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Abstract
Capture calculus is an extension of System F<: that tracks free variables of terms in their type, allowing

one to represent capabilities while limiting their scope. While previous calculi had mechanized soundness
proofs, the latest version, namely the box calculus, only had a paper proof. We present here our work on
mechanizing the theory of the box calculus in Coq, and the challenges encountered along the way. Our
mechanization is complete and available on GitHub.

1 Introduction
Capture checking is an experimental Scala feature that aims to provide a basis for new type system abilities,
such as checked exceptions for higher order functions [Ode+21], algebraic effects [PP09], and safe region
management through regions [TT97]. It does so by exposing, at the type level, information about free
variables in terms.

To investigate the metatheory of capture checking, various calculi have been introduced, namely System
CF<: [Bor+21] and later the box calculus (System CC<:□) [Bra+22]. While System CF<: is fully mechanized
in Coq, the soundness proofs of other variants of the calculus are not yet mechanized. In particular, System
CC<:□ differs from the initial System CF<: in that it uses monadic normal form (MNF) syntax. Switching
to MNF has several prospects regarding the formalization of a larger fragment of Scala, notably path-
dependent types [RL19].

Another difference is that System CC<:□ restricts type abstractions and type applications to raw, un-
captured types. To recover the unrestricted type abstraction, one uses boxing which consists in hiding the
capturing type behind a new modality denoted □. The seemingly simple restriction on type abstractions
drastically simplifies the metatheory both in prosaic and mechanized proof as we will show.

Our work is composed of multiple steps illustrated in Figure 1.

System F<:
[Ayd+08]

System CF<:
(Edward Lee)

MNF-System F<: MNF-System CF<: System CC<:□ this work

Figure 1: Roadmap for the mechanization of System CC<:□

2 Pure types versus pretypes
In System CF<:, the syntax of types is defined by two mutual syntactic categories: types and pretypes.
Types correspond to pretypes prefixed by a capture set, or a type variable that will later be substituted by
a type. On the other hand, pretypes can be function types, (bounded) polymorphic types or top types that
can be found in System F<:. The only difference with System F<: is the dependent nature of function types,
since return types can refer to the name of their argument in capture sets.
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However, in System CC<:□, type variables are now considered to belong in the same syntactic categories
as function types, polymorphic types and top types. This syntactic category is referred to as ”pure types”.
The only other addition is the boxed type which masks variable dependencies represented in the capture set
of a type.

T ,U F CR
| X

Q,R F ⊤

| ∀(T )→ U
| ∀[S ]→ U

T ,U F CR
| R

Q,R F X
| ⊤

| ∀(T )→ U
| ∀[R]→ U
| □T

Figure 2: Raw syntax for type in System CF<: (left) vs System CC<:□ (right)

In the mechanized soundness proof of System CF<:, the raw syntax of types and pretypes is described
by mutually inductive types, and we have mutually inductive judgements to ensure closedness, well-
formedness, and subtyping.

However, by considering type variables as pure types, we break the assumption that type substitution
is stable by the syntactic category, i.e. that if we substitute in a pure type, we will obtain a pure type, and
similarly if we substitute in a type we will obtain a type. Indeed, X is pure but {X → CR}X = CR is not.
Moreover, we now have an injection from pure types to types.

Therefore, the mutual encoding of syntax that we had in the mechanization of the soundness proof of
System CF<: does not fit as well in the System CC<:□ calculus. This duplicates a lot of the lemmas and
requires mutual induction, which can be very slow for Coq to check well-foundedness. For the reasons
above, we made the decision to encode the raw syntax of pure types and types in a single inductive type and
just have closedness be expressed in a mutually inductive fashion. This means that we have two judgements
T type and R pure, as well as an injection R pure ⇒ R type. This change requires extra attention to not
mix up captured types and pure types, but results in a drastically shorter proof, which is also faster to check.
For example, pure types need to be augmented by an empty capture set to be considered as captured types.

3 Well-formedness
In System CF<:, the well formedness judgement needed to take care of variance which was somewhat
complicated to deal with in the mechanized proof.

C ⊆ A+ ∀xi ∈ C xi : S i ∈ Γ Γ; A+; A− ⊢T U wf
Γ; A+; A− ⊢T CU wf

(capt-wf)

Γ; A+; A− ⊢T U wf
Γ; A+; A− ⊢T {⋆}U wf

(universe-wf)
X <: T ∈ Γ

Γ; A+; A− ⊢T X wf
(tvar-wf)

Γ; A−; A+ ⊢T S wf (∀x < L Γ; A+ ∪ {x}; A− ⊢T [0→ x]T wf)
Γ; A+; A− ⊢R ∀(S )→ T wf

(fun-wf)

Γ; A−; A+ ⊢R S wf (∀X < L Γ; A+ ∪ {X}; A− ⊢T {0→ X}T wf)
Γ; A+; A− ⊢R ∀[S ]→ T wf

(tfun-wf)

Γ; A+; A− ⊢R ⊤ wf (top-wf)

Figure 3: Locally-nameless presentation of the well-formedness rules for types (⊢T ) and pretypes (⊢R) in
System CF<:
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Then, the usual well-formedness judgements for types and pretypes are defined as follows:

Γ ⊢ T wf B Γ; dom(Γ); dom(Γ) ⊢T T wf
Γ ⊢ R wf B Γ; dom(Γ); dom(Γ) ⊢R R wf

With the addition of boxes, the well-formedness judgement can be expressed in System CC<:□ in a way
that is closer to the well-formedness judgement of System F<:. Indeed, in System CF<:, type variables
can occur in capture sets. This way one can instantiate a type abstraction with a captured type T , and all
occurrences of the bound type X will be replaced with cv(T ). This feature is the reason why we need to
parametrize the well-formedness judgement by atom sets. However, System CC<:□ restricts instantiation
to pure types, which means capture sets no longer need to account for type variables. Instead, one can
instantiate a type abstraction with a boxed type and later use unboxing to recover the underlying captured
type. Moreover, the single inductive type describing the raw syntax enables us to describe well-formedness
in a single inductive type. The final well-formedness judgement is defined as follows:

C ⊆ dom(Γ) ∪ {⋆} Γ ⊢ R wf
Γ ⊢ CR wf

(capt-wf)
X <: T ∈ Γ

Γ ⊢ X wf
(tvar-wf)

Γ ⊢ S wf (∀x < L Γ ⊢ [0→ x]T wf)
Γ ⊢ ∀(S )→ T wf

(fun-wf)
Γ ⊢ S wf (∀X < L Γ ⊢ {0→ X}T wf)

Γ ⊢ ∀[S ]→ T wf
(tfun-wf)

Γ ⊢ ⊤ wf (top-wf)
Γ ⊢ CR wf
Γ ⊢ □CR wf

(box-wf)

Figure 4: Locally-nameless presentation of the well-formedness rules for types in System CC<:□

These design decision further cut down the length proof by a large amount, and simplified the overall
mechanization process.

4 Subtyping
Another consequence of encoding types in a non-mutually inductive manner is that subtyping for types and
pure types can be merged into a single non-mutual inductive judgement, just like well-formedness. The
former subtyping judgements for types and pretypes in System CF<: was defined as in figure 5.

Γ wf Γ ⊢ X wf
Γ ⊢T X <: X

(sub-refl-tvar)
X <: S ∈ Γ Γ ⊢T S <: T

Γ ⊢T X <: T
(sub-trans-tvar)

Γ ⊢ C1 <:C C2 Γ ⊢R R1 <: R2

Γ ⊢T C1R1 <: C2R2
(sub-capt)

Γ wf Γ ⊢ T wf
Γ ⊢R T <: ⊤

(sub-top)

Γ ⊢T S 2 <: S 1 Γ ⊢ S 1 wf Γ ⊢ S 2 wf
(∀x < L Γ, x : S 1; dom(E) ∪ {x}; dom(E) ⊢T {0→ {x}}T1 wf)
(∀x < L Γ, x : S 2; dom(E) ∪ {x}; dom(E) ⊢T {0→ {x}}T2 wf)

(∀x < L Γ, x : S 2 ⊢T {0→ {x}}T1 <: {0→ {x}}T2)

Γ ⊢R ∀(S 1)→ T1 <: ∀(S 2)→ T2
(sub-fun)

Γ ⊢T S 2 <: S 1 Γ ⊢ S 1 wf Γ ⊢ S 2 wf
(∀X < L Γ, X <: S 1; dom(E) ∪ {X}; dom(E) ∪ {X} ⊢T {0→ {X}}T1 wf)
(∀X < L Γ, X <: S 2; dom(E) ∪ {X}; dom(E) ∪ {X} ⊢T {0→ {X}}T2 wf)

(∀X < L Γ, X <: S 2 ⊢T {0→ {X}}T1 <: {0→ {X}}T2)

Γ ⊢R ∀[S 1]→ T1 <: ∀[S 2]→ T2
(sub-tfun)

Figure 5: Locally-nameless presentation of the subtyping rules for types (⊢T ) and pretypes (⊢R) in System
CF<:
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In the mechanized proof for System CC<:□, the new single subtyping judgement is:

Γ wf Γ ⊢ X wf
Γ ⊢ X <: X

(sub-refl-tvar)
X <: S ∈ Γ Γ ⊢ S <: T

Γ ⊢ X <: T
(sub-trans-tvar)

Γ ⊢ C1 <:C C2 Γ ⊢ R1 <: R2 R1 pure R2 pure
Γ ⊢ C1R1 <: C2R2

(sub-capt)

Γ wf Γ ⊢ T wf T pure
Γ ⊢ T <: ⊤

(sub-top)
Γ ⊢ T1 <: T2

Γ ⊢ □T1 <: □T2
(sub-box)

Γ ⊢ C2R2 <: C1S 1 (∀x < L Γ, x : C2S 2 ⊢ {0→ {x}}T1 <: {0→ {x}}T2)

Γ ⊢ ∀(S 1)→ T1 <: ∀(S 2)→ T2
(sub-fun)

Γ ⊢ R2 <: R1 (∀X < L Γ, X <: R2 ⊢ {0→ {x}}T1 <: {0→ {x}}T2)

Γ ⊢ ∀[R1]→ T1 <: ∀[R2]→ T2
(sub-tfun)

Figure 6: Locally-nameless presentation of the subtyping rules in System CC<:□

However, we encountered an issue when trying to prove the transitivity of subtyping. Transitivity of
subtyping is one of the only ”high-level” lemmas that we prove using mutual induction, since it depends
on whether the middle type is pure or not. Given the structure of types and pretypes, Coq cannot check
that a naive mutually inductive proof terminates, because of the injection from pure types to types. Using a
custom combined induction principle lets us prove the transitivity of subtyping in a way that Coq can check
for its termination.

5 Reduction rules
The small-step semantics of System F<: in Aydemir’s proof [Ayd+08] are specified using a standard binary
relation on terms. Using monadic normal form, we can specify our semantics using an abstract machine.
During our adaptation of System F<: to MNF-System F<:, we took care of defining the small-step semantics
in a similar way to that of the System CC<:□ semantics illustrated in figure 7.

Store context: S F [] | let x = v in S

Evaluation context: E F [] | let x = E in e

S [E[xy]] −→ S [E[[z→ y]e]] if S (x) = λ(z : T ). e (app)
S [E[x[T ]]] −→ S [E[{X → T }e]] if S (x) = Λ[X <: T ]. e (tapp)
S [E[C � x] −→ S [E[y]] if S (x) = □y (open)
S [E[let x = y in e]] −→ S [E[[x→ y]e]] (rename)
S [E[let x = y in v]] −→ S [let x = v in E[e]] if E , [] (lift)

Figure 7: Reduction rules for System CC<:□

Working with holed contexts as in figure 7 is however cumbersome in mechanized proofs. We therefore
represent our expressions by an abstract machine state triplet ⟨S | E | e⟩ where S is a list of value bindings
representing the store context, and E is a list of continuations representing the evaluation context. Our
small-step semantics for System F<: is given in figure 8. Note that the only additional rule is the (Let) rule
which simply builds up the evaluation context if the current focused expression is a let-binding.
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x = λ(T )e ∈ S y = v ∈ S

⟨S | E | xy⟩ −→ ⟨S | E | [0→ y]e⟩
(app)

x = Λ[R]e ∈ S R pure
⟨S | E | x[R]⟩ −→ ⟨S | E | {0→ R}e⟩

(tapp)

x = □y ∈ S

⟨S | E | C � x⟩ −→ ⟨S | E | y⟩
(open)

x = v ∈ S

⟨S | e :: E | x⟩ −→ ⟨S | E | [0→ x]e⟩
(rename)

⟨S | e :: E | v⟩ −→ ⟨S , x = v | E | [0→ x]e⟩ (lift)

⟨S | E | let e1 in e2⟩ −→ ⟨S | e2 :: E | e1⟩ (let)

Figure 8: Reduction rules for the System CC<:□ abstract machine

6 Discussion

6.1 Speeding up the proof checking
Judging the quality of a mechanized proof does not reduce to whether the proof assistant accepts it. Specif-
ically, we want our proofs to be fast to check and robust to changes in definitions. However, these aspects
are somewhat in tension: robust proofs tend to use more automation which leads them to be shorter but
also longer to verify. Instead of writing all proof steps, we rely on tactics to do the tedious, overly formal
work for us. One such tactic is the pick fresh tactic [Ayd+08] which gathers all variables in context and
generates a fresh variable together with a proof that it is actually fresh (i.e. that it is not in the gathered
set of atoms). Then, we prove freshness goals of the form x < ... using the fsetdec tactic from the Coq
standard library. The fsetdec tactic can sometimes take a few seconds to complete when there are lots of
atoms in scope. A possible improvement over the current status is to differentiate atoms by what they stand
for, i.e. atoms representing term variables should not be confused with atoms standing for type variables.
One could parametrize the atom type by a syntactic category (such as exp or typ) and specifying in the
pick fresh tactic when we want a fresh term variable or a fresh type variable. By doing so, the gathered
sets of atoms should be smaller and we can hope that the calls to fsetdec will be faster.

6.2 Using automation libraries
The current winner of the POPLMark challenge, in which programming language researchers compete to
mechanize the soundness of System F<: in the least amount of code, is AutoSubst [STS15]. AutoSubst is
a Coq library tailored for automating the proof of substitution lemmas, which account for a large portion of
the overall proof.

Figure 9: Comparison of various submissions to the POPLMark challenge (source: [STS15]

Our current mechanization is based on Arthur Charguéraud’s locally nameless proof [Cha12], and only
uses small tactic libraries, namely LibTactics and TaktikZ. One could wonder if AutoSubst could be ap-
plied to System CC<:□ and how small would the soundness proof be if we were to use it. One major
difference is that AutoSubst uses De Bruijn indices instead of locally nameless.
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6.3 Finding unused definitions
The GitHub repository containing the soundness proof is an accumulation of various branches on top of
each other, each proving soundness for a different variant of capture calculus. Dealing with such a project
means that unused lemmas and definitions are accumulated over the years. Indeed, the usual workflow is
to change the definitions, adapt every proof in order. However, we cannot know in advance which lemmas
are going to be useful in the soundness proof. Hence, we decided to write a small script to detect unused
lemmas to further cut down the length of the proof.

The script works by calling coq-dpdgraph, which generated a text dump of the dependency graph.
Then, after specifying the roots (the main results of the proof, i.e. progress and preservation), the script
parses the textual representation of the graph into an in-memory graph and computes all reachable reverse
dependencies. The unreached nodes are then sorted in topological order and by order of the modules to
allow removing unused lemmas progressively.

One caveat is that coq-dpdgraph does not treat mutually inductive lemmas as interdependent. There-
fore we needed to eliminate these false positives by adding unused lemmas within a ”with” block as roots.

The script detected ~100 unused lemmas (on a total of ~600), which in total resulted in a decrement of
~1.5k LOC (on a total of ~9k LOC).

7 Conclusion
The mechanization of the soundness proof of System CC<:□ has shown that the box calculus is a cleaner
and simpler formulation of capture checking. However, the restrictions needed to simplify the metatheory,
namely forcing the user to box types before instantiating a polymorphic type, mean that we need a mech-
anism to infer those boxes to make the calculus accessible and seamlessly integrate with existing code.
Nevertheless, the mechanization of System CC<:□ is almost half as long as the one of System CF<:, going
from ~12k LOC to ~7k LOC. Our proof is available on GitHub at https://github.com/felko/ccsubbox.

8 Future work

8.1 Extending the box calculus to account for a larger fragment of Scala
In the POPLMark tutorial, we proved soundness for System F<: extended with sum types, and in the MNF
proof, we instead extended System F<: with product types. However, neither sum nor product types are
featured in System CF<: or System CC<:□. An interesting extension to the project would be to bring those
constructs to System CC<:□. Another extension could be path-dependent types and DOT in general.

8.2 Box inference
To integrate seamlessly with existing Scala code, we need a mechanism to infer boxes. This means we have
to elaborate a more permissive calculus that allows type applications for capturing types, without requiring
boxing, call it System CC<:, into System CC<:□. A possible extension of this project would be to write a
formally proven elaborator, showing a bisimulation between the reduction relation in System CC<: and the
reduction relation between box-inferred terms in System CC<:□.
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