario described in

Section 8.3.1. The content of the lesson was identical for all students except for the fourth

phase (Examples), which differed in the way the code quality issues were explained. In

the control condition, the explanation was presented in text alongside—but not embedded

within—Code Review (control condition). In the two treatments, we either provided the

explanation within comments in Code Review (i) via a user representing the course instructor

(instructor condition) or (ii) under the alias of Lint Bot (chatbot condition). All explanations

were in English, based on feedback provided by the ESLint CLI (Zakas, 2013). Figure 8.5 depicts

the Examples phase for the chatbot condition. Interactions with the lesson were recorded

using Graasp’s implementation of the LA pipeline architecture described in Chapter 3. Upon

completion of the lesson, students were directed to a post-questionnaire.

8.3.4 Instruments

To assess the impact of the treatment conditions of our controlled experiment, we operational-

ized three concepts—(i) usability, (ii) engagement, and (iii) learning gains—using the following

instruments. To collect data on usability, we used the System Usability Scale (SUS) (Brooke,

1996).

For engagement and learning gains, we built bespoke instruments using the results of the pre-

and post-tests. As explained in Section 8.3.1, the pre-test assessed if students could find six

issues seeded in a code snippet, while the post-test assessed if they could find seven issues

seeded in a different code snippet. Engagement was operationalized using the length of the

comments added by students. The total length hl ,t of the set of comments Cl ,t added by a

given student l in test t can be calculated as the sum of the length of each comment in the set.

hl ,t =
∑

c∈Cl ,t

len(c)

The total length of the comments added by a given student in the pre-test (hl ,pre) served as an

indicator of how engaged the student was at the beginning of the activity, before being exposed

to their respective condition. The total length of comments added in the post-test (hl ,post)

then served as an indicator of how engaged the student was at the end of the lesson, after

being exposed to their respective condition. The engagement resulting from their exposure

was then measured as the difference between the total length of comments left by the student

in the post-test and the pre-test. We refer to this metric as the engagement score (e).

el = hl ,post−hl ,pre
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As in Chapter 5, learning gains were operationalized using the scores of the post-test and

the pre-test, with a possible range from −100% to 100%, inclusive. Finally, we also captured

qualitative feedback through an open-ended question asking students to provide comments,

suggestions, and general observations in short answer form.

8.3.5 Data Analysis

Data collected through the aforementioned instruments were analyzed using mixed methods.

Quantitative data were analyzed using descriptive and inferential statistics. In terms of de-

scriptive statistics, we report the sample mean (x̄), median (x̃), and standard deviation (sx ).

In terms of inferential statistics, data on usability, engagement, and learning gains were all

normally distributed and homoscedastic within each condition and were therefore compared

using ANOVA. Qualitative data—in the form of open-ended comments—were analyzed by

articulating emergent themes using line-by-line data coding (Charmaz, 2006).

8.4 Results

In this section, we present the main results of our evaluation. These results are also summa-

rized in Table 8.1 and illustrated in Figure 8.6.

8.4.1 Usability

The mean SUS scores were x̄ = 82.250 (x̃ = 82.500, sx = 9.238) in the instructor condition,

x̄ = 75.682 (x̃ = 77.500, sx = 7.508) in the chatbot condition, and x̄ = 84.167 (x̃ = 85.000,

sx = 8.004) in the control condition. All of these scores correspond to usability that can be

described as good (Bangor, Kortum, et al., 2008). Furthermore, one-way ANOVA showed that

there were no significant differences between conditions (F (2,27) = 2.978, p = 0.068).

Table 8.1: Descriptive Statistics for Each Condition and ANOVA Results Across Conditions

Condition
Aspect Control Chatbot Instructor ANOVA

x̄ (sx ) x̄ (sx ) x̄ (sx ) F (p-value)
Usability 84.167 (8.004) 75.682 (7.508) 82.250 (9.238) 2.978 (0.068)

Engagement 57.556 (56.593) 38.727 (106.593) 108.500 (97.803) 1.606 (0.219)
Learning Gains 0.071 (0.231) 0.184 (0.179) 0.145 (0.287) 0.577 (0.568)

137



Chapter 8. Wizard of Oz

ChatbotControl Instructor

65

70

75

80

85

90

95

SU
S 
Sc

or
e

U ability by Condition

ChatbotControl In tructor

−100

0

100

200

E
ng

ag
em

en
t S

co
re

Engagement by Condition

ChatbotControl In tructor

−0.4

−0.2

0.0

0.2

0.4

0.6

Le
ar

ni
ng

 G
ai
n

Learning Gain  by Condition

Figure 8.6: Box plots summarizing the descriptive statistics across conditions for the three
aspects considered by our quantitative analysis: usability (top), engagement (middle), and
learning gains (bottom).
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8.4.2 Engagement

The mean engagement scores were x̄ = 108.500 (x̃ = 108.000, sx = 97.803) in the instructor

condition, x̄ = 38.727 (x̃ = 26.000, sx = 106.593) in the chatbot condition, and x̄ = 57.556

(x̃ = 73.000, sx = 56.593) in the control condition. These descriptive results suggest that

engagement was higher in the instructor condition. However, one-way ANOVA showed that

there were no significant differences between the conditions (F (2,27) = 1.606, p = 0.219).

8.4.3 Learning Gains

The mean learning gains were x̄ = 0.145 (x̃ = 0.095, sx = 0.287) in the instructor condition,

x̄ = 0.184 (x̃ = 0.238, sx = 0.179) in the chatbot condition, and x̄ = 0.071 (x̃ = 0.119, sx = 0.231)

in the control condition. These results show that all conditions led to—on average—positive

learning gains for students. Nevertheless, when comparing the conditions, one-way ANOVA

showed that there were no significant differences (F (2,27) = 0.577, p = 0.568).

8.4.4 Qualitative Feedback

A total of 10 students provided open-ended feedback, four from the instructor condition,

three from the chatbot condition, and three from the control condition. Two themes were

presented by more than one student. First, two students (one in the instructor condition and

one in the control condition) described the examples in the lesson as “repetitive”. Second, four

students (one in the instructor condition, one in the chatbot condition, and two in the control

condition) expressed the need for feedback after having completed the post-test. Specifically,

one student expressed the following with respect to the need for feedback: “You explain the

concept, yes, but the fact that we do an exercise without being able to see the answer key

makes it all frustrating and not at all useful in learning.”1 This quote illustrates how the second

theme—which was the only one seen across all three conditions—was the one that students

who provided open-ended comments were most vocal about.

8.5 Discussion and Implications

Our evaluation provided inconclusive yet promising results regarding the role chatbots could

play in learning scenarios incorporating code review exercises. First, our quantitative analysis

showed that, overall, usability was good in all conditions. Similarly, all conditions led to

positive learning gains. These findings imply that the learning scenario in and of itself was

both usable and effective. Nevertheless, there were no significant differences between the

conditions for either usability or learning gains. Second, while descriptive results suggest that

engagement was higher in the instructor condition, no significant differences were observed

1“On nous explique le truc oui, mais le fait qu’on aie [sic] un exercice sans pouvoir avoir un corrigé rend le tout
frustrant et pas du tout utile dans l’apprentissage.” (Translated from French by the authors.)
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between conditions. This lack of significant differences across conditions for all of the aspects

considered could be due in part to our limited sample size. As illustrated in Figure 8.6, the

presence of outliers within various condition/aspect combinations could have affected our

ability to draw conclusions from our results. Future work aims to further explore our scenario

with a larger group of students.

Moreover, our findings could suggest that the differences across conditions, which were

limited to the three code snippets used in the Examples phase of the lesson, were not distinct

enough and therefore resulted in a very similar learning experience. Indeed, the qualitative

analysis we conducted sheds some light on this matter. First, it was reported that the exercises

were repetitive. This perception of repetitiveness could have resulted in an adaptation effect,

diminishing the impact of the treatments. Second, students expressed disappointment at the

absence of feedback provided during the lesson. These remarks point to a possible explanation

for the nonsignificant results across conditions. Namely, the mere use of identities (human

or chatbot) to present static information adds very little to the learning experience, at least

within the scope of our learning scenario. Instead, students expect this type of scenario to

include feedback and interactivity.

These results have concrete implications for the work conducted in the rest of this thesis.

First, the interface to create chatbot identities, which we added to Code Review, will be

harnessed in future chapters. Second, the fact that usability, learning gains, and engagement

were not impacted by the use of chatbots suggests that some of the interactivity required for

these lessons could be provided by educational chatbots, possibly reducing the workload for

educators. The use of educational chatbots could also open up new opportunities to offer

these blended and remote learning scenarios to larger cohorts of students without diminishing

their educational value. Finally, the qualitative feedback received informed our decision to

(i) improve the learning scenario to include a phase in which the solutions to the exercise are

presented and (ii) equip the chatbots with mechanisms through which they could interact

automatically with learners. While educators might not be able to cope with giving real-time

feedback to large numbers of learners, chatbots following rule-based scripts could serve as a

first layer of interaction. A promising next step for our research would be to build on these

results and assess the role that interactive chatbots could play within exercises simulating

code reviews. This interactivity is what we will introduce in the next two chapters.

8.6 Conclusion

In this chapter, we explored the role chatbots could play in supporting a lesson on software

engineering. Our approach was to first equip Code Review with an interface to enable in-

structors to impersonate chatbots when presenting content or interacting with their students.

Code Review was integrated into a variation of the lesson on code linting presented in Chap-

ter 5 and used to evaluate three ways of explaining linting errors presented via example code

snippets. This evaluation was conducted through a controlled in-class experiment with 30
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undergraduate software engineering students.

Findings from our evaluation suggest that there are no significant differences between the

three conditions we explored—explaining concepts (i) via a user representing the course

instructor, (ii) via a chatbot alias, or (iii) in the accompanying text—with respect to perceived

usability, engagement, and learning gains. However, suggestions obtained through open-

ended responses provide key insights into the possible need for interactivity and feedback in

order to better support students in this type of learning scenario. We aim to build on these

findings to equip our chatbot identities with interactivity and evaluate them in future work.
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IN this chapter, we report on the integration of a rule-based chatbot into an information

technology course. Building on the Wizard of Oz chatbot interface presented in the previous

chapter, we start by describing how we equipped these chatbots with automated scripts. We

then conducted a controlled experiment whereby half of the students were able to engage

with an interactive chatbot when taking part in the course’s lab sessions, while the other

half completed the sessions without the chatbot interaction. Our results show that while the

chatbot did not lead to differences in short-term learning gains or perceived relevance of the

lesson, it did improve usability. These findings suggest that educational chatbots powered by

short, simple, interactive scripts could have a positive impact on students’ experiences using

blended learning technologies such as code review notebooks. In turn, this improvement

in usability could affect other dimensions, such as completion rate, self-regulation, and

motivation—as suggested in the literature—and could be pertinent to educators looking to

integrate chatbots into their practice.

By investigating the effects of incorporating rule-based chatbots into a software engineering

lesson, this chapter partially addresses RQ3:

How can we equip educational chatbots with effective interaction strategies?

The content of this chapter was partially presented in the following publications:

1. Farah, J. C., Spaenlehauer, B., Bergram, K., Holzer, A., & Gillet, D. (2022). Challenges and

Opportunities in Integrating Interactive Chatbots into Code Review Exercises: A Pilot

Case Study. EDULEARN22 Proceedings, 3816–3825. https://doi.org/10.21125/edulearn.

2022.0932

2. Farah, J. C., Spaenlehauer, B., Ingram, S., Purohit, A. K., Holzer, A., & Gillet, D. (2023). Har-

nessing Rule-Based Chatbots to Support Teaching Python Programming Best Practices

[In Submission]
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Chapter 9. Rule-Based Scripts

9.1 Introduction

In the previous chapter, we described how we improved Code Review to support chatbot iden-

tities and how we conducted a study that used these chatbot identities as a way to illustrate the

code review process to students. Following the Wizard of Oz interaction strategy, instructors

could impersonate chatbots to annotate code snippets with sample comments, but these

annotations were static—meaning that students could not engage in real-time conversations

with the chatbot—and required manual intervention from the instructor. In this chapter, we

present how we enhanced the static interface by equipping it with functionalities to support

chatbots following automated interactive scripts.

Using these new functionalities, we then configured PEP-8 Bot, a chatbot designed to support

a series of lessons on Python programming best practices. PEP-8 Bot followed predefined

scripts intended to show students that a particular code style guideline was relevant in practice.

The impact of PEP-8 Bot on these lessons was evaluated through a controlled experiment

conducted within a university-level information technology course. Our study aimed to

shed light on how rule-based chatbots could be harnessed to support students learn Python

programming best practices as defined by the PEP-8 standard (van Rossum et al., 2001). The

results of our case study contribute to the growing body of research on educational chatbots

and may be relevant to practitioners looking to integrate these chatbots into their courses.

Findings from this study provide a fourth strategy that could be used to configure how educa-

tional chatbots interact with learners, making up a part of the fifth contribution in this thesis

(C5). Specifically, having not found any significant differences in the case where chatbots were

used to present static content, our aim was to assess how equipping them with interactivity

could have an impact on the learning experience. As such, this study continues our explo-

ration of the effects of incorporating chatbots into a code review exercise aimed at educational

contexts.

This chapter is structured as follows. In Section 9.2, we present how we equipped the chatbots

embedded in Code Review with rule-based scripts. We then outline the methodology used

for our evaluation in Section 9.3 and report on the results in Section 9.4. These results, as

well as their implications in the context of this thesis, are discussed in Section 9.5. Finally, we

conclude in Section 9.6.

9.2 Design

To enable interactive dialog within Code Review, we enhanced the chatbot interface so that

conversations between learners and chatbots could follow rule-based scripts. These scripts

then define how a chatbot will process student input. In this section, we describe the design

of our rule-based engine.
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9.2.1 Automated Chatbot Responses

We added an Auto Bot Settings tab to the educator interface of the Code Review app. Within

this tab, educators can activate both automatic replies (which will enable the rule-based

script) as well as automatic message seeding, which will add a seed message to the lines where

the chatbot is added in order to invite users to interact with the chatbot. Finally, educators

can activate human intervention requests, in which learners can request that a human user

intervene in the conversation. These settings are shown in Figure 9.1.

Figure 9.1: Through the Auto Bot Setting feature, educators can upload a script defining the
rules that the chatbot would follow or edit these rules directly using a built-in editor.

Once activated, automatic replies enable a built-in editor featuring a sample script that educa-

tors can try out before defining their own scripts. To facilitate the creation and dissemination

of these scripts, we added the possibility for educators and developers to edit the script outside

of Graasp and upload the configuration directly. Educators can also create and edit configura-

tions using the built-in editor. As shown in Figure 9.1—via the Valid Personality message—this

editor includes a verification mechanism to ensure that the script conforms to the format

compatible with the dialog engine, which we will present in the following section.

9.2.2 Dialog Engine

To support executing rule-based scripts, we equipped Code Review with a browser-based

dialog engine that can interpret simple JSON configuration files following a predefined struc-

ture (see Figure 9.7, left). For clarity, we refer to chatbot messages as comments and learner

messages as responses or replies. Each script starts with a comment that serves as a seed,
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which is a comment used to elicit an interaction with the learner. Depending on the learner’s

response, different conversational paths can be taken. The dialog engine matches a learner’s

response to the appropriate next step in the conversational path using regular expressions.

For convenience, a subset of the responses that the chatbot would know how to interpret are

provided as quick-reply buttons (e.g., the Yes and No buttons shown in Figure 9.4). There is

also a fallback comment that is used when no comment could be matched with the response

provided by the learner. Finally, to mark the end of an interaction, the chatbot outputs a

comment that does not provide any quick-reply options. If the learner responds to this last

comment, a special end step is used, which informs the learner that the chatbot has nothing

more to say and provides the learner with a button to restart the interaction.

Figure 9.2: Our chatbot interaction script was configured using the JSON format (left) and
supported a rule-based conversational flow comprising several potential pathways (right).

9.2.3 Selective Audience

A final feature that was developed was the possibility to select which learners were exposed to

a given chatbot. As shown in Figure 9.3, this selectivity is achieved through a setting that allows

the educator to manually select the learners who will (or will not) be exposed to the chatbot.

Educators can also upload a file containing a list of these learners’ IDs. For our empirical

evaluation, this allowed us to divide participants into a control and treatment group, where
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the chatbot was visible only to students in the treatment group. Nonetheless, there are other

use cases for this feature, such as personalizing the chatbots for individual learners or cohorts

of learners.

Figure 9.3: Educators could also select to show/hide the chatbot to/from a particular set of
learners.

9.3 Methodology

Our evaluation aimed to address the following research question, which is an extension of

RQ3:

• What are the effects of a rule-based chatbot designed to support Python programming

lessons on students’ learning experiences? (RQ3d)

We addressed this research question by conducting a between-subjects controlled experiment

comprising one control and one treatment. In both conditions, students were presented

with the same pedagogical scenario. The conditions differed only in the way we explained

the code style issues illustrated by the example code snippets. To frame our evaluation, we

focused specifically on four aspects of the learning experience: (i) learning gains achieved,

(ii) perceived relevance of the material, (iii) usability of the lesson, and (iv) feedback. In this

section, we explain the methodology of our evaluation in detail.
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9.3.1 Pilot

Before conducting our main evaluation, we conducted a week-long pilot in a computational

thinking course aimed at students pursuing a master’s degree in the Faculty of Economics and

Business at the University of Neuchâtel in Switzerland. A total of 28 students registered for the

course and 27 completed it. The pilot study was structured as a within-subjects controlled

study, which aimed to identify possible challenges that could arise during the main evaluation.

The course was conducted in English and took place over one week. Each day, students

attended an in-class lecture in which they were introduced to a Python programming concept.

On the same day, they had a lab covering the topics studied in the lecture, as well as an exercise

related to Python code style guidelines. Students could complete these labs in person or

remotely. Participants completed a total of five labs. The first two labs did not include a

chatbot, while the following three labs did.

While we saw a diminishing trend in interactions with the chatbot, participants rated the

lesson positively. For each lab featuring the chatbot, students gave a rating based on a question

asking them to rate the usefulness of the chatbot on a scale of 1 to 7, with 1 being Not Useful At

All and 7 being Very Useful. The overall mean rating was x̄ = 6.24 (x̃ = 6.00, sx = 0.73, n = 17),

suggesting that the chatbot was useful in carrying out its task.

9.3.2 Pedagogical Scenario

The main evaluation took place within the five-week Python programming component of

a 14-week information technology course tailored for students completing a bachelor’s in

economics and business at the University of Neuchâtel. A total of 97 students were enrolled

in the course. Before the beginning of the course, students were randomly assigned to the

treatment (chatbot) or control (no chatbot) group. Each week, students took part in an in-class

lecture. The same week, they were able to attend a lab session in which the topics covered

in the lecture were addressed. Participation, however, was not mandatory. The course was

conducted in French and all the material—including the chatbot scripts—was adapted to

French. For convenience, the figures shown in this chapter are the English versions used in

the pilot.

Table 9.1: Weekly lecture topics included in the Python programming component of the course
alongside their corresponding lab session and code style guidelines covered therein.

Week Lecture Lab Code Style Guidelines

1 Conditions Conditions Pre-Test
2 Loops Loops Indentation, Whitespace, Constants
3 Lists Lists Comparisons, Negating, Comparing Booleans
4 Functions Functions Max Length, Function Names, Descriptive Names
5 — Review Post-Test
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Each lab session was conducted in French and included an exercise on Python code style

guidelines based on the PEP-8 standard. As in our previous evaluations, these exercises

followed the Fixer Upper pedagogical pattern both for explanation and evaluation (Bergin,

2000). That is, students were presented with code snippets that included code styling violations

and were shown how to correct them (explanation) or asked to identify the issues present

(evaluation). The first lab introduced students to the exercises and included a short activity that

served as a pre-test. The second, third, and fourth labs each included explanations covering

code layout, coding standards, and naming standards, respectively. In the final session,

students completed a second activity that served as a post-test. Sessions were supported by

Graasp and Code Review.

Figure 9.4: Our chatbot was integrated into a code review application that was embedded in a
code review notebook aimed at teaching Python programming.

Chatbot

For this case study, we equipped Code Review with PEP-8 Bot (named Code Style Bot in the

pilot, which was conducted in English). This chatbot was used to annotate the lines of code

that contained potential code style issues within a series of Python code snippets used in Labs

2–5. The chatbot was configured to engage students by asking them if they understood and

agreed with the logic behind the code style issue at hand, providing explanations of Python

programming best practices, and motivating the reasons behind those best practices. An

example of the chatbot embedded in the code review notebook is shown in Figure 9.4

Furthermore, building on findings from Chapters 6 and 7, we included interactions featuring

emoji and animated gifs, taking advantage of the Markdown support provided by Code Review.
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This allowed our chatbot to express—among other emotions—humor and surprise, as shown

in Figure 9.5.

Figure 9.5: Some of the chatbot’s comments featured animated gifs (left) and emojis (right) to
elicit humor and express surprise, respectively.

9.3.3 Procedure

At the beginning of each lab session, students were asked to complete a short code style

exercise. Each exercise was meant to take approximately five minutes to complete. Lab 1

included the pre-test and was identical for all students. In Labs 2–4, for all students, the

code style exercise covered three guidelines (indentation, whitespace, and constants). For

each guideline, students were presented with a short explanation followed by a code snippet

containing an issue (incorrect snippet) and a code snippet with a correction of the issue

(correct snippet). In the incorrect snippet, on the line containing the issue, students in

the treatment group were also shown a comment from PEP-8 Bot that provided a further

explanation and prompted the student to start a dialog about the relevance of the guideline.

Students in the control condition did not see this comment.

9.3.4 Participants

There were 97 students enrolled in the course (44 female, 53 male). A total of 89 students

accessed at least one of the exercise sessions and 65 students accessed all the sessions.

9.3.5 Instruments

We operationalized the four aspects of the learning experience as follows. Following the same

strategy as our previous case studies, learning gains were calculated by taking the difference

between students’ scores on the pre-test and the post-test. This yielded a learning gain that

could range from -100% to 100%. Relevance was measured using a seven-point Likert scale.

Students were asked to rate how useful they found each individual guideline from 1 (not useful

at all) to 7 (very useful). After the final exercise, using the same scale, they were asked to
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rate the overall usefulness of the code style exercises as a whole. Usability was captured with

the User Experience Questionnaire (UEQ), a standard instrument that measures usability

across six dimensions (Laugwitz et al., 2008). Note that, unlike the UEQ-S—which we used in

Chapter 5 to evaluate Code Review—the UEQ is the full version, comprising 26 items covering

six factors: (i) attractiveness, (ii) perspicuity, (iii) efficiency, (iv) dependability, (v) stimulation,

and (vi) novelty. Finally, feedback was assessed using the following question: Do you have any

suggestions or comments on the parts of the labs that dealt with code style guidelines?

9.3.6 Data Analysis

We analyzed quantitative data using descriptive and inferential statistics, reporting sample

means (x̄), medians (x̃), and standard deviations (sx ), as well as results from two-sample

t-tests, where applicable. Responses to the UEQ were further analyzed using its toolkit, which

includes a comparison against benchmark data covering 21,175 people over 468 studies in

various domains (e.g., business, e-commerce, social networks). Qualitative feedback was

analyzed using line-by-line data coding (Charmaz, 2006).

9.4 Results

In this section, we highlight the main results with respect to each aspect of our study.

9.4.1 Learning Gains

A total of 25 students (10 control, 15 treatment) completed the post-test required to calculate

learning gains. In both groups, as shown in Figure 9.6, learning gains were positive. The

students in the control group achieved a mean learning gain of 36.0% (sx = 31.3%), while those

in the treatment group achieved a mean learning gain of 36.7% (sx = 30.6%). As expected, the

results of a two-sample t-test did not yield significant results (p = 0.958).

0.0 0.2 0.4 0.6 0.8
Learning Gain

Control

Treatment

G
ro

up

Learning Gains by Condition

Figure 9.6: Learning gains were positive for both groups, but there were no significant differ-
ences across conditions.
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9.4.2 Perceived Relevance

Regarding perceived relevance, 34 students (17 treatment, 17 control) provided a total of

199 ratings distributed across the nine different guidelines, while 14 students (5 control, 9

treatment) rated the overall usefulness of the code style exercises. As shown in Figure 9.7,

ratings were on average positive, both overall and across individual guidelines. However, the

two-sample t-tests did not yield significant differences across the groups. Furthermore, the

number of students who provided the ratings decreased over time.
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Comparisons
(n = 27)
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Figure 9.7: On average, students rated how relevant they found each guideline and the overall
relevance of the code style exercises positively (above the median rating of 4), but there were
no significant differences across groups.

9.4.3 Usability

A total of 27 students (14 control, 13 treatment) completed the UEQ. On average, students

in the control group provided negative ratings for four of the six dimensions, while students

in the treatment group provided positive ratings across all dimensions (see Figure 9.8). This

difference was more pronounced in the efficiency (p = 0.0127), dependability (p = 0.0565),

and perspicuity (p = 0.0807) dimensions. However, compared to benchmark data, both groups

provided ratings in the range of the 25% worst results for most dimensions.

9.4.4 Feedback

A total of 10 students (5 control, 5 treatment) provided qualitative feedback in the form of short

open-ended responses. Four themes emerged in the responses: (i) more support, (ii) more

exercises, (iii) useful, and (iv) useless. First, more support was requested by four students (one

control, three treatment), who suggested that instructors help clarify doubts and provide more

information on the exercises. These requests are exemplified by a comment from a student in

the treatment condition, who underlined that a “human touch would be nice” when referring

to the lesson. Second, two students in the control group requested more exercises as a way to

better assimilate the material. Third, two students in the treatment condition expressed that

the exercises were useful, with one student providing the following comment:
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Figure 9.8: User Experience Questionnaire (UEQ) ratings were consistently higher for the
treatment group, especially for the efficiency (p = 0.0127), dependability (p = 0.0565), and
perspicuity (p = 0.0807) dimensions.

“Guidelines that addressed code style that made code more readable (layout, bal-

ance between upper and lower case, convention in writing style) were very helpful.

The little touches of humor in [Lab 4] made the [lab] much more interesting.

In general, the practical guidelines of the code allowed the course to be more

complete.”

Finally, two students in the control group referred to the exercise as useless, with one explicitly

saying that they were “quite useless and boring compared to normal lab exercises”.

9.5 Discussion and Implications

The results of our evaluation show that while our chatbot integration did not affect learning

gains or the perceived relevance of the material, it did have an impact on the usability of the

lesson. On the one hand, results regarding learning gains could be explained by the fact that

the chatbot interaction was primarily designed to reiterate the explanation that was already

present in the text and persuade—if needed—the student that the guideline in question was

useful in practice. On the other hand, for the same design reason, we would have expected

students who were exposed to the chatbot to perceive the code style guidelines as more

relevant than students who did not hold those interactions. However, as evidenced by the

decreasing number of students who provided ratings as the course progressed, this result

could have been influenced by a diminishing novelty effect that curbed student interest in the

code style exercises.
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As in our previous Wizard of Oz study (see Chapter 8), the lack of significant differences in

learning gains between conditions could be interpreted positively. That is, as suggested by

Hobert (2020), educational chatbots can serve to support learners when teaching staff are not

available, or in cases with large numbers of students. Given that learning is not impacted,

educational chatbots could serve as an additional layer of interaction for learners seeking

more information.

The differences in usability, however, were evident—albeit not always significant—across

all dimensions of the UEQ, and are very promising. Results from the UEQ suggest that

incorporating the chatbot into the interface improved student perception of the usability of

the lesson, especially in terms of efficiency, dependability, and perspicuity. This improvement

could have been mediated by the fact that including the chatbot added interactivity to a lesson

that was otherwise primarily explanatory.

Improvements in usability that are not accompanied by improvements in learning gains have

been observed in the literature. As discussed by Davids et al. (2014), this lack of correlation

could be due to the type of learners that are participating in the learning activity or the interface

that is being optimized. In the case of Davids et al., their study was conducted with practicing

clinicians who the authors describe as possibly being highly motivated and therefore less

affected by the usability improvements the authors were testing. In our case, the fact that the

exercises were not mandatory might have led to a selection bias, where the most motivated

students took part in code style exercises included as part of their lab work, possibly leading

to a similar effect as the one observed by Davids et al. (2014). Nevertheless, an improvement

in perceived usability can have an impact on other dimensions, such as task completion

rate (Kanuka et al., 1999), self-regulation (Liaw et al., 2013), and motivation (Zaharias et al.,

2009).

Further insights were provided by the qualitative feedback. Positive comments regarding

the usefulness of the exercises were present exclusively in the treatment condition, while

negative comments about the uselessness of the exercise were present exclusively in the control

condition. This contrast suggests that including the educational chatbot made the exercises

more meaningful, possibly shedding some light on why perceived usability was higher in the

treatment condition. Nonetheless, the fact that more support was requested by four students,

including three in the treatment condition, indicates that even with the inclusion of a chatbot,

students still require a “human touch” in the learning process.

These results also have concrete implications for the work conducted in the remainder of this

thesis. First, the improvement in usability provides a promising direction for understanding

how educational chatbots could have a positive impact on the learning experience. The

fact that this difference was not present in the previous Wizard of Oz study suggests that

interactivity could be a key element in achieving this improvement. Second, the relatively

low overall participation in the code style exercises informed a decision taken for the ensuing

empirical study, where we incentivized student involvement by providing extra credit for
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participation in the exercise. Third, the qualitative feedback received for the lesson, which was

predominantly positive in the treatment group, emphasizes how even with an educational

chatbot interface, learners place emphasis on the interactions they have with instructors,

as underlined by the request for a more “human touch”. Finally, the appreciation by one

student of the humorous interactions—albeit anecdotal—is an encouraging confirmation that

humor can have a positive impact on the learning experience, even when expressed through a

chatbot.

9.6 Conclusion

In this chapter, we presented results from an empirical case study assessing the effects of

integrating educational chatbots into blended learning scenarios aimed at teaching Python

programming best practices. The findings of our controlled experiment show that there

were no significant differences in the learning gains achieved and the perceived relevance of

the lessons between students who completed the exercises alone and those who completed

them with support from the chatbot. However, students who had access to the chatbot

rated the usability of the lesson more positively, particularly in the efficiency, dependability,

and perspicuity dimensions of the UEQ. This improved user experience could motivate the

integration of chatbots into the type of lessons used in this study.

It is also important to note that this study has some limitations worth considering. First,

given that the exercises were not mandatory, there could have been some selection bias in

our sample, as possibly only the most motivated students interacted with the lesson. Second,

while the rule-based scripts ensured that student interaction with the chatbot was on topic

and pertinent to the lessons, the limited scope of these exchanges could have diminished how

natural they appeared to the student and, therefore, discouraged students from interacting

with the chatbot. These limitations could be addressed by (i) ensuring that all students are

exposed to the exercises and (ii) equipping the chatbot with a generative language model. We

will address these limitations and explore possible improvements through the use of LLMs in

the following chapter.
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THE recent rise in both popularity and performance of large language models (LLMs) has

generated considerable interest with respect to their applicability to educational contexts.

However, the integration of these technologies into large-scale learning systems is faced with

both technological and pedagogical challenges, such as configuring the systems that interface

with these models, ensuring that conversations stay on topic, and providing insight into the

learning experience. In this chapter, we present the design of a web-based architecture and a

chatbot configuration model that aim to mitigate these challenges. Our architecture serves

as a blueprint for integrating chatbots powered by LLMs into learning experience platforms

(LXPs), while our configuration model can serve as a guide for educators looking to incorporate

these chatbots into their practice. To evaluate our architecture, we created Code Capsule,

an app combining the functionalities of Code and Code Review, and equipped it with an

educational chatbot powered by GPT-3 that was configured according to our model. We

then conducted a controlled experiment with 26 software engineering students. Half of the

students were exposed to a version of the application equipped with an educational chatbot,

while the other half completed the same lesson without the chatbot. While the results of our

quantitative analysis did not identify significant differences between conditions, qualitative

insights suggest that learners appreciated the chatbot. These results provide a first validation

for our model and serve as a starting point to optimize prompt engineering strategies for

integrating large language models into pedagogical scenarios.

By investigating the effects of integrating LLM-powered chatbots into a software engineering

lesson and proposing guidelines for this integration, this chapter partially addresses RQ3:

How can we equip educational chatbots with effective interaction strategies?

The content of this chapter was partially presented in the following publication:

1. Farah, J. C., Ingram, S., Spaenlehauer, B., Lasne, F. K.-L., & Gillet, D. (2023). Prompting

Large Language Models to Power Educational Chatbots [In Submission]
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10.1 Introduction

In this chapter, we explore a final strategy for designing the interactions that educational chat-

bots can have with learners. This strategy builds on the findings presented in Chapter 9 and

focuses on enhancing the naturalness of these interactions while keeping the configuration

process manageable for educators. As we saw in the previous chapter, rule-based chatbots

can enhance the interactivity provided by lessons hosted on LXPs. Nevertheless, learners still

noted the need for a human touch to provide more support during the lessons. Furthermore,

configuring these rule-based chatbots in order to avoid repetitive content requires complex

scripts. In light of these limitations, researchers have advocated for the use of LLMs to support

more natural conversation and overcome the limitations of rule-based systems or systems

based on limited training data (D. Song et al., 2017). However, several challenges limit the

integration of LLM-powered chatbots into educational contexts. These challenges include—

among others—providing the appropriate user interfaces and configuring the LLMs to ensure

that the generated text is aligned with the pedagogical scenario in which the educational

chatbots are deployed (Kasneci et al., 2023).

To help address these challenges, we first designed a technical architecture that can guide

developers looking to integrate these models into LXPs. We then propose a configuration

model that outlines a strategy that educators can follow when configuring chatbots powered by

LLMs for use in digital education. Given the rising interest in the applications of powerful NLP

technologies, such as ChatGPT, our study is timely and relevant to both research and practice.

Our architecture serves as a practical blueprint for developers, while our configuration model

aims to simplify the complex process that educators must go through when defining how they

want a chatbot to interact with learners. This model can also serve developers in education

looking to integrate chatbots into digital education platforms. By defining a common config-

uration language that bridges technological and pedagogical jargon, our approach aims to

harness the power of LLMs while ensuring that the interactions are relevant to the scenarios

in which these educational chatbots are deployed.

Our architecture and model were implemented on Graasp and their applicability to software

engineering education was validated through a controlled experiment with 26 university

students. This initial validation puts forth a final strategy for how chatbots can interact with

learners when integrated into digital education platforms, completing the fifth contribution

in this thesis (C5).

This chapter is structured as follows. We start in Section 10.2 by presenting the design of our

architecture to integrate LLMs into LXPs, as well as our model for configuring educational

chatbots powered by LLMs. In Section 10.3 we present the methodology used for an empirical

case study used to validate the implementation of this architecture and model on Graasp. We

present our results in Section 10.4 and discuss their implications in Section 10.5. We then

conclude in Section 10.6.
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10.2 Design

Our design comprises two elements. First, we present an architecture to guide the integration

of chatbots powered by LLMs into LXPs. We then outline the model that we propose to

structure how educators configure these chatbots. In this section, we present both elements.

10.2.1 Architecture

Our architecture consists of six components that interact through three main processes. These

components are loosely coupled and abstractly defined in order to allow developers to adapt

them as needed for the particular constraints that might be present in different LXPs. Our

architecture also builds on some of the concepts presented in Chapter 2 (e.g., ensuring that

there is an interface aimed at educators and an interface aimed at learners) and places a strong

emphasis on portable apps that can serve to host educational chatbots. This design decision

allowed us to take full advantage of our application development architecture (ADA)—and

specifically the Graasp ADK—for our implementation.

Educator Interface

Learner Interface
Interaction

Configuration

Configuration

ActionsData

Interact

Persist

Configure

Large 
Language


Model

Chatbot

Chatbot

Host Application

Host Application

API Adapter

Storage

Frontend Backend

Learning Experience Platform External API

Figure 10.1: Our architecture comprises six loosely-coupled components that interact through
three main processes.

Components

The architecture defines six components that interact to facilitate the integration of chatbots

powered by LLMs into educational contexts: (i) LXP, (ii) host application, (iii) chatbot, (iv) API

adapter, (v) storage, (vi) external API. In this section, we detail the functionalities provided by

each component.

1. LXP: The learning activity takes place on a learning experience platform (LXP). As noted

in Chapter 2, this platform should provide a way to differentiate content that is visible

to educators from content that is visible to learners. Using a dedicated view, educators

should be able to create a learning activity by curating multimedia content, such as
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images, text, and videos. Most importantly, educators should be able to select interactive

learning resources (e.g., web applications) that can host chatbots. That is, chatbots are

not directly embedded in the LXP, but in interactive applications that can be added to

the learning activity. We refer to these applications as host applications.

2. Host Application: The host application is the interactive learning resource that can

be embedded in LXPs to support learner interactions with chatbots. A host applica-

tion exposes a configuration panel for educators to activate and configure chatbots.

Once activated, these chatbots are visible to learners interacting with the application.

For this, the host application should provide an interface through which learners can

communicate with the chatbot (e.g., a forum, chat box, or message thread). How a chat-

bot interacts with learners is entirely defined by its configuration and the interaction

affordances provided by the host application.

3. Chatbot: A chatbot in our architecture is not an application by default, but a component

that can be activated and configured within an application. This increases the portability

and customizability of a chatbot, which can be developed independently from the host

application(s) it can be embedded in, and by educators without technical backgrounds.

Hence, the chatbot can be considered to be an open educational resource that is defined

by its configuration. The specific elements comprising a chatbot’s configuration will be

further detailed in Section 10.2.2.

4. API Adapter: The API adapter is embedded in the LXP and serves to communicate with

the API exposed by the LLM provider. This adapter can also be deployed outside of a

single LXP, thus serving multiple platforms. Given that adapters interface with APIs

external to the LXP, they can also provide fallback responses in case the APIs are not

accessible. Nevertheless, adapters are stateless and should only serve to handle requests

from host applications, thus delegating the storage of any information to the LXP.

5. Storage: Two types of data are stored by the LXP: (i) application data and (ii) application

actions. Application data refer to the content of a learner’s interaction with the chatbot,

including both the messages provided by the learner and the chatbot’s responses. Appli-

cation actions refer to activity traces of how a learner interacts with the conversational

interface in which the chatbot is embedded, including keystrokes, clicks, and other

events that can be captured by the browser. These actions can serve to deliver learning

analytics (LA) and provide a more nuanced depiction of how learners interact with

chatbots.

6. External API: Finally, our architecture requires an LLM that is accessible through a

public API in order to generate the responses to the queries provided by the learners.
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Process

There are three main processes that define the interactions between the aforementioned

components. These processes are outlined below.

1. Configure: Following the contextual component of the ADA presented in Chapter 2,

educators should be able to configure the chatbot through the educator interface of

the host application. The chatbot’s configuration is kept in the storage component and

allows for the personalization of the chatbot integration for each educator’s particular

needs. This configuration is also seamlessly reproducible, allowing educators to quickly

replicate chatbot integrations across learning activities.

2. Interact: The core process defined by our architecture is how learners interact with

the chatbot. When a learner interacts with the chatbot, the host application’s learner

interface connects to an external LLM API provider through the API adapter component

hosted in the LXP backend.

3. Persist: As interactions take place, the host application ensures that the outcomes

of these interactions are persisted on the LXP. These outcomes mainly concern the

conversation between the chatbot and the learner (and any related content such as

emoji reactions) but also include any actions that the learner might take using the

chatbot interface. These actions can then be used to provide LA.

10.2.2 Configuration Model

As mentioned in Section 10.1, one challenge limiting chatbot adoption in education is the

complex configuration process. To guide educators in this process, we propose a configuration

model for educational chatbots powered by LLMs. Our model consists of four elements

(i) identity, (ii) prompt, (iii) cue, and (iv) scope. In this section, we describe these elements in

detail.

Identity

The importance of providing the appropriate interface for chatbots, as highlighted by Kasneci

et al. (2023), was noted in Chapter 1. As discussed in detail in Chapter 8, a key element of this

interface is the identity that the chatbot will use in its interactions with users. Educators, there-

fore, need to provide the chatbot with a minimum number of elements that will constitute its

basic identity. These elements should, at a minimum, include their name, avatar, and descrip-

tion, as suggested by best practices for the design and implementation of chatbots (Chaves

et al., 2020; Ferman Guerra, 2018; Følstad & Brandtzaeg, 2020).
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Prompt

As discussed in Chapter 1, prompt engineering is a crucial step in configuring an LLM for

a specific task. In an attempt to guide prompt engineering for educational chatbots, we

propose that prompts follow a fixed structure comprising four parts: (i) scenario, (ii) boundary,

(iii) continuation, and (iv) example. These parts, which are guided by examples provided by

the OpenAI API Documentation (OpenAI, 2023), are detailed in this section.

1. Scenario: The scenario provides a high-level description of the pedagogical context in

which the interaction is taking place. It should include the subject matter, as well as the

nature of the learning activity in which the host application is embedded. Example: The

following is a conversation between a chatbot and a student discussing the correction of

an exercise on linting, ESLint, code styling, and best practices in JavaScript.

2. Boundary: The boundary defines the conversational limits that the chatbot should

adhere to. These limits are usually subject-related, but can also pertain to language-

related items such as diction or the use of emoji. Example: The chatbot can only discuss

topics related to computer science and uses only gender-neutral emoji.

3. Continuation: The continuation aims to provide ways in which the conversation be-

tween the chatbot and the learner can continue without having to rely solely on the

learner’s initiative. Example: After each response, the chatbot gives the student one or two

options to continue the conversation.

4. Example: One or more examples serve to capture the expected outcome of a learner’s

interaction with the chatbot. These examples are both useful for the model as well as

for the educator, who can later use them as a baseline to assess how learners actually

interacted with the chatbot. Example:

• [Chatbot] In Python, function names are usually written in lowercase snake_case.

Do you want me to provide you with an example of a function name written in

Python?

• [Student] Yes, please.

• [Chatbot] Here you go! my_function()

• [Student] Why is that called snake case?

• [Chatbot] Good question! Because the words are written in lowercase with under-

scores in between, which makes the function name look like a snake!

Cue

Prompt engineering concerns the LLM that is generating the chatbot’s responses. A second

element of a chatbot’s configuration is how it can cue users into interacting with it without

interfering with the learning process. More specifically, a cue is a snippet of text that is
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presented to learners in order to signal the possibility of complementing the learning activity

they are currently participating in with a chatbot interaction. Cues should be tightly linked to

the pedagogical context in which the chatbot is operating. This aims to increase a chatbot’s

relevance to the task at hand. A cue consists of two key parts.

1. Perk: A perk should summarize what the learner stands to gain from the chatbot inter-

action. Perks can encapsulate the possibility to learn more or access complementary

explanations about a given subject or activity. Example: In this code snippet, the function

name does not follow the camelCase convention. I would suggest that it be written like

this: getFoodItems();.

2. Hook: The hook follows the perk by inviting the user to interact with the chatbot.

Example: Do you agree?

An example cue is depicted in Figure 10.2.

Figure 10.2: The cue is used to invite learners to interact with the chatbot.

Scope

Finally, it is important to note that when a chatbot interacts with a learner, by default it should

only take into consideration the history of the interactions it has held with that learner in

particular. This separates the conversations a chatbot has with different learners and provides

an element of privacy to the interactions. However, chatbots can also be configured in two

other ways. First, to share the content of chatbot-learner conversations with the educator(s).

This option allows the educator to harness the chatbot as a conversational interface in order

to inquire about individual learners or complete cohorts of learners. Second, to share the

content of chatbot-learner conversations with other learners. This option allows for chatbot-

mediated collaborative learning to take place, increasing the chatbot’s applicability to different

pedagogical scenarios. Nevertheless, if a chatbot can share information about its interactions

with others, this should be transparent to the learners, in order to adhere to privacy and ethical

guidelines.

163



Chapter 10. Large Language Models

10.3 Methodology

To test the applicability of our architecture to scalable learning scenarios, we implemented

our design and conducted an evaluation. Our evaluation focused on addressing one main

research question, which is an extension of RQ3:

How does incorporating a large language model-based educational chatbot to

support a lesson on software engineering best practices affect the learning experi-

ence? (RQ3e)

This evaluation took the form of a case study consisting of a between-subjects controlled

experiment comprising one control (no chatbot) and one treatment (chatbot) condition. For

both conditions, we analyzed five aspects of the learning experience: (i) short-term learning

gains, (ii) engagement, (iii) self-reflection on the learning experience, (iv) feedback regarding

the lesson, and (v) usability. The small-scale nature of our study allowed us to conduct a

mixed-method analysis, involving both quantitative and qualitative methods. In this section,

we present the methodology used for this evaluation.

10.3.1 Scenario

To ensure ecological validity, our evaluation took place in a formal education setting. As part

of their coursework, students completed an in-class online lesson consisting of an ungraded

45-minute exercise. As with our previous empirical studies, the exercise consisted of a code

review notebook covering JavaScript code style standards based on the ESLint and Prettier

static analysis tools. In the following sections, we outline the technological support and

pedagogical scenario used in our evaluation.

Technological Support

Our chatbot was integrated into the Code Capsule app, which was designed for Graasp. Code

Capsule is an app that combines the functionalities of Code Review and Code. That is, it

allows learners to both review and execute code using the same app. Code Capsule also allows

the integration of chatbots when used to review code, supporting the same functionalities

provided by Code Review. Figure 10.3 depicts how Code Capsule can be used to execute code

(left) and perform code reviews (right).

We configured our chatbot following the model described in Section 10.2.2. To remain gen-

der neutral and maximize consistency with Graasp, we named our chatbot Graasp Bot and

represented it with a robot avatar, as depicted in Figure 10.4. All chatbot interactions were

scoped at the individual level, so students could only see their own interactions and not those

of their peers. The prompts for each code snippet were defined following the pattern below.

Note that placeholders indicating the parts that would be different for each code snippet are
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Figure 10.3: The Code Capsule app can be used to write and execute (left) or to review code
(right). The code used in these examples has been adapted from the Python Matplotlib library’s
documentation (Hunter, 2007).

presented between angle brackets (<>). Furthermore, following the Markdown format, text

between three backticks (```) would be presented as code.

Scenario:

The following is a conversation between a chatbot and a student discussing the
correction of an exercise about linting , ESLint , code styling , and best practices
in JavaScript.

Boundary:

(None)

Continuation:

After each response , the chatbot gives the student one or two options to continue
the conversation.

Example:

Chatbot: <EXPLANATION OF WHAT IS WRONG IN THE CODE SNIPPET >. So , I would change
the following line of code:
```
<INCORRECT CODE >
```
To the following:
```
<CORRECT CODE >
```
<QUESTION ASKING THE STUDENT IF THEY UNDERSTAND THE DIFFERENCE >

Student: OK. <QUESTION ASKING THE CHATBOT SOMETHING RELATED TO THE ISSUE >

Chatbot: <ANSWER >. Do you want me to provide you with an example of <THE ISSUE >?

Student: No, that ’s OK. Thanks! Any other code issues I should be aware of?
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The cue was dependent on each code snippet in which the chatbot was embedded. All of

the cues followed the same pattern. The perk consisted of an explanation of an issue present

in the code snippet along with a suggestion on how to fix the issue. The hook consisted of a

question asking students whether they agreed with some facet of the proposed solution. An

example is provided in Figure 10.4.

Figure 10.4: The cue consisted of a perk explaining the issue present in the code snippet and a
hook asking students whether they agreed with the solution proposed.

When students interacted with our chatbot, Code Capsule interfaced with OpenAI’s API

following an implementation of the architecture presented in Section 10.2.1, which was inte-

grated into Graasp. The API used the GPT-3 text-davinci-003 model, with a temperature
parameter of 0.9 (higher values make completions of the same prompt more random), a

presence_penalty of 0.6 (higher values penalize new tokens if they have already appeared),

a top_p parameter of 1 (always returning the best completion to the prompt), and the maxi-

mum number of tokens to be included in the chatbot response fixed at 150.

Pedagogical Scenario

As in our previous studies using code review notebooks, the lesson used in this experiment

followed the Fixer Upper pedagogical pattern (Bergin, 2000). In our case, we structured the

lesson over 10 phases, which students were meant to navigate sequentially (see Figure 10.5).

Students were first introduced to the lesson (Phase 1), then asked to complete a short exercise

that served as a pre-test to gauge their knowledge of JavaScript code style standards (Phase

2). Phases 3 (Introduction) and 4 (ESLint) covered the concept of code linting and ESLint

specifically, while Phases 5 (Styling) and 6 (Best Practices) presented examples of code style

standards that students should follow when writing JavaScript code. In these phases, 10

code snippets were included using Code Capsule alongside a textual explanation of the issue

present in the snippet. For students in the treatment condition, the code snippet also included

a cue from Graasp Bot, as shown in Figure 10.4. Phase 7 consisted of an exercise that served as
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Figure 10.5: The lesson used for this study consisted of an improved version of the code review
notebook used in the studies presented in Chapters 5 and 9. (Comic strip by Munroe (2015).)

a post-test, while Phase 8 presented the solutions to the exercise and asked the students to

reflect on their performance in the exercise. For students in the treatment condition, Phase 8

also included explanations presented by Graasp Bot. Phase 9 was also different between the

control and treatment conditions. Students in the control condition were asked to imagine

how they would integrate chatbots into this exercise and to provide sample dialogs that

they would envision having with the chatbot. On the other hand, students in the treatment

condition were asked to report on their experience interacting with the chatbot. Finally,

Phase 10 served as a conclusion to the exercise and provided a link to a User Experience

Questionnaire (UEQ) (Laugwitz et al., 2008).

10.3.2 Participants

We recruited 28 third-year bachelor students taking part in a course on human-computer

interaction at the School of Engineering and Architecture of Fribourg, Switzerland. A total of

26 students—25 male, 1 female—completed the study. Students were informed that this was

an ungraded, optional exercise. However, to incentivize participation and limit the effect of

sample bias that was possibly observed in previous studies, students were given extra credit

for completing the activity.
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10.3.3 Procedure

We conducted this study in January 2023. Students were given one hour to complete the

45-minute exercise. As explained in Section 10.3.1, the exercise was the same under both

conditions except for Phases 5, 6, 8, and 9. In the control condition, explanations were

presented in text alongside—but not embedded within—the code review application, while

in the treatment condition, these explanations were complemented with explanations from

Graasp Bot. At the end of the exercise, students were directed to complete a UEQ.

10.3.4 Instruments

As in our previous studies, short-term learning gains were operationalized based on a learner’s

performance in the pre- and post-tests by calculating the difference between both tests. These

gains could range from −100% to 100%, inclusive. Engagement was measured by calculating

the total amount of time spent in each phase of the lesson during the one hour time frame that

was allocated to the lesson. Self-reflection and feedback were respectively operationalized

through the following two open-ended questions:

• Did you manage to find all of these [issues]? If not, which ones did you miss? Did you find

any of them particularly tricky/helpful? Please answer in the text box below.

• What did you think about this lesson? Any comments, suggestions, or feedback?

A second feedback question was relevant only to the students in the treatment group. This

second question was only used for our qualitative analysis of the feedback aspect.

• In a few phrases, describe your experience interacting with the chatbot used in this activity.

What did you like about it? What could be improved?

Finally, usability was measured with the UEQ.

10.3.5 Data Analysis

Our data analysis comprised both quantitative and qualitative methods. We applied both

descriptive and inferential statistics to our quantitative data, reporting the sample sizes (n),

means (x̄), medians (x̃), and standard deviations (sx ), as well as the results of t-tests for

independent samples comparing across the two conditions. To perform sentiment analyses

on students’ self-reflection and feedback responses, we used VADER (Hutto et al., 2014), which

assigns a sentiment score ranging from −1 (negative sentiment) to +1 (positive sentiment),

inclusive. The results of the UEQ were analyzed using its data analysis toolkit (Laugwitz et al.,

2008). Finally, open-ended responses were analyzed using qualitative methods, following

line-by-line data coding (Charmaz, 2006).
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10.4 Results

In this section, we present our results with respect to each of the five aspects of our evaluation.

10.4.1 Learning Gains

The mean learning gains were x̄ = 0.429 (x̃ = 0.369, sx = 0.212) under the control condition

and x̄ = 0.478 (x̃ = 0.519, sx = 0.177) under the treatment condition. These results—illustrated

in Figure 10.6—show that both conditions led to—on average—positive learning gains for

students, with all students except one achieving positive learning gains. Although the mean

learning gain was higher in the treatment condition, a t-test for independent samples did not

show a significant difference between conditions (p = 0.538).
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Figure 10.6: Learning Gains

10.4.2 Engagement

On average, learners in the treatment condition spent a total of x̄ = 41.7 minutes (x̃ = 37.8,

sx = 9.31, xmin = 29.4, xmax = 59.5) to complete the lesson, while learners in the control

condition did so in x̄ = 40.1 minutes (x̃ = 36.5, sx = 10.4, xmin = 22.2, xmax = 55.2). There were

no significant differences in the time spent by students either overall (see Figure 10.7) or across

the ten phases that constituted our lesson (see Figure 10.8).

25 30 35 40 45 50 55 60
Time Spent (minutes)

Control

Treatment

G
ro

up

Overall Time Spent by Condition

Figure 10.7: Overall Time Spent to Complete the Lesson
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Figure 10.8: Time Spent per Phase

10.4.3 Self-Reflection

A total of 22 students (10 control, 12 treatment) provided responses to the self-reflection

question. The sentiment analysis performed on student responses to the self-reflection

question did not produce any significant differences between conditions. Nevertheless—as

shown in Figure 10.9—the distribution of scores in the treatment condition had a more positive

tendency than the scores in the control condition. Specifically, the responses of the students

in the control group resulted in a mean sentiment score of x̄ =−0.128 (x̃ =−0.0766, sx = 0.454,

xmin =−0.743, xmax = 0.757), while those in the treatment condition resulted in a mean score

of x̄ = 0.0297 (x̃ = 0.0386, sx = 0.423, xmin =−0.595, xmax = 0.649).

Our qualitative analysis showed that responses were consistent between both groups, with

students providing short answers in which they quickly described what they missed. All

students except five (two control, three treatment) specifically listed at least one issue they

missed. A typical answer is provided below.

“I forgot a let that had to be const, a comma after the last element of an object

and a semicolon at the end of a line.”

Six students (four control, two treatment) provided more detail regarding the issues they

missed. In this case, a typical answer is provided below.

“I forgot the first let giftList to const giftList despite seeing it for total at

the end. I fell into the trap thinking it was redeclared in the getGiftsTotal(person)
function because it had the same name.”

It is also worth noting that two comments in the treatment condition included emoji or

emoticons, while no comments in the control condition included these affordances.
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Figure 10.9: Sentiment Analysis on Responses Capturing Self-Reflection

10.4.4 Feedback

A total of 22 students (10 control, 12 treatment) provided responses to the feedback question.

The sentiment analysis performed on these responses did not yield any significant differences

between conditions. As shown in Figure 10.10, the distribution of the scores was mostly

positive in both conditions, with only a few negative outliers. Responses from students in

the control group resulted in a mean sentiment score of x̄ = 0.451 (x̃ = 0.556, sx = 0.400,

xmin =−0.317, xmax = 0.859), while those in the treatment condition resulted in a mean score

of x̄ = 0.460 (x̃ = 0.598, sx = 0.331, xmin =−0.356, xmax = 0.796).
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Figure 10.10: Sentiment Analysis on Responses Capturing Feedback

Our qualitative analysis of the first feedback question—which concerned both conditions—

showed that all students except two (two treatment) provided a positive comment. Codes such

as good, great, fun, interesting, and helpful were prevalent in answers from students in both

conditions. Regarding the negative feedback, while one of the comments provided a minor,

off-topic comment regarding the color of the user interface, the other comment questioned

the need for a chatbot.

“Was the chatbot REALLY necessary? This lesson needs to end on a link to a

lesson/tutorial on how to use/configure/install/firststeps/basics/... on ESLint.”

However, four students specifically provided positive feedback regarding their interactions
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with the chatbot. An example of these comments is provided below.

“It was helpful and I liked the interactivity with a bot.”

Finally, one student noted that while the interactivity and response time provided by the

chatbot was positive, the chatbot would never replace the educator.

“ESLint was interesting. It’s nice to have an answer directly to our questions. After

that, it will never replace the answers of a teacher (even if the answer is direct).”

Furthermore, all students in the treatment group (n = 13) provided an answer to the second

question, which specifically asked about the chatbot and was therefore only visible to students

in the treatment group. While eight students provided positive feedback on the chatbot, four

of these comments also included a note on how the chatbot had been “repetitive” or “asked

too many questions”. One student noted the following:

“It was nice, but sometimes repetitive. He wished me twice a great day and when I

asked how to implement something in the linter, it didn’t show me the code. But

overall, I find it ludic and it’s a nice way to learn since we have interactions. May

be interesting for children too. Maybe less with adults.”

Repetitiveness was also observed in the five negative comments, with students urging the

chatbot to “stop asking questions at the end” or characterizing chatbots as “pushy salesmen”.

One student provided the following constructive comment:

“Sometimes less interaction is more. In this lesson maybe too many interactions

are offered and this could be at some point a bit annoying for the user. But still if

correctly dosed it may bring some value for the user!”

10.4.5 Usability

Both groups rated the usability of the lesson positively. Compared to the benchmark provided

by the UEQ, in the control group, the results achieved were above average (25% of results better,

50% of results worse) for four dimensions—attractiveness, dependability, stimulation, and

novelty—while they were good (10% of results better, 75% of results worse) for efficiency and

excellent (in the range of the 10% best results) for perspicuity. In the treatment group, the re-

sults achieved were above average for stimulation, good for three dimensions—attractiveness,

efficiency, and dependability—and excellent for perspicuity and novelty.

When comparing between conditions, however, two-sample t-tests did not result in any signif-

icant differences across any of the usability dimensions. Nevertheless, it is worth noting that
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Figure 10.11: Results of the User Experience Questionnaire (UEQ)

the treatment condition achieved a better usability score in all dimensions, except efficiency,

and specifically for the novelty dimension (p = 0.0886). These ratings are summarized in

Table 10.1 and Figure 10.11.

Table 10.1: UEQ Results Compared to Benchmark Usability Scores

Control Treatment
Dimension Mean Benchmark Mean Benchmark

Attractiveness 1.53 Above Average 1.76 Good
Perspicuity 2.17 Excellent 2.37 Excellent
Efficiency 1.83 Good 1.62 Good

Dependability 1.46 Above Average 1.58 Good
Stimulation 1.19 Above Average 1.23 Above Average

Novelty 1.00 Above Average 1.62 Excellent

10.5 Discussion and Implications

The results of our evaluation did not surface any significant differences between conditions for

any of the five aspects considered. However, there are a few points that stand out and provide

interesting insights into the directions that we can explore in future work. In this section, we

discuss these points and their implications for the work carried out in the rest of this thesis.

First, results were more positive in the treatment condition across all five aspects. That is,

the mean learning gain was higher, students spent—on average—more time in the lesson,

were more positive in reflecting on their performance in the post-test, provided more positive

feedback, and rated the lesson higher on the UEQ. Although we emphasize that the differences

were not statistically significant, these results offer a positive outlook for the integration of

this type of educational chatbot into LXPs. At a minimum, these results show that educational
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chatbots following our configuration model can complement pedagogical scenarios without

interfering with the learning experience. Extensions of these studies with larger cohorts,

alternative instruments, and longer exposures could produce more concrete results.

Furthermore, qualitative feedback showed that, overall, learners appreciated the chatbot. Of

the 12 students in the treatment condition who provided general feedback through a response

to the first feedback question, five explicitly mentioned the chatbot, and only one did so to

question whether its integration into the lesson was really necessary. Noting that the chatbot

was meant to provide extra interaction in the lesson—in order not to compromise the learning

experience of the students in the control group—the chatbot was indeed designed to not

really be necessary. However, in answers to the question specifically asking students in the

treatment condition about the chatbot, eight of the 13 students who responded provided a

positive comment. The fact that the chatbot was appreciated by the majority of students who

were exposed to it is a promising result.

Nevertheless, it is important to acknowledge that the repetitiveness of the questions posed

by the chatbot negatively affected the learning experience, as made evident in the qualitative

feedback provided by the students in the treatment group. These repeated questions were a

result of the chatbot’s configuration. Recall from Section 10.3.1:

Continuation:

After each response , the chatbot gives the student one or two options to continue
the conversation.

Although this continuation strategy was effective in engaging students, it failed to capture the

moment when the student wanted to stop interacting with the chatbot. Thus, this continuation

quickly backfired and resulted in some students referring to the chatbot as pushy and annoying.

This result sheds light on how what may appear to be a minor detail could potentially have a

negative impact on the user experience when using powerful LLMs.

Third, a close inspection of Figure 10.8 shows that the average time spent in the phases that

included chatbots (Styling, Best Practices, Solutions, and Chatbots) was actually longer for the

control condition than for the treatment condition. While these differences are not significant,

the consistency of these results across the four phases stands out. We would have expected

students in the treatment condition to spend more time in these phases due to the extra

interaction with the chatbot that students in the control condition—who only had to read the

accompanying text—did not have to engage with. However, it could be the case that students

in the treatment condition favored focusing on the explanation provided by the chatbot, which

provided an interactive summary of what was contained in the text. Hence, the chatbot might

have provided a faster way of learning the issue that was captured in each code snippet or

simply a way to guide a student’s focus through the exercise.

Finally, it is worth pointing out that the results from the UEQ show that the differences

between conditions were most significant for the novelty dimension. For this dimension, the
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ratings from students in the treatment condition would be significantly higher at the p < 0.1

level, but not at the p < 0.05 level used in the rest of this thesis. The need for educational

technologies to remain novel and attractive is particularly relevant in light of the rapidly

changing technological landscape. Learning technologies and LXPs that achieve positive

usability results in these dimensions are likely to have an advantage in attracting learners and

keeping learners engaged. As mentioned in the previous chapter, positive usability can have an

impact on other dimensions of the learning experience (Kanuka et al., 1999; Liaw et al., 2013;

Zaharias et al., 2009). The usability aspects of the discussion put forth in Section 9.5—notably

that improvements in usability that are not accompanied by improvements in learning gains

have been observed in the literature (Davids et al., 2014)—are also applicable here.

These results also have concrete implications for the work conducted in the last part of this

thesis. First, the architecture presented in this chapter informs the blueprint that will be

proposed in Chapter 12, where we generalize the architecture to include different interaction

strategies. Second, our configuration model highlights the importance of collaboration be-

tween developers, who are aware of the technical aspects of technologies such as LLMs, and

educators who are looking to integrate these technologies into their practice. Without proper

guidance, processes such as prompt engineering can be challenging for educators. Guiding

the collaboration between these two stakeholders—and also incorporating learners into the

design process—is a key motivation behind the conceptual model that will be presented in

Chapter 11.

10.6 Conclusion

In this chapter, we presented the design of an architecture and a configuration model aimed

at supporting developers and educators in integrating chatbots powered by LLMs into LXPs.

We implemented this architecture on Graasp and developed a new app—Code Capsule—that

featured a connection to OpenAI’s API. We then used Code Capsule to build an improved

version of the code review notebook used in Chapters 5 and 8, focusing once more on ESLint

and JavaScript best practices. Using this code review notebook, we conducted a between-

subjects controlled experiment with 26 software engineering students. Half of the students

completed the lesson with support from Graasp Bot—an educational chatbot configured

following our model—while the other completed the lesson without support from the chatbot.

While there were no significant differences across the five aspects studied, the results of our

study can help optimize our prompt engineering strategy and provide useful examples for

educators following our configuration model. Furthermore—as in the previous two chapters—

given that learning gains were not impacted by the presence of the chatbot, these findings

reinforce the idea that educational chatbots could serve to provide additional information

when the educator is not able to provide it.

It is also important to note a number of limitations that could have affected our study. First,

while our sample size was appropriate for our mixed methods experiment, expanding our
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study to include more subjects could help in the detection of differences between condi-

tons, especially in pedagogical scenarios with shorter durations, where differences might be

more subtle than expected. Similarly, increasing exposure by conducting semester-long or

longitudinal studies could also serve to better identify the differences that emerge between

conditions. Second, while our focus on code review notebooks follows the approach taken in

this thesis, exploring this interaction strategy with different pedagogical scenarios and sub-

ject matter could help generalize the applicability of our architecture and our configuration

model. Finally, incorporating standardized instruments for self-reflection could help reveal

more interpretable results regarding how chatbots powered by LLMs can provide support in

educational contexts.
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IN this final part of this thesis, we build on the findings of our empirical case studies to address

the challenges faced by different stakeholders during the process of designing educational

chatbots. As discussed in Chapter 1, our ability to integrate chatbots into educational contexts

is limited by challenges that span several domains. Tackling these challenges, therefore,

requires interdisciplinary expertise involving multiple stakeholders. Throughout Parts I–III,

we have proposed various models and architectures that are relevant to the development

and integration of educational chatbots. However, each of these models and architectures

was aimed primarily at one type of stakeholder. For example, our application development

architecture (ADA) and learning analytics (LA) pipeline were designed to support technical

developers, while our code review notebook and configuration model for LLM-powered

educational chatbots targeted educators. The contributions proposed in this final part aim to

provide bridges between the contributions presented in the previous chapters and to support

collaboration among stakeholders. In Chapter 11, we present a conceptual model to guide the

participatory design of educational chatbots. This model was validated through an illustrative

role-play study conducted with 25 students taking a software design course at the University

of Neuchâtel, Switzerland. In Chapter 12, we then present a technical blueprint designed to

support developers and educators in integrating educational chatbots into learning apps. In

this brief introduction, we highlight related work.

Related Work

Driven by the rising popularity of chatbots, there is a budding line of research proposing

guidelines for chatbot design, both in general and specifically for education. Regarding general-

purpose chatbots, Ferman Guerra (2018) identified 18 best practices, spanning user-chatbot

communication, chatbot features, and human factor concerns. Telang et al. (2018) proposed

a domain-independent framework for chatbot engineering, focusing on three abstractions

verifiable at runtime: goals, plans, and commitments between agents. Shum et al. (2018)

proposed a series of design principles to guide the development of social chatbots. These
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principles comprised broad guidelines, such as equipping chatbots with empathy, social skills,

personality, and emotional intelligence.

More recently, Chaves et al. (2020) identified challenges in human-chatbot interaction and

suggested ways to address them. Feine, Morana, et al. (2019) designed a chatbot social

cue configuration system “to support chatbot engineers in making justified chatbot social

cue design decisions”. They evaluated their system with a focus group and two practitioner

symposia, receiving positive feedback. In a subsequent publication, Feine, Morana, et al. (2020)

also proposed an interactive chatbot development system designed to encourage collaboration

between domain experts and chatbot developers. Their evaluation of an implementation

of their system through an online experiment in the context of customer service chatbots

showed that their system improved subjective and objective engagement.

In education, studies focusing on chatbot design fall mainly under the following lines of

research: (i) generic technical architecture, (ii) experiments with developed chatbots, and (iii)

reports on a design experience. Villegas-Ch et al. (2020) outlined a comprehensive architecture

for a smart campus, including data analysis, decision-making components, and chatbots.

Griol et al. (2013) proposed a modular architecture to integrate chatbots into multimodal

applications for education, with the ability to easily adapt technical and pedagogical content.

They implemented their architecture in their Geranium pedagogical system, which focused

on speech-based interactions and questionnaire-based learning activities. More generally,

Jung et al. (2020) proposed a set of generic educational chatbot design principles derived from

a review of various empirical studies.

Nevertheless, few researchers have focused on providing the conceptual tools to guide a

chatbot’s design process itself, including the participatory design sessions often championed

to design these chatbots. D. Song et al. (2017) adopted a participatory approach to design a

conversational agent for online courses in higher education, involving different stakeholders

(instructors, computer scientists, and experts in educational technology). Bahja et al. (2020)

proposed an iterative step-by-step user-centric methodology for educational chatbots whereby

learners and teachers actively collaborate during the requirements analysis, design, and

validation phases. Furthermore, Durall Gazulla et al. (2023) adopted a collaborative approach,

involving students in the design of chatbots for reflection and self-regulated learning in higher

education. The authors focused their study on the challenges encountered during the co-

design process of their chatbot and proposed a series of strategies to address these challenges.

While the aforementioned studies have incorporated participatory design sessions for the

co-creation of educational chatbots, to the best of our knowledge, no study has proposed

chatbot-oriented conceptual tools to structure these sessions. Similarly, there are no standard

technical architectures to facilitate the development and integration of educational chatbots

that are platform-agnostic and compatible with different subject matter, pedagogical scenarios,

and types of interaction. As proposed by Følstad, Araujo, et al. (2021) in the context of the

chatbot frameworks and platforms currently available, there is a tangible need to develop new
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techniques for chatbot design, development, and deployment. The work presented in this

part of this thesis is aligned with this line of research.
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11 Conceptual Model

DESPITE the increasing use of chatbots in educational contexts, few frameworks to structure

the design of these chatbots exist. In this chapter, we present a model to guide the design

of educational chatbots. Our model aims to structure participatory design sessions in which

different stakeholders (educators, developers, and learners) can collaborate to define a chatbot

that could be integrated into a learning activity. Specifically, our model focuses on two aspects

of this integration: (i) the scenario in which the chatbot will interact with learners and (ii)

the interaction the chatbot will hold with learners. The outcomes from these sessions can

serve developers involved in the implementation of educational chatbots, as well as educators

looking to integrate these chatbots into their practice. Furthermore, we present results from

an illustrative study whereby 25 students enrolled in a course on software design took part in

a participatory design session to sketch out an educational chatbot. Students were divided

into eight groups, assigned the role of one of the different stakeholders, and instructed to use

our model. The results of our qualitative analysis of the outcomes from the session and the

feedback provided by the students suggest that our model helped structure the design process

and align the contributions of the various stakeholders.

By proposing a conceptual model to guide the participatory design of educational chatbots,

this chapter partially addresses RQ4:

• How can we support the collaborative design of educational chatbots?

The content of this chapter was partially presented in the following publication:

• Farah, J. C., Spaenlehauer, B., Ingram, S., Lasne, F. K.-L., Rodríguez-Triana, M. J., Holzer,

A., & Gillet, D. (2023). TRACE: A Conceptual Model to Guide the Design of Educational

Chatbots [In Submission]
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11.1 Introduction

As discussed throughout this thesis, over the past decade, an increasing interest in integrating

chatbots into educational contexts has motivated the design, deployment, and evaluation

of these chatbots in a wide variety of domains (Wollny et al., 2021). In Parts II and III of this

thesis, we explored how to design pedagogical scenarios and interaction strategies for chatbots

primarily aimed at software engineering education. While we noted that these designs were

possibly applicable to other educational domains, we limited our evaluations to code review

notebooks in order to provide a coherent approach when validating our scenarios, strategies,

models, and architectures. We will now zoom out of the specific application to software

engineering education and explicitly address how to generalize the design processes that we

conceived, implemented, and evaluated throughout this thesis.

We start by considering how to provide the appropriate conceptual support to guide the par-

ticipatory design of chatbot technologies for education. A participatory approach involving

end users (e.g., teachers and learners) is particularly important when it comes to designing

and proposing new educational tools to increase acceptance and adoption. As chatbots be-

come more prominent in education, it is imperative that their design is aligned both with

these end users and with the developers in charge of implementing educational technologies.

Furthermore, as noted in Chapter 2, collaboration is essential between developers and educa-

tors, given the interdisciplinary nature of the process of designing educational technologies.

That is, developers and educators should cooperate and contribute their respective technical

and pedagogical skills, which are needed to create educational technologies that are both

functional and relevant.

This chapter addresses one particular gap that was presented in the introduction to Part IV.

That is the lack of frameworks, models, and design tools to guide the collaborative design

processes through which educational chatbots are defined, built, and integrated into peda-

gogical scenarios. Our work aims to address this gap by proposing a conceptual model that

can guide the participatory design of educational chatbots. This model constitutes the sixth

contribution put forth in this thesis (C6). By providing the conceptual framework necessary to

define the different components underlying the scenario in which an educational chatbot is

deployed, as well as the interaction it has with learners, our model could serve to structure

participatory design sessions involving educators, developers, and learners. In this chapter,

we present our design as well as an illustrative study using this model.

This chapter is structured as follows. We present the design of our model in Section 11.2.

In Section 11.3, we outline the methodology followed to validate our model. We present

the results of this evaluation in Section 11.4. In Section 11.5, we discuss these results and

their implications on the rest of the work conducted in this thesis. Finally, we conclude in

Section 11.6.
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11.2 Design

11.2 Design

Our model was conceived to guide educators, developers, and learners in designing task-

oriented chatbots for education. The aim is to provide a conceptual tool that can serve to

structure participatory design sessions in which the stakeholders collaborate to co-design

these chatbots. The model provides two guidelines. First, it proposes five components

considered essential in defining a chatbot’s integration into a learning activity. Second, it

outlines a procedure for how the co-design process should unfold, assigning specific tasks to

each of the stakeholders involved. In this section, we present the design of our model, which

is summarized in Figure 11.1.
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Figure 11.1: Overview of the TRACE model including its components and the tasks associated
with each stakeholder. The thick line represents how the stakeholders can then trace a line
through the components they select for their design.

11.2.1 Backdrop

The backdrop for our model’s components and the process in which these components are

defined is a learning activity. Depending on the scope of the design session, this activity can be

selected in advance, chosen by all participants, by each group, or ultimately by each individual

educator present in the session. The learning activity can be as general (e.g., learning to draw)

or as specific (e.g., learning to draw seagulls perched on a boat) as necessary. For illustrative

purposes, we will use both Learning the Python Code Style Standards and Discovering the

Human Anatomy as examples of learning activities.
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11.2.2 Stakeholders

A wide range of stakeholders, from administrators to parents, are involved in the design

and implementation of educational technologies. Nevertheless, three key actors stand out

given their roles in how these technologies are developed, integrated into the classroom, and

exploited. These actors are (i) the developers of these technologies, (ii) the educators who

choose which technologies to integrate into their teaching practices, and (iii) the learners who

will eventually use these technologies. In this section, we outline their role in the participatory

design process structured by our model.

Educators

Educators are often the ones who select the material and technology to be used in their

practice (Rodríguez-Triana et al., 2016). In our model, educators initiate the design process

by selecting the task and resource that will serve to scaffold the pedagogical scenario. The

selection of these two elements serves to frame the chatbot integration with learning scenarios

that are relevant to an educator’s practice.

Developers

Developers in education have the important role of building the technology used in practice,

with research suggesting that developers benefit greatly from collaborations with educators

when building educational technologies, as was highlighted in Chapter 2. In our model,

developers bridge the scenario and interaction aspects of a chatbot’s integration. That is,

they are the ones in charge of designing the application that will both feature the resource(s)

selected by the educator and host the chatbot that will interact with the learner.

Learners

Learners are the ones who will interact with the chatbot and, therefore, the end users of this

technology. Of particular importance is that learners consider the interactions timely and

engaging, all the while being relevant to the learning activity at hand. In our model, learners

are the ones who will lead the process of defining the cues displayed to provide ways to trigger

the chatbot interaction, as well as the content of these exchanges themselves.

11.2.3 Components

Our model focuses on five components to guide the integration of chatbots into educational

contexts. Indeed, the model takes its acronym—TRACE—from the components it defines. The

first two components (Task and Resource) focus on the scenario in which the interaction will

take place, while the last two (Cue and Exchange) focus on the interaction itself. The central

component (Application) serves as a bridge between the scenario and the interaction and is
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responsible for hosting the chatbot. The design decisions made for each component are led

by one of the stakeholders involved in the participatory design session. In this section, we

present each component, describe it, and provide illustrative examples.

Tasks

A task in our model can be conceived as a structured step that is aligned with the objectives of

the learning activity. This is based on the idea that learning tasks are “an interface between the

learners and the information offered in the learning environment” and “serve to activate and

control learning processes in order to facilitate successful learning” (Richter, 2012). Educators

take the lead in defining the tasks that are best aligned with the learning activity.

Examples:

• Python Code Standards:

1. Students have to identify code style issues in snippets of code.

2. Students have to write a snippet of code following PEP-8 (van Rossum et al., 2001).

• Human Anatomy:

1. Students are asked to label the different parts of the human body.

2. Students are asked to identify the name of a body part based on its function.

Resources

A resource follows from the definition of a learning object as “any digital resource that can be

reused to support learning” (Wiley, 2002), but specifically applied to the learning tasks chosen

for a specific learning activity. Furthermore, a resource should be able to be featured in (e.g.,

embedded in, interfaced through) a software application that can make it accessible to both

the learner and the chatbot. In that sense, resources in our model can be any of the examples

provided by Wiley (“digital images or photos, live data feeds..., live or prerecorded video or

audio snippets, small bits of text, animations, and smaller Web-delivered applications”, as

well as “entire Web pages that combine text, images, and other media or applications”) (Wiley,

2002), as long as they can be integrated into a software application compatible with an

educational chatbot.
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Examples:

• Python Code Standards:

1. Snippets of code provided by the teacher.

2. Code written by students.

• Human Anatomy:

1. An anatomical drawing of the human body.

2. A dictionary of body parts and their functions.

Applications

Given that chatbots are a type of educational technology, it is imperative that the bridge

between the pedagogical scenario and the interaction with the educational chatbot be me-

diated by a software application. Applications can be contextualized to provide different

interfaces to different stakeholders. That is, educators can access a dedicated interface where

they can configure the application, select the resource(s) that it will feature, and connect the

educational chatbot that will be hosted therein. Learners will then use a different interface to

access the resource(s) selected by the educator. This learner interface will also provide the

affordances through which the learner will interact with the educational chatbot. Given the

prevalence of web technologies in digital education, applications are often built to run in web

browsers and be compatible with digital learning platforms. Nevertheless, applications can

also be standalone desktop or mobile applications. Developers take the lead in designing

the application that is most appropriate for the selected resource, as they have the required

technical expertise.

Examples:

• Python Code Standards:

1. An application where students can write, annotate, and execute code.

2. An interactive reader featuring the Python documentation.

• Human Anatomy:

1. An application where the human body is shown and students can click on each of

the body parts.

2. An application where students can build different body parts similar to the way

one builds a puzzle.
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Cues

To integrate the chatbot interaction into the learning activity, we rely on the notion of an

interaction cue, often employed in educational technology (Hu et al., 2020). Interaction cues

serve to inform users of the actions they can take and to guide them toward a particular

action (Dillman et al., 2018). The function of a cue in our model is to trigger an exchange

between the learner and the chatbot. Cues are digital affordances that are an essential part of

the application’s learner interface. Cues can be graphical or textual and can be linked to actions

that the student takes, featured in elements within the resource embedded in the application,

or exposed permanently in the interface. As is often the case, these cues could be paired

with visual affordances (e.g., buttons, tooltips) that the learner can interact with (Vermeulen

et al., 2013). These cues should be featured in the resource and accessible via the application.

Learners take the lead in defining the cues, as they will be the ones triggering and following

these cues.

Examples:

• Python Code Standards:

1. A tooltip appears next to an error as the student types.

2. A button that the student can click on to have the chatbot inspect the code.

• Human Anatomy:

1. A popup that appears when a student clicks on a body part.

2. A button to start a tour of the human body mediated by the chatbot.

Exchanges

The final component serves to illustrate what a conversational exchange between a learner

and a chatbot would look like. By providing an example of what a useful interaction with a

chatbot could look like, learners can both highlight their expectations of the interaction and

indicate the design features, conversational capabilities, and social characteristics they expect

the chatbot to have. This is an important aspect of the design of interactive agents and is

guided by CASA. As such, understanding—and possibly curbing—learners’ expectations of

these interactions can serve to design a chatbot that is better adapted to the learning activity.

Furthermore, these exchanges could be used to create longer examples that could eventually

serve to fine-tune the language models used by the chatbots. Once again, learners take the

lead in defining the exchanges, since they will be the ones interacting with the chatbot. Note

that ellipses are included for succinctness in the examples below.
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Examples:

• Python Code Standards:

– Chatbot: Hey! You’re using camel case to name a variable. Did you know that you

have to use snake case for variable names?

– Student: No. Why snake case and not camel case?

– Chatbot: Well, snake case is the default for Python...

• Human Anatomy:

– Chatbot: You clicked on the organ that pumps blood throughout the body. Can

you name this organ?

– Student: It’s the heart.

– Chatbot: Exactly! Did you know that the heart...

11.2.4 Process

The following process is a way in which the components proposed by our model can be

defined by the stakeholders involved in the participatory design session. This process consists

of four phases and can be integrated as the central activity of a participatory design workshop,

following initial icebreakers and selection of the learning activities that will serve as a backdrop

to the co-design. In this section, we describe these phases, providing sample questions that

can serve as a guide for discussion among stakeholders, as well as a list of the outcomes that

should be produced in each phase.

Defining the Pedagogical Scenario

In this first phase, educators take the design lead. The educator will start by proposing one or

more tasks that students could do in relation to the learning activity that has been selected.

There is a many-to-many mapping between resources and tasks, as the same resource can

support multiple tasks and one task can be supported by many resources. Once the tasks and

resources have been mapped, the educator can choose one or more resources that they think

will be most relevant to their practice.

Questions:

• What tasks can support this learning activity?

• What resources are traditionally used for these tasks?

• Can these resources be delivered digitally?
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Outcomes:

• A description of one or more tasks that the learner could engage in.

• A description of one or more resources that can be used to support these tasks.

• A mapping between the tasks and the resources.

Integrating Technological Support

The second phase concerns the technological scaffolding that will serve as a bridge between

the pedagogical scenario and the interaction with the chatbot. The developer leads this phase

and needs to sketch out an application that could feature the resource(s) selected by the

educator. If the resource cannot be embedded in or handled by an application, then a different

resource needs to be selected. Once one or more applications have been sketched out, these

applications can be mapped back to all the other resources in the list that they can potentially

support. Once again, this is a many-to-many mapping.

Questions:

• How can the selected resource(s) be embedded into an application?

• What devices would this application run on?

• What learning platforms is this application compatible with?

Outcomes:

• A description of one or more applications that can feature the resource(s) selected in

the previous phase.

• Sketches or mockups of how the application(s) will feature the respective resources.

• A mapping between the resources and the applications.

Drafting the Interaction

The third phase is led by the learner, who will first identify what cues within the application

(or the resource embedded therein) should prompt the chatbot to start an interaction with

the learner. These cues can also define where the interaction takes place within the interface.

The developer needs to ensure that the cues are compatible with the application and can be

displayed to students. Once the cues are defined, the learner can choose one or more cues to

construct sample exchanges between a learner and the chatbot. These exchanges do not need
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to be long or detailed but should contain enough information so as to envision what a dialog

would look like.

Questions:

• What elements or affordances in the resource or application can serve to cue the chatbot

interaction?

• Are these cues specific to one (type of) resource or are they applicable to other (types

of) resources?

• Are the exchanges aligned with the goals of the learning activity?

Outcomes:

• A description of one or more cues that could be present in the selected application(s).

• One or more sample dialogs illustrating an exchange between the chatbot and the

learner.

• A mapping between the cues and the exchanges.

Envisioning the Chatbot

At this point in the process, stakeholders will have produced a complete mapping of all the

components that could serve to support the integration of chatbots into this learning activity.

In the final phase, participants use the five components defined in the previous phases to

envision the chatbot. Stakeholders can then highlight the example of each component that

is most appropriate for the chatbot integration and trace a line from learning activity to

chatbot, as shown in Figure 11.1. This line serves to visualize the interactions that learners will

have with the chatbot, linking particular examples of exchanges with learning tasks, via the

corresponding cues, applications, and resources. Once this link is established, stakeholders

can define the chatbot’s identity, what social cues it will be equipped with, what it will look

like, and what strategies it will use to support these interactions.

All stakeholders are invited to be equally active in this phase, as the chatbot’s identity serves

to summarize various aspects defined in the previous phases. For example, naming the

chatbot Code Style Bot makes more sense if the chatbot is actually involved in supporting tasks

related to code style, providing a three-dimensional avatar for the chatbot might be more

complicated if it is embedded inside a PDF reader application than if it is embedded inside a

game, and using rule-based scripts might be prohibitively complex for some exchanges. The

final outcome of this phase could be the starting point for future participatory design sessions,

an initial prototype, or other iterations of this exercise.
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Questions:

• What is the chatbot’s name and what does it look like?

• What social cues can the chatbot harness in its interactions with users?

• What technologies power the chatbot so that it can support the sample exchanges?

Outcomes:

• A description of the chatbot’s identity.

• A list of the technologies needed to support how the chatbot interacts with learners (e.g.,

rule-based scripts, AI-based solutions).

• A sketch or mockup of the chatbot embedded in the application.

11.3 Methodology

To validate our model, we first conducted two pilot studies comprising a workshop with eight

researchers and developers in education and a case study with an undergraduate student

completing a semester project on designing educational chatbots. We then conducted an

illustrative within-subject study in which 25 students enrolled in a course on software design

took part in a simulated participatory design session.

The purpose of these studies was to address one main research question, which is an extension

of RQ4:

Does the TRACE model help guide educators, developers, and learners in collabo-

ratively designing educational chatbots? (RQ4a)

Our analysis focused on two aspects of this research question: (i) alignment between stake-

holders and (ii) feedback provided about our model. Qualitative responses addressing the first

aspect were captured both before and after participants were presented with our model, while

qualitative responses with respect to the second aspect were captured at the end of the study.

In this section, we present our two pilot studies before outlining the methodology followed for

our illustrative study.

11.3.1 Pilot Studies

The purpose of our pilot studies was to refine the model and test its applicability to different

educational domains. In this section, we describe the two pilot studies, as well as the main

outcomes that emerged from each.
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Pilot Workshop

A first pilot study consisted of a one-hour workshop with eight researchers and developers in

education from the École Polytechnique Fédérale de Lausanne, Switzerland. The purpose of

this workshop was to present the model and collect preliminary feedback on its usefulness in

guiding the design of educational chatbots.

This study took place in October 2022 as a blended learning activity. Using Graasp, participants

were first asked to describe how they would integrate a chatbot into a learning activity that

consisted in teaching students about the history of their place of birth. Participants reported

their answers using the Sticky Notes app, as shown in Figure 11.2.

Figure 11.2: Before being exposed to the model, participants were asked to describe how they
would integrate a chatbot into a learning activity presenting the history of their place of birth.

We then presented our model, outlining the key components and providing examples. Note

that the version of the TRACE model used in the workshop differed slightly from the current

version of the model. That is, (i) instead of applications, this version of our model guided

stakeholders in defining the actions that the chatbot could perform and (ii) instead of cues,

the model guided stakeholders in defining the concepts that could guide the chatbot’s inter-

action with learners. Using pen and paper, participants were then asked to use the model to

brainstorm, define, and design educational chatbots aimed at supporting two or three learn-

ing activities. Participants were then instructed to select one design and outline its TRACE

components using Sticky Notes. Examples shared are depicted in Figure 11.3.

At the end of the workshop, participants were invited to provide feedback about the model.

Five participants provided written feedback, which was overall positive. However, two partici-
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Figure 11.3: Participants in the pilot workshop study were invited to share how they had
defined the different components of our model using the Sticky Notes app on Graasp.

pants had trouble understanding the concepts component, while two participants reported

confusion regarding the actions component. Another participant pointed out that an applica-

tion component was missing. This feedback guided our improvement of the model.

Pilot Case Study

Our model was also used in a pilot case study with an undergraduate student from the School

of Computer and Communication Sciences at the École Polytechnique Fédérale de Lausanne,

Switzerland. The case study was conducted in the context of a semester project that took

place between September 2022 and January 2023. The student used an early version of the

TRACE model to design two apps that could be integrated into LXPs and support educational

chatbots. Note that the version of the model used by the student was the same version used

for the workshop.

This case study served to validate the applicability of outcomes produced during brainstorm-

ing sessions that incorporated the TRACE model. Indeed, outcomes from these sessions—

which included diagrams similar to the one depicted in Figure 11.4—were then used to guide

the implementation of concrete educational chatbot solutions. One of the apps—Text Analy-

sis—was later developed with the Graasp ADK, connected to OpenAI’s API, equipped with an

educational chatbot, and integrated into Graasp. We will present this app in more detail in
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Chapter 12.

Feedback from the student regarding the action and concept components was aligned with

the feedback from the workshop and therefore these components were eventually replaced by

application and cue, respectively.

Figure 11.4: TRACE was used to brainstorm the design of educational chatbots during a
semester-long pilot case study. Outcomes from these sessions included diagrams similar
to the one depicted above, which was produced by an undergraduate student completing a
semester project on designing educational chatbots.

11.3.2 Illustrative Study

The purpose of our main study was to demonstrate the feasibility of our proposal and was con-

ducted as an hour-long role-play activity as part of a software design course at the University

of Neuchâtel, Switzerland.

11.3.3 Participants

A total of 25 students (7 female, 18 male) were recruited as participants for the session, which

took place in December 2022. At the beginning of the session, participants were divided into

eight groups of three or four. These groups corresponded to groups in which the students had

been working on for one of the course assignments. As such, students within each group were
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well acquainted with each other.

11.3.4 Procedure

To motivate the session, after a short introduction, the groups were first asked to come up with

a learning activity or choose one from a list (e.g., how to cook pasta, calculating the area of a

circle). Participants were then asked to interact with a chatbot powered by the GPT-3 language

model for a few minutes. The topic of this interaction was supposed to be the topic they had

come up with or selected from the list.

Within each group, participants were then assigned the role of educator, developer, or learner.

They then completed two exercises. In the first exercise, participants were asked to provide

a short answer describing—from the point of view of their role—how they would integrate

a chatbot into the learning activity chosen by their group. After this exercise, they were

introduced to our model through a short presentation. This presentation constituted the

intervention in our within-subjects setup.

The short presentation consisted of five slides in which the different components of the model

were outlined and examples of each component were proposed. These examples specifically

covered the PEP-8 use case. It is important to note that the model used in the presentation

featured a slight variation from the one presented in this chapter. That is, this version of

our model (TRA:ACE) included a second A in which stakeholders were invited to design the

identity of the agent alongside the application. This component has been removed from our

current model, as it proved to be redundant with the final outcome produced by the model.

After the intervention, participants completed a second exercise. In this second exercise,

participants were instructed to use our model to collaborate on the design of the chatbot

integration. At the end of the exercise, the groups provided short descriptions of each of our

model’s components in the context of their respective learning activity, as well as an optional

mockup of the chatbot integration. Finally, qualitative feedback was captured through an

open-ended question that asked participants if they found the model useful.

11.3.5 Instruments

We captured qualitative responses through short answers to a series of open-ended questions.

In the first exercise—before the presentation of our model—participants were asked to specify

how they would integrate the chatbot in a few phrases. Although they worked as a group,

each student was asked to provide an answer from the point of view of the role they had been

assigned:

Use the text box below to share your ideas. Mention what your activity and role

is and then describe how you would integrate the chatbot in a few phrases. Be as

detailed or as general as you would like.
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In the second exercise, participants had to specify each component of our model in a separate

input box. For example, for the task, the instructions above the input box read as follows.

Please describe the Task(s) you will focus on.

Finally, groups were asked to provide feedback about the model by answering the following

questions.

Did you find the framework useful? Where did it help the most? Where did it

help the least? How would you improve the framework to help design chatbot

integrations?

11.3.6 Data Analysis

All student responses were analyzed using line-by-line data coding (Charmaz, 2006). Further-

more, responses concerning the alignment aspect were tagged as either aligned or misaligned

depending on whether they were compatible with other responses from the same group.

Component descriptions were also tagged as valid or invalid depending on whether they were

applicable to the respective component.

11.4 Results

In the first exercise, seven groups provided more than one answer on how they would in-

tegrate the chatbot into the chosen learning activity. Only in two of these groups were the

answers provided aligned. In the second exercise, all groups provided descriptions of each

of the components of our model. For all groups, the descriptions of all components were

aligned within each group. Furthermore, four groups provided valid descriptions for all five

components, while two groups did so for four components, and the other two groups for

only three components. To illustrate the answers provided, Figure 11.5 presents word clouds

corresponding to each component.

Finally, four groups provided feedback on the usefulness of the model. Three groups responded

positively, while one group described the explanation of the model as complicated. This last

group provided the following feedback:

“It was complicated to understand what was asked and the explanation of [TRACE]

was really fast so we didn’t have time to understand.”

On the other hand, two groups specifically referred to the model’s ability to structure the

design, while one group appreciated how it was inclusive in the sense that it took input from

multiple stakeholders into account. This last response is provided below.
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Tasks Resources Applications

Cues Exchanges

Figure 11.5: Responses regarding how groups defined the different components of the TRACE
model can be illustrated with word clouds to highlight important keywords.

“Creates some structure. Allows to think about all points of view and not missing

one. For example in marketing it is very important to think about the consumer

desires and not only the product. This framework allows therefore to take on every

stakeholder.”

11.5 Discussion and Implications

Our current findings are promising. While preliminary, results from our illustrative study

suggest that our model helped students collaborate more efficiently by aligning the contribu-

tions of the different stakeholders and providing a structure with which to reason about the

educational chatbot’s implementation.

Aligning expectations of different holders was one of the challenges highlighted by Durall

Gazulla et al. (2023), who specifically noted that one obstacle for collaboration they faced in

the design of the EDUguia chatbot was the “challenge [of] addressing diverse needs, while

ensuring the relevance of the solutions envisioned”. By providing specific roles to different
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stakeholders, but inviting them to participate in the full design process in order to align their

different needs, the TRACE model could help address this challenge.

Furthermore, the fact that the model was reported to provide structure for the design process

addresses another challenge highlighted by Durall Gazulla et al. (2023). Namely, the chal-

lenge of translating research into practice. One outcome of a participatory design workshop

structured with the TRACE model is a diagram that can serve as a blueprint to further design

and develop the educational chatbot in question. While it is not a functioning chatbot, this

outcome can be shaped into a sketch, a mockup, and even a prototype implementation. In

essence, it serves as a way to translate the research outcome of the participatory design session

into actionable tasks for the stakeholders who will implement this chatbot in practice.

However, it is important to note that one group described the model as complicated and that

four groups did not provide valid descriptions for all components. Although misunderstand-

ings of the TRACE model could be mitigated by providing more time to present the model,

participatory design workshops are also limited by time constraints and include stakeholders

with different backgrounds and technical aptitudes (Durall Gazulla et al., 2023). Hence, long

presentations featuring abstruse terminology and complex definitions should be best avoided.

Instead, ensuring that component definitions are clear and accessible to a wide variety of

stakeholders could be crucial to maximize adoption in participatory design practices.

Our model could also help educators adapt their teaching practices in light of the impact

large language models (LLMs) are having on education. It has recently been highlighted that

“occupations in the field of education are likely to be relatively more impacted by advances in

language modeling than other occupations” (Felten et al., 2023). The TRACE model could serve

as a canvas for educators to collaborate with developers to better understand the opportunities

and limitations of LLMs and with learners to better understand how learners envision using

chatbots to support their studies.

These results also help us consolidate the work conducted throughout this thesis. First, the

TRACE framework captures multiple lessons learned in the design and implementation of the

educational chatbots that were used for our empirical studies. Second, certain elements of the

components and processes comprising our conceptual model will inform the components

that will form the technical blueprint that we will present in the following chapter. Third,

TRACE allows us to reflect on the designs, implementations, and evaluations conducted in

Part III of this thesis. These reflections could serve to adapt our designs for future evaluations.

For example, we could explore supporting the code review tasks captured by our pedagogical

scenarios with resources other than code snippets. Indeed, in the next chapter, we will see

how documentation can be used as a learning resource to support learning tasks related

to the code review process and how integrating this resource into code review notebooks

requires a different application. Finally, by generalizing our approach to domains outside of

software engineering education, the TRACE model serves to explore the applicability of our

technological foundations, pedagogical scenarios, interaction strategies, and design processes

200



11.6 Conclusion

to a wider array of educational contexts.

11.6 Conclusion

The model proposed in this chapter addresses the lack of bespoke conceptual models for

structuring the participatory design of chatbots. By outlining five different components

that can be defined over a four-step process, TRACE breaks down the task of specifying

how chatbots can support a given learning activity, which could be interpreted differently

by different stakeholders. To maximize relevance in practice, the model places educators

first, allowing them to define the pedagogical scenario that will guide the design process.

Developers, due to their technical expertise, are also central in our model, ensuring that

the pedagogical scenario can be supported by the technology in which the chatbot will be

embedded, and bridging the scenario with the interactions that will occur between the chatbot

and the learner. Finally, learners are tasked with identifying both the timing and content of

these interactions, to ensure that the chatbot adds value to the learning experience, rather than

being an element of distraction. The result is a model that can be used to produce a blueprint

of how an educational chatbot could be integrated into a learning activity. This blueprint

could be the input to future participatory design sessions, guide educators in adapting their

lesson plans to make room for learner-chatbot interactions, or serve as a starting point for a

technical specifications document or prototype.

Nevertheless, our study has limitations worth addressing. First, while we explicitly chose

students from a software design course to maximize the number of participants that could

play the role of the different stakeholders, our role-playing study is not indicative of how pro-

fessional educators, developers, and learners might judge our conceptual model. Conducting

a formal participatory design workshop with actual stakeholders could help improve the eco-

logical validity of our proposed tool. Second, the limited time that participants had to interact

might have affected their ability to efficiently understand and harness the model. Extending

the workshop to a two or three-hour session could give participants time to assimilate the

concepts presented in TRACE. We aim to address these limitations in future work.
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WE noted in Chapter 1 and in the introduction to Part IV of this thesis that often, the

chatbot technologies and architectures that are applied to educational contexts are not

necessarily designed for such contexts. While general-purpose chatbot technologies can be

used in educational contexts, there are some challenges specific to these contexts that need to

be taken into consideration. Namely, chatbot technologies intended for education should,

by design, integrate directly into LXPs and focus on achieving learning goals by supporting

learners with the task at hand. In this chapter, we propose a blueprint for an architecture

specifically aimed at building task-oriented chatbots to support learners in educational con-

texts. This architecture aims to support collaboration during the technical implementation

process by providing a common vocabulary for developers and educators looking to design

educational chatbots. We then present a proof-of-concept implementation of our blueprint

through Text Analysis, an app designed to support a wide range of pedagogical scenarios. Our

blueprint is a first step toward an open chatbot architecture explicitly tailored for learning

applications. On the one hand, this blueprint could serve as a starting point for developers in

education looking to build chatbot technologies targeting educational contexts. On the other

hand, it could also serve as a way for educators to get involved in the technical implementation

of chatbots that would be best suited for their teaching practice.

By laying out a technical blueprint for a system that facilitates the integration of chatbots into

apps, this chapter partially addresses RQ4:

• How can we support the collaborative design of educational chatbots?

The content of this chapter was partially presented in the following publication:

• Farah, J. C., Spaenlehauer, B., Ingram, S., & Gillet, D. (2022). A Blueprint for Integrating

Task-Oriented Conversational Agents in Education. 4th Conference on Conversational

User Interfaces (CUI 2022). https://doi.org/10.1145/3543829.3544525
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12.1 Introduction

In the first paragraph of this thesis, we highlighted the fact that nowadays, chatbots come in a

variety of architectures. While we can categorize chatbots by whether they are powered by rule-

based, statistical data-driven, or end-to-end neural dialog systems (McTear, 2021), there are a

wide variety of technological solutions and designs within each of these categories. This variety

becomes even greater when elements of HCI are considered. Chatbots can be embodied,

disembodied, speech or text-based, task-oriented or open-domain, and so on and so forth.

This variety is also present when considering domain-specific chatbots, such as chatbots

designed for educational contexts. To repeat the quote from Quiroga Pérez et al. (2020) that

was presented in Chapter 1, “there exists as much technology used in the development of

chatbots as there are educational chatbots”.

This lack of standard architectures and systems for designing, implementing, and deploying

educational chatbots poses a challenge when translating the outcomes of design sessions—

such as the workshops described in the previous chapter—into software solutions that can

be exploited and evaluated. That is, developers and educators looking to implement these

outcomes need to build software solutions from scratch or adapt these outcomes to integrate

them using generic chatbot technologies. Indeed, this challenge was highlighted by Durall

Gazulla et al. (2023), who underscored the complexity of translating research into practice

when designing educational technologies. In their particular case, for example, their chat-

bot was meant to be integrated into a learning environment and its interactions were to be

informed by pedagogical theory. Fulfilling those requirements with generic chatbot tech-

nologies might be infeasible, while building the technology from scratch requires complex

programming skills.

To address these challenges, we propose a blueprint for a system that facilitates the integration

of chatbots into digital learning apps and takes into consideration concepts specifically related

to pedagogical contexts. Our blueprint is most aligned with work by Griol et al. (2013), who

proposed an architecture for building chatbot interfaces in educational applications and

incorporated it into their Geranium pedagogical system. Nevertheless, while Griol et al.

focused on speech-based systems and questionnaire-based learning applications, our aim

is to lay out an architecture that is agnostic with respect to the pedagogical scenario and the

modality of the interaction. In this chapter, we provide the design of our blueprint, which is

the seventh and final contribution put forth by this thesis (C7), as well as a proof-of-concept

implementation of an app designed following this blueprint.

This chapter is structured as follows. In Section 12.2, we outline the design considerations

that emerge from the identified challenges and motivate our proposed approach to address

these requirements. We then detail our blueprint’s architecture in Section 12.3, defining

the key building blocks, components, and processes that make up an interaction between a

learner and a chatbot in an educational context. In Section 12.4, we present a proof-of-concept

implementation of our architecture to showcase how it can support a learning activity. We then
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discuss—in Section 12.5—how our proposed blueprint could serve as an initial step toward

defining an open standard for integrating chatbots into applications aimed at educational

contexts. We conclude, outlining limitations and future work, in Section 12.6.

12.2 Design Considerations

We build on the aforementioned challenges to define the considerations that will inform

the design of our blueprint. The guiding concern was to ensure that these chatbots were

(i) integrated and (ii) task-oriented. For each of these aspects, we highlight the requirement

that emerges from the literature and our proposed approach to address that requirement in

our blueprint.

12.2.1 Integrated

Requirement

Chatbots should integrate directly with learning applications (Yang et al., 2019).

Proposed Approach

Our blueprint is centered on the digital learning application that the chatbot is meant to

support. This learning application provides the graphical and pedagogical context that will

ground the chatbot’s interaction. Furthermore, we propose a modular approach that is system-

agnostic and does not require any specific technology stack. To maximize reuse, components

are loosely coupled and can be composed as needed to support different learning applications.

For example, the communication between the learning application and the rest of the archi-

tecture is handled by one component in particular. This component could be adapted in order

to integrate different learning applications without the need to replace the rest of the archi-

tecture. Finally, while we cannot impose that implementations of our proposed blueprint be

open-source, we strongly recommend it. Open-source development facilitates uptake, reuse,

continuous improvements, and customization starting from a common codebase, and—as

discussed in Chapter 2—is possibly favored by developers in education.

12.2.2 Task-Oriented

Requirement

Chatbots should be designed to support learners in achieving well-defined learning goals (Ku-

mar, 2021).
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Proposed Approach

Our blueprint requires that chatbots be equipped to perform one or more functions. Each

function should be relevant to the context in which the chatbot is deployed. That is, a chatbot’s

function should take as input the specific learning activity that it is meant to support. To

ensure useful and unobtrusive support and minimize the possibility of an unsolicited chatbot

interfering with the learning process, a chatbot does not perform its task unless it is summoned

by the learner. Furthermore, the chatbot takes into consideration feedback from the learner to

improve the way it carries out or communicates the results of its performed function(s). This

adaptive approach serves to personalize and enhance interactions with the chatbot and the

resulting user experience over time. Privacy considerations related to the way personal data is

handled by the chatbot should be transparent to the user.

12.3 Architecture

In this section, we outline the key building blocks, components, and processes that comprise

our blueprint, as well as the way they come together to support a learning activity.

Figure 12.1: The learning ap-
plication hosts the learning
resource (pink) that will be
the focus of the interaction
and serves as the context for
our blueprint.

Figure 12.2: When sum-
moned, the chatbot per-
forms a function and opens
channels (light purple)
through which it can hold
an interaction with the
learner.

Figure 12.3: A learner can re-
spond (orange) to the chat-
bot’s comments to partake
in the interaction that the
chatbot has selected for a
given channel.

12.3.1 Building Blocks

To illustrate how our architecture fits with the educational context that we are targeting, we

define a number of building blocks that make up our components. Specifically, these building

blocks show how the chatbot is tasked with supporting learners during a learning activity

by performing one or more specific functions. Here, we outline the key building blocks and

provide illustrative examples.
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Learning Resource

The learning resource constitutes the pedagogical context for the interactions between the

chatbot and the learner. The chatbot should be able to perform its task using this learning

resource. An example of a learning resource would be a code snippet that can be analyzed for

potential issues.

Function

A function is performed by the chatbot given a specific pedagogical context, which serves as

input to the function. The idea is that the function takes as its main input the learning resource

and returns a set of talking points that serve to start the interaction between the learner and

the chatbot. An example of a function would be a linter, which is designed to detect bugs and

other issues in code (Johnson, 1978). A linter would take as input a code snippet and output

the locations in the code snippet where it has detected an issue.

Concept

A concept refers to a subject that the chatbot can identify in the pedagogical context it is

embedded in and about which it can subsequently converse. An example of a concept would

be a code styling rule defining how learners should name variables. In JavaScript, for instance,

the ESLint linter (Zakas, 2013) can detect when variables have not been written in camelCase.

When analyzing a code snippet, the chatbot could detect issues in the code that are related to

these concepts and eventually hold an interaction about them with the learner.

Learning Graph

Each concept has a corresponding learning graph, which represents the states that a learner

can be in with respect to the concept at hand. A learner can transition between the different

states in the graph by going through an interaction with the chatbot. An example of a learning

graph would be a Markov chain with two states (Don’t Know and Know) that indicate whether

the learner has understood a concept or not. In its simplest form, this learning graph would

not include forgetting, that is, learners can only transition from Don’t Know to Know.

Channel

A channel is a location in the graphical user interface (GUI) where an interaction between the

chatbot and the learner can take place. Channels can be opened by the chatbot after it has

performed its function. Once the interaction is complete, the channel is closed. An example

of a channel would be a line number in a code snippet. If a chatbot finds an issue in the code

snippet, it could open a channel linked to the line number where the issue was located. A

dialog box would then appear below the respective line number, allowing the learner and the
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Table 12.1: An Overview of Our Blueprint’s Key Components and Building Blocks Alongside
the Functionalities They Support

Component Building Blocks Functionalities

Interaction Model Concepts Power the dialog between the learner and the chatbot.

Learner Model
Concepts
Learning Graphs

Track the state of the learning graph for each concept.

Interface Engine
Learning Resource
Channels
Feedback

Provide graphical and pedagogical interfaces to interact with the learning application.

Task Engine
Function
Concepts

Execute the chatbot’s function.
Transmit the list of concepts to the knowledge engine.

Knowledge Engine

Concepts
Learning Graphs
Interaction Models
Learner Model

Create a learning graph for each concept given by the task engine.
Create a learner model from the learning graphs.
Manage the learner model and the interaction models.
Update the models when notified.
Make knowledge accessible to the interaction and learning engines.

Interaction Engine
Channel
Interaction Model
Learner Model

Select the interaction models based on the learning graphs.
Process responses posted to the channels.
Select the next interaction from the interaction model.
Notify the knowledge engine of possible updates to the models.

Learning Engine Feedback Use feedback to update the strategies used by the interaction engine.

chatbot to hold an interaction. Figures 12.1–12.3 depict how channels can be opened in the

context of a learning resource and then serve to hold an interaction between the user and the

chatbot.

Feedback

Feedback is a way to signal the quality of an interaction the learner has had with the chatbot.

It can be implicit or explicit. Examples of implicit feedback would be whether the learner

engaged with the chatbot at all or whether the chatbot was able to achieve its intent. Examples

of explicit feedback would be emoji reactions that the learner can select, a flag to report an

issue with a comment made by the chatbot, or a button that the learner can click on to request

that the educator intervene in the interaction.

12.3.2 Components

Our blueprint’s components build on the blocks presented in Section 12.3.1 to provide the

functionalities needed for the chatbot. We divide these components into two types: (i) models

and (ii) engines. Models are concerned with keeping the state of the chatbot’s interactions

with a learner. Engines are concerned with executing the blueprint’s processes, which we will

outline in Section 12.3.3. A summary of the components and their building blocks is given in

Table 12.1.
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Interaction Model

An interaction takes place within a channel and consists of a natural language dialog that the

learner can hold with the chatbot. Each interaction is related to a concept and has an intent,

which defines the state that the chatbot would like the learner to arrive at. Our blueprint does

not enforce the exact technical implementation of the dialog employed by the chatbot to fulfill

its intent. This allows for flexibility in the selection of the scripting and/or NLP technologies

that will power the dialog between the chatbot and the learner. The interaction model also

has one or more end states, which indicate that the interaction is over. These end states serve

as a way to keep the learner focused on the task at hand. An example of a simple interaction

model would be a tree-based script in which the chatbot explains a given concept to the

learner and then prompts the learner with questions aimed at verifying whether the learner

has transitioned from the Don’t Know to the Know state.

Learner Model

The learner model is meant to summarize a learner’s grasp of the concepts that the chatbot is

designed to support the learner with. When the chatbot performs its function, it will initialize

a learner model. For each concept, it will then select the appropriate active state of that

concept’s learning graph based on the output of the function. For example, if a JavaScript

code snippet contains variables that have not been written in camelCase, the resulting learner

model generated by the chatbot will contain a learning graph for the camelCase concept

where Don’t Know is the currently active state.

Interface Engine

The interface engine is responsible for connecting the chatbot and the GUI that the chatbot can

use to interact with the learners. Some of the functionalities that it handles include: (i) opening

the appropriate channels, (ii) posting the chatbot’s comments, (iii) exposing the graphical

elements required for the learner to respond and provide feedback, and (iv) providing the

learner with a way to summon the chatbot.

Task Engine

The task engine is in charge of executing the chatbot’s function and translating the output of

the function to the list of concepts that will guide the interactions between the chatbot and

the learner.

Knowledge Engine

The knowledge engine keeps track of the state of the learner and the interactions between the

learner and the chatbot. That is, the knowledge engine is in charge of updating and tracking
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the learner and interaction models. Every time the interaction engine processes a learner

response, the knowledge engine is notified of any updates that need to be processed. The

knowledge engine also communicates with the interaction engine and the learning engine,

providing them with the information they need to carry out their tasks.

Interaction Engine

The chatbot’s interaction engine is in charge of selecting the appropriate interaction model for

a channel given the state of the learner model. The interaction engine can be configured to

follow different strategies and communicates with the learning engine to improve or update

these strategies. The interaction engine is also in charge of processing the learner’s interaction

with the chatbot. Every time a learner posts a response or provides feedback, the interaction

engine processes these actions accordingly and passes the result on to the knowledge engine

so that the knowledge engine can update the learner and interaction models.

Learning Engine

The learning engine is in charge of updating the strategies guiding the chatbot’s interaction

engine based on feedback from the learner. This allows the chatbot to refine its behavior at

the end of a session. Over time, the learning engine should allow chatbots to better select the

interaction model used to interact with learners based on the learner’s learner model.

12.3.3 Processes

Our blueprint’s processes outline the actions that can take place when there is an interaction

between a learner and the chatbot. For clarity, we focus on a chatbot interacting with a single

learner in a single session. An overview of these processes and how they span the different

components of our architecture is shown in Figure 12.4.
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Figure 12.4: Our blueprint consists of multiple loosely coupled components, comprising both engines, which are tasked with executing
processes, and models, which keep track of the system’s state. Here, we illustrate how the different components and processes come together
to support the interaction between a learner and a chatbot in the context of a learning activity.

211



Chapter 12. Technical Blueprint

Summon Chatbot

To start interacting with the chatbot, a learner summons the chatbot by asking it to perform

its function. This could be done through a button on the GUI of the learning application

(see Figure 12.1). When the learner clicks on this button, the interface engine will notify the

task engine that it should start the process of executing the function. The task engine will

execute the function and pass the function’s result—a list of concepts—to the knowledge

engine. The knowledge engine will then create the learner model based on the output of the

task engine. This model is then passed on to the interaction engine, which will select the most

appropriate interaction model for each of the concepts that the chatbot will tackle with the

learner. These interaction models are then passed over to the interface engine, which will

open the appropriate channels for the interactions to take place. Figure 12.2 shows the newly

opened channels within the learning resource.

Hold Interaction

Once a channel is open, the learner can hold an interaction with the chatbot. The interaction

is guided by the interaction model selected for that channel and always starts with a message

posted by the chatbot. The learner should be able to respond to the initial message through

one or more of the following affordances: (i) via natural language through a text input box,

(ii) via emoji reactions, and (iii) via quick reply buttons. Text inputs and emoji reactions are

commonly available in messaging services and platforms (e.g., WhatsApp (Acton et al., 2009),

Slack (Butterfield et al., 2013)), while supporting quick reply buttons has been proposed as

a best practice when designing chatbot interfaces (Ferman Guerra, 2018). Once the learner

responds via any of these affordances (as in Figure 12.3), the interface engine will forward the

response to the interaction engine, which will process the response and select the appropriate

next message to post based on the interaction model and its underlying dialog system. The

interaction engine will also inform the knowledge engine of the update in the interaction

model so that the knowledge engine can update the learner model if the learner has gone

through a state transition in the learning graph corresponding to the given interaction’s

concept. The exchanges between the learner and the chatbot—as well as the corresponding

updates—continue until the interaction model reaches an end state.

Provide Feedback

Once an interaction is over, the learning engine analyzes the interaction to draw conclusions

about the quality of the interaction. This is done by analyzing any explicit or implicit actions

the learner took throughout the interaction. Based on this analysis, the learning engine

provides feedback to the interaction engine. The interaction engine can then use this feedback

to change its preferred strategy with respect to a given interaction.
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12.4 Implementation

To provide a proof-of-concept implementation of our blueprint, we used it to design and

implement an app that could (i) highlight words in text provided by the educator and (ii) allow

learners to interact with a chatbot with respect to a particular highlighted word. We selected

this app for our proof of concept given its applicability to a wide array of domain-agnostic

learning activities, including (i) helping learners understand difficult words, (ii) providing

learners with further information about complex topics, and (iii) supporting various language

learning tasks (e.g., listing synonyms, detecting spelling mistakes).

Our implementation addressed the following research question, which is an extension of RQ4:

• Can our technical blueprint support the design and implementation of an app aimed at

integrating educational chatbots into LXPs? (RQ4b)

In this section, we present the learning scenario we aimed to support as well as the technical

implementation of the chatbot integration. Where relevant, we highlight the building blocks

and components presented in Section 12.3 as they appear in the implementation.

12.4.1 Pedagogical Scenario

While the app we were aiming to design is applicable to a wide array of pedagogical scenarios,

to provide a proof-of-concept implementation in line with our previous empirical studies, we

focused on the technopedagogical scenario provided by code review notebooks. As explored

throughout this thesis, performing code reviews principally consists of a developer submitting

code for review and then another developer reviewing the submitted code by adding com-

ments to specific lines of code. Nevertheless, there are other tasks involved in performing

code reviews, such as understanding the documentation of a particular library or API that

is being used in a code snippet. This documentation is often extensive and complicated for

beginner programmers to follow. Hence, educators could select parts of the documentation

that they want learners to understand, highlighting terms and concepts that are relevant to

a particular code review task. Our app was therefore conceived as a way to allow educators

to curate a snippet of text (i.e., the learning resource), select a set of keywords (i.e., concepts)

that the chatbot should be able to highlight (i.e., function), and configure the chatbot to hold

exchanges centered on those keywords. We named this app Text Analysis.

12.4.2 Design

Having defined our pedagogical scenario, we began our design process by creating mockups.

These mockups served to illustrate how the text would be presented to the learner and how

the three main processes outlined in Section 12.3.3 would be supported.
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Figure 12.5: Before any inter-
action takes place, the app
features a text snippet se-
lected by the educator.

Figure 12.6: When sum-
moned, the chatbot high-
lights the keywords in the
text.

Figure 12.7: Clicking on a
highlighted keyword opens
a channel in which a learner
can hold an interaction with
the chatbot.

As shown in Figure 12.5, the app features the text in a central pane. The learner can then

summon the chatbot by clicking on a button in the header. This action triggers the chatbot’s

function, which is to highlight the keywords contained in the text, as shown in Figure 12.6.

The learner can then click on one of the keywords to open a channel in which they can

hold an interaction with the chatbot. This action opens a channel on the sidebar, as shown

in Figure 12.7. After completing an interaction, learners can provide feedback about this

interaction by clicking on one of the predefined quick reply buttons shown above the Reply

Here input box in Figure 12.7.

12.4.3 Technical Implementation

We implemented our design following the architecture presented in Section 12.3. Once again,

we harnessed the Graasp ADK to create an app compatible with Graasp. As discussed, this

app exposes a text snippet (i.e., the learning resource) potentially containing some keywords

(i.e., concepts) that the educator has selected. The chatbot’s task is to support the learner in

understanding those keywords by highlighting them in the text and providing more informa-

tion about them. For this implementation, the chatbot is equipped with a highlighter (i.e., the

function) able to detect a set of keywords by parsing the text using regular expressions and

highlighting these keywords by annotating them with HTML. Each keyword is associated with

a simple learning graph in which a learner can either understand the keyword or not. These

keywords are selected by the educator, who can configure the app through Graasp’s educator

interface (see Figure 12.8).

Once configured, the text snippet predefined by the educator is shown to the learner, as

depicted in Figure 12.9. Whenever a learner is ready to analyze the text, they can summon

the chatbot by clicking a button. This button will start the summoning process. The interface

engine will fetch the text and send it to the highlighter for analysis. The highlighter will detect

the keywords present in the text snippet and annotate them with HTML so that they are
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Figure 12.8: The educator can configure the app and the chatbot interaction using Graasp’s
educator interface.

displayed with different colors. Note that each keyword corresponds to a different color, as

shown in Figure 12.10.

In our current implementation, the interaction engine only supports one interaction model

at a given time. This interaction model is defined by the educator and consists of a prompt

configured following the configuration model presented in Chapter 10. That is, the interaction

model and the intent are captured using natural language by a prompt. This prompt is then

sent to OpenAI’s API, following the architecture presented in Chapter 10. The intent is defined

by the educator, who can—for example—specify the following within the prompt:

The objective of this interaction is to have the learner acknowledge that they under-

stand the meaning of {{keyword}}.

Note that the interaction models will be different for each keyword, given that the educator

can use a placeholder ({{keyword}}) to refer to the keyword in question. The interaction

models are then passed back to the interface engine, which prepares a channel for each of

these interactions to take place on the sidebar, as illustrated in Figure 12.11.
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Figure 12.9: The learning task focuses on a snippet of text that is provided by the educator.

The learner can now hold an interaction with the chatbot through any of the channels that

have been opened. At each step of the interaction, the learner can respond to the chatbot using

free-form text (see Figure 12.11). The interaction model interprets the response to advance

the dialog until the learner stops interacting or reaches the maximum number of messages

allowed per channel. Currently, learning graph transitions are not performed automatically.

That is, the knowledge engine does not automatically update the learner model from the

Don’t Know to the Know state. This can be done manually by the educator, who has access

to the conversations that learners held with the chatbot. The exercise continues until the

learner completes all the interactions that were opened by the chatbot or the learner closes

the window hosting the application.

12.5 Discussion and Implications

The implementation of Text Analysis following the blueprint outlined in this chapter is a first

step towards consolidating the proposed architecture. Our blueprint lays out the key building

blocks, components, and processes that a system following our architecture would have to
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Figure 12.10: When the learner clicks on the Highlight Keywords button, the summoning
process is executed and the chatbot highlights the keywords selected by the educator.

include. By abstracting as many details as possible, this blueprint could potentially serve as a

first step in implementing a standard architecture for integrating task-oriented conversational

agents in education. Furthermore, the fact that Text Analysis can be easily used outside of

software engineering education illustrates how our blueprint is not closely coupled with a

specific educational domain. Indeed, while the pedagogical scenario that motivated our

implementation is framed using code review notebooks, we can extend this to any pedagogical

scenario that can incorporate an activity mediated by highlighting keywords in text.

Most importantly, our blueprint supports collaboration between the different stakeholders

involved in the design of educational chatbots. As explained in Chapter 11, Text Analysis

was developed through a semester-long case study with an undergraduate student from the

School of Computer and Communication Sciences at the École Polytechnique Fédérale de

Lausanne, Switzerland. A part of this app’s design process included brainstorming sessions

supported by the TRACE model. Outcomes from these sessions were then used to inform

the app’s implementation. Specifically, we can highlight how concepts from our blueprint
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Figure 12.11: Once the channels are open, the learner and the chatbot can hold interactions
about the keywords. These interactions are powered by OpenAI’s API.

(e.g., learning resources, channels, and interaction models) map to components from the

TRACE model (e.g., resources, cues, and exchanges). In fact, our blueprint nicely captures

the processes through which components interact. For example, the process of summoning

the chatbot illustrates how cues are presented in the learning resource, while holding an

interaction illustrates how an exchange can take place to support the learning task at hand. As

such, this proof-of-concept implementation also validates the applicability of our blueprint in

translating outcomes from design sessions into software.

These results also helped us consolidate the work conducted throughout this thesis. First,

by showing how outcomes from design sessions using the TRACE framework can be imple-

mented in software and incorporated into pedagogical scenarios, our blueprint illustrates

how we can bridge the gap between research and practice and provides links between the

pedagogical scenario presented in Chapter 5, the architecture and configuration model pre-

sented in Chapter 10, and the conceptual model presented in Chapter 11. Second, the fact

that Text Analysis was bootstrapped using the Graasp ADK shows how apps built with an

implementation of the ADA presented in Chapter 2 can feature chatbots by design. Future

apps built with the Graasp ADK can follow the same strategy to support educational chatbots.
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Furthermore, this blueprint could be integrated by default into the ADA in order to facilitate

the development of this chatbot support. Finally, our blueprint builds on our experience

implementing educational chatbots for software engineering education and serves to gen-

eralize our contributions to other domains. In doing so, our blueprint broadens the impact

that the technological foundations, pedagogical scenarios, interaction strategies, and design

processes presented in this thesis could have on supporting the integration of chatbots into

digital education platforms.

12.6 Conclusion

The blueprint proposed in this chapter is designed to address the challenge highlighted

in Section 12.1, namely to support translating the outcomes of design sessions in order to

implement educational chatbots that can be directly integrated into learning applications.

To test the applicability of our blueprint, we used it to integrate a chatbot into an app that

supports students learning programming best practices. This implementation shows that the

building blocks of our blueprint covered the needs of our use case application and facilitated

its design and implementation.

Nevertheless, the current version of the blueprint has some limitations that should be high-

lighted. First, for this chapter, we focused on the case of a single learner interacting with a

chatbot over the course of one learning activity or session. Further components are required

to handle a learner’s interaction with the same chatbot over multiple sessions, as well as

interactions supporting multiple learners. Second, so far, we have only validated the ap-

plicability of our blueprint with our implementation of Text Analysis. Our aim is to target

proof-of-concept implementations in diverse learning contexts and use case scenarios. Third,

the need to support educators in the configuration and deployment of chatbots built with our

blueprint was not addressed. An extension of our blueprint that incorporates mechanisms

for configuration, testing, and deployment would ensure that educators can easily integrate

such chatbots into their practice. We aim to further develop our blueprint to address these

limitations and consolidate its architecture in future work.
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THE presence of chatbots in educational contexts has been steadily increasing over the

past decade. This widespread interest in integrating chatbots into pedagogical scenarios

has driven research highlighting the tangible benefits and promising applications of educa-

tional chatbot technologies. Nonetheless—as illustrated throughout this thesis—designing,

developing, deploying, and evaluating educational chatbots is a complex process that involves

several stakeholders and faces a number of challenges across various dimensions, including

technological, pedagogical, interaction, and design dimensions. To help address some of these

challenges, the overarching objective of this thesis was to design, implement, and validate a

conceptual framework for integrating conversational agents into domain-specific learning

contexts (O⋆). Our approach toward this objective was incremental.

We started by laying the technological foundations to support the technical solutions that

would be used in our empirical studies with educational chatbots. We then designed the peda-

gogical scenarios in which we embedded these chatbots, specifically focusing on supporting

the code review process in software engineering education. In a series of empirical studies, we

then explored different strategies that educational chatbots could harness in their interactions

with learners. Finally, we investigated how to support collaboration among stakeholders, both

in the conceptual design and in the technical implementation of educational chatbots. To

summarize the work conducted in this thesis, we revisit the diagram illustrated in Figure 13.1,

which was presented in Chapter 1.

As highlighted in Figure 13.1, our review of the research context allowed us to identify research

opportunities at the intersections of the fields of digital education, software engineering,

human-computer interaction (HCI), and artificial intelligence (AI). This review highlighted

opportunities to study the integration of educational chatbots into learning experience plat-

forms (LXPs) (RO1), develop tools to support software engineering education (RO2), create

models to guide a chatbot’s design (RO3), and incorporate the functionalities offered by large

language models (LLMs) in the design of educational chatbots (RO4). In turn, addressing

these opportunities informed our problem statement, which identified a lack of conceptual

and technical design tools for integrating educational chatbots into domain-specific learning
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contexts. With this problem statement in mind, we formulated the following overarching

research question:

• How can we guide the integration of conversational agents into domain-specific learning

contexts? (RQ⋆)

To approach this overarching research question, we broke it down into four—more focused—

research questions, each addressing a different set of challenges that we had identified in the

literature.

• Technological Challenges: How can we facilitate the development of the tools required

to integrate chatbots into LXPs? (RQ1)

• Pedagogical Challenges: How can we scaffold pedagogical scenarios suitable for educa-

tional chatbots? (RQ2)

• Interaction Challenges: How can we equip educational chatbots with effective interac-

tion strategies? (RQ3)

• Design Challenges: How can we support the collaborative design of educational chat-

bots? (RQ4)

Tackling each of these questions in order to support educational chatbot design constitutes

the overarching contribution put forth in this thesis:

• A conceptual framework for integrating task-oriented conversational agents into digital

education platforms. (C⋆)

Guided by our research questions, our framework captures four dimensions of educational

chatbot design: (i) technological foundations, (ii) pedagogical scenarios, (iii) interaction strate-

gies, and (iv) design processes. Within each dimension, our framework features one or more

individual contributions. In the following section, we summarize these contributions, out-

line how they address their respective research question, and link them to our overarching

conceptual framework.

13.1 Contributions

Our overarching contribution—as mentioned above—is a conceptual framework for integrat-

ing task-oriented conversational agents into digital education platforms. This overarching

contribution comprised seven individual contributions that together constitute the frame-

work. As a whole, our framework is a complex design object covering the aforementioned four
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dimensions of educational chatbot design. Each of these dimensions was addressed in its

corresponding part of this thesis. In this section, we review our individual contributions and

specify how they are connected and related to our overarching contribution.

13.1.1 Technological Foundations

We started in Part I of this thesis by addressing technological challenges through our first

research question: How can we facilitate the development of the tools required to integrate

chatbots into LXPs? Our approach to this question resulted in two contributions: (i) an

application development architecture (ADA) to support the implementation of apps that

can be integrated into LXPs (C1) and (ii) an end-to-end LA pipeline to support the full data

management cycle for research in education (C2).

The ADA defined key components and a software engineering process to facilitate the de-

velopment of apps specifically aimed at deployment within a digital learning environment.

We validated this architecture through the proof-of-concept implementation of the Graasp

ADK, which we then evaluated by conducting semi-structured interviews with 12 developers

who used the ADK to create apps for education (Chapter 2). Moreover, we used the Graasp

ADK to develop the apps used in our empirical evaluations, including those designed to host

educational chatbots.

The LA pipeline was aimed at supporting open research in education. The pipeline’s architec-

ture defined five stages to structure how data generated by educational platforms should be

captured, visualized, extracted, and anonymized. We validated the pipeline through a proof-

of-concept implementation on Graasp (Chapter 3). Throughout this thesis, we employed the

features implemented in our proof of concept to collect, extract, and manage the data used in

our analyses.

To answer our first research question: we can facilitate the development of the tools required to

integrate chatbots into LXPs through standard architectures to support developers in creating

apps that can host educational chatbots and pipelines that can help manage the data required

to power and evaluate these chatbots.

13.1.2 Pedagogical Scenarios

In Part II of this thesis, we addressed pedagogical challenges through our second research

question: How can we scaffold pedagogical scenarios suitable for educational chatbots? Our

approach to this question resulted in two contributions: (i) the integrated computational

notebook template to provide browser-based computational notebook solutions within digital

education platforms (C3) and (ii) the code review notebook template to simulate social coding

platforms in educational contexts (C4).

The integrated computational notebook template aimed to make computational notebooks
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more accessible for less technical learners and educators by supporting technopedagogical

scenarios that are fully encapsulated within digital education platforms. Integrated compu-

tational notebooks center around Code, an app that leverages the Pyodide library to execute

Python directly on the browser without any additional dependencies. We validated this tem-

plate in an eight-week computational thinking course comprising 67 university students

(Chapter 4). We also used integrated computational notebooks to embed and evaluate educa-

tional chatbots following rule-based scripts (Chapter 9).

The code review notebook template resembles a computational notebook but focuses on

reviewing and annotating code, and can guide educators in creating technopedagogical

scenarios for teaching subjects related to programming education through the use of the

code review process. Code review notebooks center around Code Review, an app focused

on introducing learners to the code review process. We validated this template through a

case study comprising an online lesson on code quality standards completed by 25 university

students (Chapter 5). Furthermore, we used code review notebooks to evaluate educational

chatbots supported by the Wizard of Oz technique (Chapter 8) and by LLMs (Chapter 10).

To answer our second research question, we can scaffold pedagogical scenarios suitable for

educational chatbots by designing templates that are informed by how chatbots are used

in industry and feature apps that can host the interactions chatbots will have with learners.

Educators can then use these templates to guide the design of technopedagogical scenarios

that best fit their teaching practices.

13.1.3 Interaction Strategies

In Part III of this thesis, we addressed interaction challenges through our third research

question: How can we equip educational chatbots with effective interaction strategies? Our

approach to this question resulted in one contribution comprising five different strategies

that could be used to configure how educational chatbots interact with learners (C5). These

strategies addressed both the content (humor, emoji) and mechanisms (Wizard of Oz, rule-

based scripts, LLMs) shaping the interactions between learners and chatbots in educational

settings.

The first strategy consisted in equipping chatbots with a way of exploiting humor arising

from ambiguity or incongruity. We evaluated this strategy through an online experiment

with 400 participants to explore the use of a chatbot to harness such humor (Chapter 6).

Findings from this experiment suggested that chatbots could indeed harness humor from

ambiguous grammatical constructs to strengthen anthropomorphic perceptions of traits such

as personality and friendliness.

The second strategy involved incorporating an emoji interface through which learners could

potentially signal their reaction to a particular comment from a chatbot. To understand the

effect that this strategy could have, we conducted an observational study comprising over 54

225



Chapter 13. Conclusion

million GitHub comments (Chapter 7). Our analysis showed that some reaction types are not

equally distributed across human and bot comments and that a chatbot’s design and purpose

influence the types of reactions it receives.

The third strategy explored the effects of impersonating educational chatbots following the

Wizard of Oz technique. We evaluated this strategy in a controlled in-class experiment com-

prising 30 undergraduate software engineering students (Chapter 8). On the one hand, our

quantitative analysis did not yield significant differences between conditions for any of the

aspects considered. On the other hand, our qualitative results suggested that students expect

explicit feedback and could benefit from automated replies provided by an interactive chatbot.

We started our exploration of dynamic interactivity through a fourth strategy involving rule-

based scripts. We evaluated this strategy through a controlled experiment conducted with 97

students as part of the five-week Python programming component of a 14-week information

technology course (Chapter 9). Findings from our experiment showed that while the chatbot

did not lead to differences in short-term learning gains or perceived relevance of the lesson, it

did improve usability.

A final strategy involved furnishing educational chatbots with the ability to generate their

responses using LLMs. To equip educational chatbots with this strategy, we proposed (i) a

technical architecture to integrate LLM-powered chatbots into LXPs and (ii) a configuration

model to help educators define how these chatbots should interact (Chapter 10). We vali-

dated our proposals and evaluated this strategy in a controlled experiment with 26 university

software engineering students. Although we did not find any significant differences between

the treatment and control conditions, our results suggested that integrating an educational

chatbot powered by an LLM could improve usability and help engage students to reflect on

their learning.

To answer our third research question: we can equip educational chatbots with a wide variety

of interaction strategies. Nevertheless, the effectiveness of these strategies depends on the

pedagogical scenario in which they are embedded and on the aspects and metrics used to

evaluate the impact of these strategies. Educators and researchers in education should aim

to investigate interaction strategies of interest by conducting studies similar to the empirical

evaluations presented in Part III of this thesis.

13.1.4 Design Processes

Finally, in Part IV of this thesis, we addressed design challenges through our fourth research

question: How can we support the collaborative design of educational chatbots? Our approach

to this question resulted in two contributions: (i) the TRACE model to guide the participatory

design of educational chatbots (C6) and (ii) a technical blueprint for a system that facilitates

the integration of chatbots into digital learning applications (C7).

The TRACE model serves to structure participatory design sessions in which different stake-
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holders can collaborate on the design of educational chatbots. The model first defines five

components that are essential for structuring a chatbot’s integration into a learning activity

and then outlines a procedure for how the co-design process should unfold, assigning specific

tasks to each of the stakeholders involved. We validated this model through two pilot studies

and an illustrative case study in which 25 students enrolled in a course on software design

took part in a participatory design workshop to ideate an educational chatbot (Chapter 11).

The blueprint outlines an architecture specifically aimed at integrating chatbots into edu-

cational contexts, defining the key building blocks, components, and processes that make

up an interaction between a learner and an educational chatbot. This blueprint also serves

to translate the conceptual outcomes of design processes into tangible software solutions.

To validate our blueprint, we used it to develop a proof-of-concept implementation of Text

Analysis, an app designed to support integrating educational chatbots into a wide range of

pedagogical scenarios involving text snippets (Chapter 12).

To answer our fourth research question: we can support the collaborative design of educational

chatbots by providing stakeholders with conceptual models and technical blueprints that can

guide participatory design processes and support the implementation of outcomes from these

processes.

13.1.5 Conceptual Framework

To unify the findings from each of these dimensions and link them to our conceptual frame-

work, we revisit our overarching research question: How can a conceptual framework guide

the integration of conversational agents into domain-specific learning contexts?

As mentioned in Chapter 1, a crucial problem that emerges when attempting to integrate

chatbots into digital education platforms is how to address the challenges limiting the design,

development, deployment, and evaluation of these chatbots holistically and in a way that sat-

isfies the needs of all stakeholders involved. We propose our conceptual framework as a guide

to address this problem. Our objective is not to require the involvement of all stakeholders in

every single dimension of the framework but to increase awareness and collaboration, and

provide bridges between the contributions encapsulated in the different dimensions. Given

this objective, our conceptual framework can be visualized as shown in Figure 13.2.

As illustrated in Figure 13.2, the first three dimensions covered in this thesis define the outline

of our conceptual framework. Technological foundations and pedagogical scenarios define

the base, as these two dimensions together provide the context that will host the educational

chatbots. This base is primarily defined by the developers and educators designing and imple-

menting educational technologies. At the top of our model, we place interaction strategies,

which are contingent on the affordances and features provided by this base. Interaction strate-

gies are particularly important, as they define how learners will interact with the chatbot and

are therefore the most user-facing of these three dimensions. Finally, to bridge these three
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Figure 13.2: A Visual Representation of Our Conceptual Framework

dimensions, our framework emphasizes the role played by the design processes underpinning

collaborative practices, which constitute a fourth and central dimension. Both conceptual

models—such as TRACE—and technical architectures—such as the blueprint presented in

Chapter 12—can serve to create a common vocabulary and a landscape of collaboration

between the different stakeholders and across the other dimensions of our framework.

Taking the TRACE model as an example, educators looking to integrate chatbots into a par-

ticular pedagogical scenario can frame the discussions of participatory design workshops by

defining learning tasks based on these pedagogical scenarios. At the other end of the model,

how learners envision the exchanges that they will be having with a chatbot can inform the

choice of interaction strategies with which to equip an educational chatbot. Similarly, the

ability to translate the outcomes of design sessions into software solutions through technical

architectures well-adapted to educational chatbots can help developers in the implementation

of those outcomes.

The importance of these models and architectures is even more evident when domain-specific

knowledge decisions have to be designed and implemented by different stakeholders. For

instance, both educators and developers need to understand how a chatbot’s function (e.g.,

linter, highlighter) should operate on a learning resource (e.g., code snippet, documentation)

in order to ensure that outcomes from this function identify the concepts that will guide the

interactions that the chatbot will support, which in turn should be related to the learning task
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at hand.

To conclude, the core outcome of this thesis posits that the process of integrating educational

chatbots into digital learning platforms can benefit greatly from the scaffolding provided

by our conceptual framework. That is—to answer RQ⋆—our conceptual framework can

support the collaborative design of the technical architectures, pedagogical scenarios, and

interaction strategies required to efficiently integrate chatbots into educational contexts. This

collaborative design is mediated by models and blueprints that teams of stakeholders can use

to guide and translate the results of design sessions into technical solutions.

This framework is by no means final. While we proposed and validated a variety of models,

architectures, strategies, and apps that give our conceptual framework its current form, other

design artifacts could be generated and incorporated into the framework. Exploring how to

consolidate and extend our framework will be the subject of future work.

13.2 Limitations and Future Work

Throughout this thesis, we have highlighted the different limitations that might have affected

our research. These limitations were mentioned at the end of each chapter. In this section, we

identify general limitations that could have hindered the reliability and generalizability of our

findings and chart possible future lines of research to address these limitations and build on

the work conducted in this thesis.

One limitation of our work that spanned our empirical field studies concerns the number of

students who participated in our experiments. While our field studies aimed to maximize

ecological validity by taking place within formal education settings, the sample size of the

cohorts of students might have limited our ability to identify significant differences between

the treatments we tested. This was particularly the case for our experiments with Wizard of

Oz and LLM-powered chatbots (30 and 26 students, respectively). Even in the case where

the overall sample size was relatively large (97 students for the controlled experiment with

rule-based chatbots), the fact that the interactions were optional diminished participation

(only 65 students accessed all of the exercises and only 25 students completed the post-test),

possibly resulting in sample bias and limiting the interpretability of our results. Although we

addressed some of these shortcomings incrementally throughout the thesis, revisiting our

experimental design could help consolidate our findings in future work.

A second limitation is our focus on software engineering education and specifically on the code

review process. As motivated in Chapter 1, carrying out our work in the context of software

engineering education allowed us to explore pedagogical scenarios that were based on how

users interact with chatbots in real-world contexts (e.g., social coding platforms). Nevertheless,

results obtained in software engineering settings may have limited applicability outside of

this domain. While we attempted to address this limitation by conducting studies with

both technical (e.g., software engineering) and nontechnical (e.g., business and economics)
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students, most of our empirical evaluations were framed by the use of code review notebooks.

Broadening our investigations to cover other educational domains and pedagogical scenarios

could help us understand the generalizability of our framework.

Another limitation arises from our use of one LXP. Our work centered on the use of Graasp.

As mentioned in Chapter 2, Graasp was identified as an appropriate educational platform

on which to scaffold our technological environment and carry out our empirical studies.

Nevertheless, the fact that our models, architectures, pipelines, and apps were all implemented

on Graasp limits our ability to understand the generalizability of these design artifacts to other

LXPs. To address this limitation, we could (i) explore the portability of the artifacts designed

in this thesis to other platforms and (ii) conduct reproducibility studies that would aim to

create new implementations of our models and architectures within other digital education

platforms.

A factor that possibly limited our ability to achieve significant results was our choice of

instrumentation. Our empirical work focused on assessing the learning experience, which

we characterized with aspects such as learning gains, engagement, usability, self-reflection,

perceived relevance, and feedback. To operationalize some of these aspects, we employed

standard instruments (e.g., usability), while for others, we used custom metrics (e.g., learning

gains), qualitative responses (e.g., self-reflection, feedback), individual Likert scales (e.g.,

perceived relevance), or criteria based on learning analytics (e.g., engagement). Improving our

methodology by adopting—or developing—instruments designed specifically for the study of

educational chatbots could enhance our ability to conduct analyses and draw more concrete

conclusions from our quantitative and qualitative data.

Finally, while we collaborated closely with professors and teaching staff at the École Polytech-

nique Fédérale de Lausanne, the University of Neuchâtel, and the School of Engineering and

Architecture of Fribourg, we did not explicitly investigate the needs of educators outside of

these institutions. Indeed, our evaluations focused on developers and learners. Conducting

evaluations specifically aimed at educators would serve to further examine the validity of our

conceptual framework.

The development of our conceptual framework and the contributions comprised therein also

provide a solid starting point for future explorations with conversational agents. Other promis-

ing research directions include examining the applicability of our conceptual framework to

domains outside of education, such as the development of chatbots aimed at healthcare or

customer service. Similarly, investigations targeting the design, development, and evaluation

of other interaction strategies (e.g., speech-based) and types of agents (e.g., embodied, physi-

cal) could also be explored using our framework. Moreover, assessing the effects of interacting

with these agents on factors captured through other modalities—such as physiological signals

or neuroimaging data—could deepen our understanding of how educational chatbots can

affect the learning experience. We aim to address the aforementioned limitations and pursue

these research opportunities in future work.
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