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I’m a scientist; because I invent, transform, create, and destroy for a living,

and when I don’t like something about the world, I change it.

— Rick Sanchez

Nobody exists on purpose.

Nobody belongs anywhere.

We’re all going to die.

Come watch TV.

— Morty Smith
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Abstract

Abstractive summarization has seen big improvements in recent years, mostly due to advances

in neural language modeling, language model pretraining, and scaling models and datasets.

While large language models generate summaries that are fluent, coherent, and integrate the

salient information from the source document well, there are still a few challenges. Most

importantly, information that is either not supported by the source document (hallucinations)

or factually inaccurate finds its way into the machine-written summaries. Moreover, and

connected to this first point, knowledge retrieval and summary generation happen implicitly,

which leads to a lack of interpretability and controllability of the models.

In this thesis, we contribute to solving these problems by working on making the summariza-

tion process more interpretable, faithful, and controllable. The thesis consists of two parts. In

Part I, we learn interpretable representations that help with summary structure, faithfulness,

and document understanding. First, we plan summary content at the sentence level, building

a next sentence representation from the summary generated so far. Second, we integrate an

entailment interpretation into standard text-encoding neural network architectures. In the

last chapter of the first part, we use multiple object discovery methods from computer vision

to identify semantic text units that should facilitate the extraction of salient information from

source documents.

In Part II, we turn to the evaluation of summarization models, and also contribute annotated

resources for our tasks. We start by using the attentions and probability estimates during sum-

mary generation to identify hallucinations. We then apply summarization models in a novel

semi-structured setting, where the model is asked to generate an interpretation from a long

source document. For this novel task, we develop an evaluation technique that allows efficient

contrastive evaluation of generative models with respect to user-specified distinctions.

Keywords: abstractive summarization, text summarization, representation learning, inter-

pretability, hallucination detection, text generation, evaluation, datasets, natural language

understanding, natural language processing.
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Zusammenfassung

Das Generieren von abstrahierten Zusammenfassungen hat in den letzten Jahren grosse

Fortschritte gemacht, insbesondere durch verbesserte neuronale Sprachmodellierung, das

Vortrainieren von Sprachmodellen, und das Skalieren von Modellen und Datensätzen. Gros-

se Sprachmodelle schreiben flüssig lesbare Zusammenfassungen, die kohärent sind und

die wichtigen Informationen eines Ursprungsdokuments beinhalten. Aber es gibt weiterhin

Herausforderungen. Immer wieder finden Informationen, die entweder nicht vom Ursprungs-

dokument abgeleitet werden können (Halluzinationen), oder gar falsch sind, ihren Weg in die

Zusammenfassung. Eng verbunden mit diesem Punkt ist die fehlende Interpretationsmöglich-

keit und Kontrollierbarkeit von Modellen. Sie entstehen, weil die Modelle sowohl das Abrufen

von gelerntem Wissen als auch das Schreiben der Zusammenfassung implizit vornehmen.

In dieser Doktorarbeit tragen wir zur Lösung dieser Probleme bei, indem wir die Erstellung

von Zusammenfassungen interpretierbarer, inhaltsgetreuer und kontrollierbarer machen.

Die Arbeit besteht aus zwei Teilen. Wir beginnen den ersten Teil mit dem Erstellen eines

Plans für die Zusammenfassung auf der Satzebene, indem wir eine Repräsentation für den

nächsten Satz generieren, die auf der bisher erstellten Zusammenfassung beruht. Dann in-

terpretieren wir die Repräsentationen von gängigen neuronalen Netzwerken als Vektoren,

die Entailment-Beziehungen abbilden, und testen die daraus resultierenden Konsequenzen

für die Anpassung der Netzwerkarchitekturen. Im letzten Kapitel des ersten Teils nutzen wir

verschieden Methoden zur Beschreibung von Objekten, die im Feld der automatischen Bild-

bearbeitung entstanden sind. Mit ihnen wollen wir semantische Textbausteine identifizieren,

welche das Extrahieren von wichtigen Informationen erleichtern sollen.

Im zweiten Teil wenden wir uns der Evaluierung von existierenden Modellen zu, und veröf-

fentlichen zu diesem Zweck mehrere annotierte Datensätze. Im ersten Kapitel des zweiten

Teils verwenden wir die Gewichte des Aufmerksamkeits-Mechanismus sowie die Wahrschein-

lichkeitsverteilung über das nächste Wort zum Erkennen von möglichen Halluzinationen.

Danach wenden wir Zusammenfassungs-Modelle auf ein neues Szenario an, in dem sie eine

Interpretation eines langen Ursprungsdokuments erstellen sollen. Für diese neue Aufgabe

entwickeln wir eine Evaluierung, die es uns ermöglicht, ein Modell auf effiziente Weise auf die

Fähigkeit zur Unterscheidung von Benutzer-spezifizierten Kategorien zu testen.

Schlüsselwörter: Abstrahierte Zusammenfassung, Text-Zusammenfassung, Lernen von Re-

präsentationen, Interpretierbarkeit, Entdeckung von Halluzinationen, Text-Generierung, Eva-

luation, Datensätze, Verständnis natürlicher Sprache, Verarbeiten natürlicher Sprache.
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1 Introduction

In this introduction, we motivate this thesis from multiple points of view. First, we take a

historical perspective, quickly surveying the developments in the field of NLP. Then, we view

it from a technical angle by connecting the individual steps a summarization model has to

perform with our chapters. Next, we highlight our contributions to the area of summarization

and the broader field of natural language generation that we make in this thesis. We finish by

giving an overview of the chapters that this thesis comprises.

1.1 Historical Context

Abstractive summarization in its basic form is the task of generating a summary given a source

document. Performance on the task has increased dramatically in recent years and now is at a

point where summaries are typically of high quality. Nevertheless, some error modes remain,

especially concerning hallucinated content, i.e. pieces of information in the summary that are

not supported by the source document.

1.1.1 The Beginning of Deep Learning in NLP

In natural language processing (NLP), neural networks are the most widely used class of

models that are employed to produce summaries. One specific architecture has come to

dominate not just the task of summarization. It is called the Transformer (Vaswani et al.,

2017), and processes the input units, typically byte-pair encoding (BPE) (Sennrich et al., 2016)

tokens, across many layers, refining the representation of each input token in the context of

the remaining tokens. The increasing number of processing layers has given this branch of

machine learning its name, deep learning. Achieving its breakthrough in computer vision in

2013 (Krizhevsky et al., 2012), it also picked up steam in NLP soon after. The first popular

architectures were based on recurrent neural networks (RNN) (Rumelhart et al., 1986). The

introduction of attention in 2015 brought the field a step forward (Bahdanau et al., 2015). In

2017, the Transformer architecture was introduced and has since taken the top spot from
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RNNs as the most used neural network architecture to process language.

1.1.2 Advances in NLP During the Thesis

The period of the thesis was an exciting time to work in NLP. When I started my thesis in

November 2018, the Transformer had been around for a year and it became clear that it was

a powerful model that challenged the state of the art in all areas of NLP. Just when the thesis

started, BERT (Devlin et al., 2019) appeared and revolutionized NLP by beating specialized

state-of-the-art models in a variety of natural language understanding tasks, as measured

on the General Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018a).

After the successes of pretraining a Transformer encoder for text classification, pretraining

the decoder for text generation was a natural next step. Two variants emerged. Decoder-

only models, as in the GPT series (Radford et al., 2018, 2019; Brown et al., 2020), just employ

a Transformer decoder, while the full model is used by jointly pretrained encoder-decoder

models (BART, Lewis et al., 2020; PEGASUS, Zhang et al., 2020a; T5, Raffel et al., 2020). Datasets

grew steadily, but more than anything else, the model sizes exploded. While the largest version

of T5 consists of 11B parameters, GPT-3 has 175B and the Megatron-Turing NLG (Smith et al.,

2022) and PaLM models (Chowdhery et al., 2022) have 530B and 540B, respectively. These

large language models (LLM) opened up an interesting operation mode. For some tasks, no

further training was necessary, and the knowledge learned during pretraining could be queried

either directly (zero-shot) or by providing a few examples as context first (few-shot). Providing

examples as context preceding the actual query has also been called in-context learning, due

to LLMs seemingly adapting to the task and format of the context. Naturally, different forms of

querying the model (also called prompting) have emerged, and prompt engineering tries to

find the best possible way to query LLMs. For reasoning tasks, the currently best working query

mode is called chain-of-thought prompting (Wei et al., 2022), where the few-shot examples

come together with a textual description of the reasoning steps to arrive at the solution. LLMs

can also be finetuned to understand different prompt forms, such as instructions (Ouyang

et al., 2022). Finetuning encoder-decoder models still provides the best results on language

understanding tasks with plenty of supervised data (Tay et al., 2022), but the capabilities of

decoder-only LLMs become more and more impressive (see Section 2.6). It will be exciting to

see where NLP research will venture next.

Having said that, this period was also filled with uncertainties and new challenges for re-

searchers. At which point should one abandon the proven approaches and adopt the new

paradigms? Will reviewers still consider publications that did not include the Transformer,

pretraining, or large language models? In a time where the state of the art was dominated

by scaling dataset, compute, and model size, how can one compete without the necessary

resources? And if one decides not to chase leaderboard scores, would results from smaller mod-

els stay relevant when they cannot be tested on the large models that were kept a company’s

secret, for justified economic reasons?
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At the same time, scaling the models made it harder to understand the contributions of the

individual parts of a neural network’s architecture. Different studies reached their best results

with different components (e.g. activation functions), and while these still had an impact

on the final performance, other factors such as the depth of the network, the amount of

data (Brown et al., 2020), or the number of training steps (Hoffmann et al., 2022) had a bigger

impact. Consequently, the field as a whole moved away from tweaking architectures; almost all

current studies use the Transformer architecture, a general method that effectively leverages

computation (Sutton, 2019).

This thesis is a reflection of the developments in the field. Neural network architecture and

representation learning was arguably the most studied subject in NLP up to the introduc-

tion of pretrained encoder-decoder (Lewis et al., 2020; Raffel et al., 2020) or decoder-only

models (Radford et al., 2018, 2019). Naturally, the thesis concerns itself with representation

learning in Part I. Chronologically, we started the thesis with our work on bringing an entail-

ment interpretation to neural architectures (see Chapter 4). At the time, it was not yet clear

that the Transformer would be the last major architectural innovation for an extended period,

which now has stretched up until the publication of this thesis. We then turned to devise a

special-purpose representation for the decoder (Chapter 3), and afterward to general-purpose

encoder representations (Chapter 5) that could benefit a randomly initialized decoder as well

as the interpretability of summary generation. Towards the end of that project, it became obvi-

ous that pretraining the decoder jointly with the encoder provided large performance benefits.

Changing the internal structure of a pretrained model would only disturb the coordination

between the encoder and decoder that was so carefully built up during pretraining. This was

especially true as models and pretraining datasets became larger and larger. As a result, large

parts of the research community shifted to devising tasks and evaluating models, and so did we

in 2022. In Part II, we analyze the internal representations of BART and utilize them to detect

hallucinations (see Chapter 6). We also employ BART for a novel task and devise an evaluation

that allows evaluating language models in precisely defined scenarios. Personally, I see a lot of

opportunities in this development. As long as researchers and companies continue to openly

discuss and share their trained models (Scao et al., 2022; Zhang et al., 2022a; Touvron et al.,

2023) instead of keeping them under wraps (OpenAI, 2023), more analysis and evaluations will

give us more insight into the strengths and limitations of our language understanding models.

1.2 Motivation

The task of abstractive summarization can be divided into multiple steps. We propose the

following six subtasks that a summarization model should perform (potentially implicitly) to

generate an abstractive summary:

1. Understanding the source document

2. Identifying the salient information

3. Organizing it, recognizing dependencies (e.g. concerning time or entities)

3



Chapter 1. Introduction

4. Selecting which information to include in the summary (potentially depending on the

desired aspect or output length)

5. Planning the summary, for example at the sentence level

6. Writing the summary words in a fluent and grammatical style, with the desired length

In a classic encoder-decoder sequence-to-sequence model, the first three subtasks are typ-

ically the responsibility of the encoder, and the latter three of the decoder (for extractive

summarization, step 4 is the final step, and performed by the classifier).

This thesis addresses all of these subtasks in individual chapters. The only exception is

document understanding (step 1), which is implicitly handled at the pretraining stage of the

models.

• Step 2, identifying salient information, is investigated in Chapter 5, where we try to

unsupervisedly cluster the words of the source document into phrases, and then use an

information bottleneck to only keep salient information.

• Step 3, relating the salient information, is done in Chapter 4, where we learn representa-

tions with an entailment interpretation that let us identify the dependencies between

words in the source document.

• Step 4, the selection of which information to include, is viewed from the perspective

of saliency in Chapter 5. In Chapter 6, the model is evaluated for hallucinations in the

information it copied from different parts of the source document.

• Step 5, summary content planning, is the main focus of Chapter 3. Our hierarchical

decoder predicts a latent sentence representation for the next summary sentence, on

which it conditions the word-by-word generation.

• Step 6, writing the summary, is evaluated in Chapter 6, where uncertainty in the genera-

tion process is used to identify likely hallucinations. In Chapter 7, we predict the aspects

of an interpretation in text form.

With the thesis touching on all of the subtasks of abstractive summarization, we hope to

present a diverse view of the task. Chapter 7 further formulates the task of interpretation

as a step beyond summarization. The models are trained to mimic the human process of

abstraction combined with speculating on the actors’ reasons and motives in the historical

context. We now state our contributions.

1.3 Contributions

This thesis is structured into two parts on interpretable representation learning and evaluation.

In the first part, our goal is to improve the performance and interpretability of summarization

models by introducing inductive biases that let us learn representations for specific subtasks

of summarization. In the second part, we evaluate existing sequence-to-sequence models on

their faithfulness and generation capabilities in well-defined contexts. We put a special focus
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Hierarchical decoder

Encoder 
(shared)

Sentence 
generator

Summary
(so far)

Document
Input

Attention

Conditioning

Next 
word

Encoder 
(shared)

Word 
generator

Figure 1.1: We introduce a hierarchical decoder in the sentence planner, where a sentence
generator predicts an outline for the next summary sentence.

on the efficiency of our evaluations, both in construction and execution. To support further

research, we open-source our code and models. Additionally, we release new evaluation

datasets and an annotated corpus on the interpretation of monetary policy documents.

1.3.1 Interpretable Representation Learning

In Chapter 3, we start by introducing the sentence planner model that uses hierarchy on the

decoder side to predict a continuous sentence representation for the next summary sentence

and then conditions the generation on it (Marfurt and Henderson, 2021). Our model is

shown in Figure 1.1. Integrating hierarchy in the Transformer decoder’s generation process is

nontrivial, and we present an effective conditioning method that outperforms using attention

to the higher-level sentence plan. Our evaluation on the Curation Corpus and CNN/DailyMail

is extensive and includes an attribution analysis, an ablation, and a comparison to the baseline

with an increased number of parameters. Our model consistently produces more abstractive

summaries while retaining high ROUGE scores, two objectives that are in opposition.

In Chapter 4, we adapt the two most common neural network architectures for learning

contextual word embeddings, RNN and Transformer, to generate representations with an

entailment interpretation, according to the entailment vector framework of Henderson and

Popa (2016). We devise a number of architecture changes as inductive biases and evaluate the

entailment representations on natural language inference and language modeling.

The last chapter in Part I, Chapter 5, introduces an ambitious plan for unsupervised clustering

of words into semantic units, phrases that should be of use to general language understanding.

To achieve this, we adapt object discovery and representation algorithms from computer

vision to text. We also devise our own objecter model with adversarial training that minimizes

the mutual information between object representations. We analyze the attention patterns

between different model components to get an understanding of how (and if) the model uses

these semantic text units. Our experiments are comprehensive, evaluating both abstractive

and extractive summarization on the Curation Corpus and CNN/DailyMail.
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Figure 1.2: BART cross-attentions help us identify copied source segments, which we use to
find hallucinations.

Journalist Social 
scientist

Model

Automatic 
conversion

Interpretation Annotated
interpretation

Target
annotation

Source
document

Figure 1.3: In our interpretation task, the model imitates a journalist’s interpretation of a source
document. The relevant details of the interpretation are carefully extracted and annotated by
social scientists.

1.3.2 Evaluation

We start Part II in Chapter 6 with an analysis of BART’s behavior when generating summaries

for CNN/DailyMail (Marfurt and Henderson, 2022). We find that we can use the model-

internal by-products of summary generation (attentions and decoding probabilities) to detect

hallucinations (see Figure 1.2). The detection is very efficient to run since it does not require

training or running an external model. In contrast to prior work, we classify every summary

word and extend the study of hallucinations on the XSum dataset to CNN/DailyMail. We

release two evaluation datasets with word-level annotations to facilitate future research. One

is adapted from a factuality dataset and the other is a product of our human annotation.

In the final chapter of Part II, Chapter 7, we apply sequence-to-sequence models in the novel

setting of interpreting documents (Marfurt et al., 2022). We present a new task, where a

model learns to imitate the interpretation process of a journalist (see Figure 1.3). We release

a carefully annotated corpus on interpreting the monetary policy of the US central bank.
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[REFERENCE START] Last week [REFERENCE END]
, the [ACTOR START] Federal Reserve
[ACTOR END] [ACT START]

left interest rates unchanged (Did not
raise rates) [ACT END]

decided to raise interest rates (Did raise
rates) [ACT END]

Figure 1.4: Equivalence classes evaluation example of an act annotation. The model has to
distinguish the true continuation a(pos) to the prefix yprefix from a distracting continuation
a(neg).

The semi-structured annotations enable a fine-grained evaluation of model generations for

the individual annotation categories. This evaluation technique, called equivalence classes

evaluation, is efficient to construct from a clustering of annotated values by domain experts

(see an example in Figure 1.4). Our evaluation shows that the structure of our annotations

is a natural fit for language models, and allows the models to pick up on important details

even with small training data. This chapter is a product of our interdisciplinary collaboration

with political and economic scientists at the Geneva Graduate Institute and an interesting

showcase of how NLP models could be leveraged for social sciences.

1.4 Structure

After this introductory chapter, we give background information on the task of abstractive

summarization, including an overview of models and methods, evaluation, datasets, and a

review of the state of the art. The main thesis is divided into two parts. In Part I, we experiment

with several ways in which learned representations can improve interpretability and support

summarization models in the various subtasks that they need to solve. In Chapter 3, we devise

a hierarchical decoder that generates a representation for the next summary sentence, based

on the previously generated summary. In Chapter 4, we train and evaluate neural architectures

that output representations with an entailment interpretation. In the final chapter of the first

part, Chapter 5, we use object discovery methods to find semantic text units to improve the

interpretability of summary generation. In Part II, we use by-products of summary generation

to detect hallucinations in Chapter 6. In Chapter 7, we apply summarization models on a novel

task of interpreting policy announcements of the US central bank, and devise an efficient

and fine-grained evaluation of their capabilities for narrowly defined scenarios. Finally, in

Chapter 8, we conclude by summarizing our contributions, suggesting directions for future

work, and reflecting on the limitations and ethical considerations of this thesis.
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2 Background on Summarization

Text summarization is the task of presenting the important information from one or more

documents in less space. It can be tackled from different angles, e.g. according to Radev et al.

(2002):

Extraction is the process of identifying important material in the text, abstraction

the process of reformulating it in novel terms, fusion the process of combining

extracted portions, and compression the process of squeezing out unimportant

material. The need to maintain some degree of grammaticality and coherence

plays a role in all four processes.

Extractive and abstractive summarization are the two main approaches, which we will briefly

survey in the following.

First, however, we start with an overview of deep neural network architectures for natural

language processing.

2.1 Deep Learning in NLP

Quickly after the successes of deep neural networks in computer vision (Krizhevsky et al.,

2012), their popularity in NLP increased as well. In contrast to computer vision, convolutional

neural networks (LeCun et al., 1998) were not the dominant architecture. Instead, recurrent

neural networks (Rumelhart et al., 1986) with their inductive bias for processing sequences

proved to be a good fit for processing language.

2.1.1 Recurrent Neural Networks

Recurrent neural networks process one element of a sequence at each time step t . They

keep a hidden state vector ht with the sequence information up to t . The hidden state is

updated with a combination of information from the current input xt and the previous hidden

9
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state ht−1. The hidden state after the final element of the input sequence is used as the

representation for the entire sequence. A common definition of the network architecture is

the Elman RNN (Elman, 1990):

ht =σ(W xt +Uht−1 +b) (2.1)

with an activation function σ (e.g. the sigmoid function), and learnable weights W , U and bias

b.

A lot of variations of RNN architectures exist. In the following, we present the two most

common, LSTM and GRU.

Long Short-Term Memory (LSTM). The LSTM cell (Hochreiter and Schmidhuber, 1997) is

defined by the following equations at a time step t :

ft =σ(W f xt +U f ht−1 +b f ) (2.2)

it =σ(Wi xt +Ui ht−1 +bi ) (2.3)

ot =σ(Wo xt +Uoht−1 +bo) (2.4)

ct = ft ◦ ct−1 + it ◦ tanh(Wc xt +Uc ht−1 +bc ) (2.5)

ht = ot ◦ tanh(ct ) (2.6)

where ft is the forget gate, it is the input gate, and ot is the output gate. σ is the sigmoid

function, ◦ is the element-wise product, W and U are weight matrices on the input xt and

the previous hidden state ht , respectively, and b are biases. Finally, ct is the cell state that

serves as the memory for the LSTM, whereas ht is the hidden state that is output at time step

t . Various modifications exist, such as coupling the forget and the input gate, or peephole

connections (Gers and Schmidhuber, 2000).

Gated Recurrent Unit (GRU). The Gated Recurrent Unit (Cho et al., 2014b) is an attempt

to simplify the LSTM architecture while keeping its modeling capacity. In a comparison

of character-level languague models, the GRU has even been found to make use of longer

contexts than the LSTM (Madsen, 2019). The GRU is defined by:

zt =σ(Wz xt +Uz ht−1 +bz ) (2.7)

rt =σ(Wr xt +Ur ht−1 +br ) (2.8)

h̃t = tanh(Wh xt +Uh(rt ◦ht−1)+bh) (2.9)

ht = (1− zt )◦ht−1 + zt ◦ h̃t (2.10)

where zt is the update gate and rt the reset gate. In comparison to the LSTM, the cell state and

the output gate have been removed, and the forget and input gate have been coupled in the

update gate zt . The reset gate rt allows select which information of the previous hidden state
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ht−1 to use in the computation of the update h̃t .

2.1.2 Sequence-to-Sequence Models

For text generation tasks (e.g. machine translation, summarization) the goal is to produce

a sequence output for a given input sequence. Sutskever et al. (2014) propose to solve the

task by using two separate networks. One network encodes the input sequence x into a latent

intermediate representation z and therefore is called the encoder. Then, a second network,

the decoder, generates the output sequence ŷ from the intermediate representation z.

z = Encoder(x) (2.11)

ŷ = Decoder(z) (2.12)

Typically, and throughout this thesis, the summary is generated autoregressively by pre-

dicting the next token ŷi based on the latent representation z and the previous tokens

y<i = y1, . . . , yi−1.

ŷi = Decoder(z, y<i ) (2.13)

This setup is generally applicable to all tasks that can be formulated as sequence-to-sequence

transformations. The encoder as well as the decoder can be any neural network. In the original

paper, an LSTM architecture is used for both.

2.1.3 Attention

Since the intermediate representation z is the only information that flows from encoder to

decoder; it is an information bottleneck (Tishby et al., 1999). In text generation tasks, different

output elements require information from different parts of the input. When the capacity

of the representation z is limited, some of that information may be lost. Instead of a single

representation containing all of the information, Bahdanau et al. (2015) propose to compute

a context vector that is specific to each generated output. The context vector ci for decoder

position i is computed as the attention-weighted sum of the encoder outputs (hidden states in

RNNs) h(enc)
j , with input length n. The attention weights αi j between decoder position i and

encoder position j are probabilities computed from the outputs ei j of the attention function

fatt.

ci =
n∑

j=1
αi j h(enc)

j (2.14)

αi j = softmax(ei j ) = exp(ei j )∑n
k=1 exp(ei k )

(2.15)

ei j = fatt

(
h(dec)

i−1 ,h(enc)
j

)
(2.16)
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L

input
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+

+
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position
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Figure 2.1: Transformer encoder architecture. MHA is multi-head attention, FFN is a feed-
forward network, and LN is layer normalization.

For the attention function, additive attention (Equation 2.17) was proposed in the original

paper. The simpler multiplicative attention (Equation 2.18) was also found to give good

results (Luong et al., 2015).

fatt

(
h(dec)

i−1 ,h(enc)
j

)
= v⊤ tanh

(
W h(dec)

i−1 +Uh(enc)
j

)
(2.17)

fatt

(
h(dec)

i−1 ,h(enc)
j

)
= h(dec)

i−1 W h(enc)
j (2.18)

Key-value attention. Separation of concerns is introduced in Daniluk et al. (2017), which

uses the idea to split hidden state dimensions into computation (keys) and memory (values)

from memory networks (Weston et al., 2015). The keys are used to compute the attention

weights αi j , which then get multiplied by the values to compute the context vector.

2.1.4 Transformer

The Transformer (Vaswani et al., 2017) is a neural network architecture based on attention.

Among other innovations, it develops key-value attention into query-key-value attention,

where queries and keys are used to determine the attention weights, and values contain the

data for further processing. The Transformer no longer computes a context vector to update a

hidden state. Instead, the result of the attention computation is the layer’s output.

The Transformer architecture does not possess recurrent parts, making it easier to parallelize.

It was designed for sequence-to-sequence tasks and therefore comprises both an encoder and

a decoder. Figure 2.1 shows the Transformer encoder’s architecture. The boxed area represents

a single Transformer layer, which is stacked L times. The input sequence is embedded as for
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the previous architectures, but since the Transformer does not process the input in sequence,

it needs to know about the input tokens’ positions. The position information is therefore

added to the input embeddings, before being passed to the first layer. Each encoder layer

consists of two sublayers, multi-head attention (MHA) and a feed-forward network (FFN),

which are both equipped with a skip connection and subsequent layer normalization (LN).

We formalize one layer of the Transformer encoder as follows:

al
t = LN(hl−1

t +MHA(hl−1
t )) (2.19)

hl
t = LN(al

t +FFN(al
t )) (2.20)

where t is the current time step, l is the layer, al
t is the output of the attention sublayer, and

hl
t the output of the feed-forward network. We set h0

t = xt for the input to the first attention

sublayer. We further specify the attention sublayer as:

q,k, v = xt W q , xt W k , xt W v (2.21)

qi ,ki , vi = fdivide(q), fdivide(k), fdivide(v) , with 1 ≤ i ≤ H (2.22)

MHAi (qi ,ki , vi ) = softmax

(
qi ki√

dk

)
vi (2.23)

MHA(x) = fmerge(MHAi (qi ,ki , vi )) W +b , with 1 ≤ i ≤ H (2.24)

where q,k, v are the queries, keys, and values, respectively. W {q,k,v} are their projection matri-

ces. fdivide is a function that splits q,k and v along the model dimension d to be processed

by H individual attention heads MHAi . dk = d/H is the resulting dimensionality of the key

(equivalently for q, v). After the per-head attention weights have been computed with dot-

product attention and multiplied with the values, the merge function fmerge concatenates the

results back together, such that MHA(x) ∈ Rd . A final linear layer projects the outputs with

weights W and bias b.

The feed-forward network is a simple 2-layer MLP with a ReLU nonlinearity in between:

FFN(x) = ReLU(xW1 +b1)W2 +b2 (2.25)

where we have weight matrices W{1,2} and biases b{1,2}. The input and output dimensions

are d , but the inner dimension is 4d . For language model pretraining, the GELU activation

function (Hendrycks and Gimpel, 2016) is sometimes used instead of a ReLU (Radford et al.,

2018).

In the Transformer decoder, an additional attention sublayer is inserted. The first sublayer of

multi-head attention (same as Equation 2.19) is also called self-attention, as it only performs

attention on its input sequence. The second attention sublayer, called cross-attention, differs

from self-attention by replacing Equation 2.22. The queries are still constructed from the

previous sublayer’s outputs al
t , but the keys and values come from the last encoder layer
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outputs hL
enc:

q,k, v = al
t W q ,hL

encW k ,hL
encW v (2.26)

The output of cross-attention becomes the input to the feed-forward sublayer (Equation 2.20).

A layer of the Transformer decoder looks as follows:

al
t = LN(hl−1

t +SelfAttention(hl−1
t )) (2.27)

bl
t = LN(al

t +CrossAttention(al
t ,hL

enc)) (2.28)

hl
t = LN(bl

t +FFN(bl
t )) (2.29)

2.2 Extractive Summarization

Before automatic text generation saw big improvements with the introduction of deep neural

networks, extractive summarization was the go-to method for creating acceptable summaries.

In extractive summarization, the task is to select the most important text from the source

document. With a few exceptions, extractive approaches operate at the sentence level.

2.2.1 Inverted Pyramid Method

As we will see in Section 2.5, news summarization is probably the most studied genre of text

summarization. The two main reasons are its usefulness and, maybe even more importantly,

the availability of data. News summarization has its peculiarities, however. For once, certain

topics are over-represented compared to other genres, for example, war, crime, and sports.

Moreover, the articles themselves are written according to the inverted pyramid method. It is

a writing style that puts the most important information at the top of an article, then proceeds

to add content of steadily decreasing importance. The origins of the inverted pyramid method

are found in nineteenth-century American journalism (Pöttker, 2003). The writing style has

important implications for news summarization methods.

2.2.2 Lead Baseline

For a long time, the method of selecting the first n sentences in the news article as the

extractive summary, called the lead strategy, was a hard-to-beat baseline, typically choosing

n = 3. This can be attributed to the inverted pyramid writing style, which defines that the most

important information should come at the beginning of an article. For genres other than news

summarization, this does not necessarily hold.
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2.2.3 Influential Models

In the following, we briefly present some influential extractive summarization models. Early

approaches were based on position in the document, as well as keywords and key phrases (Radev

et al., 2002).

Sentence scoring. A successful early approach represents the sentences in a source docu-

ment as a graph. LexRank (Erkan and Radev, 2004) computes the graph’s adjacency matrix as

the cosine similarity of sentences’ tf-idf scores. They then apply PageRank (Page et al., 1999)

to extract the sentences with the most influence in the graph.

To improve the interpretability of its selection, the model can award each sentence a score per

feature, and then include the highest-scoring ones in its extractive summary. SummaRuN-

Ner (Nallapati et al., 2017) computes scores for saliency (as the alignment of a sentence with

the document), novelty as negative redundancy (the alignment of a sentence with already

selected summary sentences), content, and position.

Hierarchical encoders. Another commonly used technique is to use hierarchical encoders

to compute sentence representations from the representations of their words. SummaRuN-

Ner (Nallapati et al., 2017) and NeuSum (Zhou et al., 2018) both use a bidirectional word-level

RNN whose outputs are pooled and then input to a bidirectional RNN at the sentence level.

A different hierarchical encoder extracts sentence embeddings from their words with a CNN,

followed by an RNN that creates a document embedding (Cheng and Lapata, 2016; Narayan

et al., 2018b). A sentence extractor scores the sentences with an attention-based RNN that

is conditioned on the document representation and the previously labeled sentences. A sen-

tence’s score can predict a rule-based matching to reference summary sentences (Cheng and

Lapata, 2016), or how often it participates in the top-scoring extractive candidate summaries,

according to their ROUGE scores with the reference (Narayan et al., 2018b).

Tree induction. Liu et al. (2019b) induce a dependency discourse tree for a document, which

captures the dependencies between sentences. The root nodes of each dependency tree

constitute the summary. Structured attention is employed on the output of a hierarchical

Transformer encoder (word and sentence level), and that structure is iteratively refined.

Text matching. Extractive summarization has also been cast as a semantic text matching

problem (Zhong et al., 2020). This approach first generates candidate summaries by filtering

the non-salient sentences from the source document and then constructing all possible

combinations for a given maximum number of sentences. Saliency is computed by an external

model, BERTSUMEXT (Liu and Lapata, 2019b). It then computes representations for the source

document and candidate summaries from a pretrained BERT model (Devlin et al., 2019) and
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selects the highest-scoring candidate according to cosine similarity.

2.3 Abstractive Summarization

With better neural text generation models, the quality of abstractive summaries started to

surpass the extractive ones.

2.3.1 Task Definition

Abstractive single-document summarization is a sequence-to-sequence task, where given

an input sequence x one has to predict the target sequence y . The default training setting

is maximum likelihood estimation (MLE). In MLE, the model predicts the most likely next

summary token ŷt from the vocabulary V given the source document x and the previous

tokens y<t = y1, . . . , yt−1:

ŷt = argmax
v∈V

p(v |x, y<t ) (2.30)

During training with teacher forcing (Williams and Zipser, 1989), the previous tokens are

taken from the reference summary. This leads to a discrepancy between the training and

inference modes since in inference the model predicts continuations from its generations.

This phenomenon is known as exposure bias (Ranzato et al., 2016).

The target sequence is supposed to capture the important information of the source document

in a concise text. What is deemed important can be subjective. We now present an information-

theoretic view that tries to formalize importance.

Information-theoretic model of importance. In Peyrard (2019a), importance is defined as a

combination of redundancy, relevance, and informativeness. It assumes that summaries are

built of semantic units ω ∈Ω, which are atomic pieces of information.

The redundancy of a summary S is defined as the maximally possible entropy minus the

summary’s entropy:

Red(S) = Hmax −H(S) (2.31)

With a vocabularyΩ, the maximum entropy Hmax = log |Ω| is independent of the summary S.

We can ignore it when we minimize the summary’s redundancy and write:

Red(S) ∝−H(S) (2.32)

=∑
ωi

PS(ωi ) logPS(ωi ) (2.33)

for the summary’s probability distribution PS over the semantic units ωi .
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The relevance of a summary S to its source document D is defined by the amount of informa-

tion they have in common. This is naturally expressed by the cross-entropy:

Rel(S,D) =−H(S,D) (2.34)

=∑
ωi

PS(ωi ) logPD (ωi ) (2.35)

Relevance and redundancy combined have an interpretation as the KL divergence DKL:

DKL(S,D) = H(S,D)−H(S) (2.36)

∝−Rel(S,D)+Red(S) (2.37)

Thus, by minimizing the KL divergence, we maximize relevance while minimizing redundancy.

For a summary to be informative, we want it to provide us with new information, and therefore

overlap as little as possible with our prior knowledge K . This is again expressed as the cross-

entropy, this time of the summary with the prior knowledge:

Inf(S,K ) = H(S,K ) (2.38)

=−∑
ωi

PS(ωi ) logPK (ωi ) (2.39)

To achieve high informativeness, we want the distributions PS and PK to be different, and

therefore the cross-entropy between them to be high. Whereas redundancy and relevance are

commonly used in the evaluation of summaries, prior knowledge is rarely included.

2.3.2 Influential Models

The vast majority of abstractive summarization models are attention-based sequence-to-

sequence models. Early approaches like Rush et al. (2015) and Nallapati et al. (2016) use an

encoder RNN to process the source text. The decoder then performs attention (Bahdanau

et al., 2015) over the encoder hidden states for every generation step.

Content selection. The pointer mechanism (Vinyals et al., 2015) is used to copy words from

the source document. This is especially helpful for rare words or domain-specific technical

terms. In the pointer-generator network (See et al., 2017), the model computes a probability

for predicting the next output by the generator or copying from the source document. With a

coverage loss, the network avoids repetition by penalizing attention to the same locations in

the source document as in previous decoding steps.

Hierarchical attention. Hierarchical encoders are also commonplace in abstractive sum-

marization. Nallapati et al. (2016) use hierarchical attention in the encoder with a word-

and a sentence-level RNN. The attention weights at the word level are re-weighted by the
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sentence-level attention weights. Celikyilmaz et al. (2018) divide the document into para-

graphs, which are encoded separately by agents. Each agent performs attention within its

paragraph, and the decoder attends to the agents. Gehrmann et al. (2018) first employ a

content selector at the word level to decide which words are candidates for copying. They then

use a pointer-generator network with just the admissible tokens to generate the summary.

Reinforcement learning. Reinforcement learning is a popular method to introduce flexible

auxiliary rewards, sometimes discrete or coming from external metrics, and still retain differ-

entiability for training with gradient descent. The MLE loss can be combined with a reward for

high ROUGE scores to encourage generations that are similar to the reference summary and

reduce exposure bias (Paulus et al., 2018). Auxiliary rewards have also been defined for the

inclusion of salient words and phrases, or entailment of the summary by the source document,

both determined by external classifiers (Pasunuru and Bansal, 2018). In another study, an

extractive filtering network is combined with an abstractive rewriter. The sentences to extract

as well as the rewritten abstractive sentences are compared to the references with ROUGE-L,

which serves as the reward (Chen and Bansal, 2018). A different technique trains a reward

prediction model from human preferences, i.e. a ranking of candidate solutions (Christiano

et al., 2017). The learning model then performs actions and gets rewards directly from the

reward model, without further human interaction. This strategy has been used for book

summarization. The model learns to summarize paragraphs, then recursively combines the

summaries of adjacent texts until a summary for the entire book remains (Wu et al., 2021).

Encoder pretraining. The introduction of the Transformer paired with self-supervised pre-

training on large amounts of text has had a profound impact on the field of natural language

processing. Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,

2019) is a Transformer encoder pretrained on the task of reconstructing masked input tokens.

Liu and Lapata (2019b) initialize their encoder with a pretrained BERT model and the decoder

with a randomly initialized Transformer decoder. They first finetune the encoder on extractive

summarization before finetuning the full model on abstractive summarization.

Joint encoder-decoder pretraining. Jointly pretrained encoder-decoder models perform

especially well on the summarization task, as the model benefits from the language under-

standing capabilities of the encoder and the language generation of the decoder. BART (Lewis

et al., 2020) is pretrained on the task of reconstructing masked input text spans and bringing

shuffled sentences back into their original order. A different pretraining objective is used by

PEGASUS (Zhang et al., 2020a), which reconstructs entire masked sentences. The text-to-text

transfer Transformer (T5) (Raffel et al., 2020) compares different pretraining objectives. It

investigates the type of objective (language modeling, reconstructing masked tokens, un-

shuffling), corruption strategies (masking, replacement, deletion), the rate of corruption as

well as the length of the corrupted span. UL2 (Tay et al., 2022) pretrains on a mixture of
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denoising objectives and activates the relevant mode for a specific downstream task with a

special control token. All of these approaches generate high-quality summaries.

T5 and UL2 also explore scaling up the model parameters. The largest T5 model has 11B

parameters, which arguably started a trend of models growing bigger and bigger. As a result of

scaling, new model capabilities have started to emerge in language models exclusively from

pretraining (Brown et al., 2020).

Zero- and few-shot summarization. Large language models (LLM) are a class of models that

achieve high task performance solely based on their pretraining, without further finetuning

on the specific task under evaluation. In zero-shot evaluation, the model is directly presented

with the example to solve, in the few-shot setting it receives one or more examples of input and

desired output pairs. The phrasing of the input, called the prompt, can have a big impact on

the performance of LLMs (Wei et al., 2022; Suzgun et al., 2022). For abstractive summarization,

instruction tuning (Ouyang et al., 2022) was found to significantly increase summary quality

compared to standard self-supervised pretraining (Zhang et al., 2023).

In Zhang et al. (2023), it is shown that the suboptimal quality of reference summaries negatively

impacts (a) models finetuned on these references, (b) LLMs prompted with them in the few-

shot setting, and (c) automatic reference-based evaluations. We look at evaluations next.

2.4 Evaluation

Properly evaluating summaries is a notoriously difficult problem, for multiple reasons. First

and foremost, no single ground truth summary exists that we could compare candidates to.

If we pick one summary as our canonical ground truth, automatic metrics would have to

perfectly understand and judge the semantic similarity of the candidate with the reference. For

human evaluations, we run into problems of subjectivity, reproducibility, evaluation protocols,

and cost. Unsurprisingly, summarization (and, in general, natural language generation)

evaluation remains an active field of study.

Additional complexities for evaluation are introduced through the sourcing process of our

datasets, where collected references were not necessarily created with the goal of providing a

summary. We will elaborate on these in the description of the respective dataset in Section 2.5.

2.4.1 Automatic Metrics

Compared to human evaluation, automatic evaluation metrics are cheap, fast, and scalable.

Therefore, a multitude of automatic evaluation metrics has been developed. We survey the

most widely used in the following.
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BLEU. Developed for machine translation, BLEU stands for bilingual evaluation under-

study (Papineni et al., 2002). It operates on sentence pairs and compares a candidate to a

reference translation. Evaluation is based on lexical overlap of word n-grams, and typically

BLEU-1 to BLEU-4 are reported (and sometimes averaged). An additional brevity penalty

punishes candidates that are too short compared to the reference.

ROUGE. The standard metric to automatically evaluate summarization systems is Recall-

Oriented Understudy for Gisting Evaluation (ROUGE, Lin, 2004). It measures textual overlap

between the generated candidate and the reference summaries, after tokenization and stem-

ming. There exist multiple variants of ROUGE, but it is common to report unigram and bigram

overlap (ROUGE-1, ROUGE-2), as well as the longest common subsequence (ROUGE-L). Over-

lap computation results in precision P and recall R scores, which are combined with the

harmonic mean into the F1 score, which is usually reported.

F1 = 2PR

P +R
(2.40)

ROUGE was found to prefer longer summaries over shorter ones (Sun et al., 2019). This can

be solved by either comparing only summaries of equal (or similar) length or by normalizing

with a random summary’s score of the same length.

METEOR. Although less frequently used, the Metric for Evaluation of Translation with Ex-

plicit ORdering (METEOR, Banerjee and Lavie, 2005) is sometimes also reported. It combines

unigram precision and recall with subsequence matching. For unigrams, it applies stemming

and matches synonyms. Recall is weighted 9 times higher than precision in its weighted

F-score. A penalty discourages fragmented matches of the subsequences of the reference

summary.

BLEURT. Bilingual Evaluation Understudy with Representations from Transformers (BLEURT,

Sellam et al., 2020) evaluates the quality of a candidate text with respect to a reference. It is

trained in multiple stages to eventually predict human ratings. Starting from a pretrained

BERT model, it then trains on synthetic sentence pairs before being finetuned to predict

human annotations from the WMT Metrics shared task of the years 2017 to 2019.

BERTScore. BERTScore (Zhang et al., 2020b) is a semantic similarity metric between candi-

date and reference summary. It uses a pretrained BERT (Devlin et al., 2019) or RoBERTa (Liu

et al., 2019a) model to obtain contextual representations for each input token, then constructs

a cosine similarity matrix between each token of the candidate and reference. From the simi-

larity matrix one can compute precision (as the highest similarity for each candidate token)

and recall (highest similarity per reference token). The F1 score computed from precision

and recall is the output BERTScore. If multiple references are present, the authors propose to
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report the maximum BERTScore to any one of them.

BARTScore. As can be told from the name, BARTScore (Yuan et al., 2021) is using a pre-

trained BART model (Lewis et al., 2020) to evaluate natural language generations. BARTScore

computes the log probability of a text, conditioned on a different text. It can thereby compute

faithfulness (probability of summary given source document), precision (probability of sum-

mary given reference), and recall (probability of reference given summary). The latter two can

again be combined into an F1 score for semantic similarity.

Novel n-grams. The fraction of novel n-grams in the summary that do not appear in the

source document measures its abstractiveness. It is most common to use n = 2 and report the

fraction of novel bigrams, as unigrams are often too noisy (they include accidental matches),

and for n > 2 the number of partial matches increases and is not accounted for.

Extractive fragments. Grusky et al. (2018) define extractive fragments as the shared se-

quences between summary and source document. They are greedily determined by stepping

through the summary and finding the longest matching sequence in the source text if such

a match exists for the current summary token. They compute two measures from the set

of extractive fragments. Extractive fragment coverage is the fraction of words that are part

of an extractive fragment, similar to novel n-grams above. Extractive fragment density is a

measure for the length of the extractive fragments. It is the sum of quadratic lengths, divided

by the number of summary tokens. Thus, it is disproportionally impacted by long extractive

fragments.

Compression ratio. A straightforward summarization metric is the compression ratio, which

divides the number of words in the source document by the words in the summary (Grusky

et al., 2018).

Problems with Automatic Evaluation

Several problems with automatic evaluation methods exist. First, as already mentioned, there

is no canonical summary for a source document. Many good summaries can be written, and

humans may disagree on what the best summary is. Second, reference-based metrics depend

on good reference summaries. The comparison to a reference with low coherence (CNN/Dai-

lyMail) or hallucinations (XSum) will underestimate the quality of good model summaries.

Third, some metrics are based on the surface forms instead of the semantic meaning of a sen-

tence. ROUGE tries to alleviate this by stemming, METEOR by taking synonyms into account.

However, there remain many ways to express the same concepts using different words that

are not synonyms. Fourth, methods such as BERTScore and BARTScore capture semantic

meaning with a model-based approach, but the semantic similarity they measure can only
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ever be as good as the model they use. The proxy target for a summarization model becomes

to get good scores by the evaluation model, not to generate a good summary. Fifth, these

metrics are vulnerable to being exploited by methods that choose to optimize them without

consideration for the summary’s quality or readability. There are even methods that directly

optimize these metrics during training with reinforcement learning – since they are otherwise

non-differentiable. Sixth, prior work has found that the metrics currently in use have been

designed for a scoring range that is below what current models achieve (Peyrard, 2019b). As a

result, the metrics are not well calibrated at higher scores. They disagree on the summaries

produced by the current state-of-the-art models and should be re-calibrated. Finally, the best

choice of automatic evaluation metric (as measured by correlation with human judgments)

can vary between datasets (Bhandari et al., 2020).

2.4.2 Human Evaluation

In light of all these shortcomings of automatic evaluation, human evaluation is still the

gold standard of summarization evaluation. There are many qualities that can be evaluated

separately by asking humans to rate them in a given summary.

Human Evaluation Dimensions

For the dimensions of human evaluation, change is the only constant. As summarization

models have improved over time, previously used criteria have become obsolete, and new ones

have been added. Consequently, there is no standard set of dimensions along which studies

evaluate, not even those that are conducted at the same time. Nevertheless, the Document

Understanding Conferences (DUC) of the years 2004 and 2005 have contributed to at least

some standardization of evaluation criteria and their definition. In DUC 2004 (Over and Yen,

2004), questions for grammaticality, referential clarity, redundancy (repetition), conciseness,

and coherence as posed. In DUC 2005 (Dang, 2005), conciseness is removed but focus is added.

More recently, several studies propose to use the four dimensions of coherence, consistency,

fluency, and relevance (Kryscinski et al., 2019; Fabbri et al., 2021).

Grammaticality. Grammatical summaries should not include bad formatting, capitalization,

or grammatical errors. In the DUC guidelines, grammaticality is linked to fluency in that

ungrammatical summaries are mentioned to be hard to read.

Referential clarity. The reader should be able to identify who or what nouns and pronouns

refer to. Additionally, an entity’s relation to the rest of the summary should be clear.

Redundancy. Sometimes also termed repetition, or framed as non-redundancy (so higher

scores are better), this criterion evaluates if words and phrases appear multiple times in
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summaries. This is closely related to a language model’s tendency to get stuck in generating

repetitions (Holtzman et al., 2020).

Conciseness. Conciseness measures how succinct, or to the point, the important informa-

tion is conveyed. Typically, it is synonymous with a shorter summary length. It thus has

connections to the compression ratio from Grusky et al. (2018).

Coherence. A well-structured and well-organized summary achieves high coherence. The

individual summary sentences should build on each other and collectively make sense, instead

of being a series of unconnected facts. Due to their construction, CNN/DailyMail reference

summaries score low on coherence (see Section 2.5.1).

Focus. The entire summary should talk about a specific event, and not move from topic to

topic. This criterion is related to coherence, but the two nevertheless appeared as separate

evaluation dimensions in DUC 2005.

Consistency. A good summary should be consistent, and neither contradict the source

document nor itself. This criterion also prohibits hallucinations, i.e. summary content that is

not supported by the source document.

Fluency. Fluency mostly evaluates the readability of text, which is also influenced by gram-

maticality. Fluency is sometimes understood a bit more generally, as it can also penalize text

that is grammatical but does not flow nicely or contains uncommon words. In Zhang et al.

(2023), fluency is no longer used as an evaluation criterion. The authors argue that all current

models are mostly fluent, and it is no longer useful to evaluate.

Relevance. Sometimes also termed informativeness, relevance measures if only the impor-

tant information from the source document is included in the summary.

Coverage. With coverage, we measure how much of the important information in the source

document was reproduced in the summary. If relevance is important information’s precision,

coverage is its recall.

Abstractiveness. The more abstractive a summary is, the less it copies from the source

document and instead rephrases the information in novel terms. It is debatable whether this

in itself is a desirable property of a summary, but it certainly allows for summarizing certain

information more concisely.
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Faithfulness. Faithfulness determines whether the summary can be inferred from the source

document. If a statement cannot be inferred, we call it a hallucination. Hallucinations can

either occur when information from the source document has been combined in the wrong

way, or when information not present in the source document is generated.

Factuality. Factuality measures the amount of information in a summary that is factually

correct. This is different from faithfulness. A fact can be hallucinated when it is not present in

the source document, but it can still be factually accurate. With pretrained language models,

this is often the case, as factually correct world knowledge has been obtained by the model

during pretraining and enters summary generation.

Problems with Human Evaluation

The motivation for automatic evaluation is also the most obvious limitation of human eval-

uation: it is expensive, time-consuming, and not easily scaled when controlling for quality,

even with modern crowd-sourcing platforms. The literature on best practices and pitfalls in

human evaluation is vast, so we only mention a few prominent issues here. Crowd annotators

were found to conflate individual dimensions with the overall score (Fabbri et al., 2021), so

evaluating the individual dimensions of a summary becomes more difficult. A possible solu-

tion is to properly train evaluators with examples for calibration, but subjects can still focus

on surface-level and fluency-related aspects of quality after training, and give contradictory

reasons for their judgment (Clark et al., 2021). Reaching high inter-annotator agreement is

hard (Goyal et al., 2022), and agreement between experts and crowd workers is low (Fabbri

et al., 2021). Even between experts, agreement was found to be low without mediation meet-

ings (Iskender et al., 2021). Sometimes, expert annotators can continue to disagree even after

discussion (Fabbri et al., 2021).

In general, the subjectivity underlying the task of human evaluation coupled with the incon-

sistency of human nature makes human evaluation very difficult to reproduce. To increase

the reliability of human evaluation, a stricter evaluation protocol as well as a more structured

evaluation have been proposed (Clark et al., 2021; Liu et al., 2022a). We now look at one such

structured evaluation, the Pyramid method.

Pyramid Scores

Pyramid scores are an attempt to make human evaluation of relevance in summarization

more comparable and reliable (Nenkova and Passonneau, 2004). It requires multiple reference

summaries to be present, something that can not always be guaranteed (see Section 2.5).

Annotators compare multiple reference summaries for the same source document and extract

summarization content units (SCU). The SCUs correspond to the independent facts that

summaries (and their individual sentences) consist of. The importance of an SCU is defined by
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counting the reference summaries in which it appears. The most important SCUs will have a

high count, but there will only be few SCUs that appear in (almost) all summaries. In contrast,

many unimportant SCUs will have counts of 1 or 2. If we assign the SCUs with importance 1 to

the bottom level of a pyramid, the SCUs with importance 2 to the second level, and so on, the

number of SCUs will decrease with every level. This gives the pyramid its characteristic shape,

and the method its name. A candidate summary is now evaluated with the help of the pyramid

by finding the SCUs it contains, and then summing the corresponding importance weights

of the SCUs. A candidate’s score is normalized by the score of an optimal summary with the

same number of SCUs. This optimal summary is constructed by picking SCUs from the top of

the pyramid until the target number has been reached. Therefore, the pyramid score of each

candidate is between 0 and 1. In a later work, the same authors note that normalizing by an

optimal summary with the candidate’s SCU count measures precision (Nenkova et al., 2007).

To measure recall instead, one can normalize by an optimal summary with the mean number

of SCUs in the reference summaries. They call this the modified pyramid score.

2.5 Datasets

In the following, we present text summarization datasets, with a focus on the task of single-

document summarization (§ 2.5.1). We also briefly present multi-document (§ 2.5.2) and

long-document summarization (§ 2.5.3) afterwards.

2.5.1 Single-Document Summarization

The standard setting for abstractive summarization is to summarize a single document. Con-

sequently, most available datasets fall under this category. Due to the availability of data, most

datasets are from the news domain. The most widely used datasets are CNN/DailyMail and

XSum, due to their large number of examples. We present the datasets in chronological order

and collect dataset statistics in Table 2.1.

DUC 2003/2004. The DUC 2003 and 2004 tasks (Over and Yen, 2003, 2004) provide small

datasets for short and very short summarization of single and multiple documents. The

individual tasks contain less than 1,000 examples. For very short summarization, the target

length is 10 words, and for short summarization 100 words. The DUC dataset is used for testing

since it is too small for training but multiple reference summaries exist and careful human

annotations (e.g. Pyramids) have been performed. These are used to measure correlation with

human judgments. The data can be obtained from the 20031 and 20042 task homepages.

1https://duc.nist.gov/duc2003/tasks.html
2https://duc.nist.gov/duc2004/

25

https://duc.nist.gov/duc2003/tasks.html
https://duc.nist.gov/duc2004/


Chapter 2. Background on Summarization

Dataset Examples Mean document words Mean summary words

Single-document summarization
DUC 2003/2004 <1,000 500 10–100
Gigaword 3,995,559 31 8
New York Times 654,759 800 46
CNN/DailyMail 312,085 685 52
XSum 226,711 431 23
Newsroom 1,321,995 659 27
Curation Corpus 39,911 504 83
WikiHow 204,004 580 62
SAMSum 16,369 94 20

Multi-document summarization
WikiSum 2,332,000 1,840 78
Multi-News 56,216 2,103 264
WCEP 2,390,000 3,866 32

Long-document summarization
PubMed 133,215 3,016 203
arXiv 215,913 4,938 220
BigPatent 1,341,362 3,573 117
Novels (chapters) 6,288 5,165 373
BookSum (chapters) 12,630 5,102 505
BookSum (books) 405 112,885 1,167
SQuALITY 625 5,200 237

Table 2.1: Dataset statistics for single-, multi- and long-document summarization.

Gigaword. The Annotated English Gigaword (Graff et al., 2003; Parker et al., 2011; Napoles

et al., 2012) was created by pairing the first sentence of an article with its title, for the task of

headline generation. In preprocessing, a large number of examples is removed according to

heuristics (Rush et al., 2015). The remaining dataset contains 3.8M training, 190k validation,

and 1,951 test pairs. The average word count is very low with 31 for source documents and 8.3

for summaries. The preprocessed corpus is available on GitHub.3

New York Times. The New York Times Annotated Corpus (Sandhaus, 2008) contains 1.8

million articles with 655k abstractive summaries written in the years 1987 to 2007. Different

versions are in use for summarization with either 111k (Durrett et al., 2016) or 655k (Paulus

et al., 2018) examples. For the latter version, average documents consist of 800 words, and

summaries of 46 words (Narayan et al., 2018a). According to the corpus homepage4 it cannot

be freely accessed.

CNN/DailyMail. One of the most widely used summarization corpora is based on news arti-

cles from the CNN and Daily Mail websites. It was originally proposed as a question answering

3https://github.com/harvardnlp/sent-summary
4https://catalog.ldc.upenn.edu/LDC2008T19
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dataset (Hermann et al., 2015), but then slightly adapted for summarization (Nallapati et al.,

2016). The summary sentences are a concatenation of human-generated highlights: bullet

points that accompany the original news articles. In some cases, these highlights can also

contain links to related articles or standings of particular sports leagues. The corpus’s source

documents contain on average 685 words and the summaries 52 words. In the original paper,

entities were replaced with per-document integer ids (anonymized version), but the standard

version keeps the entities from the original articles (See et al., 2017). Scripts for generating

the corpus can be found on GitHub.5 We use the preprocessed version from Liu and Lapata

(2019b) in this thesis.

XSum. The extreme summarization dataset (abbreviated as XSum) is created from BBC news

articles (Narayan et al., 2018a). The summaries are taken to be the first sentence of the article

(appears in bold on the website), and the source document is the rest of the article. The

title is dropped. Choosing the lead sentence as the summary is motivated by the inverted

pyramid writing style (Pöttker, 2003), in which that sentence is supposed to summarize the

most important information of the article, answering the questions of who, when, where, what,

and sometimes why. XSum specializes in creating a very short abstractive summary that is

still a well-formed sentence, as opposed to headline generation. The news articles appeared

between 2010 and 2017. The dataset was randomly split into 204k training pairs, and 11k

validation and test pairs each. The average word count in the source documents is 431, and 23

for the summaries. The corpus is available on GitHub.6

Newsroom. The NEWSROOM dataset consists of 1.3 million examples written between 1998

and 2017 (Grusky et al., 2018). It collects these from 38 different major news publications,

to combine different writing and summarization styles in a single dataset. The summaries

are taken from the articles’ HTML metadata used by search engines and social media, so are

provided by the publishers themselves. Source documents are on average 659 words long,

and summaries 27 words. Compared to other news summarization datasets, the compression

ratio (see Section 2.4.1) is rather high. The data can be requested on the dataset website.7

Curation Corpus. The Curation Corpus (Curation, 2020) is a dataset of professionally written

summaries of news articles. The corpus is an order of magnitude smaller than CNN/DailyMail,

and its articles and summaries have fewer but longer sentences (see Table 2.1). The 40k articles

have an average sentence length of 504 words, while the summaries span on average 83 words.

The Curation Corpus is the only freely available news summarization dataset with references

that were written for the purpose of summarizing the article. We therefore consider this a

very interesting dataset in spite of its smaller size. The data can be obtained by following the

5https://github.com/abisee/cnn-dailymail
6https://github.com/EdinburghNLP/XSum
7https://lil.nlp.cornell.edu/newsroom/index.html
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instructions on the dataset’s GitHub.8

WikiHow. The WikiHow dataset was constructed from a knowledge base of how-to articles,

explaining how to solve a task (Koupaee and Wang, 2018). Each task description is a series

of multiple steps, and each step starts with a bold line summarizing that step, followed by

a detailed step description. The summary is formed from the concatenation of the step

summaries, and the articles from the concatenation of step descriptions. The dataset consists

of 204k examples with 580 mean source document words, and 62 mean summary words. The

dataset is available on GitHub.9

SAMSum. Abstractive dialogue summarization is the task of the Samsung Abstractive Mes-

senger Summarization (SAMSum) dataset (Gliwa et al., 2019). It is constructed to resemble the

chats of a mobile messenger app. Each dialogue is written by a single linguist, can be formal

or informal, and potentially contains slang, emoticons or typos. Around 75% of dialogues are

between two participants, and the number of utterances per dialogue ranges from 3 to 30. The

summaries are created to be short and relevant, contain the names of the participants, and are

written in the third person. The dataset consists of 16k total examples. It can be downloaded

from the ancillary files website of the paper’s arXiv preprint.10

2.5.2 Multi-Document Summarization

In multi-document summarization, a summary of multiple source documents reporting on

the same topic or event has to be written. We look at the three best-known multi-document

summarization datasets, before giving a short glimpse at different strategies that have been

proposed to tackle this task.

WikiSum. In the WikiSum dataset (Liu et al., 2018), the lead paragraph of a Wikipedia topic

is used as a target summary, and the union of references in the Wikipedia article and Google

search results (from the article’s title) are used as the source documents. The total number

of articles-summary pairs (called clusters) is 2.3 million. The median cluster has a summary

length of 78 words, 2 Wikipedia references, and 26 search results. The total number of source

words in a typical cluster is 52k, with a mean of 1,148 words for Wikipedia references and 1,893

words for search results. Instructions on how to generate the dataset are on GitHub.11

Multi-News. The Multi-News dataset (Fabbri et al., 2019) consists of 56k clusters, crawled

from a news aggregation website. The sources are they diverse; they come from more than

8https://github.com/CurationCorp/curation-corpus
9https://github.com/mahnazkoupaee/WikiHow-Dataset

10https://arxiv.org/src/1911.12237v2/anc
11https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor/data_generators/wikisum
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1,500 different news sites. The clusters have 2−10 source documents, with an average of 2.3.

Gholipour Ghalandari et al. (2020) note that the curation of relevant sources before writing the

summary is a special setting. The WikiSum and WCEP datasets instead request to summarize

an uncurated collection of source documents. The concatenation of source documents has on

average 2.1k words, and the summaries have 264 words (10 sentences), which is comparably

long. The dataset is available with different amounts of preprocessing on GitHub.12

WCEP. The Wikipedia Current Events Portal (WCEP) dataset (Gholipour Ghalandari et al.,

2020) contains 10k clusters with short summaries of news events. The original summary cites

1.2 articles on average, so the sources are extended with articles from Common Crawl News,

selected with heuristic features. According to the authors’ manual inspection, about 18% of

these additional articles are unrelated to the summary. The dataset comes in two versions:

a full version, and one where random articles from Common Crawl News are added to the

cited articles until 100 source documents are reached. The typical cluster has 78 articles and

29 summary words in a single summary sentence. The dataset can be downloaded from

GitHub.13

Multi-document summarization strategies. As became apparent from the dataset descrip-

tions, the challenge of multi-document summarization is to handle the sheer size of input text

that has to be analyzed and summarized, especially in WikiSum and WCEP. Several approaches

divide this task into two stages, a retrieval and a summarization stage.

In the retrieval stage, models usually operate on paragraphs. If a proxy for the target summary

is available (in WikiSum the title of the target Wikipedia article is given), the similarity of

a paragraph to the proxy can be determined from the cosine similarity of tf-idf vectors of

title and paragraph (Liu et al., 2018), or a similarity score from a neural network (Liu and

Lapata, 2019a). If no such proxy is known, the best set of paragraphs can be determined with

determinantal point processes (Cho et al., 2019) or submodularity (Lin and Bilmes, 2010).

In the summarization stage, multiple paragraphs can be concatenated and summarized as

in single-document summarization. If the concatenation contains too many words (up to

11k tokens in WikiSum), operating on sliding windows (Liu et al., 2018), compressing internal

representations (Liu et al., 2018), employing hierarchy by encoding paragraphs first (Liu and

Lapata, 2019a), or using graph representations (Li et al., 2020b) have been proposed.

2.5.3 Long-Document Summarization

Summarizing long inputs is not just encountered in the multi-document setting, but is also a

dedicated task. Long-document summarization is especially challenging for the Transformer

12https://github.com/Alex-Fabbri/Multi-News
13https://github.com/complementizer/wcep-mds-dataset
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architecture since its self-attention scales quadratically with the input length. Several models

have been proposed to reduce self-attention complexity (Dai et al., 2019; Beltagy et al., 2020;

Katharopoulos et al., 2020; Jaegle et al., 2021; among others). We describe these general

approaches in more detail in Section 4.7. Next, we describe the most common long-document

summarization datasets.

PubMed and arXiv. PubMed and ArXiv are collections of scientific articles from the PubMed

and arXiv repositories, respectively (Cohan et al., 2018). The papers’ abstracts serve as the

target summary. The PubMed dataset contains 133k examples, with an average source docu-

ment length of 3,016 words, and a summary length of 203 words. The arXiv dataset consists of

215k pairs, with source documents averaging 4,938 words, and summaries 220 words. Both

datasets are available on GitHub.14

BigPatent. The BIGPATENT dataset is a collection of 1.3 million US patent documents across

nine technical areas (Sharma et al., 2019). The target summaries are the patent abstracts.

Patents were filed between the years 1971 and 2019. The dataset’s documents contain an

average of 3,573 words, and its summaries 117. The data can be downloaded from the dataset

website.15

Novels. An unnamed dataset on summarizing novel chapters has been proposed in Ladhak

et al. (2020). They pair the chapters of novels from Project Gutenberg with summaries from

five online study guides. The dataset consists of 6,288 chapter-summary pairs, with a mean

chapter length of 5,165 words, and a summary length of 373 words. Instructions on how to

obtain the dataset for yourself are on GitHub.16

BookSum. The BOOKSUM dataset is composed of literature from Project Gutenberg (novels,

plays, and stories) where copyrights have expired (Kryscinski et al., 2022). The dataset pro-

vides summaries at three levels: paragraph, chapter, and full-text. The chapter and full-text

summaries were retrieved online. Paragraph summaries were constructed by aligning chapter

summary sentences according to the similarity of their embeddings. The dataset comprises

147k paragraph-level, 12.6k chapter-level, and 405 book-level examples. It is interesting to note

that the mean chapter summary consists of 505 words, while for the full text, it is 1,167 words.

This is in contrast to related work that kept summary lengths at different levels stable (Wu

et al., 2021). The source documents and instructions on how to obtain the summaries are on

GitHub.17

14https://github.com/armancohan/long-summarization
15https://evasharma.github.io/bigpatent/
16https://github.com/manestay/novel-chapter-dataset
17https://github.com/salesforce/booksum

30

https://github.com/armancohan/long-summarization
https://evasharma.github.io/bigpatent/
https://github.com/manestay/novel-chapter-dataset
https://github.com/salesforce/booksum


2.6 State of the Art

SQuALITY. The SQuALITY dataset consists of summaries of Project Gutenberg short stories

written between 1930 and 1970 (Wang et al., 2022). Each short story is summarized by four

writers (freelancers and undergraduates), who also answer four additional story-specific

questions, which results in 4 general and 16 aspect-oriented summaries per short story. The

dataset contains summaries for 625 source documents. The stories have on average 5,200

words, and the summaries 237. The data can be downloaded from GitHub.18

What is the current state of long-document summarization? Koh et al. (2022) compare

models that reduce the complexity of self-attention to models that reduce the input length

in the first step and then summarize the shorter input. For the second variant, they use an

oracle reduction of the input, so it should be considered an upper bound for the method’s

performance. Considering this, they find that both approaches achieve high ROUGE scores,

with reduce-then-summarize models generating more relevant but less factual summaries.

They speculate that the reduced factuality comes from incoherent texts that are output by the

initial filtering stage.

When considering the factuality at the summary level, the best model generates 21% factually

inconsistent summaries for the arXiv dataset, and 60% inconsistent summaries on the Gov-

Report (Huang et al., 2021) dataset. The two most common factuality error types are wrong

primary arguments (like entities) of the predicate, and mistakes in linking multiple statements

in the discourse. The authors conclude that the models are not sufficiently robust to be used

in practice.

2.6 State of the Art

In the final section of this chapter, we want to look at the state of the art on abstractive

summarization, as of the writing of this thesis in March 2023. We present the best results

known to us on the two largest summarization benchmarks, CNN/DailyMail and XSum.

We first report on finetuned encoder-decoder models that have historically shown strong

performance on summarization. Afterward, we show the results of a very recent study that

suggests that zero- and few-shot large language models have surpassed finetuned models in

summary quality.

2.6.1 Finetuned Models

We get an overview of available models from the resources and benchmarking platform Papers

with Code.19 In Table 2.2, we present ROUGE-1/2/L of the most influential models in our eyes,

together with the best-performing models. ROUGE scores were selected as the performance

metric since they are the most widely accepted automatic metric, and scores are available for

18https://github.com/nyu-mll/SQuALITY
19https://paperswithcode.com/
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Dataset ROUGE-1 ROUGE-2 ROUGE-L

CNN/DailyMail
MoCa 48.88 24.94 45.76
SLiC 47.97 24.18 44.88
BRIO 47.78 23.55 44.57
SummaReranker 47.16 22.55 43.87
MatchSum (extractive) 44.41 20.86 40.55
PEGASUS 44.17 21.47 41.11
BART 44.16 21.28 40.90
T5-11B 43.52 21.55 40.69
BERTSUMEXTABS 42.13 19.60 39.18
Pointer-Generator 39.53 17.28 36.38

XSum
SLiC 49.77 27.09 42.08
MoCa 49.32 25.91 41.47
BRIO 49.07 25.59 40.40
SummaReranker 48.12 24.95 40.00
PEGASUS 47.12 24.56 39.25
BART 45.14 22.27 37.25
BERTSUMEXTABS 38.81 16.50 31.27
Pointer-Generator 29.70 9.21 23.24
MatchSum (extractive) 24.86 4.66 18.41

Table 2.2: State-of-the-art results on CNN/DailyMail and XSum.

all models. We present the performance as reported in the original papers.

The extractive MatchSum (Zhong et al., 2020) achieves good scores on the CNN/DailyMail

dataset, for which reference summaries are known to be highly extractive (Grusky et al., 2018).

On XSum, which is defined to be especially abstractive, an extractive method cannot reach

high scores. The Pointer-Generator (See et al., 2017) is a representative of RNNs with attention.

We see that the gap to the pretrained models is larger on XSum than on CNN/DailyMail,

most likely due to the differences in language generation capabilities between RNNs and (pre-

trained) Transformers. The next iteration of approaches uses different pretraining objectives

to train a strong language understanding model, that can then be finetuned on a target task.

BERTSUMEXTABS (Liu and Lapata, 2019b) pretrains only the encoder, while T5-11B (Raffel

et al., 2020), BART (Lewis et al., 2020) and PEGASUS (Zhang et al., 2020a) pretrain an encoder-

decoder model, before finetuning on summarization. PEGASUS’s pretraining objective of

masking and reconstructing important sentences is tailored to the summarization task, and it

consequently achieves the highest scores of these models on both benchmarks.

The current best-performing models achieve another boost in ROUGE scores by addressing

exposure bias (see Section 2.3.1). Since model generations during inference can diverge from

the ones the model sees during training, recent approaches train a model that selects the best
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of multiple generated candidate summaries or calibrate the model’s sequence likelihood to

accurately rank its generations. SummaReranker (Ravaut et al., 2022) reranks 30 candidate

summaries generated by PEGASUS with beam search and diverse beam search (Vijayakumar

et al., 2018) decoding. BRIO (Liu et al., 2022b) trains a model to both generate summaries

and rank its generations, according to their ROUGE score. It uses BART for CNN/DailyMail

and PEGASUS for XSum to generate 16 candidate summaries with diverse beam search,

then calibrates the model’s log probability with a contrastive loss between candidate pairs.

Momentum Calibration (MoCa, Zhang et al., 2022b) uses a very similar approach but employs

the same model with separate parameters for ranking and generation. The ranking model is

trained as in BRIO. The generation model’s parameters are updated with a weighted average of

its own and the ranking model’s parameters. This slow update avoids a collapse of training or

too fast convergence of the ranking model. Finally, sequence likelihood calibration (SLiC, Zhao

et al., 2023) introduces a new training objective to align the model’s likelihood of summaries if

they are similar in the model’s latent space. The similarity is computed as in BERTScore (see

Section 2.4.1), taking into account matching spans of more than one token. The embeddings

are taken from the decoder output representations of the two sequences conditioned on

the article. The calibration loss then is a ranking loss that trains the model to have a higher

likelihood for candidate summaries with higher latent space similarity to the reference. Unlike

the previous reranking and calibration methods, SLiC does not use ROUGE as a target signal.

For the results in Table 2.2, it uses a larger base model with around 2B parameters, compared to

the other approaches, whose models are about four times smaller. In general, the differences

between the model’s scores are small; they all achieve very high ROUGE scores on both

datasets.

Are higher ROUGE scores still desirable? According to a recent human evaluation of large

language models in Zhang et al. (2023), LLMs now generate higher-quality summaries than

the references of the aforementioned datasets. Consequently, higher lexical similarity with

these references from ROUGE scores no longer implies higher quality for LLMs. There are

two possible remedies. First, getting higher-quality reference summaries could resolve the

problem. A new human evaluation would have to be conducted to compare the improved

reference summaries with LLM generations. It would be interesting to see this evaluation be

performed on other existing datasets first, for example, the Curation Corpus with its human-

generated summaries for the purpose of summarization. However, aside from the difficulty

of conducting a conclusive and reproducible human evaluation, better references will most

likely be matched by better generated summaries soon. The second approach is to change

the default automatic evaluation metric. This is an inevitable next step in summarization

evaluation in our opinion and will be a continued focus of research in natural language

generation in general.
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2.6.2 Zero- and Few-Shot Large Language Models

Large language models have not been systematically evaluated against the entire CNN/Dai-

lyMail or XSum test set. Instead, we here report the results of Zhang et al. (2023), who have

run a careful human evaluation on 100 examples from LLMs in the zero- and few-shot setting,

two well-performing finetuned models, and the datasets’ references. We present the results

in Table 2.3. The evaluated LLMs are: GPT-3 (Brown et al., 2020), InstructGPT (Ouyang et al.,

2022), Anthropic-LM (Bai et al., 2022), Cohere XL20, and OPT (Zhang et al., 2022a). The fine-

tuned language models are PEGASUS (Zhang et al., 2020a) and BRIO (Liu et al., 2022b), which

we have already presented before. The human evaluation asks three annotators per example

to rate whether summaries are faithful (binary score of 0 or 1), coherent, and relevant (1 to 5

Likert scale).

The main findings of the human evaluation are that (a) reference summaries are judged

worse than (strong) model summaries, (b) LLMs outperform finetuned models when flawed

reference summaries are used for finetuning, a verdict with stronger reference summaries is

still outstanding, (c) instruction tuning improves zero-shot performance by a lot, and few-shot

performance by a smaller but substantial margin. This last finding is certainly influenced

by summarization being one of the tasks used for instruction tuning (4.2% in Ouyang et al.,

2022). The best model from the human evaluation (zero-shot InstructGPT) is then compared

against a newly collected set of summaries written by freelance writers for 50 articles from

CNN/DailyMail and XSum, each. The summaries of the model and freelance writers are

rated very similarly, with half the annotators preferring either. InstructGPT uses a more

extractive summarization style, whereas freelance writers abstract and generalize a lot more.

The difference in preference between annotators could originate from different preferences

for summarization style. As a result, the study’s authors suggest moving from an intrinsic

evaluation of summary quality to judging a summary’s usefulness in downstream applications,

in line with Clark et al. (2021).

20https://docs.cohere.ai/docs/generation-card
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Dataset Faithfulness Coherence Relevance

CNN/DailyMail

Reference summaries 0.84 3.20 3.94

PEGASUS 0.97 3.93 4.38
BRIO 0.94 3.94 4.40

GPT-3 (zero-shot) 0.76 2.65 3.50
GPT-3 (few-shot) 0.99 3.95 4.34
InstructGPT (zero-shot) 0.99 4.15 4.60
InstructGPT (few-shot) 0.98 4.13 4.49
Anthropic-LM (few-shot) 0.94 3.88 4.33
Cohere XL (few-shot) 0.99 3.42 4.48
OPT (few-shot) 0.96 3.64 4.33

XSum

Reference summaries 0.37 4.13 3.00

PEGASUS 0.57 4.73 3.85
BRIO 0.58 4.68 3.89

GPT-3 (zero-shot) 0.80 2.78 3.52
GPT-3 (few-shot) 0.69 4.69 4.03
InstructGPT (zero-shot) 0.97 4.41 4.28
InstructGPT (few-shot) 0.77 4.83 4.33
Anthropic-LM (few-shot) 0.70 4.77 4.14
Cohere XL (few-shot) 0.63 4.79 4.00
OPT (few-shot) 0.67 4.80 4.01

Table 2.3: Results of the human evaluation of three quality criteria from Zhang et al. (2023).
Few-shot prompts include 5 training examples from the respective dataset that fit into the
prompt context window. Scores are in the interval [0,1] for faithfulness and [1,5] for coherence
and relevance. Results not statistically significantly different from the best are bolded.
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3 Summary Content Planning

Chapter Summary

Neural text generation models generate a summary word by word, but a summary would

optimally be planned at a higher level (e.g. the sentence) before being realized at the word

level. Related work has focused on hierarchy on the encoder side, introduced a coverage

loss to avoid repeatedly summarizing the same content, or planned the sequence of

entities that should be covered in the summary. Instead, we introduce hierarchy on the

decoder side and predict a continuous sentence representation of the next summary

sentence. This representation is then used to write the next summary sentence by the

word generator. Our model is called the sentence planner. On two common datasets, it

improves ROUGE scores and abstractiveness compared to an – at the time state-of-the-

art – baseline model.

Publication in this Chapter

This chapter builds on the material in our publication:

Marfurt, A., and Henderson, J. (2021). Sentence-level Planning for Especially Abstractive

Summarization. In Proceedings of the Third Workshop on New Frontiers in Summariza-

tion (pp. 1-14).

PDF: https://aclanthology.org/2021.newsum-1.1.pdf

Code: https://github.com/idiap/sentence-planner

Video: https://screencast-o-matic.com/watch/cr6XqEVXO5n
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In this chapter, we experiment with giving the model the ability to outline the next summary

sentence before creating it. We posit that humans also benefit from structuring their thoughts

first before writing down the words of a text. We expect a so-created text to be more coherent,

and also more abstractive. On the basis of this idea, we devise a hierarchical decoder that

generates a plan before the words of a summary sentence.

3.1 Introduction

In abstractive summarization, we aim for a summary to be fluent and coherent, and at the

same time synthesize the source document’s important information (see Section 2.4). State-

of-the-art sequence-to-sequence models successfully write fluent summaries (Liu and Lapata,

2019b; Lewis et al., 2020; Zhang et al., 2020a). To achieve high ROUGE scores, however, they

also heavily rely on copy mechanisms such as the pointer-generator network (See et al., 2017)

or attention to the source document (Bahdanau et al., 2015; Rush et al., 2015). This comes at

the cost of the abstractiveness1 and coherence of the resulting summaries. The effect is further

exacerbated by datasets that were constructed from sources that are not fully aligned with

the goal of summarization. The highlights in CNN/DailyMail, for example, were not meant

to be read as a human-written summary, but as bullet points presenting a quick overview to

the reader, and sometimes contain additional information and links to related articles (see

Section 2.5.1). As a result, the concatenation of these sentences is not always a coherent

summary of the article.

In this chapter, we conjecture that adding a planning step at the sentence level alleviates these

problems without sacrificing high ROUGE scores. By first producing an outline for the next

summary sentence, we give the model more capacity for abstraction. As a result, the model

has to rely less on copying the input and thereby generates more abstractive summaries. Our

model, the sentence planner, is an adaptation of the typical encoder-decoder architecture. The

encoder is initialized from pretrained BERT weights. The decoder is hierarchical and consists

of a sentence generator that plans an outline for the summary at the sentence level, and a

word generator that is conditioned on this outline when generating the summary’s words.

Both generators attend to the source document to condition their predictions on the input.

The sentence planner is trained end-to-end to predict the words of the target summary, with

an additional guidance loss that encourages the sentence generator to produce the encoder’s

embedding for the target next sentence.

We extensively evaluate our model on the highly abstractive Curation Corpus (see Section 2.5.1)

and the established but more extractive CNN/DailyMail. We show that the sentence planner

generates more abstractive summaries while improving the ROUGE scores of a base model

without a hierarchical decoder. We use gradient attribution to quantify the impact of the

1More abstractive methods generally attain lower ROUGE scores. To see why, consider the case where the
reference summary and the model copy from the document. The generated summary is guaranteed to get an exact
match and high ROUGE. In the opposite case, where both the reference summary and the model generate novel
text, there is a good chance that the choice of words is not exactly the same, resulting in low ROUGE.
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3.2 Base Model

sentence generator on the model’s predictions as well as how much information from the

document it captures. Moreover, we verify the effectiveness of our model components with an

ablation study and show that simply increasing the baseline’s decoder parameters does not

bring it up to par with the hierarchical decoder. Our automatic evaluations are confirmed in a

human evaluation study, where the sentence planner improves upon its strong baseline in

each of the six quality categories.

3.2 Base Model

We use BERTSUMEXTABS (Liu and Lapata, 2019b) as our base model. It adapts the pretrained

BERT model (Devlin et al., 2019) to summarization by applying a few changes, detailed below.

Encoding multiple sentences. BERT is built for encoding one or two segments (with possibly

multiple sentences). A document to be summarized is a single segment with multiple sen-

tences. To be able to get a representation for each of these sentences, a CLS token is inserted

at the start of every sentence. In addition, the segment embeddings (in BERT they are called A

for the first segment and B for the second) are interleaved for consecutive sentences, such that

all odd sentences have segment embedding A, while all even sentences have B.

Extractive summarization. For the task of extractive summarization, the model needs to

classify sentences. To get a representation for each sentence, two additional Transformer layers

are added on top of the pretrained BERT model. They operate on the output representations

at the positions of the CLS tokens. The output of the two inter-sentence Transformer layers is

used to decide for each sentence whether it is in the extractive summary or not. A sigmoid

classifier is used:

ŷi =σ(W hL
i +b) (3.1)

where i is the sentence index and L the last layer. The loss is binary classification entropy.

The (randomly initialized) inter-sentence Transformer layers are finetuned jointly with the

pretrained BERT model. This model is called BERTSUMEXT.

Abstractive summarization. In the abstractive setting, the pretrained BERT model is used as

the encoder without the inter-sentence Transformer layers. A 6-layer Transformer decoder is

added and randomly initialized. The encoder and decoder are trained jointly. However, the

decoder has a higher learning rate and a shorter warmup period than the encoder. This model

is named BERTSUMABS.

Extractive then abstractive training. A two-stage approach called BERTSUMEXTABS fine-

tunes the encoder first on the extractive task, then removes the inter-sentence Transformer
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Figure 3.1: (a) BERTSUMEXTABS model. An encoder encodes the document, and a word
generator generates the next word given previous words while paying attention to the docu-
ment. (b) Sentence planner model. A shared encoder separately encodes the document and
each sentence of the summary generated so far. The sentence generator takes the summary
sentence embeddings and predicts the next sentence embedding, which the word generator is
then conditioned on. Both generators integrate document information through attention.

layers and finetunes the abstractive model.

3.3 Hierarchical Transformer Decoder

Our approach builds on the BERTSUMEXTABS model. Their model consists of an encoder

initialized with an extractive summarization model, which in turn was initialized with a BERT

model and a randomly initialized Transformer decoder.2 We keep the encoder the same.

We replace the decoder with a hierarchical version by introducing a sentence generator that

develops a high-level plan for the summary, and a word generator that is conditioned on

this plan. A model diagram is shown in Figure 3.1. Section 3.3.1 describes how the sentence

generator develops the outline for the summary, and Section 3.3.2 shows how the word

generator makes use of it.

3.3.1 Sentence Generator

The sentence generator is a two-layer Transformer decoder. It receives as inputs the sentence

representations of completed summary sentences and generates a sentence representation

for the next summary sentence.

Inputs. The inputs to the sentence generator are a sequence of representations of already

completed summary sentences. These are computed by the same encoder that computes

representations for the document tokens. For each individual previous summary sentence, the

encoder computes its contextualized token embeddings. We use the contextual embedding

2Even stronger results have been achieved when pretraining an entire sequence-to-sequence model on a task
closer to summarization (BART (Lewis et al., 2020), PEGASUS (Zhang et al., 2020a)). In this chapter, we restrict
ourselves to encoder initializations with the BERT model and do not consider other pretraining approaches.
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3.3 Hierarchical Transformer Decoder

of the end-of-sentence token as a representation of the sentence.3 When generating the first

summary sentence, there are no completed sentences, so we use a single zero vector as input

to the sentence generator.

During training with teacher forcing, we use the previous portion of the reference summary

as input to the encoder. Since the entire summary is known in advance, we can compute all

inputs to the sentence generator in parallel.

Self-attention. The sentence generator’s self-attention operates at the sentence level, which

means the sequence length n for our Transformer decoder is very small (between 2 and 4 on

average, see Section 3.6). As a result, the self-attention computation, which is quadratic in

the sequence length, becomes extremely cheap. As in regular Transformer decoders, a causal

mask prevents attention to future sentences.

Cross-attention. In the cross-attention, the sentence generator pays attention to the en-

coded document. Through this connection, the sentence generator can compare the already

generated summary to the document and identify missing information that should appear in

the next sentence.

Output. The output of the sentence generator is a representation rsent for the next summary

sentence. Section 3.3.2 describes how we condition the word generator on this sentence

representation.

Guidance loss. We provide the sentence generator with an additional loss term for guidance.

Since during training, we know the ground truth next summary sentence and can compute its

encoding rgold, we penalize the (element-wise) mean squared error between the gold and the

predicted next sentence representation.

LMSE = 1

d

d∑
i=1

||r (i )
gold − r (i )

sent||22 (3.2)

where d is the representations’ dimension. This loss term is added to the regular cross-entropy

loss with a scaling hyperparameter λ, although we found λ= 1 to work well in practice.

We do not backpropagate the guidance loss’s gradients from the sentence generator into the

encoder to avoid a collapse to a trivial solution. Otherwise, the encoder might output the same

representation for every sentence so that the sentence generator can perfectly predict it.

3We found that this performed better than alternative encodings of the summary, as discussed in Section 3.4.
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3.3.2 Word Generator

Our word generator is also a Transformer decoder. The regular Transformer decoder consists

of layers l with self-attention, cross-attention, and feed-forward sublayers. They are defined

as follows:

sl = LN(hl−1 +SelfAttention(hl−1)) (3.3)

c l = LN(sl +CrossAttention(sl ,renc)) (3.4)

hl = LN(c l +FFN(c l )) (3.5)

where LN is layer normalization (Ba et al., 2016), renc are the encoder outputs, and FFN

is the feed-forward sublayer consisting of two fully-connected layers with an intermediate

nonlinearity.

In our word generator, we condition on the sentence representation by replacing Equation 3.4

with

c l = LN(sl +CrossAttention(sl ,renc)+ r ′
sent) (3.6)

where r ′
sent is the sentence representation obtained from the sentence generator, passed

through a fully-connected and a dropout layer. We do not differentiate between layers and

add the same sentence representation in every layer and to every token.

We experimented with various ways to use attention in the word generator to integrate the

sentence representation. However, the conditioning method presented above substantially

outperforms the attention-based integrations of the sentence representation. We further

discuss this topic in Section 3.4.

At the end of a sentence, the word generator either outputs a special sentence separator

symbol, prompting the sentence generator to generate the next sentence representation, or

an end-of-summary symbol, stopping generation.

3.4 Alternative Approaches

In the following, we discuss alternative approaches which we tried but did not achieve as good

results as the proposed model.

Separate encoders for document and summary. We conjectured that encoding a document

for cross-attention in the word generator, and encoding a summary for generating the next

summary sentence representation require extracting different pieces of information. We

therefore added a second encoder for the summary generated so far and initialized it with

BERT. This change did not improve over sharing the encoder weights for the article and the

summary. However, it introduced many additional parameters, so we discarded this idea.
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Same preprocessing for the summary. BERTSUMEXTABS uses different preprocessing for-

mats for the source document and the summary. For the document, every sentence is sur-

rounded by a leading CLS token and a trailing SEP token. The summary is preceded by a

beginning of summary token, the summary sentences are separated by a sentence separator

token and the end is marked with an end of summary token.

We tried homogenizing the preprocessing formats for the document and the summary, such

that the encoder does not need to deal with different inputs. We surround every sentence with

a CLS and SEP token. The end of the summary is still marked with an end of summary token to

tell the decoder to stop.

We did not reach the results of the preprocessing used in BERTSUMEXTABS with this format.

Interestingly, the generated summaries consistently contained fewer sentences on average. We

conjecture that this could be an artifact of decoding with beam search, but cannot substantiate

this presumption.

Contextual sentence representations. In our model, we encode summary sentences in-

dividually, without self-attention to the surrounding sentences. It is not possible to allow

representations to see future ground-truth sentences, as that would serve as a shortcut for the

model and prevent proper learning of the task. While it is possible for the sentence represen-

tations to encode information from previous summary sentences, experiments showed no

improvements with this change.

Attention to the sentence representation. A different way to integrate the sentence repre-

sentation in the word generator is to perform attention over it. We experimented with two

methods. On the one hand, we specialized an attention head to exclusively look at the sen-

tence representation, while the others attend to the source document. This method performed

slightly worse than the base model on ROUGE scores. On the other hand, we concatenated

the sentence representation to the encoder outputs, and jointly attended to it in the word gen-

erator’s cross-attention. When analyzing the attention weights, we realized that the sentence

representation was mostly ignored. As a remedy, we separated training into two phases. In the

first phase, we trained our model without attention to the document, such that the sentence

planner gets a chance to learn meaningful sentence representations and is not ignored from

the start. We then finetuned the model with attention to the document. While this increased

the attention weights of the sentence representation substantially, the results did not improve

over the baseline with the same number of total training steps (pretraining and finetuning

combined).
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Dataset Examples Mean doc length Mean summary length Novel bigrams Corefs

words sentences words sentences

CNN/DailyMail 312085 685.12 30.71 52.00 3.88 54.33% 0.105
Curation Corpus 39911 504.26 18.27 82.63 3.46 69.22% 0.441

Table 3.1: Dataset statistics.

3.5 Experimental Setup

We now describe our selection of datasets (§ 3.5.1) and metrics (§ 3.5.2) that we use to evaluate

our model and give implementation details (§ 3.5.3) to replicate our experiments.

3.5.1 Datasets

For our experiments, we choose an established and well-studied dataset, CNN/DailyMail

(Hermann et al., 2015; Nallapati et al., 2016), and a more recently introduced high-quality

dataset, the Curation Corpus (Curation, 2020). A description of both datasets is given in

Section 2.5.1. The datasets’ statistics are shown in Table 3.1.

We selected these two datasets since in contrast to other widely used datasets (Gigaword (Rush

et al., 2015), XSum (Narayan et al., 2018a)), the summaries span multiple sentences, which is a

prerequisite for our approach. We use the preprocessed data from Liu and Lapata (2019b) and

describe the preprocessing for the Curation Corpus next.

Preprocessing the Curation Corpus. We follow the instructions in the Curation Corpus

GitHub repository4 to download the 40000 article-summary pairs. After filtering examples

where either the article or the summary is empty, we are left with 39911 examples. We split

them into train/validation/test sets as 80/10/10 to arrive at split sizes of 31929/3991/3991.

Since the text extractor from the HTML websites inserts a lot of newlines (probably due to the

website layout), we replace them with spaces to avoid splitting sentences in the middle.

We use the NLTK tokenizer (Bird et al., 2009) to split the article text into sentences. We then

preprocess the data in the same way as Liu and Lapata (2019b) processed the CNN/DailyMail

corpus, except that we do not filter examples based on the number of tokens in the article or

summary, but instead keep them irrespective of their length.

3.5.2 Metrics

We use ROUGE and novel bigrams as automatic evaluation metrics (see Section 2.4.1). Addi-

tionally, we use a coreference resolution-based metric, described in the following.

4https://github.com/CurationCorp/curation-corpus
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Corefs. Inspired by Iida and Tokunaga (2012), we evaluate discourse coherence with a corefer-

ence resolution model. We count the number of coreference links across sentence boundaries

as a proxy for the coherence of a summary, i.e. whether the sentences build upon informa-

tion in the preceding ones. Since summaries with more sentences could be favored by this

count, we normalize by the number of sentences. To extract coreferences from the generated

summaries, we use NeuralCoref5 with spaCy6. The mean number of coreference links across

sentence boundaries for the datasets’ reference summaries is 0.441 for the Curation Corpus

and 0.105 for CNN/DailyMail. This shows that the summaries in the Curation Corpus are

written in a much more coherent style than the ones from CNN/DailyMail. Specifically, the

bullet point style summaries in CNN/DailyMail do not foster summaries whose sentences

build on each other. However, this is a quality we would expect from human summaries, which

is yet another reason to focus our analysis on the Curation Corpus.

3.5.3 Implementation Details

We use the code from BERTSUMEXTABS7 for our experiments. For the decoder, they have their

own Transformer implementation while we employ the popular Hugging Face library (Wolf

et al., 2020). In our experiments, we control for the possible discrepancy between these

two implementations by reporting BERTSUMEXTABS’s performance with a Hugging Face

Transformer as well.

We use the hyperparameters from BERTSUMEXTABS where not specified otherwise. For our

implementation, a grid search found a learning rate of 0.001 for the BERT-initialized encoder

and 0.02 for the randomly initialized Transformer(s) to work best. We use a fixed batch size of

3 with gradient accumulation over 5 batches. The hyperparameters for our implementation of

BERTSUMEXTABS and our model are the same, and we only tune the hyperparameters of the

sentence generator with a grid search.

Our sentence generator is a 2-layer Transformer with 12 heads, a hidden size of 768, an

intermediate dimension of 3072 for the feed-forward sublayer, and dropout of 0.1 for attention

outputs. We do not apply dropout to the outputs of linear layers.

Curation Corpus. All our models are trained for 40,000 training steps, with a learning rate

warmup of 2,500 steps. We did not see an improvement from initializing the encoder with a

pretrained extractive model and therefore initialize from BERT weights. We average the results

from 5 models, trained with seeds 1 to 5, and also report the standard deviation.

CNN/DailyMail. Our models are trained for 200,000 training steps, with 20,000 warmup

steps for the pretrained encoder, and 10,000 warmup steps for the randomly initialized

5https://github.com/huggingface/neuralcoref, version 4.0.0
6https://spacy.io, version 2.1.0
7https://github.com/nlpyang/PreSumm
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Model ROUGE

R-1 R-2 R-L

BSEA (Liu and Lapata, 2019b) 42.95 (0.14) 17.67 (0.19) 37.46 (0.21)
BSEA (our implementation) 43.37 (0.37) 17.92 (0.17) 37.73 (0.31)

Sentence planner 44.40 (0.14) 18.31 (0.13) 38.69 (0.10)

Table 3.2: Comparison of generated with reference summaries on Curation Corpus. Mean and
std (in brackets) over 5 runs. Best result in bold.

Transformer(s), following Liu and Lapata (2019b). We also use their model checkpoint of

BERTSUMEXT to initialize the encoder in all our models.

3.6 Results

We now turn to the evaluation of our method. First, we show the results on Curation Corpus

(§ 3.6.1). With attribution techniques (§ 3.6.2) and an ablation study (§ 3.6.3), we uncover how

the model uses the sentence generator component. Increasing the number of parameters of

BERTSUMEXTABS (BSEA) does not provide the same improvements as our approach (§ 3.6.4).

The SUM-QE model-based evaluation uncovers differences between the datasets but not

between the models (§ 3.6.5). On the CNN/DailyMail dataset, our model generates more

abstractive summaries while retaining high ROUGE scores (§ 3.6.6). Following our automatic

evaluations, we validate the results with a human evaluation (§ 3.6.7). Finally, we show and

comment on two example summaries (§ 3.6.8).

3.6.1 Results on Curation Corpus

Table 3.2 shows the results of comparing the generated to the reference summaries on the

Curation Corpus. The sentence planner substantially improves ROUGE scores compared to

BERTSUMEXTABS. The relative difference is between 2.2% and 2.5% for the different ROUGE

variants. A noticeable difference also exists between the ROUGE scores of the two base model

implementations, which is why we continue reporting the scores for both in the following.

In Table 3.3 we see that the sentence planner’s summaries are more abstractive than those of

BERTSUMEXTABS, as indicated by the number of novel bigrams. However, there is still a large

gap to the reference summaries displayed on the first line. The sentence planner generates

substantially more sentences than BERTSUMEXTABS on average, moving it closer to the gold

summaries. The mean number of words within those sentences stays close to the reference

statistic. 8

8The mean number of sentences and (to a lesser extent) their average length can be influenced by a length
penalty hyperparameter α, which is set between 0.6 and 1 (Liu and Lapata, 2019b). BERTSUMEXTABS with no
penalty (α= 1) produces the same number of sentences and words as the sentence planner with the largest penalty
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Model Sentences Novel Bigrams Corefs

Number Length

Gold summaries 3.46 28.0 69.22% 0.441

BSEA (Liu and Lapata, 2019b) 2.73 (0.09) 27.3 (0.5) 36.77% (0.94%) 0.267 (0.011)
BSEA (our implementation) 2.76 (0.10) 28.5 (0.8) 37.29% (1.32%) 0.283 (0.026)

Sentence planner 3.15 (0.11) 28.2 (0.5) 39.29% (2.00%) 0.289 (0.023)

Table 3.3: Properties of generated summaries on Curation Corpus. Mean and std (in brackets)
over 5 runs.

The mean number of coreferences across sentence boundaries, normalized by the number of

sentences, is similar for all models, with the best score achieved by the sentence planner. This

number is lower than for the reference summaries but substantially higher than for references

and generated summaries from the CNN/DailyMail corpus (see Section 3.6.6).

3.6.2 Attribution to Sentence Representation

A natural question to ask is whether the sentence representation rsent is actually used by the

word generator. We therefore compare the attribution of the model predictions to rsent with

the attribution to the output of the cross-attention. We use the Integrated Gradients (IG)

algorithm (Sundararajan et al., 2017) with respect to these intermediate representations. We

choose the zero vector as a baseline r0, but taking the mean of rsent over the test examples as a

baseline provides similar results. We then integrate along the path from r0 to rsent

(rsent − r0)
∫ 1

η=0

∂F (x,r0 +η(rsent − r0))

∂rsent
(3.7)

for a given input x. In practice, we discretize the integral and sum over 50 integration steps

with linearly spaced η values. The case for the attribution to the cross-attention output is

analogous. We report the relative attribution to rsent in Table 3.4. The result is averaged over

the first 100 examples in our test set. It shows that the attribution to rsent with the sentence

generator alone is about a quarter, while three quarters are attributed to the cross-attention.

This is already a substantial amount, considering that the alternative is to directly look at the

document. rsent’s attribution share further increases to more than a third with the addition of

the guidance loss LMSE, making rsent even more useful.

While we expect that the sentence representation is mostly used as an outline for the next

summary sentence, we are curious to see how much information from the source document is

(α= 0.6), but a large gap in ROUGE-(1/2/L) remains: (0.7/0.6/0.6). Consistent with Sun et al. (2019), we find that
ROUGE scores increase with length and α, but we also find that novel bigrams decrease. In order to not favor
one side of the trade-off over the other, we stick with the setting of α= 0.95 from Liu and Lapata (2019b) for both
models.
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Model IG Conductance

BSEA - -
+ Sentence generator 25.1% 32.3%
+ LMSE (= Sentence planner) 36.6% 29.1%

Table 3.4: Attribution study. IG: Attribution of the model predictions to rsent vs. to cross-
attention. Conductance: Attribution of the predictions to the article via rsent vs. via cross-
attention.

Model ROUGE

R-1 R-2 R-L

BSEA (our implementation) 43.37 (0.37) 17.92 (0.17) 37.73 (0.31)
+ Sentence generator 43.97 (0.30) 18.28 (0.11) 38.32 (0.22)
+ LMSE (= Sentence planner) 44.40 (0.14) 18.31 (0.13) 38.69 (0.10)

Table 3.5: Ablation study showing ROUGE scores on Curation Corpus when adding the indi-
vidual components of our model. Mean and std (in brackets) over 5 runs.

present in rsent. We use the conductance (Dhamdhere et al., 2019) via rsent with respect to the

encoder outputs, and compare it to the conductance via the cross-attention. We ignore the

encoder’s computation as it is the same for both paths. Since it is computationally expensive

to compute gradients over every neuron in rsent, we sum over just 5 integration steps and

average the result over the first 10 examples of the test set. From Table 3.4, we see that almost

a third of the document’s information is passed through the sentence representation. The

addition of the guidance loss decreases this number, which means that rsent serves more as an

outline than an additional condensed representation of the document.

3.6.3 Model Ablation

Table 3.5 shows an ablation study for the two components we introduced in the hierarchical

decoder. Both the sentence generator network and the guidance loss provide a steady increase

in ROUGE performance as well as a reduction in variance. This demonstrates the efficacy of

our additions.

3.6.4 Number of Parameters

To verify that the improved performance of the sentence planner is not just a result of the

increased number of parameters, we perform an experiment where we increase the base

model’s capacity. BERTSUMEXTABS consists of a 12-layer Transformer encoder and a 6-layer

decoder. Our model has additional parameters in the 2-layer Transformer that serves as the

sentence generator. We therefore increase the BERTSUMEXTABS decoder’s parameters such
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Model Params ROUGE Novel Bigrams

R-1 R-2 R-L

BSEA (Liu and Lapata, 2019b, Ldec = 6, ffdec = 2048) 180M 43.13 17.80 37.63 36.83%
BSEA (our implementation, Ldec = 6, ffdec = 2048) 182M 43.21 17.69 37.54 37.12%
BSEA (our implementation, Ldec = 6, ffdec = 3072) 191M 43.12 17.84 37.53 37.34%
BSEA (our implementation, Ldec = 8, ffdec = 2048) 198M 43.41 17.91 37.79 37.09%
BSEA (our implementation, Ldec = 8, ffdec = 3072) 210M 43.68 18.06 38.06 37.77%

Sentence planner 208M 44.40 18.31 38.69 39.29%

Table 3.6: Number of parameters of each model (M = million) together with ROUGE scores
and novel bigrams on Curation Corpus.

that the total model sizes match. Specifically, we increase the number of layers Ldec and the

inner dimension of the feed-forward sublayer ffdec. The comparison is shown in Table 3.6.

While increasing the number of parameters improves BERTSUMEXTABS’s ROUGE scores, they

are still far behind the sentence planner’s scores. Similarly, the share of novel bigrams rises

a bit with additional parameters. However, it still stays behind the abstractiveness of the

sentence planner, showing that the inductive bias of our hierarchical decoder is very effective.

3.6.5 SUM-QE Evaluation

In line with our evaluations, SUM-QE (Xenouleas et al., 2019) evaluates the linguistic quality

of a summary. In particular, the two qualities focus and coherence are desired properties

for natural summaries. However, we found the metric to give non-discriminative scores to

all summaries (including reference summaries). We therefore only provide the results for

completeness.

SUM-QE automatically evaluates summaries with regard to linguistic quality questions asked

in the DUC-05/06/07 tasks. We select the qualities regarding focus and coherence, described

in Dang (2005) as follows:

Q4: Focus. The summary should have a focus; sentences should only contain

information that is related to the rest of the summary.

Q5: Structure and Coherence. The summary should be well-structured and well-

organized. The summary should not just be a heap of related information but

should build from sentence to sentence to a coherent body of information about

a topic.

The raters were asked to judge summaries on an integer scale of 1 to 5, which is normalized

to [0,1] by the SUM-QE model. It is trained on the raters’ judgments and achieves high

correlations on a held-out test set. We use the model trained on DUC-05/06 (and evaluated on

DUC-07) with the "multi-task-5" setting, producing one output per linguistic quality.
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Dataset / Model Focus Coherence

CNN/DailyMail 0.654 0.298
Curation Corpus 0.848 0.563

BSEA (Liu and Lapata, 2019b) 0.838 0.547
BSEA (our implementation) 0.850 0.563

Sentence planner 0.859 0.562

Table 3.7: Focus and coherence scores of SUM-QE. Models are trained and evaluated on
Curation Corpus. Mean over 5 runs.

Model ROUGE Sentences Novel Bigrams Corefs

R-1 R-2 R-L Num Len

Gold summaries - - - 3.88 14.08 54.33% 0.105

BSEA (Liu and Lapata, 2019b, theirs) 42.16 19.49 39.16 3.33 19.1 7.40% 0.124
BSEA (Liu and Lapata, 2019b, ours) 41.17 18.82 38.27 3.07 18.5 8.14% 0.126
BSEA (our implementation) 41.48 18.86 38.41 2.99 19.6 7.18% 0.104

Sentence planner 41.87 19.37 39.02 3.82 17.8 10.65% 0.132

Table 3.8: Results on CNN/DailyMail. Best result with our own training underlined.

Table 3.7 holds the SUM-QE scores for the reference summaries of CNN/DailyMail and Cura-

tion Corpus. There is an evident difference in scores between the two datasets, with Curation

Corpus’s summaries being judged more focused and coherent by the model. When comparing

the scores of Curation Corpus’s reference summaries with the models’ scores, there are only

minimal differences. The same holds true for a comparison between models. We therefore

cannot draw conclusions with respect to the quality of different models from the SUM-QE

evaluation.

3.6.6 Results on CNN/DailyMail

For comparison with previous work, we now report the results on the more extractive CNN/Dai-

lyMail corpus. Table 3.8 shows the results for BERTSUMEXTABS and the sentence planner. The

first line evaluates the model checkpoint that Liu and Lapata (2019b) provide. When we train

both the extractive initialization and the abstractive model ourselves with the hyperparame-

ters suggested, we are not quite able to achieve the same results. With our implementation of

the decoder, we are able to close the gap in ROUGE scores somewhat. The sentence planner

performs best out of the models we trained ourselves. As on the Curation Corpus, it is also

much more abstractive than BERTSUMEXTABS. This could well account for the remaining

difference in ROUGE scores.

The mean number of generated sentences by the sentence planner is almost identical with

the reference summaries, and again a lot larger than for BERTSUMEXTABS. The generated
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Quality BSEA SP p-value

Non-redundancy 4.05 4.08 0.408
Fluency 3.70 3.75 0.343
Structure/coherence 3.68 3.85 0.102
Informativeness 3.57 3.77 0.069
Abstractiveness 3.45 3.65 0.047
Semantic similarity 2.98 3.18 0.043

Table 3.9: Mean score for each quality in the human evaluation for BSEA and the sentence
planner (SP). Scores range from 1 (worst) to 5 (best). The p-value is determined with a paired
bootstrap test.

sentences are also shorter, in line with the references. The number of coreference links across

sentence boundaries is similar across models, with the sentence planner producing those

links most often. We conclude that even on the more extractive CNN/DailyMail corpus, the

sentence planner generates more abstractive and coherent summaries at high ROUGE.

3.6.7 Human Evaluation

We perform a human evaluation to verify the results found by our automatic metrics. We

compare outputs of BERTSUMEXTABS (our implementation) with the sentence planner. The

annotators are presented with the source article, the reference summary as well as the can-

didate summaries for both systems. The systems are labeled 1 and 2, and their order is

randomized for each example. For each candidate summary, the annotators then have to

select a score from 1 to 5 for six qualities, which are presented with a descriptive question (in

brackets). The qualities are non-redundancy (Is information stated only once?), fluency (Is

the summary grammatical and good to read?), structure/coherence (Do the sentences build

on each other?), informativeness (Is the important information captured?), abstractiveness

(How much of the summary is rephrased (instead of copied)?), and semantic similarity (How

semantically similar is the candidate summary to the gold summary?).

We randomly draw 20 examples from the Curation Corpus test set. We limit the number

of words of source articles to be above 100 and below 700 (includes 70% of examples), to

remove extreme examples and keep the workload for annotators reasonable. We divide our 6

annotators, which are all NLP experts, into two groups, who review 10 examples each, resulting

in 3 annotations per example, of which we take the mean. The results are reported in Table 3.9.

The sentence planner is evaluated favorably compared to BERTSUMEXTABS in all categories.

The non-redundancy and fluency categories show a smaller gap. This is expected, as we

did not change the word generator, which impacts these categories the most. In the other

categories, the sentence planner achieves larger improvements, showing that the introduction

of a hierarchical decoder improves the planning capabilities of the model.

To determine the statistical significance of the results, we follow the guidelines in Dror et al.
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(2018) and select the non-parametric paired bootstrap test (Efron and Tibshirani, 1994). We

find that the two models are not significantly different for the first four categories, while they

are for the abstractiveness and semantic similarity categories when selecting a threshold of

p = 0.05. Additionally, we quantify the inter-annotator reliability with the intraclass correlation

coefficient (ICC), according to Shrout and Fleiss (1979). The reliability is moderate with an ICC

of 0.56 and a 95% confidence interval of [0.46, 0.65]. Given the moderate annotator agreement

and our relatively small sample size of the human evaluation, it is possible that a more

extensive (and therefore expensive) human evaluation could show a significant difference in

informativeness and structure/coherence.

Finally, we are curious whether the Corefs evaluation can serve as an automatic evaluation

of the structure/coherence category. We therefore compute the Pearson ρ for the correlation

between the human and the metric’s scores. The correlation is weak at 0.098 (p-value: 0.549).

Thus there seems to be a mismatch between what the metric measures (discourse coherence

by counting the number of coreference links across sentence boundaries) and the open

way the question was formulated in the human evaluation (Do the sentences build on each

other?). Nevertheless, the Corefs metric showed its value by very clearly distinguishing the

CNN/DailyMail’s summaries from the Curation Corpus’s summaries. We therefore leave its

optimal use for future work.

3.6.8 Example Summaries

Tables 3.10 and 3.11 show example summaries from the Curation Corpus validation set for the

sentence planner and BERTSUMEXTABS (our implementation), alongside the source article

and the reference summary.

3.7 Related Work

Several aspects of our method can be found in prior and subsequent work. We mention them

in the following and point out the differences to the sentence planner.

Hierarchical attention. Nallapati et al. (2016) use hierarchical attention in the encoder with

a word- and a sentence-level RNN. The attention weights at the word level are re-weighted

by the sentence-level attention weights. Celikyilmaz et al. (2018) divide the document into

paragraphs, which are encoded separately by agents. Each agent performs attention within

its paragraph, and the decoder attends to the agents. Gehrmann et al. (2018) first employ a

content selector at the word level to decide which words are candidates for copying. They then

use a pointer-generator network with just the admissible tokens to generate the summary.

Miculicich et al. (2018) use hierarchical attention networks (Yang et al., 2016) to encode the

context of previous sentences, which is used to inform the translation of the next word. In

contrast to these methods, we employ hierarchy on the decoder side and generate a sentence

54



3.7 Related Work

Source article
Theresa May’s plans for a post-Brexit trade deal with the US will be put at risk if she
retains EU protections for food and drink such as Champagne and Parma Ham, a
senior ally of Donald Trump has warned. The Telegraph has learned that Liam Fox, the
International Trade Secretary, has written to David Davis, the Brexit Secretary, warning
him not to concede over the issue during negotiations with Brussels. During a recent
visit to the US he was told by Paul Ryan, a senior Republican and Speaker of the House
of Representatives, that the UK must be able to "diverge" from EU protected status
standards to reach a free trade deal. The US produces its own Feta, Parmesan and
Champagne and has strongly resisted attempts to ban the sale of American products in
the past. Its refusal to compromise on the issue led to the collapse of a major trade deal
between the EU and the US. However Michel Barnier, the EU’s chief Brexit negotiator,
is demanding that Britain must recognise 3,300 protected food and drink products
after Brexit. The products are protected under a system of "geographical indications",
meaning that they cannot be produced elsewhere.

Reference summary
A post-Brexit trade deal with the US may be jeopardised if the UK continues to recognise
EU protected status standards for food and drink. The US has resisted calls to adopt
protections for products such as feta, Parmesan and Champagne, and would expect
the UK to also diverge from them. However, the EU’s chief Brexit negotiator, Michel
Barnier, says Britain must retain the protections.

Candidate summary (sentence planner)
uk prime minister theresa may ’ s plans for a post - brexit trade deal with the us
will be placed at risk if she retains eu protections for food and drink products such as
champagne and parma ham , according to unnamed sources . european trade secretary
liam fox has written to david davis , the eu ’ s chief brexit negotiator michel barnier , to
call for britain to recognise 3 , 300 protected food and drinks products after brexit . the
uk produces its own feta , parmesan and champagne imports , and called for the uk to
" diverge " from eu protected status standards .

Candidate summary (BERTSUMEXTABS, our implementation)
brexit negotiator liam fox has written to david davis , the uk ’ s brexit negotiator , calling
for britain to recognise 3 , 300 protected food and drink products after brexit . the uk
produces its own feta , parmesan and champagne and has strongly opposed attempts
to ban the sale of us products in the past . michel barnier , the eu ’ s chief brexit
negotiator for brexit negotiator michel barnier is calling for the uk to recognise three ,
300 products following brexit .

Table 3.10: Hard example from the Curation Corpus. The sentence planner correctly calls
"a senior ally of Donald Trump" an "unnamed source". It nicely includes the Speaker of the
House’s demand to "diverge" from EU standards as a call by the US. It gets confused with
the International Trade Secretary, the Brexit Secretary, and the EU’s chief Brexit negotiator. It
also mistakes the US for the UK when talking about a country producing its own products.
BERTSUMEXTABS does these same mistakes, but gets even more confused with the Brexit
negotiator. It repeats the call to recognize the protected products by the Brexit negotiator and
misses the main point of the article, namely that this issue jeopardizes the post-Brexit trade
deal.
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Source article
FILE PHOTO: U.S. President Donald Trump talks to reporters as he heads to the Ma-
rine One helicopter to depart the White House for travel to Florida in Washington,
U.S. October 8, 2018. REUTERS/Jonathan Ernst/File PhotoWASHINGTON (Reuters)
- President Donald Trump’s administration on Thursday for a second time asked the
U.S. Supreme Court to put the brakes on a lawsuit filed by young activists who have
accused the U.S. government of ignoring the perils of climate change. In the lawsuit,
21 activists, ages 11 to 22, said federal officials violated their rights to due process
under the U.S. Constitution by failing to adequately address carbon pollution such
as emissions from the burning of fossil fuels. The lawsuit was filed in 2015 against
former President Barack Obama and government agencies in a federal court in Eugene,
Oregon. Both the Obama and Trump administration have failed in efforts to have the
lawsuit thrown out. On July 30, the high court rejected an earlier application by the
Trump administration, saying it was premature. Eugene, Oregon-based federal judge
Ann Aiken on Monday issued another ruling allowing the case to move forward to trial
on Oct. 29 if either the high court or the San Francisco-based 9th U.S. Circuit Court of
Appeals do not intervene. Reporting by Lawrence Hurley; Editing by Will Dunham

Reference summary
President Trump’s administration on 18 October failed in its attempt to halt a climate
change lawsuit filed in 2015 by 21 activists, aged between 11 and 22, which accuses the
US government of ignoring the risks of climate change. The Obama administration
had also attempted unsuccessfully to have the lawsuit thrown out, while the high court
rejected a previous application by the Trump administration to have the case dismissed
on 30 July. The latest ruling from the Supreme Court means the case can proceed to
trial on 29 October if neither the high court or Court of Appeals intervenes.

Candidate summary (sentence planner)
president donald trump ’ s administration has asked the us supreme court to put the
brakes on a lawsuit filed by young activists who have accused the us government of
ignoring the perils of climate change . in 2015 , 21 activists claimed federal officials
violated their rights to due process under the constitution by failing to address carbon
pollution , including emissions from the burning of fossil fuels . on 30 july , the
high court rejected an earlier application by the trump administration , saying it was
premature .

Candidate summary (BERTSUMEXTABS, our implementation)
president donald trump ’ s administration for a second time has asked the us supreme
court to put the brakes on a lawsuit filed by 21 activists who have accused the us
government of ignoring the perils of climate change . the case , which was filed in 2015
against former president barack obama and government agencies in a federal court in
oregon , is being brought forward by the high court on 30 july .

Table 3.11: Example from the Curation Corpus. The sentence planner manages to get all facts
correct, and summarizes the important content very well by removing phrases such as "on
Thursday for a second time", "U.S." in "U.S. Constitution" and "adequately" in "adequately
address". It also uses the information that the lawsuit was filed in 2015 from a later sentence
to include in the sentence about the origin of the lawsuit. BERTSUMEXTABS also nicely fuses
information in its first generated sentence. In the second one, however, it mistakenly believes
that the case will be handled on July 30, instead of October 29. It is again a bit shorter on
information compared to the sentence planner.
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representation for the next sentence.

Summary planning. Tan et al. (2017) use word- and sentence-level RNNs in both encoder

and decoder. They also predict a next sentence embedding but use a graph model for the

importance of the encoded sentences instead of attention. The word-level decoder RNN

is conditioned by initializing the first hidden state with the sentence embedding. Perez-

Beltrachini et al. (2019) use a CNN word encoder/decoder and an LSTM sentence decoder

for multi-document summarization. They predict a next sentence embedding with attention,

which they add to the input of each convolutional decoder layer. An auxiliary loss pushes

sentence embeddings to be close to LDA topics of summary sentences. Both models do not

employ Transformers, and consequently, their conditioning is very different from ours.

Another RNN-based method that can be considered summary planning is presented in See

et al. (2017). Their coverage mechanism can be seen as a plan of what not to write next.

They compute a coverage vector as the sum of attention to the source document in previous

decoder time steps, then use it as an input to the attention computation and introduce a

penalty if it resembles the next step’s attention weights. A similar idea is used for extractive

summarization in Narayan et al. (2020), where the already extracted summary is added to the

input of (hierarchical) structured transformers to avoid extracting further similar sentences.

Discrete summary planning with entity chains is employed in Narayan et al. (2021). Their main

focus is to stay faithful to the source document. To that effect, they split the generation of the

summary into two phases. In the first phase, their model generates a chain of entities (named

entities, dates, and numbers) that should appear in the summary, i.e. a discrete plan of the

entities that should be mentioned. In the second stage, it generates the summary based on the

source document and the previously generated entity chain. By restricting the entity chain to

only contain entities that appear in the source document, they can increase the faithfulness of

the resulting summary to the source document. In Narayan et al. (2022), this idea is extended

by sampling diverse entity chains for generation, instead of sampling the summary words

directly. The sampled discrete plan can then be used to generate the summary with beam

search. Guiding generation with an entity chain is more effective at restricting the output

vocabulary (and therefore extrinsic hallucinations) compared to other planning methods,

such as plans based on translation, summarization, or question answering (Razumovskaia

et al., 2022).

Sentence-level language modeling. Ippolito et al. (2020) pick the most likely continuation

from a set of candidate sentences. Their task provides a context of four sentences and requires

them to pick a single following sentence. A pretrained BERT model generates a target sentence

representation, and the candidate with the highest cosine similarity is selected. Huang et al.

(2020) address the task of sentence infilling, where context on both sides of the missing

sentence is provided. They learn sentence representations with a denoising autoencoder,

predict the representation of the missing sentence with a separate Transformer, and then
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use the autoencoder’s decoder to generate the missing sentence from that representation.

Deutsch and Roth (2019) propose the summary cloze task. Given the beginning of a summary,

the topic, and the reference document, their model has to continue with a single sentence

supported by the reference document. These approaches only predict a single sentence and

are given substantial context. In our approach, we generate sentence representations with

variable context (or no context for the first summary sentence).

Hua and Wang (2020) receive a prompt and a set of keyphrases, which they position and

then fill in the gaps around them. Similarly, Jhamtani and Berg-Kirkpatrick (2020) generate

a keyword per target sentence and then generate its left and right context. In contrast to

these approaches, our sentence generator outputs a latent representation rsent for the entire

sentence, which is used to condition the word generator. We do not tie this representation to

specific words.

3.8 Conclusion

We presented the sentence planner, an encoder-decoder model with a hierarchical decoder,

consisting of a sentence and a word generator. Our sentence generator computes a plan for the

next summary sentence. The word generator is then conditioned on this plan when generating

the sentence’s words. An additional loss term, which guides the sentence planner towards

producing the embedding of the target next sentence, improves the sentence generator’s plan.

When comparing the sentence planner to a state-of-the-art model without a hierarchical

decoder, it generates more abstractive and coherent summaries at higher ROUGE scores.

3.8.1 Higher Abstractiveness

Neither manual inspection of generated summaries nor the analysis of the most frequent

novel bigrams of either method showed any systematic explanation as to why the sentence

planner generates more abstractive summaries. As stated earlier, higher abstractiveness does

not in general increase ROUGE scores, and it was also not part of the training objective (cross-

entropy loss with the reference summary). Our assumption therefore is that the conditioning

on the next sentence representation introduces an alternative to copying from the input.

For next word decisions where the model is not certain, this could then lead the model to

generate a novel word instead, which then also changes the words that follow as it completes

the sentence.
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Chapter Summary

Contextualized word embeddings are great general-purpose representations. Unfortu-

nately, we do not understand what the individual dimensions of the vectors represent, or

how their values relate to those of embeddings for other words. This kind of interpretabil-

ity is offered by the entailment vector framework (Henderson and Popa, 2016). Entailment

vectors allow us to determine whether a summary is entailed by the source document,

i.e. whether its information is supported by the source document and therefore not

hallucinated. In this chapter, we use the entailment vector framework to interpret neu-

ral network architectures for contextualized word embeddings and arrive at a set of

architectural modifications. We evaluate the resulting representations on the task of rec-

ognizing textual entailment (natural language inference). We also assess their usefulness

as general-purpose representations on language modeling. Our experiments show no

substantial deviations in performance from the base algorithms.
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A summary’s goal is to present the important information of the source document in a concise

and coherent text. A summary should not contain information not present in the source

document, even if including it would make the summary itself more fluent and coherent. Nev-

ertheless, such unsupported information is present in some of the summaries that models are

trained on, presumably teaching them to hallucinate (see also Chapter 6). We conjecture that

with better interpretability of our models, we could decrease the occurrence of hallucinations.

In this chapter, we propose methods to learn interpretable contextual representations that are

designed to surface the relations between words of the source document and summary.

4.1 Entailment in Summarization

Entailment is useful for abstractive summarization at two levels. At the summary level, a

source document should entail its summary (Pasunuru et al., 2017). This includes the relations

between entities, possibly across summary sentence boundaries. Additionally, each individual

phrase should be supported (occur or be implied) by the source document. A summary

constructed in this way avoids hallucinations, which is a challenge for current summarization

models (Maynez et al., 2020).

We aim to alleviate this shortcoming by learning contextual entailment vectors according to

the framework of Henderson and Popa (2016). These are word vectors where the individual

dimensions correspond to information that can be known or unknown. The framework

enables computing the entailment relationship between vectors. If we can compute the

entailment relationship between the source and summary words, we can mitigate the problem

of hallucination, at least at the phrase level. Next, we describe the entailment vector framework,

before we present our adjustments to neural network architectures.

4.2 Entailment Vector Framework

In Henderson and Popa (2016), the entailment vector framework is proposed. It is used to

interpret the non-contextualized distributed representations of word2vec (Mikolov et al.,

2013a) as an approximation of entailment relations between a word and its context words. In

their entailment vectors, every vector dimension models if a fact is known or unknown. Each

dimension corresponds to a different fact. In the binary version, a 1 in a dimension means

that this fact is known about the current word, a 0 that it is unknown. For the probabilistic

version, the value is the probability of the fact being known. The entailment relations between

known and unknown facts, with their binary equivalents, are defined as follows:

unknown⊨ unknown 0⊨ 0

unknown⊭ known 0⊭ 1

known⊨ unknown 1⊨ 0

known⊨ known 1⊨ 1
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where ⊨ stands for "entails", and ⊭ for "does not entail".

They go on to derive approximate inference operators over entailment constraints. The feature

vectors x, y contain the log-odds of the fact at dimension i being known, under a mean-field

approximation of the posterior probability. Assuming that feature vector y entails feature

vector x, i.e. y ⊨ x, they can infer y from x with the backward inference operator (termed after

the inference direction in the entailment constraint), and x from y with the forward inference

operator:

y ≻ x ≡σ(−y) · logσ(−x) (backward inference) (4.1)

y ≺ x ≡σ(x) · logσ(y) (forward inference) (4.2)

In their interpretation of word2vec as entailment feature vectors, there exists a latent vector y

for each middle word vector xm and context word vectors Xc , such that y entails both xm and

each vector in Xc , i.e. the shared facts in the given context should be captured in y . The latent

vector y can therefore be inferred from the observed middle and context word vectors with

the backward inference operator. We are using the same mechanism in our entailment-based

architectures to incorporate update information into contextualized representations.

4.3 Entailment-based Architectures

We aim to learn a representation for a sequence of n discrete tokens (words in our case) wi ,1 ≤
i ≤ n. We assume that we are given a continuous representation xi for each such token, where

xi ∈Rd and d is the dimensionality of this representation. In the case of word representations,

one typically uses pretrained word vectors from either word2vec (Mikolov et al., 2013a,b),

GloVe (Pennington et al., 2014) or fastText (Bojanowski et al., 2017). The common architectures

to learn contextual word embeddings are either RNNs, used by ELMo (Peters et al., 2018),

or the Transformer, employed by BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019a),

among others.

4.3.1 Entailment LSTM

Our Entailment LSTM is an adaptation of the LSTM from Hochreiter and Schmidhuber (1997),

described in Section 2.1.1. In the Entailment LSTM, we accumulate evidence in the cell state

ct . It is a function of ct−1, ht−1 and xt (see Equation 2.5). The evidence of the previous time

step is inherited from ct−1 if it is not invalidated by the forget gate ft . In the Entailment LSTM,

we want to incorporate the new evidence at time step t into the cell state. For the cell state to

entail the new evidence, we integrate it with backward inference (Equation 4.1). We replace
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Figure 4.1: Activation functions.

Equation 2.5 with

c ′t = ft ◦ ct−1 − it ◦ logσ(−Wc xt −Uc ht−1 −bc ) (backward inference) (4.3)

= ft ◦ ct−1 + it ◦ log(exp(Wc xt +Uc ht−1 +bc )+1) (softplus) (4.4)

The last equation follows from logσ(−x) = log(exp(x)+1), which is also known as the softplus

activation. As can be seen from Figure 4.1, softplus is a smoother version of the ReLU activation

function. Considering it an approximation to softplus, we also experiment with using the

more common ReLU activation in Equation 4.4.

The backward inference operator’s non-negativity will lead to indefinitely accumulating pa-

rameter values in ct . We can apply layer normalization to guarantee a normally distributed

input to subsequent computations.

Layer normalization for LSTM. Multiple versions of layer normalization (LN) exist for the

LSTM. We use an implementation with normalization on the computation of the weights

(inside the sigmoid) and the cell state (on the sum):

ft =σ(LN(W f xt +U f ht−1 +b f )) (4.5)

it =σ(LN(Wi xt +Ui ht−1 +bi )) (4.6)

ot =σ(LN(Wo xt +Uoht−1 +bo)) (4.7)

ct = LN( ft ◦ ct−1 + it ◦ tanh(Wc xt +Uc ht−1 +bc )) (4.8)

ht = ot ◦ tanh(ct ) (4.9)

In the Entailment LSTM, we want to prevent an explosion of the cell state weights due to

adding a non-negative transformation of the input and previous hidden state at every time
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step. We change Equation 4.4 by adding a normalization step either inside or around the

softplus activation:

c ′t =



ft ◦ ct−1 + it ◦ log(exp(LN(Wc xt +Uc ht−1 +bc ))+1) (c0)

ft ◦ ct−1 + it ◦LN(log(exp(Wc xt +Uc ht−1 +bc )+1)) (c1)

ft ◦ ct−1 +LN(it ◦ log(exp(Wc xt +Uc ht−1 +bc )+1)) (c2)

LN( ft ◦ ct−1 + it ◦ log(exp(Wc xt +Uc ht−1 +bc )+1)) (c3)

(4.10)

With c0, the evidence vector c ′t will only ever add positive values, and its growth is only limited

by the forget and input gates. This induces a higher risk of unstable training through exploding

gradients. During training, we therefore clip the gradient norm. c1 negates the non-negative

transform of the softplus and centers the update term at 0 with unit variance. c2 includes the

weighting by the input gate, and c3 uses layer normalization as the LSTM (see Equation 4.8).

Both c2 and c3 performed consistently worse than c0 and c1, so we excluded them from our

detailed experiments.

For normalization of the hidden state, we replace Equation 2.6 with one of:

h′
t =

ot ◦ tanh(LN(ct )) (h0)

LN(ot ◦ tanh(ct )) (h1)
(4.11)

The h0 normalization keeps the input to the tanh activation standardized and decouples

it from the weight norm of the cell state. The h1 normalization which includes the entire

expression performed worse in initial experiments.

Log-odds bias. In the original LSTM, the forget gate removes information from the cell state

ct by setting it to zero. In the entailment interpretation, c ′t holds the log-odds of information

being known or unknown. The equivalent operation performed by the forget gate would

therefore set the log-odds to unknown, which corresponds to a large negative scalar vneg. We

modify Equation 4.4 accordingly:

c ′t = ft ◦ ct−1 + it ◦ log(exp(Wc xt +Uc ht−1 +bc )+1)+ (1− ft )vneg (4.12)

If we choose vneg = −6, we retain a non-zero gradient while still keeping a close-to-zero

probability when taking its sigmoid.

Outputting the cell state. For the application of natural language inference, it might make

more sense to output the cell state instead of the hidden state, considering that the cell

state holds our accumulated evidence for information being known or unknown. Thus, we

output the cell state instead of the hidden state, add layer normalization to make the output

independent of the weight norm of c ′t , and scale the standard deviation with |vneg| to arrive at
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our log-odds interpretation of cout, t :

cout, t = LN(c ′t )∗|vneg| (4.13)

The hidden state h′
t is still used in the computation of the update Uh′

t in step t +1 as before.

In a stacked Entailment LSTM, the output of the first layer c(1)
out, t then becomes the input to

the second layer x(2)
t , instead of the hidden state h′

t
(1) as in the previous formulation.

4.3.2 Entailment GRU

In the GRU architecture (see Section 2.1.1), we have no dedicated memory like the cell state ct .

This means that our only candidate for evidence accumulation is the hidden state ht . We again

modify the incorporation of new evidence (see Equation 2.9), and replace the tanh activation

with the backward inference operator to get:

h̃′
t = softplus(Wh xt +Uh(rt ◦ht−1)+bh) (4.14)

As in the Entailment LSTM, we experiment with layer normalization on the hidden state

update:

h̃′
t =

softplus(LN(Wh xt +Uh(rt ◦ht−1)+bh)) (h0)

LN(softplus(Wh xt +Uh(rt ◦ht−1)+bh)) (h1)
(4.15)

or the computation of the new hidden state:

ht = LN((1− zt )◦ht−1 + zt ◦ h̃t ) (4.16)

The Entailment GRU did not achieve similar performance as the Entailment LSTM in our

initial experiments. Coupled with the fact that there is no dedicated memory to accumulate

evidence, we did not pursue the Entailment GRU further.

4.3.3 Entailment Transformer

We consider solely the Transformer encoder throughout this section. In the Transformer archi-

tecture (Section 2.1.4), information gets constantly accumulated over layers. New evidence

gets added in the attention sublayer (Equation 2.19). The attention function extracts the rele-

vant information about the other tokens in the sequence, and it is unified with the previously

accumulated evidence. To achieve this unification, we apply the backward inference operator

to the output of the multi-head attention function:

MHA(x) = fmerge(softplus(MHAi (qi ,ki , vi )))W +b , with 1 ≤ i ≤ H (4.17)

The partitioning of the input dimension onto the attention heads poses a challenge for the
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entailment interpretation. As seen in Equation 2.23, the individual heads only read and write

their own segment and do not interact except in the weight matrix W in Equation 2.24 and

in the feed-forward step (Equation 2.20). In the Transformer paper, the heads are shown to

learn different semantic and syntactic functions, e.g. coreference resolution (Vaswani et al.,

2017). For independent functions, it makes sense to divide the model dimensions onto the

heads. In the entailment interpretation, however, a specific piece of information being known

or unknown interacts with the rest of the evidence. We therefore adapt the divide and merge

functions. We experiment with fdivide either copying its input H times or projecting it into Rd H

and reshaping it into Rd×H to divide it onto the heads. As a result, the input dimensionality for

each head MHAi is d instead of d/H , and the dimension of the input to fmerge is Rd×H . The

merge function fmerge then has to aggregate its input to arrive at an output dimension of d

again, so we apply summation or max-pooling:

MHA(x) =


∑H
i=1ω(MHAi (qi ,ki , vi ))W +b (sum)

max
1≤i≤H

ω(MHAi (qi ,ki , vi ))W +b (max)
(4.18)

where ω is either an activation, as in Equation 4.17, or the identity, as in the original Trans-

former formulation (Equation 2.24).

Inverse softplus pooling. We also investigate inverse softplus pooling (ISP) to unify evidence.

It is defined as:

isp-pool(x) = softplus−1

(∑
i

softplus(xi )

)
(4.19)

It exhibits the properties of reflexivity:

isp-pool(xi ) = softplus−1(softplus(xi )) = xi (4.20)

associativity:

isp-pool(xi , x j , xh) = softplus−1(softplus(xi )+ (softplus(x j )+ softplus(xh))) (4.21)

= softplus−1((softplus(xi )+ softplus(x j ))+ softplus(xh)) (4.22)

and commutativity:

isp-pool(xi , x j ) = softplus−1(softplus(xi )+ softplus(x j )) (4.23)

= softplus−1(softplus(x j )+ softplus(xi )) = isp-pool(x j , xi ) (4.24)

The last two properties follow from the associativity and commutativity of the sum. Pooling

operations such as the sum or maximum exhibit the same properties. We can therefore replace

them with ISP. In combination with projecting the input of the attention heads and summing
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their output mentioned above, we can change the aggregation in Equation 4.18 to:

MHA(x) = isp-pool(MHAi (qi ,ki , vi ))W +b , with 1 ≤ i ≤ H (4.25)

A further opportunity to replace a pooling operation is in the computation of the fixed-size

sentence representation needed for e.g. the NLI task, which we do by max-pooling the Trans-

former encoder outputs by default. Applying ISP gives us the accumulated evidence from all

output positions. Moreover, the ResNet variant discussed below sums the contributions of

individual blocks. We can replace this sum with ISP, to add up the evidence from the individual

computations. Finally, we use ISP in the attention computation itself by computing:

MHAi (qi ,ki , vi ) = softplus−1

(
softmax

(
qi ki√

dk

)
softplus(vi )

)
(4.26)

This behaves like normal attention when the attention weights are skewed or the values are

similar, but is bounded by max pooling if the attention weights are uniform and the values

are different. As a result, we get a smoother version of attention, where an attention head can

either select an individual value vector or unify the evidence from multiple vectors.

Entailment attention. Instead of computing the dot-product attention, we interpret the

queries and keys as entailment vectors and compute their alignment either with the backward

inference operator (Equation 4.1) or the forward inference operator (Equation 4.2). We replace

the dot-product attention in Equation 2.23 as follows:

MHAi (qi ,ki , vi ) = softmax

(
σ(−ki ) logσ(−qi )√

dk

)
vi (backward) (4.27)

MHAi (qi ,ki , vi ) = softmax

(
σ(qi ) logσ(ki )√

dk

)
vi (forward) (4.28)

Modified Base Model

We further try some modifications of the Transformer base model with respect to the softmax,

residual connections, and key and value projections.

Non-selective softmax. The softmax is a way to create probabilities from logits, where more

probability mass is concentrated on the high logits than for other normalization schemes,

such as a simple division by the sum of the logits. In attention, it is used for computing the

attention weights α. Since the αi have to sum to 1, this means that a model has to put its

attention somewhere – even if the logits for the current training sample are low everywhere.

Since the softmax promotes a concentrated probability mass, it will still force attention to

select certain inputs. To make it easier for the softmax to be non-selective, i.e. to output a more

uniform attention weight distribution for cases where all logits are low, we add a constant c = 1

66



4.4 Experiments

to the normalization term in the denominator.

ns-softmax(x)i = exp(xi )(∑
j exp(x j )

)+1
(4.29)

With this change, the attention weights no longer sum to 1, and the remainder is interpreted

as paying attention to no specific input for the current training sample.

ResNet Transformer. The Sparse Transformer (Child et al., 2019) uses an architecture similar

to residual networks (ResNet, He et al., 2016), where residual connections bypass the entire

attention and feed-forward sublayers. Equations 2.19 and 2.20 change as follows:

al
t = hl−1

t +MHA(LN(hl−1)) (4.30)

hl
t = al

t +FFN(LN(al
t )) (4.31)

We can see that additionally, the layer normalization moves inside the multi-head attention

and the feed-forward network.

Tying keys and values. In the base Transformer, keys and values go through different pro-

jections W k and W v (see Equation 2.21). The reasoning is that the keys are responsible for

selecting the right memory positions by aligning with the queries, while the values hold the

information. However, if we assume the queries to be meaningful in the output space, it makes

sense that the values themselves align with the queries. We therefore experiment with tying

the keys and values by projecting with a single matrix W kv :

q,k, v = xt W q , xt W kv , xt W kv (4.32)

4.4 Experiments

Naturally, we evaluate our entailment-based architecture modifications on the task of natural

language inference. We also compare our changes with the base algorithms on language

modeling, to get a sense of the generalization abilities of the resulting representations. We

start this section by describing our training protocol.

4.4.1 Datasets

For natural language inference, we use the SNLI corpus, and for language modeling we use

WikiText-2.

SNLI. The Stanford Natural Language Inference (SNLI) corpus is a large dataset for the task of

natural language inference (Bowman et al., 2015). It consists of 570k premise-hypothesis pairs.
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The premises are image captions describing a scene, and the hypotheses were generated by

crowd workers to either be entailed by, neutral to, or contradict a given premise. Later studies

found annotation artifacts due to the construction process, where certain words are much

more common for one of the labels (Gururangan et al., 2018; Poliak et al., 2018). Nevertheless,

this corpus is widely used due to its large size. The dataset can be downloaded from the project

homepage.1

WikiText-2. We use the WikiText-2 corpus (Merity et al., 2017) to test if our entailment

representations are generally useful on the task of language modeling. WikiText-2 (and its

larger version WikiText-103) are a collection of featured Wikipedia articles, which means

that they have been carefully edited and should contain a minimal amount of grammatical

mistakes. This quality guarantee makes them a good target for language model training. The

WikiText-2 training set consists of 2.1 million tokens from 600 articles. The validation and

test set both consist of 60 articles, with a token count of 218k and 246k, respectively. Both the

smaller WikiText-2 and the larger WikiText-103 are available from the dataset website.2

4.4.2 Training Details

We try to spend the same amount of computation for tuning our baseline models and our

proposed variations. Our tuning starts with finding an optimizer that performs well for a

constant learning rate. This turns out to be SGD for NLI and Adam for language modeling.

We did not get Adam to converge on the NLI task. Once we have decided on an optimizer, we

first find the best learning rate and associated schedule. We found striking differences when it

comes to learning rate schedules and will elaborate further below. We then fix the learning rate

and the schedule and tune regularization, which includes weight decay and dropout. Finally,

we run the best setting for multiple runs with different random seeds and report the mean

and standard deviation.

Learning Rate Schedule

We experimented with constant learning rates, linearly decreasing learning rates, cosine

annealing, and validation-based decaying of the learning rate. In the end, we found that the

1cycle learning rate schedule (Smith, 2018) gave the best results on both tasks. The 1cycle

schedule has three phases: A warmup phase where the learning rate is annealed from lrmax/10

to lrmax, an annealing phase, where it is annealed back down to lrmax/10, and finally a cooldown

phase, where it is decreased further to lrmax ∗1e−3. The annealing can either be linear or

follow the cosine curve, and we found linear to perform better. The fraction of training spent

in each phase is subject to tuning, and we observed large differences between models and

tasks (see below). The 1cycle schedule, where the learning rate depends on the training step,

1https://nlp.stanford.edu/projects/snli/
2https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
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substantially outperforms an adaptive schedule that decreases the learning rate when no

further improvement in the validation metric is observed. For language modeling with the

LSTM, for example, perplexity goes down from 108.9 to 102.1 (see Table 4.3a).

1cycle-4phases. We observed that the LSTM’s validation perplexity has not yet fully con-

verged when the (typically short) cooldown phase ends. We therefore introduce a fourth

phase we call burn-in, where we further decrease the learning rate to a predetermined

lrmin = lrmax ∗ 1e−6, below which we do not expect the gradient updates to have any sub-

stantial effect on the model weights anymore. In language modeling, this schedule brings

further minor gains and improves the LSTM’s perplexity from 102.1 to 101.7. On the NLI task,

the fourth phase did not bring further improvements, potentially due to the smaller number

of training steps.

Fraction of training spent in each phase. While the original paper suggests the 3 phases

to be distributed at about 44% warmup, 44% annealing, and 12% cooldown (Smith, 2018),

we found the best values for these hyperparameters to differ strongly for our models and

tasks. For language modeling, both LSTM and Transformer spend most of their training in

the annealing phase (60–70%), while for NLI, spending 80% of training in the warmup phase

achieved the best results for all Transformer models and nearly all LSTM variants. Due to the

combinatorial increase in hyperparameter trials with these additional hyperparameters, we

independently tune the division into phases from the other hyperparameters.

4.4.3 Natural Language Inference

We train individual sentence representations for the premise and the hypothesis on the SNLI

training set for 20 epochs. We train two different classifiers. One is based on entailment

scores (Karimi Mahabadi et al., 2019) that force the encoder to learn the entailment rela-

tionships without a subsequent non-linear classifier and use interpretable scores for the

classification. Our second classifier is a standard multi-layer perceptron (MLP) with a softmax

output and heuristic matching features as input, as used by InferSent (Conneau et al., 2017).

The matching features are a concatenation of the individual sentence representations u and v ,

their element-wise product as well as the absolute element-wise difference: [u; v ;u ◦v ; |u−v |].

We train our own BiLSTM and Transformer encoder baselines and use the results for InferSent

reported in their paper (Conneau et al., 2017). BiELSTM uses the softplus activation, c0 and

h0 layer normalization, vneg =−6, and outputs the hidden state h. LSTM variants use 1 or 2

layers, the Transformer uses L = 6 layers and H = 8 attention heads. We learn 512-dimensional

encoder representations, which results in 1024-dimensional concatenated embeddings for

bidirectional methods. We use the SGD optimizer, the 1cycle schedule, and a maximum

learning rate of 0.5 for the Bi(E)LSTM models, and either 0.5 or 1 for the Transformer.
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Method mean std

BiLSTM 83.12% 0.16%
BiLSTM (2 layers) 83.51% 0.27%

BiELSTM 82.82% 0.22%
BiELSTM (2 layers) 83.26% 0.10%

(a) LSTM variants.

Method mean std

Transformer 84.44% 0.24%

Project-sum attention heads 84.49% 0.30%
ISP ResNet 83.99% 0.23%
ISP attention computation 84.19% 0.16%
forward entailment att. 84.49% 0.14%
backward entailment att. 84.59% 0.33%
non-selective softmax 84.44% 0.26%
ResNet 84.27% 0.15%
tied keys and values 84.47% 0.11%

(b) Transformer variants.

Table 4.1: Test accuracy of encoder architectures with entailment scores on natural language
inference, showing mean and standard deviation over 5 runs.

4.4.4 Language Modeling

We also evaluate our entailment-based architectures on language modeling to test their use

as a general-purpose encoder. We use the data splits provided with the WikiText-2 dataset,

and learn task-specific word embeddings from scratch. We train with two different settings.

First, we compare our various model architectures by training to convergence with 50 epochs.

The embedding size as well as the hidden dimensionality is set to 200. We use the Adam

optimizer, a maximum learning rate of 0.01 and regularize with weight decay of 1e−6 and

dropout of 0.2 on the input embedding, the LSTM hidden states and the Transformer attention

weights and sublayer outputs. We then select the best-performing model to compare with

AWD-LSTM (Merity et al., 2018), a heavily regularized vanilla LSTM. This training runs for

750 epochs, with much slower convergence due to stronger regularization, but at the same

time much better generalization performance. It uses 400-dimensional embeddings and

1150-dimensional hidden states.

4.5 Results

We now present the results for our best-performing models on NLI and language modeling. In

the following Section 4.6, we provide a detailed ablation of our architecture modifications.

4.5.1 Natural Language Inference

We measure mean accuracy on SNLI over 5 runs of the same model with different random

seeds and present the results for the entailment scores classifier in Table 4.1, and for the MLP

with heuristic matching features in Table 4.2.

For LSTM-based encoders trained with entailment scores, we see from Table 4.1a that adding

an additional layer improves accuracy by about 0.4%. The results for our bidirectional En-
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Method mean std

InferSent 84.82% –
BiLSTM 85.05% 0.20%
BiLSTM (2 layers) 85.32% 0.23%
Transformer 86.28% 0.17%

BiELSTM 84.53% 0.26%
BiELSTM (2 layers) 85.34% 0.18%

Table 4.2: Test accuracy of encoder architectures with heuristic matching features on natural
language inference. Mean and standard deviation over 5 runs.

Method Valid. Perplexity

GRU (2 layers) 121.5
Transformer (6 layers) 117.8
LSTM (2 layers, adaptive) 108.9
LSTM (2 layers, 1cycle) 102.1
LSTM (2 layers, 1cycle-4phases) 101.7

ELSTM (2 layers) 104.2
ELSTM (3 layers) 99.62

(a) 50 epochs, less regularization.

Method Test Perplexity

AWD-LSTM (3 layers) 65.37

ELSTM (3 layers) 65.52

(b) 750 epochs, heavy regularization.

Table 4.3: Perplexity (lower is better) on WikiText-2 language modeling.

tailment LSTM (BiELSTM) are slightly behind the LSTM baseline’s results. All LSTM models

are outperformed by the Transformer variants shown in Table 4.1b, which all achieve very

similar accuracy. This is surprising to see, as our initial architecture experiments (detailed in

Section 4.6.3) hinted at a larger difference between the models. A possible explanation could

be that with the right hyperparameters, the Transformer model is powerful enough to adapt

to our changes and converge to the base model’s solution. In our experiments, we especially

found the initial warm-up of the learning rate to be crucial for good results, as is also reported

in the original paper (Vaswani et al., 2017).

The evaluation with heuristic matching features and an MLP classifier mirrors the results for

the entailment scores, albeit with an absolute improvement of almost 2 accuracy points (see

Table 4.2). The best result is achieved by a base Transformer with 86.28% mean accuracy.

4.5.2 Language Modeling

We show perplexity, i.e. the surprisal of a model when shown a text sequence not seen during

training, in Table 4.3. Lower perplexity is better. From Table 4.3a, we see that the LSTM clearly

outperforms the Transformer encoder and the GRU. Further improvements can be achieved

with the best learning rate schedule. The ELSTM does not reach the perplexity of an LSTM

when both models use 2 layers and needs another layer to improve on LSTM’s score. The same
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Model Num. parameters

(E)LSTM 1.7M
Bi(E)LSTM 3.3M
Bi(E)LSTM (2 layers) 9.6M
Transformer (6 layers) 19.1M
Transformer (6 layers, project head inputs) 31.7M

Table 4.4: Number of parameters per model (M stands for million).

holds true in the larger scale comparison with the AWD-LSTM (Table 4.3b). However, since

this evaluation runs for multiple days, the hyperparameters from Merity et al. (2018) were

used for both the AWD-LSTM and the ELSTM, which might put the ELSTM at a disadvantage

if they were carefully tuned for the AWD-LSTM.

4.6 Architecture Ablation

The standard number of layers and therefore parameters used in the LSTM and the Trans-

former differs quite a bit (see Section 4.6.1). The training times for both are comparable,

however, as the Transformer can parallelize computation on the entire sequence, while it is

sequential in the LSTM. We now compare model parameters and then perform a detailed

ablation of architecture choices in both the Entailment LSTM and the Entailment Transformer.

4.6.1 Number of Model Parameters

We list the number of model parameters in Table 4.4, with the unidirectional single-layer LSTM

as a reference. Among its parameters, around 0.6M are accounted for by the input to hidden

matrix W , while approximately 1M parameters come from the hidden to hidden matrix U

(see Section 2.1.1). The BiLSTM doubles this number exactly. When going to two layers, the

input-to-hidden weight matrix of the second layer W (2) has 2.1M parameters, as it takes as

input the concatenated output of the first layer of both directions. The ELSTM variants have

the same number of parameters. We omit to learn adaptive bias and gain parameters for layer

normalization as proposed in its original formulation (Ba et al., 2016).

The Transformer with 6 layers has many more parameters. These again come from the weight

matrices. The attention sublayer has approximately 1M parameters, dominated by W {q,k,v}

and W , while the feed-forward sublayer has around 2.1M parameters in W1 and W2 (see

Section 2.1.4). The Transformer with fdivide as projection adds another 2.1M parameters per

layer, due to projecting the input to Rd H (Section 4.3.3).
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Model Output Layers Activation Norm vneg SNLI Diff.

BiLSTM h 1 tanh none 0 83.12%
2 83.71%

BiELSTM h 1 softplus c0 0 82.75% -0.37%
-6 83.02% -0.10%

c1 0 82.90% -0.22%
-6 82.99% -0.13%

relu c0 0 82.23% -0.89%
-6 82.77% -0.35%

c1 0 81.15% -1.97%
-6 81.05% -2.07%

tanh c0 0 81.08% -2.04%
-6 82.55% -0.57%

c1 0 83.18% 0.06%
-6 82.69% -0.43%

2 softplus c0 0 83.54% -0.17%
-6 83.59% -0.12%

c1 0 83.34% -0.37%
-6 83.62% -0.09%

relu c0 0 83.26% -0.45%
-6 83.41% -0.30%

c1 0 83.58% -0.13%
-6 83.80% 0.09%

tanh c0 0 82.65% -1.06%
-6 82.42% -1.29%

c1 0 82.91% -0.80%
-6 82.98% -0.73%

c 1 softplus c0 0 82.83% -0.29%
-6 79.37% -3.75%

c1 0 82.95% -0.17%
-6 80.16% -2.96%

2 softplus c0 0 82.71% -1.00%
-6 79.36% -4.35%

c1 0 83.67% -0.04%
-6 78.10% -5.61%

Table 4.5: Comparison of Entailment LSTM architecture choices. Empty fields copy the setting
from the line above. Differences in the last column are with respect to the baseline with the
same number of layers.
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Model Act. FFN Act. Attn SNLI Diff.

Base gelu none 82.62%

relu 81.32% -1.30%
softplus 81.93% -0.69%
tanh 76.91% -5.71%

relu none 82.66% +0.04%
relu 81.60% -1.02%
softplus 81.75% -0.87%
tanh 76.20% -6.42%

tanh none 80.93% -1.69%
relu 78.30% -4.32%
softplus 78.99% -3.63%
tanh 71.66% -10.96%

ns-softmax gelu none 82.26% -0.36%
relu 82.98% +0.36%
tanh 80.85% -1.77%

ResNet T gelu 82.94% +0.32%
relu 83.22% +0.60%
tanh 82.69% +0.07%

tied kv gelu 82.94% +0.32%
relu 82.65% +0.03%
tanh 80.62% -2.00%

(a) Comparison of activation functions, fdivide = split, fmerge = concat.

fdivide fmerge Act. Attn SNLI Diff.

split concat none 82.62%

copy sum none 41.71% -40.91%
relu 41.81% -40.81%
softplus 40.29% -42.33%
tanh 41.79% -40.83%

project sum none 83.68% +1.06%
relu 82.07% -0.55%
softplus 40.46% -42.16%
tanh 83.68% +1.06%

max none 82.36% -0.26%
relu 82.83% +0.21%
softplus 79.84% -2.78%
tanh 82.02% -0.60%

(b) Comparison of fdivide and fmerge, Model = Base, Act. FFN = gelu.

Table 4.6: Architecture comparison for the Entailment Transformer, for activation functions
and split and merge functions. Empty fields copy the setting from the line above.
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4.6.2 LSTM Architecture

We perform an ablation of the architectural choices in the Entailment LSTM on the NLI

task. All models are trained with a constant learning rate of 0.5. We experiment with the

modifications presented in Section 4.3.1 and compute the difference to a one- or two-layer

BiLSTM. For outputting the hidden state h, we additionally use the ReLU activation function

as an approximation to the softplus, and the tanh for controlling the effect of applying layer

normalization and log-odds bias to a standard LSTM. The results are shown in Table 4.5.

Most modifications remain very close to BiLSTM’s performance, but some runs fall short in a

non-conclusive manner (e.g. c1 normalization for a 1-layer ReLU BiELSTM performs badly,

but with 2 layers it performs best of all activation-normalization combinations). The softplus

activation has the lowest variance of the activation functions. It benefits consistently from

the log-odds bias, while the normalizations perform similarly. Unexpectedly, this behavior

is reversed when outputting the cell state c instead of the hidden state h. The results for the

ReLU activation are close to the softplus’s, albeit with higher variance. Neither normalization

nor log-odds bias consistently improves the results of the BiLSTM (i.e. the BiELSTM with the

tanh activation).

4.6.3 Transformer Architecture

We again use a constant learning rate of 0.5 for the Transformer ablation. We use 4 layers

and no dropout or weight decay. When searching for the best hyperparameters for learning

rate and regularization, we expect improvements in the range of 1 to 2 accuracy points, as we

observe for the base model (see Table 4.1b).

In Table 4.6a, we see that using an activation function for the output of the attention as defined

in Equation 4.17 does not improve results. Choosing either a GELU or ReLU activation on the

feed-forward network has no consistent effect. The tanh activation, however, substantially

decreases performance. The non-selective softmax, the ResNet Transformer, and tying the

keys and values improve over the base model in some configurations. However, after tuning

the hyperparameters, these advantages disappear and the test accuracy is remarkably close to

that of the base model.

In Table 4.6b, we compare different functions for dividing the inputs and merging the outputs

of multi-head attention. Using the copy strategy for fdivide, we were not able to train models

that could consistently decrease the training error. Projecting the inputs up to a higher dimen-

sion works much better, and even improves upon the base model by a margin. Unfortunately,

the same effect we observed for activation functions repeats here as well; the test accuracy of

the tuned model loses the advantage of the initial experiments. Using no attention activation

beats the tanh activation. The softplus attention activation seems to be unstable in conjunc-

tion with the sum as fmerge. Using max-pooling for merging the heads’ outputs resolves this,

but achieves lower accuracy than projecting and summing.
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ISP applied to SNLI Diff.

none 82.62%

attention heads 41.71% -40.91%
outputs (instead of max-pooling) 80.12% -2.50%
ResNet blocks 83.32% +0.70%
attention computation 83.49% +0.87%

(a) Comparison of variants of inverse softplus pooling, Model = Base, Act. FFN = gelu, fdivide = split,
fmerge = concat.

attention function SNLI Diff.

dot-product 82.62%

backward inference 82.42% -0.20%
forward inference 82.32% -0.30%

(b) Comparison of attention functions, Model = Base, Act. FFN = gelu, fdivide = split, fmerge = concat.

Table 4.7: Architecture comparison for the Entailment Transformer, for pooling and attention
functions. Empty fields copy the setting from the line above.

We compare different applications of inverse softplus pooling in Table 4.7a. Using it to merge

the output of the attention heads cannot be trained to reach training error much below the

random baseline. The other variants do much better. Applying isp-pool to the final outputs

to produce a fixed-size sentence representation is 2.5% accuracy points behind max pooling.

Applying it to the contributions of individual ResNet blocks performs better than the base

model. The best approach in this experiment applies inverse softplus pooling to the attention

computation (Equation 4.26).

In Table 4.7b, we compare the dot-product attention with the backward and forward inference

operators as a way to compute the alignment of queries and keys. We observe that the

performance is very similar, with the dot-product attention achieving the best score on the

validation set. Both variants remain competitive after tuning hyperparameters (see Table 4.1b).

4.7 Related Work

To the best of our knowledge, this work is the first to introduce an inductive bias for entailment

into the LSTM or Transformer architectures. There is, however, a wealth of research on general

modifications of these architectures.

LSTM architecture. The proposal of peephole connections (Gers and Schmidhuber, 2000)

lets the gate computation take into account the previous cell state ct−1, additionally to the

previous hidden state ht−1. The most widely adapted modification is the GRU (Cho et al.,

2014b), as it can achieve similar performance with a simpler architecture and a smaller number
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of parameters (see Section 2.1.1). Nested LSTMs (Moniz and Krueger, 2017) introduce an inner

LSTM cell that replaces the cell state in order to gain more memory capacity, especially for

storing longer-term dependencies. The rotational unit of memory (Dangovski et al., 2019)

pursues the same objective by replacing the cell state with rotational associative memory.

Ordered neurons LSTM (Shen et al., 2019) use an inductive bias towards tree structures by

mapping the entries of a flat memory vector to a tree and updating all nodes in the subtree

whenever the parent node gets updated. Finally, adaptive computation time (ACT, Graves,

2016) uses a variable number of steps to process each input, instead of processing a single

input token at each time step.

Transformer architecture. The Transformer (Vaswani et al., 2017) was introduced more

recently than the LSTM but has nonetheless seen rapid adoption for NLP tasks. The Weighted

Transformer (Ahmed et al., 2017) modifies the multi-head attention by feeding the heads

separately into the feedforward layer and learning how to combine them, in an attempt to

learn decorrelated heads. The Universal Transformer (Dehghani et al., 2019) ties the weights of

all Transformer layers and processes each input symbol a varying number of times, determined

by the model at processing time. In contrast to ACT, the steps in the Transformer are the

number of layers. Related, a Transformer model with a fixed number of layers that do not

share weights can decide to stop computation before the final layer has been reached and

output the representation from the layer after which it stopped. These so-called early exit

strategies have been proposed for encoder-only models such as BERT (e.g. Xin et al., 2020,

among others), and encoder-decoder models like T5 (Schuster et al., 2022).

Most effort in improving the Transformer architecture has gone into alleviating its main

computational bottleneck: the quadratic complexity of self-attention. This especially limits

the processing of large input sequences. Transformer-XL (Dai et al., 2019) divides the input

into chunks and lets the current chunk look at the cached representations of the previous

chunks, thereby enabling learning longer dependencies. The Sparse Transformer (Child et al.,

2019) replaces dense attention computation between every input token with two fixed sparse

attention patterns. The patterns are allocated to attention heads, and either correspond to

attention in the local neighborhood or strided attention. They also introduce the ResNet-like

Transformer architecture that we adopt for the ResNet Transformer in Section 4.3.3. The

Longformer (Beltagy et al., 2020) extends the Sparse Transformer by introducing dilated

attention and giving specific tokens access to full attention, both to increase the receptive

field. They increase the dilation in higher layers, to further increase the dependency distances.

The Linear Transformer (Katharopoulos et al., 2020) formulates self-attention as a dot-product

of linear kernel feature maps and limits it with a causal mask, meaning tokens can only attend

to previous tokens in the sequence. The Perceiver (Jaegle et al., 2021) uses a downsampled

latent array to represent information about the sequence. New information is integrated into

the latent memory with a cross-attention module, then self-attention is performed just in the

reduced-size latent space. These and more efficient Transformer variants are surveyed in Tay

et al. (2023).
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The Transformer has also been a testbed for neural architecture search. For example, the

Evolved Transformer (So et al., 2019) is the result of an evolutionary architecture search starting

from the original Transformer, which performs minor adaptations to individual sublayers,

such as replacing a feed-forward operation by a depth-wise separable convolution, to slightly

increase performance on the task of machine translation. For the Primer architecture (So et al.,

2021), the neural architecture search space consists of TensorFlow primitives. The search

finds an architecture that reaches a vanilla Transformer’s performance on autoregressive

language modeling 2–4 times faster. The largest improvements are gained from squaring ReLU

activations and inserting a 3-by-1 convolution after the projection into queries, keys, and

values and before multi-head self-attention. For further information on neural architecture

search for Transformers, we recommend a recent survey such as Chitty-Venkata et al. (2022).

4.8 Conclusion

We proposed the introduction of an inductive bias for entailment relationships to current

architectures for sequence processing. Specifically, we introduced entailment versions of

the LSTM and the Transformer, and compared them with their base algorithms on natural

language inference and language modeling. We found that while our variations did show

promising results in initial experiments, tuning hyperparameters lead to similar performance

to the base models, with no consistent improvement on either task. We assume that these

models are such powerful learning methods that the inductive bias we presented is too weak

for them to produce qualitatively different outcomes. We observed a similar tendency in re-

lated work, where small changes do not lead to consistent improvements across datasets and

tasks. Future work should therefore investigate more fundamental changes to the architecture.

For contextual entailment vectors, future work should aim to establish that the desired rela-

tionships are learned on smaller architectures with reduced capacity and potentially synthetic

data.
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Chapter Summary

A document can be understood as a collection of pieces of information, which we call

semantic text units. For summarization, a subset of all semantic text units is relevant. The

goal of a summarization model is to identify the salient parts of the source document.

Current models process the input text as a flat series of tokens. We aim to group tokens

into semantic units. The summarization model then decides which units to extract or

pay attention to when writing the summary. This hierarchical approach promises better

interpretability, as the targets of attention are more meaningful than individual tokens,

and also better controllability. To learn the semantic units from the text, we use methods

from computer vision that identify objects in a scene and learn representations for them.

We evaluate different models and settings, and analyze the attention patterns of the

individual model components. Learning representations of semantic text units that are

useful for extractive or abstractive summarization proves to be difficult.
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Current summarization models are designed to process sequences of symbols. As of now,

these are series of subword tokens, typically created by byte-pair encoding (Sennrich et al.,

2016). We conjecture, however, that the units of meaning reside at a higher level of abstraction,

at the phrase level. In this chapter, we aim to detect semantic units in an unsupervised manner

during summary generation. A successful partitioning of the source document into semantic

units could enable a different style of summary construction as a composition of units, and

evaluation as determining their presence. The result would be easier to understand and

control.

5.1 Semantic Text Units

We informally define a semantic text unit (STU) to be a phrase that constitutes a single piece

of information. This can be, for example, a concept, entity, object, event, or action. STUs are

unique in a document. If an STU appears multiple times in a source document, its represen-

tation should be shared. This should make its identification easier and simplify the model’s

task to relate the pieces of information in the text. In contrast to the definitions mentioned

below, semantic text units (a) are extracted by the model instead of human annotators, (b)

are taken from the source document instead of the summary, and (c) are not on their own a

fact that could be verified. Only in their use together with other semantic text units do they

become meaningful statements. We explicitly do not want to make more prescriptions and let

the model decide what the best form of semantic text units should be.

Relation to summarization content units. Summarization content units (SCU) are defined

in Nenkova and Passonneau (2004). The authors do not explicitly define SCUs, but rather

posit that they emerge from annotating different summaries of the same source document

and are not bigger than a clause. They are the overlapping parts of the individual summaries

and could be described as facts or statements. Thus, they are typically longer than STUs and

contain multiple concepts.

Relation to factoids. Factoids are very similar to SCUs. They are defined as atomic infor-

mation units, and also exist in relation to a set of summaries (van Halteren and Teufel, 2003).

The difference lies in their construction. Instead of SCUs, which are found by looking at

overlapping information in the summaries, they are created based on a single summary. The

atomic information units are listed as factoids. In a second pass over the summaries, factoids

are merged if they are never mentioned independently.

Relation to information nuggets. A similar concept exists in question answering. Informa-

tion nuggets are facts, for which a binary decision whether the answer contains the fact is

possible (Voorhees, 2003). Information nuggets again are defined with respect to available

facts in the set of answers.
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Difference to related concepts. We illustrate the difference between STUs and SCUs, fac-

toids, and information nuggets with an example. Consider the following sentence of the first

reference summary of the CNN/DailyMail validation set:

Flight HX337 was carrying 295 people from Beijing to Hong Kong.

Three possible SCUs, factoids, or information nuggets for this sentence are:

• The flight number was HX337.

• The plane was carrying 295 people.

• The plane was flying from Beijing to Hong Kong.

Compare this to our proposed STUs, appearing verbatim in the source document:

• Flight HX337

• carrying 295 people

• from Beijing to Hong Kong

Our example shows that STUs are in general much shorter than the previously mentioned

concepts, and only become statements once combined.

Other definitions. In other work, semantic units are the minimum units of semantic infor-

mation, for which their truth can be determined (Zhong, 2017; Peyrard, 2019a), atomic facts

that no longer need to be split to compare summaries (Liu et al., 2022a), or simply a fixed-size

sliding window over the source document (Wu et al., 2022).

5.2 Object Detection and Representation in Computer Vision

Identifying and representing objects in an image is a prominent topic in computer vision

research. We present three well-motivated approaches that influenced our work in this chapter.

5.2.1 Capsule Networks

Capsule networks combine ideas of representing objects and object parts with a commu-

nication protocol between the different representations (Sabour et al., 2017). The object

representations, called capsules, can be seen as semantic visual units at different levels. Cap-

sule networks are used to classify single and multiple overlapping MNIST digits (LeCun et al.,

1998). The learned representations are also used to reconstruct digits, which is especially

challenging for overlapping digits. We now describe the details of capsules and the dynamic

routing protocol that forms higher-level representations from lower-level ones.
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Algorithm 1 Dynamic routing algorithm from Sabour et al. (2017). Over r iterations, coupling
coefficients ci j between lower-level and higher-level capsules are refined. The output vector of
the higher level is computed as a weighted combination of lower-level output vectors u j , then
squashed to be in the range [0,1]. The logits bi j used to compute the coupling coefficients are
updated after each round based on the dot-product of u j and vi .

1: Input: lower-level inputs u j , number of iterations r , layer l

2: Output: higher-level output vi

3: for all capsules j in layer l and capsules i in layer l +1: bi j ← 0.
4: for r iterations do
5: for all capsules j in layer l : c j ← softmax (b j ) # softmax over outputs

6: for all capsules i in layer l +1: si ←∑
j ci j Wi j u j

7: for all capsules i in layer l +1: vi ← squash (si ) # squash to interval [0,1]

8: for all capsules j in layer l and capsules i in layer l +1: bi j ← bi j +Wi j u j · vi

9: return vi

Capsules. Capsules are vectors that represent an entity, such as an object or part of an object.

Each capsule is hard-wired to a single entity, so the definition of the network architecture

determines how many entities can exist at each level (corresponding to layers). The individual

dimensions of the vector correspond to different properties of the object, such as positions,

size, or texture. The vector length encodes the probability of the object’s existence in the image

and is scaled to a value between 0 and 1.

Dynamic routing. The lower-level capsules j 1 decide which higher-level capsules i to send

their information to, by assigning each higher-level capsule a coupling coefficient ci j . The co-

efficients of a lower-level capsule sum to 1, so they can be interpreted as connection strengths

between the lower- and higher-level capsule. They are recomputed for every input image,

which makes the routing dynamic. The output vector vi for the higher-level capsule is com-

puted from the lower-level output vectors u j , multiplied with a learned weight matrix W and

weighted by the coupling coefficients ci j . The coupling coefficients are initialized from learned

log prior probabilities. Dynamic routing happens for a predefined number of iterations r ,

over which the coupling coefficients and the output vector are refined. Coupling coefficients

are updated based on the similarity of lower- and higher-level vectors, measured by their

dot-product. In the paper, this is also termed routing-by-agreement. The dynamic routing

algorithm is shown in Algorithm 1.

In essence, dynamic routing is very similar to attention (see Section 2.1.3), with the difference

that (a) attention probabilities and outputs are refined over multiple iterations, and (b) the

inputs decide which outputs to send their information to in line 5, whereas in attention the

outputs decide how much of each input they want to use. Formally, dynamic routing computes

1We swap the use of i and j in the paper to match our formulation in the rest of the thesis. j is the index for
inputs (lower level) and i for outputs (higher level).
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coupling coefficients by taking the softmax over outputs, whereas attention normalizes over

inputs:

αi j =
exp(ei j )∑
k exp(ei k )

(attention) (5.1)

ci j =
exp(ei j )∑
k exp(ek j )

(dynamic routing) (5.2)

We call the traditional approach top-down attention since the higher level (outputs) selects

information from the lower level (inputs). The variant from dynamic routing where inputs

send their information to the higher level is called bottom-up attention.

5.2.2 GLOM

GLOM is a proposal for a neural network architecture that can parse an image into a part-whole

hierarchy (Hinton, 2021). In contrast to capsule networks, the parts of the network are not

statically assigned to a single entity, and depend on the input image. Representations at each

level communicate with representations at the level below and above, and pay attention to

nearby representations at the same level. Representations are updated over multiple iterations.

For higher levels of abstraction, the number of objects in the image that should be represented

decreases. Instead of limiting capacity, GLOM encourages representations for the same object

to converge. These can then be clustered into so-called islands. A grid is put on top of an

image, dividing it into multiple cells. Each grid cell is called a column that consists of stacked

autoencoders that learn local representations for their image region. The weights between

all columns are shared. During the reconstruction of the input, the decoder can look at the

column responsible for the area of the image it wants to generate, and pay attention to the

representation at the level that is most useful. As an example, if it reconstructs the image of

a cat and needs to draw an eye, it would pay most attention to the corresponding mid-level

representation.

Forming islands. To encourage islands of similar representations to form, GLOM proposes

a different version of self-attention for same-level representations. By avoiding a projection

into query, key, and value spaces in Equation 2.21, GLOM performs self-attention on the

input representations. As a result, contributions from similar vectors get higher weight in the

dot-product in Equation 2.23, so similar vectors become more similar over multiple attention

iterations. On the task of inpainting, i.e. filling in masked parts of an image, GLOM expects

this formation of islands to create useful representations for the missing parts of the image.

An initial implementation of the GLOM architecture found good reconstruction accuracy on

a synthetic dataset, both at the level of individual parts as well as entire objects (Culp et al.,

2022).
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5.2.3 Slot Attention

Slot attention (Locatello et al., 2020) is a method from computer vision to compute represen-

tations for objects in an image. It works as an autoencoder that encodes the image into a fixed

number of representations (called slots) and then tries to reconstruct the original image from

these representations. The slots compete to explain parts of the input over multiple iterations

of attention. The paper demonstrates that slots bind to the individual objects in the image.

Superfluous slots bind to the image background. The experiments are conducted on synthetic

datasets for unsupervised object discovery and supervised set prediction. We next describe

the slot attention algorithm.

Slot attention algorithm. The algorithm for slot attention from Locatello et al. (2020) is

shown in Algorithm 2. In lines 8 and 9, a function similar to the (query-key-value) dot-product

attention of the Transformer is computed. In contrast to the Transformer, which computes

the softmax over keys, slot attention computes it over slots, i.e. the queries (see line 8). This

means that instead of each query deciding which keys to look at, in slot attention the inputs

decide which slots they should send their information to. Moreover, in line 9, slot attention

normalizes a second time along the axis of inputs, which means that the attention weights

are no longer normalized over slots. According to the authors, this was done to "improve

stability". Algorithmically, it seems that this step negates the competition among the slots to

explain parts of the input that was achieved with the first normalization. In line 10, each slot’s

updates are integrated with the representation of the previous iteration through a GRU cell,

followed by passing through an MLP in line 11 with a residual connection. For comparison, in

a Transformer layer, the outputs of cross-attention are fed to two MLPs with a nonlinearity in

between (see Equation 2.25). The slot attention algorithm stops after a set number of iterations

T .

5.3 Slot Attention for Text

We want to use slot attention for text representation. While it is applicable to language

understanding more generally, we apply it in the context of summarization. We hope to

discover the semantic text units with the object discovery inherent to slot attention. Our

expectation is that the semantic units will turn out to be the salient phrases of the source

document.

As a base model, we use BERTSUMABS (Liu and Lapata, 2019b), described in Section 3.2. It

consists of a pretrained BERT encoder and a randomly initialized Transformer decoder and

is trained on a summarization dataset. We employ the slot attention module on top of the

encoder outputs z, and pass the slot outputs z ′ as inputs to the Transformer decoder that

84



5.3 Slot Attention for Text

Algorithm 2 Slot attention algorithm from Locatello et al. (2020). The input is a set of N vectors
of dimension Dinputs which is mapped to a set of K slots of dimension Dslots. They initialize
the slots by sampling their initial values as independent samples from a Gaussian distribution
with shared, learnable parametersµ ∈RDslots andσ ∈RDslots . They set the number of iterations
to T = 3.

1: Input: inputs ∈RN×Dinputs , slots∼N (µ, diag(σ)) ∈RK×Dslots

2: Parameters: k, q, v : linear projections for attention; GRU; MLP; LayerNorm (x3)

3: Output: slots ∈RK×Dslots

4: inputs= LayerNorm (inputs)

5: for t = 1. . .T

6: slots_prev= slots
7: slots= LayerNorm (slots)

8: attn= Softmax ( 1p
Dslots

k(inputs) ·q(slots)⊤, axis=‘slots’) # norm. over slots

9: updates= (attn/Sum (attn, axis=‘inputs’))⊤v(inputs) # norm. over inputs

10: slots= GRU (state=slots_prev, inputs=updates) # GRU update (per slot)

11: slots+= MLP (LayerNorm (slots)) # residual MLP (per slot)

12: return slots

integrates its information with cross-attention to generate a summary ŷ .

z = BERT(x) (5.3)

z ′ = Slot Attention(z) (5.4)

ŷ = Decoder(z ′) (5.5)

Aside from tuning the slot attention algorithm’s hyperparameters (number of slots K , number

of iterations T , dimensionality D of inputs and slots), we also experimented with several

architecture components. Our adaptations can be grouped into four topics: modifying the

slot initialization (Section 5.3.1), changing the normalization (Section 5.3.2), utilizing the slots

as an information bottleneck (Section 5.3.3), and guiding the attention from slots to encoder

outputs (Section 5.3.4).

5.3.1 Slot Initialization

As presented in Algorithm 2, slots are initialized by independently sampling from a normal

distribution with learned mean µ and standard deviation σ. This initialization is independent

of the input and, by design, agnostic to order among the slots. This makes sense method-

ologically, but the slots become a bit harder to interpret. We investigate several changes to

initialization below.
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Per-slot µ and σ. Initial experiments showed that the learned µ and σ did not deviate much

from their initialization as 0 and 1, respectively. This could mean that to be useful to all slots,

the initialization has to stay generic. Following Behjati and Henderson (2021), we adapt the

initialization of slots to learn a separate µ per slot. We additionally experiment with a per-slot

σ. We conjecture that the specialization of individual slots could prove beneficial, or even

necessary. In the Transformer architecture, it has been found that the heads of multi-head

attention specialize to different syntactic and semantic functions in specific layers (Voita et al.,

2019).

Initialization from a mixture model. Initializing slots from a unimodal normal distribution

may be too restrictive for our task. We also experiment with initializing each slot from a

mixture of Gaussians, each mixture component with their learned µ and σ. The mixture

weights of each slot must also be learned.

Initialization with positional prior. We investigate whether we can instill an inductive bias

for the position in the source document into the slots. To that effect, instead of initializing

from a normal distribution, we initialize each slot with an absolute position embedding taken

from the BERT encoder. If we have fewer slots than position embeddings (512 in the BERT

model), we average neighboring position embeddings or linearly project them into the right

dimensions.

Initialize from encoder outputs. In case the initialization of slots from a normal distribution

or positions is too far from a useful representation for the decoder, we also initialize the slots

with the encoder outputs, which are known to be useful to the baseline decoder.

If the slot attention module does not find a way to provide additional value on top of the

encoder outputs, it can decide to forward them to the decoder. Since there is no residual

connection around layer normalization, attention computation, and the GRU update, the

encoder outputs will still change inside each iteration of slot attention. As a sanity check, we

set the updates in line 10 to be the value-projected encoder outputs.

Initializing projection matrices. We update slot representations in multiple iterations. In

each iteration, we apply projection into query, key, and value space. If these projections are not

(close to) the identity projection, all subsequent iterations after the first might wrongly project

their inputs away from query, key, and value space. We therefore initialize the projections q , k,

and v to identity projections.
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5.3.2 Softmax Normalization

As we already mentioned in Section 5.2.3, the slot attention algorithm includes a double

normalization on the attention weights, first over slots, and then over inputs (in lines 8 and 9

of Algorithm 2). According to the authors, the second normalization is for stability reasons.

We attempt to remove the weighted mean in line 9 and directly multiply the attention weights

with the inputs projected into value space:

updates = softmax

(
k(inputs) ·q(slots)T

p
Dslots

)
v(inputs) (5.6)

5.3.3 Slots as an Information Bottleneck

With an information bottleneck (Tishby et al., 1999), we reduce the capacity of the neural

network to force the selection of important information. If we set the number of slots to the

number of input tokens, slots can learn to represent positions in the input. For true learning

of salient phrases or entities, they must be forced to aggregate information from multiple

input tokens. We try to achieve this by limiting the capacity of the slot attention module. In

abstractive summarization, limiting the capacity has the added benefit that only the relevant

information for generating the summary can be kept.

Reducing the number of slots. The simplest way to reduce the capacity is to limit the number

of slots. We can vary the number of slots from a very small number to an even larger number

than the number of input tokens. In the best case, this could give us disentangled features of

the input, similar to overcomplete dictionaries in the sparse coding literature.

Dropout. Another straightforward way to reduce capacity is to apply dropout (Srivastava

et al., 2014) to slot representations. Dropout is controlled by a probability p of dropping an

individual dimension from an output vector of slot attention.

Dimensionality reduction. A further common method to limit the capacity of a neural

network is to reduce the size of its representations. Since we train the slot attention module

from scratch, we can initialize it with a smaller slot dimension Dslots.

Activation threshold pruning. We prune slot outputs by the magnitude of their activations,

only keeping those that exceed a threshold that is set as a hyperparameter.

L0-drop layer. Preferably, our model would learn which slots to keep and which to ignore

once slot attention has finished. Especially for summarization, where not the entire input is

relevant, this is a desirable property. Luckily, the L0-drop layer promises to do just that (Zhang
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et al., 2021). It associates a gate gi with each slot output z ′
i and encourages closing the gates of

unneeded slots (sets them to 0). Gates are sampled from a hard concrete distribution (Louizos

et al., 2018), a differentiable approximation to a binary distribution that has most of its

probability mass on its endpoints at either 0 or 1. The sparsity-inducing loss is the expected

number of open gates

LL0 =
∑

i
1−p(gi = 0|θi ) (5.7)

where θi are the slot-specific parameters of the hard concrete distribution. The L0-drop loss is

added to the cross-entropy loss with a scaling factor λ. We apply L0-drop either to entire slots

like in Behjati and Henderson (2021) or to the individual dimensions of the slot representations

as in dropout.

5.3.4 Guiding Attention Patterns

To increase the interpretability of slots and provide an inductive bias on which part of the

input they should pay attention to, we experiment with different loss terms on the attention

patterns from slots to encoder outputs. The respective losses are scaled with a hyperparameter

λ and added to the cross-entropy loss.

Lexical guidance. A simple attention loss based on the lexical overlap of the source document

and the reference summary penalizes attention to input tokens that do not appear in the

reference. Lexical overlap is computed from n-gram overlap, with n ∈ 1,2.

Semantic guidance. To avoid penalizing synonyms and related words, instead of lexical

overlap we look at semantic guidance as well. We first compute BERT embeddings for tokens of

the source document and the reference summary. For each source token, we use the maximum

cosine similarity to any reference token as a target for how much attention should be paid to

that source token.

5.3.5 Experiments

We compare our slot attention variations with the BERTSUMABS base model on the Curation

Corpus (described in Section 2.5.1).

Training details. We keep the training setup fixed for all our models. We train for a maximum

of 10 epochs or 30k training steps with a batch size of 5. We use early stopping based on

validation performance. Our BERT encoder is a BERT-base model, and the decoder is a

randomly initialized Transformer decoder with 6 layers, 768 hidden size, 8 decoder heads,

2048 FFN inner dimension, and a dropout probability of 0.1 on both the attentions and hidden
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Figure 5.1: Slot attention algorithm experiments with 25k training steps.
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Figure 5.2: Slot attention information bottleneck experiments with 25k training steps.

states. We train the BERT encoder with a maximum learning rate lrmax of 1e−5, the randomly

initialized parameters of slot attention and the Transformer decoder with a maximum of 1e−4.

lrmin = lrmax/100 for both parameter groups. We use a warmup of 10% of training steps, where

we linearly increase the learning rate from lrmin to lrmax, then decay it linearly down to lrmin

for the rest of the training steps.

ROUGE performance. In this chapter, we define ROUGE to be the mean of ROUGE-1/2/L,

to be able to compare our many variants on a single number. In all of our experiments,

we observed that ROUGE-1/2/L were highly correlated, and better mean ROUGE scores

corresponded to better or equal scores in each of the individual scores. We therefore do not

expect to introduce a bias with this choice of reporting. The results exhibit the performance

on the validation set.

In Figures 5.1 and 5.2, we show initial experiments with fewer training steps. In all of those

experiments, introducing the slot attention module decreases ROUGE performance compared

to the BERTSUMABS model. As we increase the number of slots, ROUGE performance steadily

increases (Figure 5.1a). After T = 3 iterations, ROUGE performance decreases with more

iterations (Figure 5.1b). Increasing the number of mixture components very slightly increases

ROUGE, but only after 10 components (Figure 5.1c). For further experiments, we use a base

setting for slot attention with 100 slots and 3 iterations.
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Model ROUGE

100 slots 512 slots

BERTSUMABS 31.93

Base slot attention 26.62 30.21

Initialization
Per-slot µ 26.54 -
Per-slot µ and σ 26.37 -
Positional initialization (mean) 27.21 -
Positional initialization (proj.) 24.88 -
Positional initialization (per slot) - 28.84
Initialization from encoder (mean) 24.87 -
Initialization from encoder (proj.) 25.41 -
Initialization from encoder (per slot) - 31.82
GRU updates from encoder (per slot) - 31.91
Identity projections 27.00 29.90

Normalization
Different normalization 23.56 -

Attention guidance (λ= 0.01)
Lexical guidance (n = 1) 21.22 -
Lexical guidance (n = 2) 20.73 -
Semantic guidance 26.72 -

Table 5.1: ROUGE performance of slot attention variants with 50k training steps.

In Figure 5.2, we present the effect of different information bottleneck techniques on the

ROUGE score. Figure 5.2a shows dropping out slots, Figure 5.2b depicts activation threshold

pruning, and Figure 5.2c displays adding an L0-drop layer. We see that especially adding the

L0-drop layer decreases ROUGE by a substantial margin.

In Table 5.1, we compare different initialization, normalization, and attention guidance set-

tings with BERTSUMABS and the base setting of slot attention. We see that learning a µ and σ

per slot has no substantial effect, as does initializing from mixture components (Figure 5.1c,

where 1 mixture component corresponds to the base setting). A positional prior helps for slot

attention with 100 slots, but not with 512. In contrast, initializing with the encoder outputs

helps for 512 slots and hurts for 100 slots. As a sanity check, if we set the GRU updates to the

encoder outputs, we get the same performance as BERTSUMABS, so the GRU does integrate

updates properly. Initializing the projection matrices with identity matrices only slightly helps

the 100-slot variant. Removing the weighted mean as a second normalization degrades the

ROUGE score. Similarly, lexical guidance from unigrams and bigrams decreases ROUGE by

a lot, whereas guiding the attention patterns with a semantic loss from BERT embeddings

performs on par with the base model.
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5.3 Slot Attention for Text

us president donald trump’s administration has asked the us supreme court to delay a
lawsuit accusing the us of failing to address climate change. the lawsuit alleges that the
trump administration violated the environmental protection of fossil fuels. in 2015, presi-
dent trump accused the us government of violating their rights to greenpeace. however,
the court of appeals has now ruled that the lawsuit is unlawful.

Figure 5.3: Generated summary from slot attention with 100 slots.

Figure 5.4: Heatmap of cross-attention from the decoder to slot representations. Attentions
are normalized by each generated token (rows).

How does the decoder use the slots? We analyze the attentions from the decoder to the slot

representations for our base slot attention model with 100 slots. Aside from the exceptions we

mention below, the other models exhibited the same behavior. The generated summary for an

example in the validation set is shown in Figure 5.3. It is qualitatively inferior to BERTSUMABS’s

summary, and in particular incoherent ("environmental protection of fossil fuels", "rights to

greenpeace") and incorrect (the administration asked to dismiss the lawsuit, the court has

ruled that the case can proceed to trial). The cross-attentions are shown in Figure 5.4. For

all but one summary token, the decoder pays the most attention to the same three slots (28,

54, and 73), and a smaller amount to two further slots (51 and 65). The exception is for the

generation of the apostrophe after the word "trump", where the decoder attends strongly to

slot 76. The decoder attends to some slots for the generation of a specific phrase, such as slot

76 for the phrase "trump’s administration has asked the", and slots 35 and 56 for the phrases

"delay a lawsuit" and "the us of", but not the word "accusing" between these two phrases.
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As qualitatively seen in this example, and supported by our manual inspection of many other

examples, the decoder focuses on the same few slots for the whole generation of the summary,

without a meaningful identification of phrases by other slots.

Initialization: The same holds true for models with different initializations, except for the

ones that are initialized from encoder outputs. In these cases, the attention patterns become

diagonal but are less pronounced than the ones we see when using the base model without

slot attention. Since ROUGE is also lower, there is no benefit to adding the slot attention

module in this case.

Normalization: If we skip the second normalization term in line 9 of Algorithm 2, the decoder

pays attention to more slots (up to 50%), but again allocates the same attention weight to each

slot throughout the entire generation (see Figure 5.6a).

Information bottleneck: When introducing an information bottleneck through dropout, acti-

vation threshold pruning, or an L0-drop layer, the decoder pays attention to all slots equally

during generation. This holds true already from very small dropout probabilities (p = 0.1) or

L0-drop loss weights (λ= 0.001).

Guided attention: Semantic guidance exhibits the same attention patterns as our base slot

attention model. With lexical unigram or bigram guidance, however, the maximum attention

weight from the decoder is put on only one slot for generating all summary tokens (see

Figure 5.7a). Our next analysis therefore focuses on what the selected slots represent.

What do the slots represent? To answer this question, we analyze the attentions from the

last iteration of slot attention to the encoder outputs.2 Figure 5.5a shows the attentions for

the same model and example as before. With the exception of slot 23, which pays uniform

attention to large parts of the input, the remaining slots focus on single source tokens. For

example, slots 44, 46, 59, and 99 focus on "young". In particular, the slots do not seem to

specialize or compete for explaining parts of the input, as desired by the method. This also

holds true for other initializations, again except for initialization from encoder outputs, where

the attention is diagonal.

Remember that in Figure 5.4, we saw that slots 28, 54, and 73 received the most attention

from the decoder. In Figure 5.5b, we present only the attentions of these three slots. We see

that they pay attention to every CLS token in the document, ignoring the rest of the tokens.

We conjecture that the CLS tokens serve as a sentence representation, and the slot attention

module forwards this higher-level information to the decoder. The reduced capacity (3 slot

representations encode the entire source document) leads to the incoherent and factually

inaccurate generated summary in Figure 5.3.

2According to Brunner et al. (2020), the contribution of the source token to the encoder output at the same
position decreases with each Transformer layer. However, 70% of tokens are still the top contributor to the output
representation at the same position (Figure 3b in their paper). We thus label the encoder outputs with the source
token at that position.
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5.3 Slot Attention for Text

(a) All slots.

(b) Selected slots with high attention in decoder only attend to CLS tokens.

Figure 5.5: Attention from slots to encoder outputs in the base model, normalized by slot
(rows). Only the first three sentences of the source document are shown.

Normalization: When we remove the second normalization term, the decoder pays attention

to approximately 50% of the slot representations, and that attention stays constant throughout

summary generation (see Figure 5.6a). In Figure 5.6b, we see that with the exception of slots

94 and 98, slots encode individual inputs. Again, multiple slots specialize on the same source

token. The attention patterns of slots 94 and 98 suggest that they could be encoding the

background, i.e. unwanted information. On closer inspection, unfortunately, they also include

important parts of the source document.

Information bottleneck: With an information bottleneck, all slots divide their attention equally

among the entire source document, and no meaningful pattern emerges.

Guided attention: Semantic guidance exposes the same attention pattern as the base setting.

For lexical guidance, every slot pays attention to the same few source tokens, which are

salient tokens. For different weights λ of the focused attention loss, this corresponds to a
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(a) Attention from decoder to slots.

(b) Attention from slots to encoder outputs.

Figure 5.6: Attention in the slot attention model without second normalization term.
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(a) Attention from decoder to slots.

(b) Attention from slots to encoder outputs.

Figure 5.7: Attention in the slot attention model with lexical bigram guidance.
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different number of source tokens. For λ= 1e−2, all slots look at a single source type ("trump",

appearing twice in Figure 5.7a). For λ = 1e−3, it is 3 source tokens, and for λ = 1e−4, the

attention pattern is back in the base setting. However, the notable exception to this rule is the

one slot that receives all attention from the decoder, which pays equal attention to all source

tokens, except for the selected source type (see Figure 5.7b). It looks like the model has found

a way to bypass our attention guidance: By putting the attention of all slots except one on a

single salient source token, it minimizes our guidance loss. It then uses the designated slot to

generate the summary. The downside of its solution is the drastically reduced capacity (only a

single slot representation instead of 100). The resulting summary is quantitatively (ROUGE

score) and qualitatively inferior.

5.4 Pretraining Slot Attention on Extractive Summarization

Just applying slot attention in a sequence-to-sequence model on the task of summarization

does not seem to find semantic units, as seen in Section 5.3. However, guiding attention

patterns (Section 5.3.4) provides a promising direction for further investigation. In this section,

we test if we can leverage extractive ground truth to guide the slots to specialize to the salient

phrases of the source document. If we succeed, we can use extractive summarization as

a pretraining objective, as in Liu and Lapata (2019b). The idea is to train our encoder on

phrase-level extractive summarization, to then use it to initialize the encoder of an abstractive

summarization model.

5.4.1 Modeling Adaptations

The extractive slot attention model consists of a BERT encoder followed by a slot attention

module and a linear classifier. We classify whether to include a token in the extractive summary

from the slot outputs. Our solution to classifying input tokens from slot representations

either computes input representations from slot representations or reformulates the loss

over inputs to a loss over slots (more details below). In the slot attention module, we also

experimented with the adaptations presented in Section 5.3, but focus on introducing an

information bottleneck in the experiments presented later on.

Phrase-level ground truth. Extractive summarization ground truth is typically not avail-

able. Prior work at the sentence level selects reference extracted sentences from the highest

ROUGE-2 score with the reference summary (Liu and Lapata, 2019b). Since we aim to get

phrase-level ground truth, we use two different approaches. First, a simple ground truth

baseline is computed from the bigram overlap between the source document and the target

summary. This approach can become noisy, since some common bigrams appear repeatedly

across the source document, sometimes also in irrelevant sentences. Therefore, our second

approach finds the largest lexical overlap between the source document and reference sum-

mary that does not cross sentence boundaries. It then removes the found tokens from the set
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[CLS] a hong kong airlines flight was
forced to make an emergency landing af-
ter a bomb threat sparked a scare for the
carrier and passengers today. [SEP] [CLS]
the airbus a330-200 was flying from bei-
jing to hong kong when the airline re-
ceived a report that there could be a
bomb on board. [SEP] [CLS] the secu-
rity scare occurred as the national peo-
ple’s congress, a national legislature com-
prised of nearly 3,000 lawmakers, met in
beijing for china’s most important polit-
ical gathering of the year. [SEP] [CLS] a
hong kong airlines flight was forced to
land in wuhan after someone claimed a
bomb was on board [SEP] [CLS] the air-
bus a330-200 was met by police officers
and firefighters when it landed at an air-
port in wuhan [SEP] [CLS] flight hx337
was halfway into its three-hour journey
when it was forced to make an emer-
gency landing [SEP]

(a) Bigram overlap.

[CLS] a hong kong airlines flight was
forced to make an emergency landing af-
ter a bomb threat sparked a scare for the
carrier and passengers today. [SEP] [CLS]
the airbus a330-200 was flying from bei-
jing to hong kong when the airline re-
ceived a report that there could be a
bomb on board. [SEP] [CLS] the secu-
rity scare occurred as the national peo-
ple’s congress, a national legislature com-
prised of nearly 3,000 lawmakers, met in
beijing for china’s most important polit-
ical gathering of the year. [SEP] [CLS] a
hong kong airlines flight was forced to
land in wuhan after someone claimed a
bomb was on board [SEP] [CLS] the air-
bus a330-200 was met by police officers
and firefighters when it landed at an air-
port in wuhan [SEP] [CLS] flight hx337
was halfway into its three-hour journey
when it was forced to make an emer-
gency landing [SEP]

(b) Largest overlap.

Figure 5.8: Extractive phrase-level ground truth (in bold) for the beginning of the first example
of the CNN/DailyMail validation set.

of overlapping tokens. These two steps are repeated until there are no tokens left in the set.

The smallest acceptable overlap is of size 2. This is similar to extractive fragments (Grusky

et al., 2018), but extractive fragments are selected by greedily moving over the target summary,

which can result in fragmented overlap segments. Our approach guarantees that the largest

overlap is always found. Additionally, extractive fragments include single token matches.

Figure 5.8 shows the resulting versions of extractive ground truth on the first example from

the validation set.

Computing input representations from slots. In general, the number of slots differs from

the number of input tokens, and there is no ordering among slots or assignment of slots to

inputs. To classify input tokens for the extractive summarization task, we compute input

representations from slot representations, weighted by normalized attention scores αi j . The

attention scores αi j are between encoder output representations zi and slot j . The input

representations for position i are computed as:

h(i )
input =

∑
j αi j h( j )

slot∑
j αi j

(5.8)

Reformulating the loss. Alternatively, we can reformulate the loss over input tokens to a loss

over slots. In that case, we classify the slots, and re-weight our target by its contributions from
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the inputs:

y ( j )
slot =

∑
i

y (i )
inputαi j (5.9)

The model outputs ŷ ( j )
slot will try to predict the soft targets y ( j )

slot. We can now predict whether an

input token is extracted by computing:

ŷ (i )
input =

∑
j
αi j ŷ ( j )

slot (5.10)

We do not normalize the αi j here since we do not want to know whether the mean of the slots

extracts input i , but whether any of the slots extracts it.

Focused attention. We encourage each slot to focus on a specific part of the input, preferably

consecutive tokens. We implement this by adding a penalty that computes the central position

each slot pays attention to, and penalizes attention to different positions by their distance to

the central position. The central position p( j )
central for slot j is computed as:

p( j )
central =

∑
i
αi j i (5.11)

and the loss for a given slot j is:

L
( j )
focus =

1

n

∑
i
αi j |i −p( j )

central| (5.12)

with n the number of input positions. Lfocus is the mean over the per-slot losses and gets

added to the cross-entropy loss, scaled by a hyperparameter λ.

5.4.2 Experiments

We compare our slot attention variations with the BERTSUMEXT base model on CNN/DailyMail

(described in Section 2.5.1).

Training details. The training setup is the same for all our models. We train for a maximum

of 20 epochs or 30k training steps with a batch size of 10, randomly sampling 10% of training

examples. We use early stopping based on the validation F1 score. We initialize the encoder-

only model from a BERT-base model. We train the BERT encoder and the classifier with a

maximum learning rate lrmax of 1e−5, and the randomly initialized parameters of slot attention

with a maximum of 1e−4. The learning rate schedule is the same as in Section 5.3.5.

F1 score. We compute the F1 score between the model’s extracted tokens and the ground

truth extracted tokens. The results for bigram extractive ground truth are shown in Table 5.2.
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Model F1

10 slots 100 slots

BERTSUMEXT 50.99

Loss computation
Attention-weighted slots 49.76 48.92
Reformulated loss 0.26 33.51

Information bottleneck
L0-drop 50.06 49.26
L0-drop with identity projections 49.92 49.98
L0-drop with different normalization - 46.29
L0-drop with identity projections and normalization - 50.86

Focused attention
Focused attention 45.99 47.30
Focused attention with L0-drop - 46.68
Focused attention with L0-drop and identity projections - 46.00

Table 5.2: F1 score for experiments with bigram overlap as ground truth extracted tokens.

Model F1

BERTSUMEXT 19.02

Slot attention with L0-drop (loss weight λ) λ= 0.01 λ= 0.001
L0-drop 0.00 14.38
L0-drop with per-slot µ 20.49 17.58
L0-drop with identity projections 16.48 17.83
L0-drop with per-slot µ and identity projections 0.00 17.56

Table 5.3: F1 score for experiments with largest overlaps as ground truth extracted tokens.

BERTSUMEXT reaches an F1 score of 50.99. First, we compare our two methods of computing

the loss from slot attention with 10 and 100 slots, respectively. We observe that reformulating

the loss to be over slots does work well, also for other settings of slot attention. We therefore use

attention-weighted slots for the remaining experiments. Most of our information bottleneck

configurations work similarly well, and the setting with 100 slots, an L0-drop layer, initializing

projection matrices with the identity, and skipping the second normalization term almost

reaches BERTSUMEXT’s performance. Focused attention produces worse F1 scores, but we

will check for interesting attention patterns further below.

For extractive ground truth from the largest n-gram overlap, the results are shown in Table 5.3.

Our base model BERTSUMEXT gets an F1 score of 19.02. Compared to the bigram overlap

setting, the task of extracting the largest phrases is much harder. We compare different variants

of adding the L0-drop layer to the slot attention module. Most variants perform below the

baseline, except for one result with per-slot µ and an L0-drop loss weight of 0.01.
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(a) Attention-weighted slots.

(b) Focused attention.

Figure 5.9: Attention from slots to source tokens, trained on bigram overlap.

What do the slots pay attention to? We look at the attentions from slots to source tokens for

three models, which each exhibit a different and interesting model behavior.

Attention-weighted slots: Our first model is the base slot attention model with attention-

weighted slots, trained on bigram overlap as ground truth. We present the attention visualiza-

tion of the model with 10 slots in Figure 5.9a, for the first 3 source sentences. Two slots stand

out. Slot 3 pays attention to the CLS and SEP tokens, and periods. Slot 9 attends to "hong

kong". In Figure 5.10, we show the extracted summary by this model. The extracted phrases

are: "hong kong airlines", "airbus a330-200", "from beijing to hong kong", "a bomb on board",

and "in". Comparing the extracted phrases to the attention weights in Figure 5.9a, it seems

that slot 9 ("hong kong") is always extracted. Slots 4 and 5 attend to most other extracted

tokens, but they also attend to tokens that are not extracted. This is also true to a lesser extent

for slots 7 and 8. Slots 1, 6, and 10 attend exclusively to unextracted tokens. In particular, they

seem to pay attention to the complement of the rest of the slots.

Focused attention: The second model we look at is the focused attention model. For this

model, we see a very different attention pattern in Figure 5.9b. Here we show sentences

4−−7 of the source document on the x-axis. Slots 1−−9 only pay attention to a small part

of the input, the token "the" at the start of the fifth source sentence, and a few subsequent

tokens. Slot 10 pays attention to CLS and SEP tokens, periods, and occasional individual

tokens ("confirmed that", "about"). We see the same pattern for the other examples, but slots

1−−9 attend to different words and positions in the document. The selected words do not

carry significant meaning themselves or appear in especially salient contexts. Our focused

attention loss defines a central position independently per slot, so it is surprising to see that

apparently, all slots converge on the same central position in the document.

L0-drop: Our third analyzed model is slot attention with L0-drop, loss weight 0.01 and per-slot
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Figure 5.10: Extracted summary by the attention-weighted slots base model. Green highlighted
tokens are extracted by the model and reference, blue only by the reference, and red only by
the model.

µ, trained on largest n-gram overlaps. In Figure 5.11, we show its attention pattern. On the left,

the values of the gates in the L0-drop layer are shown. They present a very peculiar pattern.

The gates are fully open for 20 slots, 90% and 10% open for one slot each, and closed for

the remaining 78 slots. The slots with open gates pay attention to large parts of the input,

without focusing on anything in particular. The remaining slots have their gates closed, but

pay attention to very specific parts of the source document (hong kong airlines, airbus a330-

200, ","). Even though these slots are dropped, the eventually extracted summary consists

of these tokens. We can only speculate how this happens. One possible explanation is that

the classifier learns to extract the tokens ignored by the active slots, which would be a rather

cumbersome strategy.

In summary, our extractive pretraining approaches have not led to interpretable attention

patterns for our slot attention module.
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Figure 5.11: Per-slot gate values and attention weights from slots to source tokens, normalized
per slot. Slots are sorted by descending gate values. The model uses L0-drop and was trained
on the largest n-gram overlaps.
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5.5 Object Representations from Bottom-Up Attention

Model ROUGE ROUGE-1 ROUGE-2 ROUGE-L

BERTSUMABS 32.43 40.82 18.44 38.02
BERT with oracle mask 54.76 61.47 43.46 59.34

Table 5.4: Abstractive ROUGE performance on CNN/DailyMail of BERTSUMABS vs. BERT with
oracle mask (with a batch size of 3 and 200k training steps).

the hack was discovered by london-
based security experts at mdsec. they
built a device capable of simulating
a person’s pin entry over usb. this
gadget then tries every combination
until the correct one is found. hack
is even able to bypass apple’s built-in
fail safe that locks the device after 10
incorrect attempts are made.

(a) Ground truth summary.

the gadget uses a device to bypass
pin entry over usb. it ’s unclear if the
correct one is the device. the hack
comes after 10 incorrect attempts.
london-based mdsec said it is a de-
vice that can be used in a device.

(b) Generated summary.

Figure 5.12: The generated summary by BERT with oracle mask is incoherent and incorrect
but achieves high ROUGE scores. ROUGE-1/2/L: 56.86/28.00/49.02.

Upper bound with oracle mask. To test the limits of our idea, we also consider an upper

bound for using extractive slot attention as an initialization for an abstractive summarization

model. We put an oracle mask on bigrams of the source document that also appear in the sum-

mary. As a result, ROUGE scores increase massively (by 69%, see Table 5.4) over BERTSUMABS,

but summaries become less coherent and sometimes plain incorrect (see Figure 5.12). This

shows that blindly improving ROUGE scores does not improve summary quality. Together with

the missing interpretability link between slots’ attentions and extracted tokens, we decided to

not pursue extractive slot attention further.

5.5 Object Representations from Bottom-Up Attention

We would like to bring the ideas of slot attention to an architecture that is more similar to the

proven Transformer architecture, which we also use for the other parts of our summarization

model. One of the main ideas of slot attention is the normalization over slots in line 8 of

Algorithm 2, in which the inputs decide which slots to send their information to. This idea also

appears as dynamic routing in capsule networks, where the lower-level units decide to which

higher-level units to send their information (Sabour et al., 2017). We call this idea bottom-up

attention. In this section, we integrate bottom-up attention into the Transformer architecture.

We aim to generate object representations at multiple levels with hierarchical bottom-up

attention. We call our model the objecter.
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5.5.1 Generating Multi-Level Object Representations

We aim to discover objects of different levels of abstraction, similar to WordNet hierar-

chies (Miller, 1995) or the part-whole hierarchies in capsule networks and GLOM (see Sec-

tion 5.2). We mirror the different levels of abstraction in the object generator module of the

objecter model. At each level of object representations, we reduce the number of available

representations, such that each higher level encodes more general concepts than the one

below.

Notation. For the task of abstractive summarization, we use x to describe the source doc-

ument, with xi being the i -th token after BPE tokenization. Similarly, y is the reference

summary, yi are the reference summary tokens, and ŷ is the generated summary. The latent

object representations z have two indices, the first one indicating their level, and the second

one their position inside the level.

Object discovery model. In our object discovery model, we use a frozen BERT encoder

(initialized from a BERT model finetuned on summarization) to get token representations

z0 j . We call these level-0 representations. The object generator then performs bottom-up

attention (see Figure 5.13) to generate higher-level representations. At each higher level, the

number of representations is reduced. The number of representations per level is predefined

as a hyperparameter. We then convert the representations at each level into a representation

per input position, such that we can aggregate them across levels. The representations from

different levels are either summed or down-projected and concatenated, to create the final ob-

ject representations (with the same dimensionality as the base model). A randomly initialized

Transformer decoder generates the summary autoregressively with cross-attention to these

object representations.

z0 = BERT(x) (5.13)

(z1, . . . , zl ) = Generator(z0) (5.14)

ẑ = combine(z0, . . . , zl ) (5.15)

ŷi = Decoder(ẑ, y1, . . . , yi−1) (5.16)

Extractive model version. We can also use the object discovery model for extractive summa-

rization. To that extent, we replace the decoder in Equation 5.16 with a classifier that predicts

the extractive label for input position j from the aggregated object representations over all

levels:

ẑ(:, j ) = combine(z0 j , . . . , zl j ) (5.17)
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Algorithm 3 Object generator algorithm. It creates L levels of object representations. At each
level, T iterations of bottom-up attention are performed, followed by a feed-forward network.
The number of outputs Ol per level is a hyperparameter and generally differs between levels
(higher levels have fewer outputs).

1: Input: inputs ∈RN×Dinputs

2: Parameters: linear projections for bottom-up attention, feed-forward network

3: Output: all_outputs ∈RL×Ol×Doutputs

4: all_outputs= [ ]

5: for l = 1. . .L

6: outputs= Init (inputs)

7: for t = 1. . .T

8: outputs= BottomUpAttention (inputs, outputs)

9: outputs= FeedForwardNetwork (outputs)

10: all_outputs+= outputs
11: inputs= outputs
12: return all_outputs

Object generator module. The algorithm for the object generator is described in Algorithm 3.

It creates object representations at different levels of abstraction. For each level, it initializes

the outputs either from a Gaussian or from the inputs. It then performs one or more iterations

of bottom-up attention, followed by a feed-forward network. The outputs of the lower level

serve as the input for the next higher level. Finally, all outputs are collected and returned. A

detailed description of initializing the output representations and bottom-up attention follows

next.

Initialization of outputs. When creating object representations, we need to run bottom-up

attention between each pair of levels. In the view of query-key-value attention, the lower-level

representations serve as keys and values, while the higher-level representations are the queries.

To use outputs as queries, we need to initialize these higher-level representations first (line 6

in Algorithm 3). As in slot attention, we can initialize the representations from a Gaussian

distribution (for more details on initialization, see Section 5.3). Alternatively, we can also

initialize them from the inputs, i.e. the lower-level representations. If there are fewer higher-

level than lower-level representations, we average lower-level representations in a window

to initialize higher-level ones. The window size is the number of lower-level representations

divided by the number of higher-level representations. If level 0 is composed of k times as

many representations as level 1, the initialization of its representations z1 j is

z1 j = 1

k

2 j+k−1∑
m=2 j

z0m (5.18)
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Figure 5.13: Bottom-up attention in the generator. The lower-level representations decide how
much of their information to send to which higher-level representation.

Bottom-up attention. We adapt the definition of the attention sublayer of the Transformer

architecture (see Section 2.1.4) for our bottom-up attention. We change Equation 2.23 and

take the softmax over queries instead of over keys:

MHAi (qi ,ki , vi ) = softmax

 ki qi√
dq

vi (5.19)

This is the same idea as in dynamic routing in Equation 5.2. Bottom-up attention is visualized

in Figure 5.13.

Combining representations. We compute input representations from higher-level object

representations by multiplying each level-i representation with the cumulative attention

weight from the given level-0 representation to the level-i representation and then summing

those weighted representations. For level 1, this is

ẑ1 j =
n1∑

k=0
z1kα

(1)
j k (5.20)

with n1 the number of level-1 representations, and α(1)
j k the attention weight from the level-0

representation at position j to the level-1 representation at position k. For level 2, it is

ẑ2 j =
n2∑

k=0
z2k

n1∑
m=0

α(1)
j mα

(2)
mk (5.21)

with n2 and α(2)
mk equivalently being the number of representations and attention weights for

level 2.

Once we have the same number of representations for the input at every level, we either sum
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BERT 
(frozen) 

Object 
Generator

Adversary

Supporter

Decoder

Figure 5.14: Object discovery architecture. The source document is encoded by a frozen
BERT encoder. The object generator generates object representations. An adversary tries to
predict masked representations from same-level representations, and a supporter tries to infer
lower-level representations from higher-level ones. Finally, a decoder generates the summary
using the BERT and object representations.

the representations, or down-project and concatenate them. For the latter, the idea is to assign

each level to one or more attention heads in the decoder. Each attention head should only

process information from a single level. The target size of down-projection is therefore a

multiple of the decoder attention head size.

5.5.2 Minimizing Mutual Information with Adversarial Training

In our current architecture, multiple slots can represent the same concepts in the input. To

force them to specialize to separate objects, we minimize mutual information between object

representations. To achieve this, we use adversarial training (Goodfellow et al., 2014). We

introduce an adversary and a supporter component that reduce same-level dependencies,

but at the same time encourage between-level dependencies. Our model architecture is

depicted in Figure 5.14. Both adversary and supporter are Transformer encoders that predict

the embedding of a masked input as in BERT.

Adversary. The adversary tries to predict a masked object representation from all other

object representations at that level. Since the BERT encoder is frozen, we do not apply the

adversary to level-0 representations.

zi j = Adversary(zi 0, . . . , zi j−1, zi j+1, . . . , zi n) (5.22)

= Adversary(zi \ zi j ) (5.23)

The adversary tries to exploit dependencies between the representations to predict the masked

one. It fails when mutual information between same-level representations is minimized. The
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representations should therefore specialize to separate concepts in the text, giving us distinct

object representations.

Supporter. While we minimize mutual information between representations at the same

level, a masked representation should still be predictable from the combination of same-level

and higher-level representations. Thus, a supporter predicts the masked lower-level represen-

tation from the remaining lower-level representations and all the higher-level representations.

zi j = Supporter(zi \ zi j , zi+1) (5.24)

Loss. The object discovery model’s loss is the combination of the decoder loss, the adversary

loss, and the supporter loss. If the adversary performs badly in predicting the masked repre-

sentation, that means that we have successfully removed mutual information between the

representations, so we subtract that term from the loss.

L =LDecoder −LAdversary +LSupporter (5.25)

The adversary’s and supporter’s losses are the mean squared error when predicting the masked

representation.

Training. The object discovery model and the adversary get updated alternatingly since their

objectives are opposed. This idea comes from training the discriminator and generator in

generative adversarial networks (Goodfellow et al., 2014).

Efficiency. For computational efficiency reasons, the adversary and supporter losses are only

computed on a subset of the encoder representations zi , with i > 0. Level-0 representations

are excluded since they are the outputs of the frozen BERT model and therefore do not receive

gradient updates during training.

Decoder set attention. An alternative to the combine function in Equation 5.15 is to keep

each level’s representations as they are and pass them to the decoder as a set. The decoder

then performs cross-attention to a set of encoder representations. To achieve this, we adapt

the standard Transformer decoder’s cross-attention (Equation 2.28). We change it to introduce

a cross-attention to every level’s latent representations zi separately and sum them:

bl
t = LN(al

t +
∑

i
CrossAttention(al

t , zi )) (5.26)

The output projection in Equation 2.24 of multi-head attention can be either applied to all

cross-attention outputs jointly or learned for each level’s output.
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Model F1

BERTSUMEXT 19.02

Objecter
1 level, 10 outputs 14.16
1 level, 100 outputs 19.21
2 levels, 100-10 outputs 16.23

Table 5.5: F1 score for experiments with largest overlaps as ground truth extracted tokens.

5.5.3 Experiments

We compare our objecter variants with the BERTSUMABS base model on CNN/DailyMail

(described in Section 2.5.1).

Training details. We keep the training setup fixed for all our models. We train for a maximum

of 10 epochs or 200k training steps with a batch size of 3, sampling 10% of training examples

per epoch. We use early stopping based on validation performance. Our BERT encoder is

a BERT-base model, and the decoder is a randomly initialized Transformer decoder with 6

layers, 768 hidden size, 8 decoder heads, 3072 FFN inner dimension, and a dropout probability

of 0.1 on both the attentions and hidden states. The adversary and supporter are Transformer

encoders with the same hyperparameters as the decoder, except with 4 layers instead of 6.

We freeze the BERT encoder and train the remaining randomly initialized parameters of the

generator, adversary, supporter, and decoder with a maximum of 1e−4. We use the same

learning rate schedule as in Section 5.3.5.

Performance on extractive summarization. As a start, we test the base objecter model

without adversary and supporter on extractive summarization and use the largest n-gram

overlap as ground truth. We combine the objecter generator’s representations and BERT’s

outputs as described in Section 5.5.1, using the sum of level representations. In Table 5.5, we

see that generating one level of 100 object representations in the generator performs on par

with the BERTSUMEXT baseline. Adding another level with 10 outputs decreases the F1 score.

ROUGE performance of objecter model. Next, we turn to abstractive summarization and

report the average of ROUGE-1/2/L for different variations of the objecter base model (again

without adversarial training) in Table 5.6. Combining the representations by summing only

provides good results with one level of object representations and 100 outputs. For down-

projection and concatenation3, adding a second level in the object generator does not decrease

performance noticeably. In the second part of Table 5.6, we ablated several architecture

3We project the representations to use 4 attention heads for BERT embeddings (level 0), 2 heads for level-1 and
2 heads for level-2 representations.
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Model ROUGE

BERTSUMABS 32.59

Objecter, choice of levels and outputs
1 level, 10 outputs (sum) 12.99
1 level, 100 outputs (sum) 32.22
2 levels, 100-10 outputs (sum) 12.87
1 level, 100 outputs (concat) 32.51
2 levels, 100-10 outputs (concat) 32.40

Architecture choices (1 level, 100 outputs)
Iterations T = 1 32.22
Iterations T = 2 32.24
Iterations T = 3 14.35
Use Q, K, V projections 32.48
Use FFN layer 32.45
Share parameters between layers 32.22
Softmax temperature τ= 1.0 32.22
Softmax temperature τ= 0.1 32.31
Softmax temperature τ= 0.01 32.13

Initialization (1 level, 100 outputs)
Per-slot µ 32.33
Per-slot µ and σ 32.56
Initialize from inputs 32.37

Table 5.6: Abstractive ROUGE performance on CNN/DailyMail of BERTSUMABS vs. the objecter
model.

components, none of which had a significant impact on performance, except for increasing

the number of bottom-up attention iterations to 3, which degrades the performance. In the last

part, we show that different initializations for the object representations do not substantially

change ROUGE scores.

Does the decoder use the object representations? To answer this question, we analyze the

attentions to the object representations. For each level, we mask all but the current level and

thus force the decoder to generate a summary from the remaining object representations.

In Figure 5.15, we see that only the BERT embeddings at level 0 show reasonable attention

patterns. The higher levels of object representations have a near-uniform distribution of

attention from the decoder to input positions, which suggests that they are ignored by the

decoder.
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(a) Level 0.

(b) Level 1.

(c) Level 2.

Figure 5.15: Attention from the decoder to object representations when all levels except the
specified one are masked. The first three sentences of the source document are shown.
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ROUGE performance with adversarial training. In Table 5.7, we show the mean score of

ROUGE-1/2/L. In the first section, we note that the objecter with 2 levels scores around

2 ROUGE points lower than BERTSUMABS. It is surprisingly insensitive to changes in the

loss weight λ. For efficiency reasons, we sample input positions to compute the adversary

and supporter loss. Usually, they are sampled separately, and in the second section, we see

that using the same positions does not change the ROUGE performance. To evaluate the

importance of the BERT embeddings at level 0 in writing the summary, we gradually reduce

their capacity in the third section. When allocating only a single attention head (instead of

4) to the level-0 representations, we see a drastic drop in ROUGE. Similarly, when increasing

dropout on the BERT embeddings, we see that performance degrades increasingly quickly.

Completely ignoring BERT representations (corresponding to a dropout probability p = 1)

achieves a very low ROUGE score of 17.42. In the final section of Table 5.7, we present the

results of decoder set attention, and compare it to the base setting with a score of 31.56. As we

again decrease the influence of BERT embeddings by increasing dropout, decoder set attention

with one level degrades slower than attention to a sum of the representations. With two levels,

it does not achieve good ROUGE scores for any value of dropout. In the next paragraph, we

take a closer look at the attentions in decoder set attention with one level.

Attention to objects in decoder set attention. In decoder set attention, the object represen-

tations of each level can be accessed directly by the decoder with cross-attention. We thus do

not need to mask the other levels as before. We show the attentions of a model with one level of

100 generated object representations in Figure 5.16. In Figure 5.15a, we again see the diagonal

patterns in the cross-attentions from the decoder to level-0 object representations. These

appear when the summary and source tokens match, a sign of copying (more on this in Chap-

ter 6). The cross-attentions to level-1 representations in Figure 5.16b show that the decoder

puts the maximum attention weight on the same slot (37) during summary generation. Slot

49 is also active throughout summary generation, with no clear pattern. With the exception

of slot 16, which receives high attention for a phrase ("was flying from beijing to hong kong

when it landed"), slots do not specialize to specific parts of the input. This is confirmed when

looking at the bottom-up attention inside the object generator, shown in Figure 5.16c. The

attention from level 0 to level 1 does not show positional or otherwise interpretable patterns.

Individual source positions send their information to multiple slots equally. When we look

at slot 37 in particular, it receives the most attention from the lower-level representations for

"a", "to", "the", and "makers". We conclude that neither bottom-up attention nor adversarial

training has resulted in interpretable object representations that specialize to inputs and seem

useful for abstractive summarization.

5.6 Related Work

We survey methods to learn object representations in computer vision, applications to NLP,

and applications of slot attention in computer vision.
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Model ROUGE

BERTSUMABS 32.59

Objecter (2 levels, 100 and 10 outputs, concatenate)
Adversary/supporter loss weight λ= 0.01 30.80
λ= 0.1 30.84
λ= 1 30.77
λ= 10 30.87
λ= 100 29.38
λ= 1000 19.26

Share sampled positions for adversary/supporter
λ= 0.01 30.74
λ= 1 30.94
λ= 10 30.54

Limit use of BERT representations
Reduce capacity to 1/4 22.37
Dropout BERT with p = 0.1 30.91
Dropout BERT with p = 0.5 27.85
Dropout BERT with p = 0.9 21.86
Ignore BERT representations (p = 1) 17.42

Decoder set attention, 1 level, 100 outputs
Combine as sum 31.56
Combine as set (p = 0) 31.40
Set, dropout BERT with p = 0.1 31.65
Set, dropout BERT with p = 0.5 30.54
Set, dropout BERT with p = 0.9 23.16
2 levels, 100 and 10 outputs
Set (p = 0) 13.44
Set, dropout BERT with p = 0.1 13.11
Set, dropout BERT with p = 0.5 13.86
Set, dropout BERT with p = 0.9 13.85
Learned MHA output projections, 1 level, 100 outputs
Set (p = 0) 32.16
Set, dropout BERT with p = 0.1 32.05
Set, dropout BERT with p = 0.5 20.09
Set, dropout BERT with p = 0.9 25.30
2 levels, 100 and 10 outputs
Set (p = 0) 13.61
Set, dropout BERT with p = 0.1 13.22
Set, dropout BERT with p = 0.5 13.74
Set, dropout BERT with p = 0.9 13.44

Table 5.7: Abstractive ROUGE performance on CNN/DailyMail of BERTSUMABS vs. the objecter
model with adversarial training.
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(a) Decoder attention to level 0.

(b) Decoder attention to level 1.

(c) Attention from level 0 to 1.

Figure 5.16: (a) and (b) Attention from the decoder to object representations at level 0 and
1. (c) Bottom-up attention from level-0 to level-1 representations in the object generator,
normalized by row.
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Learning object representations in computer vision. Greff et al. (2016) train Tagger, a

denoising autoencoder to reconstruct the original image from corrupted versions. They use a

fixed number of networks with shared weights that each represent an object, by predicting

an appearance vector and group assignment probabilities for each pixel in the input. They

use amortized inference over up to five iterations to update the predictions. In contrast to

Tagger, IODINE is an object detection method with explicit object representations from a

fixed number of latent vectors in a variational autoencoder. The decoder separately predicts

the positions in the image and the appearance, refining its predictions in multiple iterations.

The final image is composed of the spatial mixture of the objects (Greff et al., 2019). AIR is

proposed in Eslami et al. (2016), a recurrent neural network that can handle a variable number

of objects in an image by outputting the representation of one object at each time step. The

network determines the number of objects by predicting the value of a latent variable to be

either 1 (proceed) or 0 (stop). Crawford and Pineau (2019) introduce SPAIR, a VAE with a

convolutional neural network as the encoder. They divide an image into grid cells, then predict

for each cell the presence of an object, alongside its appearance, depth, position, and size.

While Tagger and IODINE are scene-mixture models, where an image is explained by a mixture

of full-scale components, AIR and SPAIR are spatial-attention models that obtain explicit

and disentangled geometric representations of the objects. The former models are better

at handling occlusions, while the latter succeed at representing the locality and properties

of a single object. SPACE (Lin et al., 2020) combines these two approaches by processing

foreground objects like a spatial-attention model, and decomposing overlapping objects and

background segments with component mixtures, like a scene-mixture model. Burgess et al.

(2019) train MONet, a scene-mixture VAE with a recurrent attention network to reconstruct

image regions based on predicted attention masks. At each time step, the attention network

decides which image regions (that are still unexplained) it wants to process. It determines

the mask, and a VAE computes the component’s reconstruction. The next time step will no

longer have to explain the image region covered by the previous masks. As with Tagger, this

allows for a variable number of objects per image, each with their own representation from the

component VAE. Li et al. (2020a) extend MONet to use multiple views of a scene to iteratively

update object representations, then predict the scene from a novel viewpoint. Engelcke et al.

(2020) models interactions between object locations to decompose and generate images. They

first encode the image with a CNN and then predict a fixed number of component masks

with an RNN, depending on previously predicted component locations. From the mask and

the image, the appearance representation for a component is independently computed and

the image is reconstructed with a Gaussian mixture model. In an extension (Engelcke et al.,

2021), they no longer split masks and appearance but combine location coordinates into two

dedicated dimensions of image pixel embeddings. The pixel embeddings are then clustered

into attention masks, from which object representations are inferred. While training is done

with a fixed number of clusters, inference can be run with a flexible number. However, this

produces fewer objects at the cost of worse segmentation. Xu et al. (2022) add special object

tokens to the input, similar to the [CLS] token in BERT, to learn object representations with

a Vision Transformer. On higher levels, the number of object tokens is reduced. After each
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level (that possibly consist of multiple layers), the output representations are clustered, by

assignment to the most similar object token, which serves as the cluster centroid. Related to

the ideas of capsule networks and GLOM, the Complex AutoEncoder generates representations

whose magnitude encodes the presence or absence of a feature, and whose clustering is

determined by the relative phase difference (Löwe et al., 2022). An extension to slot attention

alternates binding of slots to the objects (called spatial binding) with binding of factors of

variation, e.g. shape or color, to a set of dimensions of each object’s representation (Singh

et al., 2023). This procedure improves disentanglement within an object’s representation, and

for example, allows exchanging the color of two objects by simply swapping the activations in

the respective dimensions.

Applications of object representations in NLP. Slot attention has been used in NLP to induce

semantic units at the character level in multiple languages (Behjati and Henderson, 2021). As

in our work, different initialization techniques as well as dropping unnecessary slots with the

L0-drop layer are employed. In contrast to our work, the capacity of the decoder is limited

for reconstructing the input to ensure that the learned slot representations carry most of

the meaning. For generating a summary, we expect that a powerful decoder is necessary

to generate a fluent and coherent output text. Lin et al. (2018) compute representations for

semantic units with a convolutional neural network with dilation. The number of CNN layers

as well as the dilation ratio control the granularity of semantic units (phrase, sentence, or

larger). In their two-step hybrid attention, the decoder first attends to the semantic unit

representations, and then to the word-level output of an LSTM. They perform no further

analysis of the induced semantic units. Gyllensten et al. (2019) introduce recursion-grams

(r-grams) that are generated by successively merging the most frequent adjacent character(s)

(including white-space), as in byte-pair encoding (Sennrich et al., 2016). They use r-grams for

language-agnostic text segmentation, as they can naturally extend to multi-word expressions,

unlike white-space delimited segmentation. The authors train r-gram embeddings with the

word2vec skip-gram algorithm (Mikolov et al., 2013a) and find that these are competitive with

embeddings from white-space delimited units for various similarity and analogy tasks. When

they inspect the nearest neighbors in multiple languages, they find that acronyms are close to

their multi-word expressions. This study suggests that semantic units could be identified from

the frequency statistics of a language alone. In previous work, multi-word expressions were

also identified from linguistic knowledge about their behavior, such as orthography, inflection,

or the diversity of their contexts and their part of speech (Tsvetkov and Wintner, 2011).

Multi-modal object representations. There exist several studies that learn multi-modal

representations for vision and language from self-supervised pretraining through masking

text, image regions, or objects. ViLBERT (Lu et al., 2019) and LXMERT (Tan and Bansal, 2019)

use cross-attention between a vision and a language model to combine the two modalities.

TIMAM (Sarafianos et al., 2019) obtains textual representations from BERT and visual features

from a ResNet, then trains the model to make the representations from the two modalities
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indistinguishable for a discriminator. UNITER (Chen et al., 2020) uses a single model, and

only masks the input of one modality while using the other to predict the missing information.

While they use word-image region alignment based on optimal transport, OSCAR (Li et al.,

2020c) uses an object detector to label objects. They then mask either object labels or text

input tokens. KD-VLP (Liu et al., 2022c) extends the word-region alignment pretraining task

from UNITER to a phrase-region task. Many more vision-language pretraining approaches

exist and are presented, for example, in a recent survey (Khan et al., 2022).

In image captioning, object representations play an especially important role (Mitchell et al.,

2010), and can be improved and made more interpretable through matching text with the

detected objects in the image (Wang et al., 2018b). For videos, ActBERT (Zhu and Yang, 2020)

uses paired video sequences and descriptions to relate actions, objects, and descriptions. This

helps to find videos from a text query, caption videos, and answer questions from videos.

Similarly, visual reasoning with compositional natural language instructions benefits from

matching text and object representations with bidirectional attention (Tan and Bansal, 2018).

But text representations can also benefit from visual grounding for general language under-

standing tasks. Vokenization (Tan and Bansal, 2020) extends the masked language modeling

pretraining objective by jointly predicting visual tokens ("vokens") from BERT encoder out-

puts to visually ground the representations. It shows improved performance on language

understanding and question answering benchmarks.

Applications of slot attention in computer vision. The ideas of slot attention and MONet

are used in Wang et al. (2021) on images to learn object representations and associated

masks, then reconstruct the image. An image caption or question about the image is given

to a semantic parser that identifies the objects in the sentence. A neuro-symbolic program

executor then answers the question or classifies the correctness of the caption. They find that

the multi-modal input improves the segmentation of objects. Gopalakrishnan et al. (2021)

use slot attention to learn sub-routines (a clustering of action sequences) for an agent trained

with reinforcement learning. They adapt the initialization of slots by learning slot-specific µ

and σ parameters. Seitzer et al. (2023) use slot attention as an information bottleneck in an

autoencoder. Instead of the inputs, the decoder reconstructs the encoder outputs. They freeze

the encoder to avoid its outputs to collapse and make reconstruction trivial. For evaluation,

they analyze attention patterns between decoder and slots, and slots and encoder outputs,

as we presented earlier. Xie et al. (2022) note that slot attention performs worse than a trivial

pixel-level representation on a compositionality task. They attribute this to slot attention

assigning multiple slots to the same object, something that is not supposed to happen by

design (competition among slots to explain parts of the input). Another issue they identify is

that slot attention does not have blank slots that do not represent objects. This matches our

findings and was the reason we tried to introduce an information bottleneck on slots, and

drop them entirely with the L0-drop layer. Kipf et al. (2022) weakly supervise the initialization

of slots by assigning them to objects in the first frame of the video. Objects are identified with

image segmentation masks or bounding boxes. Any superfluous slots are assigned to a null
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value. The slots then manage to temporally track the objects in the video. Sajjadi et al. (2022)

use slot attention for novel view synthesis, by training a mixing module that decides how to

compose the objects for each novel view direction, characterized by the camera position and

the direction ray pointing from the camera to the pixel in the image. Baldassarre and Azizpour

(2022) train slot attention with a contrastive loss on the representations, where the model has

to identify the same object in different crops of an image and distinguish them from other

objects. They show that representations from regular attention, without the competition for

explaining parts of the input, fail to select a single object.

5.7 Conclusion

In this chapter, we aimed to discover semantic units and unsupervisedly learn their repre-

sentations as a by-product of learning to generate summaries. We found that neither slot

attention nor bottom-up attention, two object discovery methods proposed for object de-

tection in computer vision, could be successfully integrated into a summarization model.

The various models we trained learned to ignore our object representations and fall back

to the BERT encoder outputs, or they used the representations to encode the entire input.

Further inductive biases did not help to specialize individual representations to specific parts

of the input. When we forced the model to make use of the object representations by limiting

access to BERT encoder outputs, the summary quality degraded drastically. To date, our initial

motivation seems intuitive to us, and we are quite surprised by the difficulties we had training

these models.

5.7.1 Representation Learning for Encoder-Decoder Models

With the rise of pretrained encoder-decoder models, learning representations that facilitate

communication between the encoder and the decoder has become less appealing. While

randomly initialized decoders benefited from structured input representations, pretrained

decoders can only make use of them if they are part of the model during pretraining. An

important part of pretraining an encoder-decoder model on large amounts of data is to

negotiate and stabilize the communication between the encoder and the decoder. This

advantage is lost when the representations are changed after pretraining and the decoder

has to learn the new encoder output format. Regardless of the results in this chapter, the

introduction of pretraining complicates making good use of the suggested inductive bias,

further supporting the Bitter Lesson (Sutton, 2019).

A major goal of devising structured representations is interpretability, and this goal persists

even after the introduction of pretraining. It is an open question, however, whether the best

way to achieve interpretability is through structured encoder output representations, or if a

different approach is more promising.
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6 Hallucination Detection

Chapter Summary

In abstractive summarization, hallucinations are model generations that are not sup-

ported by the source document. Current methods for detecting hallucinations operate

mostly on noun phrases and named entities, and restrict themselves to the XSum dataset,

which is known to have hallucinations in 3 out of 4 training examples (Maynez et al.,

2020). We instead consider the CNN/DailyMail dataset where the summarization model

has not seen abnormally many hallucinations during training. We automatically detect

candidate hallucinations at the token level, irrespective of their part of speech. Our de-

tection comes essentially for free, as we only use information the model already produces

during the generation of the summary. This enables practitioners to jointly generate a

summary and identify possible hallucinations, with minimal overhead. We repurpose an

existing factuality dataset and create our own token-level annotations. The evaluation

on these two datasets shows that our model achieves better precision-recall tradeoffs

than the baselines, which additionally require a model forward pass.

Publication in this Chapter

This chapter builds on the material in our publication:

Marfurt, A., and Henderson, J. (2022). Unsupervised Token-level Hallucination Detection

from Summary Generation By-products. In Proceedings of the 2nd Workshop on Natural

Language Generation, Evaluation, and Metrics (GEM) (pp. 248-261).

PDF: https://aclanthology.org/2022.gem-1.21.pdf

Code and data: https://github.com/idiap/hallucination-detection
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Figure 6.1: BART cross-attentions align copied segments of the summary with the respective
segments in the source. Attention weights are normalized by row. Only the first summary and
source sentences are shown.

After having investigated interpretable representations in Part I, we now turn to evaluate sum-

marization models in Part II. We start by taking a closer look at hallucinations, i.e. information

in the generated summary which is not faithful to the source document. Hallucinations are a

prominent remaining failure mode of state-of-the-art summarization models.

We propose to use the diagonal cross-attention patterns present in Transformer-based abstrac-

tive summarization models (see Figure 6.1) to align the summary with the source document.

We then detect hallucinations in an unsupervised fashion for segments of aligned and un-

aligned tokens by computing statistics from the encoder’s self-attentions and the decoder’s

next-word probabilities. These by-products arise when generating a summary with any Trans-

former model. In this chapter, we use BART (Lewis et al., 2020). Our method demonstrates

good results compared to its competitors, while at the same time requiring negligible ad-

ditional computation. Token-level hallucination detection proves to be a difficult task, in

particular on intrinsic hallucinations (defined in the following), where all models struggle to

detect any hallucinations.

6.1 What are Hallucinations?

We adopt the definition from Maynez et al. (2020) and define intrinsic hallucinations as

combinations of information from the source document that cannot be inferred from it, and

extrinsic hallucinations as information that is not present in the source document. Paraphrases
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and information that can be directly inferred from the source document, however, do not

constitute hallucinations. Furthermore, whether some information is a hallucination is an

orthogonal problem to whether that information is factually correct, a question we do not

consider in this thesis.

6.2 Hallucination Detection on XSum

A lot of recent work has addressed the problem of hallucinations, predominantly on the XSum

dataset (Narayan et al., 2018a). XSum is an outlier, however, in that over 75% of its reference

summaries contain hallucinations (Maynez et al., 2020). Models trained (or finetuned) on

this dataset are consequently prone to hallucinate themselves when summarizing an article.

Additionally, current work focuses on detecting hallucinations for noun phrases and named

entities (Wang et al., 2020; Durmus et al., 2020; Scialom et al., 2021), sometimes with the

addition of dates and numbers (Narayan et al., 2021). Recent work has shown, however,

that summarization models also make mistakes in other parts of speech, such as predicates

(Pagnoni et al., 2021).

We therefore extend current hallucination detection research to CNN/DailyMail and the

token level. By repurposing the existing factuality dataset FRANK (Pagnoni et al., 2021) and

annotating our own TLHD-CNNDM, we contribute two evaluation datasets. They are further

described in Section 6.5.1.

6.3 Hallucination Detection Methods

6.3.1 QG-QA Models

Multiple studies use automatic question generation and answering models to ask questions

about entities in the generated summary, and try to answer them from the source document

(Wang et al., 2020; Durmus et al., 2020; Scialom et al., 2021). If the question cannot be answered

from the source document, the entity is considered a hallucination.

FEQA. FEQA (Durmus et al., 2020) generates questions about the summary’s entities, then

tries to answer them from the source document. It then computes the token-level F1 score

between the summary’s text and the predicted text span from the source. Unmatched answers

indicate hallucinations. We compute word-level probabilities by averaging the F1 scores of all

spans the word is part of.

6.3.2 Dependency-arc Entailment

DAE. Dependency arc entailment (DAE) (Goyal and Durrett, 2020, 2021) decides from its de-

pendency arcs whether the generated summary sentence is entailed by the source document.
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While DAE is technically a factuality detection method, we conjecture that hallucinations in

the summary should not be entailed by the source document either. We thus use their method

to get entailment probabilities for each dependency arc.

In footnote 6 of Goyal and Durrett (2021), the authors propose that a word is non-factual if

any of its arcs are non-factual. We therefore compute word hallucination probabilities as the

maximum probability of non-factuality of its dependency arcs. We use their model variant

trained with entity-based synthetic data on CNN/DailyMail.

6.3.3 Token-level Prediction with an External Model

Pretrained language models can also be finetuned to directly predict a hallucination label for

each input token. Zhou et al. (2021) do this with the help of synthetic training data, where

factual tokens are automatically replaced with hallucinations. We call their method Fairseq in

the following, based on its GitHub repository name.1

Fairseq. We use the model finetuned on XSum and evaluate how it transfers to the CNN/Dai-

lyMail dataset. Since we compare to our unsupervised method, we leave retraining the model

on CNN/DailyMail to future work. We evaluate both model settings, with and without access

to the reference summary.

6.4 Unsupervised Hallucination Detection

In the process of generating a summary, a Transformer-based abstractive summarization

model creates a number of by-products, such as decoder next-token generation probabilities,

encoder and decoder self-attentions, and decoder to encoder cross-attentions, for each layer

and attention head of the model. These can be easily accessed from e.g. the Hugging Face

transformers library (Wolf et al., 2020).

6.4.1 Motivation

It is debated whether model attentions can be used to explain model decisions (Jain and

Wallace, 2019; Wiegreffe and Pinter, 2019) and how much a Transformer encoder’s output

representation still represents the token at its position in the input (Brunner et al., 2020).

Nevertheless, we posit that the diagonal attention patterns observed in Figure 6.1, together

with the fact that the source and target tokens match for the entire segment, is a strong enough

signal to claim that a summarization model copied this segment from the source.

Additionally, we conjecture that the faithfulness of a summary to the source document is not

inherently a question that spans multiple sentences, in contrast to a summary’s factuality

1https://github.com/violet-zct/fairseq-detect-hallucination
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(Pagnoni et al., 2021). As a consequence, we detect hallucinations at the token level by

processing summary sentences in isolation.

6.4.2 Initial Alignment

From the observations above, we start by aligning summary and source positions based on

cross-attentions. In BART cross-attentions, the maximum cross-attention weight is often

put on the beginning-of-sequence token in the source. If the token is a preposition, a high

attention weight is also put on its preceding and succeeding tokens. We therefore accept

a target-source alignment of target token ti iff it matches a source token in its top-4 cross-

attention weights. This constitutes our initial alignment.

6.4.3 Context Voting

In the second step, we expand the initial alignment with a position-based voting algorithm. For

each target token ti , its context tokens ti−l , . . . , ti−1, ti+1, . . . , ti+l in a window of size l 2 around

ti vote on the expected source position of ti given their own alignment and an assumed

diagonal attention pattern. If a token is not aligned with the source, it does not vote. We accept

a vote when at least half the neighboring tokens agree. We perform voting for a maximum of

10 rounds, and we stop early when it has converged, which often happens after 2 rounds.

After these two alignment stages, we have a set of aligned segments, with a token-level cor-

respondence between summary and source, and a set of unaligned tokens. We now look to

detect intrinsic hallucinations in the former set, and extrinsic ones in the latter.

6.4.4 Classifying Aligned Tokens

Aligned tokens appear in the source document, and consequently do not constitute extrinsic

hallucinations. To assign a probability of them being intrinsic hallucinations, we compare the

characteristics of their aligned source segments. Maynez et al. (2020) speculate that intrinsic

hallucinations are potentially a failure of document modeling. We add that the encoder may

also have performed well at document modeling, but the communication to the decoder

through the representational bottleneck may have failed. In the latter case, we should be

able to read the association of two source segments from the strength of the encoder’s self-

attentions between the two segments. We determine the association strength α of two aligned

segments seg1 and seg2 by the area-normalized sum of encoder self-attention weights (enci j

and enc j i ) between the two segments:

α(seg1, seg2) =
∑

i∈seg1, j∈seg2
enci j +enc j i

2∗|seg1|∗ |seg2|
(6.1)

2We choose l = 3 as our window size.
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seg1

seg2
seg2, 
seg1

seg1, 
seg2 

Figure 6.2: BART encoder self-attentions relate the aligned segments seg1 and seg2 of the
source document (grey boxes) by their interactions (blue boxes). Only the first two source
sentences are shown.

where i and j are the source indices of segments seg1 and seg2, and |.| is the cardinality.

Figure 6.2 visualizes the areas whose attention weights are summed with blue boxes. The score

for a segment is the mean α to all other segments in its summary sentence. The higher the

score, the higher our confidence in the two segments being semantically close, and therefore

not intrinsic hallucinations. As an example, Figure 6.3 shows that the fourth segment has the

smallest association strength to the other segments. Indeed, this is an intrinsic hallucination.

It talks about the present state of the mansion, while the predicate concerns the past.

6.4.5 Classifying Unaligned Tokens

While unaligned tokens can still appear in the source document and result in an intrinsic

hallucination, the prevalent errors for this set of tokens are extrinsic hallucinations. We found

that generated summaries sometimes contain sentences entirely unrelated to the article,

most likely an artifact of data collection. Our first score βalign is the fraction of the summary

sentence tokens that are aligned.
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Figure 6.3: Association strength α between aligned segments. The intrinsic hallucinations
in the fourth segment show the least interaction with other segments. Full example in Sec-
tion 6.6.8.

For unaligned tokens in mostly-aligned sentences, we conjecture that generations by a strong

language model fit in well (both syntactically and semantically) with the source document

and the summary written so far, and thus should be expected by the model. In the opposite

case, unexpected generations lead to a higher amount of surprisal. The expected surprisal of a

language model can be quantified with the entropy of its next-word decoding probabilities

(Meister et al., 2020). Figure 6.4 shows the decoding entropy of an example summary. We thus

propose a second score βentropy as the inverse smoothed decoding entropy:

βentropy(ti ) = 1

H(ti )+1
(6.2)

with H(ti ) the entropy of the next-word probability distribution of target token ti .

Only the generation of the first token of an unexpected segment is surprising (as seen in

Figure 6.4), and subsequent completions of the segment have high probability and low entropy.

We therefore split a span of unaligned tokens into segments based on the decoding entropy.

The construction is as follows: As long as the decoding entropy of the next token ti decreases

the mean decoding entropy of the current segment seg, it is added. Otherwise, a new segment

is started.

seg′ :=
seg∪ ti if H(ti ) <

∑
t j ∈seg H(t j )

|seg| ,

ti otherwise.
(6.3)
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Figure 6.4: Summary containing an extrinsic hallucination (tokens in bold red). The decoding
entropy of the first hallucinated token is high, and those of the subsequent tokens are low.
We determine the hallucination score (Equation 6.2) of the entire segment (Definition in
Equation 6.3) from its first token.

6.4.6 Converting Scores to Probabilities

All our faithfulness scores are nonnegative, and upper bounded by 1. A higher score means

less chance of hallucination. We thus convert each faithfulness score s to a hallucination

probability p by scaling and inverting it.

p = 1− s − smin

smax − smin
(6.4)

where smin and smax are the minimum and maximum scores across the entire dataset. In an

offline evaluation setting, one can compute all scores on a dataset first, and then get smin and

smax. For the online setting, these values have to be set. On our two datasets, we observe that

the minimum and maximum values do not change much, so we expect the current values to

transfer to new datasets. They are [0,0.02] for α, [0.08,0.71] for βentropy, and βalign is already in

the correct range.

BART-GBP. As we will see in the ablation study in the results in Section 6.6, the association

strength α decreases the performance of our detection method. Our final model, BART-GBP

(BART generation by-products), therefore only uses the βalign and βentropy scores.

6.5 Experiments

We study CNN/DailyMail (Hermann et al., 2015), a summarization dataset known to be highly

extractive (Grusky et al., 2018) and therefore less likely to contain a lot of hallucinations.

6.5.1 Datasets

Finding an existing dataset to evaluate our method is difficult since we need access to the

model’s attentions and decoding probabilities alongside the outputs.
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FRANK. We repurpose FRANK, a factuality metric evaluation dataset (Pagnoni et al., 2021). It

consists of 250 summaries from the CNN/DailyMail test set, obtained from SummEval (Fabbri

et al., 2021). FRANK introduces a typology of factual errors, which we convert to hallucination

annotations by using examples of predicate, entity, and circumstance errors as candidates for

intrinsic hallucinations, and out-of-article errors as candidates for extrinsic hallucinations.

Our publically available model version produces slightly different outputs from theirs, so we

manually correct labels where the outputs differ. Our adapted dataset contains 57 hallucinated

words (31 intrinsic, 26 extrinsic) which correspond to 0.4% of the 15,700 total words. At the

sentence level, 3.5% contain at least one hallucinated word (31/897), while at the summary

level, it is 9.2% (23/250).

TLHD-CNNDM. Since the number of hallucinations in FRANK is low, we additionally collect

human annotations ourselves. We produce BART model outputs for the CNN/DailyMail test

set (excluding the FRANK examples) by using the standard Hugging Face implementation with

the default parameters. To arrive at an interesting dataset, we first rank summary sentences by

two criteria: 1) the number of non-contiguous alignments to the source document found by

lexical overlap, and 2) the number of words that do not appear in the source document. Both

criteria are length-normalized. We pick the top 75 examples from both lists, arriving at 150

summary sentences. We then perform a human annotation as detailed below. Our dataset

contains 299 hallucinated words out of a total of 2,100 (14.2%). Of those hallucinations, 51

are intrinsic, and 248 are extrinsic. Of the 150 sentences, 78 contain at least one hallucination

(52%). The annotator agreement with the majority class (following Durmus et al., 2020) is

94.6%, and 73.9% and 86.3% for intrinsic and extrinsic hallucinations, respectively. We name

our dataset TLHD-CNNDM (token-level hallucination detection for CNN/DailyMail).

TLHD-CNNDM human annotation details. Our human annotation was performed with 3

sets of 3 annotators, each annotating 50 examples. The full instructions include the definitions,

an example annotation, and clarifying notes. They are as follows:

Hallucination detection

This study evaluates hallucinations in automatic summarization models. A hallucination is

information that is not directly supported by the article that the model has to summarize.

Main question: Can the summary sentence in question be inferred directly from the article?

There are two types of hallucinations: intrinsic and extrinsic hallucinations. They are defined

as follows (from Maynez et al., 2020):

Intrinsic hallucination: Combination of information from the article that does not follow

from it

Extrinsic hallucination: Information not present in the article

Not a hallucination: Paraphrases, or information directly inferred from the article

Importantly, this is not a question of whether the summary is true or false, just whether it

faithfully represents the information in the article.
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The goal in this study is to annotate a summary sentence with intrinsic and extrinsic hallu-

cinations, by copying the words that cannot be inferred from reading the article. Here’s an

example (the part in red is the annotation that you will do [your annotations can stay black]):

Example annotation

Article: Manchester City was defeated by Crystal Palace 2-1 at the Etihad Stadium on Sunday.

Glenn Murray and Jason Puncheon scored the goals for Palace, while Yaya Toure was the only

scorer for City. City’s best striker Sergio Aguero was left on the bench for yet another game.

The result is especially shocking when comparing the squad’s total transfer fees: £40m pounds

for Crystal Palace vs. £500m for Manchester City.

Full summary: Crystal Palace beat Manchester City 2-1 on Saturday. Yaya Toure was left on

the bench, and Crystal Palace have spent £40m on transfer fees so far this season.

Sentence in question: Yaya Toure was left on the bench, and Crystal Palace have spent £40m

on transfer fees so far this season.

Intrinsic hallucinations: Yaya Toure

Extrinsic hallucinations: so far this season

Explanation: It was Sergio Aguero that was left on the bench, not Yaya Toure (since he scored

a goal, we know that he was playing). We’re looking for a hallucination that is as small as

possible, that’s why we didn’t mark “Yaya Toure was left on the bench”, or “was left on the

bench”. For the extrinsic hallucination, there is no mentioning that the spending was for this

season only. There is also a mistake in the first sentence of the summary (Saturday vs. Sunday

in the article), but this is not the sentence in question, so we ignore it.

Notes

• If there are no hallucinations, leave the line blank.

• If there are multiple hallucinations in the sentence, separate them with a comma.

• Sometimes a sentence is not complete, or there are multiple sentences in one, but a

period is missing to separate them. Just treat the “sentence in question” as if it were a

single sentence. (These are artifacts of sentence splitting/the training data, which we do

not evaluate here.)

• The examples below have a visual help: Text overlaps of more than two words between

the sentence and the article are written in bold and numbered at the end, like this:

[1]. This is just a help for you to find information faster, and does not mean the model

copied the parts from there. Example: Article: This year’s harvest was[1] especially rich

on apples.[2] Sentence: This year’s harvest was[1] high on apples.[2]

• Hint: Read the sentence in question first, and then look for the relevant information in

the article.
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6.5.2 Model Details

For generating our summaries, attentions, and decoding probabilities, we use the BART-

large model finetuned on CNN/DailyMail from Facebook on Hugging Face3 with its default

hyperparameters. The model comprises 12 layers in the encoder as well as the decoder, 16

attention heads, a hidden dimension of 1024, and a maximum input length of 1024. For

generation, BART uses beam search with a beam size of 4, a minimum summary length of

56 and a maximum of 142 tokens, a length penalty of 2.0, encouraging longer outputs, and

trigram blocking (Paulus et al., 2018).

In generation with beam search, multiple beams are active at each generation step, but only

one beam is eventually selected. We extract the attention and decoding probabilities of the

correct beam by backtracking through the generation steps.

When inspecting cross-attentions, we found layers 10 and 11 (out of 12) to show the cleanest

diagonal patterns (as presented in Figure 6.1). Other layers either have less focused attention,

or they look at the previous token (mostly lower layers), the beginning-of-sequence token, or

periods. We average the attentions from layers 10 and 11 of cross-attention to compute our

initial alignment. We select the same layers for the encoder self-attentions.

As previously stated in Section 6.4, we use the top-4 cross-attentions to compute the initial

alignment. For context voting, we employ a window size of 3, a minimum agreement of 50%,

and a maximum of 10 voting rounds. For rescaling our scores, we use [smin, smax] of [0,0.02]

for α, and [0.08,0.71] for βentropy. βalign does not need to be rescaled.

Since BART uses BPE tokenization (Sennrich et al., 2016), we aggregate the hallucination

probabilities of subwords by taking the maximum. To compute the results in Section 6.6, we

then vary the probability threshold for classifying a hallucination to get precision-recall and

ROC curves. For this, we use scikit-learn4 and make sure the convex hull is computed correctly.

6.5.3 Baselines

As baselines, we use four classes of models: lexical overlap, an entity-focused question-

generation-answering model, a dependency entailment-based model, and a token-level

classification model trained on synthetic data.

Lexical-n. This baseline lexically aligns the summary and the source document. It greedily

adds the longest matching span, down to a span length of n. This baseline classifies all

unaligned tokens as (presumably extrinsic) hallucinations. For aligned tokens, our most

successful heuristic determines the hallucination probability for each aligned span as the

fraction of aligned tokens that have an alignment in the same source sentence as the current

3https://huggingface.co/facebook/bart-large-cnn
4https://scikit-learn.org, version 1.1.1
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span:

1− |tokens aligned to same source sentence|

|all aligned tokens| . (6.5)

FEQA. FEQA (Durmus et al., 2020) generates questions about the summary’s entities, then

tries to answer them from the source document. It then computes the token-level F1 score

between the summary’s text and the predicted text span from the source. Unmatched answers

indicate hallucinations. We compute word-level probabilities by averaging the F1 scores of all

spans the word is part of.

DAE. Dependency arc entailment (DAE) (Goyal and Durrett, 2020, 2021) decides from its de-

pendency arcs whether the generated summary sentence is entailed by the source document.

While DAE is technically a factuality detection method, we conjecture that hallucinations in

the summary should not be entailed by the source document either. In footnote 6 of Goyal

and Durrett (2021), the authors propose that a word is non-factual if any of its arcs are non-

factual. We therefore compute word hallucination probabilities as the maximum probability

of non-factuality of its dependency arcs. We use their model variant trained with entity-based

synthetic data on CNN/DailyMail.

Fairseq. With the help of synthetic training data, where factual tokens have been automati-

cally replaced with hallucinations, pretrained language models can be finetuned to directly

predict a hallucination label for each input token (Zhou et al., 2021). We use the model fine-

tuned on XSum and evaluate how it transfers to the CNN/DailyMail dataset. Since we compare

to our unsupervised method, we leave retraining the model on CNN/DailyMail to future work.

We evaluate both model settings, with and without access to the reference summary. We call

this method Fairseq based on its GitHub repository name.
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Method Best F1 PR AUC ROC AUC

FRANK

FEQA* 0.0245 0.0062 0.3327
DAE* 0.0419 0.0157 0.7164
Fairseq w/o ref* 0.1651 0.0723 0.8129
Fairseq w/ ref* 0.0682 0.0232 0.7017
Lexical-1 0.1913 0.0677 0.8788
Lexical-2 0.0854 0.0335 0.8058
Lexical-3 0.0610 0.0268 0.7672
BART-GBP 0.2778 0.1777 0.8934

TLHD-CNNDM

FEQA* 0.3156 0.2031 0.3899
DAE* 0.3167 0.1988 0.5803
Fairseq w/o ref* 0.3957 0.3255 0.7375
Fairseq w/ ref* 0.2672 0.1714 0.5521
Lexical-1 0.3937 0.2819 0.6846
Lexical-2 0.3535 0.2166 0.4802
Lexical-3 0.3025 0.1785 0.2599
BART-GBP 0.3806 0.3502 0.7332

Table 6.1: Best F1 score on the precision-recall curve, the area under the precision-recall
curve, and the area under the ROC curve. Methods marked with * require an additional model
forward pass, which increases runtime and resource use.

6.6 Results

We use precision-recall curves to evaluate the hallucination detection methods. Precision-

recall is the preferred metric when finding the instances of the positive class (hallucinations)

has exceptionally high value compared to the instances of the negative class. Section 6.6.7 also

shows ROC curves.

6.6.1 Precision-Recall Results

Our main result is shown in Table 6.1, which considers performance when classifying hallucina-

tions of both intrinsic and extrinsic types. We present the best F1 score on the precision-recall

curve, the area under the precision-recall curve, and the area under the ROC curve. Addi-

tionally, we show whether the method requires an additional model forward pass, which

incurs a longer runtime and higher resource costs, by marking the respective methods (with *).

BART-GBP performs best on the FRANK dataset and has the largest AUC for precision-recall on

the TLHD-CNNDM dataset. For the other metrics, it is close behind the highest score, all while

being completely unsupervised. Fairseq without access to the reference summary performs

well on TLHD-CNNDM, but worse on FRANK. The setting without access to the reference
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Figure 6.5: Precision-recall curves for all hallucinations in the FRANK and TLHD-CNNDM
datasets.
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Figure 6.6: Precision-recall curves for the label subsets of extrinsic and intrinsic hallucinations
in the FRANK (6.6a, 6.6b) and TLHD-CNNDM (6.6c, 6.6d) datasets.

summary does better across all datasets and metrics, and is therefore reported from now on.

The precision-recall plots in Figure 6.5 give further details on the main result. BART-GBP

manages to get high precision for the data points where it is most certain, something other

methods struggle with. At higher levels of recall, the difficulty of the task leads to lower

precision scores across all methods. The FRANK dataset, where only 0.4% of tokens are

hallucinations, is very challenging (see Figure 6.5a). With 14.2% of positive labels, TLHD-

CNNDM is less extreme but still proves to be difficult for all methods, as seen in Figure 6.5b.

6.6.2 Extrinsic Hallucinations

Figures 6.6a and 6.6c show the models’ performance on the label subset of extrinsic hallucina-

tions. To evaluate this subset, we remove data points that are gold intrinsic hallucinations in

order to not unfairly penalize models for detecting those and vice versa for the evaluation of

intrinsic hallucinations. Apart from BART-GBP and Fairseq, the Lexical-1 baseline manages

to find some hallucinations. However, it does not provide a fine-grained trade-off between

precision and recall, in contrast to BART-GBP.
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Scores FRANK TLHD-CNNDM

α 0.0051 0.1440
βalign 0.1993 0.3260
βentropy 0.0685 0.3198
βalign, βentropy 0.1777 0.3502
α, βalign, βentropy 0.0390 0.1687

Table 6.2: Ablation study for different combinations of scores. The metric is the area under the
precision-recall curve. BART-GBP is the combination of βalign and βentropy.

6.6.3 Intrinsic Hallucinations

As we can see from Figures 6.6b and 6.6d, finding intrinsic hallucinations proves to be very

difficult for all methods. We therefore zoom in both graphs on the y-axis. BART-GBP performs

well relative to the baselines. Notably, for the TLHD-CNNDM dataset, DAE manages to find

some hallucinations at some of its highest probability selections but quickly diminishes at

higher recall.

In summary, BART-GBP gets consistent and very competitive results in both datasets and on

all label subsets, even while being an unsupervised method. The ROC curves in Figures 6.7

and 6.8 in Section 6.6.7 further confirm this finding.

6.6.4 Ablation Study

We are interested to see how each of our designed scores contributes to finding hallucinations.

In Table 6.2, we show an ablation study with the area under the precision-recall curve as the

performance metric. We see that of all individual scores, βalign performs best. Combining it

with βentropy (by taking the maximum of both probabilities for each token) further improves

results on the TLHD-CNNDM dataset, but not on FRANK. α performs barely above a baseline

that would classify all data points as hallucinations. This came as a surprise to us, as we

expected α to perform better from the motivation in Section 6.4. Adding α to the β scores

decreases performance drastically. This comes from the fact that our scores are not calibrated,

so the distribution of each score will be different. As a result, when taking the max of multiple

scores, one of them may dominate. When we plot a histogram of our scores’ values, we see that

this is the case for α, leading to such a performance deterioration in the case of combining all

three scores. Since α on its own does not score well, we do not further calibrate our scores.

6.6.5 Maximum Possible Hallucination Recall

We motivated our approach by arguing that token-level methods are superior to entity-based

question-generation-answering systems (like FEQA) or dependency arc entailment-based

DAE. These methods may miss some hallucinated tokens as they only compute hallucination
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Method FRANK TLHD-CNNDM

FEQA 38.60% 46.15%
DAE 80.70% 77.93%
Fairseq 100.00% 100.00%
Lexical-n 100.00% 100.00%
BART-GBP 100.00% 100.00%

Table 6.3: Maximum possible recall of FEQA (entity-based), DAE (dependency arc entailment),
and the token-level methods Fairseq, Lexical-n and BART-GBP.

Score FRANK TLHD-CNNDM

All Extrinsic Intrinsic All Extrinsic Intrinsic

Aligned (α) 50.88% 11.54% 83.87% 19.06% 11.29% 56.86%
Unaligned (βentropy) 52.63% 96.15% 16.13% 81.27% 88.71% 45.10%
Both (βalign) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 6.4: Maximum possible recall of aligned and unaligned token scores wrt. all, extrinsic, or
intrinsic hallucinations.

probabilities for a subset of all tokens. To verify how many there are, we analyze the recall each

method achieves when it classifies all tokens that it considers as positives.

The results are shown in Table 6.3. The disadvantage for FEQA and DAE is substantial. FEQA

classifies less than half of the tokens labeled as hallucinations in the FRANK and TLHD-

CNNDM datasets. DAE is limited to a recall of around 80%, as it cannot detect tokens that are

not part of one of the dependency arcs considered for entailment.

6.6.6 Maximum Recall of (Un)aligned Tokens

Aligning the summary with the source document forms the basis of our method. How many

hallucinations are part of aligned spans, and how many are unaligned? We perform this analy-

sis in Table 6.4. We can see that extrinsic hallucinations are mostly part of unaligned spans,

which are scored by βentropy. Intrinsic hallucinations in the FRANK dataset are mostly part of

aligned spans, scored by α. In the TLHD-CNNDM dataset, however, intrinsic hallucinations

are only part of aligned spans around half of the time.

Note that aligned and unaligned scores can add up to slightly more than 100%. This occurs

when some BPE tokens of the same word are aligned and others are not (e.g. when a name

appears together with a possessive ’s).
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Figure 6.7: ROC curves for hallucinations in the FRANK dataset.
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Figure 6.8: ROC curves for hallucinations in the TLHD-CNNDM dataset.

6.6.7 ROC Results

Figures 6.7 and 6.8 show the ROC curves on the FRANK and TLHD-CNNDM datasets. There

is a large label imbalance in both datasets, with the positive class only making up 0.4% of

FRANK’s labels and 14.2% of those in the TLHD-CNNDM dataset. This has to be considered

when looking at these figures.

BART-GBP performs best on both datasets and label subsets, except for intrinsic hallucinations

in the TLHD-CNNDM dataset in Figure 6.8c, where DAE and Lexical-1 perform better.

One thing that is easily visible from the ROC curves is the fraction of positive labels that can be

discovered by a detection method. When a curve flattens out, it is no longer able to find more

hallucinations without labeling all tokens as positive. This further highlights the strengths of

the token-level methods BART-GBP and Lexical-n.

6.6.8 Hallucination Examples

We present two examples of hallucinations, one of intrinsic hallucination from the FRANK

dataset, and one of extrinsic hallucination from the TLHD-CNNDM dataset. In the former

example, Mike Tyson’s mansion is now in a gaudy, abandoned state, but was not while he still

lived in it. In the latter example, the name of the stadium (Old Trafford) is never mentioned

in the article, so it is an extrinsic hallucination. As an aside, factuality cannot be determined,
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since the article only talks about a "meeting" of the two teams and does not mention the home

team.

Intrinsic hallucination from FRANK.

Article: (CNN)A trip to a former heavyweight champ’s gaudy, abandoned mansion.

The tallest and fastest "giga-coaster" in the world. A dramatic interview with a

famed spiritual leader – and the tearful reaction by one of his former students.

These are some of the best videos of the week: In the 1980s and ’90s – before he

moved to Vegas and started keeping tigers as pets – former heavyweight boxer

Mike Tyson lived in a Southington, Ohio, mansion. The home featured an indoor

swimming pool, a marble-and-gold Jacuzzi (with mirrored ceiling, naturally) and

an entertainment room large enough for small concerts. Tyson sold the house in

1999; it’s due to become, of all things, a church. The video can be seen at the top

of this story. Not a fan of roller coasters? You may want to skip the next video – but

for the rest of us, the thrill of watching is the next best thing to being there. The

Fury 325 can be found at Carowinds amusement part in Charlotte, North Carolina.

Watch the video: In a CNN exclusive, Alisyn Camerota looked into allegations that

Bikram yoga creator Bikram Choudhury sexually assaulted six former students.

"He’s a person who’s based a lot of truths on a lot of lies," said Sarah Baughn,

who alleges that Choudhury sexually assaulted her. Watch the video: CNN’s Karl

Penhaul spoke to a shepherd who witnessed the final seconds of Germanwings

Flight 9525, which crashed in the French Alps last week. "I saw the plane heading

down along the valley and I said, ’My God, it’s going to hit the mountain,’ " Jean

Varrieras told Penhaul. "I ducked my head. ... Then after that, I saw the smoke."

Watch the video: Magician and comedian Penn Jillette was part of a panel speak-

ing to CNN’s Don Lemon about the controversial Indiana religious freedom law.

Jillette, an avowed atheist and libertarian, noted "we are not talking about forcing

people to engage in gay sex, or even endorse gay sex." His provocative opening

led to an energetic back-and-forth with the Alliance Defending Freedom’s Kristen

Waggoner and the ACLU’s Rita Sklar. Watch the video: A professor of physics at a

British university asked 100 people to create a composite with facial features they

thought were beautiful – and then asked another 100 to rate their attractiveness.

You’ll never guess what celebrities best fit the model. Watch the video:

BART summary: Former heavyweight champ Mike Tyson lived in a gaudy, aban-

doned mansion in Ohio. CNN’s Karl Penhaul spoke to a shepherd who witnessed

the final seconds of Germanwings Flight 9525. Penn Jillette was part of a panel

speaking to CNN’s Don Lemon about the controversial Indiana religious freedom

law.

Intrinsic hallucinations: gaudy, abandoned

Extrinsic hallucination from TLHD-CNNDM.

Article: Gareth Barry has advised his Everton team-mate Ross Barkley against

138



6.7 Related Work

moving to Manchester City at this young stage of his career. Barry speaks from

experience having spent four seasons at the Etihad before arriving on Merseyside

and the veteran midfielder believes it is still too early for the 21-year-old to decide

on his future. Ahead of the Toffees meeting with Manchester United on Sunday,

Barry told the Mirror: ’Personally, I think he’s still too young to make that move.

Ross Barkley’s rise to stardom has seen him repeatedly linked with Premier League

champions Man City . Everton team-mate Gareth Barry has advised the youngster

not to leave Goodison too soon . ’He’s still learning the game. He’s got the right

manager here to push him to the next level. ’As soon as he reaches that next

level, then there’s another decision to be made. At the moment, I think it’s too

early.’ And asked if considered the Premier League champions to be a graveyard

for young talent, Barry added: ’I think so, yeah.’ Barkley has overcome his early

season struggles to play an influential role in Everton’s recent revival and Barry

believes the youngster he mentors daily can achieve anything he wants in the

game. The 21-year-old signs autographs for fans after coming through a difficult

start to the season . Veteran midfielder Barry spent four seasons at City before

being found surplus to requirements . ’I sit next to him in the changing room at

the training ground. I speak to Ross quite often,’ said Barry. ’You feel sorry for him

sometimes because the expectation is getting thrown on to his shoulders – people

are expecting of him, week in, week out, goals and assists. ’That hasn’t happened,

but at the same time he’s still improving as a player and growing in maturity. ’His

ability and his strengths are there for everyone to see, he can go on and be a top

top player.’

BART summary: Ross Barkley has been linked with a move to Manchester City.

Everton team-mate Gareth Barry believes it is too early for the 21-year-old to

leave Goodison Park. Barry spent four seasons at the Etihad before arriving on

Merseyside. Everton face Manchester United at Old Trafford on Sunday.

Extrinsic hallucinations (last sentence): at Old Trafford

6.7 Related Work

Several different methods have been proposed to detect hallucinations. Specialized decoding

strategies are used to nudge the model to stay closer to the source vocabulary (Aralikatte et al.,

2021) or its entities (Narayan et al., 2021). Filippova (2020) determine the degree of halluci-

nation from the differences in probabilities assigned by a conditional and an unconditional

language model.

In the related area of factuality detection, Cao et al. (2022) use the same idea to identify

hallucinated but factual summaries. Entailment-based classifiers are used to evaluate a

summary’s factuality at the level of text or dependency arcs (Falke et al., 2019; Goyal and

Durrett, 2020). It is also common to create synthetic data for a classifier by corrupting the

input, for hallucinations (Zhou et al., 2021) as well as factuality (Cao et al., 2020; Kryscinski
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et al., 2020). However, the error distributions obtained synthetically can differ from those of

models (Goyal and Durrett, 2021). More types of factuality errors are identified in Pagnoni

et al. (2021) with detailed human annotation, finding discourse and semantic frame errors.

These detection methods can be used to identify mistakes or rerank multiple outputs (e.g.

Ladhak et al., 2022).

6.8 Conclusion

We have presented BART-GBP, a method to detect hallucinations from the by-products of

summary generation of a BART abstractive summarization model, trained and evaluated

on CNN/DailyMail. We first aligned the segments of the summary and source document

using cross-attentions, and then used encoder self-attentions and decoding probabilities

to detect intrinsic and extrinsic hallucinations, respectively. This happens with minimal

computational overhead, compared to prior work that uses external models that require an

additional model forward pass. Our evaluations show that this is a difficult task, and especially

intrinsic hallucination detection needs to be addressed in future work. We hope to contribute

to this endeavor with our method and our token-level annotated dataset, TLHD-CNNDM.

6.8.1 Hallucination Definition

The results in this chapter are limited by several factors. Firstly, the definition of what consti-

tutes a hallucination is neither set in stone, nor a mathematical construct, and therefore open

to interpretation. We experienced this first-hand from the feedback of our annotators. This

makes the task of teaching a model to identify hallucinations all the more difficult, and the

gap to optimal performance in the results (for all methods) makes this visible.

Another limitation is given by the model under study. We already mentioned in Section 6.4

that the interpretability of attention patterns is a debated topic in the research community. A

model trained to faithfully explain its decisions would be even better suited to perform this

kind of analysis.

6.8.2 Transfer to Other Models

While we do not assume that our method transfers easily to some attention-based RNN archi-

tectures, we saw indications that it could transfer to other Transformer-based summarization

models. In initial experiments, we used BERTSUMABS (Liu and Lapata, 2019b), which shows

very similar cross-attention patterns (see Figure 6.9). There are some small differences, how-

ever. BERTSUMABS puts its maximum attention weight to the copied word more often, but still

shows a lot of attention to CLS/SEP tokens in the source and BOS/EOS tokens in the summary.

Additionally, the tokenization is different which can have an impact on the alignment stage.

In BART, for example, the same word can be tokenized in different ways when it is preceded
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Figure 6.9: BERTSUMABS cross-attention patterns are very similar to those of BART, both
Transformer-based summarization models.

by the BOS token, whitespace, or punctuation. This sometimes prevented our method from

aligning the same word due to unmatched tokens.

6.8.3 Transfer to other datasets.

We do not expect these results to transfer to datasets that have a large percentage of hal-

lucinations, i.e. XSum. We are not aware of other datasets with those same hallucination

characteristics. However, we expect that other summarization datasets could benefit from our

method, especially those that are similarly extractive as CNN/DailyMail. The scoring range to

convert scores into probabilities may have to be recomputed.

6.8.4 Prevalence of sports topics in hallucinations.

The prevalence of sports topics in CNN/DailyMail hallucinations hints at divergence issues

between the source and reference (Wiseman et al., 2017; Dhingra et al., 2019; Kryscinski et al.,

2019) for these topics: True additional information (such as standings) is added by the au-

thor/editor. It is interesting to note that while models trained on XSum learn to hallucinate

consistently, CNN/DM models learn to hallucinate on sports topics. While removing hal-

lucinations from the training data could address hallucinations, this seems infeasible, and

detecting hallucinated model outputs is a more practical approach.
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7 Semi-Structured Annotations for In-
terpretation

Chapter Summary

A wide variety of tasks have been framed as text-to-text tasks to allow processing by

sequence-to-sequence models. We propose a new task of generating a semi-structured

interpretation of a source document. The interpretation is semi-structured in that it

contains mandatory and optional fields with free-text information. This structure is sur-

faced by human annotations, which we standardize and convert to text format. We then

propose an evaluation technique that is generally applicable to any such semi-structured

annotation, called equivalence classes evaluation. The evaluation technique is efficient

and scalable; it creates a large number of evaluation instances from a comparably cheap

clustering of the free-text information by domain experts. For our task, we release a

dataset about the monetary policy of the Federal Reserve. On this corpus, our evalua-

tion shows larger differences between pretrained models than standard text generation

metrics.

Publication in this Chapter

This chapter builds on the material in our publication:

Marfurt, A., Thornton, A., Sylvan, D., van der Plas, L., and Henderson, J. (2022). A Corpus

and Evaluation for Predicting Semi-Structured Human Annotations. In Proceedings of

the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM) (pp.

262-275).

Best resource paper award.

PDF: https://aclanthology.org/2022.gem-1.22.pdf

Code, data, and models: https://github.com/idiap/semi-structured-annotations
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Journalist Social 
scientist

Model
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Figure 7.1: Our proposed interpretation task. A journalist creates an interpretation of a source
document. A social scientist extracts and categorizes the relevant parts of the interpretation
by means of annotation, which is converted into a text-only format. The model learns the
interpretation process by directly predicting the target annotation from the source document.

While the previous chapters focused on improving individual subtasks of summarization, the

current chapter addresses interpretation. On top of the ability to extract salient information

and abstract, interpretation requires speculating on the reasons and motives of statements. In

this chapter, we train models to interpret with the help of semi-structured annotations of the

aspects of an interpretation. We also devise an efficient specialized evaluation from annotated

examples. Even though the available dataset is small, we show that generative models are able

to pick up on the details of the task.

7.1 Learning to Interpret

General-purpose sequence-to-sequence models have achieved impressive results on con-

ditional text generation (Radford et al., 2019; Brown et al., 2020), machine translation (Liu

et al., 2020; Xue et al., 2021), and text summarization (Lewis et al., 2020; Zhang et al., 2020a).

This has led to their application to ever more tasks; as long as the task can be formalized in a

text-to-text format, it can be processed by these models (Raffel et al., 2020).

We apply sequence-to-sequence models in a different setting: documents interpreting other

documents. This phenomenon is pervasive in our daily lives, be it a critic reviewing a play

or book, a website presenting highlights of a travel guide, or, as in this chapter, a journalist

writing an article about an organization’s press release.

For social scientists, these reviews or articles present an interesting subject of study; they

surface the author’s interpretation of the original source document. With the tool of human

annotations, domain experts can extract the core constituents and surface implicit information

in these various interpretations to make them comparable. We use these annotations to teach

a model to interpret (see Figure 7.1).

The annotation provides structure to the model during training and generation. The different
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aspects of interpretation are clearly marked with category labels, activating the relevant

knowledge from training when the model generates the free-text information of a category.

We conjecture that this technique of activating a context is a natural fit for language models

that condition on previous words to generate the next. In the following section, we further

describe the annotations, task, and dataset.

7.2 Semi-Structured Annotations

To guide the model during the interpretation process, domain experts annotate the different

aspects of an interpretation, such as motive or temporal scope. First, the available operations

for annotation have to be specified.

7.2.1 Standardizing Annotations

We aim to standardize the human annotations into a general but flexible semi-structured

format which should make it possible for NLP models to process them. In order to do so, we

first have to define the possible annotation operations.

Our annotations are created from two operations: (1) marking spans with a label in order to

categorize them, and (2) optionally commenting on a marked span to give context, paraphrase,

or make implicit information explicit.

7.2.2 Converting Annotations to Text

We convert annotations into a text-only format by inserting category-specific start and end

tokens for each marked span. Overlapping or fully contained spans are allowed. We include

the comments by adding them in parentheses (imitating a similar use in natural language)

at the end of the respective marked span and before the category end token. An example

annotation transformed to text format is shown in Figure 7.2.

7.2.3 Sequence-to-sequence Task

We propose the task of generating the interpretations, including the human annotations, from

the source documents. This task can be formalized as a sequence-to-sequence generation

task, with pairs of a single source document xi and one or more target annotations yi j in text

format, with 1 ≤ j ≤ mi . The multiple target annotations are equivalent to multiple references

in traditional text generation tasks, i.e. they are all equally valid solutions to the task. In total,

there are n source documents and m =∑n
i=1 mi targets.

The targets yi j contain marked spans of categories c from a predefined set of categories C .

Some categories occur in every target, and some are optional, as illustrated in the paragraph

Annotation Categories below.
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[STD SENTENCE START] [REFERENCE START] Last week
[REFERENCE END] , the [ACTOR START] Federal Reserve
[ACTOR END] [ACT START] left interest rates unchanged
(Did not raise rates) [ACT END] , but it remained on
guard against inflation by continuing its stated bias
toward higher rates -- despite mixed signals on just
how much [EVIDENCE START] the economy may be slowing
[EVIDENCE END] . [STD SENTENCE END]

Last week , the Federal Reserve
left interest rates unchanged , 
but it remained on guard against  
inflation by continuing its stated 
bias toward higher rates -- despite 
mixed signals on just how much 
the economy may be slowing .

Did not raise rates

Figure 7.2: Example of the automatic conversion of an annotated interpretation into text
format.

7.2.4 The FOMC Dataset

We now present our dataset constructed according to the guidelines above. The source

documents and targets were selected and annotated by domain experts. They are on the

topic of the monetary policy of the Federal Open Market Committee (FOMC) of the Federal

Reserve, the central bank of the United States of America, in the years from 1967 to 2018. The

source documents are policy announcements of the FOMC such as press releases, speeches,

testimonies, Q&A sessions, or meeting minutes. The targets are sentences from news articles

of the New York Times that conform to the requirements (see Annotation Categories below).

The first example from the FOMC test set is shown below. It includes the source document

filtered with FilterBERT, the target annotation, and BART’s prediction. At the end, we show the

generation scores for BART’s prediction.

Filtered source document: FEDERAL RESERVE press release For Use at 4:30 p.m.

August 22, 1986 The Federal Reserve Board and the Federal Open Market Com-

mittee today released the attached record of policy actions taken by the Federal

Open Market Committee at its meeting on July 8-9, 1986. Such records for each

meeting of the Committee are made available a few days after the next regularly

scheduled meeting and are published in the Federal Reserve Bulletin and the

Board’s Annual Report. The summary descriptions of economic and financial

conditions they contain are based solely on the information that was available

to the Committee at the time of the meeting. Attachment RECORD OF POLICY
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ACTIONS OF THE FEDERAL OPEN MARKET COMMITTEE Meeting Held on July

8-9, 1986 Domestic policy directive The information reviewed at this meeting

indicates that economic activity has expanded at a relatively slow pace recently.

The intermeeting range for the federal funds rate was reduced to 5 to 9 percent.

Other interest rates rose early in the period but then retreated amid signs of weak-

ness in the economies of the United States and some of its major trading partners,

renewing expectations of a discount rate cut in the near future. Since the May

meeting short-term market rates had declined 10 to 40 basis points on balance.

In their discussion of policy implementation for the weeks immediately ahead,

Committee members took account of the likelihood that the discount rate would

be reduced within a few days after the meeting. Against the background of slug-

gish expansion in economic activity and a subdued rate of inflation, most of the

members believed that some easing was desirable and they indicated a preference

for implementing the easing, at least initially, through a lower discount rate rather

than through open market operations. In one view, a cut in the discount rate

might need to be accompanied by some increase in the degree of pressure on

reserve positions, pending evaluation of further economic and financial develop-

ments. The reduction was viewed as a technical adjustment that would provide a

more symmetrical range around a lower federal funds rate that could be expected

to emerge following the anticipated reduction in the discount 7/8-9/86 - 18 rate.

Most short-term interest rates have declined on balance since the May 20 meeting

of the Committee. In the implementation of policy for the immediate future,

the Committee seeks to decrease somewhat the existing degree of pressure on

reserve positions, taking account of the possibility of a change in the discount rate.

Target annotation: [STD SENTENCE START] Policymakers at the [ACTOR START]

Federal Reserve [ACTOR END] [ACT START] decided at their July meeting to loosen

credit conditions (Loosened monetary policy) [ACT END] [MOTIVE START] in an

effort to stimulate the sluggish economy [MOTIVE END], according to [REFER-

ENCE START] minutes [REFERENCE END] of the meeting released today. [STD

SENTENCE END] [STD SENTENCE START] Members of the [ACTOR START] Fed-

eral Open Market Committee (Fed / FOMC) [ACTOR END] [REFERENCE START]

voted [REFERENCE END] 10 to 1 to follow a strategy that would push interest rates

lower, [ACT START] despite [ATTRIBUTION START] objections from one member

(Should not loosen monetary policy) [ACT END] (One member of the FOMC) [AT-

TRIBUTION END] that [EVIDENCE START] such a course might threaten renewed

inflation later [EVIDENCE END]. [STD SENTENCE END] [STD SENTENCE START]

Thomas C. [ATTRIBUTION START] Melzer [ATTRIBUTION END], president of

the St. Louis [ACTOR START] Federal Reserve Bank [ACTOR END], [ACT START]

cast the single dissenting vote (Should not loosen money supply) [ACT END]. The

minutes said Mr. Melzer [REFERENCE START] expressed concern [REFERENCE

END] that [EVIDENCE START] looser Fed controls could initiate renewed inflation

147



Chapter 7. Semi-Structured Annotations for Interpretation

[EVIDENCE END] and [EVIDENCE START] weaken the dollar on foreign exchange

markets [EVIDENCE END]. [STD SENTENCE END]

BART prediction: [STD SENTENCE START] The [ACTOR START] Federal Reserve’s

Open Market Committee (Fed) [ACTOR END] [ACT START] voted unanimously

at its July 8-9 meeting to ease monetary policy further (Might cut rates, in future)

[ACT END], according to [REFERENCE START] minutes [REFERENCE END] of the

session released today. [STD SENTENCE END]

ROUGE-1/2/L (including category markers): 31.68/17.00/28.71

ROUGE-1/2/L (excluding category markers): 30.38/15.38/27.85

BERTScore: 27.29

Novel bigrams: 84.38%

Closed correctly: 100.00%

Data collection. Domain experts searched the New York Times archives for articles on the

monetary policy of the Federal Reserve. Candidate articles were searched for sentences that

contain all mandatory categories described below. If a sentence is found, it is annotated by

highlighting the categories and adding comments. All annotations are validated by a senior

domain expert . Sentences from the same article referencing the same source document

are collected in a single target annotation. If multiple articles reference the same source

document, one target annotation is created per article.

Annotation Categories. A selected sentence is called a standardized sentence in the corpus

terminology. The mandatory and optional categories, as well as their purpose, are listed below:

• Standardized sentence: Mandatory. Marks the start and end of a target sentence.

• Act: Mandatory. Most often contains a comment. Marks an action (or non-action) on

monetary policy. Example: "left interest rates unchanged (Did not raise rates)".

• Actor: Mandatory. Marks the entity performing the act. By design, this is exclusively the

Federal Reserve or FOMC. Example: "Fed".

• Reference: Mandatory. Provides a link to the source document, which can be opaque in

the article, e.g. saying that something happened yesterday. That source is systematically

tracked down by the domain experts. Example: "yesterday’s meeting".

• Attribution: Optional. Marks the individual advocating for the Federal Reserve to

perform a certain action. Example: "Greenspan".

• Motive: Optional. Can appear multiple times. States the goal of an act. Example: "to

fight inflation".
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Train Valid Test

Source documents 1342 167 169
Target annotations 3246 364 380

Min targets/source 1 1 1
Median targets/source 1 1 1
Mean targets/source 2.42 2.18 2.25
Max targets/source 36 17 16

Table 7.1: Number of examples in each split in the FOMC dataset.

Count Source documents Targets

(Std) Sentences 262.6 (± 688.6) 1.6
Words 6054.1 (± 12639.4) 123.6
Start/end tokens - 18.2
Total tokens 6054.1 (± 12639.4) 141.8

Table 7.2: Mean length of source documents and target annotations in the FOMC dataset.

• Evidence: Optional. Can appear multiple times. States an observation, e.g. about

the current economic state, that served as an incentive for the act. Example: "high oil

prices".

• Scope: Optional. Marks the temporal scope of an act. Example: "by the end of the year".

Dataset statistics. We now show dataset statistics. First, the number of examples in each

split (80%/10%/10% for train/validation/test) is presented in Table 7.1. Second, the number of

tokens in source and target texts is shown in Table 7.2.

Filtering source documents. As is evident from Table 7.2, the source documents are generally

very long. In contrast, the maximum number of input tokens that state-of-the-art models are

pretrained on, lies between 512 in BERT (Devlin et al., 2019) and 1024 in BART (Lewis et al.,

2020). This limitation is due to the quadratic complexity of self-attention in the Transformer

architecture (Vaswani et al., 2017) and its resulting strain on computational resources.

As a consequence, there are two ways to define the prediction task for the FOMC dataset. The

first one is to condition on the full-text document but devise models capable of handling very

long inputs, such as adding a filtering module (used below) or using appropriate architectures

such as the Longformer (Beltagy et al., 2020). The second option is to condition on a specific

filtering of the source documents which reduces them to a length that can be processed by the

chosen model. Alongside the data, we provide a script that allows for selecting sentences from

the source document, while satisfying the length restriction for a given tokenizer from the

Hugging Face transformers library (Wolf et al., 2020). The selection logic can be set to either
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pick sentences from the top of the source document (Lead strategy) or to use an oracle that

greedily picks sentences that maximize the length-normalized ROUGE-2 recall gain (Oracle

strategy).

7.3 Evaluation Modes

We train generative models on the sequence-to-sequence task on the FOMC dataset. We

evaluate the trained models in two different modes, corresponding to their usage by the

domain experts. We either generate the full interpretation or we complete a marked span

given a prompt, in both cases conditioning on the source document.

7.3.1 Full Prediction

Predicting the whole interpretation from the source document corresponds to the standard

evaluation setting in text generation tasks, such as abstractive summarization. The task

remains the same as during training, as described in Section 7.2.3. We therefore measure the

performance with standard text generation metrics.

7.3.2 Completion of a Marked Span

In a second evaluation mode, domain experts design prompts and ask a trained model to

complete the interpretation. This allows the users to query the model with hypothetical and

even counterfactual prompts. When studying the examples with which the experts queried

the models, it became clear that the completion of a marked span of an annotation category is

of special importance. In the following, we introduce the equivalence classes evaluation, a

recipe for creating targeted evaluations of these completions with limited manual annotation

effort.

7.4 Equivalence Classes Evaluation

We propose the equivalence classes evaluation as an efficient way of generating a large num-

ber of evaluation instances from domain experts’ knowledge of the individual annotation

categories.

7.4.1 Definition

An evaluation selects a category c that it wants to evaluate, which in turn consists of 2 or more

equivalence classes. The members of an equivalence class are marked spans of category c

in the dataset. Members of the same equivalence class are semantically interchangeable in

the target annotation, with respect to the objective of the evaluation. The members of all
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Evaluation: Act type
Category: Act
Equivalence class 1:

- left interest rates unchanged (Did not raise rates)
Equivalence class 2:

- decided to raise interest rates (Did raise rates)
- voted to raise rates (Did raise rates)

Equivalence class 3:
- lowered interest rates a quarter point (Cut rates)

Figure 7.3: Definition of an evaluation with its equivalence classes.

[REFERENCE START] Last week [REFERENCE END]
, the [ACTOR START] Federal Reserve
[ACTOR END] [ACT START]

left interest rates unchanged (Did not
raise rates) [ACT END]

decided to raise interest rates (Did raise
rates) [ACT END]

Figure 7.4: Equivalence classes evaluation instance with prefix yprefix, a positive continuation
a(pos) and a negative continuation a(neg).

equivalence classes must be syntactically interchangeable, such that replacing one for the

other still results in a grammatically correct sentence. An example is given in Figure 7.3.

7.4.2 Creating Evaluation Instances

Evaluation instances are then created by searching target annotations in the validation/test

set for a member of an equivalence class. If one is found, an evaluation instance is created

consisting of (1) the prefix yprefix up until the selected span, (2) the selected span a(pos) as

the true (positive) continuation, and (3) a randomly selected span a(neg) from a different

equivalence class as the false (negative) continuation. a(neg) is chosen by uniformly sampling

a negative equivalence class, and then uniformly sampling one of its members. An example

is shown in Figure 7.4, where a(pos) is in equivalence class 1 of the example evaluation in

Figure 7.3, and a(neg) has been sampled as the first member of equivalence class 2. Any other

member of equivalence classes 2 or 3 could have been chosen as well.

For a single match of a positive span in the evaluation set, one can create a large number of

evaluation instances by sampling negative continuations without replacement.

Optionally, the positive span a(pos) can be replaced by a different member of the same equiv-

alence class (for equivalence classes with more than one member). This can help mitigate

lexical inaccuracies that can arise from replacing a span with another, which otherwise only

exist for a(neg).
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soon [SCOPE END]
(a)

5

4

3

2

1

0

until the end of the year [SCOPE END]
(b)

Figure 7.5: BART’s log probabilities of a short (a) and long (b) continuation. The green line
corresponds to the sum of log probabilities, the red line normalizes by the continuation’s
length.

Relation to Pattern-Exploiting Traning. In Schick and Schütze (2021a), Pattern-Exploiting

Training (PET) is introduced. The concept of verbalizers is similar to equivalence classes. In

their work, verbalizers are manually predefined single tokens that represent a class label.1 Our

equivalence classes consist of expert-selected multi-word spans from the data, which each

represent the concept of their equivalence class. Equivalence classes are multi-faceted: They

determine both a semantic concept and a grammatical structure and are always defined with

respect to a certain aspect under evaluation.

7.4.3 Model Evaluation

To evaluate the generative model, we obtain the probability pθ it assigns to a(pos) and a(neg) by

getting its next-token probabilities given the source document x and prefix yprefix. We apply

teacher forcing and obtain the probabilities autoregressively, extending the prefix with the

previous token at each turn. The probability of the entire span is computed as

pθ(a) =
l∏

i=1
pθ(ai |x, yprefix, a<i ) (7.1)

where a ∈ {a(pos), a(neg)}, and l is the length of a. The model solves an instance correctly if

pθ(a(pos)) > pθ(a(neg)).

If the lengths of a(pos) and a(neg) are substantially different, the comparison of their pθ could

be determined by the difference in length. In natural language generation, it is common to

compute pθ as the sum of log-probabilities, normalized by the sequence length (Cho et al.,

2014a). In Figure 7.5, we show BART’s log probabilities of a short and long continuation, with

the unnormalized sum as the green line, and the normalized sum as the red line. We see that

1In their follow-up work, they extend verbalizers to multiple tokens (Schick and Schütze, 2021b).
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the long continuation ends with many high-probability tokens that have an outsized impact

on the normalized log probability. We therefore decide to use unnormalized probabilities

(Equation 7.1), but avoid introducing a length bias when sampling a(neg) by restricting its word

count to be within 2 of a(pos).

7.4.4 In-Depth Analysis

The equivalence classes evaluation also allows for in-depth error analysis. First, we can test

specific properties for a category, such as how well the model handles negation in acts. Second,

we can break down an evaluation’s score by combinations of equivalence classes, and identify

the hardest combinations for the model. We show examples of such analyses in Section 7.6.3.

Data augmentation. As an added benefit, equivalence classes give rise to a simple training

data augmentation method. We create additional training examples from equivalence classes

by exchanging the ground-truth highlighted span with a different one from the same equiv-

alence class. We postpone testing the efficacy of this data augmentation method to future

work.

7.5 Experiments

In our experiments, we use the FOMC dataset described in Section 7.2.4.

7.5.1 Equivalence Classes

We propose equivalence classes from category annotations and validate them by our senior do-

main experts from Section 7.2.4. We create an evaluation for each of the following 5 categories:

act, attribution, motive, evidence, and scope. We add one evaluation for the act comments,

without the act itself. Furthermore, we create additional in-depth evaluation examples for

modal verbs and negation, which our domain experts are especially interested in. We create

separate evaluations for modal verbs in positive (e.g. should) and in negative formulation (e.g.

might not), to avoid confounding with the effect of negation. These 3 evaluations (positive

modal verbs, negative modal verbs, negation) are created for acts without comments, act

comments, and acts concatenated with comments.

One evaluation instance is created for each example in the evaluation set that contains any

member of the evaluation’s equivalence classes. If the evaluation instances n have not reached

100 yet, ⌊100
n ⌋ negative spans a(neg) are sampled per instance, such that the total number is

close to 100. If more than 100 matches are found, all of them are included in the evaluation

with one randomly sampled negative span. We do not replace positive spans. This procedure

generates 1974 total evaluation instances from the validation set, and 2104 from the test

set. The general evaluations of the 5 categories plus the act comments (excluding in-depth
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evaluations) contain 818 evaluation instances from the validation set, and 886 from the test

set. The smallest category (motive) has 74 and the largest (act labels) has 336 test evaluation

instances.

7.5.2 Standard Text Generation Metrics

Since our task is a sequence-to-sequence task, we also report standard text generation metrics.

If not mentioned otherwise, we compute the following metrics for generated annotations

without special tokens (category start and end tokens).

ROUGE. ROUGE (Lin, 2004) is a textual overlap metric that is widely used in text summa-

rization, a task with strong connections to ours. As is common in summarization, we report

ROUGE-1/2/L as the unigram and bigram overlap, and the longest common subsequence,

respectively. We compute ROUGE with and without special tokens, as we want to see both

how well the model generates the annotations as well as the original article.

BERTScore. We use BERTScore (Zhang et al., 2020b) as a semantic similarity metric between

the generated and reference target annotations. We do not use idf-importance weighting, and

we use baseline rescaling.2 If multiple target annotations are present, the maximum similarity

is reported, as proposed by the authors.

Distinct bigrams. We report the distinct bigrams in the generated target annotations. This

metric checks if the model produces overly generic and repetitive outputs. A higher number

of distinct bigrams corresponds to higher lexical diversity in the output and is desirable.

Novel bigrams. Novel bigrams measure the percent of bigrams in a generated annotation

that do not appear in the filtered source document that serves as input text. This metric

measures the extractiveness of the model, i.e. its tendency to copy text from the input.

Annotation Category Metrics

We add annotation category-specific metrics to the text generation metrics. These metrics are

designed to detect if any category or the target format is ignored by the model.

Category counts. We report the mean of each annotation category’s occurrence over the

generated target annotations.

2Evaluation hash: roberta-large_L17_no-idf _version=0.3.11(hug_trans=4.6.1)-rescaled
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Categories correctly closed. This evaluation measures the percent of annotation spans that

are correctly encompassed by a category start and end token. This evaluation shows whether

the decoder correctly learned to generate in the target format.

7.5.3 Filtering Source Documents

As detailed in Section 7.2.4, the source documents are much longer than current Transformer

models with quadratic self-attention complexity can process. However, we conjecture that

only very specific parts of these documents are needed to generate the comparably very

short target annotations (see Table 7.2). On top of mentioned filtering strategies, we train a

filtering model. For this purpose, we finetune a BERT model (Devlin et al., 2019) for sequence

classification.3 We split long inputs at sentence boundaries into chunks of at most 512 tokens,

and then predict whether to keep the sentences in the current chunk.

We train the model with a cross-entropy loss between the predictions and the oracle selection

described in Section 7.2.4. We train with a batch size of 5 for 10 epochs but stop early when

the F1 score on the validation set no longer improves. We use the same learning rate schedule

as for the generative models described below, with a maximum learning rate of 1e−3. During

inference, we select the sentences with the highest logits until we reach the token limit. The

selected sentences are concatenated in the order in which they appear in the source document.

We name this filtering model FilterBERT.

7.5.4 Generative Models

For our generative models, we rely on the Transformer architecture (Vaswani et al., 2017) and

compare finetuning differently pretrained models.

Transformer. We use a randomly initialized Transformer encoder-decoder to test the effect

of skipping pretraining. Our implementation of the Transformer is the same as the BERT

model below.

BERT. We finetune a pretrained BERT encoder (Devlin et al., 2019) and train a randomly

initialized Transformer decoder, as proposed in Liu and Lapata (2019b). Unless otherwise

mentioned, we use the base model size.

Sentence planner. We finetune the sentence planner model from Chapter 3. We initialize the

encoder with a pretrained BERT model, and the sentence and word generators with randomly

initialized Transformer decoders. We use the same model size as BERT-base, and two layers

for the sentence generator. From Table 7.2, we know that target annotations have an average

3We use the standard implementation in the Hugging Face transformers library (Wolf et al., 2020).
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Model Act Act comments Attribution Motive Evidence Scope Mean

Transformer 93.18% 93.45% 94.79% 66.22% 43.68% 50.00% 73.55%
BERT 97.73% 94.64% 97.16% 66.22% 45.98% 54.44% 76.03%
Sentence planner 97.73% 93.15% 95.73% 64.86% 44.83% 56.67% 75.50%
BART 98.86% 96.13% 97.16% 71.62% 81.61% 80.00% 87.56%

Table 7.3: Accuracy of main equivalence classes evaluations.

of 1.6 standardized sentences. Overall, 29.40% of examples have more than one standardized

sentence, for which hierarchical decoding could be beneficial. These standardized sentences

do not need to be consecutive in the original article, however.

BART. We finetune the BART model (Lewis et al., 2020) as a proponent of a jointly pretrained

encoder and decoder.

Training details. Training steps and learning rate hyperparameters were selected on the

validation set with a grid search with exponential step sizes. We train our models for a maxi-

mum of 10 (Transformer/BERT) or 20 (sentence planner/BART) epochs, which corresponds to

8000 or 16000 steps with a batch size of 4, respectively. We stop training early if the validation

loss does not improve any further. We set the maximum learning rate to 1e−4 for randomly

initialized parameters, and 1e−5 for pretrained ones. Exceptionally for BART, we use a learning

rate of 1e−6 for the tied input/output embeddings. We warm up the learning rate for a tenth

of the total epochs, with a linear increase from lrmax/100 to the maximum learning rate lrmax,

and then a linear decay back down to the starting point. We use the Adam optimizer (Kingma

and Ba, 2015).

Generation details. For our evaluation of text generation metrics (see Section 7.5.2), we

generate text with beam search. We use 5 beams, a minimum generation length of 50 tokens

and a maximum of 500, no length penalty, and no n-gram blocking (Paulus et al., 2018).

7.6 Results

In this section, we report the results of our equivalence classes and text generation evaluation,

conduct an in-depth analysis of models’ performance on acts with negation and modal verbs,

ablate model sizes, filtering strategies and input lengths, and explore hallucinations in BART’s

outputs.
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Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore Distinct bigrams Novel bigrams

References - - - - 9961 82.68%

Transformer 31.89 10.27 25.06 0.72 214 87.61%
BERT 41.09 18.31 31.63 19.00 965 82.75%
Sentence planner 41.58 18.02 31.35 19.49 1108 81.55%
BART 42.73 20.64 33.08 26.78 3011 73.62%

Table 7.4: Text generation evaluation results. ROUGE is computed on targets including special
tokens.

Model Std sent Act Actor Reference Attribution Motive Evidence Scope Closed

References 1.60 1.60 1.60 1.60 0.87 0.39 1.22 0.21 100.00%

Transformer 2.69 2.69 2.69 2.60 0.02 0.08 0.05 0.01 100.00%
BERT 1.63 1.63 1.63 1.63 0.73 0.43 0.07 0.14 99.97%
Sentence planner 1.31 1.31 1.34 1.31 0.64 0.41 0.34 0.18 100.00%
BART 1.55 0.79 1.22 1.37 0.29 0.02 0.13 0.05 69.44%

Table 7.5: Mean category counts.

7.6.1 Equivalence Classes Evaluation

Our main results for the general equivalence classes evaluations on the 5 categories plus act

comments are shown in Table 7.3. The BART model with a jointly pretrained encoder and

decoder substantially outperforms the Transformer, BERT, and sentence planner models. The

act, act comments, and attribution evaluations are solved nearly perfectly, but the others

are harder. For the evidence evaluation, Transformer, BERT and sentence planner perform

substantially below the random baseline, which would achieve 50% in expectation. We analyze

the case of the evidence evaluation further in Section 7.6.3.

7.6.2 Text Generation Metrics

We show the results of text generation metrics in Table 7.4. Again, BART outperforms the

other models. The low scores in BERTScore and distinct bigrams (excluding special tokens)

indicate that the Transformer fails to generate diverse and topical target annotation sentences.

However, the comparably high ROUGE scores (including special tokens) show that it learns to

generate the target format well, which is also supported by the last column of Table 7.5. The

sentence planner performs on par with BERT. BART generates the most diverse and topical

target annotations, and it is also the most extractive method, showing that it makes use of the

input document.

In Table 7.5, we show the mean of each category’s annotation counts for our three models.

BERT produces outputs that stay closest to the number of category annotations of the reference

target annotations. The sentence planner generates fewer but longer sentences, a result we

have also observed for the BERT-large model size. BART under-generates all categories, which

can be partially explained by it not having learned to open and close category spans reliably.
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Model Act negation Act modals (pos) Act comment Act with comment
modals (pos) modals (pos)

Transformer 89.58% 70.65% 93.81% 68.13%
BERT 93.75% 70.65% 93.81% 69.23%
Sentence planner 93.75% 73.91% 95.88% 78.02%
BART 95.83% 89.13% 97.94% 80.22%

Table 7.6: Accuracy on selected in-depth equivalence classes evaluations.

The combination of not having seen the format during pretraining and a lower decoder

learning rate, which was helpful for the other tasks, explains why BART performs worse than

the models with randomly initialized Transformer decoders.

7.6.3 In-Depth Analysis

Table 7.6 shows a selection of equivalence classes evaluations where equivalence classes were

built for a specific purpose. In our evaluations, these measure performance on act modal

verbs (e.g. raised rates vs. might raise rates) and act negation, both aspects that are of high

importance to our domain experts. We can see that negation is handled well by all models,

and that modals are substantially harder for acts, but not for act comments (where the act is

part of the prefix). Acts with comments (last column) do not necessarily make the task easier

than acts without comments (second column).

We also perform a qualitative in-depth analysis of the evidence evaluation for the BART model.

To that effect, we count the percentage of evaluation instances the model gets wrong for each

pair of equivalence classes, which is shown in the confusion matrix in Figure 7.6. The number

in each square corresponds to the number of mistakes in the evaluation. Some of the mistakes

occur for the following pairs of equivalence classes, where a(pos) is taken from the first, and

a(neg) from the second:

• deflation – low/declining inflation

• cooling housing market – tightening credit market (full example shown in the paragraph

below)

• high unemployment – high oil prices

• high unemployment – weak economic activity

• slowing growth – low money supply growth

The mentioned combinations of economic processes are correlated or even co-occurring,

making it difficult for the model to distinguish the positive from the negative span. In these

cases of close semantic similarity, the model may fall back to ranking candidate text spans

higher based on e.g. their frequency in the training data, where inflation is one of the dominant

158



7.6 Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. high inflation
2. low/declining inflation

3. weak dollar
4. high money supply growth
5. low money supply growth

6. deflation
7. high oil prices

8. falling oil prices
9. cooling housing market

10. tightening credit market
11. weak economic activity

12. high unemployment
13. strengthening economy

14. slowing growth

0 0 0 0 0 0 0 0
0 1 0 1 0

1 0 0

0 0
0 1 0 0 1 0 0 0

1 0 0 0 0 1 1 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 1 1 1 0 1 0
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Figure 7.6: Confusion matrix of BART’s accuracy on pairs of evidence equivalence classes. The
equivalence class for a(pos) is on the y-axis, and the one for a(neg) is on the x-axis. Each cell
contains the number of mistakes the model makes for that combination. Empty cells do not
have a corresponding pair in the evaluation.

subjects. For other combinations, such as weak dollar – deflation, the model just makes

mistakes.

Equivalence classes evaluation instance. We present the evaluation instance corresponding

to the pair of true and distracting evidence mentioned before (cooling housing market –

tightening credit market). BART got this example wrong, i.e. judged the negative continuation

a(neg) as more likely than the positive a(pos). We also see this example in Figure 7.6, positive

class 9, negative class 10.

yprefix: [STD SENTENCE START] Ben S. [ATTRIBUTION START] Bernanke [ATTRIBUTION

END] , the chairman of the [ACTOR START] Federal Reserve [ACTOR END] Board, [REFER-

ENCE START] declared [REFERENCE END] on Friday that the central bank [ACT START]

”stands ready to take additional actions as needed” (Might cut rates, in future) [ACT END]

[MOTIVE START] to prevent the chaos in mortgage markets from derailing the broader econ-

omy [MOTIVE END] . Mr. Bernanke avoided any specific promise to lower the central bank’s

benchmark federal funds rate at its next policy meeting on Sept. 18. But he acknowledged

[EVIDENCE START]

a(pos): the dangers posed by the twin storms in housing and mortgage lending

a(neg): credit was becoming harder to get for both consumers and businesses
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Model Parameters EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

Transformer 247M 73.55% 31.89 10.27 25.06 0.72 214
BERT-base 247M 76.03% 41.09 18.31 31.63 19.00 965
BERT-large 771M 75.76% 41.26 17.91 31.39 19.30 1232
Sentence planner 281M 75.50% 41.58 18.02 31.35 19.49 1108
BART 406M 87.56% 42.73 20.64 33.08 26.78 3011

Table 7.7: Selected evaluation metrics for different model sizes.

Model Filtering EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

BERT FilterBERT 76.03% 41.09 18.31 31.63 19.00 965
BERT Lead 75.51% 41.27 18.74 31.44 19.59 1012
BERT Oracle 75.15% 41.38 18.54 32.05 19.96 1010

BART FilterBERT 87.56% 42.73 20.64 33.08 26.78 3011
BART Lead 86.90% 41.56 19.79 32.09 25.15 1976
BART Oracle 87.16% 44.04 21.84 33.87 26.98 3528

Table 7.8: Selected evaluation metrics for different filtering strategies.

7.6.4 Ablation Study

We perform ablation studies with respect to model size, filtering strategy, and source document

input length.

Model sizes. In the results shown so far, BART has outperformed the Transformer, BERT,

and the sentence planner. However, those models operate with 247 million (the size of BERT-

base) and 281 million parameters, while BART has 406 million. In Table 7.7, we see that

increasing BERT’s parameters to the size of BERT-large only provides small to no benefits.

Higher BERTScore and lexical diversity (distinct bigrams) are also achieved by the sentence

planner with fewer additional parameters. BART outperforms BERT-large with almost half

of the parameters. We believe its initialization from joint encoder-decoder pretraining is

especially valuable on the FOMC dataset, which has comparably few training instances.

Filtering strategies. In Section 7.5.3, we introduced the FilterBERT model for identifying and

selecting salient sentences from long source documents. As stated in Section 7.2.4, together

with the dataset, we make available a script for filtering source documents with either the Lead

or the Oracle strategy. The former selects sentences from the top of the source document, the

latter selects those that most increase the length-normalized ROUGE-2 recall with the target

annotations. In Table 7.8, we see that Oracle filtering generally performs best on generation

metrics, but not on equivalence classes. The FilterBERT model outperforms the Lead strategy

for BART but not for generation metrics on BERT. In general, the differences between the
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Model Filtering Input tokens EQ mean ROUGE BERTScore Distinct bigrams

R-1 R-2 R-L

BART Lead 512 86.90% 41.56 19.79 32.09 25.15 1976
BART Lead 1024 87.12% 42.39 19.64 32.20 25.44 2421

BART Oracle 512 87.16% 44.04 21.84 33.87 26.98 3528
BART Oracle 1024 89.15% 44.81 21.36 34.77 27.79 3296

Table 7.9: Selected evaluation metrics for different source document input lengths.

generative models are much larger than between the filtering strategies.

Source document input length. Finally, since BART has the ability to process inputs of up to

1024 tokens in length, we evaluate how that compares to the input length of 512 tokens that we

have used so far. The results in Table 7.9 show that for the Lead filtering strategy, longer inputs

benefit all metrics except ROUGE-2. With Oracle filtering, ROUGE-2 and distinct bigram

evaluations perform slightly worse with longer inputs, while the rest improve. In summary,

the additional input sentences only make a small difference for BART.

7.6.5 Hallucinations

We perform an exploratory analysis of hallucinations in BART’s outputs. To detect hallucina-

tions, we use BART-GBP from Chapter 6. We run our method with the finetuned BART model

on the FOMC test set without adaptations or further training. We then annotate the first 20

examples for hallucinations.

The most common type of hallucination is a made-up news article date, which we found in

55% of test outputs. The FOMC dataset’s target annotations refer to the policy announcements

with date expressions, such as today, last week, or on Tuesday, without grounding in the source

document. BART learns to imitate this behavior. These hallucinations are irrelevant to our

domain experts and the task, so we ignore them for the rest of the analysis.

Overall, we find that 45% of outputs have one hallucination, and 10% have two, for a total

of 13 hallucinations. They can be clustered into four groups. First, the model tries to fit a

decision to raise or lower interest rates into the act or motive (5 examples). Second, it makes

up a vote when none is present in the source document (4 examples). Third, it hallucinates

correct facts that it knows or has picked up during finetuning, such as that the FOMC consists

of 12 members or that its meetings usually take two days (2 examples). Fourth, there are

also 2 instances of intrinsic hallucinations, where information from the source document is

combined in the wrong way.

Finally, we use BART-GBP to rank the output tokens according to their hallucination probabil-

ity. For the examples that contain hallucinations, we find the rank of each hallucination in the
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sorted output tokens. We then compute the mean reciprocal rank (MRR) over all 20 test exam-

ples. With an MRR of 0.67, BART-GBP achieves a high score, typically finding hallucinations at

rank 1 or 2 of its hallucination candidate list.

7.7 Related Work

To the best of our knowledge, our setting, task, and evaluation have not been studied in prior

work. We therefore describe studies with similarities to individual aspects of our work.

Evaluation. The closest approach to our equivalence classes evaluation is the concept of

verbalizers in Pattern-Exploiting Training (PET) (Schick and Schütze, 2021a,b), the relation to

which we already discussed in Section 7.4.2. The biggest difference to our approach is that

PET’s verbalizers are limited to a small, bounded set of predefined single tokens or few-token

spans, while our equivalence classes are unbounded, and their members are collected from

the data without restrictions on length or content.

Other work has also tried to make human annotations more efficient, e.g. for importance

judgments of sentences in multi-domain summarization (Jha et al., 2020), or multi-task

information extraction (Bikaun et al., 2022). AnnIE builds fact synsets to speed up open

information extraction (Friedrich et al., 2022).

Annotations. A similar annotation scheme to ours has been used for training Galactica, an

LLM for science (Taylor et al., 2022). They use annotations to mark citations, amino acid

and DNA sequences, molecule structure, and computation. The annotations can be used for

controllable generation and for offloading computation to an external model.

Aspect-oriented summarization. Interpretations may focus on certain aspects of the source

documents, making them somewhat similar to aspect-oriented summarization. AspectNews

(Ahuja et al., 2022) and SPACE (Angelidis et al., 2021) are two recent datasets with accompany-

ing models.

News summarization. Since our interpretations are excerpts of New York Times articles,

news summarization is relevant to our work as well. This is a very active field of research,

with multiple large-scale datasets (e.g. CNN/DM (Hermann et al., 2015; Nallapati et al., 2016),

XSum (Narayan et al., 2018a), NEWSROOM (Grusky et al., 2018), or Multi-News (Fabbri et al.,

2019), among others). A lot of methods have been tried on these datasets. BART (Lewis et al.,

2020) and PEGASUS (Zhang et al., 2020a) have shown some of the best results for finetuned

models. Recently, zero-shot summarization from very large pretrained decoder-only language

models has spurred a lot of interest, achieving performance close to finetuned models (e.g.

PaLM (Chowdhery et al., 2022)).
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7.8 Conclusion

We have devised a method to convert semi-structured human annotations into text format.

We then introduced a task of predicting annotated interpretations of source documents

that can be tackled with sequence-to-sequence models. We presented a human-annotated

corpus about the monetary policy of the Federal Reserve. Our equivalence classes evaluation

is an efficient technique to create a large number of targeted evaluation instances from a

comparably cheap clustering by domain experts. We use this technique to evaluate state-

of-the-art generative models on our task, and find that it shows larger differences between

pretrained models than standard text generation metrics. In further in-depth analyses, the

equivalence classes evaluation tests the models for specific properties, such as how they

handle negation, and detects why models struggle to correctly rank alternative text spans of

certain human annotation categories.

7.8.1 Value of Annotations for Language Models

In our evaluation, we saw that our annotations help the language models pick up on the impor-

tant details of interpretations even with small training data. We believe that this observation

could transfer to other low-resource settings.

Moreover, by structuring the different parts of target documents with beginning and end tags,

the language model gets an explicit marker for the context. This is a strong signal of which

words are more likely continuations, and a start marker can affect the next word probability

distribution. A similar approach could also be used for controllable text generation, where

tags can be used to select the aspect, sentiment, or any other desired property to be generated.

The downside to such an approach is the expensive annotation that needs to be performed on

the training data. It remains to be seen to what extent that annotation could be supported by

automated methods while maintaining high data quality.

7.8.2 Subjectivity of the Annotation Process

Even though annotation protocols can be standardized and outputs aggregated over multiple

annotators, the process of annotation remains subjective. In our interpretation task, social

scientists extract and categorize information, providing additional context where necessary,

and all annotations are validated by a senior domain expert. The models trained on the data

will focus on the aspects that the annotators deemed important. This is not inherently a

bad thing. Human annotation is a flexible tool that a different set of annotators could use

to highlight other aspects of the data. Note that this is a separate consideration from the

reproducibility of our results, which we enable by open-sourcing our data, code, and models.
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7.8.3 Application to Other Domains

We have yet to establish the transferability of our allowed set of annotations and task setup to

other domains. While we expect our procedure to be general enough to work in different areas,

this chapter only uses a single corpus about macroeconomics. The reason for the limitation

to one corpus is the high cost of finding relevant interpretation documents, performing the

extraction and annotation, and standardizing the resulting annotations.

7.8.4 Equivalence Classes Creation

While the creation of equivalence classes is less expensive than directly creating evaluation

examples, it still requires manual effort by domain experts, which is an expensive resource.

This could be alleviated with an automatic method to obtain equivalence classes. In theory,

the identification of candidate members of equivalence classes should be facilitated by the

category annotations. The two member properties of (1) semantic interchangeability within

equivalence classes and (2) syntactic interchangeability across equivalence classes could

potentially be judged by a strong language model. When using this external model, care has to

be taken that none of the sequence-to-sequence models gets an advantage, e.g. from being of

the same model family as the external model.

7.8.5 Syntactic Structure of Equivalence Class Members

Syntactic interchangeability is a requirement on equivalence class members within one equiv-

alence classes evaluation. This limits us to one syntactic construction per evaluation. We

select the most common one in each category to obtain a large enough number of evaluation

instances. As a consequence, the model will not be tested on different syntactic structures.

Unfortunately, testing all possible syntactic constructions suffers from (1) a data sparsity prob-

lem, where not enough examples of the same construction occur in the data, and (2) a large

increase in the manual effort required to construct one evaluation per syntactic structure.
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8 Conclusion

In this thesis, we presented approaches that aim to improve diverse aspects of abstractive

summarization. In Part I, we investigated interpretable representation learning. We devised a

hierarchical Transformer decoder for predicting a latent plan for the next summary sentence

before generating its words. We aimed to learn contextualized representations with an en-

tailment interpretation, from which the entailment of the summary as well as the absence

of hallucinations could be deduced. From unsupervisedly learning semantic text units, we

hoped to gain further insights into the detection and extraction of salient phrases of source

documents. In Part II, we used by-products of summary generation (attentions and decoding

probabilities) to detect where the model is prone to generating hallucinations, due to the

fusion of unrelated text segments and high-entropy guesses of phrases not copied from the

source document. We applied sequence-to-sequence models in an interdisciplinary project

on a novel task of interpreting policy announcements and found that detailed high-quality

annotations enable the model to learn subtle cues from limited data. With a new evalua-

tion technique based on the annotations, we comprehensively evaluated specific aspects of

interpretation from a relatively cheap manual clustering by domain experts.

8.1 Summary of Contributions

We will now stress the most important contributions of this thesis, which could be interesting

to the larger NLP research community.

In Chapter 3, we introduced a hierarchical Transformer decoder that generates a representa-

tion for the next summary sentence, which it then uses in the word generator to predict the

sentence’s words. As a result of this high-level plan for the summary sentences, the generated

summaries turn out to be more abstractive. The increased abstractiveness does not decrease

ROUGE scores. We also found that our hierarchical inductive bias is more effective than simply

increasing the base model’s parameters.

From our negative result of devising architectures with an entailment interpretation in Chap-
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ter 4, we learned that these general-purpose architectures are very powerful, and small ar-

chitectural changes, such as a different activation function, did not make a difference after

hyperparameter tuning. The learning rate and its schedule proved to be the most important

hyperparameter for the performance. While our entailment-based interpretation reached

the same performance as the base architecture, it was not able to improve natural language

inference or language modeling.

In Chapter 5, we aimed to induce semantic units of text with different object discovery mecha-

nisms and analyzed the models’ attentions carefully. Neither slot attention nor bottom-up

attention were able to induce effective semantic units. Our trained models ignored our object

representations or found other creative ways to circumvent our inductive biases, such as

initialization, attention guidance, or the information bottleneck. Unsupervised learning of

semantic text units remains a challenging and open-ended problem. We have provided a

detailed account of conceptually promising approaches that failed to discover semantic units.

In Chapter 6, we detected hallucinations from the by-products of summary generation, namely

encoder self-attentions, decoder cross-attentions, and decoding probabilities. Unlike prior

work, our method does not require an external model to be trained and run. Additionally,

we extended current hallucination detection research to CNN/DailyMail and to the token

level. For this task, we provided two datasets for future research. We found that our method

detects hallucinations more accurately than prior work. Still, intrinsic hallucinations remain

challenging to detect for all methods.

Finally, in Chapter 7, we converted a dataset annotated with marked spans and comments

into text format and proposed a sequence-to-sequence task. We released a dataset annotated

with the aspects of interpretations. We then trained models to generate these semi-structured

annotations. We introduced the equivalence classes evaluation, a scalable and fine-grained

evaluation of model generations for the individual annotation categories. Our evaluation

showed that our annotation scheme is a natural fit for language modeling and allowed state-

of-the-art models to pick up on subtle details from low-resource data. We shared the best

model with our collaborators from the Geneva Graduate Institute who are social scientists

in the fields of economy and politics. They can query the model for particular aspects of

an interpretation by providing a prompt and a category start token. The model completes

the prompt with the most likely continuation. The scientists can also craft hypothetical and

counterfactual scenarios by providing a corresponding prompt. They use it as a data-driven

analysis and simulation tool for interpretations of policy announcements.

8.2 Inspirations for Future Work

As is probably not unusual, this thesis has left us with more ideas for further investigations

than answered questions. We present the most promising in the following, starting with ideas

for hallucination detection.
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We would like to further extend the evaluation of entailment representations to check if they

can be used to judge the faithfulness of summaries. As hinted at in Section 4.1, a summary

(hypothesis) should be entailed by the source document (premise), unless it contains halluci-

nations. Entailment representations should benefit this task by enabling reasoning over the

facts in their dimensions.

Our impression from our labeling efforts in Chapter 6 is that hallucination detection is un-

derspecified. This was corroborated by the feedback from our human annotators for the

TLHD-CNNDM dataset. There is a subjective component of what it means for a statement to

be supported by the document, i.e. how much inference and world knowledge on the part of

the reader is allowed. We believe that currently, applying the laws of physics to infer a state-

ment would be acceptable, whereas knowing the name of a football stadium is not. Without

explicitly defining these rules, it will be very hard for a model to identify the boundaries of

acceptability. Consequently, a direction to benefit further research would be to come up with

a more robust definition of what makes a hallucination.

If token- or phrase-level hallucination detection and correction are pursued, then an additional

disambiguation step is required. If the source document does not support that a certain

entity has performed a certain action, but both the entity as well as the action appear in

the document, which one is the hallucination? We contemplated multiple solutions to this

question, but editing-based considerations (we would like to require minimal edits) usually

opposed consistent annotation.

A possible way out would be to switch to task-based evaluation (Zhang et al., 2023). If the

task were defined as how effectively a model helps a human editor detect hallucinations,

performance could be measured with the number of detected hallucinations per time. As an

added benefit, this evaluation includes the inference cost of the models, an important part of

practical application.

Models trained on CNN/DailyMail generate drastically fewer hallucinations compared to those

trained on XSum. This has led us to question whether instead of detecting hallucinations

and correcting model outputs, one could filter hallucinations in the training data to solve the

problem. Even for LLMs, supervised finetuning on high-quality data has shown the fewest

hallucinations (Ouyang et al., 2022). We speculate that this is infeasible due to two major

factors. First, the filtering method would have to be automatic, since training datasets in use

are too large for human annotation, and therefore some hallucinations will slip by the filtering

process. Second, even with smaller but higher-quality datasets, scenarios similar to those seen

in pretraining will still lead models to hallucinate.

An alternative solution could be to train more faithful models which stick closer to the input.

If fuzzy memories from pretraining have less influence on generation, we conjecture that

not just hallucinations would dwindle, but also other unwanted artifacts like biases and

toxicity. One possible avenue is to answer the question of what it takes to make attention

explanation (Jain and Wallace, 2019; Wiegreffe and Pinter, 2019; Brunner et al., 2020). We
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temporarily investigated such an idea by making models’ attentions more faithful to their

generations, by sparsifying attention weights and imposing losses for too diverse attention.

We have also looked into using decoding probabilities to segment outputs. In Chapter 6,

we briefly introduced a possible segmentation algorithm in Equation 6.3. The decoding

probabilities and entropies identify the pivotal decisions during generation. A new decoding

algorithm could use this information to replace word-by-word decoding with structured

decoding, at a segment or phrase level, potentially with a smaller search space but a larger

depth than currently (width |V |, depth 1).

The annotation with category markers used by us and Galactica can be used to make better

use of (low-resource) data. It remains an open question whether a limited budget for human

annotation is better spent to increase the quantity or the quality of a dataset. It remains to be

seen whether such annotations can be gathered more efficiently, e.g. with model-proposed

tags that can be used to speed up human labeling or as data for weak supervision.

In either case, high-quality annotations enable controllable generation with a simple mecha-

nism tailored to language models that generate the continuation based on the recent prefix. By

inserting the desired category start token, one can guide the model to generate a continuation

of that type. Depending on the annotation in the training data, this continuation can be single

words or phrases, citations, or even placeholders for input from an external program (Taylor

et al., 2022). The interactive operation mode for social scientists mentioned in Section 8.1

is a further promising direction for future work. In a time where models become larger and

larger, it is an open question whether we will ever be able to fully understand how a prediction

was made. The proposed approach offers a way to interact with this black box via natural

language.

We are also curious to see whether new annotations can be picked up by LLMs through in-

context learning. If only a modest amount of high-quality annotations are required for any

given task, the few-shot setting of current LLMs would prove to be an even more enticing

application for this annotation scheme.

8.3 Limitations

The black-box nature of neural networks also underlies the limitations of this thesis. In

Chapter 3, for example, we have a plausible hypothesis why the sentence planner generates

more abstractive summaries at higher ROUGE scores, but we cannot prove it without further

insights into how the predictions are made. We did a thorough analysis to rule out typical

explanations (increased number of parameters) and easy shortcuts (by checking the most

common novel bigrams) but did not find conclusive evidence to answer that question.

Furthermore, evaluations are limited to the specific data distribution and metric they are

evaluating, which makes it hard to draw general conclusions. We can harden the results by
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performing many tests to arrive at a more nuanced understanding of a method’s strengths

and weaknesses, and we tried to do so in this thesis. An aspect that often goes untested in

scientific studies is a method’s robustness to unexpected inputs. Potentially, companies with

real customers are better suited to take over that role.

Limitations of automatic and manual evaluation are discussed in Section 2.4. They also

apply to this thesis. Additionally, due to cost and time constraints, our human evaluation in

Chapter 3 is of small sample size and therefore larger variance. Considering this, the p-values

in Table 3.9 are surprisingly low, suggesting that a larger human evaluation could increase the

confidence in the results.

While we presented negative results in Chapter 4 and 5, it is still possible for these methods to

work with adaptations or different hyperparameters. To facilitate future research, we tried to

be accurate and verbose in describing what we tried.

In Chapter 6, and as already mentioned in Section 8.2, we presume that the task of token-

level hallucination detection is underspecified, contributing to the difficulty of the models

in uncovering hallucinations. The datasets are rather small, owing to the cost of human

annotation.

The equivalence classes evaluation in Chapter 7 only evaluates the most common grammatical

structures. This limits the robustness of the evaluation, which would be desirable for interac-

tive prompting by domain experts, as detailed in Section 7.3.2. We hope that the contrastive

nature of the evaluation helps avoid misleading conclusions. In almost all chapters of the

thesis, pretraining is used to initialize models, or the models are used directly. We therefore

inherit these models’ limitations concerning generating biased, harmful, or toxic content

as a result of its presence in the pretraining data. Models also exhibit overconfidence and

assertiveness when in error, and hallucinate information. We refer the reader to the detailed

limitations sections of more recent papers, which contain pointers to further studies on these

subjects.

8.4 Ethical Considerations

The ethical implications of AI systems are an important societal topic. Summarization is one

of the less harmful tasks to study. One danger of summarization in particular is the loss of

information and context that comes with reducing the output length of a text. The loss of

context can lead to oversimplification, misinterpretation, and in the worst case accidental

misinformation by the summarization model. Summarization researchers aim to combat

these issues by increasing the relevance and informativeness of their models’ outputs.

Hallucinations are another source of misinformation. In this thesis, we contribute to the

research area of hallucination detection. We find that this is still a hard topic, and propose

avenues for future work.
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In the larger field of text generation, additional ethical considerations are necessary. As

mentioned in Section 8.3, pretrained language models reproduce biases present in their

training data. For now, the goals of researchers are aligned with reducing these biases, as

they negatively impact task performance in summarization (e.g. relevance, informativeness,

faithfulness, factuality).

Improving language generation models in general, however, does also facilitate misinfor-

mation campaigns or propaganda of malicious actors. It will be even more important for

people to verify the trustworthiness of their sources, and to become literate in the capabilities

of language models. Clark et al. (2021) found that most of their evaluators underestimated

language generation models.

The same danger holds for language models that are better aligned with their operator’s

intentions. Through improving controllable generation, it will become easier to produce

targeted exploitative text, such as phishing emails, fake news, or political defamation. As

of now, we do not have the tools to reliably control language models to resist attempts to

create such text. This is showcased by the public release of ChatGPT, which resulted in a

cat-and-mouse game between the developers trying to prevent certain prompts from being

answered and users that created ever new prompts to circumvent the updated safeguards.

If we could reliably detect machine-generated text, either through watermarking the output

or by automatic tools, we could identify manipulation attempts. Unfortunately, this is not

yet possible, and potentially never will be. As a result, further research on AI alignment

and understanding natural language generation models is needed, combined with open and

accessible information of the general population about the capabilities of AI.
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memory: A novel representation unit for RNNs with scalable application s. Transactions of

the Association for Computational Linguistics, 7:121–138.

Daniluk, M., Rocktäschel, T., Welbl, J., and Riedel, S. (2017). Frustratingly short attention spans

in neural language modeling. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, L. (2019). Universal transformers.

In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,

USA, May 6-9, 2019. OpenReview.net.

Deutsch, D. and Roth, D. (2019). Summary cloze: A new task for content selection in topic-

focused summarization. In Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 3720–3729, Hong Kong, China. Association

for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidi-

rectional transformers for language understanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota. Association for Computational Linguistics.

Dhamdhere, K., Sundararajan, M., and Yan, Q. (2019). How important is a neuron. In 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,

May 6-9, 2019. OpenReview.net.

Dhingra, B., Faruqui, M., Parikh, A., Chang, M.-W., Das, D., and Cohen, W. (2019). Handling

divergent reference texts when evaluating table-to-text generation. In Proceedings of the

175



Bibliography

57th Annual Meeting of the Association for Computational Linguistics, pages 4884–4895,

Florence, Italy. Association for Computational Linguistics.

Dror, R., Baumer, G., Shlomov, S., and Reichart, R. (2018). The hitchhiker’s guide to testing

statistical significance in natural language processing. In Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1383–1392, Melbourne, Australia. Association for Computational Linguistics.

Durmus, E., He, H., and Diab, M. (2020). FEQA: A question answering evaluation framework

for faithfulness assessment in abstractive summarization. In Proceedings of the 58th An-

nual Meeting of the Association for Computational Linguistics, pages 5055–5070, Online.

Association for Computational Linguistics.

Durrett, G., Berg-Kirkpatrick, T., and Klein, D. (2016). Learning-based single-document

summarization with compression and anaphoricity constraints. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 1998–2008, Berlin, Germany. Association for Computational Linguistics.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Elman, J. L. (1990). Finding structure in time. Cogn. Sci., 14(2):179–211.

Engelcke, M., Jones, O. P., and Posner, I. (2021). GENESIS-V2: inferring unordered object

representations without iterative refinement. In Advances in Neural Information Processing

Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS

2021, December 6-14, 2021, virtual, pages 8085–8094.

Engelcke, M., Kosiorek, A. R., Jones, O. P., and Posner, I. (2020). GENESIS: generative scene

inference and sampling with object-centric latent representations. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,

2020. OpenReview.net.

Erkan, G. and Radev, D. R. (2004). Lexrank: Graph-based lexical centrality as salience in text

summarization. Journal of Artificial Intelligence Research, 22:457–479.

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K., and Hinton, G. E.

(2016). Attend, infer, repeat: Fast scene understanding with generative models. In Advances

in Neural Information Processing Systems 29: Annual Conference on Neural Information

Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 3225–3233.

Fabbri, A., Li, I., She, T., Li, S., and Radev, D. (2019). Multi-news: A large-scale multi-document

summarization dataset and abstractive hierarchical model. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 1074–1084, Florence,

Italy. Association for Computational Linguistics.
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