
On the Privacy-Robustness-Utility Trilemma in Distributed Learning

Youssef Allouah 1 Rachid Guerraoui 1 Nirupam Gupta 1 Rafaël Pinot 1 John Stephan 1

Abstract
The ubiquity of distributed machine learning (ML)
in sensitive public domain applications calls for
algorithms that protect data privacy, while being
robust to faults and adversarial behaviors. Al-
though privacy and robustness have been exten-
sively studied independently in distributed ML,
their synthesis remains poorly understood. We
present the first tight analysis of the error incurred
by any algorithm ensuring robustness against a
fraction of adversarial machines, as well as dif-
ferential privacy (DP) for honest machines’ data
against any other curious entity. Our analysis ex-
hibits a fundamental trade-off between privacy,
robustness, and utility. To prove our lower bound,
we consider the case of mean estimation, sub-
ject to distributed DP and robustness constraints,
and devise reductions to centralized estimation
of one-way marginals. We prove our matching
upper bound by presenting a new distributed ML
algorithm using a high-dimensional robust aggre-
gation rule. The latter amortizes the dependence
on the dimension in the error (caused by adversar-
ial workers and DP), while being agnostic to the
statistical properties of the data.

1. Introduction
Distributed machine learning (ML) has been playing a piv-
otal role in a wide range of applications (Dean et al., 2012;
Abadi et al., 2016), due to an unprecedented growth in the
complexity of ML models and the volume of data being used
for training purposes. Distributed ML breaks a complex ML
task into sub-tasks that are performed in a collaborative fash-
ion. In the standard server-based architecture, n machines
(a.k.a., workers) collaboratively train a global model on their
datasets, with the help of a coordinator (the server). This
is typically achieved through a distributed implementation
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of the renowned stochastic gradient descent (SGD) algo-
rithm (Bertsekas & Tsitsiklis, 2015). In distributed SGD (or
DSGD), the server maintains a model which is updated itera-
tively by averaging gradients of the loss function associated
with the model, computed by the different workers upon
sampling random points from their local datasets. DSGD is
particularly useful in cases where the data held by the work-
ers is too sensitive to be shared, e.g., medical data collected
by several hospitals (Sheller et al., 2020).

Privacy. Although DSGD inherently ensures privacy of
the workers’ data to an extent, by not sharing it explicitly,
information leakage can still be significant. When the ML
model maintained at the server is publicly released, it may
be exposed to membership inference (Shokri et al., 2016) or
model inversion attacks (Fredrikson et al., 2015; Hitaj et al.,
2017; Melis et al., 2019) by external entities. Furthermore,
upon observing the gradients and transient models during
the learning procedure, curious machines (be they workers
or the server itself) can infer sensitive information about the
datasets held locally by the machines, or even reconstruct
data points in certain scenarios (Phong et al., 2017; Wang
et al., 2019b; Zhu et al., 2019; Zhao et al., 2020).

Robustness. In real-world distributed systems, it is ar-
guably inevitable to encounter faulty workers that may devi-
ate from their prescribed algorithm. This may result from
hardware and software bugs, data corruption, network la-
tency, or malicious adversaries controlling a subset of work-
ers. To cover all such possible scenarios, it is common to
assume that a fraction of the machines can be adversarial1

and arbitrarily deviate from their algorithms. In the context
of DSGD, adversarial workers may send incorrect gradi-
ents (Feng et al., 2015; Su & Vaidya, 2016) to the server
and critically influence the learning procedure, as shown
in (Baruch et al., 2019; Xie et al., 2019).

Integrating privacy and robustness. With the growing
concerns and legal obligations regarding the processing of
public data in AI-driven technologies (EU, 2016), privacy
and robustness issues question the very applicability of ML
in critical public domain services, such as healthcare or
banking. It is thus natural to seek distributed ML methods
that simultaneously ensure privacy and robustness. In fact,

1Sometimes called “Byzantine” in the parlance of distributed
computing (Lamport et al., 1982).
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these aspects have separately received significant attention
in the past. On the one hand, the standard statistical pri-
vacy requirement of (ε, δ)-differential privacy ((ε, δ)-DP)
has been studied to a great extent in the context of dis-
tributed ML (Choudhury et al., 2019; Hu et al., 2020; Noble
et al., 2022). On the other hand, numerous provably robust
adaptations of DSGD have been proposed (Blanchard et al.,
2017; Xie et al., 2018; Yin et al., 2018; Gupta et al., 2021;
Farhadkhani et al., 2022). Yet, the synthesis of privacy and
robustness remains highly understudied in distributed ML.
The few works on this topic, such as (Guerraoui et al., 2021;
Zhu & Ling, 2022; Xiang & Su, 2022; Ma et al., 2022), only
focus on per-step privacy, and provide loose upper bounds
on the learning error. On the other hand, the guarantees pre-
sented in (Cheu et al., 2021; Acharya et al., 2021) only apply
to discrete distribution estimation subject to non-interactive
local DP (Kasiviswanathan et al., 2011), a restricted case of
distributed ML where each worker holds a single data point
and can be queried only once.

An orthogonal line of work studied the case where the server
is assumed not to be curious, i.e., data only needs to be pro-
tected against the public release of the model (Dwork & Lei,
2009; Liu et al., 2021b; Hopkins et al., 2022a; Liu et al.,
2022). In this setting, it was recently shown that privacy and
robustness are mutually beneficial (Georgiev & Hopkins,
2022; Hopkins et al., 2022b). However, the assumption of
a non-curious server may not be viable, especially in appli-
cations such as healthcare and finance, where sovereignty
of data must be protected at every stage of the learning pro-
cedure (Lowy et al., 2023). In this paper, we focus on the
setting where the server itself may be curious, and we show
that privacy and robustness are actually at odds.

1.1. Contributions

We precisely characterize the privacy-robustness-utility
trilemma in distributed learning. Specifically, we present the
first tight analysis of the error incurred by any distributed
ML algorithm that simultaneously ensures (i) robustness
against a minority of adversarial workers, and (ii) differ-
ential privacy (DP) of each worker’s data against curious
entities including other workers and the server. In short, we
show that, in addition to the usual separate costs of privacy
and robustness, the learning accuracy necessarily degrades
due to their interplay.

Main results. We consider a system of n workers up to
f of which (of unknown identity) may be adversarial, and
the remainder are honest. The server is assumed honest-but-
curious (Bonawitz et al., 2016). Each honest worker holds
a dataset comprising m points. The goal of the server is
to learn a model, parameterized by a d-dimensional vector,
incurring minimum loss over the collective dataset of the
honest workers. We denote by G the heterogeneity (Karim-

ireddy et al., 2020; 2022) between the honest datasets.

We show that a distributed learning algorithm that is robust
to f adversarial workers, while ensuring (ε, δ)-DP of each
honest worker’s data against the server (and other curious
workers) incurs a training error in

Ω̃

(
d

ε2nm2
+

f

n
· 1

ε2m2
+

f

n
·G2

)
, (1)

where Ω̃ ignores the logarithmic terms.

The first and the third terms in (1) are the respective errors
due to privacy and robustness separately. Importantly, the
second term represents the additional cost of satisfying pri-
vacy and robustness simultaneously. We then present a new
distributed ML algorithm, SAFE-DSHB2, which we prove
yields a matching upper bound (up to a logarithmic factor)
for the class of smooth and strongly convex loss functions,
while ensuring both privacy and robustness. We also obtain
an upper bound for smooth non-convex learning problems.

The key to proving the tightness of this trade-off is the ro-
bust high-dimension aggregation rule we introduce, namely
SMEA3. As an important consequence of our result, we ob-
serve that the privacy-robustness trade-off (second term) is
dominated by the privacy cost alone (first term) when the di-
mension d is larger than the number of adversarial workers
f . This observation however does not mean that the trade-
off is not significant, but rather that it can be adequately
controlled when using SMEA. This would not have been
possible otherwise with the use of existing aggregation rules
such as coordinate-wise or geometric median, for which
the upper bound has an additional dimension factor in the
privacy-robustness trade-off.

Independent contributions. As a byproduct of our analy-
sis, we obtain several results that are of independent interest
to both the robust distributed ML and the privacy commu-
nities. Indeed, our upper bound is tight for strongly convex
losses, even when removing the privacy constraints. This is
mainly due to the use of momentum in SAFE-DSHB (see
Section 1.2 below) which allows obtaining an excess error
that is independent of the variance of local stochastic gra-
dients. This improves over the state-of-the-art analysis on
robust distributed learning with strongly convex losses (Data
& Diggavi, 2021), which induces a suboptimal excess er-
ror. Besides, our analysis features a tighter dependence on
heterogeneity in the excess error. Our lower bound on the
cost of privacy (without robustness) also improves over the
state-of-the-art (Lowy & Razaviyayn, 2023) as we make no
assumptions on the interactivity of the algorithm and impose
weaker conditions on the DP parameter ε (see Section 3).

2Safe Distributed Stochastic Heavy Ball method, inspired from
the optimization literature (Gadat et al., 2018).

3Smallest Maximum Eigenvalue Averaging.
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1.2. Overview of Proof Techniques

Lower bound. We prove our lower bound by reducing
distributed mean estimation to centralized estimation of one-
way marginals (i.e. row-wise averages). We distinguish
cases depending on the presence of adversarial workers. In
each case, we start with a distributed algorithm A whose
interactions with each worker are (ε, δ)-DP, and then con-
struct a centralized algorithmM using A. Depending on
the case, we then use either the advanced composition the-
orem (Dwork et al., 2014) or an indistinguishability argu-
ment on the honest identities to relate the DP and utility
guarantees ofM to those of A. We conclude by applying
lower bounds on centralized private estimation of one-way
marginals (Steinke & Ullman, 2016) toM.

Upper bound. To prove our matching upper bound, we
present SAFE-DSHB, a privacy-preserving robust adapta-
tion of DSGD. Our algorithm incorporates Polyak’s mo-
mentum (Polyak, 1964) and a Gaussian mechanism (Dwork
et al., 2014) at the worker level, as well as SMEA, our ro-
bust aggregation rule at the server level. We identify a key
property that, if satisfied by an aggregation rule, mitigates
the curse of dimensionality that could impact the Gaussian
mechanism. This property, called (f, κ)-robust averaging,
requires the squared distance between the aggregate and the
average of honest vectors to be bounded by κ times the spec-
tral norm of the empirical covariance matrix of the honest
vectors. Our aggregation rule, SMEA, satisfies (f, κ)-robust
averaging for κ = O(f/n), while being agnostic to the statis-
tical properties of honest inputs. Another critical element of
our analysis is the tuning of the momentum coefficients to
control the trade-off between the deviation from the true gra-
dient and the reduction of the drift between honest workers’
momentums. We achieve this through a novel Lyapunov
function (a.k.a. potential function in optimization litera-
ture (Schmidt et al., 2017)).

1.3. Prior Work

Only a handful of works addressed the interplay between
DP and robustness in distributed ML. It was conjectured that
ensuring both these requirements is impractical, in the sense
that it would require the batch size to grow with the model
dimension (Guerraoui et al., 2021). However, the underly-
ing analysis relied upon the criterion of (α, f)-Byzantine
resilience (Blanchard et al., 2017), which has been recently
shown to be a restrictive sufficient condition (Karimireddy
et al., 2021). Subsequent works (Zhu & Ling, 2022; Xiang
& Su, 2022; Ma et al., 2022) augmented the RSA learning
algorithm (Li et al., 2019) with the sign-flipping or sign-
Gaussian privacy mechanisms. However, these works only
focus on per-step DP, and the presented upper bounds on
the error of the proposed algorithms are loose.

Another line of work targeted the specific learning problem

of discrete distribution estimation subject to non-interactive
local DP (Duchi et al., 2013) and robustness constraints.
The bounds for this problem (Cheu et al., 2021; Acharya
et al., 2021) are comparable to ours in the particular sce-
nario where each worker holds a single data point and the
algorithm is non-interactive (can query each worker once).
Although a recent paper (Chhor & Sentenac, 2023) consid-
ered a more general case where workers hold a batch of data
points, the algorithm was still assumed non-interactive, and
the data distribution identical for all the workers. It was also
shown recently (Li et al., 2022) that local DP and robustness
are disentangled when the adversarial workers corrupt the
data before randomization only, which however need not
be the case in general. The aforementioned works being
tailored to non-interactive local DP, it is not clear how to
extend their results to the general distributed ML setting.

Significant attention was given to robust mean estimation
under DP (Dwork & Lei, 2009; Liu et al., 2021b; Hopkins
et al., 2022a; Liu et al., 2022). However, as we pointed out,
the corresponding results do not readily apply to our setting,
as they would require the server to be non-curious. More-
over, robust mean estimation (Diakonikolas et al., 2019;
Ashtiani & Liaw, 2022; Liu et al., 2022) typically assumes
the honest inputs to be identically distributed, which need
not be the case in a general distributed setting.

1.4. Paper Outline

Section 2 defines the problem and recalls some useful con-
cepts. Sections 3 and 4 present our lower bound and the
analysis of SAFE-DSHB. Section 5 presents SMEA and
derives our matching upper bound. Section 6 discusses fu-
ture work. We defer full proofs to appendices A-D, and
experimental evaluation to Appendix E.

2. Problem Statement
We consider the classical server-based architecture compris-
ing n workers w1, . . . , wn, and a central server. The workers
hold local datasets D1, . . . ,Dn, each composed of m data
points from an input space X , i.e., Di := {x(i)

1 , . . . , x
(i)
m } ∈

Xm. For a given parameter vector θ ∈ Rd, a data point
x ∈ X has a real-valued loss function ℓ(θ;x). The empiri-
cal loss function for each worker wi is defined by

L(θ;Di) :=
1

m

∑
x∈Di

ℓ(θ;x).

The goal of the server is to compute an optimal parameter
vector θ∗ minimizing the global empirical loss function
L(θ;D1, . . . ,Dn) defined to be

L(θ;D1, . . . ,Dn) :=
1

n

n∑
i=1

L(θ;Di).
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We assume that each loss L(·;Di) is differentiable, and that
L is lower bounded, i.e., infθ∈Rd L(θ;D1, . . . ,Dn) is finite.

2.1. Robustness

We consider a setting where at most f out of n workers may
be adversarial. Such workers may send arbitrary messages
to the server, and need not follow the prescribed protocol.
The identity of adversarial workers is a priori unknown to
the server. Let H ⊆ {1, . . . , n}, with |H| = n − f . We
define

LH(θ) := L(θ;Di, i ∈ H) :=
1

|H|
∑
i∈H
L(θ;Di).

IfH represents the indices of honest workers, the function
LH is referred to as the global honest loss. An algorithm is
deemed robust to adversarial workers if it enables the server
to compute a minimum of the global honest loss (Gupta &
Vaidya, 2020). Formally, we define robustness as follows.

Definition 2.1 ((f, ϱ)-robust). A distributed algorithm is
said to be (f, ϱ)-robust if it outputs a parameter θ̂ such that

E
[
LH(θ̂)− L∗

]
≤ ϱ,

where L∗ := infθ∈Rd LH(θ), and the expectation is taken
over the randomness of the algorithm.

In other words, an algorithm A is said to be (f, ϱ)-robust if,
in every execution of A, the server outputs a ϱ-approximate
minimizer of the honest loss, despite the presence of up
to f adversarial workers. Note that (f, ϱ)-robustness is in
general impossible for any ϱ when f ≥ n

2 (Liu et al., 2021a).
Thus, throughout the paper, we assume that f < n

2 .

2.2. Differential Privacy

Each honest worker wi, i ∈ H, aims to protect the privacy
of their dataset Di against all other entities, i.e., the server
and the other workers. To define our privacy requirement
formally, we recall below the definition of item-level differ-
ential privacy (DP) (Dwork et al., 2014), where two datasets
are said to be adjacent if they differ by one item.

Definition 2.2 ((ε, δ)-DP). Let ε ≥ 0, δ ∈ [0, 1]. A random-
ized algorithmM : Xm → Y satisfies (ε, δ)-DP if for any
adjacent datasets D,D′ ∈ Xm and subset S ⊆ Y , we have

P[M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ. (2)

We consider the server to be honest-but-curious, i.e., it
follows the prescribed algorithm correctly, but may try
to infer sensitive information about the workers’ datasets.
Thus, the workers must enforce privacy locally at their end.
We assume that the server can only query the dataset of a
worker wi through a dedicated communication channel, and

that there is no direct communication between the workers.
Hence, for privacy in this context, we require the communi-
cations between the server and each honest worker to satisfy
the criterion of DP in (2). In our context, we formalize this
property below, inspired from (Smith et al., 2017).
Definition 2.3 ((ε, δ)-distributed DP). Let ε ≥ 0, δ ∈
[0, 1]. Consider a randomized distributed algorithm A :
Xm×n → Y . Let Zi be a function that outputs the transcript
of communications between the server and worker wi during
the execution of A. Algorithm A is said to satisfy (ε, δ)-
distributed DP if for all i ∈ H, Zi satisfies (ε, δ)-DP with
respect to the dataset held by worker wi.

The above criterion of distributed DP reduces to local
DP (Kasiviswanathan et al., 2011; Duchi et al., 2013) when
each local dataset comprises a single item (i.e., m = 1).
Moreover, an algorithm satisfying (ε, δ)-distributed DP may
be fully interactive, i.e., the queries made to the workers by
the server may share arbitrary dependence (Kasiviswanathan
et al., 2011). Hereafter, a distributed algorithm satisfying
(ε, δ)-distributed DP is simply said to be (ε, δ)-DP.

2.3. Assumptions

Our results are derived under standard assumptions. First,
we recall that data heterogeneity can be modeled following
the assumption below (Karimireddy et al., 2020; 2022).
Assumption 2.1 (Bounded heterogeneity). There exists
G <∞ such that for all θ ∈ Rd,

1

|H|
∑
i∈H
∥∇L(θ;Di)−∇LH(θ)∥2 ≤ G2.

To present the convergence guarantees of SAFE-DSHB, we
make the following standard assumption on the variance of
stochastic gradients (Bottou et al., 2018).
Assumption 2.2 (Bounded variance). There exists σ <∞
such that for each honest worker wi, i ∈ H, and all θ ∈ Rd,

1

m

∑
x∈Di

∥∇θℓ(θ;x)−∇L(θ;Di)∥2 ≤ σ2.

Additionally, we also assume the point-wise gradients to
be bounded, as usually done when analyzing differentially
private ML algorithms to circumvent the complications due
to clipping (Agarwal et al., 2018; Noble et al., 2022).
Assumption 2.3 (Bounded gradient). There exists C <∞
such that for all θ ∈ Rd, i ∈ H, and x ∈ Di,

∥∇ℓ(θ;x)∥ ≤ C.

3. Lower Bound
We now prove our lower bound on the error incurred by a
(f, ϱ)-robust distributed algorithm, when ensuring (ε, δ)-DP.
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The main result is given in Theorem 3.1, whose full proof is
deferred to Appendix A.5. To give insights about the proof,
we detail three separate cases in sections 3.1, 3.2 and 3.3
where we respectively study f = 0, f ≥ 1 but no privacy is
enforced, and the adversarial setting f ≥ 1 with privacy.

Theorem 3.1. Let X = Rd, ℓ = ∥·∥2, n ≥ 3, 0 ≤ f < n/2,
m ≥ 1, and ε, δ ∈ (0, 1). Consider arbitrary datasets
D1, . . . ,Dn ∈ Xm such that Assumption 2.1 is satisfied
with G ≥ 1. Let A : Xm×n → Rd be an (ε, δ)-DP dis-
tributed algorithm. Assume that ε ≤ 1/4

√
2n ln (m+ 1),

and that 2−m1−γ ≤ nδ ≤ 1/8m1+γ for some γ ∈ (0, 1).
For any ϱ ≤ f+1

100(n−f) , if A is (f, ϱ)-robust, then

ϱ = Ω̃

(
d

ε2nm2
+

f

n
· 1

ε2m2
+

f

n
·G2

)
.

Comparison with prior work. Our lower bound general-
izes that of the non-adversarial centralized case. Specif-
ically, specializing our lower bound to the case n = 1
yields the bound Ω

(
d

ε2m2

)
, which corresponds to the lower

bound from centralized private ERM (Theorem V.5, Bassily
et al. (2014))4. Second, we improve over a result from the
non-adversarial private distributed learning literature (The-
orem D.3, Lowy & Razaviyayn (2023)), where a similar
lower bound is shown. While we consider distributed algo-
rithm A as a black-box verifying (ε, δ)-DP (as per Defini-
tion 2.3), the mentioned work imposes additional structure
on A by assuming it to be round-based and to satisfy com-
positionality, which essentially abstracts the class of round-
based algorithms whose DP guarantees can be computed
from advanced composition. Moreover, as the number of
data points per worker m is typically greater than the number
of workers n, our condition ε = O(1/√n logm) is arguably
weaker than ε = O(1/m) in (Lowy & Razaviyayn, 2023).

Discussion on assumptions. The assumptions on ε, δ, ϱ are
only needed to use the lower bound from (Steinke & Ullman,
2016), which additionally features the log (1/δ) factor. One
could use the same proof technique as in (Bassily et al.,
2014) and remove these assumptions, at the expense of
loosening the bound, e.g. an additional logm factor in the
denominator of the first term appears.

3.1. Case I: Non-adversarial Setting

In this particular case, we assume all the workers to be
honest, i.e., f = 0. However, the algorithm satisfies (ε, δ)-
distributed DP. We show the following result.

Proposition 3.1. Let n,m ≥ 1, and ε, δ ∈ (0, 1). Con-
sider X = {± 1√

d
}d and ℓ = ∥·∥2. Consider an arbitrary

(ε, δ)-DP distributed algorithm A : Xm×n → Rd. Assume

4Notice that the loss function in (Bassily et al., 2014) is not
divided by the number of samples m.

that ε ≤ 1/4
√

2n ln (m+ 1) and that 2−m1−γ ≤ nδ ≤
1/8m1+γ for some γ ∈ (0, 1). For any ϱ ≤ 1/100, if A is
(0, ϱ)-robust, then

ϱ = Ω

(
d

ε2nm2

)
.

Sketch of proof. We consider the quadratic loss function.
We derive a centralized DP algorithmM from A, and then
reduce to private estimation of one-way marginals (Steinke
& Ullman, 2016). Algorithm M runs A on n copies of
the same dataset D ∈ Xm. Thus, M inherits the error
guarantee ϱ fromA on estimating the average ofD, but with
a weaker (εn, δn)-DP guarantee, due to the composition
of n adaptive (ε, δ)-DP queries (since A can query each
of the n copies of D up to (ε, δ)-DP budget). Using the
centralized DP lower bound from (Steinke & Ullman, 2016),
we have ϱ = Ω(d log (1/δn)/ε

2
nm

2). We bound εn and δn
via advanced composition (Dwork et al., 2014) as follows:
εn = O(ε

√
n log (1/δ′)) (provided that ε is small enough)

and δn ≤ nδ + δ′, where δ′ is carefully chosen to ensure
that log (1/δn)/ log (1/δ′) = Ω(1) (provided δ is small
enough). Substituting the above values of εn and δn in the
above lower bound on ϱ proves the proposition.

3.2. Case II: No Privacy

Finally, we adapt the lower bound from robust distributed
ML (Karimireddy et al., 2022) to our robustness defini-
tion (Definition 2.1) in Proposition 3.2 below.

Proposition 3.2. Let Assumption 2.1 hold. Let n ≥ 1, 1 ≤
f < n/2, and ν = 16f(n−2f)

(n−f)2 . Consider X = {± G√
νd
}d

and ℓ = ∥·∥2. If a distributed algorithm is (f, ϱ)-robust,
then

ϱ = Ω

(
f

n
·G2

)
.

3.3. Case III: Adversarial Setting

We now state, in Proposition 3.3 below, the part of our bound
where privacy and robustness are coupled.

Proposition 3.3. Let n ≥ 3, 1 ≤ f < n/2, m ≥ 1, ε, δ ∈
(0, 1), and ν = 16f(n−2f)

(n−f)2 . Consider X = {± 1√
d
}d ∪

{± 1√
νd
}d and ℓ = ∥·∥2. Consider any (ε, δ)-DP distributed

algorithm A : Xm×n → Rd. Assume that 2−o(m) ≤ δ ≤
1/m1+Ω(1). For any ϱ ≤ f+1

100(n−f) , if A is (f, ϱ)-robust,
then

ϱ = Ω

(
f + 1

n− f
· log (1/δ)

ε2m2

)
.

Sketch of proof. We consider the quadratic loss function,
and reduce to the case d = 1 with a careful choice
of datasets. We derive a centralized DP algorithm M
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from A, and then reduce to private estimation of one-way
marginals (Steinke & Ullman, 2016). AlgorithmM runs
A on input dataset D ∈ Xm together with the remaining
n − 1 datasets crafted as follows: f ‘adversarial’ datasets
are filled with −1, while n − f − 1 ‘honest’ datasets are
filled with +1. This ensures that, in all cases,M estimates
the average of D better than at least an f -sized minority of
datasets. Therefore, as A guarantees error ϱ on estimating
the average of every group of n− f datasets’ averages (by
Definition 2.1), we can bound the error of estimating the av-
erage of D by ϱ̃ = Θ(n−f

f+1 ϱ). We conclude by applying the
aforementioned DP lower bound toM, which is (ε, δ)-DP
and ensures error ϱ̃ in estimating the average of D.

4. Our Algorithm: SAFE-DSHB
We prove in this section that our lower bound is tight.
Specifically, we present a new distributed algorithm, SAFE-
DSHB, which yields a matching upper bound. Upon de-
scribing SAFE-DSHB in Section 4.1, we analyze its privacy
in Section 4.2 and convergence guarantees in Section 4.3
for smooth strongly convex and non-convex loss functions.

4.1. Description of SAFE-DSHB

Similar to DSGD, SAFE-DSHB is an iterative algorithm
where the server initiates each iteration (or step) t ≥ 0
by broadcasting its current model parameter vector θt to
all the workers. The initial parameter vector θ0 is chosen
arbitrarily by the server. Upon receiving θt from the server,
each honest worker wi samples a mini-batch S

(i)
t of b ≤

m data points randomly from its local dataset Di without
replacement. Then, wi computes the gradients ∇ℓ(θt;x)
for all x ∈ S

(i)
t , clips each of them using a threshold value

C and averages the clipped gradients to obtain a gradient
estimate g

(i)
t . Specifically,

g
(i)
t =

1

b

∑
x∈S

(i)
t

∇ℓ(θt;x) ·min

{
1,

C

∥∇ℓ(θt;x)∥

}
.

To protect the privacy of its data, wi then obfuscates g
(i)
t

with Gaussian noise to obtain g̃
(i)
t , i.e.,

g̃
(i)
t = g

(i)
t + ξ

(i)
t ; ξ

(i)
t ∼ N

(
0, σ2

DPId
)
,

where Id denotes the identity matrix of dimension d × d,
and N

(
0, σ2

DPId
)

denotes a d-dimensional Gaussian dis-
tribution with mean 0 and covariance σ2

DPId. Finally, wi

uses this noisy gradient to update its local Polyak’s momen-
tum (Polyak, 1964) denoted by m

(i)
t , which is then sent to

the server. Specifically, for t ≥ 1,

m
(i)
t = βt−1m

(i)
t−1 + (1− βt−1)g̃

(i)
t ,

Algorithm 1 SAFE-DSHB

Initialization: Initial model θ0, initial momentum m
(i)
0 = 0

for each honest worker wi, robust aggregation F , DP noise
σDP, batch size b, clipping threshold C, learning rates {γt},
momentum coefficients {βt}, and total number of steps T .

1: for t = 0 . . . T − 1 do
2: Server broadcasts θt to all workers.
3: for every honest worker wi, i ∈ H, in parallel do
4: Sample a mini-batch S

(i)
t of size b at random from

Di without replacement.
5: Clip and average the mini-batch gradients:

g
(i)
t =

1

b

∑
x∈S

(i)
t

Clip (∇ℓ(θt;x);C) ,

where Clip(g;C) := g ·min {1, C/ ∥g∥}.
6: Add noise to the mini-batch average gradient:

g̃
(i)
t = g

(i)
t + ξ

(i)
t ; ξ

(i)
t ∼ N (0, σ2

DPId).

7: Send m
(i)
t = βt−1m

(i)
t−1 + (1− βt−1)g̃

(i)
t .

8: end for
9: Server aggregates: Rt = F (m

(1)
t , . . . ,m

(n)
t ).

10: Server updates the model: θt+1 = θt − γtRt.
11: end for
12: return θ̂ uniformly sampled from {θ0, . . . , θT−1}.

where m
(i)
0 = 0 by convention, and βt ∈ [0, 1] is referred

to as the momentum coefficient. Recall that if worker wi

is adversarial, then it may send an arbitrary value for its
momentum m

(i)
t . Upon receiving the local momentums

from all the workers, the server aggregates them using F to
obtain Rt = F (m

(1)
t , . . . ,m

(n)
t ). Finally, the server updates

the model θt to

θt+1 = θt − γt Rt

where γt ≥ 0 is the learning rate at step t. The above
procedure is repeated for a total of T steps, after which
the server outputs θ̂ which is sampled uniformly from the
set {θ0, . . . , θT−1}. The complete learning procedure is
summarized in Algorithm 1.

4.2. Privacy of SAFE-DSHB

We present below the DP guarantee of SAFE-DSHB. To
state closed-form expressions, we will assume that the batch
size b is sufficiently small compared to m the number of
data points per worker. This assumption is only made for
pedagogical reasons, but is not necessary for the privacy
analysis to hold. In particular, the expressions that result
from removing this assumption are difficult to read and
interpret (Wang et al., 2019a). We defer the full DP analysis
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without this assumption to Appendix C.

Theorem 4.1. Consider Algorithm 1. Let ε > 0, δ ∈ (0, 1)
be such that ε ≤ log (1/δ). There exists a constant k > 0
such that, for a sufficiently small batch size b, when σDP ≥

k · 2Cb max

{
1,

b
√

T log (1/δ)

mε

}
, Algorithm 1 is (ε, δ)-DP.

4.3. Convergence of SAFE-DSHB

To present the convergence of SAFE-DSHB we first intro-
duce below a criterion, namely (f, κ)-robust averaging, for
an aggregation rule F that proves crucial in our analysis.

Definition 4.1. Let n ≥ 1, 0 ≤ f < n/2 and κ ≥ 0. An ag-
gregation rule F is said to be (f, κ)-robust averaging if for
any vectors x1, . . . , xn ∈ Rd, and any set S ⊆ {1, . . . , n}
of size n− f , the output x̂ = F (x1, . . . , xn) satisfies

∥x̂− xS∥2 ≤ κ · λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
,

where xS := 1
|S|
∑

i∈S xi and λmax denotes the maximum
eigenvalue. We refer to κ as the robustness coefficient of F .

Comparison to prior work. Our robustness criterion
is stronger than existing ones: (f, κ)-robustness (Allouah
et al., 2023), (f, λ)-resilience (Farhadkhani et al., 2022)
and (c, δmax)-ARAgg (Karimireddy et al., 2022). The
last two works bound the error with the diameter of hon-
est inputs, i.e., maximum squared pairwise distance. The
latter is greater than the empirical variance (bound used
in (f, κ)-robustness (Allouah et al., 2023)), which itself
is greater than the maximum eigenvalue of the empirical
covariance (that we use) in high-dimensional spaces (i.e.,
d > 1). In fact, the tight analysis of aggregation functions
(e.g., trimmed mean, Krum) conducted in (Allouah et al.,
2023) through the lens of (f, κ)-robustness directly im-
plies our (f, κ′)-robust averaging criterion, with κ′ ≤ d · κ.
However, aggregation rules that are optimal w.r.t. (f, κ)-
robustness (Allouah et al., 2023) may be suboptimal in our
context, as we need to suppress the dimension dependence
of κ for our tight bounds.

Tighter heterogeneity metric. We introduce a new metric
Gcov for quantifying the heterogeneity between the local
gradients of honest workers’ loss functions, which is ar-
guably tighter than G defined in Section 3.2. Specifically,

G2
cov := sup

θ∈Rd

sup
∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇L(θ;Di)−∇LH(θ)⟩2 .

Note that G2
cov above represents an upper bound on the

spectral norm of the empirical covariance of honest gra-
dients, which is smaller than their empirical variance G2.
Moreover, if the gradients have a well-conditioned empirical
covariance, then Gcov has weaker dependence on d.

We state our convergence result below in Theorem 4.2.
Essentially, we analyze the convergence of SAFE-DSHB
with an (f, κ)-robust averaging aggregation F , under as-
sumptions 2.2 and 2.3, for smooth strongly convex and
non-convex loss functions. We use the following notation:

L∗ = inf
θ∈Rd

LH(θ), L0 = LH(θ0)− L∗, a1 = 240,

a2 = 480, a3 = 5760, and a4 = 270. (3)

Theorem 4.2. Suppose that assumptions 2.2 and 2.3 hold
true, and that LH is L-smooth. Let F satisfy the condition
of (f, κ)-robust averaging. We let

σ2 =
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP

(
1 +

d

n− f

))
,

where σ2
b = 2(1− b

m )σ
2

b . Consider Algorithm 1 with T ≥ 1,
the learning rates γt and momentum coefficients βt spec-
ified below. We prove that the following holds, where the
expectation E [·] is over the randomness of the algorithm.
1. Strongly convex: Assume that LH is µ-strongly convex.

If γt = 10
µ(t+a1

L
µ )

and βt = 1− 24Lγt then

E [LH(θT )− L∗] ≤
4a1κG

2
cov

µ
+

2a21Lσ
2

µ2T
+

2a21L
2L0

µ2T 2
.

2. Non-convex: If γ = min
{

1
24L ,

√
a4L0

2σ
√
a3LT

}
and βt =

1− 24Lγ then

E
[
∥∇LH(θ̂)∥2

]
≤ a2κG

2
cov +

√
a3a4LL0σ√

T
+

a4LL0

T
.

Sketch of proof. We show that at each step t, the descent
LH(θt+1)−LH(θt) can be bounded from above. Doing so
is however non-trivial, as one needs to consider two conflict-
ing effects: (i) the drift between honest momentums, and (ii)
the deviation between the average honest momentum and
the true gradient. To control this trade-off, we use increasing
momentum coefficients and decreasing learning rates, and
introduce an adapted Lyapunov function Vt. Ignoring the
constants, the function can be written as follows:

Vt := (t+K)2 · E
[
LH(θt)− L∗ +

1

L
δt +

κ

L
∆t

]
,

where δt := ∥mt −∇LH(θt)∥2 represents the de-
viation of the momentum from the true gradient,
∆t := λmax

(
1

|H|
∑

i∈H(m
(i)
t −mt)(m

(i)
t −mt)

⊤
)

repre-

sents the drift between the honest momentums, and K := L
µ

denotes the condition number of LH.

Remark 4.3. Our strongly convex upper bound also holds
true for the larger class of smooth µ-PL functions (Karimi
et al., 2016), which includes some non-convex functions.

7
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Comparison to prior work. Our convergence rate in
O
(
1
T

)
for strongly convex losses is optimal in the non-

adversarial and privacy-free setting (Agarwal et al., 2009).
We improve over the state-of-the-art strongly convex analy-
sis (Data & Diggavi, 2021), without privacy, which features
a suboptimal excess term proportional to the stochastic noise
σ2. Essentially, we remove this dependency on σ2 thanks to
the use of momentum, although our convergence rate is in
O
(
1
T

)
instead of being exponential as in (Data & Diggavi,

2021). In fact, making σ2 vanish at a rate 1
T is crucial in our

setting, as the DP noise σ2
DP scales with T (Theorem 4.1).

We also improve over the state-of-the-art non-convex analy-
sis (Farhadkhani et al., 2022). Namely, our analysis features
a tighter characterization of the data heterogeneity Gcov,
instead of the traditional heterogeneity metric G.

5. Tight Upper Bound
We present a new aggregation rule named SMEA (Smallest
Maximum Eigenvalue Averaging) in Section 5.1, and show
that it yields a tight upper bound in Section 5.2.

5.1. Robust Aggregation: SMEA

Consider a set of n vectors x1, . . . , xn. Let S∗ be an arbi-
trary subset of [n] of size n− f with the smallest empirical
maximum eigenvalue, i.e.,

S∗ ∈ argmin
S⊆[n]

|S|=n−f

λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

SMEA outputs the average of the inputs in S∗, i.e.,

SMEA(x1, . . . , xn) :=
1

|S∗|
∑
i∈S∗

xi.

Note that SMEA draws inspiration from the minimum
diameter averaging method (El Mhamdi et al., 2018),
which itself is reminiscent of the minimal volume ellipsoid
method (Rousseeuw, 1985). We show that our aggregation
rule satisfies the criterion of (f, κ)-robust averaging.

Proposition 5.1. Let f < n/2. SMEA is (f, κ)-robust
averaging with

κ =
4f

n− f

(
1 +

f

n− 2f

)2

.

Proposition 5.1 implies that, when n ≥ (2 + η)f for some
constant η > 0, SMEA satisfies (f, κ)-robust averaging
with κ = O(f/n). Importantly, SMEA satisfies this high-
dimensional robustness property while being agnostic to the
statistical properties of the valid inputs, knowledge of which
is key in designing efficient robust estimators (Diakonikolas
et al., 2017; Steinhardt et al., 2018) (see Appendix B.2).

Computational complexity. However, as SMEA involves
computing the maximum eigenvalue of d-dimensional sym-
metric matrices, which is in O

(
d3
)
, the worst-case com-

putational complexity of SMEA is O
((

n
f

)
· d3
)
, which is

exponential in f . This shortcoming of our method should
be addressed in the future.

5.2. Upper Bound

Upon combining the results in theorems 4.1, 4.2, Proposi-
tion 5.1, and ignoring the vanishing terms in T , we obtain
Corollary 5.1 that quantifies the privacy-robustness-utility
trade-off of SAFE-DSHB using the SMEA aggregation rule.

Corollary 5.1. Consider Algorithm 1 with aggregation
F = SMEA, under the strongly convex setting of Theo-
rem 4.2. Suppose that assumptions 2.1, 2.2, 2.3 hold, and
that n ≥ (2 + η)f , for some absolute constant η > 0.
Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Then,
there exists a constant k > 0 such that, if σDP = k ·
2C/bmax {1, b

√
T log (1/δ)/εm}, then Algorithm 1 is (ε, δ)-

DP and (f, ϱ)-robust where

ϱ = O
(
d log (1/δ)

ε2nm2
+

f

n
· log (1/δ)

ε2m2
+

f

n
G2

)
.

Tightness. Our upper bound is tight, in the sense that
it matches the lower bound, up to the logarithmic factor
log (1/δ) in the first term. We believe that it is not possible
to improve upon our upper bound in general, but rather that
it may be possible to improve our lower bound in Proposi-
tion 3.1, by including the factor log (1/δ). This could be
done, for example, by assuming the stronger Rényi DP prop-
erty (Mironov, 2017), satisfied by the Gaussian mechanism,
instead of relying on the advanced composition theorem.

6. Conclusions and Future Work
Applying machine learning in sensitive public domains re-
quires algorithms that protect data privacy, while being ro-
bust to faults and adversarial behaviors. We present the first
tight analysis of the error incurred by any distributed ML
algorithm ensuring robustness to adversarial workers and
differential privacy for honest machines’ data against any
other curious entity. Our algorithm SAFE-DSHB yields a
tight upper bound for the class of smooth strongly convex
problems, up to a logarithmic factor. Proving a tighter lower
bound on the privacy cost, featuring the usual log (1/δ)
factor, is an appealing goal. Proving similar bounds for
the non-strongly convex class is also of interest. Also, in
Appendix E, we conduct small-scale experiments showing
encouraging results using our aggregation rule SMEA (as
well as other aggregation rules). Yet, while SMEA is simple
and agnostic to the statistical properties of honest data, it
has a high computational complexity. Deploying it on larger
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scale systems goes through designing variants with lower
complexity, and this is also an interesting research direction.
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Buc, F., Fox, E., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32, pp. 14774–
14784. Curran Associates, Inc., 2019.

13



On the Privacy-Robustness-Utility Trilemma in Distributed Learning

Organization of the Appendix
• Appendix A contains the proof of our lower bounds.

– Appendix A.1 reviews a known lower bound on estimating the average of one-way marginals under DP.
– Appendix A.2 contains the proof of the lower bound due to privacy alone in Proposition 3.1.
– Appendix A.3 contains the proof of the lower bound due to robustness alone in Proposition 3.2.
– Appendix A.4 contains the proof of the coupled lower bound in Proposition 3.3.
– Appendix A.5 contains the proof of the final lower bound in Theorem 3.1.

• Appendix B contains proofs of claims related to (f, κ)-robust averaging and SMEA.

– Appendix B.1 contains the analysis of SMEA in Proposition 5.1.
– Appendix B.2 discusses the filter algorithm introduced in (Diakonikolas et al., 2017), and its robustness property.

• Appendix C contains the privacy analysis of SAFE-DSHB.

– Appendix C.1 recalls preliminary results on DP and Rényi DP.
– Appendix C.2 presents the proof of the privacy guarantee in Theorem 4.1.

• Appendix D contains the convergence analysis of SAFE-DSHB and the upper bound.

– Appendix D.1 presents the proof outline for the convergence result presented in Theorem 4.2
– Appendix D.2 presents the proof of Theorem 4.2
– Appendix D.3 presents the proof of the upper bound presented in Corollary 5.1.
– Appendix D.4 presents an upper bound for the non-convex case.
– Appendix D.5 presents proofs for supporting lemmas used in the proof of Theorem 4.2

• Appendix E contains the experimental setup and results of our empirical evaluation.

– Appendix E.1 describes our experimental setup.
– Appendix E.2 contains our empirical results.
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A. Lower Bounds
In Section A.1, we recall lower bounds on centralized private algorithms. We then extend these results to distributed private
algorithms. We start by the lower bound due to privacy alone in Section A.2. Next, we show the lower bound due to
robustness alone in Section A.3. We then show the lower bound due to the privacy-robustness tradeoff in Section A.4.
Finally, we merge the previous results to show the final lower bound in Section A.5.

A.1. Lower Bound in Centralized DP

We recall lower bound (Steinke & Ullman, 2016) on the error incurred by centralized differentially private mechanisms
for estimating d-dimensional one-way marginals; i.e., the average of rows of a dataset. Recall that Steinke & Ullman
prove a sharper bound (by factor log (1/δ)) than Bassily et al., whose work is based on lower bounds using fingerprinting
codes (Bun et al., 2014). We recall below the main lower bound from (Steinke & Ullman, 2016).
Lemma A.1 (Theorem 1.1, Steinke & Ullman (2016)). Let m, d ≥ 1, ε, δ ∈ (0, 1) and X = {±1}d,Y = [±1]d. Consider
any (ε, δ)-DP centralized algorithmM : X → Y . Assume that δ ≤ 1/m1+Ω(1) and that δ ≥ 2−o(m). Let D ∈ Xm and D
denote the average of records of D. For any ϱ ≤ 1/10 such that for every D ∈ Xm, E

[∥∥M(D)−D
∥∥
1

]
≤ dϱ, we have:

m = Ω

(√
d log (1/δ)

εϱ

)
.

Observe in Lemma A.1 that the lower bound assumption δ ≤ 1/m1+Ω(1) is slightly more restrictive than the folklore
assumption δ = o(1/m) (Dwork et al., 2014). The latter ensures that (ε, δ)-DP precludes some intuitively non-private
algorithms, e.g., when δ ≥ 1/m, the algorithm that returns ⌊mδ⌋ random elements of the dataset is (0, δ)-DP.

A.2. Case I: Non-adversarial Setting

We prove below our lower bound due to privacy, stated in Proposition 3.1.
Proposition 3.1. Let n,m ≥ 1, and ε, δ ∈ (0, 1). Consider X = {± 1√

d
}d and ℓ = ∥·∥2. Consider an arbitrary (ε, δ)-DP

distributed algorithm A : Xm×n → Rd. Assume that ε ≤ 1/4
√

2n ln (m+ 1) and that 2−m1−γ ≤ nδ ≤ 1/8m1+γ for
some γ ∈ (0, 1). For any ϱ ≤ 1/100, if A is (0, ϱ)-robust, then

ϱ = Ω

(
d

ε2nm2

)
.

Proof. Let n,m, d ≥ 1, ε, δ ∈ (0, 1), and ϱ ≤ 1/100. Consider X =
{
±1/
√
d
}d

and ℓ = ∥·∥2. We consider an arbitrary

distributed algorithm A : Xm×n → Rd that satisfies (ε, δ)-distributed DP (see Definition 2.3), and (0, ϱ)-robustness (see
Definition 2.1). We assume that ε ≤ 1/4

√
2n ln (m+ 1) and that 2−m1−γ ≤ nδ ≤ 1/8m1+γ for some γ ∈ (0, 1).

Proof outline. We consider the centralized algorithmM which takes as input datasetD ∈ Xm and executesA(D1, . . . ,Dn)
on n copies of D, i.e., D1 = . . . = Dn = D. Then, we derive the DP guarantee and utility ofM using the facts that A
satisfies (ε, δ)-distributed DP (see Definition 2.3) and (0, ϱ)-robustness, respectively. Finally, we apply the centralized DP
lower bound onM (stated in Lemma A.1) to conclude the proof.

Privacy guarantee ofM. We first analyze the DP guarantees ofM inherited from A.

Recall from Definition 2.3 that, since A is (ε, δ)-DP, it can communicate with each database Di subject to (ε, δ)-DP. Thus,
when runningM, in the worst case, algorithm A may adaptively query the same database D a total of n times, subject
to (ε, δ)-DP budget for each query. Therefore,M is (εn, δn)-DP where (εn, δn) is the privacy guarantee resulting from
composing (ε, δ)-DP across n adaptive queries. Thanks to the advanced composition theorem (Dwork et al., 2014), we
obtain that, for any δ′ ∈ (0, 1),

εn = ε
√

2n ln (1/δ′) + nε(eε − 1), δn = nδ + δ′. (4)

As ε ∈ (0, 1), we have eε − 1 ≤ 2ε and thus

εn ≤ ε
√
2n ln (1/δ′) + 2nε2. (5)
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We now set δ′ as follows:
δ′ =

1

(m+ 1)1+γ
∈ (0, 1). (6)

We verify below the privacy conditions onM of Lemma A.1. We first prove that ln (1/δ′) ∈ [nε2, 1/16nε2), and then that
εn ≤ 4ε

√
n ln (1/δ′) < 1.

Bound on ln (1/δ′): Since we assume ε ≤ 1/4
√
2n ln (m+ 1) (with m ≥ 1), we have

nε2 ≤ 1/16 ≤ 1/16nε2.

On the other hand, as m ≥ 1, it follows from the expression (6) of δ′ that 1/δ′ ≥ 2 and ln (1/δ′) ≥ 1/4 ≥ nε2.

Also, since ε ≤ 1/4
√

2n ln (m+ 1) we have ln (m+ 1) ≤ 1/32nε2, and thus (because γ ∈ (0, 1)) we have

ln (1/δ′) = (1 + γ) ln (m+ 1) < 2 ln (m+ 1) ≤ 1/16nε2.

This proves that
ln (1/δ′) ∈ [nε2, 1/16nε2). (7)

Bound on εn: Thanks to (7), we have ln (1/δ′) ≥ nε2. Thus, by taking square roots we have ε
√
n ≤

√
ln (1/δ′).

Therefore, nε2 ≤ ε
√

n ln (1/δ′). Then, using the bound on εn in (5), we obtain

εn ≤ ε
√

2n ln (1/δ′) + 2nε2 ≤ ε
√
2n ln (1/δ′) + 2ε

√
n ln (1/δ′) ≤ 4ε

√
n ln (1/δ′).

On the other hand, since we showed in (7) that ln (1/δ′) < 1/16nε2, we have 4ε
√
n ln (1/δ′) < 1. This proves that

εn ≤ 4ε
√

n ln (1/δ′) < 1. (8)

From (8), we have εn ∈ (0, 1). From (4), we have δn = nδ + δ′. Thus, by assumption on δ and (6), the parameter δn
satisfies both δn ≥ nδ ≥ 2−m1−γ

= 2−o(m) and δn = nδ + δ′ ≤ 1/8m1+γ + 1/(m+ 1)1+γ = 1/m1+Ω(1).

Utility guarantees ofM. We now analyze the utility guarantees ofM, inherited from A.

Let D ∈ Xm be an arbitrary set of m points from the specified space X =
{
±1/
√
d
}d

. Recall that A is assumed

(0, ϱ)-robust. By Definition 2.1, for any D1, . . . ,Dn ∈ Xm, the output θ̂ = A(D1, . . . ,Dn) verifies

ϱ ≥ E
[
L(θ̂;D1, . . . ,Dn)− inf

θ∈Rd
L(θ;D1, . . . ,Dn)

]
, (9)

In this particular case, since D1, . . . ,Dn = D and ℓ(θ;x) := ∥θ − x∥2, we have for all θ ∈ Rd,

L(θ;D1, . . . ,Dn) =
1

nm

n∑
i=1

∑
x∈Di

∥θ − x∥2 =
1

m

∑
x∈D
∥θ − x∥2 = L(θ;D). (10)

We can rewrite the above upon applying the bias-variance decomposition: for any x1, . . . , xn we have 1
n

∑n
i=1 ∥xi − x∥2 =

1
n

∑n
i=1 ∥xi∥2 − ∥x∥2 where x = 1

n

∑n
i=1 xi. Thus, denoting D := 1

m

∑
x∈D x, we can rewrite (10) as

L(θ;D1, . . . ,Dn) = L(θ;D) =
∥∥θ −D∥∥2 + 1

m

∑
x∈D

∥∥D − x
∥∥2 . (11)

This loss is minimized at θ = D, and the minimum value L∗ := 1
m

∑
x∈D

∥∥D − x
∥∥2. Thus, substituting the expression of

L from (11) in (9), we obtain that

ϱ ≥ E
[
L(θ̂;D)− L∗

]
= E

[∥∥∥θ̂ −D∥∥∥2] .
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Note that by construction ofM, we haveM(D) = A(D, . . . ,D) = θ̂. Thus, from above we obtain that

ϱ ≥ E
[∥∥M(D)−D

∥∥2] .
Thus, as ∥·∥1 ≤

√
d ∥·∥, by taking square roots above, applying Jensen’s inequality and multiplying by d, we obtain that

d
√
ϱ ≥ d

√
E
[∥∥M(D)−D

∥∥2] ≥ d E
[∥∥M(D)−D

∥∥] ≥ √d E
[∥∥M(D)−D

∥∥
1

]
= E

[∥∥∥√d · M(D)−
√
d · D

∥∥∥
1

]
.

(12)
Recall that X = {±1/

√
d}d. As in Theorem 5.2 of (Steinke & Ullman, 2016), we define a mechanismM′ : {±1}d×m →

[±1]d as follows: on input D′ ⊆ {±1}d×m let D = D′/
√
d ∈ Xm, return

√
d · M(D) truncated to [±1]d. Thus, by (12),

mechanismM′ verifies for all D′ ⊆ {±1}d×m that

d
√
ϱ ≥ E

[∥∥M′(D)−D′
∥∥
1

]
. (13)

Invoking Lemma A.1. Note thatM′, similar toM, is also (εn, δn)-DP by the argument of post-processing. Recall that we
have shown earlier that εn, δn satisfy the conditions of Lemma A.1. Since ϱ ≤ 1/100, we also have

√
ϱ ≤ 1/10. Therefore,

upon applying Lemma A.1 toM′, in conjunction with (13), we deduce that

m = Ω

(√
d log (1/δn)

εn
√
ϱ

)
.

By rearranging terms above and taking squares, we obtain that

ϱ = Ω

(
d log (1/δn)

ε2nm
2

)
. (14)

Recall that we have already shown in (8) and (4), respectively, that εn ≤ 4ε
√

n ln (1/δ′) and δn = nδ + δ′, where
δ′ = 1/(m+ 1)1+γ (defined in (6)). Therefore, (14) yields

ϱ = Ω

(
d log (1/(nδ + δ′))

ε2nm2 log (1/δ′)

)
. (15)

As ln(1+x) ≤ x, substituting δ′ from (6), and using the assumption that δ ≤ 1/8nm1+γ , γ ∈ (0, 1),m ≥ 1, we obtain that

ln (1/(nδ + δ′))

ln (1/δ′)
=

ln (1/δ′(1 + nδ/δ′))

ln (1/δ′)
= 1 +

ln (1/(1 + nδ/δ′))

ln (1/δ′)

= 1− ln (1 + nδ/δ′)

ln (1/δ′)
≥ 1− nδ

δ′ ln (1/δ′)
= 1− nδ(m+ 1)γ+1

(1 + γ) ln (m+ 1)

≥ 1− (m+ 1)γ+1

8(1 + γ)m1+γ ln (m+ 1)
≥ 1− (2m)γ+1

8(1 + γ)m1+γ ln (m+ 1)

= 1− 2γ+1

8(1 + γ) ln (m+ 1)
≥ 1− 4

8 ln (m+ 1)
≥ 1− 1

2 ln (2)
= Ω(1).

Finally, substituting from above in Equation (15) proves the desired result, i.e.,

ϱ = Ω

(
d

ε2nm2

)
.

A.3. Case II: No Privacy

We prove below the lower bound due to robustness stated in Proposition 3.2.
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Proposition 3.2. Let Assumption 2.1 hold. Let n ≥ 1, 1 ≤ f < n/2, and ν = 16f(n−2f)
(n−f)2 . Consider X = {± G√

νd
}d and

ℓ = ∥·∥2. If a distributed algorithm is (f, ϱ)-robust, then

ϱ = Ω

(
f

n
·G2

)
.

Proof. The proof is similar to that of Theorem III (Karimireddy et al., 2022). Let n ≥ 1, 1 ≤ f < n/2, ν = 16f(n−2f)
(n−f)2 , and

G > 0. Consider X = {± G√
νd
}d and ℓ = ∥·∥2. Let Assumption 2.1 hold. Assume that algorithm A is (f, ϱ)-robust.

Denote by x = G√
νd
· 1 ∈ Rd, where 1 ∈ Rd is the vector of ones. Consider the following datasets D1 = . . . = Dn−f =

{x}m (i.e. all rows are x) and Dn−f+1 = . . . = Dn = {−x}m (i.e. all rows are −x). Consider the two situations of honest
identitiesH1 = {1, . . . , n− f} andH2 = {f + 1, . . . , n}.

We first show that the loss functions L(· ;D1), . . . ,L(· ;Dn) (defined using ℓ in Section 2) satisfy Assumption 2.1 in both
situations. This is straightforward in situationH1 since honest losses are identical. In situationH2, we have for all θ ∈ Rd,

∇LH2(θ) =
1

n− f

∑
i∈H2

∇L(θ;Di) =
n− 2f

n− f
2(θ − x) +

f

n− f
2(θ + x) = 2

(
θ − n− 3f

n− f
x

)
.

Observe that, as n > 2f , the intersectionH1 ∩H2 = {f + 1, . . . , n− f} is non-empty. Therefore, thanks to the choice of
x, we now show that Assumption 2.1 holds, as for all θ ∈ Rd we have

1

|H2|
∑
i∈H2

∥∇L(θ;Di)−∇LH2(θ)∥
2
=
|H1 ∩H2|
n− f

∥∇L(θ;Df+1)−∇LH2(θ)∥
2

+
|H2 \ H1|
n− f

∥∇L(θ;Dn)−∇LH2
(θ)∥2

=
n− 2f

n− f

∥∥∥∥2(θ − x)− 2(θ − n− 3f

n− f
x)

∥∥∥∥2
+

f

n− f

∥∥∥∥2(θ + x)− 2(θ − n− 3f

n− f
x)

∥∥∥∥2
=

4(n− 2f)

n− f

∥∥∥∥ −2fn− f
x

∥∥∥∥2 + 4f

n− f

∥∥∥∥2(n− 2f)

n− f
x

∥∥∥∥2 =
16f(n− 2f)

(n− f)2
∥x∥2

= ν ∥x∥2 = G2.

Now, denote L∗,H1
:= infRd LH1

and L∗,H2
:= infRd LH2

. Since learning algorithm A is (f, ϱ)-robust, it outputs θ̂ such

that E
[
LH1

(θ̂)− L∗,H1

]
≤ ϱ and E

[
LH2

(θ̂)− L∗,H2

]
≤ ϱ. Note that situations H1 and H2 are indistinguishable to

algorithm A because it ignores the honest identities, and thus θ̂ is the same in both situations.

Recall that the expression of loss LH1
is

LH1
=

1

|H1|
∑
i∈H1

L(θ;Di) =
1

|H1|
∑
i∈H1

∥θ − x∥2 = ∥θ − x∥2 .

Therefore, the loss is minimized at θ = x and we have L∗,H1
= LH1

(x) = 0. Thus, we have

E
[
LH1

(θ̂)− L∗,H1

]
= E

[∥∥∥θ̂ − x
∥∥∥2] .

18



On the Privacy-Robustness-Utility Trilemma in Distributed Learning

On the other hand, after some algebraic manipulations, the expression of loss LH2
is

LH2(θ) =
1

|H2|
∑
i∈H2

L(θ;Di) =
|H1 ∩H2|
n− f

· ∥θ − x∥2 + |H2 \ H1|
n− f

· ∥θ + x∥2

=
n− 2f

n− f
· (∥θ∥2 + ∥x∥2 − 2 ⟨θ, x⟩) + f

n− f
· (∥θ∥2 + ∥x∥2 + 2 ⟨θ, x⟩)

=

∥∥∥∥θ − n− 3f

n− f
x

∥∥∥∥2 + ν ∥x∥2 .

Therefore, the loss is minimized at θ = n−3f
n−f x and we have L∗,H2

= ν ∥x∥2. Thus, we obtain

E
[
LH2

(θ̂)− L∗,H2

]
= E

[∥∥∥∥θ̂ − n− 3f

n− f
x

∥∥∥∥2
]
.

Recall that ν = 16f(n−2f)
(n−f)2 . Therefore, invoking Jensen’s inequality, we have

ϱ ≥ max
{
E
[
LH1

(θ̂)− L∗,H1

]
,E
[
LH2

(θ̂)− L∗,H2

]}
≥ 1

2

(
E
[
LH1

(θ̂)− L∗,H1

]
+ E

[
LH2

(θ̂)− L∗,H2

])
=

1

2

(∥∥∥θ̂ − x
∥∥∥2 + ∥∥∥∥θ̂ − n− 3f

n− f
x

∥∥∥∥2
)
≥ 1

4

∥∥∥∥ 2f

n− f
x

∥∥∥∥2 =

(
f

n− f

)2
G2

ν
=

1

16
· f

n− 2f
G2. (16)

Since n− 2f ≤ n, we obtain ϱ ≥ 1
16 ·

f
n G2, which concludes the proof.

A.4. Case III: Adversarial Setting

We show below the lower bound from Proposition 3.3 due to the privacy-robustness tradeoff.

Proposition 3.3. Let n ≥ 3, 1 ≤ f < n/2, m ≥ 1, ε, δ ∈ (0, 1), and ν = 16f(n−2f)
(n−f)2 . Consider X = {± 1√

d
}d ∪ {± 1√

νd
}d

and ℓ = ∥·∥2. Consider any (ε, δ)-DP distributed algorithm A : Xm×n → Rd. Assume that 2−o(m) ≤ δ ≤ 1/m1+Ω(1).
For any ϱ ≤ f+1

100(n−f) , if A is (f, ϱ)-robust, then

ϱ = Ω

(
f + 1

n− f
· log (1/δ)

ε2m2

)
.

Proof. Let n ≥ 3, 1 ≤ f < n/2, m ≥ 1, d ≥ 1, ε, δ ∈ (0, 1), ν = 16f(n−2f)
(n−f)2 , and ϱ ≤ f+1

100(n−f) . Consider

X = {±1/
√
d}d ∪ {±1/

√
νd}d and ℓ = ∥·∥2. We consider a distributed algorithm A : Xm×n → Rd that satisfies

(ε, δ)-distributed DP where 2−o(m) ≤ δ ≤ 1/m1+Ω(1) and (f, ϱ)-robustness.

We consider the following datasets. Let 1 denote the vector of ones in Rd. For i ∈ {2, . . . , n− f}, we set

Di = D+ := {+ 1√
d
· 1}m,

i.e., all rows are + 1√
d
· 1 ∈ Rd. For i ∈ {n− f + 1, . . . , n} we set

Di = D− := {− 1√
d
· 1}m,

i.e., all rows are − 1√
d
· 1 ∈ Rd. Finally, we fix D1 ∈ Xm to be an arbitrary dataset with every element having identical

coordinates. That is, for arbitrary α1,1, . . . , α1,m ∈ {±1}, we set

D1 =

{
α1,1√

d
· 1, . . . , α1,m√

d
· 1
}
.
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Proof outline. We consider the centralized algorithmM : Xm → Rd which takes as input dataset D1 ∈ Xm and executes
A(D1,D2, . . . ,Dn), where the datasets D2, . . . ,Dn are fixed above. We first derive the DP and utility guarantees M
inherits from A, which satisfies (ε, δ)-distributed DP (see Definition 2.3) and (f, ϱ)-robustness, and then conclude the proof
by applying the centralized lower bound Lemma A.1 toM.

Privacy guarantees ofM. We first state the privacy guarantees ofM inherited from A.

As per Definition 2.3, since A is (ε, δ)-DP, all communications with worker w1 (whose dataset is D1) are (ε, δ)-DP. It
follows directly thatM is (ε, δ)-DP by post-processing.

Utility guarantees ofM. We now analyze the utility guarantees ofM inherited from A.

Since A is (f, ϱ)-robust (Definition 2.1), the output θ̂ =M(D1) = A(D1, . . . ,Dn) verifies

ϱ ≥ E
[
LH(θ̂)− L∗

]
, (17)

for any set of honest identitiesH ⊆ {1, . . . , n}, |H| = n− f , where we denote L∗ := infR LH.

Reduction to one-dimensional space: We now show that we can simply consider d = 1, without loss of generality.
For this, we develop the RHS of (17). We have for any θ ∈ Rd andH ⊆ {1, . . . , n}, |H| = n− f :

LH(θ) =
1

|H|
∑
i∈H

1

m

∑
x∈Di

∥θ − x∥2 . (18)

The above function is minimized at θ∗H := 1
|H|
∑

i∈HDi the average of one-way marginals Di := 1
m

∑
x∈Di

x.
Therefore, the minimum of LH is L∗,H := LH(θ∗H).
Recall the following bias-variance decomposition: for any x1, . . . , xn ∈ Rd we have 1

n

∑n
i=1 ∥xi − x∥2 =

1
n

∑n
i=1 ∥xi∥2 − ∥x∥2, where we denoted x := 1

n

∑n
i=1 xi. Therefore, recalling (18) and θ∗H = 1

|H|
∑

i∈HDi, we
have

LH(θ)− L∗,H = LH(θ)− LH(
1

|H|
∑
i∈H
Di) =

∥∥∥∥∥θ − 1

|H|
∑
i∈H
Di

∥∥∥∥∥
2

. (19)

Recall our setting of datasets in the beginning of the proof: in particular, for every i ∈ {1, . . . , n}, each element of
dataset Di has identical coordinates. Thus, there is αi ∈ [±1] such that Di =

αi√
d
· 1. Plugging this in (19) yields:

LH(θ)− L∗,H =

∥∥∥∥∥θ − 1

|H|
∑
i∈H
Di

∥∥∥∥∥
2

=

∥∥∥∥∥θ − 1√
d · |H|

∑
i∈H

αi1

∥∥∥∥∥
2

=

d∑
k=1

∣∣∣∣∣θk − 1√
d · |H|

∑
i∈H

αi

∣∣∣∣∣
2

=
1

d

d∑
k=1

∣∣∣∣∣√d · θk − 1

|H|
∑
i∈H

αi

∣∣∣∣∣
2

, (20)

where θk denotes the k-th coordinate of θ ∈ Rd. Upon applying (17) and then Jensen’s inequality, we obtain

ϱ ≥ E
[
LH(θ̂)− L∗,H

]
=

1

d

d∑
k=1

E

∣∣∣∣∣√d · θ̂k − 1

|H|
∑
i∈H

αi

∣∣∣∣∣
2
 ≥ E

∣∣∣∣∣1d
d∑

k=1

√
d · θ̂k −

1

|H|
∑
i∈H

αi

∣∣∣∣∣
2


= E

∣∣∣∣∣
d∑

k=1

θ̂k√
d
− 1

|H|
∑
i∈H

αi

∣∣∣∣∣
2
 . (21)

Therefore, everything happens as if d = 1. That is, data universe X = {±1}, and datasets D+ = {+1}m,
D− = {−1}m, and D1 = {α1,1, . . . , α1,m} being arbitrary in Xm. Indeed, denote θ̃ :=

∑d
k=1

θ̂k√
d
∈ R. Recall that,
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now that d = 1, each αi ∈ [±1] is such that Di = αi. In this one-dimensional setting of datasets, we develop the
RHS of (21), by using the aforementioned bias-variance decomposition backwards:

ϱ ≥ E

∣∣∣∣∣θ̃ − 1

|H|
∑
i∈H

αi

∣∣∣∣∣
2
 = E

[
1

|H|
∑
i∈H

1

m

∑
x∈Di

∣∣∣θ̃ − x
∣∣∣2]− E

 1

|H|
∑
i∈H

1

m

∑
x∈Di

∣∣∣∣∣x− 1

|H|
∑
i∈H
Di

∣∣∣∣∣
2


= E
[
LH(θ̃)− L∗,H

]
.

Thus, (17) holds with loss ℓ being the one-dimensional quadratic loss and mechanism M̃ returning θ̃ instead of θ̂.
Since θ̃ is a function of θ̂ without access to D1, M̃ is also (ε, δ)-DP by post-processing. Throughout the remainder
of the proof, we set d = 1 without loss of generality.

We consider below the RHS of (17). We have for any θ ∈ R:

LH(θ) =
1

|H|
∑
i∈H

1

m

∑
x∈Di

|θ − x|2 . (22)

The above function is minimized at θ∗H := 1
|H|
∑

i∈HDi the average of one-way marginals Di :=
1
m

∑
x∈Di

x.

Next, following (30), we consider two possible cases of honest identities, a priori indistinguishable to the algorithm. In the
first case, we consider the set of honest identitiesH to beH1 = {1, . . . , n− f}. In the second case, we consider the set of
honest identitiesH to beH2 := {1} ∪ {f + 2, . . . , n}. As |H| = n− f , upon invoking Definition 2.1 in both the cases, we
obtain a upper bound on E

[
|θ̂ −D1|2

]
in terms of ϱ.

First case: ConsiderH to beH1 = {1, . . . , n− f}. Recall that Di = D+ for all i ∈ {2, . . . , n− f}. By (22), we have for
all θ ∈ R:

LH1(θ) =
1

|H1|
∑
i∈H1

1

m

∑
x∈Di

|θ − x|2 =
1

|H1|
1

m

∑
x∈D1

|θ − x|2 + |H1| − 1

|H1|
1

m

∑
x∈D+

|θ − x|2

=
1

n− f

1

m

∑
x∈D1

|θ − x|2 + (1− 1

n− f
)
∣∣θ −D+

∣∣2
≥ 1

n− f

∣∣θ −D1

∣∣2 + (1− 1

n− f
)
∣∣θ −D+

∣∣2 . (Jensen’s inequality)

Thus, from above we obtain that

E
[
LH1(θ̂)

]
≥ 1

n− f
E
[
|θ̂ −D1|2

]
+ (1− 1

n− f
)E
[
|θ̂ −D+|2

]
. (23)

Now, recall the following bias-variance decomposition: for any x1, . . . , xn ∈ R we have 1
n

∑n
i=1 |xi − x|2 =

1
n

∑n
i=1 |xi|2 − |x|2 where x := 1

n

∑n
i=1 xi. Thus, from (22) we obtain that θ∗H1

= 1
|H1|

∑
i∈H1

Di. Thus, as |x|2 = 1 for
all x ∈ X , we have

L∗,H1
= LH1

(θ∗H1
) =

1

m |H1|
∑
i∈H1

∑
x∈Di

∣∣θ∗H1
− x
∣∣2 =

1

m |H1|
∑
i∈H1

∑
x∈Di

|x|2 −
∣∣θ∗H1

∣∣2
= 1−

∣∣θ∗H1

∣∣2 = 1−

∣∣∣∣∣ 1

|H1|
∑
i∈H1

Di

∣∣∣∣∣
2

= 1−
∣∣∣∣ 1

n− f
D1 + (1− 1

n− f
)D+

∣∣∣∣2
= 1−

∣∣∣∣ 1

n− f
D1 + 1− 1

n− f

∣∣∣∣2 = 1− 1

(n− f)2
∣∣D1 + n− f − 1

∣∣2 .
Note that, asD1 ∈ Xm = {±1}m, we haveD1 ∈ [±1]. Also, since f < n/2 and n ≥ 3, we have n−f −2 ≥ 0. Therefore,
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∣∣2 ≥ |n− f − 2|2. Substituting this in the above, we obtain that

L∗,H1 = 1− 1

(n− f)2
∣∣D1 + n− f − 1

∣∣2 ≤ 1− 1

(n− f)2
|n− f − 2|2 = 1−

∣∣∣∣1− 2

n− f

∣∣∣∣2
=

2

n− f
(2− 2

n− f
) =

4

n− f
(1− 1

n− f
) ≤ 4

n− f
≤ 4(f + 1)

n− f
. (24)

Substituting from (23) and (24) in (17) we obtain that

ϱ+
4(f + 1)

n− f
≥ ϱ+ L∗,H1 ≥ E

[
LH1(θ̂)

]
≥ 1

n− f
E
[
|θ̂ −D1|2

]
+ (1− 1

n− f
)E
[
|θ̂ −D+|2

]
. (25)

Second case: ConsiderH to beH2 = {1} ∪ {f + 2, . . . , n}. Recall that Di = D− for all i ∈ {n− f + 1, . . . , n}. By (22),
we have for all θ ∈ R:

LH2(θ) =
1

|H2|
∑
i∈H2

1

m

∑
x∈Di

|θ − x|2

=
1

|H2|
1

m

∑
x∈D1

|θ − x|2 +
(
|H2| − 1− f

|H2|

)
1

m

∑
x∈D+

|θ − x|2 +
(

f

|H2|

)
1

m

∑
x∈D−

|θ − x|2

=

(
1

n− f

)
1

m

∑
x∈D1

|θ − x|2 +
(
n− 2f − 1

n− f

) ∣∣θ −D+

∣∣2 + f

n− f

∣∣θ −D−
∣∣2

≥
(

1

n− f

)
1

m

∑
x∈D1

|θ − x|2 + f

n− f

∣∣θ −D−
∣∣2 (n ≥ 2f + 1)

≥ 1

n− f

∣∣θ −D1

∣∣2 + f

n− f

∣∣θ −D−
∣∣2 . (Jensen’s inequality)

Substituting θ = θ̂, and taking expectation yields

E
[
LH2

(θ̂)
]
≥ 1

n− f
E
[
|θ̂ −D1|2

]
+

f

n− f
E
[
|θ̂ −D−|2

]
. (26)

Now, recall the following bias-variance decomposition: for any x1, . . . , xn ∈ R we have 1
n

∑n
i=1 |xi − x|2 =

1
n

∑n
i=1 |xi|2 − |x|2, where we denoted x := 1

n

∑n
i=1 xi. Using this in (22), and that ∀x ∈ X , |x|2 = 1, we get

L∗,H2
= LH2

(θ∗H2
) =

1

m |H2|
∑
i∈H2

∑
x∈Di

∣∣θ∗H2
− x
∣∣2 =

1

m |H2|
∑
i∈H2

∑
x∈Di

|x|2 −
∣∣θ∗H2

∣∣2
= 1−

∣∣θ∗H2

∣∣2 = 1−

∣∣∣∣∣ 1

|H2|
∑
i∈H2

Di

∣∣∣∣∣
2

= 1−
∣∣∣∣ 1

n− f
D1 +

n− 2f − 1

n− f
D+ +

f

n− f
D−

∣∣∣∣2
= 1−

∣∣∣∣ 1

n− f
D1 +

n− 2f − 1

n− f
− f

n− f

∣∣∣∣2 = 1−
∣∣∣∣1 + 1

n− f
D1 −

2f + 1

n− f

∣∣∣∣2
=

(
1− 1− 1

n− f
D1 +

2f + 1

n− f

)(
1 + 1 +

1

n− f
D1 −

2f + 1

n− f

)
=

(
2f + 1−D1

n− f

)(
2− 2f + 1−D1

n− f

)
.

Note that, as D1 ∈ Xm = {±1}m, we have D1 ∈ [±1]. This, together with n ≥ 2f + 1, implies that both the terms in the
product above are non-negative. Moreover, as D1 ≥ −1, the first term can be bounded by

2f + 1−D1

n− f
≤ 2(f + 1)

n− f
.
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Similarly, as D1 ≤ 1, the second term can be bounded by

2− 2f + 1−D1

n− f
≤ 2− 2f

n− f
≤ 2.

Consequently, we have

L∗,H2 ≤
4(f + 1)

n− f
. (27)

Invoking (17) with the set of honest identitiesH2, and using the bounds shown in (26), (27) yields:

ϱ+
4(f + 1)

n− f
≥ ϱ+ L∗,H2

≥ E
[
LH2

(θ̂)
]
≥ 1

n− f
E
[
|θ̂ −D1|2

]
+

f

n− f
E
[
|θ̂ −D−|2

]
. (28)

Final step: We deduce from (25), (28) that

ϱ+
4(f + 1)

n− f
≥ max

{ 1

n− f
E
[
|θ̂ −D1|2

]
+ (1− 1

n− f
)E
[
|θ̂ −D+|2

]
,

1

n− f
E
[
|θ̂ −D1|2

]
+

f

n− f
E
[
|θ̂ −D−|2

]}
=

1

n− f
E
[
|θ̂ −D1|2

]
+max

{
(1− 1

n− f
)E
[
|θ̂ −D+|2

]
,

f

n− f
E
[
|θ̂ −D−|2

]}
≥ 1

n− f
E
[
|θ̂ −D1|2

]
+

f

n− f
max

{
E
[
|θ̂ −D+|2

]
,E
[
|θ̂ −D−|2

]}
, (29)

where the last inequality is due to f < n
2 , which implies that 1− 1

n−f ≥
f

n−f . Besides, observe that, asD1 ∈ Xm = {±1}m,
we have D1 ∈ [±1]. Recall that D+ = +1 and D− = −1. Thus, it holds that

E
[
|θ̂ −D1|2

]
≤ max (E

[
|θ̂ −D+|2

]
,E
[
|θ̂ −D−|2

]
). (30)

Indeed, since D1 ∈ [±1], we can write D1 = λ × (+1) + (1 − λ) × (−1) for some λ ∈ [0, 1]. Thus, using
Jensen’s inequality and then taking expectations, we have E

[
|θ̂ −D1|2

]
≤ λE

[
|θ̂ − 1|2

]
+ (1 − λ)E

[
|θ̂ + 1|2

]
≤

max (E
[
|θ̂ − 1|2

]
,E
[
|θ̂ + 1|2

]
).

Using (30) in (29), we obtain, for every D1 ∈ Xm, that

ϱ+
4(f + 1)

n− f
≥ f + 1

n− f
E
[
|θ̂ −D1|2

]
. (31)

Before concluding, recall that 1 ≤ f ≤ n
2 , thus applying Proposition 3.2 with G = 1 yields

ϱ = Ω

(
f

n

)
= Ω

(
f + 1

n− f

)
. (32)

Indeed, since the data universe considered in the proof includes {± 1√
νd
}d, we can apply Proposition 3.2. Plugging this back

in (31), we have for every D1 ∈ Xm that

ϱ = Ω

(
f + 1

n− f
E
[
|θ̂ −D1|2

])
.

Invoking Lemma A.1. Hence, since ϱ ≤ f+1
100(n−f) , we can proceed in the same way as in the proof of Proposition 3.1 to

leverage Lemma A.1 (with d = 1) for showing

n− f

f + 1
ϱ = Ω

(
log (1/δ)

ε2m2

)
.

We finally conclude the desired result by rearranging terms and ignoring absolute constants:

ϱ = Ω

(
f + 1

n− f
· log (1/δ)

ε2m2

)
.
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A.5. Final Lower Bound

We prove below the final lower bound stated in Theorem 3.1.

Theorem 3.1. Let X = Rd, ℓ = ∥·∥2, n ≥ 3, 0 ≤ f < n/2, m ≥ 1, and ε, δ ∈ (0, 1). Consider arbitrary datasets
D1, . . . ,Dn ∈ Xm such that Assumption 2.1 is satisfied with G ≥ 1. Let A : Xm×n → Rd be an (ε, δ)-DP distributed
algorithm. Assume that ε ≤ 1/4

√
2n ln (m+ 1), and that 2−m1−γ ≤ nδ ≤ 1/8m1+γ for some γ ∈ (0, 1). For any

ϱ ≤ f+1
100(n−f) , if A is (f, ϱ)-robust, then

ϱ = Ω̃

(
d

ε2nm2
+

f

n
· 1

ε2m2
+

f

n
·G2

)
.

Proof. The proof consists in showing that the setting we consider in the above theorem allows us to merge the lower bounds
from propositions 3.1, 3.3, and 3.2. First, we remark that the case f = 0 corresponds to simply showing that ϱ = Ω̃

(
d

ε2nm2

)
,

which follows immediately from Proposition 3.1 directly (see Step 1 below for verifying the applicability of the proposition).
In the remainder of the proof, we will assume f > 0 and η > 0. LetH denote the set of honest nodes of size n− f .

Step 1: To derive the first term in Ω
(

d
ε2nm2

)
, we remark that all the conditions of Proposition 3.1 on ε, δ, ϱ, n,m hold under

the assumptions stated in the theorem. Consider D1, . . . ,Dn ∈ {±1/
√
8d}d×m ⊂ Xm. Note that in this case, we have

1

|H|
∑
i∈H
∥∇L(θ;Di)−∇LH(θ)∥2 ≤ 1 ≤ G2.

Hence, D1, . . . ,Dn is a valid collection of datasets with regard to the theorem statement. Since A is assumed to be
(f, ϱ)-robust, it guarantees an error less than or equal to ϱ on the honest global loss L(θ;Di, i ∈ H). Using the proof
technique of Proposition 3.1, we can show that (as f < n/2 and |H| = n− f ≤ n)

ϱ = Ω

(
d

ε2 |H|m2

)
= Ω

(
d

ε2nm2

)
. (33)

Step 2: To derive the second term in Ω( fn ·
1

ε2m2 ), we remark that all conditions of Proposition 3.3 on ε, δ, ϱ, n, f,m, and A
are verified. Note also that, similar to Step 1, the datasets considered in the proof Proposition 3.2, scaled by a constant, are
also valid instances with regard to the theorem statement. Using the proof technique of Proposition 3.2 we can show that
(since 0 < f < n/2, we have f + 1 ≥ f and n− f ≤ n)

ϱ = Ω

(
f + 1

n− f
· log (1/δ)

ε2m2

)
= Ω̃

(
f

n
· 1

ε2m2

)
, (34)

where we ignore the logarithmic term in Ω̃(·).

Step 3: To obtain the third term in Ω
(

f
n ·G

2
)

, we first remark that Assumption 2.1 holds, as well as all the conditions in
Proposition 3.2 on n, f,m and A. As the input domain in Proposition 3.2 is a subset of X , using the proof technique of
Proposition 3.2 we can show that

ϱ = Ω

(
f

n
·G2

)
. (35)

Final step: Combining (33), (34), and (35) proves the theorem, i.e., we obtain that

ϱ = Ω̃

(
max

{
d

ε2nm2
,
f

n
· 1

ε2m2
,
f

n
·G2

})
= Ω̃

(
d

ε2nm2
+

f

n
· 1

ε2m2
+

f

n
·G2

)
.
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B. Robustness Analysis
In this section, we prove all our claims related to (f, κ)-robustness and SMEA. In Section B.1, we analyze SMEA. In
Section B.2, we discuss Filter (Diakonikolas et al., 2017; Steinhardt et al., 2018), a related algorithm.

We first recall the definition of our robustness criterion:

Definition 4.1. Let n ≥ 1, 0 ≤ f < n/2 and κ ≥ 0. An aggregation rule F is said to be (f, κ)-robust averaging if for any
vectors x1, . . . , xn ∈ Rd, and any set S ⊆ {1, . . . , n} of size n− f , the output x̂ = F (x1, . . . , xn) satisfies

∥x̂− xS∥2 ≤ κ · λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
,

where xS := 1
|S|
∑

i∈S xi and λmax denotes the maximum eigenvalue. We refer to κ as the robustness coefficient of F .

B.1. Smallest Maximum Eigenvalue Averaging (SMEA)

Given a set of n vectors x1, . . . , xn ∈ Rd, the SMEA algorithm first searches for a set S∗ of cardinality n − f with the
smallest empirical maximum eigenvalue, i.e.,

S∗ ∈ argmin
S⊆{1,..., n
|S|=n−f

}
λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
. (36)

Then the algorithm outputs the average of the inputs in set S∗:

SMEA(x1, . . . , xn) :=
1

|S∗|
∑
i∈S∗

xi. (37)

Proposition 5.1. Let f < n/2. SMEA is (f, κ)-robust averaging with

κ =
4f

n− f

(
1 +

f

n− 2f

)2

.

Proof. Let n ≥ 1 and 0 ≤ f < n/2. Fix a set S ⊆ {1, . . . , n} such that |S| = n− f . Recall the definition of S∗ in (36).
Denote by xS∗ the output of SMEA defined in (37):

xS∗ :=
1

|S∗|
∑
i∈S∗

xi. (38)

First, observe that we have

|S \ S∗| = |S∗ \ S| = |S ∪ S∗| − |S| ≤ n− (n− f) = f. (39)

From (38), we have

∥xS∗ − xS∥2 =

∥∥∥∥∥ 1

n− f

∑
i∈S∗

xi −
1

n− f

∑
i∈S

xi

∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

xi −
1

n− f

∑
i∈S\S∗

xi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS) +
|S∗ \ S|
n− f

(xS∗ − xS)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

∥∥∥∥∥∥
2

+
|S∗ \ S|2

(n− f)2
∥xS∗ − xS∥2

+ 2
|S∗ \ S|
n− f

〈
xS∗ − xS ,

1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

〉
.
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However, notice that

1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS) =
1

n− f

∑
i∈S∗\S

xi −
1

n− f

∑
i∈S\S∗

xi −
|S∗ \ S|
n− f

(xS∗ − xS)

=
1

n− f

∑
i∈S∗

xi −
1

n− f

∑
i∈S

xi −
|S∗ \ S|
n− f

(xS∗ − xS)

=

(
1− |S

∗ \ S|
n− f

)
(xS∗ − xS).

This implies that

∥xS∗ − xS∥2 =

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

∥∥∥∥∥∥
2

+

[
|S∗ \ S|2

(n− f)2
+ 2
|S∗ \ S|
n− f

(
1− |S

∗ \ S|
n− f

)]
∥xS∗ − xS∥2

=

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

∥∥∥∥∥∥
2

+

[
1−

(
1− |S

∗ \ S|
n− f

)2
]
∥xS∗ − xS∥2

By rearranging the terms, applying Jensen’s inequality, and using the fact that sup∥v∥≤1 |⟨v, x⟩| = ∥x∥, we obtain

(
1− |S

∗ \ S|
n− f

)2

∥xS∗ − xS∥2 =

∥∥∥∥∥∥ 1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

∥∥∥∥∥∥
2

= sup
∥v∥≤1

∣∣∣∣∣∣
〈
v,

1

n− f

∑
i∈S∗\S

(xi − xS∗)− 1

n− f

∑
i∈S\S∗

(xi − xS)

〉∣∣∣∣∣∣
2

= sup
∥v∥≤1

∣∣∣∣∣∣ 1

n− f

∑
i∈S∗\S

⟨v, xi − xS∗⟩ − 1

n− f

∑
i∈S\S∗

⟨v, xi − xS⟩

∣∣∣∣∣∣
2

≤ |S
∗ \ S|+ |S \ S∗|

(n− f)2
sup

∥v∥≤1

 ∑
i∈S∗\S

|⟨v, xi − xS∗⟩|2 +
∑

i∈S\S∗

|⟨v, xi − xS⟩|2


≤ |S
∗ \ S|+ |S \ S∗|

(n− f)2

 sup
∥v∥≤1

∑
i∈S∗\S

|⟨v, xi − xS∗⟩|2 + sup
∥v∥≤1

∑
i∈S\S∗

|⟨v, xi − xS⟩|2


≤ 2f

(n− f)2

 sup
∥v∥≤1

∑
i∈S∗\S

|⟨v, xi − xS∗⟩|2 + sup
∥v∥≤1

∑
i∈S\S∗

|⟨v, xi − xS⟩|2
 , (40)

where the last inequality is due to |S \ S∗| = |S∗ \ S| ≤ f shown in (39).

The first term on the RHS of (40) can be bounded by construction of S∗, and using the fact that sup∥v∥≤1 ⟨v, Mv⟩ =
λmax(M):

sup
∥v∥≤1

∑
i∈S∗\S

|⟨v, xi − xS∗⟩|2 ≤ sup
∥v∥≤1

∑
i∈S∗

|⟨v, xi − xS∗⟩|2 = sup
∥v∥≤1

〈
v,
∑
i∈S∗

(xi − xS∗)(xi − xS∗)⊤v

〉

= λmax

(∑
i∈S∗

(xi − xS∗)(xi − xS∗)⊤

)
≤ λmax

(∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.
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The second term on the RHS of (40) can be bounded similarly:

sup
∥v∥≤1

∑
i∈S\S∗

|⟨v, xi − xS⟩|2 ≤ sup
∥v∥≤1

∑
i∈S

|⟨v, xi − xS⟩|2 = λmax

(∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

Plugging these two bounds back in (40), we obtain(
1− |S

∗ \ S|
n− f

)2

∥xS∗ − xS∥2 ≤
4f

n− f

1

n− f
λmax

(∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

Finally, since |S∗ \ S| ≤ f (see (39)), we have
(
1− |S∗\S|

n−f

)2
≥
(
1− f

n−f

)2
=
(

n−2f
n−f

)2
. We can therefore obtain

∥xS∗ − xS∥2 ≤
4f(n− f)

(n− 2f)2
· λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
.

The proof concludes by noticing that 4f(n−f)
(n−2f)2 = 4f

n−f

(
1 + f

n−2f

)2
.

B.2. Filter Algorithm

In this section, we present the Filter algorithm (Diakonikolas et al., 2017; Steinhardt, 2018) in Algorithm 2 and discuss its
robustness properties, stated in Proposition B.1, in the distributed ML context we consider. Recall that Filter was also used
in (Data & Diggavi, 2021).

Algorithm 2 Filter algorithm (Diakonikolas et al., 2017; Steinhardt, 2018)
Input: vectors x1, . . . , xn ∈ Rd, spectral norm bound σ2

0 , constant factor η > 0.
1: Initialize c1, . . . , cn = 1, σ̂c = +∞.
2: while True do
3: Compute the empirical mean µ̂c =

∑n
i=1 cixi/

∑n
i=1 ci.

4: Compute the empirical covariance Σ̂c =
∑n

i=1 ci(xi − µ̂c)(xi − µ̂c)
⊤/
∑n

i=1 ci.
5: Compute maximum eigenvalue σ̂2

c of Σ̂c and an associated eigenvector v̂c.
6: if σ̂2

c > η · σ2
0 then

7: return µ̂c

8: else
9: Compute weight τi = ⟨v̂c, xi − µ̂c⟩2.

10: Update ci ← ci(1− τi/τmax), where τmax = max1≤i≤n τi.
11: end if
12: end while

In Proposition B.1, we recall the robustness guarantees of the Filter procedure (Algorithm 2). The proposition is followed by
a discussion further below.
Proposition B.1. Let n ≥ 1, 0 ≤ f < n/2, x1, . . . , xn ∈ Rn, and S ⊆ [n], |S| = n− f . Denote xS := 1

|S|
∑

i∈S xi.

Set the parameters

σ2
0 ≥ λmax

(
1

|S|
∑
i∈S

(xi − xS)(xi − xS)
⊤

)
and

η = 2n(n− f)/(n− 2f)2.

Then, the output x̂ of the Filter procedure (Algorithm 2) with parameters σ2
0 and η satisfies

∥x̂− xS∥2 ≤ κ · σ2
0 ,

with κ = 4fn
(n−2f)2 + 2f

n−f = 6f
n−2f

(
1 + f

n−2f

)
.
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Proof. The proof follows directly from (Theorem 4.2, (Zhu et al., 2022)) combined with (Lemma 2.2, (Zhu et al., 2022)).

Discussion. Note that Filter does not satisfy (f, κ)-robust averaging (see Definition 4.1) as its parameter σ2
0 must depend on

the maximum eigenvalue of the honest inputs. Indeed, such dependency is precluded by (f, κ)-robust averaging. Moreover,
in our learning setting, the bound σ2

0 potentially depends on the noise of stochastic gradients σ2 and the heterogeneity metric
G2, which are unknown a priori. Thus, devising aggregation rules agnostic to the statistical properties of the honest inputs,
like SMEA, is even more desirable in our setting.
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C. Privacy Analysis
C.1. Preliminaries

We first recall definitions and useful lemmas on Differential Privacy (DP) and Rényi Differential Privacy (RDP), including
the privacy amplification by subsampling (without replacement) results for RDP.
Definition C.1 (Rényi Differential Privacy, (Mironov, 2017)). Let α > 1 and ε > 0. A randomized algorithm M is
(α, ε)-RDP if for any adjacent datasets D,D′ ∈ Xm it holds that

Dα(M(D)||M(D′)) ≤ ε,

where Dα(M(D)||M(D′)) := 1
α−1 logEθ∼M(D′)

[(
M(D)(θ)
M(D′)(θ)

)α]
is the Rényi divergence of order α.

Lemma C.1 (RDP Adpative Composition, (Mironov, 2017)). IfM1 that takes the dataset as input is (α, ε1)-RDP, andM2

that takes the dataset and the output ofM1 as input is (α, ε2)-RDP, then their composition is (α, ε1 + ε2)-RDP.

Lemma C.2 (RDP to DP conversion, (Mironov, 2017)). If M is (α, ε)-RDP, then M is (ε + log (1/δ)
α−1 , δ)-DP for all

δ ∈ (0, 1).

Definition C.2 (ℓ2-sensitivity, (Dwork et al., 2014)). The ℓ2-sensitivity of a function g : Xm → Rd is

∆(g) := sup
D,D′ adjacent

∥g(D)− g(D′)∥ .

Lemma C.3 (RDP for Gaussian Mechanisms, (Mironov, 2017)). If g : Xm → Rd has ℓ2-sensitivity smaller than ∆, then
the Gaussian mechanism Gσ,g = g +N (0, σ2Id) is (α, ∆2

2σ2α)-RDP.

Definition C.3 (Subsampling Mechanism). Consider a dataset D ⊆ Xm, a constant b ∈ [m], and define r := b/m. The
procedure subsampler : Xm → X b selects b points at random and without replacement from D.

Lemma C.4 (RDP for Subsampled Mechanisms, (Wang et al., 2019a)). Let α ∈ N, α ≥ 2, and r ∈ (0, 1) the sampling
parameter. IfM is (α, ε(α))-RDP, thenM◦ subsampler is (α, ε′(α))-RDP, with

ε′(α) =
1

α− 1
log
(
1 + r2

(
α

2

)
min

{
4(eε(2) − 1), eε(2) min {2, (eε(∞) − 1)2}

}
+

α∑
j=3

rj
(
α

j

)
e(j−1)ε(j) min {2, (eε(∞) − 1)j}

)
. (41)

Lemma C.5 (Real-valued RDP for Subsampled Mechanisms). Let α ∈ R, α > 1, and r ∈ (0, 1) the sampling parameter. If
M is (α, ε(α))-RDP, thenM◦ subsampler is (α, ε′′(α))-RDP, with

ε′′(α) = (1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
ε′(⌊α⌋) + (α− ⌊α⌋)⌈α⌉ − 1

α− 1
ε′(⌈α⌉),

where ε′ is defined in Equation (41).

Proof. The result follows immediately from Corollary 10 and Remark 7 in (Wang et al., 2019a).

C.2. Proof of Theorem 4.1

We state below the DP guarantees without approximation:
Theorem C.1. Let δ ∈ (0, 1). Algorithm 1 is (ε∗, δ)-DP with

ε∗ = inf
α>1

(
Tε1(α) +

log (1/δ)

α− 1

)
,

where for every α > 1,
ε1(α) := (1− α+ ⌊α⌋) ⌊α⌋−1

α−1 ε′(⌊α⌋) + (α− ⌊α⌋) ⌈α⌉−1
α−1 ε′(⌈α⌉),

ε′(α) := 1
α−1 log

(
1 + r2

(
α
2

)
min

{
4(eε(2) − 1), 2eε(2)

}
+ 2

∑α
j=3 r

j
(
α
j

)
e(j−1)ε(j)

)
,

ε(α) :=
(
2C
b

)2 α
2σ2

DP
.
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θt g̃
(i)
t θt+1

(I) (II)

Figure 1. (I): Subsampling + Gaussian mechanism, (II): Post-processing.

Proof. To derive the above DP guarantees, we first track the privacy loss for a single iteration of Algorithm 1 using RDP.
Then we apply adaptive composition to track the end-to-end privacy loss of the algorithm. Finally, we optimize over the
privacy loss for several levels of RDP to compute the noise parameter needed for DP.

Single-iteration privacy. First, we analyze a single fixed iteration t ∈ {0, . . . , T − 1} of Algorithm 1. To do so, we divide
the analysis into two steps, i.e. Step I and Step II, as shown in Figure 1.

Step (I): This step corresponds to lines 2-6 in Algorithm 1. Recall that our definition of DP for a distribution algorithm
(given in Definition 2.3) requires that the transcript of communications of each worker satisfies (centralized) (ε, δ)-DP with
respect to their own data. Thus, since the workers only send their local momentum to the server, we show that for any i ∈ H
computing g̃

(i)
t from Di and θt is RDP for any α > 1.

Let i ∈ H, α > 1 and r = b/m. First, we show that ∆ := 2C
b is an upper bound of the ℓ2-sensitivity of the mini-batch

(clipped) averaging. To see this, consider two adjacent training sets Di, D̃i, the mini-batch average (after clipping) g(i)t

computed on mini-batch S
(i)
t ⊆ Di, and g̃

(i)
t the analogous quantities for D̃i. Note that S(i)

t and S̃
(i)
t differ by one element

at most. Without loss of generality, let x∗ ∈ S
(i)
t , x̃∗ ∈ S̃

(i)
t be the only two elements that differ from S

(i)
t to S̃

(i)
t . Thanks

to the triangle inequality, we have that∥∥∥g(i)t − g̃
(i)
t

∥∥∥ =
∥∥∥1
b

∑
x∈S

(i)
t

Clip (∇ℓ(θt, x);C)− 1

b

∑
x∈S̃

(i)
t

Clip (∇ℓ(θt, x);C)
∥∥∥

=

∥∥∥∥1bClip (∇ℓ(θt, x∗);C)− 1

b
Clip (∇ℓ(θt, x̃∗);C)

∥∥∥∥
≤ 1

b
∥Clip (∇ℓ(θt, x∗);C)∥+ 1

b
∥Clip (∇ℓ(θt, x̃∗);C)∥

≤ 2C

b
.

Thanks to the above, the sensitivity of computing the gradient g(i)t when given a batch of b point S(i)
t is upper bounded by

∆ = 2C
b . Accordingly, invoking Lemma C.3, the Gaussian mechanism used in Line 6 of Algorithm 1 is (α, α∆2

2σ2
DP

)-RDP.

Furthermore, by Lemma C.5, for every j ∈ H, the corresponding mechanismMj taking the dataset Dj and θt as input and
returning g̃

(j)
t is (α, ε1(α))-RDP with

ε1(α) := (1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
ε′(⌊α⌋) + (α− ⌊α⌋)⌈α⌉ − 1

α− 1
ε′(⌈α⌉). (42)

Where

ε′(α) =
1

α− 1
log
(
1 + r2

(
α

2

)
min

{
4(eε(2) − 1), eε(2) min {2, (eε(∞) − 1)2}

}
+

α∑
j=3

rj
(
α

j

)
e(j−1)ε(j) min {2, (eε(∞) − 1)j}

)
,

and ε(α) := α∆2

2σ2
DP

=
(
2C
b

)2 α
2σ2

DP
. Furthermore, since ε(∞) = +∞, we get

ε′(α) =
1

α− 1
log
(
1 + r2

(
α

2

)
min

{
4(eε(2) − 1), 2eε(2)

}
+ 2

α∑
j=3

rj
(
α

j

)
e(j−1)ε(j)

)
. (43)
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Step (II): This step consists in computing the local momentums from the noisy gradients, and then aggregating the
momentums and updating the model accordingly. As this process does not have direct access to the datasets Di, i ∈ H, it
should be considered as a post-processing operation for Step (I). As RDP is preserved by post-processing (Mironov, 2017),
we conclude that a single iteration of Algorithm 1 is (α, ε1(α))-RDP with respect to each worker’s data for any α > 1, with
ε1(α) as defined above.

End-to-end privacy. We can now compute the end-to-end DP of our algorithm. First, invoking Lemma C.1 and the
per-iteration RDP guarantee of Algorithm 1, we obtain that Algorithm 1 is (α, Tε1(α))-RDP towards the server, for any
α > 1. Next, by Lemma C.2, we deduce that Algorithm 1 is (ε∗(α), δ)-DP towards the server for every δ ∈ (0, 1), α > 1,
with

ε∗(α) := Tε1(α) +
log (1/δ)

α− 1
.

This implies that, for any δ ∈ (0, 1), Algorithm 1 is (ε∗, δ)-DP with

ε∗ := inf
α>1

ε∗(α) = inf
α>1

(
Tε1(α) +

log (1/δ)

α− 1

)
.

The above concludes the proof.

We now prove the (closed-form) approximate DP guarantees of SAFE-DSHB in Theorem 4.1, as a corollary of Theorem C.1.
Theorem 4.1. Consider Algorithm 1. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). There exists a constant k > 0 such

that, for a sufficiently small batch size b, when σDP ≥ k · 2Cb max

{
1,

b
√

T log (1/δ)

mε

}
, Algorithm 1 is (ε, δ)-DP.

Proof. Suppose that b
m is sufficiently small. Let ε > 0 and δ ∈ (0, 1) be such that ε ≤ log (1/δ). Finally consider

∆, ϵ∗(·), ϵ1(·), ϵ′(·), and ϵ(·) as defined in the statement and the proof of Theorem C.1. Below, we show that there exists
k > 0 such that, when σDP ≥ k · 2C/bmax {1, b

√
T log (1/δ)/mε}, Algorithm 1 ensures (ε, δ)-DP towards an honest-but-

curious server. First note that, when σDP ≥ 2C/b, we have

ε(2) =
∆2

σ2
DP

=
(2C/b)2

σ2
DP

≤ 1.

Since h := x 7→ 1
x (e

x − 1) is non-decreasing on (0,+∞), this also implies that 1
ε(2) (e

ε(2) − 1) = h(ε(2)) ≤ h(1) =

e− 1 ≤ 2. As a result, we have

min
{
4(eε(2) − 1), 2eε(2)

}
≤ 4(eε(2) − 1) ≤ 8 ε(2). (44)

Recall that

ε′(α) =
1

α− 1
log
(
1 + r2

(
α

2

)
min

{
4(eε(2) − 1), 2eε(2)

}
+ 2

α∑
j=3

rj
(
α

j

)
e(j−1)ε(j)

)
. (45)

Therefore, since we assume that b
m is sufficiently small (r ≪ 1), the dominating term inside the logarithm is the term in r2.

Using log (1 + x) ≤ x, there exists a constant k′ such that

ε′(α) ≤ 1

α− 1

r2
(
α

2

)
min

{
4(eε(2) − 1), 2eε(2)

}
+ 2

α∑
j=3

rj
(
α

j

)
e(j−1)ε(j)


≤ k′

α− 1

(
r2
(
α

2

)
min

{
4(eε(2) − 1), 2eε(2)

})
=

k′

α− 1
O
(
r2α(α− 1)min

{
4(eε(2) − 1), 2eε(2)

})
.

Hence substituting from (44), we get

ε′(α) ≤ 8k′r2αε(2) = 8k′r2
∆2

σ2
DP

α.
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This directly implies that

ε1(α) = (1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
ε′(⌊α⌋) + (α− ⌊α⌋)⌈α⌉ − 1

α− 1
ε′(⌈α⌉)

≤ 8k′r2
∆2

σ2
DP

[
(1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
⌊α⌋+ (α− ⌊α⌋)⌈α⌉ − 1

α− 1
⌈α⌉

]
. (46)

Now, recall that α− 1 ≤ ⌊α⌋ ≤ α and α ≤ ⌈α⌉ ≤ α+ 1. We will prove that ε1(α) ≤ 32k′r2 ∆2

σ2
DP

by distinguishing two
cases:

Case α ∈ (1, 2): Since α > 1, we have ⌊α⌋ ≥ 1 and therefore α−⌊α⌋/α−1 ≤ 1. We therefore have from Equation (46)

ε1(α) ≤ 8k′r2
∆2

σ2
DP

[
(1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
⌊α⌋+ (α− ⌊α⌋)⌈α⌉ − 1

α− 1
⌈α⌉

]
≤ 8k′r2

∆2

σ2
DP

[
(1− α+ ⌊α⌋)︸ ︷︷ ︸

≤1

⌊α⌋ − 1

α− 1︸ ︷︷ ︸
≤1

⌊α⌋+ (⌈α⌉ − 1)︸ ︷︷ ︸
≤α

⌈α⌉
]

≤ 8k′r2
∆2

σ2
DP

[
⌊α⌋+ α ⌈α⌉

]
≤
(i)

8k′r2
∆2

σ2
DP

[
α+ 2α

]
= 24k′r2

∆2

σ2
DP

α,

where (i) is due to ⌈α⌉ ≤ 2 because α < 2.

Case α ∈ [2,+∞):

Since α ≥ 2, we have both ⌊α⌋ ≤ ⌈α⌉ ≤ α + 1 ≤ 2α and ⌊α⌋ − 1 ≤ ⌈α⌉ − 1 ≤ 2(α − 1). Therefore, we have from
Equation (46) that

ε1(α) ≤ 8k′r2
∆2

σ2
DP

[
(1− α+ ⌊α⌋)⌊α⌋ − 1

α− 1
⌊α⌋+ (α− ⌊α⌋)⌈α⌉ − 1

α− 1
⌈α⌉

]
≤ 8k′r2

∆2

σ2
DP

[
(1− α+ ⌊α⌋)4α+ (α− ⌊α⌋)4α

]
= 32k′r2

∆2

σ2
DP

.

We have now proved for every α > 1 that ε1(α) ≤ 32k′r2 ∆2

σ2
DP

. This implies that

ε∗ = inf
α>1

(
Tε1(α) +

log (1/δ)

α− 1

)
≤ inf

α>1

(
32k′r2

∆2

σ2
DP

αT +
log (1/δ)

α− 1

)
.

The above (convex) optimization problem is solved for α = α∗ := 1 + σDP

√
log (1/δ)

32k′r2∆2T . Remark that the constraint α > 1

is satisfied at α∗. Additionally, the objective at α = α∗ is equal to

32k′r2
∆2

σ2
DP

α∗T +
log (1/δ)

α∗ − 1
= 32k′r2

∆2

σ2
DP

T + 2r∆

√
32k′ T log (1/δ)

σDP
.

Therefore, using the assumption ε ≤ log (1/δ), when σDP ≥
6C
√

32k′T log (1/δ)

mε = 3r∆

√
32k′T log (1/δ)

ε , we have

ε∗ ≤ 32k′r2
∆2

σ2
DP

T + 2r∆

√
32k′ T log (1/δ)

σDP

≤ ε2

9 log (1/δ)
+ 2/3 ε ≤ (1/9 + 2/3)ε ≤ ε.

Recall that to derive this last inequality, we overall needed σDP ≥ 2C/b = ∆ and σDP ≥
6C
√

32k′T log (1/δ)

mε =

3r∆

√
32k′T log (1/δ)

ε . Therefore, by choosing k := max {1, 3
√
32k′}, we can now conclude that, when σDP ≥

k · 2C/bmax {1, b
√

T log (1/δ)/mε}, Algorithm 1 is (ε, δ)-DP.
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D. Upper Bounds
D.1. Proof Outline

Our analysis of SAFE-DSHB (Algorithm 1), inspired from (Farhadkhani et al., 2022), consists of three elements: (i)
Momentum drift (Lemma D.1), (ii) Momentum deviation (Lemma D.2), and (iii) Descent bound (Lemma D.3). We combine
these elements to obtain the final convergence result stated in Theorem 4.2, and the matching upper bound stated in
Corollary 5.1.

Notation. Recall that for each step t, for each honest worker wi,

m
(i)
t = βt−1m

(i)
t−1 + (1− βt−1)g̃

(i)
t , (47)

g̃
(i)
t = g

(i)
t + ξ

(i)
t ; ξ

(i)
t ∼ N (0, σ2

DPId), (48)

where we initialize m
(i)
0 = 0. As we analyze Algorithm 1 with aggregation F , we denote

Rt := F
(
m

(1)
t , . . . ,m

(n)
t

)
, (49)

θt+1 = θt − γtRt. (50)

Throughout, we denote the loss function over dataset Di by Li = L(· ;Di). Also, we denote by Pt the history from steps 0
to t. Specifically,

Pt :=
{
θ0, . . . , θt; m

(i)
1 , . . . , m

(i)
t−1; i ∈ [n]

}
.

By convention, P1 = {θ0}. We denote by Et [·] and E [·] the conditional expectation E [· Pt] and the total expectation,
respectively. Thus, E [·] = E1 [· · ·ET [·]].

D.1.1. MOMENTUM DRIFT

Along the trajectory θ0, . . . , θt, the honest workers’ local momentums may drift away from each other. The drift has three
distinct sources: (i) noise injected by the DP mechanism, (ii) gradient dissimilarity induced by data heterogeneity, and (iii)
stochasticity of the mini-batch gradients. The aforementioned drift of local momentums can be exploited by the Byzantine
adversaries to maliciously bias the aggregation output.

In this section, we will control the growth of the drift ∆t between momentums, which we define as

∆t := λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
, (51)

where λmax denotes the maximum eigenvalue, and mt := 1
|H|
∑

i∈H m
(i)
t denotes the average honest momentum. We

show in Lemma D.1 below that the growth of the drift ∆t of the momentums can be controlled by tuning the momentum
coefficient βt. The full proof can be found in Appendix D.5.2.

Lemma D.1. Suppose that assumptions 2.2 and 2.3 hold. Consider Algorithm 1. For every t ∈ {0, . . . , T − 1}, we have

E [∆t+1] ≤ βt E [∆t] + 2(1− βt)
2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ (1− βt)G

2
cov,

where mt :=
1

|H|
∑

i∈H m
(i)
t , σ2

b := 2(1− b
m )σ

2

b , and G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2.

The dimension factor d due to DP noise is divided by n− f , which would not have been possible without leveraging the
Gaussian nature of the noise. This dependence will prove crucial to match our lower bound. To leverage Gaussianity, we use
a concentration argument on the empirical covariance matrix of Gaussian random variables, stated in Lemma D.6.

The remaining term G2
cov of the upper bound is only due to data heterogeneity. An important distinction from (Karimireddy

et al., 2022) is that G2
cov is a tighter bound on heterogeneity, compared to G2 the bound on the average squared distance

from Assumption 2.1. This is because the drift ∆t is not an average squared distance, but rather a bound on average squared
distances of every projection on the unit ball. Controlling this quantity requires a covering argument (stated in Lemma D.4).
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D.1.2. MOMENTUM DEVIATION

Next, we study the momentum deviation; i.e., the distance between the average honest momentum mt and the true gradient
∇LH(θt) in an arbitrary step t. Specifically, we define momentum deviation to be

δt := mt −∇LH (θt) . (52)

Also, we introduce the error between the aggregate Rt and mt :=
1

|H|
∑

i∈H m
(i)
t the average momentum of honest workers

for the case. Specifically, when defining the error

ϵt := Rt −mt, (53)

we get the following bound on the momentum deviation in Lemma D.2, proof of which can be found in Appendix D.5.3.

Lemma D.2. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth. Consider Algorithm 1. For all
t ∈ {0, . . . , T − 1}, we have

E
[
∥δt+1∥2

]
≤ β2

t (1 + γtL)(1 + 4γtL)E
[
∥δt∥2

]
+ 4γtL(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]

+ (1− βt)
2 σ2

DP

(n− f)
+ 2γtL(1 + γtL)β

2
t E
[
∥ϵt∥2

]
,

where σ2
DP := 2

(
1− b

m

)
σ2

b + d · σ2
DP.

D.1.3. DESCENT BOUND

Finally, we bound the progress made at each learning step in minimizing the loss LH using Algorithm 1. From (50) and (49),
we obtain that, for each step t,

θt+1 = θt − γtRt = θt − γtmt − γt(Rt −mt),

Furthermore, by (53), Rt − mt = ϵt. Thus, for all t,

θt+1 = θt − γtmt − γtϵt. (54)

This means that Algorithm 1 can actually be treated as distributed SGD with a momentum term that is subject to perturbation
proportional to ϵt at each step t. This perspective leads us to Lemma D.3, proof of which can be found in Appendix D.5.4.

Lemma D.3. Assume that LH is L-smooth. Consider Algorithm 1. For any t ∈ [T ], we have

E
[
LH(θt+1)− LH(θt)

]
≤− γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

Putting all of the previous lemmas together, we prove Theorem 4.2 in Section D.2. We then prove Corollary 5.1 in
Section D.3, and its non-convex version in Corollary D.1 in Section D.4.

D.2. Proof of Theorem 4.2

We recall the theorem statement below for convenience. Recall that

L∗ = inf
θ∈Rd

LH(θ),L0 = LH(θ0)− L∗, a1 = 240, a2 = 480, a3 = 5760, and a4 = 270.

Theorem 4.2. Suppose that assumptions 2.2 and 2.3 hold true, and that LH is L-smooth. Let F satisfy the condition of
(f, κ)-robust averaging. We let

σ2 =
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP

(
1 +

d

n− f

))
,

where σ2
b = 2(1− b

m )σ
2

b . Consider Algorithm 1 with T ≥ 1, the learning rates γt and momentum coefficients βt specified
below. We prove that the following holds, where the expectation E [·] is over the randomness of the algorithm.
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1. Strongly convex: Assume that LH is µ-strongly convex. If γt = 10
µ(t+a1

L
µ )

and βt = 1− 24Lγt then

E [LH(θT )− L∗] ≤
4a1κG

2
cov

µ
+

2a21Lσ
2

µ2T
+

2a21L
2L0

µ2T 2
.

2. Non-convex: If γ = min
{

1
24L ,

√
a4L0

2σ
√
a3LT

}
and βt = 1− 24Lγ then

E
[
∥∇LH(θ̂)∥2

]
≤ a2κG

2
cov +

√
a3a4LL0σ√

T
+

a4LL0

T
.

We prove Theorem 4.2 in the strongly convex case in Section D.2.1, and in the non-convex case in Section D.2.2.

D.2.1. STRONGLY CONVEX CASE

Proof. Let Assumption 2.2 hold and assume that LH is L-smooth and µ-strongly convex, and that F is a (f, κ)-robust
averaging aggregation rule. Let t ∈ {0, . . . , T − 1}. We set the learning rate and momentum schedules to be

γt =
10

µ(t+ a1
L
µ )

, βt = 1− 24Lγt, (55)

where a1 := 240. Note that we have

γt ≤ γ0 =
10

µ240L
µ

=
1

24L
. (56)

To obtain the convergence result we define the Lyapunov function to be

Vt :=

(
t+ a1

L

µ

)2

E
[
LH(θt)− L∗ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
, (57)

where a1 = 240, z1 = 1
16 , and z2 = 2. Throughout the proof, we denote t̂ := t + a1

L
µ . Therefore, we have γt = 10

µt̂
.

Consider also the auxiliary sequence Wt defined as

Wt := E
[
LH(θt)− L∗ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
. (58)

Therefore, we have

Vt+1 − Vt = (t̂+ 1)2Wt+1 − t̂2Wt = (t̂+ 1)2Wt+1 − (t̂2 + 2t̂+ 1)Wt + (2t̂+ 1)Wt

= (t̂+ 1)2(Wt+1 −Wt) + (2t̂+ 1)Wt. (59)

We now bound the quantity Wt+1 −Wt below.

Invoking Lemma D.1. Upon substituting from Lemma D.1, we obtain

E
[
κ · z2

L
∆t+1 − κ · z2

L
∆t

]
≤ κ · z2

L
βt E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov

− κ · z2
L

E [∆t] . (60)

Invoking Lemma D.2. Upon substituting from Lemma D.2, we obtain

E
[z1
L
∥δt+1∥2 −

z1
L
∥δt∥2

]
≤ z1

L
β2
t ct E

[
∥δt∥2

]
+ 4z1γt(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

+ 2z1γt(1 + γtL)β
2
t E
[
∥ϵt∥2

]
− z1

L
E
[
∥δt∥2

]
, (61)
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where we introduced the following quantity for simplicity

ct = (1 + γtL) (1 + 4γtL) = 1 + 5γtL+ 4γ2
tL

2. (62)

Invoking Lemma D.3. Substituting from Lemma D.3, we obtain

E
[
LH(θt+1)− LH(θt)

]
≤ −γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

(63)

Substituting from (60), (61) and (63) in (58), we obtain

Wt+1 −Wt = E
[
LH(θt+1)− LH(θt)

]
+ E

[z1
L
∥δt+1∥2 −

z1
L
∥δt∥2

]
+ E

[
κ · z2

L
∆t+1 − κ · z2

L
∆t

]
≤ −γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
+

z1
L
β2
t ct E

[
∥δt∥2

]
+ 4z1γt(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

+ 2z1γt(1 + γtL)β
2
t E
[
∥ϵt∥2

]
− z1

L
E
[
∥δt∥2

]
+ κ · z2

L
βt E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov

− κ · z2
L

E [∆t] . (64)

Upon rearranging the R.H.S. in (64) we obtain that

Wt+1 −Wt ≤ −
γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
+ γt

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
E
[
∥ϵt∥2

]
− κ · z2

L
(1− βt)E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov. (65)

Since we assume F to be (f, κ)-robust averaging, we can bound E
[
∥ϵt∥2

]
as follows. Starting from the definition of ϵt, we

have

∥ϵt∥2 = ∥Rt −mt∥2 =
∥∥∥F (m

(1)
t , . . . ,m

(n)
t )−mt

∥∥∥2 ≤ κ · λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
= κ ·∆t.

Then taking total expectations above gives the bound

E
[
∥ϵt∥2

]
≤ κ · E [∆t] .
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Using the bound above in Equation (65), and then rearranging terms, yields

Wt+1 −Wt ≤ −
γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
+ κγt

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
E [∆t]

− κ · z2
L
(1− βt)E [∆t] + 2κ · z2

L
(1− βt)

2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov

= −γt
2

(
(1− 4γtL)− 8z1(1 + γtL)β

2
t

)
E
[
∥∇LH(θt)∥

2
]
+

z1
L
(1− βt)

2 σ2
DP

n− f

− z1γt

(
− 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL

)
E
[
∥δt∥2

]
− κz2γt

(
1

γtL
(1− βt)−

1

z2

(
1 + γtL+ 2z1(1 + γtL)β

2
t

))
E [∆t]

+ 2κ · z2
L
(1− βt)

2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ κ · z2

L
(1− βt)G

2
cov.

For simplicity, we define

A :=
1

2
(1− 4γtL)− 8z1(1 + γtL)β

2
t , (66)

B := − 1

z1
(1 + 2γtL)−

1

γtL
β2
t ct +

1

γtL
, (67)

and

C :=
1

γtL
(1− βt)−

1

z2

(
1 + γtL+ 2z1(1 + γtL)β

2
t

)
, (68)

Denote also

σ2 :=
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
.

Recall that, as z1 = 1
16 and z2 = 2, and σ2

DP = σ2
b + dσ2

DP, we have

σ2 ≥ z1
σ2
DP

n− f
+ 2κ · z2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
.

Thus, substituting the above variables, we obtain

Wt+1 −Wt ≤ −Aγt E
[
∥∇LH(θt)∥

2
]
− z1Bγt E

[
∥δt∥2

]
− κ · z2Cγt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · z2
L
(1− βt)G

2
cov. (69)

We now analyze below the terms A, B and C on the RHS of (69).

Term A. Recall from (56) that γt ≤ 1
24L . Upon using this in (66), and the facts that z1 = 1

16 and β2
t ≤ 1, we obtain that

A ≥ 1

2
(1− 4γtL)− 8z1(1 + γtL) ≥

1

2
(1− 4× 1

24
)− 8

16
(1 +

1

24
) ≥ 1

10
. (70)

Term B. Substituting ct from (62) in (67) we obtain that

B = − 1

z1
(1 + 2γtL)−

1

γtL
β2
t

(
1 + 5γtL+ 4γ2

tL
2
)
+

1

γtL

=
1

γtL

(
1− β2

)
− 1

z1

(
1 + 2γtL+ 5z1β

2
t + 4z1β

2
t γtL

)
.
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Using the facts that βt ≤ 1 and γt ≤ 1
24L , and then substituting z1 = 1

16 we obtain

B ≥ 1

γtL
(1− β2

t )− 16

(
1 +

2

24
+

5

16
+

4

24× 16

)
≥ 1

γtL
(1− β2

t )− 23 ≥ 1

γtL
(1− βt)− 23 = 1. (71)

where the last equality follows from the fact that 1− βt = 24γtL.

Term C. Substituting z1 = 1
16 , z2 = 2 in (68), and then using the facts that βt ≤ 1 and γt ≤ 1

24L , we obtain

C =
1

γtL
(1− βt)−

1

2

(
1 + γtL+ (2× 16)(1 + γtL)β

2
t

)
≥ 1

γtL
(1− βt)−

1

2

(
1 +

1

24
+ 32(1 +

1

24
)

)
≥ 1

γtL
(1− βt)− 18 = 6, (72)

where the last equality follows from the fact that 1− βt = 24γtL.

Combining terms A, B, and C. Finally, substituting from (70), (71), and (72) in (69) (and recalling that z2 = 2) we obtain
that

Wt+1 −Wt ≤ −
γt
10

E
[
∥∇LH(θt)∥

2
]
− z1γt E

[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov. (73)

Since LH is µ-strongly convex, we have (Karimi et al., 2016) for any θ ∈ Rd that

∥∇LH(θ)∥2 ≥ 2µ(L(θ)− L∗). (74)

Plugging (74) in (73) above, and then recalling that L ≥ µ, yields

Wt+1 −Wt ≤ −
µγt
5

E [LH(θt)− L∗]− z1γt E
[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

≤ −µγt
5

E
[
LH(θt)− L∗ +

z1
µ
∥δt∥2 + κ · z2

µ
∆t

]
+

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

≤ −µγt
5

E
[
LH(θt)− L∗ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
+

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

= −µγt
5

Wt +
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov.

Upon plugging the above bound back in Equation (59), rearranging terms and substituting 1− βt = 24Lγt, we obtain

Vt+1 − Vt ≤ (t̂+ 1)2
[
−µγt

5
Wt +

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

]
+ (2t̂+ 1)Wt

= −
[
(t̂+ 1)2

µγt
5
− (2t̂+ 1)

]
Wt +

(t̂+ 1)2

L
(24Lγt)

2σ2 + κ · 2(t̂+ 1)2

L
(24Lγt)G

2
cov.

Recall however that γt = 10
µt̂

as t̂ = t+ a1
L
µ . Recall that we denote a1 = 24× 10 = 240. Substituting γt above yields

Vt+1 − Vt ≤ (t̂+ 1)2
[
−µγt

5
Wt +

1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov

]
+ (2t̂+ 1)Wt

= −
[
2
(t̂+ 1)2

t̂
− (2t̂+ 1)

]
Wt + a21L

(t̂+ 1)2

µ2t̂2
σ2 + 2a1κ ·

(t̂+ 1)2

µt̂
G2

cov.

Observe that 2 (t̂+1)2

t̂
≥ 2(t̂+ 1) > 2t̂+ 1, implying that the first term above is negative:

Vt+1 − Vt ≤ a21L
(t̂+ 1)2

µ2t̂2
σ2 + 2a1κ ·

(t̂+ 1)2

µt̂
G2

cov.
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Observe now that, as t̂ = t+ a1
L
µ ≥ a1 = 240 (because L ≥ µ), we have (t̂+ 1)2 ≤ (1 + 1

240 )
2t̂2 ≤ 2t̂2. Plugging this

bound in the inequality above gives

Vt+1 − Vt ≤
2a21L

µ2
σ2 + 4a1κ ·

t̂

µ
G2

cov.

Therefore, we have for every t ∈ {0, . . . , T − 1} that

Vt+1 − V0 =

t∑
k=0

(Vk+1 − Vk) ≤ (t+ 1)
2a21L

µ2
σ2 +

(
t∑

k=0

k̂

)
4a1κ

µ
G2

cov.

Since
∑t

k=0 k̂ =
∑t

k=0(k + a1
L
µ ) =

∑t
k=0 k + a1(t+ 1)Lµ = t(t+1)

2 + a1(t+ 1)Lµ , we obtain

Vt+1 − V0 =

t∑
k=0

(Vk+1 − Vk) ≤ (t+ 1)
2a21L

µ2
σ2 +

(
t(t+ 1)

2
+ a1(t+ 1)

L

µ

)
4a1κ

µ
G2

cov

= (t+ 1)
2a21L

µ2
σ2 + (t+ 1)

(
t

2
+ a1

L

µ

)
4a1κ

µ
G2

cov.

However, recalling the definition (57) of Vt, we obtain

(t+ 1 + a1
L

µ
)2 E [LH(θt+1)− L∗] ≤ Vt+1 ≤ V0 + (t+ 1)

2a21L

µ2
σ2 + (t+ 1)

(
t

2
+ a1

L

µ

)
4a1κ

µ
G2

cov.

By rearranging terms, and using the fact that L
µ ≥ 1, we then get

E [LH(θt+1)− L∗] ≤
V0

(t+ 1 + a1
L
µ )

2
+

t+ 1

(t+ 1 + a1
L
µ )

2

2a21Lσ
2

µ2
+

(t+ 1)
(

t
2 + a1

L
µ

)
(t+ 1 + a1

L
µ )

2

4a1κ

µ
G2

cov

≤ V0

(t+ 1 + a1
L
µ )

2
+

1

t+ 1 + a1
L
µ

2a21Lσ
2

µ2
+

4a1κ

µ
G2

cov. (75)

It remains to bound V0. By definition, we have

V0 =

(
a1

L

µ

)2 [
LH(θ0)− L∗ +

z1
L
∥δ0∥2 +

z2
L
∆0

]
.

By definition of mt = 1
|H|
∑

i∈H m
(i)
t and the initializations m

(i)
0 = 0 for all i ∈ H, we have ∆0 =

λmax

(
1

|H|
∑

i∈H(m
(i)
0 −m0)(m

(i)
0 −m0)

⊤
)
= 0. Therefore, we have

V0 =

(
a1

L

µ

)2 [
LH(θ0)− L∗ +

z1
L
∥δ0∥2

]
.

Moreover, by definition of δt in (52), we obtain that

∥δ0∥2 = ∥m0 −∇LH(θ0)∥
2
= ∥∇LH(θ0)∥

2
.

Recall that LH is L-smooth. Thus, ∥∇LH(θ0)∥
2 ≤ 2L(LH(θ0) − L∗) (see (Nesterov et al., 2018), Theorem 2.1.5).

Therefore, substituting z1 = 1
16 , we have

V0 ≤
(
a1

L

µ

)2 [
LH(θ0)− L∗ +

2L

16L
(LH(θ0)− L∗)

]
=≤

(
a1

L

µ

)2
9

8
(LH(θ0)− L∗) ≤ 2

(
a1

L

µ

)2

(LH(θ0)− L∗).
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Plugging the above bound back in Equation (75), rearranging terms, and then recalling that a1 L
µ ≥ 0, yields

E [LH(θt+1)− L∗] ≤
4a1
µ

κG2
cov +

2a21Lσ
2

µ2(t+ 1 + a1
L
µ )

+
2a1L

2(LH(θ0)− L∗)

µ2(t+ 1 + a1
L
µ )

2

≤ 4a1
µ

κG2
cov +

2a21Lσ
2

µ2(t+ 1)
+

2a1L
2(LH(θ0)− L∗)

µ2(t+ 1)2
.

Specializing the inequality above for t = T − 1 and denoting L0 := LH(θ0)− L∗ proves the theorem:

E [LH(θT )− L∗] ≤
4a1
µ

κG2
cov +

2a21Lσ
2

µ2T
+

2a21L
2L0

µ2T 2
.

Remark D.1. In the proof of the strongly convex case of Theorem 4.2 above, we do not need the function LH to be
µ-strongly convex. In fact, it is sufficient for LH to satisfy the µ-PL inequality stated in (74). Accordingly, our results not
only apply to smooth µ-strongly convex functions, but more generally to the class of smooth µ-PL functions, which may be
non-convex (Karimi et al., 2016).

D.2.2. NON-CONVEX CASE

Proof. Let Assumption 2.2 hold and assume that LH is L-smooth, and that F is a (f, κ)-robust averaging aggregation rule.
Let t ∈ {0, . . . , T − 1}. We set the learning rate and momentum to constant as follows:

γt = γ := min

{
1

24L
,

√
a4L0

2σ
√
a3LT

}
, βt = β := 1− 24Lγ, (76)

where a1 := 240. Note that we have

γt = γ ≤ 1

24L
. (77)

To obtain the convergence result we define the Lyapunov function to be

Vt := E
[
LH(θt)− L∗ +

z1
L
∥δt∥2 + κ · z2

L
∆t

]
, (78)

where z1 = 1
16 , and z2 = 2. Note that Vt corresponds to the sequence Wt defined in Equation (58), and analyzed in

Appendix D.2.1 under the assumption that γt ≤ 1
24L . Since the latter holds by Equation (77), we directly apply the bound

obtained in Equation (73):

Vt+1 − Vt ≤ −
γt
10

E
[
∥∇LH(θt)∥

2
]
− z1γt E

[
∥δt∥2

]
− 6κz2γt E [∆t]

+
1

L
(1− βt)

2σ2 + κ · 2
L
(1− βt)G

2
cov.

In turn, substituting γt = γ, βt = β and bounding the second and third terms on the RHS by zero, this implies that

Vt+1 − Vt ≤ −
γ

10
E
[
∥∇LH(θt)∥

2
]
+

1

L
(1− β)2σ2 + κ · 2

L
(1− β)G2

cov.

By rearranging terms and then averaging over t ∈ {0, . . . , T − 1}, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ 10

γT

T−1∑
t=0

(Vt − Vt+1) +
10

γL
(1− β)2σ2 + κ · 20

γL
(1− β)G2

cov.

We now substitute β = 1− 24γL. Denoting a3 = 10× 242 = 5760, a2 = 20× 24 = 480, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ 10

γT

T−1∑
t=0

(Vt − Vt+1) +
(10× 242)

γL
(γL)2σ2 + κ · (20× 24)

γL
(γL)G2

cov

=
10

γT
(V0 − VT ) + a3γLσ

2 + a2κG
2
cov. (79)
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We now bound V0 − VT . First recall that VT ≥ 0 as a sum of non-negative terms (see (78)). Therefore, we have

V0 − VT ≤ V0 = LH(θ0)− L∗ +
z1
L
∥δ0∥2 +

z2
L
∆0.

By definition of mt = 1
|H|
∑

i∈H m
(i)
t and the initializations m

(i)
0 = 0 for all i ∈ H, we have ∆0 =

λmax

(
1

|H|
∑

i∈H(m
(i)
0 −m0)(m

(i)
0 −m0)

⊤
)
= 0. Therefore, we have

V0 = LH(θ0)− L∗ +
z1
L
∥δ0∥2 .

Moreover, by definition of δt in (52), we obtain that

∥δ0∥2 = ∥m0 −∇LH(θ0)∥
2
= ∥∇LH(θ0)∥

2
.

Recall that LH is L-smooth. Thus, ∥∇LH(θ0)∥
2 ≤ 2L(LH(θ0) − L∗) (see (Nesterov et al., 2018), Theorem 2.1.5).

Therefore, substituting z1 = 1
16 , we have

V0 − VT ≤ V0 ≤ LH(θ0)− L∗ +
2L

16L
(LH(θ0)− L∗) =

9

8
(LH(θ0)− L∗).

By plugging this bound back in (79), and denoting a4 := 24× 10× ( 98 ) = 270 and L0 := LH(θ0)− L∗, we obtain

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤

10× ( 98 )

γT
(LH(θ0)− L∗) + a3γLσ

2 + a2κG
2
cov

=
a4L0

24γT
+ a3γLσ

2 + a2κG
2
cov. (80)

Recall that by definition

γ = min

{
1

24L
,

√
a4L0

2σ
√
a3LT

}
,

and thus 1
γ = max

{
24L, 2√

a4L0
σ
√
a3LT

}
≤ 24L+ 2√

a4L0
σ
√
a3LT . Therefore, we have

a4L0

24γT
≤ a4L0

24T

(
24L+

2√
a4L0

σ
√
a3LT

)
=

a4LL0

T
+

√
a3a4LL0σ

12
√
T

.

Upon using the above, and that γ ≤
√
a4L0

2σ
√
a3LT

, in (80), we obtain that

1

T

T−1∑
t=0

E
[
∥∇LH(θt)∥

2
]
≤ a4LL0

T
+

√
a3a4LL0σ

12
√
T

+

√
a3a4LL0σ

2
√
T

+ a2κG
2
cov ≤ a2κG

2
cov +

√
a3a4LL0σ√

T
+

a4LL0

T
.

Finally, recall from Algorithm 1 that θ̂ is chosen randomly from the set of parameter vectors
(
θ0, . . . , θT−1

)
. Thus,

E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] = 1

T

∑T−1
t=0 E

[
∥∇LH(θt)∥

2
]
. Substituting this above proves the theorem.

D.3. Proof of Corollary 5.1

We now state the proof of Corollary 5.1 below.
Corollary 5.1. Consider Algorithm 1 with aggregation F = SMEA, under the strongly convex setting of Theorem 4.2.
Suppose that assumptions 2.1, 2.2, 2.3 hold, and that n ≥ (2 + η)f , for some absolute constant η > 0. Let ε > 0, δ ∈ (0, 1)

be such that ε ≤ log (1/δ). Then, there exists a constant k > 0 such that, if σDP = k · 2C/bmax {1, b
√

T log (1/δ)/εm}, then
Algorithm 1 is (ε, δ)-DP and (f, ϱ)-robust where

ϱ = O
(
d log (1/δ)

ε2nm2
+

f

n
· log (1/δ)

ε2m2
+

f

n
G2

)
.
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Proof. Assume that LH is L-smooth and µ-strongly convex. Consider Algorithm 1 with aggregation F = SMEA, learning
rate γt = 10

µ(t+a1
L
µ )

, and momentum coefficient βt = 1 − 24Lγt. By Theorem 4.1, the condition on σDP ensures that

Algorithm 1 is (ε, δ)-DP. In the remaining, we prove that Algorithm 1 is (f, ϱ)-robust as stated in the corollary.

First, note that, by Proposition 5.1, SMEA is (f, κ)-robust averaging with κ = 4f
n−f (1 +

f
n−2f )

2. In fact, as we assume
n ≥ (2 + η)f where η > 0 is an absolute constant, we have

κ ≤ 4f

n− f
(1 +

1

η
)2 = O( f

n− f
). (81)

Therefore, thanks to Theorem 4.2, we have

E [LH(θT )− L∗] ≤ 4a1
κG2

cov

µ
+

2a21Lσ
2

µ2T
+

2a21L
2L0

µ2T 2
, (82)

where the constant a1 is defined as in (3), and

σ2 :=
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
, σ2

b := 2(1− b

m
)
σ2

b
.

We now analyze independently the terms of (82) that depend on T , i.e. the last two terms on the RHS of (82). Recall that,
asymptotically in T , the condition on σDP implies

σDP = k · 2C
b

max {1, b
√

T log (1/δ)/mε} = O

(
C
√
T log (1/δ)

mε

)
. (83)

Term 2a2
1Lσ2

µ2T . Recalling the expression of σ2, and using (83) and (81) and the facts that σ2
b is independent of T and

f < n− f , we obtain

σ2 =
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
= O

(
dσ2

DP

n− f
+

f

n− f
· σ2

DP(1 +
d

n− f
)

)
= O

(
dσ2

DP

n− f
+

f

n− f
· σ2

DP

)
= O

(
C2d T log (1/δ)

m2(n− f)ε2
+

f

n− f
· C

2T log (1/δ)

m2ε2

)
.

As a result, we obtain
2a21Lσ

2

µ2T
= O

(
C2d log (1/δ)

m2(n− f)ε2
+

f

n− f
· C

2 log (1/δ)

m2ε2

)
. (84)

Term 2a2
1L

2L0

µ2T 2 . This term is independent of σDP and vanishes with T .

Going back to (82), and ignoring terms vanishing in T , and using (81), we obtain

E [LH(θT )− L∗] = O
(
C2d log (1/δ)

m2(n− f)ε2
+

f

n− f

C2 log (1/δ)

m2ε2
+

f

n− f
G2

cov

)
.

Finally, note that G2
cov ≤ G2. Indeed, using the definition of G2

cov and Assumption 2.1, together with Cauchy-Schwartz, we
have

G2
cov = sup

θ∈Rd

sup
∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θ)−∇LH(θ)⟩2 ≤ sup

θ∈Rd

1

|H|
∑
i∈H
∥∇Li(θ)−∇LH(θ)∥2 ≤ G2.

Using the fact above in the last inequality, together with the fact that n− f ≥ n
2 (as n > 2f ), we conclude

E [LH(θT )− L∗] = O
(
C2d log (1/δ)

m2nε2
+

f

n

C2 log (1/δ)

m2ε2
+

f

n
G2

)
.

Ignoring the constant C above concludes the proof.
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D.4. Upper Bound for Non-Convex Case

We now state the robustness and DP guarantees of SAFE-DSHB with SMEA in the non-convex case in Corollary D.1 below.

Corollary D.1. Consider Algorithm 1 with aggregation F = SMEA, under the non-convex setting of Theorem 4.2.
Suppose that assumptions 2.1, 2.2, 2.3 hold, that LH is L-smooth, and that n ≥ (2 + η)f , for some absolute constant
η > 0. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Then, there exists a constant k > 0 such that, if σDP =

k · 2C/bmax {1, b
√

T log (1/δ)/εm}, then Algorithm 1 is (ε, δ)-DP and (f, ϱ)-robust, where

ϱ = O

(√
d log (1/δ)

ε
√
nm

+

√
f

n
·
√

log (1/δ)

εm
+

f

n
G2

)
.

Proof. Assume that LH is L-smooth. Consider Algorithm 1 with aggregation F = SMEA, learning rate γt = γ =

min
{

1
24L ,

√
a4L0

2σ
√
a3LT

}
, and momentum coefficient βt = β = 1− 24Lγ. By Theorem 4.1, the condition on σDP ensures

that Algorithm 1 is (ε, δ)-DP. In the remaining, we prove that Algorithm 1 is (f, ϱ)-robust as stated in the corollary.

First, note that, by Proposition 5.1, SMEA is (f, κ)-robust averaging with κ = 4f
n−f (1 +

f
n−2f )

2. In fact, as we assume
n ≥ (2 + η)f where η > 0 is an absolute constant, we have

κ ≤ 4f

n− f
(1 +

1

η
)2 = O( f

n− f
). (85)

Therefore, thanks to Theorem 4.2, we have

E
[
∥∇LH(θ̂)∥2

]
≤ a2κG

2
cov +

√
a3a4LL0σ√

T
+

a4LL0

T
, (86)

where the constants a1, a2, a3, a4 are defined as in (3), and

σ2 :=
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
, σ2

b := 2(1− b

m
)
σ2

b
.

We now analyze independently the terms of (82) that depend on T , i.e. the last two terms on the RHS of (82). Recall that,
asymptotically in T , the condition on σDP implies

σDP = k · 2C
b

max {1, b
√

T log (1/δ)/mε} = O

(
C
√
T log (1/δ)

mε

)
. (87)

Term
√
a3a4LL0σ√

T
. Recalling the expression of σ2, and using (83) and (81) and the facts that σ2

b is independent of T and
f < n− f , we obtain

σ2 =
σ2
b + dσ2

DP

n− f
+ 4κ

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
= O

(
dσ2

DP

n− f
+

f

n− f
· σ2

DP(1 +
d

n− f
)

)
= O

(
dσ2

DP

n− f
+

f

n− f
· σ2

DP

)
= O

(
C2d T log (1/δ)

m2(n− f)ε2
+

f

n− f
· C

2T log (1/δ)

m2ε2

)
.

Therefore, using
√
x+ y ≤

√
x+
√
y, we obtain

σ = O

(
C
√
d T log (1/δ)

m
√
n− fε

+

√
f

n− f
·
C
√
T log (1/δ)

mε

)
.

As a result, we obtain
√
a3a4LL0σ√

T
= O

(
C
√
d log (1/δ)

m
√
n− fε

+

√
f

n− f
·
C
√
log (1/δ)

mε

)
. (88)
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Term a4LL0

T . This term is independent of σDP and vanishes with T .

Going back to (86), ignoring terms vanishing in T , and using (85), we obtain

E
[
∥∇LH(θ̂)∥2

]
= O

(
C
√

d log (1/δ)

m
√
n− fε

+

√
f

n− f
·
C
√
log (1/δ)

mε
+

f

n− f
G2

cov

)
.

Finally, note that G2
cov ≤ G2. Indeed, using the definition of G2

cov and Assumption 2.1, together with Cauchy-Schwartz, we
have

G2
cov = sup

θ∈Rd

sup
∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θ)−∇LH(θ)⟩2 ≤ sup

θ∈Rd

1

|H|
∑
i∈H
∥∇Li(θ)−∇LH(θ)∥2 ≤ G2.

Using the fact above in the last inequality, together with the fact that n− f ≥ n
2 (as n > 2f ), we conclude

E
[
∥∇LH(θ̂)∥2

]
= O

(
C
√
d log (1/δ)

m
√
nε

+

√
f

n
·
C
√
log (1/δ)

mε
+

f

n
G2

)
.

Ignoring the constant C above concludes the proof.

Discussion. We conjecture that the non-convex upper bound can be improved as observed recently in the centralized DP
setting using other variance reduction techniques (Arora et al., 2022). Nevertheless, both in the centralized and distributed
settings, it remains an open question to derive tight lower bounds for non-convex problems.

D.5. Proof of Supporting Lemmas

Before proving Lemmas D.1 to D.3 in Appendices D.5.2 to D.5.4, respectively, we first present some additional results
in Appendix D.5.1 below.

D.5.1. TECHNICAL LEMMAS

Lemma D.4. Let M ∈ Rd×d be a random real symmetric matrix and g : R→ R an increasing function. It holds that

E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ 9d · sup

∥v∥≤1

E [g(2 ⟨v, Mv⟩)] .

Proof. Let M ∈ Rd×d be a random real symmetric matrix and g : R→ R a increasing function.

The proof follows the construction of (Section 5.2, (Vershynin, 2010)). Recall from standard covering net results (Vershynin,
2010) that we can construct N1/4 a finite 1/4-net of the unit ball, i.e., for any vector v in the unit ball, there exists uv ∈ N1/4

such that ∥uv − v∥ ≤ 1/4. Moreover, we have the bound
∣∣N1/4

∣∣ ≤ (1+2/(1/4))d = 9d. Denote by ∥M∥ := sup∥v∥≤1 ∥Mv∥
the operator norm of M . By recalling that M is symmetric, we obtain for any v in the unit ball

|⟨v, Mv⟩ − ⟨uv, Muv⟩| = |⟨v + uv, M(v − uv)⟩| ≤ ∥v + uv∥ ∥M(v − uv)∥ ≤ (∥v∥+ ∥uv∥) ∥M(v − uv)∥
≤ 2 ∥M(v − uv)∥ ≤ 2 ∥M∥ ∥v − uv∥ ≤ 2 ∥M∥ /4 = ∥M∥ /2.

Therefore, we have ⟨v, Mv⟩ − ⟨uv, Muv⟩ ≤ ∥M∥ /2, and ⟨v, Mv⟩ − ∥M∥ /2 ≤ ⟨uv, Muv⟩ ≤ supu∈N1/4
⟨u, Mu⟩.

Recall that since M is symmetric, its operator norm coincides with its maximum eigenvalue: ∥M∥ = sup∥v∥≤1 ⟨v, Mv⟩.
We therefore deduce that

sup
∥v∥≤1

⟨v, Mv⟩ ≤ 2 · sup
v∈N1/4

⟨v, Mv⟩ .

Upon composing with g, which is increasing, we get

sup
∥v∥≤1

g(⟨v, Mv⟩) = g

(
sup

∥v∥≤1

⟨v, Mv⟩

)
≤ g

(
2 · sup

v∈N1/4

⟨v, Mv⟩

)
= sup

v∈N1/4

g(2 ⟨v, Mv⟩).
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Upon taking expectations and applying union bound, we finally conclude

E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ E

[
sup

v∈N1/4

g(2 ⟨v, Mv⟩)

]
≤
∣∣N1/4

∣∣ · sup
v∈N1/4

E [g(2 ⟨v, Mv⟩)] ≤ 9d · sup
∥v∥≤1

E [g(2 ⟨v, Mv⟩)] .

Lemma D.5. Suppose assumptions 2.2 and 2.3 hold. For any t ∈ {0, . . . , T − 1} and i ∈ H, we have

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ 2

(
1− b

m

)
σ2

b
+ d · σ2

DP.

Proof. Suppose assumptions 2.2 and 2.3 hold. Let i ∈ H and t ∈ {0, . . . , T − 1}.

First recall from (48) that, since g̃
(i)
t = g

(i)
t + ξ

(i)
t , ξ

(i)
t

i.i.d.∼ N (0, σ2
DPId), we have

E
ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2] = E
[∥∥∥ξ(i)t

∥∥∥2] = d · σ2
DP.

Next, we have∥∥∥g̃(i)t −∇Li(θt)
∥∥∥2 =

∥∥∥g̃(i)t − g
(i)
t + g

(i)
t −∇Li(θt)

∥∥∥2
=
∥∥∥g̃(i)t − g

(i)
t

∥∥∥2 + ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 + 2

〈
g̃
(i)
t − g

(i)
t , g

(i)
t −∇Li(θt)

〉
.

Now taking expectation on the randomness of ξ(i)t (independent of all other random variables), and since E
[
ξ
(i)
t

]
= 0, we

get

E
ξ
(i)
t

[∥∥∥g̃(i)t −∇Li(θt)
∥∥∥2] = E

ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2]+ ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 + 2

〈
E
ξ
(i)
t

[
g̃
(i)
t − g

(i)
t

]
︸ ︷︷ ︸

=E
[
ξ
(i)
t

]
=0

, g
(i)
t −∇Li(θt)

〉

= E
ξ
(i)
t

[∥∥∥g̃(i)t − g
(i)
t

∥∥∥2]+ ∥∥∥g(i)t −∇Li(θt)
∥∥∥2 .

Upon taking total expectation, we obtain

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] = E
[∥∥∥g̃(i)t − g

(i)
t

∥∥∥2]+ E
[∥∥∥g(i)t −∇Li(θt)

∥∥∥2]
= E

[∥∥∥g(i)t −∇Li(θt)
∥∥∥2]+ d · σ2

DP. (89)

First observe that when m = 1, as b ∈ [m], we must have b = m. Thus, the gradient is deterministic, i.e., g(i)t = ∇Li(θt).
Thus, the first term in the equation above is zero, and the claimed bound holds.

Else, when m ≥ 2, recall that from Assumption 2.2, we have Ex∼U(Di)

[
∥∇θℓ(θt;x)−∇Li(θt)∥2

]
≤ σ2. From (Rice,

2006), the variance reduction due to subsampling without replacement gives

E
[∥∥∥g(i)t −∇Li(θt)

∥∥∥2] ≤ (1− b− 1

m− 1

)
σ2

b
.

Plugging this bound back in Equation (89) yields

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ (1− b− 1

m− 1

)
σ2

b
+ d · σ2

DP.
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By observing, as m ≥ 2, that 1− b−1
m−1 = m−b

m−1 = m
m−1 ·

m−b
m = (1+ 1

m−1 )(1−
b
m ) ≤ 2(1− b

m ), we obtain the final result:

E
[∥∥∥g̃(i)t −∇Li(θt)

∥∥∥2] ≤ 2

(
1− b

m

)
σ2

b
+ d · σ2

DP.

Lemma D.6. Let σDP ≥ 0 and d, n ≥ 1. Consider ξ(1), . . . , ξ(n) to be i.i.d. random variables drawn from the Gaussian
distribution N (0, σ2

DPId). We have

E

[
sup

∥v∥≤1

1

n

n∑
i=1

〈
v, ξ(i)

〉2]
≤ 36σ2

DP

(
1 +

d

n

)
.

Proof. Let σDP ≥ 0 and d, n ≥ 1. Consider ξ(1), . . . , ξ(n) to be i.i.d. random variables drawn from the Gaussian distribution
N (0, σ2

DPId).

If σDP = 0, then ξ(i) = 0 almost surely for every i ∈ [n], and the remainder of the proof holds with σDP = 0. Else, we
assume σDP > 0 in the remaining.

Thus, the law of the random variable ξ(i)/σDP is N (0, Id) for every i ∈ [n]. Thus, for every vector v in the unit ball, the
random variable

〈
v, ξ(i)/σDP

〉
is sub-Gaussian with variance equal to 1 (see Chapter 1, (Rigollet & Hütter, 2015)). Therefore,

for every i ∈ [n] and every vector v in the unit ball, applying Theorem 2.1.1 in (Pauwels, 2020)), we have

E
[
exp

(
1

8

〈
v, ξ(i)/σDP

〉2)] ≤ 2.

As a result, by the independence of ξ(i)’s, we obtain

sup
∥v∥≤1

E

[
exp

(
1

8σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
= sup

∥v∥≤1

n∏
i=1

E
[
exp

(
1

8

〈
v, ξ(i)/σDP

〉2)] ≤ 2n.

Now, observe that we can write
∑n

i=1

〈
v, ξ(i)

〉2
as the quadratic form ⟨v, Mv⟩, where M :=

∑n
i=1 ξ

(i) · ξ(i)⊤ is a random
real symmetric matrix. Thus, applying Lemma D.4 with the increasing function g(·) = exp ( 1

16σ2
DP
× ·), we have

E

[
sup

∥v∥≤1

exp

(
1

16σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
= E

[
sup

∥v∥≤1

g(⟨v, Mv⟩)

]
≤ 9d · sup

∥v∥≤1

E [g(2 ⟨v, Mv⟩)]

= 9d · sup
∥v∥≤1

E

[
exp

(
1

8σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
≤ 9d · 2n.

We can now use this inequality to bound the term of interest. We apply Jensen’s inequality thanks to exp being convex, and
we also interchange exp and sup thanks to the former being increasing:

exp

(
1

16σ2
DP

E

[
sup

∥v∥≤1

n∑
i=1

〈
v, ξ(i)

〉2])
≤ E

[
exp

(
1

16σ2
DP

sup
∥v∥≤1

n∑
i=1

〈
v, ξ(i)

〉2)]

= E

[
sup

∥v∥≤1

exp

(
1

16σ2
DP

n∑
i=1

〈
v, ξ(i)

〉2)]
≤ 9d · 2n.

Upon taking ln and multiplying by 16σ2
DP/n on both sides, we obtain that

E

[
sup

∥v∥≤1

1

n

n∑
i=1

〈
v, ξ(i)

〉2]
≤ 16

σ2
DP

n
(d ln 9 + n ln 2) ≤ 36

σ2
DP

n
(d+ n) = 36σ2

DP

(
1 +

d

n

)
.

The above concludes the lemma.
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D.5.2. PROOF OF LEMMA D.1

Lemma D.1. Suppose that assumptions 2.2 and 2.3 hold. Consider Algorithm 1. For every t ∈ {0, . . . , T − 1}, we have

E [∆t+1] ≤ βt E [∆t] + 2(1− βt)
2

(
σ2
b + 36σ2

DP(1 +
d

n− f
)

)
+ (1− βt)G

2
cov,

where mt :=
1

|H|
∑

i∈H m
(i)
t , σ2

b := 2(1− b
m )σ

2

b , and G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2.

Proof. Let t ∈ {0, . . . , T − 1}. Suppose that Assumption 2.2 holds. Recall that the alternate definition of maximum
eigenvalue implies, following the definition of ∆t in Equation (51), that

∆t = λmax

(
1

|H|
∑
i∈H

(m
(i)
t −mt)(m

(i)
t −mt)

⊤

)
= sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
.

We will use the latter expression above for ∆t throughout this lemma.

For every i ∈ H, by definition of m(i)
t , given in Equation (47), we have

m
(i)
t+1 = βtm

(i)
t + (1− βt)g̃

(i)
t+1.

We also denote mt :=
1

|H|
∑

i∈H m
(i)
t and g̃t+1 := 1

|H|
∑

i∈H g̃
(i)
t+1. Therefore, we have mt+1 = βtmt + (1− βt)g̃t+1. As

a result, we can write for every i ∈ H

m
(i)
t+1 −mt+1 = βt(m

(i)
t −mt) + (1− βt)(g̃

(i)
t+1 − g̃t+1)

= βt(m
(i)
t −mt) + (1− βt)(∇Li(θt+1)−∇LH(θt+1))

+ (1− βt)(g̃
(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)).

By projecting the above expression on an arbitrary vector v and then taking squares, we obtain

〈
v, m

(i)
t+1 −mt+1

〉2
=
[
βt

〈
v, m

(i)
t −mt

〉
+ (1− βt) ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

+ (1− βt)
〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉 ]2
= β2

t

〈
v, m

(i)
t −mt

〉2
+ (1− βt)

2 ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

+ (1− βt)
2
〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2
+ 2βt(1− βt)

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

+ 2βt(1− βt)
〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
+ 2βt(1− βt) ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
.
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Upon averaging over i ∈ H, taking the supremum over the unit ball, and then total expectations, we get

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
= β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
.

(90)

We now show that the last two terms on the RHS of Equation (90) are non-positive. We show it for the first one, as the
second one can be shown to be non-positive in the same way.

First, note that we can write the inner expression as a quadratic form. Precisely, we have for any vector v and any i ∈ H that

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉
= ⟨v, Mv⟩ ,

where we have introduced the d × d matrix M := N + N⊤, such that N :=
∑

i∈H(m
(i)
t −mt)(g̃

(i)
t+1 − ∇Li(θt+1) −

g̃t+1 +∇LH(θt+1))
⊤. By observing that M is symmetric, we can apply Lemma D.4 with g being the identity mapping:

E

[
sup

∥v∥≤1

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
= E

[
sup

∥v∥≤1

⟨v, Mv⟩

]
≤ 9d · sup

∥v∥≤1

E [2 ⟨v, Mv⟩] . (91)

However, the last term is zero by the total law of expectation. Indeed, recall that stochastic gradients are unbiased
(Assumption 2.2) and that θt+1 and m

(i)
t are deterministic when given history Pt+1. This gives

E [⟨v, Mv⟩] = E

[
2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]

= E

[
Et+1

[
2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]]

= E

2∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, Et+1

[
g̃
(i)
t+1 −∇Li(θt+1)

]
︸ ︷︷ ︸

=0

−Et+1

[
g̃t+1 −∇LH(θt+1)

]
︸ ︷︷ ︸

=0

〉 = 0.

Moreover, going back to Equation (91), we obtain

E

[
sup

∥v∥≤1

2
∑
i∈H

〈
v, m

(i)
t −mt

〉〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
≤ 9d · sup

∥v∥≤1

E [2 ⟨v, Mv⟩] = 0.
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As mentioned previously, we can prove in the same way that

E

[
sup

∥v∥≤1

2
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉]
≤ 0.

Plugging the two previous bounds back in Equation (90), we have thus proved that

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
= β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

+ 2βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]
. (92)

We now bound the two last terms on the RHS of Equation (92).

First, by using the fact that 2ab ≤ a2 + b2, we have for any vector v that

2

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩ ≤

1

|H|
∑
i∈H

[〈
v, m

(i)
t −mt

〉2
+ ⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
=

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
+

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2 . (93)

Taking the supremum over the unit ball and then total expectations on both sides yields

2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩

]

≤ E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]
+ E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
. (94)

Second, recall that g̃(i)t+1 = g
(i)
t+1 + ξ

(i)
t+1, where ξ

(i)
t+1 ∼ N (0, σ2

DPId). Denote ξt+1 := 1
|H|
∑

i∈H ξ
(i)
t+1. Therefore, by

applying Jensen’s inequality, we have

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

= E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g

(i)
t+1 −∇Li(θt+1)− gt+1 +∇LH(θt+1) + ξ

(i)
t+1 − ξt+1

〉2]

≤ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

[〈
v, g

(i)
t+1 −∇Li(θt+1)− gt+1 +∇LH(θt+1)

〉2
+
〈
v, ξ

(i)
t+1 − ξt+1

〉2]]

Recall the following bias-variance decomposition: for any x1, . . . , xn ∈ R, denoting x := 1
n

∑n
i=1 xi, we have 1

n

∑n
i=1(xi−
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x)2 = 1
n

∑n
i=1 x

2
i − x2 ≤

∑n
i=1 x

2
i . Applying this fact above yields

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]

≤ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

[〈
v, g

(i)
t+1 −∇Li(θt+1)

〉2
+
〈
v, ξ

(i)
t+1

〉2]]

≤ 2E

[
1

|H|
∑
i∈H

∥∥∥g(i)t+1 −∇Li(θt+1)
∥∥∥2]+ 2E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
, (95)

where the last inequality is due to the Cauchy-Schwartz inequality. Recall that, by Assumption 2.2 and Lemma D.5 applied

with zero privacy noise, we have for every i ∈ H that E
[∥∥∥g(i)t+1 −∇Li(θt+1)

∥∥∥2] ≤ 2(1− b
m )σ

2

b =: σ2
b . Therefore, upon

averaging over i ∈ H, we have

E

[
1

|H|
∑
i∈H

∥∥∥g(i)t+1 −∇Li(θt+1)
∥∥∥2] ≤ σ2

b . (96)

We now bound the remaining (last) term on the RHS of (95). By applying Lemma D.6 to the random variables (ξ(i)t+1)i∈H
which are drawn i.i.d. from N (0, σ2

DPId), we obtain

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, ξ

(i)
t+1

〉2]
≤ 36σ2

DP

(
1 +

d

n− f

)
. (97)

Plugging the bounds obtained in (96) and (97) back in (95), we get

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, g̃

(i)
t+1 −∇Li(θt+1)− g̃t+1 +∇LH(θt+1)

〉2]
≤ 2

(
σ2
b + 36σ2

DP

(
1 +

d

n− f

))
. (98)

We use the above bounds in (94) and (98) to bound the RHS of (92), which yields

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ β2

t E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)
2 E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
+ 2(1− βt)

2

(
σ2
b + 36σ2

DP

(
1 +

d

n− f
)

))

+ βt(1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2
+ sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
.

By rearranging terms, and noticing that β2
t + βt(1− βt) = βt and (1− βt)

2 + βt(1− βt) = 1− βt, we obtain

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ βt E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ (1− βt)E

[
sup

∥v∥≤1

1

|H|
∑
i∈H
⟨v, ∇Li(θt+1)−∇LH(θt+1)⟩2

]
+ 2(1− βt)

2

(
σ2
b + 36σ2

DP

(
1 +

d

n− f

))
.

Denote G2
cov := supθ∈Rd sup∥v∥≤1

1
|H|
∑

i∈H ⟨v, ∇Li(θ)−∇LH(θ)⟩2. Then, the above bound implies

E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t+1 −mt+1

〉2]
≤ βt E

[
sup

∥v∥≤1

1

|H|
∑
i∈H

〈
v, m

(i)
t −mt

〉2]

+ 2(1− βt)
2

(
σ2
b + 36σ2

DP

(
1 +

d

n− f

))
+ (1− βt)G

2
cov.

The above inequality concludes the proof.
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D.5.3. PROOF OF LEMMA D.2

Lemma D.2. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth. Consider Algorithm 1. For all
t ∈ {0, . . . , T − 1}, we have

E
[
∥δt+1∥2

]
≤ β2

t (1 + γtL)(1 + 4γtL)E
[
∥δt∥2

]
+ 4γtL(1 + γtL)β

2
t E
[
∥∇LH(θt)∥

2
]

+ (1− βt)
2 σ2

DP

(n− f)
+ 2γtL(1 + γtL)β

2
t E
[
∥ϵt∥2

]
,

where σ2
DP := 2

(
1− b

m

)
σ2

b + d · σ2
DP.

Proof. Let t ∈ {0, . . . , T − 1}. Suppose that assumptions 2.2 and 2.3 hold and that LH is L-smooth.

Recall from (52) that

δt+1 := mt+1 −∇LH
(
θt+1

)
.

Denote g̃t :=
1

|H|
∑

i∈H g̃
(i)
t . Substituting from (47) and recalling that mt =

1
|H|
∑

i∈H m
(i)
t , we obtain

δt+1 = βt mt + (1− βt) g̃t+1 −∇LH
(
θt+1

)
.

Upon adding and subtracting βt∇LH(θt) and βt∇LH(θt+1) on the R.H.S. above we obtain that

δt+1 = βt mt − βt∇LH(θt) + (1− βt) g̃t+1 −∇LH
(
θt+1

)
+ βt∇LH(θt+1) + βt∇LH(θt)− βt∇LH(θt+1)

= βt (mt −∇LH(θt)) + (1− βt) g̃t+1 − (1− βt)∇LH
(
θt+1

)
+ βt

(
∇LH(θt)−∇LH(θt+1)

)
.

As mt −∇LH(θt) = δt (by (52)), from above we obtain that

δt+1 = βtδt + (1− βt)
(
g̃t+1 −∇LH

(
θt+1

))
+ βt

(
∇LH(θt)−∇LH(θt+1)

)
.

Therefore,

∥δt+1∥2 =β2
t ∥δt∥

2
+ (1− βt)

2
∥∥∥g̃t+1 −∇LH

(
θt+1

)∥∥∥2
+ β2

t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 + 2βt(1− βt)

〈
δt, g̃t+1 −∇LH

(
θt+1

)〉
+ 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
+ 2βt(1− βt)

〈
g̃t+1 −∇LH

(
θt+1

)
, ∇LH(θt)−∇LH(θt+1)

〉
.

By taking conditional expectation Et+1 [·] on both sides, and recalling that δt, θt+1 and θt are deterministic values when the
history Pt+1 is given, we obtain that

Et+1

[
∥δt+1∥2

]
=β2

t ∥δt∥
2
+ (1− βt)

2Et+1

[∥∥∥g̃t+1 −∇LH
(
θt+1

)∥∥∥2]+ β2
t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 +

2βt(1− βt)
〈
δt, Et+1

[
g̃t+1

]
−∇LH

(
θt+1

)〉
+ 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
+ 2βt(1− βt)

〈
Et+1

[
g̃t+1

]
−∇LH

(
θt+1

)
, ∇LH(θt)−∇LH(θt+1)

〉
.

Recall that g̃t+1 := 1
(n−f)

∑
j∈H g̃

(i)
t+1. Thus, as we ignore clipping by Assumption 2.3, we have Et+1

[
g̃t+1

]
=

∇LH(θt+1). Using this above we obtain that

Et+1

[
∥δt+1∥2

]
=β2

t ∥δt∥
2
+ (1− βt)

2Et+1

[∥∥∥g̃t+1 −∇LH
(
θt+1

)∥∥∥2]+ β2
t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2

+ 2β2
t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
.
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Now, denote σ2
DP := 2

(
1− b

m

)
σ2

b + d · σ2
DP. By assumptions 2.2 and 2.3, we can invoke Lemma D.5 which implies,

together with the fact that g(j)t+1’s for j ∈ H are independent, that Et+1

[∥∥∥g̃t+1 −∇LH
(
θt+1

)∥∥∥2] ≤ σ2
DP

n−f . Thus,

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ β2

t

∥∥∇LH(θt)−∇LH(θt+1)
∥∥2 + 2β2

t

〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
.

By the Cauchy-Schwartz inequality,
〈
δt, ∇LH(θt)−∇LH(θt+1)

〉
≤ ∥δt∥

∥∥∇LH(θt)−∇LH(θt+1)
∥∥. Since LH

is L-smooth, we have
∥∥∇LH(θt)−∇LH(θt+1)

∥∥ ≤ L
∥∥θt+1 − θt

∥∥. Recall from (50) that θt+1 = θt − γtRt.
Thus,

∥∥∇LH(θt)−∇LH(θt+1)
∥∥ ≤ γtL ∥Rt∥. Using this above we obtain that

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ γ2

t β
2
tL

2 ∥Rt∥2 + 2γtβ
2
tL ∥δt∥ ∥Rt∥ .

As 2ab ≤ a2 + b2, from above we obtain that

Et+1

[
∥δt+1∥2

]
≤ β2

t ∥δt∥
2
+ (1− βt)

2 σ2
DP

(n− f)
+ γ2

t β
2
tL

2 ∥Rt∥2 + γtLβ
2
t

(
∥δt∥2 + ∥Rt∥2

)
= (1 + γtL)β

2
t ∥δt∥

2
+ (1− βt)

2 σ2
DP

(n− f)
+ γtL(1 + γtL)β

2
t ∥Rt∥2 . (99)

By definition of ϵt in (53), we have Rt = ϵt +mt. Thus, owing to the triangle inequality and the fact that 2ab ≤ a2 + b2,
we have ∥Rt∥2 ≤ 2 ∥ϵt∥2 + 2 ∥mt∥2. Similarly, by definition of δt in (52), we have ∥mt∥2 ≤ 2 ∥δt∥2 + 2 ∥∇LH(θt)∥

2.
Thus, ∥Rt∥2 ≤ 2 ∥ϵt∥2 + 4 ∥δt∥2 + 4 ∥∇LH(θt)∥

2. Using this in (99) we obtain that

Et+1

[
∥δt+1∥2

]
≤ (1 + γtL)β

2
t ∥δt∥

2
+ (1− βt)

2 σ2
DP

(n− f)

+ 2γtL(1 + γtL)β
2
t

(
∥ϵt∥2 + 2 ∥δt∥2 + 2 ∥∇LH(θt)∥

2
)
.

By rearranging the terms on the R.H.S., we get

Et+1

[
∥δt+1∥2

]
≤β2

t (1 + γtL) (1 + 4γtL) ∥δt∥2 + 4γtL(1 + γtL)β
2
t ∥∇LH(θt)∥

2
+ (1− βt)

2 σ2
DP

(n− f)

+ 2γtL(1 + γtL)β
2
t ∥ϵt∥

2
.

The proof concludes upon taking total expectation on both sides.

D.5.4. PROOF OF LEMMA D.3

Lemma D.3. Assume that LH is L-smooth. Consider Algorithm 1. For any t ∈ [T ], we have

E
[
LH(θt+1)− LH(θt)

]
≤− γt

2
(1− 4γtL)E

[
∥∇LH(θt)∥

2
]
+ γt (1 + 2γtL)E

[
∥δt∥2

]
+ γt (1 + γtL)E

[
∥ϵt∥2

]
.

Proof. Let t ∈ {0, . . . , T − 1}. Assuming LH is L-smooth, we have (see Lemma 1.2.3 (Nesterov et al., 2018))

LH(θt+1)− LH(θt) ≤
〈
θt+1 − θt, ∇LH(θt)

〉
+

L

2

∥∥θt+1 − θt
∥∥2 .

Substituting from (54), i.e., θt+1 = θt − γt mt − γtϵt, we obtain that

LH(θt+1)− LH(θt) ≤ −γt ⟨mt, ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+ γ2
t

L

2
∥mt + ϵt∥2

= −γt ⟨mt −∇LH(θt) +∇LH(θt), ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+ γ2
t

L

2
∥mt + ϵt∥2 .
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By Definition (52), mt −∇LH(θt) = δt. Thus, from above we obtain

LH(θt+1)− LH(θt) ≤ −γt ∥∇LH(θt)∥
2 − γt ⟨δt, ∇LH(θt)⟩ − γt ⟨ϵt, ∇LH(θt)⟩+

1

2
γ2
tL ∥mt + ϵt∥2 . (100)

Now, we consider the last three terms on the R.H.S. separately. Using Cauchy-Schwartz inequality, and the fact that
2ab ≤ 1

ca
2 + cb2 for any c > 0, we obtain that (by substituting c = 2)

2 |⟨δt, ∇LH(θt)⟩| ≤ 2 ∥δt∥ ∥∇LH(θt)∥ ≤
2

1
∥δt∥2 +

1

2
∥∇LH(θt)∥

2
. (101)

Similarly,

2 |⟨ϵt, ∇LH(θt)⟩| ≤ 2 ∥ϵt∥ ∥∇LH(θt)∥ ≤
2

1
∥ϵt∥2 +

1

2
∥∇LH(θt)∥

2
. (102)

Finally, using triangle inequality and the fact that 2ab ≤ a2 + b2 we have

∥mt + ϵt∥2 ≤ 2 ∥mt∥2 + 2 ∥ϵt∥2 = 2
∥∥mt −∇LH(θt+1) +∇LH(θt)

∥∥2 + 2 ∥ϵt∥2

≤ 4 ∥δt∥2 + 4 ∥∇LH(θt)∥
2
+ 2 ∥ϵt∥2 . [since mt −∇LH(θt) = δt] (103)

Substituting from (101), (102) and (103) in (100) we obtain that

LH(θt+1)− LH(θt) ≤− γt ∥∇LH(θt)∥
2
+

1

2
γt

(
2 ∥δt∥2 +

1

2
∥∇LH(θt)∥

2

)
+

1

2
γt

(
2 ∥ϵt∥2 +

1

2
∥∇LH(θt)∥

2

)
+

1

2
γ2
tL
(
4 ∥δt∥2 + 4 ∥∇LH(θt)∥

2
+ 2 ∥ϵt∥2

)
.

Upon rearranging the terms in the R.H.S., we obtain that

LH(θt+1)− LH(θt) ≤ −
γt
2
(1− 4γtL) ∥∇LH(θt)∥

2
+ γt (1 + 2γtL) ∥δt∥2 + γt (1 + γtL) ∥ϵt∥2 .

This concludes the proof.
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E. Experimental Evaluation
In Section E.1, we present our experimental setup. In Section E.2, we report our empirical results.

E.1. Experimental Setup

In our experiments, we test the performance of SAFE-DSHB using SMEA and Filter (Diakonikolas et al., 2017; Data &
Diggavi, 2021) in the server-based architecture and in three privacy regimes.

Dataset, model architecture, and hyperparameters. We train a logistic regression model of d = 69 parameters on
the academic Phishing5 dataset. We employ the binary cross entropy (bce) loss as well as L2-regularization of parameter
λ = 10−4, making the underlying learning problem strongly convex. We train the model using a fixed learning rate γ = 1
over a total of T = 400 learning steps. We set the clipping threshold C = 1 and the batch size b = 25. We run all algorithms,
except DSGD, with momentum β = 0.99.

Distributed setup, and privacy accounting. We consider a server-based architecture composed of n = 7 workers, among
which f = 3 are adversarial. The honest workers inject a privacy noise σDP = 2C

b × σNM to their gradients, where σNM is
referred to as the noise multiplier. We consider three privacy regimes in our experiments; namely low privacy where σNM = 1,
moderate privacy where σNM = 2, and high privacy where σNM = 3. In order to estimate the privacy budgets achieved at
the end of the learning, we use Opacus (Yousefpour et al., 2021), a DP library for deep learning in PyTorch (Paszke et al.,
2019). Using Opacus, the aggregate privacy budgets after T = 400 steps of learning are (ϵ, δ) = (1.14, 10−4) in the low
privacy regime, (ϵ, δ) = (0.32, 10−4) in the moderate privacy regime, and (ϵ, δ) = (0.19, 10−4) in the high privacy regime.

Evaluation details and reproducibility. As a benchmark, we compare the performance of SAFE-DSHB against the
DP-DSGD algorithm, i.e., the private version of the adversary-free DSGD. We test SAFE-DSHB using SMEA and Filter.
These algorithms are obtained by running Algorithm 1 while replacing the aggregation method F with the robust algorithm
in question, namely SMEA and Filter. Note that we run Filter with spectral norm bound σ2

0 = 0 (see Section B.2) because it
provides the best empirical results, and it cannot be set to its theoretical value since the values of data heterogeneity G2 and
stochastic gradient noise σ2 are unknown. We run each experiment with five seeds from 1 to 5 for reproducibility. The code
we use to launch the different experiments will be made available.

Adversarial attacks. In our experiments, the adversarial workers execute four state-of-the-art attacks from the robust
distributed ML literature, namely A Little is Enough (ALIE) (Baruch et al., 2019), Fall of Empires (FOE) (Xie et al., 2019),
Sign-flipping (SF) (Allen-Zhu et al., 2020), and Label-flipping (LF) (Allen-Zhu et al., 2020).
The first three attacks rely on the same attack primitive that we explain below, while LF is executed differently.
Let bt be the attack vector in step t and τ ≥ 0 a fixed real number. In every step t, the adversarial workers send to the server
the gradient Bt = gt+ τtbt, where gt is an estimation of the true gradient at step t. Experimentally, we set gt =

1
|H|

∑
i∈H

g
(i)
t .

• ALIE: In this attack, bt = σt, where σt is coordinate-wise standard deviation of gt. In our experiments on ALIE, τt
is chosen through an extensive grid search. Essentially, in each step t, we choose the value that results in the worst
adversarial vector, i.e, the vector for which the distance to gt is the largest.

• FOE: In this attack, bt = −gt. All adversarial workers thus send (1− τt)gt in step t. Similar to ALIE, τt for FoE is
also estimated through grid searching.

• SF: In this attack, bt = −gt, and τt = 2. All adversarial workers thus send Bt = bt = −gt in step t.

• LF: Every adversarial worker computes its gradient on flipped labels. Since the labels l for Phishing are in {0, 1}, the
adversarial workers flip the labels by computing l′ = 1− l on the batch, where l′ is the flipped/modified label.

E.2. Experimental Results

We present our results in the low privacy regime in Figures 2 and 3, in the mid privacy regime in Figures 4 and 5, and finally
in the high privacy regime in Figures 6 and 7. We then comment on the results below.

5https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Low Privacy Regime (σNM = 1).
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Figure 2. Test accuracy on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (1.14, 10−4).
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Figure 3. Training loss on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (1.14, 10−4).
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Moderate Privacy Regime (σNM = 2).
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Figure 4. Test accuracy on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (0.32, 10−4).
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Figure 5. Training loss on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (0.32, 10−4).
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High Privacy Regime (σNM = 3).
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Figure 6. Test accuracy on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (0.19, 10−4).
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Figure 7. Training loss on Phishing with f = 3 adversarial workers among n = 7 workers, with β = 0.99. The adversarial workers
execute the LF (row 1, left), SF (row 1, right), ALIE (row 2, left), and FOE (row 2, right) attacks. Privacy budget after T = 400 steps is
(ϵ, δ) = (0.19, 10−4).
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Discussion. We consider four different attacks executed by the adversarial nodes, and report on the performance of the
algorithms in three different privacy regimes. Our observations are twofold.

First, as expected, we see that as the privacy regime becomes more demanding, the performances of DP-DSGD and SMEA
degrade both in terms of test accuracy and training loss. This confirms that the standard privacy-utility trade-off also occurs
in the presence of adversarial workers. Second, we see that under all three privacy regimes, SAFE-DSHB with SMEA is
able to successfully mitigate adversarial attacks while still ensuring strong levels of differential privacy. Indeed, the final
accuracies reached by SAFE-DSHB with SMEA are around 80% in the low and moderate privacy regimes, and around 75%
in high privacy (a bit lower under the FOE attack). On the other hand, the training losses are decreasing under all attacks
and in all privacy regimes, sometimes asymptotically matching the curves of DP-DSGD (e.g., the LF attack in all three
privacy regimes, the ALIE attack in low and moderate privacy). The same observations hold for SAFE-DSHB with Filter.
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