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Abstract
We show that the variational energy principle of the multi-region relaxed magnetohydrodynamic
(MRxMHD) model can be used to predict finite-pressure linear tearing instabilities. In this
model, the plasma volume is sliced into sub-volumes separated by ‘ideal interfaces’, and in each
volume the magnetic field relaxes to a Taylor state, where the pressure gradient ∇p= 0. The
MRxMHD model is implemented in the Stepped-Pressure Equilibrium Code (SPEC) so that the
equilibrium solution in each region is computed while preserving the force balance across the
interfaces. As SPEC computes the Hessian matrix (a discretized stability matrix), the stability of
an MRxMHD equilibrium can also be computed with SPEC. In this article, using SPEC, we
investigate the effect of local pressure gradients and the ∇p= 0 in the vicinity of the resonant
surface of a tearing mode. For low-beta plasma, we have been able to illustrate a relationship
between the resistive singular-layer theory (Coppi et al 1966 Nucl. Fusion 6 101; Glasser et al
1975 Phys. Fluids 18 875–88) and the MRxMHD model. Within the singular layer, the
volume-averaged magnetic helicity and the flux-averaged toroidal flux are shown to be the
invariants for the linear tearing modes in SPEC simulations. Our technique to compute
MRxMHD stability is first tested numerically in a cylindrical tokamak and its application in
toroidal geometry is demonstrated. We demonstrate an agreement between the stability
boundary obtained with SPEC simulation and the resistive inner-layer theories.
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1. Introduction

1.1. Theoretical review

Resistive tearing instabilities are of considerable fundamental
as well as practical importance in the study of sawtooth oscil-
lations. These oscillations arise from current-induced instabil-
ities that can be caused either internally or externally, such as
by electron cyclotron resonance heating [1]. Coppi–Greene–
Johnson (CGJ) [2] and Glasser–Greene–Johnson (GGJ) [3]
demonstrated that the finite pressure has a stabilizing effect
on tearing instabilities. In their magnetohydrodynamic (MHD)
theory, the resistive modes were analyzed using the boundary
layer theory when the boundary layers occur near the rational
surfaces. Basically, the plasma can be analyzed in two regions:
an ‘outer region’, where the plasma is ideal, and an ‘inner
layer’, where non-ideal dissipation is significant. The resist-
ive inner-layer equations in cylindrical geometry were derived
by CGJ, and the extensions of these equations in general tor-
oidal geometry were derived by GGJ. In a pressureless plasma
[4], the conditions for instability can be understood as∆ ′ > 0.
In a plasma with pressure, an instability can be possible only
if ∆ ′ >∆crit, where ∆ ′ is the stability parameter measuring
the free energy available for the mode, and ∆crit is a posit-
ive threshold value. As a result, several numerical studies have
explored the implications of the stabilizing effect of finite pres-
sure on the resistive stability of tokamaks, resulting in a well-
understood dependence of tearing mode stability on the pres-
sure gradient ∇p at the rational surface [5].

In the absence of ∇p at the resonant surface, two
approaches to solving this problem have been reviewed in
Ham et al [6]. Firstly, one can deduce ∆ ′ from the tearing
mode growth rate ω, calculated by a resistiveMHD code using
the known dispersion relation for the resistive MHD model.
Alternatively, one can use a resistive MHD code to obtain a
set of basis functions from which∆ ′ can be constructed. Ham
et al [6] described an artificial pressure flattening function at
the rational surfaces, and its relationship has been established
with the calculation of ∆ ′. Alongside, Bishop et al [7] dis-
cussed a localized pressure flattening perturbation at the res-
onant surface in order to assess the sensitivity of ∆ ′ to such
effects. Indeed, the modelling of this in linear tearing the-
ory by including anisotropic thermal transport in the govern-
ing equations can significantly modify the Glasser dispersion
relation [8, 9], yielding the form of the natural diffusion length
scale as,

wd = 2
√
2

(
χ⊥

χ∥

)1/4( rsR0

ns

)1/2

. (1)

Here, R0 is the major radius, rs is the radial location of a
rational surface, n is the toroidal mode number, s= rq ′/q is
the positive equilibrium magnetic shear and q is the safety
factor, and χ⊥ and χ∥ are the perpendicular and parallel
transport thermal diffusivities, respectively. Ham et al [6]
showed that δL < wd, where δL is the characteristic length scale

within the resistive singular layer. For anisotropic plasmas [10]
(χ⊥ < χ∥), one could see that δL < wd < 2

√
2(rsR0/ns)1/2.

Thus, the upper bound of δL has no dependence on plasma
resistivity.

1.2. Multi-region relaxed MHD model

In this article, we focus on determining pressure-induced tear-
ing instabilities using the variational energy principle of multi-
region relaxed MHD (MRxMHD). The MRxMHD variational
principle is a generalization of the global Taylor’s relaxation
conjecture to the partial relaxation, to understand the physical
mechanism of magnetic reconnections.

In MRxMHD, the whole plasma Ω is partitioned into the
discrete number of Beltrami relaxed plasma regions,Ωl’s, such
that the pressure, pl = const. and∇pl = 0within these regions.
Each relaxed region is then bounded by freely variable toroidal
interfaces, on the outer edge by the interface Il and on the inner
edge by Il−1 that are assumed invariant ideal surfaces dur-
ing the minimization of MRxMHD energy. The multi-region
relaxed-MHD energy principle [11] minimizes the total poten-
tial and thermal energy under invariant topological constraints,
known as magnetic helicity,

Kl =
ˆ
Ωl

d3τ A · (∇×A), (2)

which takes a variational form [12]

µ0F=

Nv∑
l=1

[ˆ
Ωl

(
p

γ− 1
+
B2

2

)
d3τ − µl

2
(Kl−Kl,0)

]
, (3)

where µl is defined as the Lagrange multiplier. Here, the
magnetic helicity identifies as the volume-preserving invariant
quantity under the gauge transformation of the vector poten-
tial,A→ A+∇Ξ,whereΞ is a single-valued gauge potential,
alongside the toroidal and poloidalmagnetic fluxes. In eachΩl,
the mass and entropy constraints yield an isentropic ideal-gas
constraint, plV

γ
l = cl, where V l is the volume of Ωl and cl is a

constant. The volumeΩl enclosed by ‘ideal interfaces’, is con-
strained to have helicity Kl,0, the poloidal flux ∆ψp,l, and the
toroidal flux ∆ψt,l. This theory unifies the ideal MHD energy
principle and Taylor’s relaxation conjecture [13] by allowing a
less-restrictive class of variations in comparison to idealMHD.
These variations allow magnetic reconnection to form islands
and chaotic fields. MRxMHD shows no explicit dependence
on non-ideal dissipation parameters.

To numerically access the extremizing states of MRxMHD
plasmas, the Stepped-Pressure Equilibrium code (SPEC)
[12, 14] was developed. SPEC uses the pseudo Galerkin
method with a Fourier–Galerkin discretization, and oper-
ates in slab, cylindrical and toroidal geometry. For fixed-
boundary simulations, SPEC requires as inputs the plasma
boundary and the Nv number of Taylor relaxed volumes, the
enclosed poloidal∆ψp,l and toroidal flux∆ψt,l, and magnetic
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helicity Kl,0 in each volume Ωl, i.e. {p,∆ψp,l,∆ψt,l,Kl,0}.
Alternatively, if the helicity multiplier µl or parallel cur-
rent is given, then the equilibrium can be described by
{p,∆ψp,l,∆ψp,l,µl}. Then, as a part of the energy minim-
ization process, the geometries of the ideal interfaces are
varied to ensure that force balance is achieved across each
barrier.

The linear stability of MRxMHD equilibria in SPEC can
also be assessed to analyze the magneto-hydrostatic instabilit-
ies. It is shown that the linear stability analysis of MRxMHD
can reproduce both ideal and resistive MHD stability results
[15–18]. General derivations of the SPEC-stability matrix in
toroidal geometry are discussed in Hennenberg et al [19] and
Kumar et al [18].

For MRxMHD, a particular effort has been made to clarify
the relationship with the outer resistive boundary layer stabil-
ity conditions, that is, ∆ ′ for the case of pressureless slab and
cylindrical tokamak plasma. Using SPEC, in slab geometry,
Loizu and Hudson [16] found that the variational principle
of MRxMHD and the corresponding stability boundary is in
exact agreement with the linear tearing mode condition ∆ ′,
for δ̃/L< 0.2, where δ̃ is the arbitrarily small thickness (or
width) of the resistive current sheet layer and L is the length of
the current sheet along the y-direction. For finite pressure cyl-
indrical plasma, CGJ showed that a pressure gradient within
the resistive layer can drive a tearing-type instability, and GGJ
later showed that in toroidal geometry, where the average
curvature is favourable, tearing modes can be strongly stabil-
ized by pressure gradient effects within the resistive layer. To
our knowledge, there have not been any studies conducted on
the pressure-induced tearing modes for MRxMHD plasmas.
The question addressed in this article is: what happens to the
MRxMHD resistive layer as a result of tearing instability with
finite pressure? We investigate this mode stability using our
compressibleMRxMHDstabilitymodel, and clarify its applic-
ability regimes. This goal is achieved as follows: by investig-
ating a mode stability in cylindrical and tokamak geometry,
where the role of the resistive volume layer in MRxMHD can
be easily quantified.

This article is structured as follows. Section 2.1 out-
lines the stability conditions between the CGJ resistive layer
theory and MRxMHD model, in cylindrical geometry. We
extend our generalized expression for the Hessian matrix
of Kumar et al [17] to account for finite compressibility
γ = 5/3. Section 2.2 investigates the role of the resistive
inner layer and compares the stability boundary obtained
with the SPEC–Hessian and the CGJ model. Section 3.1
extends the work to toroidal geometry and describes the sta-
bility conditions between the GGJ resistive layer theory and
MRxMHD model. Section 3.2 provides a comparison study
of marginal stability prediction of SPEC stability with the
GGJ model, and highlights the significance of the MRxMHD
energy principle to predict the modified tearing mode. Finally,
section 4 discusses the conclusion and identifies future
work.

2. Resistive interchange mode in a cylindrical
tokamak

In this section, we examine the variational energy principle
of MRxMHD for resistive interchange modes in a cylindrical
tokamak, and compare it with the CGJ compressible resist-
ive layer model. Much of the physical picture underlying this
instability has been well known [20, 21]. The major result of
this section lies with the establishment of a clear relationship
between the resistive inner layer of the CGJ and MRxMHD
model, in the cylindrical geometry.

2.1. Stability conditions between CGJ and the MRxMHD
model

In the CGJ model, all the dynamics of the tearing mode are
contained in the linearized set of resistive MHD equations,
which can be written as,

ρω2ξ = (∇ × b)× B+ J × b+∇(γp∇· ξ+ ξ ·∇p), (4)

b− η∇2b=∇ × (ξ × B), (5)

where ξ and b denote the perturbed displacement and mag-
netic field, respectively, and η is the plasma resistivity. Fruth
et al [22] showed that the approximate balance between the
curvature force driving the interchange mode and restoring
magnetic forces within the resistive singular layer requires that
qr2 ∼ η.

Consider the coordinates (r,θ,ϕ), such that the equilib-
ria depends only on the radius r. We non-dimensionalize all
quantities: scaling length to the plasma-wall boundary (such
that a= 1) and the magnetic field to its axis r= 0, such that
Bz(0) = 1. In cylindrical tokamak ordering [23], the CGJ
described the resistive inner layer equations as,

b ′ ′
r = Q(br− rξr), (6)

Q2ξ ′ ′r = Qr2ξr−DsY−Qr br, (7)

Y ′ ′ =

(
Q+

Q
β
+
r2

Q

)
Y−

(
Q+

Q
β
− QS
Ds

)
ξr−

r
Q
br, (8)

where the br, ξr and Y denote the radial component of the
perturbed magnetic field, the electrostatic potential/displace-
ment vector and the perturbed pressure along the equilib-
rium magnetic field, respectively. Here, Q= ωδ2L/η and δL =

η1/3ρ1/6
(

qrs
mq ′Bθ

)1/3
, defined as the characteristic resistive

thickness of the inner layer, where ρ is the mass density, m
is the poloidal mode number and Bθ is the azimuthal com-
ponent of the equilibrium field. The other components, such
as magnetic shear S, Suydam’s parameter Ds, and β depend
upon plasma equilibrium quantities. The solutions within the

3
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resistive layer then match with the inertia-free outer layer
stability condition ∆ ′ (Furth et al [22]), using the asymptotic
matching technique. For finite compressibility, the dispersion
relation for the system of equations (6)–(8) is obtained from
the matching condition, given as a∆ ′ = ∆(Q), with Q being
complex. For the particular choice of parameters, an equilib-
rium is resistive interchange unstable only if∆ ′ exceeds a crit-
ical value, ∆crit > 0 (see equation (9) of Ham et al [6]), in the
vicinity of the resonant location. That is, the stability occurs
when ∆ ′ <∆crit.

To examine the stability threshold of resistive interchange
mode in the vicinity of the resonant singular layer, we intro-
duce a localized stability parameter Z(δCGJ

L ), defined as

Z(δCGJ
L ) =

a∆ ′

∆crit
. (9)

An instability will occur if Z(δCGJ
L )> 1 for ∆crit > 0, such

that the marginal stability threshold is determined when
Z(δCGJ

L ) = 1. By doing this, we will be able to bring out
the relationship between the resistive layer of CGJ and the
MRxMHD model.

In this article, we restrict our stability consideration only
to the vicinity of the singular surface where the rotational
transform ι-= ι/2π = n/m= 1/2 is rational. Traditionally,
the linear and non-linear tearing mode layer theories predict
a stabilizing effect arising from local pressure gradients at
the resonant surface coupled to favourable average curvature
[24, 25]. InMRxMHD theory, the pressure gradient∇p is con-
sidered to be zero in the vicinity of the resonant rational sur-
face, to circumvent the Pfirsch–Schlüter current, which takes
the form of a 1/x singularity. Thus, to satisfy this condition,
for a given characteristic radial width of a volume δSPECv (≪the
plasma minor radius, a) the resonant rational surface where
k ·B= 0 must fall within the Taylor relaxed volume. Thus,
the δSPECv is understood as a user-defined parameter in SPEC,
such that 0< δSPECv ≪ a. In figure 1, we show a schematic
sketch of δSPECv and δCGJ

L as a function of r in the vicinity of
the q= m/n= 2/1 rational surface (dashed grey line).

The majority of the pressure gradients are localized on
the ‘ideal interfaces’. As a consequence, the ‘ideal interfaces’
enclosed adjacent to a resonant volume must have irrational
rotational transform ι-. This condition is also extremely crucial.
If an ‘ideal interface’ of a rotational transform ι- ∈ Q+ per-
sists and the pressure jump is non-zero, then that surface can
be unstable to localized ideal modes driven by surface currents
[26].

Finite pressure jumps are allowed at the irrational surfaces,
and can be interpreted as non-resonant Kolmogorov, Arnold
and Moser (KAM) surfaces [27]. To obtain an irrational rota-
tional transform on an ‘ideal interface’ or a surface (which sat-
isfies the condition B ·n= 0), Greene and Mackay [28–30]
provided very insightful precise methods to determine the
existence of a given irrational surface (and it only really makes
sense to describe an invariant surface by the rotational trans-
form ι-). The existence of a given irrational surface is also
closely related to the stability of nearby periodic orbits. That
is, when ι- is irrational, a single field line ergodically covers

Figure 1. A schematic sketch of δSPECv (r) and δCGJ
L (r) in the vicinity

of q= 2 rational surface (dashed grey line). The δSPECv denotes the
characteristic radial width of a resonant volume in the vicinity of the
singular surface (where ∇p= 0 and p= const.). The δCGJ

L denotes
the characteristic resistive thickness of the singular layer, where
∇p ̸= 0. Note that, δSPECv and δCGJ

L are two independent quantities.
Here, the minor radius a= 1 and the safety factor profile is defined
as q(r) = 1.1(1+(r/0.8)2). Figure not to scale.

the flux surface, and the surface is referred to as an irrational
surface.

We will now explain how to establish an MRxMHD equi-
librium and its stability with SPEC. To find an MRxMHD
equilibrium, in each Ωl, SPEC requires the pressure
pl, the enclosed poloidal ∆ψp,l and toroidal flux ∆ψt,l,
and the magnetic helicity Kl as input parameters, i.e.
{p,∆ψt,∆ψp,K}l=1,2...Nv . Therefore, at first, for the special
case of the relaxed volume containing the resonant rational
surface, we let the resonant volume have an arbitrary radial
width, denoted by δSPECv . The input parameters Kl, ∆ψt,l,
∆ψp,l within each Ωl, are determined by discretizing the
volume-averaged magnetic helicity ⟨K⟩ and the flux-averaged
toroidal and poloidal flux (ψ̃tw and ψ̃pw) profiles over the
required number of volumesNv. These averaged quantities are
obtained and evaluated from the equilibrium profiles, which
are considered for the simulation. Thus, the size of δSPECv is
parameterized by the Kl and the enclosed fluxes. Note that the
⟨K⟩ is normalized to the total helicity and ψ̃tw varies between
0 and 1. Then, adjacent to the resonant volume, where we
determine the KAM surfaces, we represent them by the func-
tional form of a co-ordinate surface. To adapt such surfaces in
SPEC cylindrical geometry, their co-ordinate geometry can be
constructed as, xcl (θ,ζ) = Rl(θ,ζ)cos θ̂i+Rl(θ,ζ)sinθĵ+ ζk̂,
where the toroidal angle, ζ, is identical to the cylindrical angle,
ζ ∼ ϕ. The Rl(θ,ζ) is understood to be in the Fourier summa-
tion of Rl(θ,ζ) =

∑
l,iRl,i cos(miθ− niNpζ), where mi and ni

are ith poloidal and toroidal harmonics and Np is the field
periodicity.

In cylindrical geometry SPEC, the stability of any
MRxMHD equilibrium [17] can be assessed by considering
the infinitesimal variation of the interface force balance term,
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fl =−[[p+B2/2µ0]]lnl, with respect to the perturbation of
interface geometry xcl . Here, nl denotes the unit normal to the
interface xcl . This form of change is numerically interpreted as
the Hessian matrix, which can be written as

Hj,k,l,l ′ =
δ

δxcl ′,k

(
δF/δxcl,j

)
, (10)

where j and k are defined as dummy variables for the Four-
ier harmonics for the reader’s clarity, where Nm,n is the total
number of Fourier modes, and l and l

′
represent the different

interface labels. The above equation is expanded as the Four-
ier summation ∂Fl/∂xcl =

∑
i ∂Fl/∂x

c
l,i cos(miθ− niNpζ) and

xcl =
∑

i x
c
l,i cos(miθ− niNpζ). When the matrix H is eval-

uated at fixed magnetic helicity and enclosed fluxes (tor-
oidal and poloidal), its eigenvalues provide information about
the stability corresponding to each Fourier mode harmonics
mi,ni’s. To take account of finite compressibility (γ = 5

3 ) in
SPEC, the pressure variations can be computed adiabatic-
ally, as the change in the corresponding volume V l of relaxed
plasma volumes Ωl, that is

δpl
pl

=−γ δVl
Vl
, (11)

where the δVl = (∂Vl/∂Rl)δRl. An expression to compute the
volume V l, which is enclosed by the lth and (l− 1)th interface,
can be obtained by an integral form of

Vl =
ˆ
Ωl

d3τ =
1
2

ˆ
Ωl

∇· xcl d3τ =
1
2

ˆ
∂Ωl

xcl · dS, (12)

=
1
2

ˆ 2π

0
dθ
ˆ 2π/Np

0
dζ(xcl · eθ × eζ), (13)

=
1
2

ˆ 2π

0
dθ
ˆ 2π/Np

0
dζ R2

l , (14)

where we have used ∇· xcl = 2 (because it is 2D), and have
assumed that the domain is periodic in the angles. The above
equation is understood as a summation of the Fourier harmon-
ics as

Vl =
1
2

4π2

Np

∑
i

∑
j

Rl,iRl,j

˛ ˛
dθdζ cosαi cosαj, (15)

where ith and jth are the Fourier harmonics of Rl,
αi = miθ− niζ and αj = mjθ− njζ. The required partial
derivative ∂Vl

∂Rl,i
, with their trigonometrical quantities, can be

obtained as

∂Vl
∂Rl,i

=
1
2

4π2

Np

∑
i

∑
j

Rl,j [2cos(αi−αj)+ 2cos(αi+αj)].

(16)

The symmetry of H, means that all its eigenvalues are
real numbers [31]. Using the principle axis theorem [32], the
quadratic form δxT ·H · δx can be condensed as

δxT ·H · δx=
∑
j

λjv
2
j , (17)

where the λj is the eigenvalue of H and vj is the corresponding
eigenvector for j = (1,2,3, . . . ,Nmn). The stability of an equi-
librium can be predicted from the sign of the eigenvalue λj:
that is, if a j exists such that λj < 0, then an equilibrium is said
to be unstable and, if all the λj > 0, then an equilibrium is said
to be stable. These eigenvalues hereafter regarded as λm,nSPEC,
from H, are evaluated numerically using the SPEC–Hessian
calculation.

To compute the stability conditions of CGJ with SPEC,
we conform to their notation and express the smallest negat-
ive eigenvalue (normalized to its maximum value), referred to
as min{λm,nSPEC} in terms of the stability parameter Z(δSPECv ),
defined by,

Z(δSPECv ) = 1−min{λm,nSPEC(δ
SPEC
v )}. (18)

Therefore, the stability conditions of Z(δSPECv ) can be inter-
preted as, if λm,nSPEC(δ

SPEC
v )< 0 exists, then an instability

occurs when Z(δSPECv )> 1, and the stability is determined for
Z(δSPECv )< 1.

2.2. Numerical observation of marginal stability threshold

To clarify the concepts described in the previous section, we
discuss the resistive interchange instability of a cylindrical
equilibrium considered in Izzo et al [33]. The equilibrium of
interest is described by the pressure profile

p(r) = p0(0.001+ 0.028r2 − 0.059r4 + 0.03r6), (19)

and the safety factor profile as

q(r) = q0(1+(r/0.8)2), (20)

where q0 = 1.6, the aspect ratio A= 5 and 0⩽ p0 ⩽ 1. For
the mode perturbation, m= 2, n= 1 this equilibrium is always
tearing unstable. The physical motivation for using the equilib-
rium with the pressure gradient reversed at the resonant layer
is to simulate the effects of good average curvature. Izzo et al
[33] investigated what happens to the resistive tearing mode
at a fixed resistivity as the pressure parameter p0 is gradually
increased.

We investigate the role of the resistive singular layer in
both models by considering the equilibrium configuration in
the scenario of fixed p0 = 0.25 (see figure 2). In figure 3(a)
we have plotted Z(δCGJ

L ) as a function of δ̂. We see that as
δCGJ
L increases, Z(δCGJ

L ) crosses the stability threshold line
(Z= 1) and predicts instability for the mode perturbation
m/n= 2/1. Here, the stability threshold in terms of δCGJ

L is
approximated as 1.77× 10−3. Now, the eigenvalues λ2,1

SPEC
from equation (10) are evaluated numerically using the SPEC
for different values of δSPECv , which is understood in terms
of equation (18). We observed that, for the sufficiently small
value of δSPECv , Z(δSPECv ) crosses its the stability threshold,
and coincides with Z(δCGJ

L )> 1 (see figure 3(a)). Since the
m/n= 2/1 mode is unstable, this indicates that the effect of
the width of the singular layer in both models is compar-
able, close to the marginal stability locus. Finally, figure 3(b)
shows the radial structure of the SPEC eigenfunction ξ ·∇s

5
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Figure 2. The equilibrium configuration: left axis—the safety
factor profile q(r) (blue curve) as a function of r. The q= 2 rational
surface denoted by the light grey line. Right axis—the pressure
profile p(r) (red curve) for p0 = 0.25 and the pressure gradient ∇p
profile (dashed red curve), as a function of r.

for the m/n= 2/1 unstable equilibrium case with δSPECv ∼
1.87× 10−3. In the vicinity of the q= 2 rational surface, typ-
ical spatial behaviour of this tearing eigenfunction can be
observed. Here, the ξ ·∇s is defined as the radial perturbed
component of the interface displacement. These results show
that the marginal stability threshold of CGJ and MRxMHD
theory coincide, when the δSPECv is proportional to the δCGJ

L ,
i.e. δSPECv ∼ δGGJ

L .
Moreover, we postulate that as δSPECv decreases, the ‘ideal

interfaces’ surrounding the ι-= 1/2 resonant surface came suf-
ficiently close to rational surfaces, and induce shielding cur-
rents. That is, in the limit of the vanishing width of the res-
onant volume δSPECv → 0, the parallel current density becomes
infinite, such that the parallel current within the volume region
becomes finite and non-zero. In accordance, the emergence of
shielding currents from the ‘ideal interfaces’ could also be a
potential reason for stabilization of this resistive mode. It is
the current sheet that allows the small solutions on either side
of a singular surface to be disconnected in ideal MHD, screen-
ing one side from the other. In ideal MHD, field-line recon-
nection is forbidden by the frozen-in flux conditions; there-
fore, the current sheet must form to prevent the tearing mode
island (of arbitrarily small amplitude in the linearized approx-
imation) that forms in relaxed MHD. This phenomenon has
also been observed in the formation of current sheets in mag-
netic reconnection [34, 35].

In the vicinity of a resonant volume, SPEC allows a
transition from partial Taylor relaxation to ideal MHD as
δSPECv → 0. Here, it should be noted that the ‘ideal interfaces’
will not overlap, even when SPEC computes an equilibrium
solution as δSPECv decreases in the vicinity of the resonant sur-
face. Overlapping of the ‘ideal interfaces’ is not allowed on
both conceptual and computational grounds.

Figure 3. (a) Solid green line: Z(δCGJ
L ) vs δCGJ

L obtained from
equation (9) and computed with the constant plasma density ρ= 1.
We consider the µ0 = 1 and the Alfven speed vA = ∥B⃗eq∥/

√
ρ0µ0 in

SI units, where B⃗eq is the equilibrium magnetic field. It follows that,
in our units system vA, τA and r are unity, and thus η = S−1, where
S is the Lundquist number. Dashed red line: Z(δSPECv ) vs δSPECv
computed from SPEC. The solid black line indicates the marginal
stability threshold conditions Z= 1; (b) the SPEC computed
perturbed surface displacement (ξ ·∇s) as a function of the minor
radius, r, for the m/n= 2/1 unstable mode. The SPEC q-profile is
computed from equation (20). Here, the number of the volume,
Nv = 180, is considered in SPEC.

3. Modified tearing mode in large aspect ratio
axisymmetric plasma

The preceding section showed how the CGJ and MRxMHD
model are related in cylindrical geometry. This section com-
pares the GGJ compressible resistive layer model to the vari-
ational energy principle of the MRxMHD for the modified
tearing modes in a large aspect ratio toroidal geometry.
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The modified tearing instability normally occurs during the
course of tokamak discharges due to thermal instability in
ohmic plasmas [36]. Usually, the stabilizing effect of mag-
netic shear on ideal interchange instability is eliminated by
these modified tearing modes. GGJ were the first to investigate
the tearing stability threshold in relation to shear, pressure and
toroidicity.

Our primary goal in this section is to investigate the pres-
ence of the resistive volume layer width within MRxMHD, in
comparison to the classic GGJ model. In GGJ, the resistive
width of a singular layer (here, we denoted as δGGJ

L ) depends
on the plasma inertia (growth rate of an unstable ideal MHD
mode) and the plasma resistivity. It approaches zero as the
growth rate or the resistivity reduces to zero simultaneously.

3.1. Stability conditions between GGJ and the MRxMHD
model

In the GGJ model [3], while an equilibrium configuration
is ideally stable for q0 > 1 and satisfies the resistive inter-
change stability condition DR < 0, it is unstable to a special
case of tearing mode known as the modified tearing mode if
∆ ′ >∆crit in the vicinity of the resonant location. Here, we
define

DR =
2q4p ′

rB2
0q

′2

(
1− 1

q2
+
qq ′

r3

)̂ r

0
dt

(
t3

q2
− 2R0t2p ′

B2
0

)
, (21)

∆crit ≈ 1.54

(
VS
X0

)
|DR|5/6, (22)

and ∆ ′ is the generalized jump in the logarithmic derivative
of the perturbed magnetic flux across the resistive layer. Here,
Vs/X0 is defined as the ratio of the macroscopic resistive scale
length to a MHD scale that varies as η1/3.

To examine the stability of a modified tearing mode in the
vicinity of a singular layer, where the magnetic winding num-
ber is rational, we introduce a localized stability parameter
Z(δGGJ

L ,υ), which is a function of both δGGJ
L and a magnetic

shear parameter υ ∈ Z+. We define the Z(δGGJ
L ,υ) as,

Z(δGGJ
L ,υ) =

∆ ′

∆crit
, (23)

where∆crit is rewritten in terms of the resistive width of a sin-
gular layer δGGJ

L as,

∆crit ≈
1.54 |DR|5/6|Q|1/4

δGGJ
L

, (24)

with Q being a complex and dimensionless variable. It is
obtained by solving a dispersion relation when the boundary
layer solutions of the inner layer are matched with the outer
layer. This dispersion relation is written as

∆(Q) = ∆ ′, (25)

where

∆ ′(Q) =
πDR(2Vs/X0)

1−2HΓ(1/4)Γ2(1−H/4)
(1− 2H)Γ(1−H/2)

(26)

× Γ(3/4−H/2)Q(2H−1)/4

(cos(πH/2)Γ(1+H/2)Γ(1−H))2

×
(
Q3/2

DR
− Γ(3/4)Γ2(1/2−H/4)Γ(1/4−H/2)

4Γ(1/4)Γ2(1−H/4)Γ(3/4−H/2)

)
,

where Γ is the gamma function and the analytical expressions
for H, Vs/X0 and δGGJ

L (r) are written as

H=− 2q5p ′

r4B2
0q

′

ˆ r

0
dt

(
t3

q2
− 2R0t2p ′

B2
0

)
, (27)

VS
X0

=

(
nB0

ηR
q ′(r)
q(r)

)1/3

(1+ 2q(r)2)−1/6ρ−1/6, (28)

δGGJ
L =

((
ηR
nB0

q(r)
q ′(r)

)2

(1+ 2q(r)2)

)1/6

|Q|1/4ρ1/6. (29)

The above equations (27)–(29) are available fromGlasser et al
[3] (see equations (A21), (A31) and (A32)).

An instability occurs (either pressure-induced or modified
tearing mode), if a solution of equation (25) with Re(Q)> 0
exists, for a given value of ∆ ′. The modified tearing mode is
unstable if the Z(δGGJ

L ,υ)> 1 condition is satisfied, otherwise
stable below the critical condition of Z(δGGJ

L ,υ) = 1, which
denotes the marginal stability conditions for this kind of tear-
ing mode.

From the perspective of theMRxMHDmodel, we now pro-
ceed to characterize the axisymmetric equilibria and its stabil-
ity. In accordance with the previous section 2.1, we first let
the resonant volume have an arbitrary radial width, denoted
by δSPECv . Then, the input parameters, such as Kl,∆ψt,l,∆ψp,l,
are determined by discretizing the volume-averaged magnetic
helicity ⟨K⟩ and the flux-averaged toroidal and poloidal flux
(ψ̃tw and ψ̃pw) profiles over the required number of volumes
Nv. These averaged quantities are evaluated from the given
equilibrium profiles, which are considered for the simulations.
Thus, the size of the δSPECv is also parameterized by the Kl

and the enclosed fluxes. Here, ⟨K⟩ is also normalized to the
total helicity and the ψ̃w varies between 0 and 1. Then, adja-
cent to a resonant volume, where we determine the KAM sur-
faces, SPEC’s toroidal co-ordinate is constructed as xl(θ,ζ) =
Rl(θ,ζ)êR+Zl(θ,ζ)êZ. Here, êR = cosϕ î+ sinϕ ĵ for the tor-
oidal angle ζ ∼ ϕ, and the Rl(θ,ζ) and Zl(θ,ζ) are an even
and odd function of (θ,ζ), respectively. The symmetric and
non-symmetric variables are discretized in the Fourier basis
function as Rl(θ,ζ) =

∑
iRl,i cos(miθ− niNpζ) and Zl(θ,ζ) =∑

iZl,i sin(miθ− niNpζ).
In toroidal geometry, the stability of an MRxMHD equilib-

rium can be assessed by considering the infinitesimal variation
of the interface force balance term, fl =−[[p+B2/2µ0]]lnl,
with respect to the poloidal and toroidal perturbation of
interface geometry xl [18]. Similar to the previous cylindrical

7
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stability implementation in SPEC, this form of change is also
numerically interpreted as the Hessian matrix, which can be
written as [18]

Hj,k,l,l ′ =
δ

δxl ′,k
(δF/δxl,j) , (30)

where j and k are defined as dummy variables for the
Fourier harmonics for clarity, where Nm,n is the total num-
ber of Fourier modes, and l and l

′
represent the different

interface labels. To include the effects of finite compress-
ibility in toroidal geometry, the pressure variation can be
computed using equation (11), where δVl = (∂Vl/∂Rl)δRl+
(∂Vl/∂Zl)δZl. The expression for V l can be obtained by the
integral

Vl =
ˆ
Ωl

d3τ =
1
3

ˆ
Ωl

∇· xl d3τ =
1
3

ˆ
δΩl

xl · dS, (31)

=
1
3

ˆ 2π

0
dθ
ˆ 2π/N

0
dζ(xl · eθ × eζ), (32)

=
1
3

ˆ 2π

0
dθ
ˆ 2π/N

0
dζ Rl (ZlRl,θ −RlZl,θ) , (33)

where we have considered ∇· xl = 3. Upon expansion of
equation (33) as a summation of the Fourier harmonics, we
have

Vl =
1
3

∑
i

∑
j

∑
k

Rl,i (Zl,jRl,k−Rl,jZl,k)(+mk)

×
˛ ˛

cosαi cosαj cosαk dθdζ,

(34)

where ith, jth and kth are the Fourier harmonics of Rl,Zl. Then,
the partial derivatives ∂Vl

∂Rl,i
and ∂Vl

∂Zl,i
are obtained as

∂Vl
∂Rl,i

= (Zl,jRl,kmk−Rl,jZl,kmk−Rl,jZl,kmk) (35)

×
˛ ˛

dθdζ cosαi cosαj cosαk

+(−Zl,jRl,kmk+Rl,jZl,kmk+Rl,jZl,kmk)

×
˛ ˛

dθdζ cosαi sinαj sinαk,

and

∂Vl
∂Zl,i

= (−Rl,kRl,jmi )

˛ ˛
dθdζ cosαi cosαj cosαk (36)

+(−Rl,kRl,jmk)

˛ ˛
dθdζ cosαi sinαj sinαk.

When this matrixH is evaluated at fixed magnetic helicity and
enclosed fluxes, its eigenvalues provide information about the
stability corresponding to each Fourier mode harmonic m,n.
These eigenvalues, λm,nSPEC from H, are evaluated numerically
using the SPEC–Hessian calculation.

Following equation (18) of section 2.2, we now express
the smallest negative eigenvalue (normalized to its maximum

value), referred to as min{λm,nSPEC} in terms of the stability para-
meter Z(δSPECv ,υ) as,

Z(δSPECv ,υ) = 1−min{λm,nSPEC(δ
SPEC
v ,υ)}, (37)

such that the stability conditions of Z(δGGJ
L ,υ) can be inter-

preted the same as described before.

3.2. Numerical observation of marginal stability threshold

In this section, we discuss the modified tearing instability of a
model circular tokamak (large aspect ratio) equilibrium con-
sidered in Glasser et al [3]. The aspect ratio A= 8.4, where the
major radius R0 = 8.4 m and minor radius a= 1 m, such that
all the equilibrium scalars are independent of the toroidal angle
ϕ about the axis of symmetry. The equilibrium toroidal current
density and the parabolic pressure profiles are described as a
function of r, which is

Jϕ(r) = J0/(1+ υ r2/a2)2, p(r) = p0(1− r2/a2), (38)

where υ ∈ Z+ is the shear parameter, J0 = 2B0/q0R0 and p0 =
βp(B0a/q0R0(1+ υ))2. The analytical expression for pol-

oidal plasma beta is obtained as βp =
(

2Rq(a)
B0a2

)2 ´ a
0 rp(r)dr.

We investigate this equilibrium model in the scenario with
q0 = 1.1, βp = 0.8 and the shear parameter values υ= 2
and υ= 3. This shear parameter υ plays a critical role
in the destabilizing and stabilizing factor of this plasma
configuration.

Figure 4(a) compares the results of Z(δSPECv ,υ) and
Z(δGGJ

L ,υ) as a function of δSPECv and δGGJ
L , respectively. The

eigenvalues λ2,1
SPEC from equation (30) are evaluated numeric-

ally using the SPEC for different values of the δSPECv , which is
understood in terms of equation (37). For υ= 2, we observe
that the Z(δSPECv ,2) predicts instability as it crosses the mar-
ginal stability threshold line (Z= 1), for sufficiently small
value of δSPECv , which is approximated as 2.8× 10−3. In addi-
tion, the value of δGGJ

L at which the Z(δGGJ
L ,2) crosses its stabil-

ity threshold coincides with that at which Z(δSPECv ,2) is greater
than 1. This confirms the potential relationship δSPECv ∼ δGGJ

L .
Now, for υ= 3, it is observed that Z(δSPECv ,3) predicts instabil-
ity for the smaller value of δSPECv than forυ= 2. This is because
as υ increases, the current channel shrinks in the vicinity of the
rational surface, and both δSPECv and δGGJ

L reduce. For υ= 3,
the threshold δSPECv is approximated as 1.72× 10−3, and sim-
ilar threshold behaviour is found for Z(δGGJ

L ,3). Thus, the
MRxMHD stability boundary is in agreement with the linear
modified tearing mode theory. However, if δSPECv becomes suf-
ficiently large compared to δGGJ

L , it can be conceptualized that
the pressure flattening in SPEC can indeed remove the stabil-
izing effects and considerably affect the stability boundary of
themode. For pl = const. over a larger volumewidth, themode
can still be strongly destabilized in SPEC and finds a different
stability threshold.

Finally, figure 4(b) shows the spatial structure of the SPEC
eigenfunction ξ ·∇s as a function of the effective radius reff..
The corresponding m/n= 2/1 unstable equilibrium for ν= 2
and 3 are considered with δSPECv equal to 3.5× 10−3 and

8



Plasma Phys. Control. Fusion 65 (2023) 075004 A Kumar et al

Figure 4. (a) Z(δSPECv ,υ) and Z(δGGJ
L ,υ) as a function of δSPECv and

δGGJ
L , respectively, for the shear parameter values υ= 2 and υ= 3.

To obtain Z(δGGJ
L ,υ), we consider the mass density ρ= 1, µ0 = 1

and the Alfven speed vA = ∥B⃗eq∥/
√
ρ0µ0 in SI units, where B⃗eq is

the equilibrium magnetic field. It follows that, in our units system,
vA, τA and r are unity, and thus η = S−1, where S is the Lundquist
number. The solid black line indicates the marginal stability
threshold conditions Z= 1; (b) On the left axis: the SPEC computed
perturbed surface displacement (ξ ·∇s) vs reff ∼ ψt/ψedge for
unstable m/n= 2/1 mode; On the right axis: the SPEC computed q
profile vs reff ∼ ψt/ψedge. Here, the number of the volume,
Nv = 180, is considered in SPEC.

2.5× 10−3, respectively. We would like to remark that the
SPEC-stability results shown in figure 4 are converged in the
sense that the Fourier resolution and the radial basis function
are increased. Here, Nv = 180 is considered.

4. Conclusion and future work

In this article, we have investigated the impact of the
variational energy principle of theMRxMHDmodel to predict
the finite-pressure linear tearing stability of tearing modes.

For low-pressure plasma, we have investigated a technique
with which we have been able to establish a relationship
between the resistive singular-layer theories of CGJ, GGJ and
theMRxMHDmodel. Our analyses show that the SPEC shows
stabilizing effects as the width of the resistive volume layer
is decreased. Indeed, if δSPECv ∼ δCGJ

L and ∼ δGGJ
L , that is, the

effects of finite resistivity and the pressure gradient roughly
compensate, and the overall marginal stability of the mode is
the same for SPEC, CGJ and GGJ. Physical insights into the
spatial structure of the eigenfunction of the pressure-driven
tearing modes computed from SPEC have clarified the applic-
ability regime of the MRxMHD model. Our results indicate
the possibility to couple the MATCH code [37], which solves
the resistive inner-layer equations in toroidal geometry, with
SPEC, not only to predict the stability of MRxMHD plasma
but also to approximate the growth rates (quantitatively). This
may also be a numerical treatment for determining the stabil-
ity of coupled tearing modes, i.e. the modes (m,n) coupled
with other poloidal mode harmonics (m+ 1,n) and (m− 1,n)
due to finite pressure effects and axisymmetric toroidal
geometry.

In addition to these studies, we anticipate that it may be pos-
sible to establish a relationship between the pressure-flattening
model (in the vicinity of resonant rational surfaces) discussed
in [6, 7] and our model. In fact, as pressure increases, it is
commonly observed that the Mercier indices move apart and
it becomes difficult to obtain the large and small solutions in
the vicinity of the rational surface [6, 38]. This restriction can
be overcome in both MRxMHD and the Ham et al [6] model,
due to the pressure flattening at the rational surface. We there-
fore aim to address this in our future investigations.

When using MRxMHD to predict non-linear tearing mode
saturation, the difference between the potential energy corres-
ponding to the equilibrium and the secondary minimized total
energy can be interpreted as the second variation in the non-
linear stability case. Following this, in slab geometry, Loizu
et al [39] demonstrated that the non-linear saturation of tear-
ing modes can be predicted directly with SPEC using appro-
priate constraints, without resolving the complex resistivity-
dependent dynamics and without free parameters. It should
be noted that while linear stability analysis based on the
MRxMHD principle retrieves the linear tearing stability the-
ory, the volume-averaged magnetic helicity is not an invari-
ant as tearing modes grow non-linearly. In fact, the non-linear
evolution of the resistive tearing modes is too slow for heli-
city to be well conserved, and instead a better invariant is
the flux-surface average of the equilibrium toroidal current
profile (see, e.g. Loizu et al [39]). To extend Loizu’s work
for finite beta cylindrical or toroidal plasma, our technique to
compute an initial unstable MRxMHD equilibrium state can
be utilized. We intend to investigate this work further in the
future.

Data availability statement

The data cannot be made publicly available upon publication
because no suitable repository exists for hosting data in this
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field of study. The data that support the findings of this study
are available upon reasonable request from the authors.
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