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Abstract. A near collision attack against the Grain v1 stream cipher
was proposed by Zhang et al. in Eurocrypt 18. The attack uses the fact
that two internal states of the stream cipher with very low hamming
distance between them, produce similar keystream sequences which can
be identified by simple statistical tests. Such internal states once found
in the stream cipher simplify the task of cryptanalysis for the attacker.
However this attack has recently come under heavy criticism from Derbez
et al. at ToSC 2020:4, who claim that some of the assumptions made
in the above paper were not correct. As a result they concluded that
the attack presented by Zhang et al. when implemented would take time
more than required for a brute force search. In this paper, we take another
look at the near collision attack against the Grain v1 stream cipher. We
avoid the techniques of the above Eurocrypt paper that have come under
criticism, and independently show that a near collision attack can still
be applied to Grain v1.
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1 Introduction

The Grain family of stream ciphers, proposed by Martin Hell, Thomas Johansson
and Willi Meier in 2005, is designed for constrained devices. Grain v1 [HJM05] is
included in the final hardware portfolio of the eStream project [RB08]. To meet
increased security requirements, the designers proposed a 128-bit version called
Grain-128 in ISIT 2006 [HJMM06a] and later the cipher Grain-128a [AHJM11]
to accommodate authentication with encryption. An AEAD version of the ci-
pher Grain-128 AEAD v2 [HJM+19] made it to the 3rd and final round of the
NIST Lightweight Competition [lwc]; the underlying stream cipher Grain-128a
is standardized in ISO/IEC 29167-13 for use in RFID [iso].

A near collision attack on the Grain v1 stream cipher was first presented
in [ZLFL14]. The paper had one flaw that the authors overlooked. The paper uses
a result stated in [AM08] to estimate the complexity of NFSR state recovery of
Grain v1, once the LFSR state has been recovered. However the result in [AM08]



was actually based on the Grain v0 stream cipher (the very first submission of
the authors of Grain to the eStream competition) which has a much simplified
algebraic structure, and has been superseded by Grain v1 ever since. The authors
in [ZLFL14] most probably mistook the result of [AM08] as based on Grain v1.
Actually, recovering the NFSR state of Grain v1 given the LFSR state and
the keystream bits generated thereof is also a difficult algebraic problem which
requires significant computational resources to solve.

In [ZXM18], Zhang et al. proposed a near collision attack on Grain v1. The
authors claimed a time complexity around 275.7 ticks for their attack, where one
tick was defined as one iteration of the Grain v1 round function computation.
This attack was disproved in [DFM20]. To understand the controversy behind
the paper let us try to state some of the claims made by the paper.

• Let f be the function that maps any internal state x in Grain v1 to a certain
length of keystream z produced by it. The authors in [ZXM18] describe a
technique called “Self-refined method” that given a keystream segment zs
outputs a set X ⊂ f−1(zs). The authors claimed that if xs is the actual

internal state then Pr[xs ∈ X] > |X|
|f−1(zs)| . The authors of [DFM20] showed

that this is simply not possible for any random mapping f .

• Note that here the function f is such that z = f(x) can be rewritten as
z = x1 ⊕ h(x2) and thus, the refined self-contained method was applied
on h(x2) = 0. In particular this means that the search space is restricted
without the knowledge of any bit of keystream.

• By inspecting the first 20 keystream bits, [ZXM18] claimed to have found a
set X of 118-bit elements of the internal state such that the actual state
xs ∈ X with probability 2−54.1 and |X| = 26.67. [DFM20] showed that
this probability is actually 2−51.7 and |X| has to be around 2118−20−51.7 =
247.3 and not 26.67 as claimed. As a result [DFM20] claimed that the overall
complexity of the attack in [ZXM18] would be around 237.24 times 275.1 ticks
which is well above the complexity of brute force search.

The other most prominent attack on the Grain family was the correlation at-
tack reported in [TIM+18]. The attackers try to formulate probabilistic linear
equations relating subsets of keystream and LFSR state bits of high enough bias
η. Once the attacker has around N such equations with N ≈ 1

η2 , the authors
use a maximum likelihood decoding algorithm like the Fast Walsh Hadamard
transform (FHWT) to find the LFSR state efficiently. Thereafter the key and
NFSR state can be found by solving polynomial equations on the keystream
bits (see [TIM+18]). Other than this, there have been cube attacks and condi-
tional differential approaches that have attacked round reduced variants of the
Grain family. Conditional differential attacks have been reported against round
reduced Grain v1 in [KMN10, Ban16]. Cube/conditional attacks have been re-
ported against Grain-128/Grain-128a in [DS11,DGP+11,LM12].
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# Type of Attack Time #Table Reference
Access

1 Fast Correlation Attack 276.7 multiplications over GF (280)/ [TIM+18]
80-bit integer additions

2 Near Collision Attack 274.6 encryptions 280.5 Sec 4

Table 1. Comparison of attack complexities

1.1 Contribution and Organization of the Paper

In this paper we outline a near collision attack on Grain v1, without adopt-
ing any of the controversial methodologies in [ZXM18]. We show that it is still
possible to mount such an attack on Grain v1 which runs in time barely below
that of exhaustive search. Thus it plugs a gap in literature that existed ever
since [DFM20] was published. Our attack requires 274.6 encryptions and 280.5

insertions in a table. Unless we have the technology to do memory access very
efficiently, the above attack when implemented may take physical time compa-
rable to that of exhaustive search. Hence in the appendices we demonstrate that
a simple tradeoff due to the low sampling resistance of Grain v1 allows us to
mount the attack using more encryptions while reducing the number of memory
accesses by the same multiplicative factor.

Table 1 compares our attack with [TIM+18] which is the only other attack
proposed against the full version of Grain v1. Note that the 2 attacks can not be
directly compared since [TIM+18] reports attacks assuming that multiplication
by a constant over GF (280) and addition/subtraction over 80-bit integers require
the same complexity. Although the cryptanalytic approach taken in this paper
may not be more efficient than [TIM+18], it serves to highlight an important
design issue in the construction of stream ciphers with Grain-like structure.

The attack has mainly been possible due to the fact that the taps which feed
the output function in Grain v1 are sparsely distributed over its 160-bit internal
state (there are only 12 output taps). This allows us to filter a lot of unnecessary
candidates for internal state (and save computational time) as shown in Lemma
2. Intuitively this suggests that even if stream ciphers have internal state twice
the size of secret key, the sparseness of output taps may be a source of algebraic
weakness. As a countermeasure designers could either opt for denser distribution
of output taps, or choose an internal state slightly more than twice the length
of secret key. It is however noteworthy that stream ciphers like Atom [BCI+21]
which technically have smaller state size, increase the state size artificially by
including the key in the state update function,

The rest of the paper is organized in the following manner. We begin with
a brief algebraic description of Grain v1 in Section 2. In Section 3 we present
some preliminary results of the differential structure of the Grain v1 stream
cipher that will help us construct the attack. Section 4 describes the attack in
full. Section 5 concludes the paper. In the appendices, we describe a sampling
rate based tradeoff that allows us to reduce the number of memory accesses
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(Appendix C), and show that our attacks can be analogously extended to Grain-
128 and Grain-128a (Appendix D). We note here that the attack on Grain-128a
does not directly impact the NIST LWC finalist Grain-128 AEAD v2 due to its
authentication mechanism.

2 Algebraic description of Grain v1

Grain v1 consists of an 80-bit LFSR and an 80-bit NFSR. Certain bits of both
shift registers are taken as inputs to a combining Boolean function, whence the
keystream is produced. The update function of the LFSR is given by the equation
lt+80 = f(Lt), where Lt = [lt, lt+1, . . . , lt+79] is an 80-bit vector that denotes the
LFSR state at the tth clock interval and f is a linear function on the LFSR
state bits obtained from a primitive polynomial in GF (2) of degree n given by
f(Lt) = lt+62 + lt+51 + lt+38 + lt+23 + lt+13 + lt. The NFSR state is updated
as nt+80 = lt + g(Nt). Here, Nt = [nt, nt+1, . . . , nt+79] is an 80-bit vector that
denotes the NFSR state at the tth clock and g is a non-linear function of the
NFSR state bits given by:

g(Nt) = nt+62 + nt+60 + nt+52 + nt+45 + nt+37 + nt+33 + nt+28 + nt+21 + nt+14

+ nt+9 + nt + nt+63nt+60 + nt+37nt+33 + nt+15nt+9 + nt+60nt+52nt+45

+ nt+33nt+28nt+21 + nt+63nt+60nt+52nt+45nt+37 + nt+60nt+52nt+37nt+33

+ nt+63nt+60nt+21nt+15 + nt+63nt+45nt+28nt+9 + nt+33nt+28nt+21nt+15nt+9

+ nt+52nt+45nt+37nt+33nt+28nt+21

The output keystream is produced by combining the LFSR and NFSR bits
as zt = h′(Nt, Lt) =

⊕
a∈A nt+a + h(lt+3, lt+25, lt+46, lt+64, nt+63), where A =

{1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) = s1 + s4 + s0s3 + s2s3 + s3s4 +
s0s1s2 + s0s2s3 + s0s2s4 + s1s2s4 + s2s3s4.

Grain v1 uses an 80-bit key K, and a 64-bit initialization vector IV . The key
is loaded in the NFSR and the IV is loaded in the 0th to the 63rd bits of the
LFSR. The remaining 16 bits of the LFSR are loaded with the constant 0xFFFF.
Then for the first 160 clocks, the keystream produced at the output point of
the function h′ is XOR-ed to both the LFSR and NFSR update functions, i.e.,
during the first 160 clock intervals, the LFSR and the NFSR bits are updated as
lt+80 = f(Lt) + zt, nt+80 = lt + zt + g(Nt). After the completion of the KSA, zt
is no longer XOR-ed to the LFSR and the NFSR but it is used as the Pseudo-
Random keystream bit. Therefore during this phase, the LFSR and NFSR are
updated as lt+80 = f(Lt), nt+80 = lt + g(Nt).

3 Preliminaries

Let us look at a few preliminary results which helps build the attack. The first
lemma is adapted from [BBI19, Lemma 1].
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Lemma 1. [BBI19] Consider two time instances t1, t2 during the keystream
phase (with t2 > t1 and both less than 280). Then, given the 80-bit difference
vector δ = Lt1⊕Lt2 , t1 and t2, it is possible to compute the LFSR states Lt1 , Lt2
in around 5 · 803 bit operations.

Proof. Although the lemma was proven in [BBI19], for the completeness of the
paper we give another proof. If M is the companion matrix over GF (2) of the
connection polynomial p(x) of the LFSR, then we can write Lt+1 as a matrix-
vector product between M and Lt. Thus we have Lt+1 = M · Lt. We thus have
Lt2 = M t2−t1 · Lt1 . And so we have,

δ = Lt2 ⊕ Lt1 = (M t2−t1 ⊕ I) · Lt1

The above is a system of linear equations with the 80 variables in the Lt1 vector
as unknowns. Further it is known that the minimal polynomial of M is the con-
nection polynomial p(x) of the LFSR itself. Since p(x) is primitive, we know that

an isomorphism exists between GF (280)
∼
= F2[M ] = {0, I,M,M2, . . . ,M280−2}.

Define T = t2 − t1. The matrix MT ⊕ I corresponds to the finite field element
αT + 1 in GF (280) (here α denotes any root of p(x)). Since 0 < T < 280 − 1,
αT + 1 is a non-zero element in GF (280), and it must have a multiplicative in-
verse β. The inverse of MT ⊕ I is therefore the image of β in F2[M ] of the given
isomorphic map. Since we have proven that MT ⊕ I is invertible, so the above
system of equations can be solved efficiently by Gaussian elimination to compute
Lt1 and hence Lt2 .

How to solve the system of equations: The second question is given T, δ
how many operations does it take to find Lt1 . Computing MT using a standard
square and multiply approach requires around log2 T iterations of the square
and multiply routine. The value log2 T is naturally bounded by 80 and, estimat-
ing conservatively that matrix multiplication requires around n3 bit-operations,
calculating MT alone takes 2 · 80 · 803 ≈ 226.3 bit-operations in the worst case.
However it is possible to do better, by using the isomorphism that exists between
GF (280)

∼
= F2[M ]. The idea is therefore to compute αT = q(α) mod p(α), where

q is a polynomial in GF (2) of degree less than 80 and p is the primitive poly-
nomial whose roots are used to construct the field extension. We then compute
MT = q(M). If the computation of MT needs to be done for many values of T ,
one can simply pre-compute M i, ∀ i ∈ [1, 79]. and then the task boils down to
efficiently computing q given T .

Again we can take a square and multiply approach to compute αT mod p(α).
The idea is to reduce αj modulo the primitive polynomial p(α) after each square
or multiply operation every time the degree of the result exceeds 80. As a result
after the k-th iteration we are always left with a polynomial qk with degree less
than 80. Note that for any polynomial r over GF(2) we have r(α)2 = r(α2). As
a result squaring over GF(2) comes for free. Thereafter reduction modulo p(α)
can be done as follows: since we limit the degree of the polynomials to 79 at
each stage, r(α2) has degree at most 158. We can precompute the polynomials
mi(α) = αi mod p(α), ∀ i ∈ [80, 158]. Thereafter reduction can be done by xoring
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mi(α) to the resultant if r(α2) has a term of degree i. This step is bounded by 802

bit-operations in the worst case. Multiplication between two polynomials using
even a naive shift and add approach requires 802 bit-operations, after which the
reduction modulo p(α) requires another 802 operations using the above approach.
Hence one iteration of square and multiply will require at worst 3·802 operations.
Since the number of iterations is bounded by log2 T which is 80, the computation
of q(α) requires 3 ·803 operations in the worst case. We then compute MT ⊕ I =
q(M)⊕ I using the precomputed M i matrices. Since one matrix addition takes
802 bit-operations and q(·) has at most 80 terms, computing q(M) ⊕ I again
requires 803 operations in the worst case. Thereafter Gaussian elimination of
MT ⊕ I using even a naive approach would require 803 bit-operations. Thus
solving this requires (in the worst case) (3 + 1 + 1) · 803 ≈ 221.3 bit-operations.

Lemma 2. Consider two internal states in Grain v1, St1 = (Nt1 , Lt1) and St2 =
(Nt2 , Lt2) during the keystream phase such that St1 ⊕ St2 = 080||e79, i.e. Nt1 =
Nt2 and Lt1 ⊕Lt2 = e79, (ei is the 80-bit unit hamming weight vector, with 1 at
location i). Then consider the vectors Zt1 and Zt2 of the first 140 keystream bits
generated by St1 and St2 respectively. Also consider the vectors Yt1 and Yt2 of
the first 30 keystream bits produced by St1 and St2 respectively, in the backward
direction, i.e. by running the inverse state update routine. To be more specific

Zti = [zti+0, zti+1, zti+2, . . . , zti+139], Yti = [zti−1, zti−2, zti−3, . . . , zti−30].

for i = 1, 2. Then in the 170 bit difference vector ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 , there
are 100 bits that take the value 1 or 0 with probability 1, i.e. when the probability
is computed over all possible initial states St1 .

Proof. The above result is not difficult to verify, if we analyze the differential
trail of the difference when introduced in the 79th LFSR location. In the forward
direction, for j ∈ [0, 129]−S where S = {15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76,
80, 82, 83, 87, 90, 91} ∪ [93, 96] ∪[98, 100] ∪ {102, 103, 105, 108, 109} ∪ [111, 113]∪
[115, 121] ∪ [123, 126] ∪ {128}, and j ∈ {−1} ∪ [−10,−6] ∪ {−13,−16,−22}

1. the differences (between the internal states St1+j and St2+j) sit on tap lo-
cations that are not used in the computation of the keystream bit, or

2. the differences (between the internal states St1+j and St2+j) sit on an even
number of NFSR locations (with probability 1) that contribute linearly to
the output keystream.

Hence for all such j, zt1+j = zt2+j . Whereas, for j′ ∈ {103,−2,−3,−5,−15,
−19}, the difference appears at an odd number of NFSR tap locations that
contributes to the keystream equation linearly. For all such j′, we have zt1+j′ ⊕
zt2+j′ = 1, with probability 1. There are, in total, 100 time instances where
these events take place, hence a total of 100 bits in the difference vector are
guaranteed to be either 0 or 1, with probability 1. ut

We present a result relating the differential structure of Grain v1: we will use
this and related results to reduce the number of candidates for the internal state
in Sec 4.
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Lemma 3. Consider again the conditions in the previous lemma. Define ci =
zt1−i ⊕ zt2−i. We have the following identities with probability 1.

c11 ⊕ c12 = 1, c11 ⊕ c14 = 1, c14 ⊕ c18 ⊕ c20 ⊕ c21 = 1

c21 ⊕ c23 ⊕ c24 ⊕ c25 ⊕ c28 = 1

Proof. To prove this we have to run the difference trail backwards, i.e. clock
the cipher backwards and investigate the propagation of the difference at 79th
LFSR bit. We will prove the first identity of the lemma because the proof for the
others are similar. At j = −11,−12,−14, the differences between the internal
states St1+j and St2+j sit on the following tap locations:

1. At j = −11, at NFSR location 1, there is a probabilistic difference (i.e.
which occurs with probability less than 1). At j = −12, the same difference
propagates to NFSR location 2 and at j = −14, it propagates to NFSR
location 4, all of which contribute to the keystream expression linearly.

2. Additionally at j = −11, there is a deterministic difference at NFSR location
10 (i.e. which occurs with probability 1),

3. At j = −11,−12,−14, no other tap locations that contribute to the keystream
bit contain any difference.

Note that since the difference δ at NFSR location 1 at j = −11 is probabilistic
and does not occur with probability 1, we have zt1−11⊕zt2−11 = 1⊕δ and so it is
not guaranteed to be 1 or 0. However the same δ propagates to NFSR locations
2 and 4 at j = −12,−14, and so we have

zt1−11 ⊕ zt2−11 ⊕ zt1−12 ⊕ zt2−12 = (1⊕ δ)⊕ δ = 1

Since the probabilistic difference gets canceled out in the expression, the above
identity holds with probability 1. Similar arguments can be made for the other
identities. For example, for the third identity, we need to verify that all the
probabilistic differences produced at j = −14,−18,−20,−21 get linearly can-
celed out in the respective keystream expressions. ut

The following lemma establishes the number of keystream bits that need to
be generated, to produce in the process two internal states Si1 , Si2 that differ at
only the 79th LFSR location.

Lemma 4. In the event that we generate N iterations of internal states of Grain
v1 sequentially: Si ∈ {0, 1}160, for i ∈ [0, N − 1], then the probability that there
is at least one tuple i1, i2 ∈ [0, N −1] and i2 > i1, such that, Si1⊕Si2 = 080||e79,

is approximately pcoll = N2

2161 .

Proof. The lemma is essentially the same as [BBI19, Lemma 4], in which it was
proven by birthday bound considerations. We will try to give a more precise
proof here. Consider the initial state of Grain v1 N0 = [n0, n1, . . . , n79], L0 =
[l0, l1, . . . , l79]. Initially all the ni, li’s are i.i.d according to Ber( 1

2 ). Note that
any subsequent nt+80 is given as g(nt, nt+1, . . . , nt+79) + lt. Since all the lt’s are
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linear functions of l0, l1, . . . , l79 which are independently distributed, in this proof
we will assume that all ni’s (even for i ≥ 80) are i.i.d as per Ber( 1

2 ) which seems
to be a reasonable assumption to make. If we run Grain v1 for N iterations we
have the string SN = n0, n1, . . . , n79+N of length N + 80 over GF(2) obtained
by concatenating all NFSR bits. Let us try to answer the simpler question: what
is the probability that given i1, i2 we have that NFSR states at i1, i2 collide,
i.e. the substrings si1 = ni1 , ni1+1, . . . ni1+79 and si2 = ni2 , ni2+1, . . . ni2+79 are
equal (where the probability is computed over all possible values of SN ). We
have two cases here:

Case 1: i2 − i1 ≥ 80: This implies that there is no overlap between si1 and si2 .

Thus Pr[si1 = si2 ] =
∏79
j=0 Pr[ni1+j = ni2+j ] = 2−80.

Case 2: i2 − i1 < 80: This implies an overlap. We have to calculate the number
of strings SN such that given i1, i2 the substrings si1 and si2 are equal. Let
i2 − i1 = ∆, and Q = b 80−i2+i1∆ c. Consider the substring M = ni1 , . . . , ni2+79

of length 80 + i2 − i1. A necessary and sufficient condition for the substrings si1
and si2 to be equal is:

ni1+j = ni1+∆+j = · · · = ni1+Q∆+j , ∀ j ∈ [0, i2 − i1 − 1]

So, since there are only i2 − i1 bits that we can freely select in M (i.e. ni1
to ni1+∆−1), we have #M = 2i2−i1 . There are N + 80 − 80 + i2 − i1 = N −
i2 + i1 bits remaining in SN which can be selected freely so we have #SN =

2i2−i1+N−i2+i1 = 2N . Hence we have Pr[si1 = si2 ] = 2N

2N+80 = 2−80.

So we see that in both cases Pr[si1 = si2 ] = 2−80. We now turn our attention
to the LFSR state. Given i1, i2 the probability that Li1 ⊕ Li2 = e79 is given by
Lemma 1. For this to hold, Li1 has to be the unique non-zero solution x of the

equation (M i2−i1 mod 280−1⊕ I) ·x = e79
1. This means that L0 = M−i1 ·x. Note

that if L0 = 0 then all subsequent Li will be 0 too and so we must exclude
this case. Thus the probability that the LFSR states are equal at i1 and i2 is
given by Bayes theorem as Pr[L0 = M−i1 · x] ≈ 1

280 · 0 + (1 − 1
280 ) 1

280 ≈ 2−80

where the probability is calculated over all values of L0. Thus given (i1, i2) the
probability pi1,i2 that Si1 ⊕ Si2 = 080||e79 is given by 2−80−80 ≈ 2−160. Given
N internal states the probability that we find one such tuple (i1, i2) is given as

pcoll =
(
N
2

)
· 2−160 ≈ N2

2161 (assuming of course that distribution of each tuple is
i.i.d). Note that for N ≈ 280.5 we expect to find one such tuple. ut

To experimentally confirm the above we generated Grain like ciphers with reg-
ister lengths n from 8 to 15, with the LFSR update obtained from a random
primitive polynomial and the NFSR update a random non-linear polynomial.
We tried to find the average number of iterations after which we get one t1, t2

1 We exclude the degenerate case when i2 ≡ i1 mod 280−1, as then Li1 must be equal
to Li2 and so their difference can not be e79. But this occurs with extremely small
probability for the range of values of N we are interested in and so we ignore this
event here.
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Fig. 1. Theoretical and Experimental estimates for N

with St1 ⊕ St2 = 0n||en−1, by generating random initial states updating the
state till a collision of the required type is found. For each n we obtained the
average over around (a) 1000 randomly generated update functions and then
(b) for each function random update function over 10000 random initial states
and computed the average #iterations taken to find the required collision. The
results are presented, in Fig 1, which shows that theoretical and experimental
values of the number of iterations N are quite similar.

4 State recovery attack

Having made some preliminary observations about the differential structure of
Grain v1, we are now ready to mathematically describe the attack steps. Note
that by the previous lemma, if we generate N ≈ 280.5 keystream bits generated
by any key/IV pair, giving rise to equal number of internal states St1 , then we
are almost certain to encounter 2 states in the process such that Sti1 ⊕ Sti2 =

080||e79. When this happens, then the attacker can identify the states and the
corresponding values of t1, t2 by looking at the difference keystream vector ∆ =
Zt1 ||Yt1 ⊕ Zt2 ||Yt2 (which was defined in the previous section).

However, although it is true that two internal states with difference 080||e79
produce keystream bits whose differential is guaranteed to be 0 or 1 at 100 fixed
locations (as per Lemma 2), the opposite is not true. In fact there exist, with
probability around 2−100, two completely random internal states of Grain v1 that
produce a keystream differential of 0/1 at the same 100 locations enumerated
in Lemma 2. Thus the attacker, when for some (t1, t2), observes a differential
keystream with the required 0/1 pattern in the locations enumerated in Lemma
2, may still proceed to the next steps, assuming that they were generated by
two Grain v1 states with difference only in the 79th LFSR location. But if his
assumption about the state difference is wrong, then in the subsequent steps he
would certainly reach a contradiction that would invalidate the assumption. The
attacker would then require to repeat the experiment to obtain some other t1, t2
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until he is successful in getting internal states with required difference. Thus any
attack must compensate for these computational overheads.

Thus, at the very top level, the strategy of the attacker will be as follows:

A: Generate N = 280.5 keystream bits by a black-box accessing of the stream
cipher with a fixed secret key/IV pair. This generates around N overlapping
keystream segments of length 170-bits each.

B: For all t ∈ [1, N ], store in a hash table t, Zt, Yt as defined earlier.

C: From this table, try to find, if it exists, t1, t2 so that ∆ = Zt1 ||Yt1 ⊕Zt2 ||Yt2 .
We refer to such an event as a keystream-collision.

D: If there exists one or multiple such t1, t2, then assuming that the state dif-
ferential in between the states at time t1, t2 is in the 79th LFSR location,
try to formulate an equation system on the variables of internal system for
each keystream bit and try to solve the system.

E: If a contradiction is reached, try other values of t1, t2, if they exist. If the at-
tacker does not encounter a contradiction, and is able to solve the equations,
he would have computed the entire state.

4.1 Online Stage I: Collecting and storing keystream bits

In the online stage, the attacker needs to collect and store keystream bits and
store them in a judicious manner. To facilitate detection of keystream-collision,
we will use the same data structure for recording collisions as used in [BBI19].
We insert each tuple t, Zt, Yt in a table T as follows:

A: We describe table T that checks for keystream-collision arising due to inter-
nal state differences of form 080||e79. We insert t, Zt, Yt in table location I =
zt+g0 ||zt+g1 || · · · ||zt+g99 ||zt−11⊕ zt−12||zt−11⊕ zt−14||zt−14⊕ zt−18⊕ zt−20⊕
zt−21||zt−21⊕ zt−23⊕ zt−24⊕ zt−25⊕ zt−28, where the gi terms are the loca-
tions enumerated in Lemma 2 in which the differential keystream is guaran-
teed to be 0/1. Thus (g0, g1, . . . , g93) = (0, 1, 2, . . . , 14, 16 . . . , 129, −1,−6,−7
. . . ,−10,−13,−16,−22). And we have (g94, g95, . . . , g99) = (103,−2,−3,−5,
−15,−19). Each entry in the table should be able to store multiple entries.

B: It is not difficult to see that a keystream-collision will occur if during an inser-
tion into index I, the attacker checks the index I∗ = zt+g0 ||zt+g1 || · · · ||zt+g93 ||
1⊕ zt+g94 ||1⊕ zt+g95 || · · · ||1⊕ zt+g99 ||1⊕ zt−11⊕ zt−12||1⊕ zt−11⊕ zt−14||1⊕
zt−14 ⊕ zt−18 ⊕ zt−20 ⊕ zt−21||1⊕ zt−21 ⊕ zt−23 ⊕ zt−24 ⊕ zt−25 ⊕ zt−28, and
finds one or multiple tuples already stored at I∗. This follows from Lemma
2, 3. For each such keystream-collision pair in (I, I∗), the attacker proceeds
to the next steps of the attack.

It takes 80 bits to store t and 170 bits to store Zt, Yt and so the table contains
around 250 ·N ≈ 288.5 bits of memory on average.
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4.2 Online Stage II: Further filtering

For each keystream-collision pair obtained in the previous step, the attacker can
first compute T = t2 − t1, and retrieve the LFSR state as follows. The attacker
can find Lt1 , Lt2 by solving the equation [MT ⊕ I] · Lt1 = e79 as described in
Lemma 1 in the previous section. The following lemma shows how he can reject
a pair after computing the LFSR state.

Lemma 5. If two internal states in Grain v1, St1 = (Nt1 , Lt1) and St2 =
(Nt2 , Lt2) satisfy St1 ⊕ St2 = 080||e79, then we have the following identities.
Define di = zt1+i ⊕ zt2+i for conciseness.

d112 = lt1+115 · lt1+158 ⊕ lt1+137 · lt1+158 ⊕ lt1+158 · lt1+176 ⊕ lt1+158 ⊕ lt1+176 ⊕ 1

d125 = lt1+128 · lt1+171 ⊕ lt1+150 · lt1+171 ⊕ lt1+171 · lt1+189 ⊕ lt1+189 ⊕ 1

Proof. The Grain v1 output function h(x) = h(x0, x1, x2, x3, x4) is such that
only x4 takes input from an NFSR location. The function has the additional
differential properties that:

h(x)⊕ h(x⊕ [0, 0, 0, 0, 1]) = x0 · x2 ⊕ x1 · x2 ⊕ x2 · x3 ⊕ x3 ⊕ 1

h(x)⊕ h(x⊕ [1, 1, 0, 0, 0]) = x0 · x2 ⊕ x1 · x2 ⊕ x2 · x3 ⊕ x2 ⊕ x3 ⊕ 1

which are functions of only the LFSR bits. Also note that both the above func-
tions are balanced. An analysis of the differential trails tells us the differences
between the internal states St1+j and St2+j sit on the following tap locations:

1. at j = 125, at NFSR location 63 (corresponding x4 in h), and at no other
location that contribute to keystream bit.

2. at j = 112, at LFSR locations 3, 25 (corresponding x0, x1 in h), and at no
other location that contribute to keystream.

ut
By Lemma 5, there are 2 other bits in Zt1 ⊕ Zt2 that are directly related

to Lt1 . Since during the keystream stage the LFSR evolves independently, all
lt1+i can be computed with the knowledge of Lt1 alone. This provides us with
an opportunity to further filter the keystream-collision pairs obtained from the
stage. For example, by Lemma 5, if zt1+112⊕ zt2+112 6= lt1+115 · lt1+158⊕ lt1+137 ·
lt1+158 ⊕ lt1+158 · lt1+176 ⊕ lt1+158 ⊕ lt1+176 ⊕ 1, the attacker can discard the
keystream pair.

4.3 Online Stage III: 3rd filtering

The knowledge of the LFSR state allows some more filtering steps as shown in
the following lemmas.

Lemma 6. Consider again the conditions in the previous lemma. At j ∈ {15, 33,
44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91} ∪ [93, 96] ∪[98, 100] ∪ {102,
105, 108, 109, 111, 115} ∪ [117, 119] ∪ {121, 126, 128, 132, 135} ∪ {−4}, we have

dj = pt1+j · nt1+j+63 ⊕ qt1+j ,

where pt1+j , qt1+j are functions on only the LFSR bits.
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Proof. Note that except for [0, 0, 0, 0, 1], [1, 1, 0, 0, 0] and [1, 1, 0, 0, 1], for all the
28 other non-zero 5-bit vectors v the expression h(x)⊕ h(x⊕ v) is of the form
x4 ·f1(x0, x1, x2, x3)⊕f2(x0, x1, x2, x3). It is an elementary exercise to verify that
at the given values of j, the difference between the states at t1, t2 are such that
the input to the function h differ by exactly one of the other 28 non-zero vectors
mentioned above. Thus the above lemma follows. In Table 2 in Appendix B we
tabulate the difference vectors, and the forms of the functions pt1+j , qt1+j for
each j. ut

Lemma 7. Consider again the conditions in the previous lemma. We have

zt1−17 ⊕ zt2−17 ⊕ zt1−18 ⊕ zt2−18 = p′ · nt1+46 ⊕ q′

where p′ = lt1+29 and q′ = lt1+8 · lt1+29 ⊕ lt1+29 · lt1+47 ⊕ lt1+47.

Proof. The proof is similar to that of Lemma 3. At j = −17,−18, between
Nt1+j , Lt1+j and Nt2+j , Lt2+j we have the following differences:

1. at j = −17, at NFSR location 1 there is probabilistic difference δ′ and a
probability 1 difference at LFSR location 3.

2. at j = −18, δ′ propagates to NFSR location 2, and there is no other difference
in any location that feeds zt1−18. Thus we have

zt1−17⊕zt2−17 = δ′⊕h(lt1+29, . . .)⊕h(1⊕ lt1+29, . . .) = δ′⊕p′ ·nt1+46⊕q′. Since
zt1−18 ⊕ zt2−18 = δ′ the above lemma follows. ut

Lemma 8. Consider again the conditions in the previous lemma. We have⊕
j∈{18,21,23,25,26,27}

zt1−j ⊕ zt2−j = lt1+19 · nt1+36 ⊕ lt1+20 · nt1+37 ⊕ q′′

where q′′ is a function only on the LFSR bits.

Proof. We need to verify that all the probabilistic differences produced in the
NFSR at j = −18,−21,−23, −25,−26,−27 get canceled out among each other.
However at j = −26,−27 deterministic differences are produced in the LFSR
according to which the lt1+19 · nt1+36 ⊕ lt1+20 · nt1+37 ⊕ q′′ terms are produced
due to the contribution of h(x)⊕h(x⊕v) terms during these time instances. ut

Lemma 9. Consider again the conditions in the previous lemma. We have

zt1+124 ⊕ zt2+124 = (nt1+187 ⊕ nt2+187) · fl(lt1+127, lt1+149, lt1+170, lt1+188)

1⊕ zt1+139 ⊕ zt2+139 = (nt1+202 ⊕ nt2+202) · fl(lt1+142, lt1+164, lt1+185, lt1+203)

zt1+142 ⊕ zt2+142 = (nt1+205 ⊕ nt2+205) · fl(lt1+145, lt1+167, lt1+188, lt1+206)

where fl(x0, x1, x2, x3) = x0x2⊕x1x2⊕x2x3⊕x3⊕1 is a balanced function only
on the LFSR bits.
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Proof. Note that if u is any variable over GF (2) then we have the following
relation: h(x0, x1, x2, x3, x4)⊕h(x0, x1, x2, x3, u⊕x4) = u·fl. At j = 124, 139, 142,
between Nt1+j , Lt1+j and Nt2+j , Lt2+j we have the following differences:

1. There exist no differences on any tap locations that contribute to the output
keystream bit except NFSR location 63 which corresponds to the variable
x4 in h(·).

2. At NFSR location 63, the difference however is probabilistic and may or may
not be 1, i.e. at j = 124, for example, the difference at NFSR location 63
nt1+187 ⊕ nt2+187 is not guaranteed to be either 0 or 1.

3. Additionally at j = 139, there exists a deterministic difference at NFSR
location 56 which only linearly affects the keystream.

The above facts thus completely prove the lemma statements. It is straightfor-
ward to verify that fl is a balanced function. ut

We use the results in Lemma 6, 7, 8 and 9 to further filter any keystream
pair that has survived the previous filters. This is how one can do this:

a) By Lemma 6, we know that if a keystream pair is produced by 2 internal states
that differ by 080||e79 then there are 40 values of j for which zt1+j ⊕ zt2+j =
pt1+j · nt1+j+63 ⊕ qt1+j , where pt1+j , qt1+j are functions on only of Lt1 . For
example if for a given keystream pair that has survived the stage 2 filter, if for
some value of j the attacker finds that zt1+j ⊕ zt2+j ⊕ qt1+j = 1 and pt1+j = 0
then the attacker can discard the keystream pair, since they could not have been
generated by internal states with difference only in the 79th LFSR location.
b) Also due to Lemma 7, if that attacker finds zt1−17⊕zt2−17⊕zt1−18⊕zt2−18⊕
q′ = 1 and p′ = 0, then too the keystream pair can be discarded.
c) Lemma 8 states that

⊕
j∈{18,21,23,25,26,27}(zt1−j ⊕ zt2−j) ⊕ q′′ = lt1+19 ·

nt1+36 ⊕ lt1+20 · nt1+37. So if the attacker finds that lt1+19 = lt1+20 = 0 and⊕
j∈{18,21,23,25,26,27}(zt1−j ⊕ zt2−j)⊕ q′′ = 1, then too he can discard the pair.

d) Similarly Lemma 9 relates the difference of 2 keystream bits with the product
of an NFSR difference and the function fl calculable on only the LFSR bits.
For example if the attacker finds that zt1+124 ⊕ zt2+124 = 1 and fl(lt1+127,
lt1+149, lt1+170, lt1+188) = 0, he can discard the pair.

So, let us calculate the probability that a given IV produces a keystream-
collision pair that survives all the filter levels described above. Note that since
a single IV can produce N tuples, the total number of pairs of tuples are D =
N(N−1)

2 ≈ 2160. Denote αi = zt1+gi ⊕ zt2+gi for all i ∈ [0, 99] and α100 =
zt1−11⊕zt1−12⊕zt2−11⊕zt2−12, α101 = zt1−11⊕zt1−14⊕zt2−11⊕zt2−14, α102 =⊕

j∈{14,18,20,21}(zt1−j ⊕ zt2−j), α103 =
⊕

j∈{21,23,24,25,28}(zt1−j ⊕ zt2−j). And
also define the following notations:

• β0 = zt1+112 ⊕ zt2+112 ⊕ lt1+115 · lt1+158 ⊕ lt1+137 · lt1+158 ⊕ lt1+158 · lt1+176 ⊕
lt1+158 ⊕ lt1+176 ⊕ 1

• β1 = zt1+125 ⊕ zt2+125 ⊕ lt1+128 · lt1+171 ⊕ lt1+150 · lt1+171 ⊕ lt1+171 · lt1+189 ⊕
lt1+189 ⊕ 1
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• Define h0, h1, . . . , h39 = 15, 33, . . . , 135,−4 which are mentioned in Lemma 6.
• Define γj = zt1+hj

⊕zt2+hj
⊕qt1+hj

, and ηj = pt1+hj
for all values of j ∈ [0, 39]

• Define γ40 = zt1−17 ⊕ zt2−17 ⊕ zt1−18 ⊕ zt2−18 ⊕ q′ and η40 = p′

• Define γ41 =
⊕

j∈{18,21,23,25,26,27}(zt1−j ⊕ zt2−j)⊕ q′′ and η41 = lt1+19, η′41 =
lt1+20.

• Define µ0 = zt1+124 ⊕ zt2+124, µ1 = zt1+139 ⊕ zt2+139 ⊕ 1 and µ2 = zt1+142 ⊕
zt2+142. And µ̄0 = fl(lt1+127, lt1+149, lt1+170, lt1+188), µ̄1 = fl(lt1+142, lt1+164,
lt1+185, lt1+203) and µ̄2 = fl(lt1+145, lt1+167, lt1+188, lt1+206)

The probability that a pair is not rejected is given as

ρ =

93∏
i=0

Pr(αi = 0) ·
103∏
i=94

Pr(αi = 1) ·
1∏
i=0

Pr(βi = 0) ·
40∏
j=0

(
1− Pr(γj = 1 ∧ ηj = 0)

)

·
(

1− Pr(γ41 = 1 ∧ η41 = 0 ∧ η′41 = 0)

)
·

2∏
j=0

(
1− Pr(µj = 1 ∧ µ̄j = 0)

)

= 2−94 · 2−10 · 2−2 ·
(

3

4

)38

· 7

8
·
(

3

4

)3

= 2−123.21

Note that all the probabilities in the above equation have been calculated over
all values of St1 , St2 generated during the experiment. Additionally we make
the following assumptions:

1. We have assumed that the events (a) Pr(γj = 1) and Pr(ηj = 0), (b) Pr(µj =
1) and Pr(µ̄j = 0) are iid according to Ber( 1

2 ).
2. We have also used the fact that Pr(ηj = 1) = 1, for j = 72, 108, 118 according

to Table 2. For all other j, Pr(ηj = 1) = 1
2 since the pt1+j ’s are all linear

functions and hence balanced.
3. Note we have assumed Pr(µ̄j = 0) = 1

2 since the function fl is balanced.

Let Xt1,t2 be the indicator variable that is 1 when the tuples at t1, t2 are not
rejected by the filters, and zero otherwise. Then we have shown that E(Xt1,t2) =
ρ. Let Ps be the expected number of pairs that survive during processing keystream
generated a single IV. We have

Ps =

N∑
i=1

N∑
j=i+1

E[Xi,j ] =

(
N

2

)
· ρ = D · ρ = 236.79

This is the number of pairs that proceed to the next stage of the attack.

Remark. Note the results presented in Lemma 2, 5, 6, 9 may appear to be arbi-
trary, but there is a simple technique to find these by analyzing the progression
of differences in Grain v1 by a system of integer operations over the algebraic
structure (similar to the ∆-GRAIN tool presented in [Ban16]). To model the pro-
gression of a difference on LFSR location 79, consider a Grain-like shift-register
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structure Nt, Lt over the integers, where all Nt, Lt are 0 for t ∈ [0, 79] except
L79 = 1. The register updates as follows

Lt+1 = Lt + Lt+13 + Lt+23 + Lt+38 + Lt+51 + Lt+62 mod 2

Nt+1 = (Lt + Nt + Nt+14 + Nt+62 mod 2) + 2 · OR((Nt+60, Nt+52, Nt+45, Nt+37,

Nt+33, Nt+28, Nt+21, Nt+9, Nt+63, Nt+15)

where OR maps to zero iff all its arguments are 0 else to 1. It can be deduced
that any if Nt/Lt equals

– 0⇒ the corresponding difference in the actual Grain v1 state bits are deter-
ministically equal,

– 1 ⇒ the corresponding difference is deterministically unequal,
– 2,3 ⇒ the corresponding difference is probabilistic.

Define χt = [Nt+1,Nt+2,Nt+4,Nt+10,Nt+31,Nt+43,Nt+56] and λt = [Lt+3, Lt+25,
Lt+46, Lt+64,Nt+63]. To deduce Lemmas 2, 5, 6, we run the system forwards
and backwards and filter out the time instances χt and λt have only 0s and
1s. Lemma 2 additionally requires that λt = 05. Lemma 5 requires that λt ∈
{00001, 11000}. Lemma 6 requires that λt /∈ {00001, 11000, 110001}. For Lemma
9 we need λt ∈ {00002, 00003} and of course that χt has only 1s or 0s. To find the
higher dimensional differences in Lemma 3, 7, 8, closer scrutiny of the underlying
algebraic system is required.

4.4 Online Stage IV: Solving Equation System

Once we have brought down the candidate LFSR states at t1, t2 to a much
smaller Ps candidates, it is now the ideal time to formulate a set of equations in
the NFSR and LFSR states to solve for the entire state. The expression for the
output keystream bit at any time t is given as:

zt = nt+1 ⊕ nt+2 ⊕ nt+4 ⊕ nt+10 ⊕ nt+31 ⊕ nt+43 ⊕ nt+56 ⊕ nt+63 · pt ⊕ qt

If Lt is known then pt and qt can be easily computed, thus the above expression
is a linear equation in either 7 or 8 terms depending on whether pt is 0 or 1.
Make a list of these equations from t = t0 − 1 to t0 + 78 for some value of t0.
This then gives us a set of 80 linear equations in nt0 to nt0+141. If we guess the
62 values nt0+80 to nt0+141 then it is straightforward to find the values of nt0 to
nt0+79. For example, from the equation

zt0+78 = nt0+79 ⊕
⊕

j∈{80,82,88,109,121,134}

nt0+j ⊕ nt0+141 · pt0+78 ⊕ qt0+78

it is easy to get nt0+79 since all the other variables in the equation are either
known or have been guessed. Similarly in the next equation

zt0+77 = nt0+78 ⊕
⊕

j∈{79,81,87,108,120,133}

nt0+j ⊕ nt0+140 · pt0+77 ⊕ qt0+77
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nt0+78 is the only unknown and can be found easily. Pursuing a mathematical
induction based argument, that shows that all nt0+j can be similarly computed
sequentially.

How many values need to be guessed on average? Note that nt0+136 to nt0+141

appear at most once in these equations, and may not appear at all if the corre-
sponding pt0+72 to pt0+78 are respectively 0. For the remaining values, we can
take help of Lemma 6 to reduce the number of guesses, since we are still chasing
keystream pairs that are generated by internal states with the single difference
in the 79th LFSR location. If the keystream vector pairs are indeed produced by
such internal states, then if for some j we have γj = 0∧ηj = 1, this immediately
implies nt1+hj+63 = 0. Similarly γj = 1 ∧ ηj = 1 implies nt1+hj+63 = 1. So we
get the value of nt+hj+63 for free at this stage when ηj = 1. Again we hope that
if the keystream pair is not generated by such a pair of internal states the value
of nt1+hj+63 inferred thus will lead to a contradiction along the line and will be
eventually discarded.

4.5 Actual algorithm for Solving

We will select the 80 successive equations zt1+46 to zt1+125. Denote by xi :=
nt1+47+i for all i ∈ [0, 141]. The idea is to solve for all x0 − x79 by guessing all
x80 − x141. We divide these equations into three distinct segments of 18, 55, 7
equations as shown below:

Segment 1: 18 equations

zt1+46 = x0 ⊕ x1 ⊕ x3 ⊕ x9 ⊕ x30 ⊕ x42 ⊕ x55 ⊕ x62 · pt1+46 ⊕ qt1+46

zt1+47 = x1 ⊕ x2 ⊕ x4 ⊕ x10 ⊕ x31 ⊕ x43 ⊕ x56 ⊕ x63 · pt1+47 ⊕ qt1+47

.

.

.

zt1+63 = x17 ⊕ x18 ⊕ x20 ⊕ x26 ⊕ x47 ⊕ x59 ⊕ x72 ⊕ x79 · pt1+63 ⊕ qt1+63

Segment 2: 55 equations

zt1+64 = x18 ⊕ x19 ⊕ x21 ⊕ x27 ⊕ x48 ⊕ x60 ⊕ x73 ⊕ x80 · pt1+64 ⊕ qt1+64

zt1+65 = x19 ⊕ x20 ⊕ x22 ⊕ x28 ⊕ x49 ⊕ x61 ⊕ x74 ⊕ x81 · pt1+65 ⊕ qt1+65

.

.

.

zt1+118 = x72 ⊕ x73 ⊕ x75 ⊕ x81 ⊕ x102 ⊕ x114 ⊕ x127 ⊕ x134 · pt1+118 ⊕ qt1+118

Segment 3: 7 equations

zt1+119 = x73 ⊕ x74 ⊕ x76 ⊕ x82 ⊕ x103 ⊕ x115 ⊕ x128 ⊕ x135 · pt1+119 ⊕ qt1+119

zt1+120 = x74 ⊕ x75 ⊕ x77 ⊕ x83 ⊕ x104 ⊕ x116 ⊕ x129 ⊕ x136 · pt1+120 ⊕ qt1+120

.

.

.

zt1+125 = x79 ⊕ x80 ⊕ x82 ⊕ x88 ⊕ x109 ⊕ x121 ⊕ x134 ⊕ x141 · pt1+125 ⊕ qt1+125

The obvious question is why divide these equations in 3 segments. In Segment
3, if any of pt1+119 to pt1+125 is 0, then respectively the corresponding x135 to
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x141 do not occur in the set of equations. If out of these 7 equations any T3 of
the pt1+j ’s are 0, then this means there are exactly T3 less variables to guess in
this segment. It is easy to see that T3 is distributed according to Binomial(7, 12 ).

In Segment 2, there are 3 values of j: 72, 108, 118 where pt1+j = 1 with
probability 1, and so the corresponding values of x88, x124, x134 can be found
with certainty as explained above. For example if zt1+118⊕zt2+118⊕qt1+118 = 1,
then x134 is guaranteed to be 1 too. This being the case the number of variables
to guess in this segment comes down to 55− 3 = 52. Note according to Table 2,
there are 23 other values of j in this segment for which zt1+j ⊕ zt2+118 ⊕ qt1+j
is of the form pt1+j · nt1+63+j = pt1+j · xj+16. If pt1+j = 1, then we can directly
find the value of xj+16. Again if there are T2 out of 23 pt1+j ’s turn out to be 1
then we have T2 less variables to guess in this segment.

The question is what fraction of equation systems have pt1+j = 1. Note
that at the point we are starting to solve the equations we have Ps candidate
keystream pairs and corresponding LFSR states which we assume differ only in
location 79. To make things easier, consider a single value of j = 69, say. For
each of the Ps candidates we have either of the three following equations holding:

1. pt1+69 = η7 = 1 and zt1+69 ⊕ zt2+69 ⊕ qt1+69 = γ7 = 0, OR
2. pt1+69 = η7 = 1 and zt1+69 ⊕ zt2+69 ⊕ qt1+69 = γ7 = 1, OR
3. pt1+69 = η7 = 0 and zt1+69 ⊕ zt2+69 ⊕ qt1+69 = γ7 = 0.

This is because we have already filtered out all those candidates with pt1+69 = 0
and zt1+69⊕ zt2+69⊕ qt1+69 = 1 in one of the previous filtering stages. Thus the
fraction θ of the Ps candidates that has η7 = 1 is given as

θ = Pr

[
η7 = 1| ∼ (η7 = 0 ∧ γ7 = 1)

]
=

Pr[η7 = 1∧ ∼ (η7 = 0 ∧ γ7 = 1)]

Pr[∼ (η7 = 0 ∧ γ7 = 1)]

=
Pr[η7 = 1]

Pr[∼ (η7 = 0 ∧ γ7 = 1)]
=

1
2

1− 1
4

=
2

3

The above follows since the Boolean expression A ∧ ∼ (∼ A ∧B) = A. Fol-
lowing this logic it is reasonable to deduce that T2 is distributed according to
Binomial(23, 23 ).

In Segment 1, if we have pt1+j = 1 this helps us deduce the value of one
of the variables between x62 to x79. Table 2 shows that there are 4 such val-
ues of j: 51, 54, 57, 62 where such deduction can occur, i.e. we can deduce the
value of x67, x70, x73, x78. This does not directly reduce the number of vari-
ables to guess. However we can leverage this to reduce the number of guesses.
Let P,QZ be the 13-element vectors [pt1+113, pt1+114, . . . , pt1+125], [qt1+113 ⊕
zt1+113, . . . , qt1+125 ⊕ zt1+125]. Note that without any external deduction aided
by Table 2, x67, x70, x73, x78 is computed by the following 13 steps sequentially,
for i = 0 to 12:

x79−i ← zt1+125−i ⊕ x80−i ⊕ x82−i ⊕ x88−i ⊕ x109−i ⊕ x121−i ⊕ x134−i⊕
x141−i · pt1+125−i ⊕ qt1+125−i
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From here it is straightforward to deduce that x67, x70, x73, x78 are affine
expressions in x80 − x141: call them A67, A70, A73, A78. Each of these depend on
only the actual value of the vectors P, QZ. Since there are only 226 possible
values of these vectors, one can even precompute all 226 possible values of the
affine expressions. Now suppose for example we have deduced the value of x67 =
1, x70 = 0 using the fact that pt1+51 = pt1+54 = 1. In that case we know that
the variables x80 − x141 need to be guessed so that A67 = 1 and A70 = 0. This
reduces the dimension of the total set of guesses of x80−x141 by 2. Hence if T1 of
the 4 values are deduced then the dimension of the guess space is reduced by T1.
Additionally it is clear that T1 ∼Binomial(4, 23 ). So the total number of guesses

for each of the Ps candidates is 262−3−T1−T2−T3 = 259−
∑
Ti with probability

p =
(
7
T3

)
·
(
23
T2

)
·
(
4
T1

)
· ( 1

2 )7 · ( 2
3 )T1+T2( 1

3 )23+7−T1−T2 . Hence the expected number
of candidate internal states after this process is given by

Ns =

4∑
T1=0

23∑
T2=0

7∑
T3=0

Ps · 259−
∑
Ti · p ≈ 277.09

Note that in all the above process we have ignored the fact that the xi’s so found
are additionally related by the Boolean function g. More specifically we must
have that x80+i = g(xi, xi+9, . . . , xi+63) ⊕ lt1+47+i. It is reasonable to assume
that each of the Ns candidates for the complete internal state will fail the above
equation (for each i) with probability 1

2 , in which case the candidate can be
simply eliminated. How many computations of g on average must be done for
each candidate before they are discarded? We try to answer this question. The
probability that any candidate survives i such equations and is eliminated at the
i+1-th equation is roughly 2−i−1. Thus in the first stage we have Ns evaluations
of g. In the second stage the number of candidates remaining are Ns

2 . In the

third stage we have Ns

4 and so on. So the expected evaluations of g is the sum∑∞
i=0Ns · 2−i ≈ 2 · Ns = 278.09, after which we are left with a single surviving

candidate for the internal state of Grain v1.

4.6 Formal algorithm and time complexity

Before we end the paper let us state the steps of the algorithm of the Near
Collision Attack and compute its time complexity.

A) Precomputation: We do the following pre-computational steps: 1) Com-
pute the matrices M i, ∀ i ∈ [1, 79], and 2) For the 226 values of the vector
P, QZ compute the affine expressions A67, A70, A73, A78. These steps take
negligible time complexity in comparison with the complexity required in
the online stage of the algorithm.

B) Generating Equations: From Lemma 4, we know that we need to generate
around 280.5 keystream bits to ensure with probability close to one that we
do come across with internal states with a single difference in the 79th LFSR
location. This obviously means that we need to run 280.5 iterations of the
Grain v1 update function. As argued in [LN15,EK15,ZLFL14,MAM16] one
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stream cipher encryption should be equal to the average number of rounds of
the cipher required to be executed per trial with a guessed value of the key (in
a brute force search). This comes to 160 initialization rounds and 4 rounds
in the keystream generation phase. We have given a proof of this in the
appendices of this paper. Thus one Grain v1 round is equivalent to around
1

164 = 2−7.36 encryptions. Thus the task of generating keystream requires
time equivalent to around TGen = 280.5−7.36 ≈ 273.14 Grain v1 encryptions.

C) Filtering: In the process of filtering we need to do around 280.5 insertions
in a hash table. We then need to compute the LFSR state Lt1 for every
keystream pair that survives the first stage of filtering, the number of which
is around 2160−104 = 256. We have already argued in Section 3, that each
such computation is bounded above by at most 221.3 bit-operations. And
so the the total complexity for this operation is around 256+21.3 = 277.3

bit-operations. This is also much less than the time complexity required to
generate keystream data. Note that the #bit-operations in one Grain v1
encryption can be taken as 164 times the number of bit-operations required
to compute one Grain v1 round, i.e. to compute the functions f, g, h on
the Grain v1 internal state. This can be estimated as 164 times the sum
of the straight line complexities of evaluating f, g, h. Since each round of
Grain v1 requires xor of around 36 different monomials, the number of bit-
level operations required in one Grain v1 encryption is likely be in excess of
164 ∗ 36 ≈ 212.5 by any conservative estimation. Thus we can conclude that
computing the LFSR state requires less than TLFSR ≈ 256+21.3−12.5 ≈ 264.8

encryptions.
Thereafter for each of these candidates we compute all (a) Lt1+j for all j ∈
[−30, 140], which requires running the LFSR part over around 170 iterations,
(b) then compute pt1+j , qt1+j for all the above values of j. Since p, q are
component functions of h, the complexity of doing these operations is roughly
equal to computing f, h over around 170 iterations which is almost equal to
the amount of Grain v1 rounds in one encryption. Since computing f, h is
much easier than computing g, we can estimate that each such computation
needs operations less than 1

2 of a Grain v1 encryption, and so the total
complexity of this part is around TF1

= 256−1 = 255 encryptions.
Thereafter for activating the filters in the 2nd/3rd Stage the attacker needs to
compute a series of expressions, most of which require only a few bit-xors i.e.
β0, β1, {γj}41j=0, {µj , µ̄j}2j=0. Computing these is much less than computing
the Lt1+j , pt1+j , qt1+j ’s and so TF1

is the most dominant complexity term.
D) Solve equations: Note that only Ps ≈ 236.79 candidates survive this stage.

For each of these candidates, we first determine the dimension of guess space
by first determining T2, T3 with the help of the pt1+j ’s and then determining
T1 with the precomputed expressions A67, A70, A73, A78 with the help of the
vectors P, QZ. This generates around Ns candidates each consisting of (a)
the keystream vector pairs, (b) the corresponding Lt1+j , pt1+j , qt1+j ’s, and
(c) valid guesses of x80−x141. From each candidate computing x0−x79 can
be done in sequence one after the other with around 7-8 bit-xor operations
for each xi, so around 80 ∗ 8 = 640 bit-xors in total. This is much less than
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the number of bit-operations in 640 ∗ 2−12.5 ≈ 2−3.2 encryptions and so this
complexity is bounded above by TEq ≈ Ns · 2−3.2 ≈ 273.89 encryptions.

E) Eliminate candidates: As already explained this required 2 ·Ns ≈ 278.09

evaluations of g. Since one evaluation of g is computationally less than that
required in 1

164 ≈ 2−7.36 encryptions, the complexity of this part is bounded
from above by TEl = 2 ·Ns · 2−7.36 ≈ 270.73 encryptions.

The total complexity of the algorithm is given by Ttotal = TGen+TLFSR+TF1 +
TEq + TEl. The most dominant terms in the sum are TGen, TEq and so the total
complexity is around TTotal ≈ 274.6 encryptions.

4.7 Extending attacks to Grain-128 and Grain-128a

The attacks described in this and the previous sections can be analogous ap-
plied to Grain-128 [HJMM06a] and Grain-128a [AHJM11]. Since the core steps
are very similar we move the full description of the attack to the appendices
(Appendix D).

5 Conclusion

In this paper we look back at near collision style attacks on Grain v1. After a
similar attack on Grain v1 [ZXM18] was disproved in [DFM20], it has been a
matter of debate whether such attacks can be applied to Grain v1. In this paper
we answer the question in the affirmative, but just barely. The attack we propose
takes 274.6 Grain v1 encryptions and settles this open question. The paper shows
that sparseness of taps in the output function as in Grain v1 can be a weakness
even if the state size is twice that of the key size.
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A Cost of executing one round of Grain v1

To do an exhaustive search, first an initialization phase has to be run for 160
rounds, after which 80-bits of keystream is generated to do a unique match.
However, since each keystream bit generated matches the correct one with prob-
ability 1

2 , 280 keys are tried for 1 clock and roughly half of them are eliminated,
279 for 2 clocks and half of the remaining keys are eliminated, and so on. This
means that in the process of brute force search, the probability that for any ran-
dom key, (i+ 1) Grain v1 keystream phase rounds need to be run, is 1

2i . Hence,
the expected number of Grain v1 rounds per trial is

79∑
i=0

(i+ 1)280−i

280
=

79∑
i=0

(i+ 1)
1

2i
≈ 4

Adding to this the 160 rounds in the initialization phase, the average number of
Grain v1 rounds per trial is 164. As a result, we will assume that clocking the
registers once will cost roughly 1

160+4 = 2−7.36 encryptions.
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B Difference Vectors

# j v pt1+j qt1+j

0 15 [0, 0, 0, 1, 0] lt1+61 ⊕ 1 lt1+18 · lt1+61 ⊕ lt1+18 ⊕ lt1+61

1 33 [0, 0, 1, 1, 0] lt1+36 ⊕ lt1+58 ⊕ lt1+79 ⊕ lt1+97 lt1+36 · lt1+58 ⊕ lt1+36 · lt1+79⊕
lt1+36 · lt1+97 ⊕ lt1+79 ⊕ lt1+97 ⊕ 1

2 44 [0, 0, 0, 1, 0] lt1+90 ⊕ 1 lt1+47 · lt1+90 ⊕ lt1+47 ⊕ lt1+90

3 51 [0, 0, 1, 1, 0] lt1+54 ⊕ lt1+76 ⊕ lt1+97 ⊕ lt1+115 lt1+54 · lt1+76 ⊕ lt1+54 · lt1+97⊕
lt1+54 · lt1+115 ⊕ lt1+97 ⊕ lt1+115 ⊕ 1

4 54 [0, 1, 0, 0, 0] lt1+100 lt1+57 · lt1+100 ⊕ 1

5 57 [0, 0, 0, 1, 0] lt1+103 ⊕ 1 lt1+60 · lt1+103 ⊕ lt1+60 ⊕ lt1+103

6 62 [0, 0, 1, 0, 0] lt1+65 ⊕ lt1+87 ⊕ lt1+126 lt1+65 · lt1+87 ⊕ lt1+65 · lt1+126 ⊕ lt1+126

7 69 [0, 0, 1, 1, 0] lt1+72 ⊕ lt1+94 ⊕ lt1+115 ⊕ lt1+133 lt1+72 · lt1+94 ⊕ lt1+72 · lt1+115⊕
lt1+72 · lt1+133 ⊕ lt1+115 ⊕ lt1+133 ⊕ 1

8 72 [0, 1, 0, 1, 0] 1 lt1+75 ⊕ lt1+118 ⊕ 1

9 73 [0, 0, 0, 1, 0] lt1+119 ⊕ 1 lt1+76 · lt1+119 ⊕ lt1+76 ⊕ lt1+119

10 75 [0, 0, 1, 0, 0] lt1+78 ⊕ lt1+100 ⊕ lt1+139 lt1+78 · lt1+100 ⊕ lt1+78 · lt1+139 ⊕ lt1+139

11 76 [1, 0, 0, 0, 0] lt1+122 lt1+101 · lt1+122 ⊕ lt1+122 · lt1+140 ⊕ lt1+140

12 80 [0, 0, 0, 1, 0] lt1+126 ⊕ 1 lt1+83 · lt1+126 ⊕ lt1+83 ⊕ lt1+126

13 82 [0, 0, 0, 1, 0] lt1+128 ⊕ 1 lt1+85 · lt1+128 ⊕ lt1+85 ⊕ lt1+128

14 83 [0, 1, 0, 0, 0] lt1+129 lt1+86 · lt1+129 ⊕ 1

15 87 [0, 0, 1, 1, 0] lt1+90 ⊕ lt1+112 ⊕ lt1+133 ⊕ lt1+151 lt1+90 · lt1+112 ⊕ lt1+90 · lt1+133⊕
lt1+90 · lt1+151 ⊕ lt1+133 ⊕ lt1+151 ⊕ 1

16 90 [0, 1, 1, 0, 0] lt1+93 ⊕ lt1+115 ⊕ lt1+136 ⊕ lt1+154 ⊕ 1 lt1+93 · lt1+115 ⊕ lt1+93 · lt1+136⊕
lt1+93 · lt1+154 ⊕ lt1+93 ⊕ lt1+154 ⊕ 1

17 91 [0, 0, 1, 1, 0] lt1+94 ⊕ lt1+116 ⊕ lt1+137 ⊕ lt1+155 lt1+94 · lt1+116 ⊕ lt1+94 · lt1+137⊕
lt1+94 · lt1+155 ⊕ lt1+137 ⊕ lt1+155 ⊕ 1

18 93 [0, 0, 0, 1, 0] lt1+139 ⊕ 1 lt1+96 · lt1+139 ⊕ lt1+96 ⊕ lt1+139

19 94 [1, 0, 0, 0, 0] lt1+140 lt1+119 · lt1+140 ⊕ lt1+140 · lt1+158 ⊕ lt1+158

20 95 [0, 0, 0, 1, 0] lt1+141 ⊕ 1 lt1+98 · lt1+141 ⊕ lt1+98 ⊕ lt1+141

21 96 [0, 1, 0, 0, 1] lt1+142 lt1+121 · lt1+142 ⊕ lt1+142 · lt1+160 ⊕ lt1+142 ⊕ lt1+160

22 98 [0, 0, 1, 0, 0] lt1+101 ⊕ lt1+123 ⊕ lt1+162 lt1+101 · lt1+123 ⊕ lt1+101 · lt1+162 ⊕ lt1+162

23 99 [0, 0, 0, 1, 0] lt1+145 ⊕ 1 lt1+102 · lt1+145 ⊕ lt1+102 ⊕ lt1+145

24 100 [0, 0, 1, 0, 0] lt1+103 ⊕ lt1+125 ⊕ lt1+164 lt1+103 · lt1+125 ⊕ lt1+103 · lt1+164 ⊕ lt1+164

25 102 [0, 0, 0, 1, 0] lt1+148 ⊕ 1 lt1+105 · lt1+148 ⊕ lt1+105 ⊕ lt1+148

26 105 [1, 0, 1, 1, 0] lt1+108 ⊕ lt1+130 ⊕ lt1+169 ⊕ 1 lt1+108 · lt1+130 ⊕ lt1+108 · lt1+151⊕
lt1+108 · lt1+169 ⊕ lt1+130 · lt1+151⊕
lt1+130 ⊕ lt1+151 · lt1+169 ⊕ lt1+169 ⊕ 1

27 108 [0, 1, 0, 1, 0] 1 lt1+111 ⊕ lt1+154 ⊕ 1

28 109 [0, 0, 1, 0, 0] lt1+112 ⊕ lt1+134 ⊕ lt1+173 lt1+112 · lt1+134 ⊕ lt1+112 · lt1+173 ⊕ lt1+173

29 111 [0, 1, 1, 0, 0] lt1+114 ⊕ lt1+136 ⊕ lt1+157 ⊕ lt1+175 ⊕ 1 lt1+114 · lt1+136 ⊕ lt1+114 · lt1+157⊕
lt1+114 · lt1+175 ⊕ lt1+114 ⊕ lt1+175 ⊕ 1

30 115 [0, 0, 0, 1, 0] lt1+161 ⊕ 1 lt1+118 · lt1+161 ⊕ lt1+118 ⊕ lt1+161

31 117 [0, 0, 1, 1, 0] lt1+120 ⊕ lt1+142 ⊕ lt1+163 ⊕ lt1+181 lt1+120 · lt1+142 ⊕ lt1+120 · lt1+163⊕
lt1+120 · lt1+181 ⊕ lt1+163 ⊕ lt1+181 ⊕ 1

32 118 [1, 0, 0, 1, 0] 1 lt1+121 · lt1+164 ⊕ lt1+121 ⊕ lt1+143 · lt1+164⊕
lt1+164 · lt1+182 ⊕ lt1+182 ⊕ 1

33 119 [0, 1, 0, 0, 0] lt1+165 lt1+122 · lt1+165 ⊕ 1

34 121 [0, 1, 0, 0, 0] lt1+167 lt1+124 · lt1+167 ⊕ 1

35 126 [0, 1, 1, 0, 0] lt1+129 ⊕ lt1+151 ⊕ lt1+172 ⊕ lt1+190 ⊕ 1 lt1+129 · lt1+151 ⊕ lt1+129 · lt1+172⊕
lt1+129 · lt1+190 ⊕ lt1+129 ⊕ lt1+190 ⊕ 1

36 128 [0, 0, 0, 1, 0] lt1+174 ⊕ 1 lt1+131 · lt1+174 ⊕ lt1+131 ⊕ lt1+174

37 132 [0, 1, 0, 0, 1] lt1+178 lt1+157 · lt1+178 ⊕ lt1+178 · lt1+196 ⊕ lt1+178 ⊕ lt1+196 ⊕ 1

38 135 [0, 0, 1, 0, 0] lt1+138 ⊕ lt1+160 ⊕ lt1+199 lt1+157 · lt1+178 ⊕ lt1+178 · lt1+196 ⊕ lt1+178 ⊕ lt1+196

39 −4 [1, 0, 0, 0, 0] lt1+42 lt1+21 · lt1+42 ⊕ lt1+42 · lt1+60 ⊕ lt1+60

Table 2. Table of the functions pt1+j , qt1+j for various j.

C Reducing the memory footprint

The attack in the main body requires 280.5 hash table insertions. In general, the
time to access a table could be considered to be more than a typical crypto-
graphic operation, and unless we have the technology or means to perform disk
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access in short enough time, it is unclear whether the physical time needed to
do table insertions is less than the that required of exhaustive search.

In this section we try to reduce the number of table accesses using the alge-
braic structure of the Grain v1. We use the fact that the sampling resistance of
Grain v1 is very low. In general if it is efficient to enumerate all internal states
of a stream cipher that generates keystream segments with some constant R-bit
prefix, then the sampling resistance of a stream cipher is said to be 2−R. The
following result is well known:

Lemma 10. [Bjo08] The sampling resistance of Grain v1 is at most 2−18.

Proof. Although it was proven in [Bjo08], for completeness, we give a brief proof
sketch. From the output equation of Grain v1, we can see that

nt+10 = zt ⊕i∈{1,2,4,31,43,56} nt+i ⊕ h(lt+3, lt+25, lt+46, lt+64, nt+63)

...

nt+25 = zt+15 ⊕i∈{16,17,19,46,58,71} nt+i ⊕ h(lt+18, lt+40, lt+61, lt+79, nt+78)
(1)

Now, fixing the keystream prefix zt, zt+1, . . . zt+17 to some constant, say 018,
we can determine 16 state bits nt+10 to nt+25 sequentially, by simply guessing
all the other state bits that appear on the right side of the above equation list,
whose values have not been already determined in any of the previous steps. This
kind of enumeration is further made possible since at each step the computed
NFSR bit (i.e. on the left side of each equation) does not occur in any of the
previous equations. In [Bjo08], it was additionally shown that nt+26, nt+27 can
also be deduced using this technique by using zt+{16,17} and some other state
bits. Hence the result follows.

The technique we will use to reduce the hash table insertions is similar to col-
lision search with privileged points, in the sense that the strategy will be to only
store keystream vectors with some easily identifiable property: let’s say during
the search for keystream collision we only insert in table the tuple (t, Zt, Yt) iff
Zt begins with r consecutive 0s, for some r ≤ 15 (it will be clear shortly why
we choose 15 as a bound for r instead of 18). If this is the strategy, we have to
work out how many key stream bits we have to generate before we detect two
states St1 , St2 such that St1 ⊕ St2 = 080||e79.

C.1 The effect of low sampling resistance

In general what low sampling resistance does is that it allows us to have a
shorter description of all internal states that produce keystream with a constant
r bit prefix, for any r less than R, where 2−R is the sampling resistance. For
example, in Grain v1, we know that for all states generating keystream with
the 018 prefix, the 18 state bits nt+10 to nt+27 can be uniquely determined from
values of the other 142 state bits. Thus given any 142-bit input X we can define
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a bijective map B : {0, 1}142 → {0, 1}160 such that B(X) represents the 160-bit
internal state of Grain v1 that produces keystream starting with 18 zeros. Thus
X is in a sense a shorter description of B(X) which is of only 142 bits. This
exercise can be carried out for any r less than 18, i.e. we can define bijective
maps Br : {0, 1}160−r → {0, 1}160 similarly.

When we limit r ≤ 15, we only use up to the first 15 equations in Equation
(1) to construct the bijective map, i.e. from nt+10 to nt+24. This ensures that
lt+79 is not involved in any of the expressions. Thus, if we have two short states
X1, X2, then

Br(X1)⊕Br(X2) = 080||e79 ⇔ X1 ⊕X2 = 080−r||e79.

Now when we store only keystream vectors that begin with 0r, we will get
a collision Br(X1)⊕Br(X2) = 080||e79 if and only if we get a collision between
the shorter states X1, X2 such that X1⊕X2 = 080−r||e79. By standard Birthday
assumptions, if the Xi’s are generated randomly we can see that this occurs
when we generate

√
2 · 2160−r = 280.5−r/2 short states. This now becomes the

number of times we have to insert keystream tuples in the table. By standard
randomness assumptions, we get a 0r keystream prefix every 2r rounds of Grain
v1 on average. Thus to generate

√
2 · 2160−r short states, we have to run the

cipher for 2r ·
√

2 · 2160−r = 280.5+r/2 iterations. Thus we see that it gives a clear
tradeoff: we decrease the number of memory accesses by a factor of 2r/2 at the
cost of increasing the run time of the cipher by the same factor.

C.2 Modified algorithm and time complexity

The modified algorithm is exactly the same as the original algorithm with the
only difference that instead of all t, we only insert a tuple (t, Zt, Yt) in the table
if Zt begins with r consecutive 0s for some r ≤ 15. Note that zt, zt+1, . . . , zt+14

are not involved in any of the filtering processes and so the rest of that algorithm
can be exactly the same as the algorithm detailed in Section 4.6. Thus the only
modifications in the complexity estimates are as follows:

1. We have seen that TGen increases by a factor 2r/2. Taking r = 10 gives
us TGen ≈ 278.14. The total attack complexity is given by Ttotal = TGen +
TLFSR + TF1

+ TEq + TEl ≈ 278.14, since TGen is the dominant term.
2. The number of table insertions decrease by a factor 2r/2, Again taking r = 10,

reduces the number of insertions to 275.5.
3. We can do away with storing the first r bits of Zt. Thus the total memory

required is (250− r) · 275.5 ≈ 283 bits for r = 10.

C.3 Comparison with generic attacks on stream ciphers

We consider generic key recovery and state recovery attacks on Grain v1. The
generic key recovery attack proceeds by the adversary testing every key in the
keyspace and comparing the generated key stream with some key stream from
an encryption oracle. It requires 280 encryptions in the worst case.
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We also need to calculate the complexity of generic state recovery attacks on
stream ciphers. The generic attack proceeds as follows:

– Generate N bits of keystream.
– Generate 160 bits of keystream from T random internal states.
– Look for a collision.

The cost of this attack is N data, 160T + N iterations of the stream cipher,
and we must have NT ≥ 2160. By minimizing 160T + N , one can see that
there is an attack in 2

√
160 · 280 iterations. This is equivalent to around 277.3

Grain v1 encryptions using around 283.7 bits of memory with 276.3 hash table
insertions. By contrast, our attack with sampling resistance r = 8 requires 277.14

encryptions, 284.4 bits of memory and 276.5 insertions in the hash table.

D Extending the attack to Grain-128

In this appendix, we apply similar techniques to perform a state recovery attack
on the 128-bit cipher Grain-128 [HJMM06b]. That is, we first generate a near
collision on the keystream. Then, for each candidate LFSR state determined by
algebraic relations induced by the near collision, we try to solve a set of equations
to either recover the entire NFSR/LFSR state or reach a contradiction, then
repeat if necessary.

We generalize the notation introduced in Section 2, e.g. letting Lt = [lt,
lt+1, . . . , lt+127] be the LFSR state at the t-th clock interval. Grain-128 consists
of a 128-bit LFSR and a 128-bit NFSR, and uses an 128-bit key K. Grain-128’s
LFSR is defined by the update function f given by

f(Yt) = lt+96 + lt+81 + lt+70 + lt+38 + lt+7 + lt

The NFSR state is updated as nt+128 = lt + g(·) for NFSR update function g,
which is given by

g(Xt) = nt+96 + nt+91 + nt+56 + nt+26 + nt + nt+3nt+67 + nt+11nt+13+

nt+17nt+18 + nt+27nt+59 + nt+40nt+48 + nt+61nt+65 + nt+68nt+84

The output function is of the form

zt = h′(Xt, Yt) =
⊕
a∈A

nt+a + h(s0, . . . , s8) + l93

where A = {2, 15, 36, 45, 64, 73, 89}, h(s0, . . . , s8) = s0s1 + s2s3 + s4s5 + s6s7 +
s0s4s8, and (s0, . . . , s8) = (nt+12, lt+8, lt+13, lt+20, nt+95, lt+42, lt+60, lt+79, lt+95).
256 clocks of initialization are executed before entering the keystream phase.

We first note that an analogous result to Lemma 1 can be shown which
allows us to efficiently compute the LFSR states Lt1 and Lt2 given t1, t2 and
δ = Lt1 ⊕ Lt2 . By essentially the same analysis as in Section 3, one can solve
for Lt1 and Lt2 in at most 5 · 1283 ≈ 223.3 bit-operations. We can also state an
analogous result on the probability of finding a suitable near collision.
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Lemma 11. In the event that we generate N iterations of internal states of
Grain-128 sequentially: Si ∈ {0, 1}256, for i ∈ [0, N−1], then the probability that
there is at least one tuple i1, i2 ∈ [0, N − 1] and i2 > i1, such that, Si1 ⊕ Si2 =

0128||e127, is approximately pcoll = N2

2257 .

Thus for N ≈ 2128.5 we expect to find the desired near collision once. We first
state the core result analogous to Lemma 2.

Lemma 12. Consider two internal states in Grain-128, St1 = (Nt1 , Lt1) and
St2 = (Nt2 , Lt2) during the keystream phase such that St1 ⊕St2 = 0128||e127, i.e.
Nt1 = Nt2 and Lt1 ⊕ Lt2 = e127. Then consider

Zti = [zti+0, zti+1, zti+2, . . . , zti+255], Yti = [zti−1, zti−2, zti−3, . . . , zti−11].

for i = 1, 2. Then in the 267 bit difference vector ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 , there
are 150 bits that take the value 1 or 0 with probability 1.

Proof. Considering the forward difference vector, we have zt1+j ⊕ zt2+j = 0
for j ∈ [0, 31] ∪ {33} ∪ [35, 47] ∪ [49, 62] ∪ {65} ∪ [68, 78] ∪ [82, 84] ∪ [86, 89] ∪
{91, 93, 94, 97}∪[100, 105]∪[108, 111]∪{113, 115, 116, 118, 120, 121, 123, 127, 129}∪
[133, 137]∪ {140, 141, 147, 152, 162, 167, 168, 176, 182, 185, 187, 190, 198, 199, 205,
231}, and zt1+j + zt2+j = 1 for j ∈ {34, 66, 81, 92, 98, 124, 130, 145, 150, 155, 156,
191, 194, 214}. In the backwards direction, we have zt1−j ⊕ zt2−j = 0 for j ∈
{1, 2, 4, 5, 7, 8, 11} and zt1−j + zt2−j = 1 for j ∈ {3, 10}. ut

We now state some lemmas containing additional relations induced by the near
collision. These properties can be argued to hold analogously as done for Grain
v1 in Section 3 and 4. Similarly to with Grain v1, we use Lemmas 12 to 17 for
filtering and Lemmas 17 to 19 to assist with equation solving in the attack.

Lemma 13. Consider again the conditions in the previous lemma. We have
zt1+99 ⊕ zt2+99 ⊕ zt1+165 ⊕ zt2+165 = 0, zt1+106 ⊕ zt2+106 ⊕ zt1+146 ⊕ zt2+146 = 0
and zt1+125 ⊕ zt2+125 ⊕ zt1+144 ⊕ zt2+144 = 0 with probability 1.

Lemma 14. Consider again the conditions in the previous lemma. For the 29
pairs (i, j) ∈ {(48, 108), (67, 146), (80, 140), (95, 155), (99, 178), (106, 166),
(107, 120), (112, 172), (125, 204), (131, 210), (138, 198), (139, 152), (142, 202),
(144, 204), (146, 166), (157, 236), (159, 219), (163, 242), (164, 224), (165, 178),
(169, 229), (170, 230), (171, 184), (172, 192), (174, 324), (193, 272), (200, 260),
(202, 262), (225, 245)}, we have zt1+i ⊕ zt2+i = lt1+j. For the 5 pairs (i, j) ∈
{(188, 267), (203, 216), (219, 298), (222, 282), (253, 332)}, we have zt1+i ⊕ zt2+i =
lt1+j ⊕ 1.

Lemma 15. Consider again the conditions in the previous lemma. We have the
following 7 identities with probability 1.

zt1+114 ⊕ zt2+114 = lt1+134 ⊕ lt1+193, zt1+161 ⊕ zt2+161 = lt1+181 ⊕ lt1+240

zt1+178 ⊕ zt2+178 = lt1+198 ⊕ lt1+257, zt1+189 ⊕ zt2+189 = lt1+249 ⊕ lt1+268 ⊕ 1

zt1+208 ⊕ zt2+208 = lt1+228 ⊕ lt1+268 ⊕ lt1+287

zt1+228 ⊕ zt2+228 = lt1+241 ⊕ lt1+288 ⊕ 1, zt1+236 ⊕ zt2+236 = lt1+256 ⊕ lt1+296
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Lemma 16. Consider again the conditions in the previous lemma. For the 10
pairs (i, j) ∈ {(85, 180), (117, 212), (119, 131), (132, 227), (149, 244), (151, 163),
(177, 189), (179, 274), (181, 276), (237, 332)}, we have zt1+i ⊕ zt2+i = nt1+j. For
the 3 pairs (i, j) ∈ {(166, 178), (175, 270), (209, 221)}, we have zt1+i ⊕ zt2+i =
nt1+j ⊕ 1.

Lemma 17. We have the following 6 identities with probability 1.

zt1+160 ⊕ zt2+160 ⊕ lt1+202 ⊕ nt1+172 · lt1+255 = 1

zt1+197 ⊕ zt2+197 ⊕ lt1+210 ⊕ lt1+239 ⊕ nt1+209 · lt1+292 = 1

zt1+224 ⊕ zt2+224 ⊕ lt1+266 ⊕ nt1+236 · lt1+319 = 1

zt1+232 ⊕ zt2+232 ⊕ lt1+274 ⊕ lt1+292 ⊕ nt1+244 · l327 = 0

zt1+234 ⊕ zt2+234 ⊕ lt1+276 ⊕ lt1+294 ⊕ nt1+246 · l329 = 0

zt1+255 ⊕ zt2+255 ⊕ lt1+268 ⊕ lt1+275 ⊕ lt1+297 ⊕ lt1+334 ⊕ nt1+267 · lt1+350 = 0

Lemma 18. Consider again the conditions in the previous lemma. For the 19
values i ∈ {32, 64, 79, 90, 96, 122, 126, 148, 153, 158, 173, 180, 184, 192, 195, 212,
216, 217, 238}, we have zt1+i ⊕ zt2+i = nt1+12+i · nt1+95+i. For the 3 values
i ∈ {128, 186, 250}, we have zt1+i ⊕ zt2+i = nt1+12+i · nt1+95+i ⊕ 1. For the 2
values i ∈ {143, 206}, we have: zt1+i ⊕ zt2+i = (1⊕ nt1+12+i) · nt1+95+i.

Lemma 19. Consider again the conditions in the previous lemma. We have the
following 11 identities with probability 1.

zt1+154 ⊕ zt2+154 = lt1+167 ⊕ nt1+166 · nt1+249

zt1+183 ⊕ zt2+183 = lt1+262 ⊕ nt1+195, zt1+196 ⊕ zt2+196 = lt1+256 ⊕ nt1+291

zt1+207 ⊕ zt2+207 = 1⊕ nt1+302 ⊕ lt1+249

⊕ nt1+219 · nt1+302 ⊕ lt1+302 · nt1+219 ⊕ nt1+219

zt1+201 ⊕ zt2+201 = lt1+214 ⊕ nt1+296, zt1+211 ⊕ zt2+211 = lt1+271 ⊕ nt1+306

zt1+218 ⊕ zt2+218 = 1⊕ lt1+231 ⊕ lt1+260 ⊕ nt1+230 · nt1+313

⊕ nt1+230 · lt1+313 ⊕ nt1+230

zt1+230 ⊕ zt2+230 = 1⊕ nt1+242 ⊕ lt1+250 ⊕ lt1+309

zt1+239 ⊕ zt2+239 = 1⊕ nt1+334 ⊕ lt1+281 ⊕ nt1+251 · lt1+334

zt1+244 ⊕ zt2+244 = lt1+286 ⊕ nt1+256 · nt1+339 ⊕ nt1+256 · lt1+339 ⊕ nt1+256

The base attack. We now calculate the complexity of a state recovery attack. We
first consider the probability ρ that a keystream collision as in Lemma 12 that
also satisfies the relations in Lemmas 13 to 15 was induced by two states that
do not differ only in bit 127 of the LFSR. By application of the aforementioned
lemmas and a similar counting exercise to that of Section 4.3, making comparable
independence assumptions along the way, we have ρ = ( 1

2 )150+3+29+5+7 · ( 3
4 )6 ≈

2−196.49. Then the expected number of pairs that proceed to the equation solving
stage of the attack is Ps =

(
N
2

)
· ρ ≈ 259.51 where N ≈ 2128.5 as described above.
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To calculate the cost of equation solving, we take the alternate approach
described but not followed in Section 4.4. Recall that, after the filtering stages
of the attack, we are required to essentially determine which of the approxi-
mately Ps remaining candidate states is correct. Following [BBI19], we compare
the real-time cost of performing an encryption of Grain-128 with the cost of
accepting/rejecting one such candidate state. Letting Cu be the cost of rejecting
a candidate state and Cs the cost of accepting a candidate state in the num-
ber of Grain-128 encryptions, the cost of equation solving is therefore around
[(Ps − 1) · Cu + Cs] Grain-128 encryptions.

To this end, we formulated the problem as a SAT problem and ran exper-
iments using Cryptominisat and computer algebra software SAGE 9.6. More
precisely, we generated a series of equations in 256 + 11 keystream bits addi-
tionally subject to the constraints from Lemmas 17 to 19. Note that in particular
that using relations above with nt1+12+i · nt1+95+i terms allows us to linearize
equations with degree 2 terms and thus speed up solving. We used a laptop
running an Intel i7-8565U processor with 16GB of RAM to perform the ex-
periments. Firstly, we estimated the time for the solver to return SAT when
the attacker correctly assumes that a given differential keystream which satisfies
filters derived from relations from Lemmas 12 to 17 is from the desired near col-
lision state. We then estimated the time for the solver to return UNSAT when
the attacker incorrectly assumes the above (by enforcing the constraints from
Lemmas 12 to 17 on an otherwise random internal state). Finally, we estimated
the amount of time required for one Grain-128 encryption, i.e. to perform 256
initialization rounds and 4 keystream clocks (one can argue that 4 keystream
clocks is appropriate as in Appendix A). Our results are as follows:

– Encryption time: Encryption took an average of 1.448ms to perform, taking
the average over 10000 runs.

– SAT time: To speed up the SAT solver, we guessed 55 of the NFSR state
bits in each experiment (thus the cost of this portion attack increases by a
factor of 255). 600 experiments yielded an average time of 16.70 seconds.

– UNSAT time: We guessed less bits of the NFSR state for UNSAT instances,
namely 35 bits (inducing an increase in running time of 235 per iteration);
an average of 12.57 seconds was used over 600 experiments.

Attack complexity. We consider the attack cost TTotal, which is dominated by
the two terms TGen to generate the near collision and TEq to perform equation
solving and ultimately recover the internal state. During equation solving we also
need to solve for each candidate LFSR state. Here, for around 259.51 candidate
states we need to perform around 223.3 bit-operations, i.e. perform around 282.81

bit-operations, a number that is dwarfed by the other two terms below.
For finding the near collision, we require around 2128.5 keystream bits, which

costs around 2128.5/(256+4) ≈ 2120.48 Grain-128 encryptions. We insert elements
of the form (t, Zi, Yi) in a hash table as before where t denotes number of elapsed
clocks of the Grain keystream (|t| = 128), Zi comprises 256 bits of keystream
from position t and Yi comprises 11 bits of keystream backwards from t. We
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require around 2128.5 hash table insertions, and thus 2128.5 · (128 + 256 + 11) ≈
2137.13 bits of memory. We note that since keystream bits overlap in the table
and thus there is redundancy, we can simply store keystream bits in a separate
ordered table and thus use 2128.5 ·(128+1)+(256+11) ≈ 2135.51 bits of memory,
but optimizing via sampling resistance allows for even less memory consumption.

We now consider the cost of equation solving. By properties of the LFSR
and NFSR feedback polynomials, one can easily design a hardware circuit which
performs 32 clocks of Grain-128 per cycle with less than 32 times overhead
versus running the circuit serially [HJMM06b]. We thus divide the time that
we have measured by 32 when estimating the attack complexity to conserva-
tively estimate the amount of time required to perform the encryption. The
cost is around TSolve = (Ps − 1) · Cu + Cs Grain-128 encryptions. We deduce
that Cu ≈ 235 · 12.70

0.001448 · 32 ≈ 253.08 and Cs = 255 · 17.36
0.001448 · 32 ≈ 273.46. Corre-

spondingly, equation solving costs around TSolve ≈ 2112.59 Grain-128 encryptions
and relatively negligible memory. Thus the overall attack cost of around 2120.48

Grain-128 encryptions is dominated by the cost of generating the collision.

Sampling resistance. To reduce memory consumption we consider sampling re-
sistance as in Section C. It is argued in [Bjo08] that the sampling resistance of
Grain-128 is at most 2−22 by considering the spacing between taps n15 and n36
in the output function. As before, we make use of this property and insert tuples
(t, Zt, Yt) into our hash table if and only if Zt is prefixed by r zero bits, where we
can safely consider r ≤ 22 for our purposes. By similar analysis to Section C.1,
we require 2128.5+r/2 keystream bits, i.e. 2120.48+r/2 Grain-128 encryptions, and
2128.5−r/2 hash table insertions to find the near collision (consuming around
2137.1−r/2 bits of memory). By comparison, by the same logic as used for Grain
v1, the state recovery attack that minimises the number of Grain-128 encryp-
tions requires around 2124.98 Grain-128 encryptions, 2123.98 hash table insertions
and 2132 bits of data and memory.

D.1 Attacking Grain-128a

The NFSR that Grain-128a [AHJM11] uses is defined by the following (relatively
non-linear and longer) update function g:

g(Xt) = g128(Xt) + nt+88nt+92nt+93nt+95 + nt+22nt+24nt+25 + nt+70nt+78nt+82

where g128 is Grain-128’s update function (c.f. the previous subsection). The out-
put function is defined as zt = h′(Xt, Yt) =

⊕
a∈A nt+a+h(nt+12, lt+8, lt+13, lt+20,

nt+95, lt+42, lt+60, lt+79, lt+94); it only differs from that of Grain-128 in that h’s
last argument is now lt+94 instead of lt+95. We note that Grain-128a supports
optional authentication given the first bit of the IV is 1; we assume in our attack
hereafter that authentication is disabled (i.e. we assume IV0 = 0).

Since the attack is very similar to that of Grain-128, we defer describing the
algebraic relations we use to Appendix D.2. As before, we find a near collision by
processing and storing around 2128.5 bits of keystream which takes around 2120.48
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Grain-128a encryptions in time. Here, we use around 2128.5 · (128 + 226 + 11) ≈
2137.01 bits of memory naively. Filtering using the relations from Lemmas 20 to
24 and making comparable arguments to before, the probability that the attacker
finds a hash table collision that was not the result of the desired near collision is
around ρ = ( 1

2 )153+2+24+1+4 · ( 3
4 )2 ≈ 2−184.83. Similarly, around

(
N
2

)
· ρ = 271.17

candidate LFSR states remain for equation solving. As before, solving for Lt1
and Lt2 for every such state requires around 271.17+23.3 = 294.47 bit-operations
which is again a relatively small cost.

We touch on experimental results for equation solving. We performed the
same three classes of experiments as for Grain-128. One Grain-128a encryption
took around 1.687 milliseconds, averaging over 10000 runs. As before, we guessed
55 and 35 bits of the NFSR state respectively for SAT and UNSAT instances, and
took averages over 600 runs. SAT instances took on average 21.32 seconds and
UNSAT instances took on average 13.22 seconds to terminate. Thus, the time
to solve equations can be estimated to be around (Ps − 1) · Cu + Cs ≈ 2124.18

Grain-128a encryptions, where Cu = 235 · 13.51
0.001687 · 32 ≈ 252.94 and Cs = 255 ·

21.41
0.001687 · 32 ≈ 273.63. In this case, the attack cost is around 2124.01 Grain-128a
encryptions. With our cost estimates, the attack is dominated by the equation
solving phase and the margin is tighter than for Grain-128. We also note that
the same tradeoff using sampling resistance as in Grain-128 can be applied here.

D.2 Relations for Grain-128a near collision

Lemma 20. Consider two internal states in Grain-128a, St1 = (Nt1 , Lt1) and
St2 = (Nt2 , Lt2) during the keystream phase such that St1 ⊕ St2 = 0128||e127.
Then consider

Zti = [zti+0, zti+1, zti+2, . . . , zti+225], Yti = [zti−1, zti−2, zti−3, . . . , zti−11].

for i = 1, 2. Then in the 237 bit difference vector ∆ = Zt1 ||Yt1 ⊕ Zt2 ||Yt2 , there
are 153 bits that take the value 1 or 0 with probability 1, i.e. when the probability
is computed over all possible initial states St1 .

Lemma 21. We have zt1+99 ⊕ zt2+99 ⊕ zt1+165 ⊕ zt2+165 = 0 and zt1+106 ⊕
zt2+106 ⊕ zt1+146 ⊕ zt2+146 = 0 with probability 1.

Lemma 22. For the 24 pairs (i, j) ∈ {(48, 108), (67, 146), (80, 140), (95, 155),
(99, 178), (106, 166), (107, 120), (112, 172), (125, 204), (131, 210), (138, 198),
(139, 152), (142, 202), (146, 166), (157, 236), (163, 242), (164, 224), (165, 178),
(169, 229), (170, 230), (171, 184), (172, 192), (203, 216), (225, 245)}, we have zt1+i⊕
zt2+i = lt1+j. We also have zt1+188 ⊕ zt2+188 = lt1+267 ⊕ 1.

Lemma 23. We have the following 4 identities with probability 1.

zt1+114 ⊕ zt2+114 = lt1+134 ⊕ lt1+193, zt1+161 ⊕ zt2+161 = lt1+181 ⊕ lt1+240

zt1+178 ⊕ zt2+178 = lt1+198 ⊕ lt1+257, zt1+189 ⊕ zt2+189 = lt1+249 ⊕ lt1+268 ⊕ 1
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Lemma 24. We have zt1+160 ⊕ zt2+160 ⊕ lt1+202 ⊕ nt1+172 · lt1+254 = 1 and
zt1+197 ⊕ zt2+197 ⊕ lt1+210 ⊕ lt1+239 ⊕ nt1+209 · lt1+291 = 1 with probability 1.

Lemma 25. For the 8 pairs (i, j) ∈ {(85, 180), (117, 212), (119, 131), (132, 227),
(143, 238), (151, 163), (177, 189), (179, 274) we have zt1+i ⊕ zt2+i = nt1+j. For
the 3 pairs (i, j) ∈ {(166, 178), (175, 270), (209, 221)}, we have zt1+i ⊕ zt2+i =
nt1+j ⊕ 1.

Lemma 26. For the 9 values i ∈ {33, 91, 97, 123, 127, 129, 185, 187}, we have
zt1+i ⊕ zt2+i = nt1+12+i · nt1+95+i. We also have zt1+149 ⊕ zt2+149 = nt1+244 ·
(1⊕ nt1+161), zt1+181 ⊕ zt2+181 = nt1+276 · (1⊕ nt1+193) and zt1+213 ⊕ zt2+213 =
1⊕ nt1+225 · (1⊕ nt1+308).

Lemma 27. We have the following 9 identities with probability 1.

zt1+144 ⊕ zt2+144 = lt1+204 ⊕ nt1+239 · nt1+156

zt1+154 ⊕ zt2+154 = lt1+167 ⊕ nt1+166 · nt1+249

zt1+159 ⊕ zt2+159 = lt1+219 ⊕ nt1+171 · nt1+254

zt1+174 ⊕ zt2+174 = lt1+234 ⊕ nt1+186 · nt1+269

zt1+183 ⊕ zt2+183 = lt1+262 ⊕ nt1+195

zt1+207 ⊕ zt2+207 = 1⊕ nt1+302 ⊕ lt1+249 ⊕ nt1+219 · nt1+302

⊕ lt1+301 · nt1+219 ⊕ nt1+219

zt1+208 ⊕ zt2+208 = lt1+228 ⊕ lt1+268 ⊕ lt1+287 ⊕ nt1+220 · nt1+303

zt1+211 ⊕ zt2+211 = nt1+306 ⊕ lt1+271

zt1+219 ⊕ zt2+219 = 1⊕ lt1+298 ⊕ nt1+231 · nt1+314

32


	Near Collision Attack against Grain v1
	Subhadeep Banik1, Daniel Collins2 and Willi Meier3

