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Abstract
The first results of three-dimensional, flux-driven, electrostatic, global, two-fluid turbulence
simulations of a diverted tokamak configuration with applied resonant magnetic perturbations
generated by a set of saddle coils are presented. The simulations of an L-mode plasma show that
the heat flux pattern on the divertor targets is affected by the resonant magnetic perturbations, as
a result of the interplay between turbulent cross field transport and parallel flows. The
simulation results reveal the potential of resonant magnetic perturbations to reduce the heat flux
to the wall. In fact, the peak of the toroidally- and time-averaged heat flux as well as its value
integrated over the divertor decrease as the amplitude of the magnetic perturbation increases,
while the plasma sources are held constant.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Resonant magnetic perturbations (RMPs) are three-
dimensional, low-amplitude perturbations applied to a toka-
mak equilibrium magnetic field, usually generated by a set of
saddle coils placed around the vessel. By creating a region of
chaotic field lines at the edge of the confined region, RMPs
are frequently used in tokamaks to control or even suppress
edge localized modes (ELMs) [1–3], while keeping the core
relatively unperturbed. At the same time, RMPs can enhance
the radial transport of particles and heat in the scrape-off layer
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(SOL), ultimately affecting the heat flux deposition pattern on
the divertor targets, as observed experimentally [4–7].

Conclusive experimental observations of the impact of
RMPs on the divertor walls are still missing, calling for a ded-
icated simulation effort. On the one hand, an increase of the
stationary heat flux to the divertor during the ELM suppres-
sion phase was observed [8], as well as total absence of differ-
ences in the peak heat flux to the divertor and power SOL fall-
off length with respect to the unperturbed situation [9]. On the
other hand, experiments in different machines have shown the
benefits of RMPs for handling the heat exhaust: when RMPs
are applied, the broadening of the heat flux deposition profile
at the targets has been reported [10], as well as the increase of
the toroidally-averaged SOL decay length [11], thus provid-
ing hints for potential reduction of the heat flux on the diver-
tor targets. In fact, while periodic coil configurations in the
toroidal direction might create local maxima and minima of
the heat flux deposition on the divertor targets, the effect can
be toroidally averaged by applying alternating current in the
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coils [12], with a period several orders of magnitude larger
than the turbulent time scale.

The impact of RMPs on the heat exhaust has been also
investigated by using simulations. Turbulence flux-driven sim-
ulations in the presence of magnetic perturbations were per-
formed considering a circular tokamak geometry. By using
a cold-ion, isothermal, dissipative drift-Alfvén model, [13]
reports on a strong suppression of density fluctuations in the
presence of RMPs, attributed to a change of the equilibrium
profiles of the density and electric field. By means of a two-
fluid, isothermal, drift-reduced Braginskii model, [14] reports
on the decrease of the fluctuation levels, suggesting a stabiliz-
ing effect of the RMPs on turbulent transport. In [15], a non-
isothermal gyrofluid model that takes into account the plasma
screening of the applied RMPs is used. The simulations show
that the radial transport induced by parallel motion along radi-
ally perturbedmagnetic field lines is not increasedwhenRMPs
are applied, while RMPs lead to a decrease of the turbulent
fluctuations.

In the present paper, we study the influence of RMPs on
L-mode plasma turbulence by presenting the first results of
global, three-dimensional, two-fluid, flux-driven turbulence
simulations of a tokamakwith applied RMPs in a diverted con-
figuration using the GBS code [16–18]. For the first time, a
diverted configuration is considered, and our simulations use
a coil configuration around the tokamak vessel to emulate the
RMPs. The size and parameters of the simulations presented
here reflect those of a tokamak of, approximately, one-third
the size of the TCV tokamak [19].

Our simulations show that RMPs have the potential to
reduce the toroidally averaged heat flux to the divertor targets.
While the reduction of the heat flux we observe is relatively
modest, our results call for further experimental and theoret-
ical investigations to optimise the RMPs in order to signific-
antly reduce the heat flux.

The paper is organized as follows. Section 2 describes the
physical model implemented by GBS. In section 3, we detail
the magnetic field considered for our simulations. Section 4
presents the simulation results. Finally, we draw our conclu-
sions in section 5.

2. GBS code

The simulations are performed with the GBS code, developed
in the past decade to simulate turbulence in the tokamak
boundary [16–18], and more recently extended to allow for the
simulation of three-dimensional equilibrium magnetic fields,
such as in stellarators [20]. GBS solves the drift-reduced Bra-
ginskii equations [21], valid in the high collisionality regime,
an assumption often justified in the plasma boundary of mag-
netic fusion devices, as well as in low-temperature devices
(e.g. TORPEX [22]). In GBS, all quantities are evolved in
time without separation between equilibrium and fluctuating
components. The plasma dynamics results from the interplay
between plasma sources, turbulent perpendicular transport,
and parallel flows that eventually lead to losses at the vessel
walls.

For our simulations, we consider an electrostatic model
and apply the Boussinesq approximation [16], both shown
not to have an impact on the simulation of L-mode plas-
mas [23].We also neglect the coupling to the neutral dynamics,
although these effects are taken into account in the most recent
version of the GBS code for tokamak axisymmetric simula-
tions [17, 18]. Within these approximations, the drift-reduced
fluid model evolved by GBS is:
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which are closed by

∇2
⊥Φ= ω− τ∇2

⊥Ti. (7)

In equations (1)–(7), and in the rest of the paper, all quant-
ities are normalized to typical SOL reference values. Density
n, electron temperature Te and ion temperature T i are normal-
ized to n0, Te0 and Ti0; electron parallel velocity v∥e and ion
parallel velocity v∥i are both normalized to the sound speed
cs0 =

√
Te0/mi; vorticity ω and the electrostatic potential Φ

2
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Table 1. Boundary conditions applied at the top, bottom, inner and outer domain boundaries. The derivative ∂s = s ·∇ is along the
direction normal to the surface, s. The upper signs apply if the magnetic field is directed towards the wall, while the lower signs apply in the
opposite case. It is defined FT =

√
1+ τTi/Te and Λ = 3.

Top wall Bottom wall Inner, outer walls

v∥e v∥e =±
√
TeFT v∥e =±

√
TeFT ∂sv∥e = 0

v∥i v∥i =±
√
Te exp(Λ−Φ/Te) v∥i =±

√
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are normalized to Te0/(eρ2s0) and Te0/e; time is normalized
to R0/cs0, where R0 is the machine major radius; perpendic-
ular and parallel lengths are normalized to the ion sound Lar-
mor radius, ρs0 =

√
Te0mi/(eB0), and R0, respectively. The

normalized parallel current is j∥ = n(v∥i− v∥e) and the mag-
netic field B is normalized to the magnitude of the field on
axis, B0.

The dimensionless parameters appearing in equations
(1)–(7) are the normalized ion sound Larmor radius ρ∗ =
ρs0/R0, the normalized electron and ion parallel heat diffus-
ivities, χ∥e and χ∥i, considered constant in the present work,
the ion to electron temperature ratio τ = Ti0/Te0, the normal-
ized electron and ion viscosities, η0e and η0i, which we assume
to have constant values, and the normalized Spitzer resistivity,
ν = ν0T

−3/2
e , with

ν0 =
4
√
2π

5.88
e4

(4πε0)2

√
meR0n0λ

mics0T
3/2
e0

, (8)

where λ denotes the Coulomb logarithm [24]. Small numer-
ical diffusion terms such as Dn∇2

⊥n and D∥
n∇2

∥n (and similar
for the other fields) are introduced to improve the numerical
stability of the simulations (the simulation results show that
they have a negligible effect on turbulence since they lead to
significantly lower perpendicular transport than turbulence).
The terms STe , STi and Sn denote the electron temperature, ion
temperature and density sources, respectively.

The geometrical operators appearing in equations (1)–
(7) are the parallel gradient ∇∥u= b ·∇u, the Pois-
son brackets [Φ,u] = b · [∇Φ×∇u], the curvature oper-
ator C(u) = (B/2) [∇× (b/B)] ·∇u, the parallel Lapla-
cian ∇2

∥u= b ·∇(b ·∇u) and the perpendicular Laplacian

∇2
⊥u=∇ · [(b×∇u)× b], where b= B/B is the unit vec-

tor of the magnetic field. They are expanded as described
in [20].

The model in equations (1)–(7) is solved in a cylindrical
coordinates system, (R,ϕ,Z), with R the radial coordinate, ϕ
the toroidal angle and Z the vertical coordinate. The simula-
tion domain is a torus of radius R0 with a rectangular cross-
section (grey box in figure 1). Equations (1)–(6) are advanced
in time with a standard explicit Runge–Kutta fourth-order
scheme, while spatial derivatives are computed with a fourth-
order finite difference scheme [24, 25]. We apply magnetic

pre-sheath boundary conditions at the bottom (i.e. the diver-
tor targets) and top boundaries of the simulation domain, as
described in [26, 27], except forΦ on the divertor plates where
we use an insulating boundary condition. A summary of the
boundary conditions is given in table 1.

The following parameters are used in our simulations.
The extension of the rectangular cross section is 200<
R/ρs0 < 740 and 0< Z/ρs0 < 800, ρ−1

∗ = 500, ν0 = 0.6,
τ = 1, mi/me = 200, Λ = 3, χ∥e,i = D∥n = 2, η0e,i = D∥ω = 1
and Dv∥e = Dv∥i = Dn = DTi = DTe = Dω = 12. The grid res-
olution is nR = 216, nZ = 320 and nϕ = 80. The time step is of
the order of 10−5 R0/cs0. We note that the values of χ∥e,i are
underestimated by approximately one order of magnitude to
make the computational cost of the simulations manageable.
However, since we assume that we are in the sheath-limited
regime, where convection dominates over conduction, i.e.
nTev∥e ≫ χ∥e∇∥Te and temperature gradients along the par-
allel direction are small, underestimating the parallel heat
diffusion coefficients does not have a relevant impact on the
simulation results. Moreover, we note that the ratio mi/me is
set to a small value also for computational reasons. Themi/me

ratio determines if turbulence is driven by the inertial or the
resistive branch of the ballooning instability. Indeed, turbu-
lence in the L-mode regime is typically driven by the resistive
branch of the ballooning instability, as shown in [23]. The res-
istivity used in the present simulations is sufficiently large that
it compensates the small mi/me used (i.e. (me/mi)γ < ν with
γ the growth rate of the resistive ballooning mode), placing
the present simulations in the correct parameter regime.

3. Equilibrium and RMP magnetic field

The magnetic field used in the present simulations, B= B0 +
δB, is the superposition of the equilibrium field of a diverted
tokamak configuration, B0, and a RMP generated by a set of
saddle coils around the vessel, δB. The poloidal component of
the diverted magnetic equilibrium, considered also in previous
work [24], is generated by a current with a Gaussian profile
centered at the location (R0,Z0) inside the vessel, mimicking
the effect of the plasma current, and a current filament loc-
ated at (R0,Z1) outside the vessel, mimicking the effect of a
poloidal field coil that diverts the magnetic field lines to the
bottom wall. The associated flux function is

3
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Figure 1. The simulation domain considered in the present
simulations is displayed in grey together with the RMP coil
configuration. Red and blue coils have current flowing in opposite
directions.

ψ(R,Z) =− 1
2
αB0R0

(
ln

(
(R−R0)

2 +(Z−Z0)2

σ2

)
+E1

(
(R−R0)

2 +(Z−Z0)2

σ2

)
+ ln

(
(R−R0)

2 +(Z−Z1)2

ρ2s0
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, (9)

where R0 = 500ρs0, Z0 = 500ρs0, Z1 =−140ρs0, σ = 100ρs0
and α= 20ρs0. In equation (9), E1 is the exponential integral
defined as E1(x) =

´∞
x e−t/tdt. The toroidal field is given by

Bϕ/B0 = R0/R.
The perturbed magnetic field δB is computed numer-

ically using the MAKEGRID code from the STELLOPT
package [28], which uses the Biot–Savart law to determine the
magnetic field at a specified location. The RMP coil configura-
tion, displayed in figure 1, consists of six pairs of coils located
around the vessel, with current alternating in the toroidal dir-
ection, thus creating a perturbation with a toroidal mode num-
ber n= 3. The coils are placed 5ρs0 away from the outer wall
of the device. They are 639ρs0 long in the toroidal direction,
covering an angle of approximately 0.858 rad, and are evenly
spaced. This results in a gap between them of 141ρs0, corres-
ponding to an angle of approximately 0.189 rad. The lower
coils are placed at 100⩽ Z/ρs0 ⩽ 300 and the upper ones at
500⩽ Z/ρs0 ⩽ 700. This specific choice of coils is the res-
ult of an exhaustive investigation to find a configuration that
provides a large resonant perturbation in the edge and a smal-
ler resonant perturbation in the core, with many field lines in
the SOL performing more than one poloidal turn when going
from one divertor plate to the other (the high-field (HFS) and
low-field side (LFS) divertor plates in figure 3). The amplitude
of the perturbation is controlled by the current inside the coils,
and is expressed by using the parameter ε=max(δBLCFS)/B0,
where max(δBLCFS) is the maximal value of |δB| at the last
closed flux surface (LCFS).

Figure 2. Magnetic perturbation spectrum as a function of the
poloidal number m and the flux function ψ, for the fixed n= 3. The
safety factor is displayed in black, and the black stars indicate the
resonating surfaces q(ψ) = m/n.

In order to identify the resonating flux surfaces for the
imposed n= 3 perturbation, we compute the perturbation
spectrum (figure 2), which reveal the flux surfaces that are
expected to be more affected by the applied perturbations. The
spectrum is given by the Fourier coefficients bmn(ψ) of the nor-
malized amplitude of the perpendicular perturbation on a flux
surface ψ,

b(θ∗,ϕ) =2πq(ψ)
δB ·∇ψ

B0 ·∇ϕ

=
∑
m,n

bcmn cos(mθ
∗ − nϕ)+ bsmn sin(mθ

∗ − nϕ),

(10)

where θ∗ is a straight-field-line angle for the equilibriummag-
netic field, q(ψ) the flux surface averaged safety factor of the
equilibrium magnetic field and bmn =

√
(bcmn)2 +(bsmn)2. In

figure 2, the safety factor is also displayed, highlighting the
q= m/n values for n= 3. On a rational flux surface ψr, where
q(ψr) = m/n, the width of the islands generated by the per-
turbation is proportional to

√
|bmn(ψr)| [29]. When the width

of the islands is larger than the distance between two rational
flux surfaces, a region of chaotic field lines is created [30].
This is the case in our simulations. The perturbation spectrum
for the considered set of coils shows that the islands are wider
and more densely packed close to the edge than inside the
core. Indeed, the Poincaré sections displayed in figure 3 show
a chaotic field line region in the edge, which penetrates deeper
into the core as ε increases. For simplicity, the response of the
plasma to the externally applied RMPs is not considered in
this work. Taking this response into account is a complex and
a long term goal, where simplified models, for example based
on introducing screening currents on rational surfaces [31, 32],
could be considered.

4
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Figure 3. Poincaré sections of the magnetic field lines for different perturbation amplitudes ε. The black lines show the location of the
separatrix in the unperturbed case, ε= 0. The grey dashed rectangles in the left plot correspond to the HFS and LFS divertor plates.

Figure 4. Magnetic footprints on the LFS divertor generated by the configuration for different ε. Each dot corresponds to a field-line that
starts from the HFS. The number of poloidal turns described before reaching the target, Np, is represented by the colormap. Field-lines with
Np = 1 are not shown.

In figure 4, the footprints of the field lines on the diver-
tor target are displayed for different perturbation amplitudes.
These are computed by considering a set of field lines regu-
larly spaced along the R and ϕ directions that start on the HFS
divertor plate (Z= 0 and R< R0). These field lines are fol-
lowed and their landing point on the LFS divertor plate (Z= 0
and R> R0), which we consider as the field line footprint, is
evaluated. The number of poloidal turns, Np, described by a
field line before landing on the LFS divertor is monitored and
color-coded in figure 4. High values of Np are expected to
yield large heat flux, if one assumes that convection in the
parallel direction dominates over perpendicular transport. In
fact, a field line with Np > 1 enters the hot plasma region, not
accessible to any field line ending on the divertor plates in the
unperturbed case, and allows particles and heat, otherwise con-
fined, to flow along the field lines to the divertor plates. The
regions of Np > 1 are lobe structures with a n= 3 periodicity.

The radial extension of the lobes on the LFS divertor increases
linearly with the amplitude of the perturbation.

4. Simulation results

A simulation with ε= 0 is started from a noisy initial state
and, after a transient, it reaches a quasi-steady state where
sources, parallel and perpendicular transport, and losses at ves-
sel balance each other. Starting from this quasi steady-state,
we consider five simulations with ε= 2.12%, 3.71%, 4.24%,
4.91% and 5.83%, consecutively, and evolve them until a
quasi-steady state is reached. The time-step used for these
simulations is, respectively, 2× 10−5, 2× 10−5, 2× 10−5,
1.7× 10−5, 1.3× 10−5 and 1× 10−5 R0/cs0. A convergence
test was performed with a grid 1.5 times finer in all directions
for the ε= 4.91% simulation, obtaining similar results to the

5
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Figure 5. Density fluctuation level for different ε. The density fluctuations are defined as ñ= n−⟨n⟩t, and are normalized by ⟨n⟩t (time
averaged density).

simulation presented here. The temperature sources STe = STi
have a constant value inside the LCFS and vanish outside it,
while the density source Sn is a radially localized Gaussian
around a closed flux surface inside the core that is close to the
LCFS. All sources are independent of the toroidal angle ϕ.

The RMP degrades the confinement in the core, with the
pressure dropping by 35% in the case of highest ε, with respect
to the unperturbed case. We note, however, that our simula-
tions overestimate the effect of the magnetic perturbations on
core transport. In fact, theMHD response of the plasma, which
is not included in the present simulations, tends to shield the
equilibrium flux surfaces from the magnetic perturbations in
the low resistivity region of the core (ν ∼ T−3/2

e ), hence poten-
tially maintaining its good confinement. On the other hand,
this shielding is less efficient in the edge and SOL regions
because of the high plasma resistivity, thus the effect of the
RMPs is expected to persist there.

Figure 5 displays typical snapshots of the relative dens-
ity fluctuations for different values of ε, showing fluctuations
reaching order unity, as expected in the boundary of tokamaks,
and the presence of coherent structures, denoted as blobs [33],
particularly in the far SOL. In order to investigate the nature
of the turbulent fluctuations, we carry tests where we tor-
oidally average the curvature term in the vorticity equation,
equation (6). This yields a suppression of the turbulent fluctu-
ations and steepening of the gradients for all the values of ε
considered, showing that turbulent transport is mostly driven
by a ballooning instability [24, 34]. An analysis of the num-
ber of blobs and their size is carried out using the analysis
technique described in [35]. It consists of tracking a struc-
ture of enhanced density (at least 2.5 times above the standard
deviation normalized to the time averaged values) that moves
coherently (i.e. it exists for at least ∆t> 0.2). The blob velo-
city is then determined as the velocity of the center of mass of
the identified structure. The blob analysis show very similar
results for all simulations. In particular, the blob contribution
to radial transport is found to be around 30%± 10% in the far

SOL region for all simulations, similarly to [36]. On the other
hand, the contribution of the parallel flux to radial transport
increases with ε, reaching 20% of its total value in the case of
the highest perturbation.

Toroidally and time-averaged pressure profiles in the SOL
are displayed in figure 6 for R> RLCFS at the midplane (Z=
484ρs0) and at the divertor target (Z= 0). First, we note that
the pressure decreases both at the midplane and at the diver-
tor as the amplitude of the perturbation increases. Second, two
decay lengths (the near and the far SOL) can be distinguished
in the ε= 0 case at the midplane (dashed lines in the plot), as
observed in other tokamak simulations [36, 37]. These decay
lengths are remapped at the divertor into a single decay length
with a value that is in between the two decay lengths at the
midplane. In the presence of the RMP, because of the chaotic
nature of the field lines in the edge and SOL regions, the mid-
plane and divertor pressure profiles are decoupled, in the sense
that they cannot be directly related to each other by a local
remapping of the pressure along each flux tube. At the mid-
plane, the two decay lengths present in the ε= 0 merge into
a single one and a region of constant pressure appears in the
very far SOL, close to the wall. The origin of this flat density
region might be related to the boundary condition applied to
the outer wall and will be the subject of future investigations.
The near SOL decay length of the ε= 0 simulation and the
decay length of the other simulations agree well with the edge
equilibrium pressure gradient length for ballooning-driven tur-
bulence, derived in [24], within an error of 30%, hence con-
firming the fact that the nature of turbulence is not affected by
the RMPs.

The equilibrium radial electric field, ⟨Er⟩t,ϕ, at the out-
board midplane is shown in figure 7 (left). The radial coordin-
ate r is defined with respect to the unperturbed equilibrium,
i.e. Er =−∇Φ ·∇ψ/||∇ψ||. For ε= 0, we observe the form-
ation of a well in the electric field, typical of the tokamak
plasma edge, with Er < 0 in the core and Er > 0 in the far
SOL. As the perturbation increases, the Er profile flattens, an
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Figure 6. Electron pressure profiles at the midplane (‘mid’ in blue, Z≃ 484ρs0) and at the divertor (‘div’ in orange, Z= 0). The pressure is
averaged over time and ϕ. The vertical dashed black line indicates the unperturbed separatrix.

Figure 7. Radial profile of the radial electric field (left) and of the density fluctuation level (right) at the outboard midplane. The electric
field is time and toroidally averaged. Rsep refers to the position of the separatrix.

effect observed in previous simulations [14], but also experi-
mentally in different tokamaks [38, 39], where in some situ-
ations the sign of Er even reverses [40, 41]. The peak value
of the E×B shear in the highest ε simulation is reduced by
50% with respect to the ε= 0 case. However, the effect of

the E×B shear on turbulence is expected to be small since
the linear growth rate of the driving instability is larger than
the shearing frequency in the present simulations. As a mat-
ter of fact, the turbulence fluctuation level, defined here as
σn/⟨n⟩t, where σn is the density standard deviation, decreases

7
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Figure 8. Time averaged heat flux on the LFS divertor. The black dashed line displays the intersection of the separatrix with the divertor.
The heat flux is normalized by the maximal value on the separatrix for ε= 0. The magnetic footprints on the divertor are also shown for
ε ̸= 0 (black dots).

Figure 9. Time and toroidally averaged heat flux for different perturbation amplitudes ε. On the left plot are superimposed the radial
profiles. The right plot displays the peak as a function of ε. The semi-transparent blue zone shows the minimal and maximal heat flux on the
intersection between the separatrix and the divertor when the flux is no longer axisymmetric.

with increasing perturbation, as seen in figure 7 (right). Indeed,
it should be noted that the fluctuation level of the highest per-
turbation simulation is decreased by a factor larger than 2 with
respect to the ε= 0 simulation. Since the input sources are
the same for all values of ε and the parallel contribution to
the radial transport increases with increasing perturbation, the
radial turbulent E×B flux must decrease, and that is accom-
plished by the observed reduction in the fluctuation levels.

We now analyze the effect of the perturbation on the heat
flux deposition on the divertor targets (corresponding to the
Z= 0 plane). Since the fluxes to the divertor induced by the
E×B and diamagnetic drifts are small when compared to the
parallel flow (even when projected in the direction normal to
the wall), we construct a measure of the heat flux to the wall
as q= nTev∥eb, also neglecting the ion contribution since this
is smaller than the electron one. We remark that the heat flux
is evaluated at the boundary of the simulation domain, which
corresponds to the magnetic pre-sheath entrance. The flux to
the wall is then affected by the processes taking place inside
the sheath, where a transfer of energy from the electrons to the
ions takes place, and the total power being conserved. We pro-
ject the parallel flux along the normal direction pointing out-
wards from the simulation domain, and therefore we compute
the divertor heat flux as q=−nTev∥eBZ/B. The time averaged

value of the divertor heat flux, ⟨q⟩t, on the LFS divertor is dis-
played as a function of R and ϕ in figure 8.

In the unperturbed case, the heat flux is axisymmetric and
localized around the leg of the separatrix displayed with a
dashed black line (small deviations from axisymmetry are
ascribed to the averaging over a finite time window). As the
amplitude of the perturbation increases, three hot spots appear
around the linewhere the separatrix is located in the ε= 0 case.
Between these hot spots, three regions with low heat flux are
observed. This number corresponds to the toroidal periodicity
of the perturbation. It can also be observed that the heat flux
increases with respect to the ε= 0 case in regions radially far
from the separatrix.

Figure 8 shows that the heat flux pattern does not follow
exactly the pattern set by the field line footprints because of
turbulence. In fact, when only the parallel transport is con-
sidered and turbulence is neglected, as in previous work [42],
the heat flux pattern on the divertor matches that of the lobes
generated by the footprints of the field lines. However, when
turbulence is considered, the pattern is smoothed out.

To allow a comparison between heat flux deposition pro-
files for different RMP amplitudes, the heat flux is averaged
over the toroidal direction. The result, ⟨q⟩t,ϕ, is displayed as a
function of R, for different perturbation amplitudes, in figure 9
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(left). A remarkable result is the decrease of the peak heat flux
as ε increases, which can be observed more clearly in figure 9
(right). The full analysis of the integrated heat flux over the
walls shows that, as ε increases, the integrated heat flux on
the bottom wall (where the divertor plates are) decreases by
29% for the highest value of ε (with respect to ε= 0 case),
while it increases by 62% on the outer vertical wall, where the
magnetic field is stronger due to the RMP coils and a paral-
lel heat flux from the core to the vertical wall is thus allowed.
These two effects compensate each other within∼15%, ensur-
ing the global balance in the simulations within the limitation
of the physical and numerical scheme adopted in the present
simulations [43].

5. Conclusions

In this paper, GBS simulations reveal the mechanisms behind
plasma transport in the boundary of a diverted tokamak with
applied RMPs. The perturbation is chosen to create chaotic
regions in the plasma edge. Results show that the perturb-
ation impacts mostly the time-averaged quantities, since the
nature of turbulence and the transport due to blobs remain the
same as the RMP amplitude is increased. It is observed that
the near and far SOL decay lengths merge into a single one
in the presence of the perturbation, and that the heat flux pat-
tern on the divertor does not follow exactly the footprints cre-
ated by the field lines, but instead is spread around them. As
future improvements of the simulation model presented here,
we mention the use of a set of more realistic boundary condi-
tions on the outer wall, which might affect the plasma profiles
in its proximity, as well as of a model to take into account
the self-consistent plasma response to the externally applied
magnetic perturbations. The peak heat flux on the divertor
plates is effectively reduced as the perturbation is increased.
This is achieved through the reduction of the total parallel flux
towards the diverted targets (bottom wall of the simulation),
compensated by an increase of the flux on the outer vertical
wall. This confirms the potential of RMPs to help mitigating
the power exhaust issue in future fusion reactors. Finally, it
is seen that the well of the radial electric field on the plasma
edge is flattened, effectively reducing the shearing frequency.
Although this effect does not have an impact on the nature
of the turbulent fluctuations, we note that it is a phenomenon
observed in previous experiments and simulations.
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