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Abstract
Understanding how things break and slide is of paramount importance to describe the
dynamics of a broad range of physical systems. This includes day-to-day problems such
as the breaking of a glass of wine or the sliding of skis on snow, but also engineering
systems with, for example, the braking of a car or the failure of a structural component,
up to geophysics and earthquake science. These two topics, fracture, and friction, seem
unrelated at first but share similar physical characteristics: they are mediated by the
propagation of rupture fronts. In both cases, a ruptured state (a crack, or a slipping
patch) invades an intact state (the unbroken material, or a sticking interface). While the
questions related to fracture and friction are ubiquitous, our physical understanding of
these phenomena is far from complete. The Linear Elastic Fracture Mechanics framework
describes accurately the stability of defects in materials and their slow growth but fails at
describing the unstable three-dimensional dynamics at play in rapid fracture. Concepts
from fracture mechanics have been successfully applied to describe the propagation
of frictional rupture fronts, but fundamental differences remain due to the complex
behavior of the friction coefficient itself, being dependent on the slipping rate and the
state of the microcontacts at the interface between two solids. Hence, dynamic rupture
exhibits a richness of behaviors. Amongst other things, the interaction between a front
and material heterogeneities, boundary conditions, and finite geometry can significantly
alter the dynamics of a rupture.
The objective of this work is to explore this richness in dynamic rupture, taking advan-
tage of efficient computational methods that solve the elastodynamic equations. The use
of modern computing methods allows modeling ruptures down to the small dissipation
length scale near the tip of a rupture, the process zone size. The two software used
in this work are open-source codes that were developed in the Computational Solid
Mechanics Laboratory at EPFL.
The first part of this work reveals the interactions occurring at the scale of the process
zone between a tensile crack and a heterogeneous material in the context of front
deformations, which inform on the effective properties of a microstructure. Then, the
physical origin of the analogy between frictional rupture and fracture is investigated,
demonstrating that the stress drop emerges from the interaction between interfacial and
bulk properties. This work also explores the influence of the boundary conditions on
the frictional rupture mode, revealing the emergence of a train of self-healing slip pulses
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under velocity-driven conditions. The study of frictional interfaces is then upscaled by
taking a statistical perspective on slip events, demonstrating the emergence of statistical
complexity in finite systems even in the absence of material heterogeneities. The last
contribution of this thesis is numerical, with a coupling scheme between the two methods
used in this work, aiming at providing a better tool for the simulation of complex
dynamic rupture problems.
While being rather fundamental, this Ph.D. work offers novel insights into the dynamics
of rupture fronts and has direct implications for various domains, ranging from the
design of micro-structured materials and interfaces, to the dynamics of earthquakes.

Keywords: dynamic fracture, friction, rupture front, process zone, heterogeneous mi-
crostructure, front deformation, rate and state, self-healing pulses, statistical complexity,
high-performance computing
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Résumé
Comprendre comment les choses cassent et glissent relève d’une importance vitale pour
décrire la dynamique de nombreux systèmes physiques. Cela concerne des problèmes
du quotidien, comme la rupture d’un verre de vin ou le glissement des skis sur la neige,
mais aussi l’ingénierie, avec les freins d’une voiture ou un élément structurel qui se
fissure, jusqu’à la géophysique et la science des tremblements de terre. La rupture et la
friction, bien que très différentes au premier regard, possède des caractéristiques phy-
siques semblables. Toutes deux sont contrôlées par la propagation de front de rupture :
un état cassé (une fissure, ou une zone de glissement) propage dans un état intact (maté-
riau sain, ou une interface à l’arrêt). Bien que ces thématiques soient omniprésentes dans
notre environnement, la physique qui les dirige est loin d’être parfaitement comprise.
La Mécanique Linéaire Élastique de la Rupture prédit avec succès la stabilité des défauts
ainsi que leur croissance à basse vitesse, mais échoue à décrire les instabilités dynamique
lorsque les fissures propagent à haute vitesses. Certains concepts de la rupture dyna-
mique sont applicables aux ruptures frictionnelles, mais des différences fondamentales
subsistent, relatives principalement à la complexité du coefficient de frottement, qui
dépend de la vitesse de glissement et de l’état des microcontacts à l’interface entre deux
solides. La rupture dynamique peut ainsi prendre de nombreuses formes. Par exemple,
les interactions avec une microstructure, les conditions de bords ou la géométrie du
problème impactent la dynamique d’une rupture.
L’objectif de cette thèse est d’explorer cette richesse de comportement en utilisant des
méthodes numériques efficaces pour modéliser la rupture jusqu’à l’échelle de grandeur
ou la dissipation a lieu en pointe de fissure, la zone d’endommagement. Les codes
de calculs utilisés pour ce travail sont des codes ouverts qui ont été développés au
Laboratoire de Simulation Numérique des Solides et Structures à l’EPFL.
Tout d’abord, ce travail met en avant les interactions ayant lieu à l’échelle de la zone
d’endommagement entre une fissure et des hétérogénéités en ce qui concerne les dé-
formations de fronts, qui informent sur les propriétés effectives d’une microstructure.
Ensuite, l’analogie entre friction et rupture est étudiée, et il est démontré que la chute de
contrainte en friction résulte de l’interaction entre la physique de l’interface et celle des
solides en contacts. L’influence des conditions aux limites sur la sélection des modes de
rupture est également étudiée, avec l’émergence d’un train de pulses lorsque la vitesse
de glissement est prescrite. L’étude des interfaces frictionnelle prend ensuite une tour-
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nure statistique, en analysant l’émergence de complexité statistique des événements de
glissement dans un système sans désordre en ce qui concerne les paramètres matériaux
et la friction. La dernière partie de cette thèse est numérique et consiste à proposer
un couplage entre les deux méthodes qui ont été utilisées tout au long de ce travail,
avec l’objectif de proposer un outil encore plus performant pour simuler la rupture
dynamique.
Bien qu’étant plutôt fondamental, les avancées scientifiques sur la dynamique de la rup-
ture découvertes durant cette thèse ont des applications potentielles dans de nombreux
domaines, allant du design d’interfaces et de matériaux architecturés à la physique des
tremblements de terre.
Mots clés : rupture dynamique, friction, front de rupture, zone d’endommagement,
microstructure hétérogène, déformation de front, loi de frottement rate-and-state, pulse
de glissement, complexité statistique, calcul scientifique à haute performance
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Riassunto
Comprendere come gli oggetti si rompono o scivolano gli uni su gli altri è di fondamen-
tale importanza per descrivere la dinamica di una vasta gamma di sistemi fisici. Questi
includono problemi quotidiani come la rottura di un bicchiere di vino o lo scivolamento
degli sci sulla neve, altri di natura ingegneristica come la frenata di un’auto o la rottura
di un componente strutturale, e persino alcuni di natura geofisica come la meccanica dei
terremoti. La frattura e l’attrito, che controllano i fenomeni sopracitati, sembrano non
correlati a prima vista, ma condividono simili caratteristiche fisiche: sono mediati dalla
propagazione di fronti di rottura. In entrambi i casi, uno stato perturbato (interessato
da una crepa o soggetto a una zona di scivolamento) invade uno stato intatto (imper-
turbato). Sebbene le domande relative alla frattura e all’attrito siano onnipresenti, la
nostra comprensione fisica di questi fenomeni è ancora lontana dalla completezza. Il
framework della Meccanica della Frattura Elastica Lineare descrive accuratamente la sta-
bilità dei difetti nei materiali e la loro crescita lenta, ma fallisce nel descrivere la dinamica
tridimensionale instabile in gioco nella frattura rapida. I concetti della meccanica della
frattura sono fin’ora stati applicati con successo per descrivere la propagazione di fronti
di rottura per attrito, ma rimangono differenze fondamentali a causa del comportamento
complesso del coefficiente di attrito stesso, che dipende dalla velocità di scivolamento
e dallo stato dei microcontatti all’interfaccia tra due solidi. Di conseguenza, la rottura
dinamica presenta una ricchezza di comportamenti complessi. Tra gli altri vi sono
l’interazione tra un fronte di rottura e le eterogeneità del materiale e l’influenza delle
condizioni al contorno e della geometria finita del sistema nella dinamica di una rottura.
L’obiettivo di questo lavoro è esplorare questa ricchezza nel comportamento della
rottura dinamica, sfruttando efficienti metodi computazionali che risolvono le equazioni
elastodinamiche. L’utilizzo di metodi di calcolo moderni consente di modellare una
rottura fino alla piccola scala di dissipazione nei pressi della sua estremità (zona di
processo), permettendo la descrizione del processo nella più adeguata risoluzione. I due
software utilizzati in questo lavoro sono codici open-source sviluppati nel Laboratorio
di Meccanica dei Solidi Computazionale presso l’EPFL.
La prima parte di questo lavoro rivela le interazioni che avvengono a livello della zona
di processo tra una fessura a trazione e un materiale eterogeneo nel contesto delle
deformazioni frontali, che informano sulle proprietà effettive di una microstruttura.
Successivamente, viene indagata l’origine fisica dell’analogia tra rottura per attrito e
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frattura, dimostrando che la perdita di stress emerge dall’interazione tra le proprietà di
interfaccia e quelle di volume. Questo lavoro esplora anche l’influenza delle condizioni
al contorno sulla modalità di rottura per attrito, rivelando, per un sistema controllato in
velocità di scorrimento, l’emergere di un treno di impulsi auto-rigeneranti che attraversa
l’interfaccia. Lo studio delle interfacce di contatto viene quindi ampliato, prendendo
in considerazione una prospettiva statistica sugli eventi di rottura per scivolamento,
dimostrando l’emergere della complessità statistica in sistemi finiti anche in assenza
di eterogeneità del materiale. L’ultima contribuzione di questa tesi è numerica, con lo
sviluppo di uno schema di accoppiamento tra i due metodi di calcolo utilizzati in questo
lavoro, con l’obiettivo di fornire uno strumento migliore per la simulazione di problemi
complessi di rottura dinamica.
Pur essendo piuttosto fondamentale, questo lavoro di dottorato offre nuove prospet-
tive sulla dinamica dei fronti di rottura con implicazioni dirette in vari campi, dalla
progettazione di materiali e interfacce microstrutturati allo studio della dinamica dei
terremoti.
Parole chiave :
rottura dinamica, attrito, fronti di rottura, zona di processo, microstruttura eterogenea,
deformazioni frontali, legge di attrito rate-and-state, impulsi di scorrimento, complessità
statistica, calcolo scientifico ad alte prestazioni
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1 Introduction

1.1 Motivation

How do things break? How do things slide? At first glance, these two questions seem
unrelated, but in reality, their answers share qualitative and even some quantitative
similarities. The first question deals with fracture, the study of cracks stability and
growth in materials, while the second one is related to friction, understanding the sliding
between bodies. The mechanism that is common to both topics is the propagation of
rupture fronts. Conceptually, a rupture front represents the separation between an intact
state and a broken one, i.e., between continuous fields and a discontinuity.

Fracture mechanics is a rather young discipline that was motivated by the catastrophic
failures of man-made structures in the last century, such as the Liberty ships during the
Second World War or the Comet airplanes in the 50s. For the former, the low tempera-
ture of the North Atlantic turned the behavior of the steel of the ships from ductile to
brittle, allowing the nucleation and propagation of cracks. In the latter, improper design,
including dangerous stress concentrations near the square windows, was responsible for
the airplanes’ failure. Griffith1 and latter Irwin2 proposed what became the pillars of the
Linear Elastic Fracture Mechanics (LEFM) framework. First, the strength of materials
is mediated by the presence of flaws, which concentrate stresses near them. These
flaws grow, merge, and ultimately result in material failure for stresses that are way
lower than the strength of atomic bonds. Second, the growth of flaws is described by a
thermodynamic criterion: a crack grows if the energy released by the crack advance is
sufficient to overcome the cost of creating new surfaces [1]. Third, the energy available
for crack growth is entirely controlled by the asymptotic fields near the crack tip, bridg-
ing the local and global picture of fracture mechanics [2]. The region over which all the
dissipative processes associated with fracture occur is called the process zone size. LEFM
requires this dissipation scale to be negligibly small in front of the other length scales
in the problem. This framework has been successfully applied to assess the stability of
defects. However, once a defect is predicted to be unstable, LEFM does not describe

1Alan Arnold Griffith (1893-1963)
2George Rankin Irwin (1907-1998)
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how it will grow. As a consequence, this framework has been extended to dynamic
rupture, aiming at describing the dynamics of crack growth. While this theory has
proven successful in describing the behavior of slow cracks, there exist significant dis-
crepancies with the experiments for fast ruptures. With increasing propagation velocity,
out-of-plane damage starts occurring through the formation of steps and microbranches.
These observations reveal the inherent heterogeneous nature of dynamic rupture and
motivate the understanding of the interplay between a dynamic crack and material
heterogeneities. In addition to gaining insights into the occurrence of these dynamic
instabilities, it helps to describe the effective properties of a microstructure. Despite
the apparent simplicity of brittle fracture, the interaction between dynamic cracks and
disorder results in a richness of behaviors.

Friction is one of the oldest scientific problems due to its prevalence in natural and
man-made systems. At large scales, friction mediates the occurrence of earthquakes
through slip on crustal faults, which is a major threat to population and infrastructure.
At the engineering level, it is estimated that 20% of the energy in the world is dissi-
pated to overcome frictional forces [3]. Understanding and controlling friction could
thus result in a significant reduction in the emission of greenhouse gas, which is not
only necessary but urgent in the context of accelerating global warming. Yet, frictional
sliding is an intrinsically complex phenomenon, emerging from the interaction between
the interfacial nonlinearity and dissipation, bulk elastodynamics, driving forces, and
geometry. Amontons3 and Coulomb4 first observed that the frictional force resisting the
motion between two bodies is independent of the surface area, but increases with the
normal pressure [4; 5]. The ratio between the shear strength and the normal pressure,
called the friction coefficient, was then assumed to be constant, and this approximation
has been proven useful in many engineering applications. However, describing the
complex dynamics of frictional systems such as the succession of stick and slip events
requires a weakening mechanism during slip. Several models have since been proposed
to describe the evolution of the friction coefficient, such as the slip-weakening model
or the rate and state friction framework. In the former, the friction coefficient weakens
from a static value to a dynamic one when slipping over a given characteristic distance.
In the latter, it is a function of the slip velocity and of the structural state of the interface,
carrying memory of its history [6; 7]. The contact between two bodies occurs only
over a small portion of the apparent contact area, called microcontacts. The structural
state variable represents the maturity of the contacts, which changes with time and slip:
under stationary contact, the contact area increases due to creep, while microcontacts
are broken when slipping. This introduces a notion of healing for frictional interfaces.
Due to their inherent weakening nature, frictional instabilities are prone to develop and
result in the propagation of rapid slip along frictional interfaces. These ruptures can
resemble a classical crack, with an expanding broken area that continues sliding until the

3Guillaume Amontons (1663-1705)
4Charles-Augustin de Coulomb (1736-1806)
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propagation stops. However, frictional rupture can also occur through the propagation
of slip pulses, in which the rupture front is closely followed by a healing front, resulting
in a slipping area that is localized in space. Frictional rupture results in a broad variety
of events, with various rupture types, propagation velocities, lengths, and duration.
Taken from a statistical perspective, frictional systems feature statistical complexity with
broadly distributed events characteristics, which are described by power-law scaling.

As mentioned initially, both fracture and friction feature rupture fronts, which propa-
gate a discontinuity (a crack or a slipping patch) in an intact material or interface. The
strength behind the rupture fronts is in both cases smaller than the one ahead: in fracture,
cracks cannot sustain stresses and for sliding, the friction coefficient usually features a
weakening with either slip or velocity. In addition to these qualitative analogies, some
quantitative concepts of fracture mechanics such as singular stresses and local energy
balance have been successful to describe the propagation of frictional rupture fronts,
motivating the joint study of these two topics.

The numerical study of dynamic fracture is challenging, as it involves modeling dis-
continuities that are accompanied by strong nonlinearity and dissipation over a small
length-scale near the rupture tip. Finely discretized time and space domains are thus
required to capture the fast dynamics of rupture propagation. In this work, we rely on
two numerical methods, namely the finite element method and the spectral boundary
integral method, to model dynamic rupture. We use two efficient open source soft-
ware developed in the Computational Solid Mechanics Laboratory5 (LSMS) at École
Polytechnique Fédérale de Lausanne (EPFL), Akantu [8] and cRacklet [9].

1.2 Objectives

This thesis aims at exploring the richness of dynamic rupture modes in fracture and
friction. This richness can emerge from the interfacial constitutive law, long-range
elastodynamics, boundary conditions, and interactions with heterogeneities, which can
arise from disorder in the material parameters or be self-generated by the evolution of
the interface itself. The following questions are explored in this thesis:

• Heterogeneous fracture: Which scale controls the interaction between a crack and
the microstructure? How do crack fronts deform in the presence of heterogeneities?

• Analogy between friction and fracture: What is the physical origin of the analogy
between the propagation of frictional rupture front and classical fracture? To
what extent one can use fracture mechanics to describe the behavior of frictional
rupture?

5https://www.epfl.ch/labs/lsms/
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• Rupture modes: How are frictional rupture modes selected? What is the influence
of boundary conditions on the rupture modes?

• Complexity in frictional systems: What are the minimal physical ingredients
for the emergence of complexity in frictional systems? Can it be observed in the
absence of material heterogeneities?

• Efficient numerical modeling: How to overcome the numerical challenges associ-
ated with the modeling of dynamic rupture?

1.3 Outline

The chapters of this manuscript are briefly introduced below:

• Chapter 2 - State of the art
This first chapter sets the context for this thesis. Continuum solid mechanics,
dynamic fracture, and friction are discussed, with a review of the topics and a
discussion about the open challenges in these fields.

• Chapter 3 - Numerical framework
Modeling the dynamics of discontinuities is computationally challenging, as it
usually involves large spatio-temporal domains that need to be finely discretized
in both space and time to resolve the singular stress near rupture tips and fast
slip events. In this thesis, two methods are used: (i) the finite element method,
which is versatile and allows modeling any kind of geometry and heterogeneities,
(ii) the spectral boundary integral method, efficient but limited to the case of an
interface lying between two homogeneous linear elastic solids. We recall the main
equations of both methods and describe how they are employed through this
thesis. Both implementations are open source software that have been developed
in the Computational Solid Mechanics Laboratory.

• Chapter 4 - Crack front deformations in cohesive materials
Crack fronts deform when interacting with heterogeneities. Studying the defor-
mations reveals the local variations of fracture toughness and helps rationalize
the effective properties of a heterogeneous interface. The main method used to
study front deformations is the line tension model, which describes the front as a
line and thus treats all asperity scales indifferently. However, a finite dissipation
length scale called the process zone size is required to regularize the theoretically
infinite stresses near the rupture tip predicted by LEFM. This chapter is dedicated
to the study of front deformations when the process zone size is not negligible,
and its interaction with the size of the asperities. We first conduct numerical
simulations showing that the amplitude of front deformations depends on the
process zone size. Depending on the type of heterogeneity that is considered (peak
stress or process zone size), the amplitude is increased or decreased compared to
the reference model with no process zone. We discuss a model recently derived by
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1.3 Outline

a collaborator, Dr. Mathias Lebihain, to treat the deformations of crack fronts in
cohesive materials, and extend it to dynamic. We show that this model, called the
dynamic cohesive line tension model, predicts accurately the numerical results.

• Chapter 5 - On the dynamics of frictional interfaces described by rate and state
friction laws
In this chapter, we study the frictional rupture modes emerging at a frictional
interface described by the rate and state friction framework and study the analogy
between frictional rupture and fracture mechanics. In the first part, a stress-
driven system is studied. Numerical simulations are conducted and result in
the nucleation and propagation of expanding crack-like ruptures. It is shown
that the stress drop is not an interfacial quantity, as widely assumed, but rather
results from the interaction between the interfacial constitutive behavior and the
radiation of elastic waves in the surrounding bulk. The analogy between frictional
rupture and fracture mechanics is addressed. In the second part, velocity-driven
friction is investigated. Under these conditions, the only steady-state solution is
a train of pulses, a rupture mode that does not exist in fracture mechanics. We
conduct numerical simulations and demonstrate that independently of the system
height, a stable train of pulses emerges after a regime of coarsening dynamics
that is saturated at the system length. For sufficiently small systems, the pulse is
accompanied by periodic elasto-frictional instabilities. The properties of a single
pulse, in the limit of a large system height, are then studied. The periodicity of
the train of pulses is given by the system length, and the propagation velocity
of the pulse is predicted based on an analogy with fracture mechanics, building
on the existence of singular fields at the pulse rupture tip. This work wraps up
by showing that the properties of the pulse train are determined by two system
parameters: the length, and the driving velocity.

• Chapter 6 - Statistical and dynamical complexity in a frictional system without
disorder
The statistics of slip events in frictional systems obey various power law distribu-
tions, implying scale invariance. Statistical complexity is known to emerge either
because of disorder in the material properties or because of sufficiently strong
non-linearity in the dynamics of the system. In this chapter, we discuss the emer-
gence of statistical complexity in a velocity-driven frictional system in the absence
of material heterogeneities. Broadly distributed slip events occur in this system.
They can be classified into two categories, with small non-propagating events and
large rupture-like ones. This statistical complexity emerges from self-generated
stress and state heterogeneities, which are accompanied by dynamical complexity,
with intricate interactions between slip events. Finally, we show that the finite
geometry of the problem affects both the statistical and dynamical complexity
with a characteristic reflection time scale.

5
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• Chapter 7 - Coupling domain-based and boundary-based methods to model
complex dynamic rupture problems
This chapter presents the coupling of the finite element method and the spectral
boundary integral method, with the objective of proposing an efficient numerical
method to model complex dynamic rupture problems in unbounded domains.
We present the coupling formulation, based on a strong coupling of the velocities
at the interface between the methods. A validation of the coupling is presented
with a reference problem of elastic wave propagation, along with a comparison to
other similar methods. We then show an example of a dynamic rupture simulation
using the coupling.

• Chapter 8 - Conclusion
In this last chapter, the main results of this thesis are summarized. The potential
future research directions opened up by this work are discussed.

In addition, a few topics are treated in Appendix:

• Appendix A: The derivation of the quasi-static cohesive line tension model that
was done by Dr. Mathias Lebihain in [10] and which is used in Chapter 4 is
recalled.

• Appendix B: My contribution to open source software is discussed, with my
involvement in releasing cRacklet.

• Appendix C: In this last appendix, my participation in the Scientific Image Com-
petition from the Swiss National Science Foundation in 2022 is presented.
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2 State of the art

The aim of this work is to contribute to answering fundamental but rather basic questions
such as “how do things break?”, or “how do things slide?”. The mechanics of interest
here deal with processes that occur at various length scales, from the rupture of atomic
bonds at the nanoscale to the propagation of cracks and frictional rupture fronts at
the macroscale. In this thesis, we study rupture and friction at a continuum scale (i.e.,
not accounting for the discrete nature of matter). This chapter introduces the various
concepts used to conduct this study. We first present continuum solid mechanics, followed
by the Linear Elastic Fracture Mechanics (LEFM) framework and its extension to dynamics.
We show evidence of the inherent heterogeneous nature of fracture, along with one of the
tools used in the literature to study interactions between cracks and microstructure. Then,
an overview of friction is presented, including the various approaches for modeling
friction and its similarities with fracture mechanics. We close this chapter with a short
discussion on the emergence of statistical complexity in frictional systems.
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Chapter 2. State of the art

2.1 Continuum solid mechanics

Continuum solid mechanics describes the deformation and motion of a continuous
solid under external solicitations (forces, displacements, accelerations...). Here we
recall briefly the main principles upon which solid mechanics is built. For a complete
description of the topic, the reader is redirected to reference textbooks [11; 12]. Three
main principles are required: the description of the geometric change of a deformable
solid (kinematics), the balance of momentum in the solid (equilibrium), and the behavior
of a given material that links its stress state and its deformation (constitutive law).

2.1.1 Kinematics

We first introduce the concept of kinematics, describing the motion of matter. Let us
consider the initial configuration of a body Ω à t0 with x the material coordinates, see
Fig. 2.1. The displacement field u is defined as the difference between the deformed
position at a time t and the original one, as

u(x, t) = x′(x, t) − x . (2.1)

Similarly, a small segment dx in the deformed configuration dx′ becomes:

dx′ = dx + u(x + dx, t) − u(x, t),
= dx + ∇udx,

= (I + ∇u) dx,

= F dx,

(2.2)

with ∇u the gradient of the displacement field, I the identity matrix and F the deforma-
tion gradient tensor, that includes both the rigid body translation and the deformation
of the solid. The extension of length of a small segment can be written as:

|dx′|2 − |dx|2 = dxT F T F dx − dxT dx = dx(F T F − I)dx = dx(2E)dx, (2.3)

with E = 1/2(F T F − I) the Green1-Lagrange2 strain tensor. The superscript T indicates
a matrix transpose. This thesis is dedicated to the study of brittle materials for which
one can assume small strains. The infinitesimal strain tensor ϵ is used in place of the
Green-Lagrange one, and the former writes:

ϵ = 1
2
(
∇u + ∇uT

)
. (2.4)

1George Green (1793-1841)
2Joseph-Louis Lagrange (1736-1813)

8



2.1 Continuum solid mechanics

Ω(t0)

Ω(t)

x

x′
u(x, t)

Figure 2.1: Kinematics of a deformable solid from its original configuration Ω(t0) to a
deformed state Ω(t).

2.1.2 Equilibrium and conservation

Now that kinematics have been introduced, the next step is to describe stresses in solids.
Newton’s3 second law states “When a body is acted upon by a force, the time rate of
change of its momentum equals the force”. For a block of material (see Fig.2.2) one can
write the sum of forces ΣF at a time t as:

ΣF (t) = ρü(t)dxdydz, (2.5)

where ü(t) is the second time derivative of the displacement vector u, i.e., the accel-
eration vector, and ρ is the volumetric mass density. dx dy and dz are the respective
dimensions of the infinitesimal block that is schematically represented in Fig. 2.2. In
the limit of an infinitesimal surface ∆A, the forces transmitted through this surface are
called the stresses τ = lim∆A→0 ∆F /∆A. The stresses acting on a surface of normal n

are related to the Cauchy4 stress tensor σ as:

τ = σn. (2.6)

The component σij of the stress tensor corresponds to the stress acting on the surface
that is normal to the i component, in the direction of j. An example is shown in Fig. 2.2
where the stresses acting on the face normal to the x axis are represented with green
arrows. One can rewrite the equilibrium condition in the absence of body forces:

σij,j = ρüi, (2.7)

where , j indicates a derivative with respect to j. Eq. (2.7) is called the Cauchy equation
of motion and can be written in a compact form as:

∇ · σ = ρü, (2.8)
3Isaac Newton (1642-1726)
4Augustin Louis Cauchy (1789-1857)
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x

y

z

σxx

σxz
σxy

Figure 2.2: Stresses acting on one of the surfaces of a small block of size dx dy dz.

with ∇ the divergence operator.

2.1.3 Constitutive law

The next step consists in relating the strains and the stresses of a deformable body. This
is done through a constitutive law, which represents the material behavior. The generic
shape of a constitutive law writes:

σ = C(ϵ, t, T, ...), (2.9)

with C a function that can depend on the strain ϵ, the time t, the temperature T , etc...
The most simple constitutive law is the one of linear elasticity, Hooke’s law5. This law
will be employed to describe the behavior of solids in this thesis. The relation between
stresses and strains becomes:

σ = C ϵ, (2.10)

with C a fourth-order tensor. For linear isotropic elasticity, there are only two indepen-
dent coefficients in C and the constitutive law can be reduced to:

σ = λTr(ϵ)I + 2µϵ, (2.11)

with λ and µ the Lamé6 coefficients, and Tr(ϵ) is the trace of the strain tensor. λ is called

5Robert Hooke (1635-1703)
6Gabriel Lamé (1795-1870)
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2.1 Continuum solid mechanics

the first Lamé constant and describes the material response to a change in volume. µ is
known as the shear modulus and characterizes the response to shear solicitations. They
are connected to the Young’s7 Modulus of the material E and Poisson’s8 ratio ν. Taken
together, Eqs (2.4), (2.8), (2.11) allow describing the behavior of a linear elastic isotropic.

2.1.4 Boundary conditions

To solve a specific problem, boundary conditions need to be specified on the border ∂Ω
of the domain Ω. These conditions can be classified into two types:

• Dirichlet9 boundary conditions: displacements are imposed on the boundaries
∂Ωu.

• Neumann10 boundary conditions: surface tractions τ are prescribed on the bound-
aries ∂Ωτ .

The choice of boundary conditions can have a dramatic impact on the behavior of a
system. This will be demonstrated in Chapter 5 in the context of a frictional system
composed of two elastic bodies sliding against one another.
The virtual work principle allows solving such kind of problem. Let us define a virtual
displacement field δu that is kinematically admissible (i.e., is continuous, differentiable
and satisfies the Dirichlet boundary conditions on the body of interest). Then, the stress
field σ is a solution of the boundary value problem of interest if the following integral is
satisfied: ∫

Ω
σ δϵ dV +

∫
Ω

ρ ü δu dV −
∫

∂Ωτ

τ δu dA = 0. (2.12)

Eq. (2.12) is known as the weak form of the equilibrium.

2.1.5 Elastodynamics

In this thesis, we are interested in the dynamics occurring during fast fracture or friction.
Combining kinematics Eq. (2.4), the Cauchy equation of motion (2.8) and linear elasticity
Eq. (2.11), one can write the Navier11 equation:

(λ + µ) ∇ (∇ · u) + µ∇2u = ρü. (2.13)

Manipulating Eq. (2.13), and using the Helmholtz12 decomposition (any vectorial field
can be decomposed as a combination of a scalar potential Φ and a vector potential Ψ,
u = ∇Φ + ∇ × Ψ), then one can decompose the Navier equation in two wave equations:

7Thomas Young (1773-1829)
8Siméon Denis Poisson (1781-1840)
9Johann Peter Gustav Lejeune Dirichlet (1805-1859)

10Carl Gottfried Neumann (1832-1925)
11Claude Louis Marie Henri Navier (1785-1836)
12Hermann Ludwig Ferdinand von Helmholtz (1821-1894)
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(λ + 2µ)
ρ

∇2(∇Φ) = ∂2∇Φ
∂t2

µ

ρ
∇2(∇ × Ψ) = ∂2∇ × Ψ

∂t2 .

(2.14)

Eqs. (2.14) describe the types of waves propagating in the solid. First, the longitudinal
waves ∇Φ, which are linked to the volumetric part of the strain tensor and propagate at
the dilatation wave speed cd, also referred to as the pressure wave speed:

cd =
√

λ + 2µ

ρ
. (2.15)

The second part ∇ × Ψ corresponds to shear waves, propagating at the shear wave speed
cs:

cs =
√

µ

ρ
. (2.16)

Waves can also travel at the surface of a solid as Rayleigh waves [13]. In this case, their
characteristic propagation speed is cr the Rayleigh wave speed which can be estimated as
a fraction of the shear wave speed:

cr ≃ 0.862 + 1.14ν

1 + ν
cs. (2.17)

These wave speeds control the propagation of elastic waves in the bulk, but are also
relevant in describing the limiting velocities for the propagation of discontinuities, such
as rupture fronts. In the following section, we shortly introduce the main concepts of
fracture mechanics.

2.2 Fracture mechanics

Fracture mechanics is the science of how cracks grow in materials. Although inherent to
engineering and structural design, this is a rather young thematic of research. Before
the possibility of mass production of steel, structures mainly worked in compression
and thus prevented spectacular failures related to tensile crack growth. The innovation
based on using tensile structural components (mainly steel) brought along the potential
occurrence of crack growth and motivated the understanding of fracture mechanics. This
section aims at introducing the main principles of the discipline. The reader interested
in the topic is referred to the reference textbooks [14; 15].

12



2.2 Fracture mechanics

2.2.1 Linear elastic fracture mechanics

Several centuries ago, Leonardo da Vinci13 conducted experiments on iron wires and
observed that their strength is inversely proportional to their length, implying that the
resistance of materials is controlled by the presence of flaws: the larger the volume, the
more likely it is to find a large flaw in the sample that would reduce its strength. In
the 1920s, Griffith [1] conducted the first quantitative analysis of the influence of flaws
on the fracture strength of materials, which is several orders of magnitude lower than
the strength of atomic bonds. Building on the stress analysis of an elliptical hole [16],
Griffith proposed an energy-based criterion to predict the growth of flaws, based on the
first law of thermodynamics. This allowed overcoming the difficulties of formulating
a stress-based fracture criterion related to the infinite stress concentration near a sharp
crack. Griffith’s criterion states that a fracture grows when the change in potential energy
dEpot due to an increment of crack size dA is sufficient to compensate for the energy
cost of creating new surfaces,

−
dEpot

dA
= 2γs, (2.18)

with γs the surface energy of the material. Eq. (2.18) is known as the Griffith energy
balance. Note that the factor 2 appears as growing a crack creates two new free surfaces.
This approach was successfully applied to glass (a perfectly brittle material) but could
not be extended immediately to steel (i.e., to ductile materials), as energy dissipation in
the latter is not only related to surface creations but also to plastic deformations.
Significant efforts and advances in fracture mechanics resulted from the Liberty ships fail-
ures, a model of welded boat designed during World War II that experienced significant
and serious fractures, with some of the boats breaking in half. After the war, Irwin and
Williams independently built on the contribution of Westergaard [17] who derived the
stress fields near a crack inside an infinite plate subject to a remote tensile load σ0

yy. In
this case, the tensile stress σyy in the plane of the crack y = 0 writes:

σyy(x) =
σ0

yy√
1 − (a/x)2

, (2.19)

with a the half-crack size. For |x| < a, the normal stress is equal to zero, as free surfaces
cannot sustain tensile stress. Irwin conducted a limit analysis of this solution [2], while
Williams [18; 19] derived the asymptotic fields for any crack configurations. They both
concluded that the fields near the crack tip are dominated by a singular contribution
(the first term in the Williams series [19]). The asymptotic fields can be written as:

lim
r→0

σij;m(r, θ) = Km√
2πr

fij;m(θ) , (2.20)

with (r, θ) the coordinates of a polar system whose origin is the crack tip, fij dimension-

13Leonardo di ser Piero da Vinci (1452-1519)
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Figure 2.3: (a) Schematic representation of a crack of length 2a (in brown) in an infinite
body under tensile loading σ0

yy. Two coordinate systems are shown: a Cartesian system
whose origin is the crack center, and a polar one whose origin is the right crack tip.
(b) The stress σyy at y = 0 next to the right crack tip. Inside the crack x/a < 1, the
tensile stress is zero, as shown in brown. The exact solution from Westergaard Eq. (2.19)
is shown in green. Close to the tip, the singular approximation of Irwin Eq. (2.20), in
dashed orange, describes accurately the full solution.

less functions of the angle, and the subscript m indicating the mode of rupture which
can be either tensile fracture (mode I), in-plane shear (mode II) or out-of-plane shear
(mode III), see Fig. 2.4. The term K was introduced by Irwin as the stress intensity factor
which defines the amplitude of the singularity at the crack tip. The stress intensity factor
for each rupture mode is controlled by the remote loading and the geometry: KI

KII

KIII

 = Y
√

πa

σ0
yy

σ0
xy

σ0
zy

 . (2.21)

Y is a dimensionless scalar representing the problem geometry. σ0
yy, σ0

xy and σ0
zy are

respectively the remote tensile stress, the in-plane shear stress, and the out-of-plane
shear stress. The asymptotic field for σyy given by Eq. (2.20) is compared to the exact
solution of Eq. (2.19) in Fig. 2.3.
By comparing the change of potential energy inside an elastic material between two
successive crack configurations of length a and a + δa, Irwin showed that this change
in energy, called the energy release rate G = −dEpot/dA is entirely determined by the
near-tip stress field, i.e., by the singular approximation :

G = 1 − ν2

E
(K2

I + K2
II) + 1

2µ
K2

III . (2.22)
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(a) (b) (c)

Figure 2.4: Schematic representation of the three fracture modes: (a) Mode I: opening,
with the loading applied normally to the crack plane (in gray). (b) Mode II: In-plane
shear (c) Mode III: Out-of-plane shear.

Eq. (2.22) makes the link between the local picture of fracture mechanics, with the stress
intensity factor K, and the global/energetic approach of Griffith with the energy release
rate G.
Irwin extended this framework to ductile materials by adding the dissipation related to
local plastic flaws to the surface energy. The fracture energy Gc thus represents all the
dissipative processes occurring near the crack tip:

Gc = 2 (γs + γp) , (2.23)

with γp the plastic energy dissipated per unit area of crack created. The criterion for
crack propagation given by Eq. (2.18) can be rewritten as:

G = Gc. (2.24)

Based on the stresses near the crack tip, three regimes can be distinguished, see Fig. 2.5:

1. Close to the crack tip, the stresses diverge, which is impossible as real materials do
not have infinite strength. Elasticity thus breaks down over a small length scale
called the process zone size, where all the dissipative processes embedded in Gc
occur.

2. After this length scale, the behavior is still dominated by the singular term scaling
with 1/

√
r

3. Far from the crack, higher-order terms of the Williams series dominate the behavior
and the stress fields converge toward the far-field stresses.

The validity of Eq. (2.22) assumes proper separation of length scales, i.e., that the process
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log(r)
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Figure 2.5: 1. Really close to the crack tip, the stresses are limited by the strength of the
material, here σc. This is the process zone size lpz, in light green. 2. The stresses are
then dominated by the singular term 1

√
r, note the slope −1/2 in a double logarithmic

scale. The singularity-dominated region is filled in orange. 3. Stresses slowly reach the
far-field value.

zone size is sufficiently small in front of the other length scales in the problem (e.g., the
crack size), and that the singularity-dominated region does exist (the crack is far enough
from the boundary conditions). If this is the case, the stability of cracks is controlled
entirely by the intensity of the singular fields. This is known as K-controlled fracture. An
estimation of the process zone size can be found using the strength of the material σc
and writing σ(r = lpz) = Kc/

√
lpz = σc, where Kc is the critical stress intensity factor of

the material. Note that the energy balance criterion of Eq. (2.24) is equivalent to writing
K = Kc. The process zone size can be estimated as:

lpz ∼
(

Kc
σc

)2
. (2.25)

To describe the behavior of the material in this region where dissipation occurs, Dugdale
[20] and Barrenblatt [21] proposed a cohesive approach of fracture in which the crack is
smeared over some distance, with the stresses being reduced from the peak strength of
the material σc to zero. This allows regularizing the infinite stresses near the tip without
losing the universality of the linear elastic mechanics’ framework.
While originally developed for brittle materials, the framework of LEFM has been
successfully applied to predict the failure of a large range of materials, including ductile
behavior and fatigue solicitations. This theory has been naturally extended toward
cracks outside of equilibrium, which is discussed next in section 2.2.2. The influence of
material heterogeneities is introduced in section 2.2.3.

2.2.2 Dynamic fracture mechanics

The common approach to studying dynamic fracture is to consider a crack moving at a
steady velocity vc and solve the elastodynamic equations in a moving referential whose
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(a) vc = 0 (b) vc = 0.5cs (c) vc = 0.9cs

Figure 2.6: Hoop stress field near a steadily moving tensile crack propagating at (a)
vc = 0 (b) vc = 0.6cs and (c) vc = 0.9cs.

origin coincides with the crack tip. The reader interested in the derivations of such
solutions is referred to the reference textbooks, such as [15]. Similarly to the static case,
the asymptotic fields at the tip of a crack moving at a steady velocity inside a continuum
elastic body can be written as:

lim
r→0

σij;m(r, θ, vc) = Km (vc)√
2πr

fij;m(θ, vc) , (2.26)

where K is now called the dynamic stress intensity factor and is a function of the front
velocity. Note that the dimensionless functions fij;m also depend on the velocity. An
example of the asymptotic hoop stress near a crack tip propagating at a steady velocity vc
under tensile loading is shown in Fig. 2.6. The shape of the stress field near the crack tip
changes with increasing velocity, impacting the shape and size of the process zone. The
dynamic stress intensity factors Km(vc) are functions of the static stress intensity factors,
as Km(vc) = Km(0)km(vc) with km(vc) dimensionless functions of the tip velocity.
One can generalize the concept of local energy balance for a dynamic crack. Eq. (2.22)
can be written as:

Gc = G = 1 − ν2

E
(AIK2

I + AIIK2
II) + 1

2µ
AIIIK2

III , (2.27)

where Am are universal functions of the velocity:

AI(vc) = αdv2
c

(1 − ν)Dc2
s
, (2.28)

AII(vc) = αsv
2
c

(1 − ν)Dc2
s
, (2.29)

AIII(vc) = 1
αs

, (2.30)
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with αs,d =
√

1 − v2
c /c2

s,d and D = 4αsαd − (1 + α2
s )2.

It is worth mentioning that with accelerating crack velocity, the size of the process zone
(measured on the plane of the crack y = 0) shrinks. This is known as the Lorentz14

contraction [22] of the process zone size, and is directly related to the shape of the stress
fields for dynamic cracks, as shown in Fig. 2.6. The dynamic process zone size writes:

lpz(vc) = lpz(vc = 0)
Am(vc)

, (2.31)

with lpz(vc = 0) the process zone size at rest. The dynamic change of process zone size
with crack velocity is relevant when discussing the interaction of a crack with material
heterogeneities [23], which is briefly introduced in section 2.2.3 and then studied in
detail in Chapter 4.
The propagation velocity of dynamic cracks is bounded by the celerity of the elastic
waves in the surrounding bulk. By looking at the behavior of the functions AI,II , one
can see that the energy release rate becomes negative for cr < vc < cs, thus forbidding
propagation at these velocities for tensile and in-plane shear cracks. Supershear propa-
gations cs < vc < cd are however possible in mode II, the partial differential equations
being different in this case and resulting in a positive energy release rate. For mode III,
the limiting velocity is cs. Note that the process zone size is expected to vanish when a
crack propagates at the limiting velocity.
While LEFM was successfully applied to static fracture problems, its extension to dy-
namic has proven significantly more difficult. In the following section, we show some
dynamic fracture experiments and highlight the discrepancies with the theory.

Dynamic fracture experiments

The first striking observation arising in dynamic fracture experiments is the difficulty to
observe propagation velocities that approach the previously discussed theoretical limits.
While the theory predicts that under constant loading a crack would accelerate toward
its limiting velocity, in practice the propagation velocity of tensile cracks rarely exceeds
∼ 0.6cr. The dissipated energy of dynamic cracks is also significantly underestimated
by the theory. The fast propagation of cracks is usually accompanied by out-of-plane
damage (see Figs. 2.7, 2.8) that occurs through the formation of various structures (steps,
microcracks, macrocracks...). This is in sharp contrast with the LEFM representation
of fracture, where damage is confined near the crack tip. Note that one notorious
exception to this discrepancy is the fracture of weak interfaces, in which a preferential
plane of fracture exists in the material. This can be related to the material structure
(composites, laminates) or to the problem configuration (frictional cracks between two
solids). In this case, the preferential fracture plane is significantly weaker than the bulk
material, thus forbidding out-of-plane damage from occurring. Propagations near the
limiting velocities have been observed in this context, with both subshear and supershear

14Hendrik Antoon Lorentz (1853-1928)
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Figure 2.7: Appearance of the fracture surface of an Homalite specimen, taken from
[26]. The crack propagates from left to right and accelerates, resulting in an increasingly
rougher fracture toward the right of the sample.

ruptures for frictional cracks [24]. Another exception is encountered in thin samples
when the thickness is comparable to the dimension of the microbranches. In this case,
the microbanching instability is suppressed, and tensile cracks can reach velocities close
to ∼ 0.9cs, at which a different dynamic instability occurs [25].
Going back to experiments that differ from the theory, it has been observed that the crack
surfaces have a different appearance depending on the propagation velocity [26; 27; 28]:

1. For small vc, a single crack front propagates smoothly and this results in two
smooth mirror-like crack surfaces.

2. With increasing vc the crack surface roughens, with the occurrence of some out-of-
plane damage through stepping.

3. At large vc, micro-branching instabilities occur and significant out-of-plane damage
takes place.

The change of stress field shape with the crack velocity increases the stresses out of the
main crack plane and allows dissipation through the creation of additional surfaces in
supplement to the main crack. Taking into account the complex structures created during
the fracture process is thus necessary to verify energy balance [29]: the amount of energy
dissipated is consistent with the energy required to create these additional surfaces, as
observed for example for steps [28]. In the case of microbranches, the energy required
for their creation can be an order of magnitude larger than for a smooth crack [30].
The corresponding energy is thus not available to drive the main crack, explaining the
lower propagation velocity compared to the theory. This behavior reveals the inherent
heterogeneous nature of dynamic rupture, as a result of the complex interaction between
dynamic instabilities, the evolution of the elastic fields with the velocity and the presence
of material heterogeneities.
Another example of the complex behavior of dynamic fracture is the formation of comet-
like patterns at the surface of a polymethyl methacrylate (PMMA) specimen [31]. In
these experiments, the main crack propagates through the nucleation and propagation
of multiple micro-cracks ahead of the main front, and the macroscopic velocity is directly
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Figure 2.8: Appearance of the fracture surface of a brittle polyacrylamide gel, taken
from [28]. For small velocities, the fracture surfaces are either miror-like or contain a
single step line. The number of steps increases with the velocity, up to a point where
microbranches start appearing around vc = 0.05cr. At vc = 0.1cr, only microbranches
remain.

related to the density of nucleated defects, illustrating again the heterogeneous nature
of dynamic rupture. In the next section, we shortly introduce heterogeneous fracture
mechanics.

2.2.3 Heterogeneous fracture mechanics

Natural (e.g. rocks) and artificial (e.g. composites) heterogeneous materials are ubiqui-
tous. As fracture is essentially controlled by dissipation that occurs over a small length
scale near the crack tip, the presence of small-scale material heterogeneities might have a
significant effect on the macroscopic response of a material. In this manuscript, we limit
ourselves to co-planar crack propagation and thus will only consider heterogeneities in
the toughness properties Gc(x) of the interface (with x the vector position in the fracture
plane).
One of the main goals of studying heterogeneous fracture is to assess the effective
toughness of a microstructure. The presence of heterogeneities in the fracture toughness
results in the roughening and deformation of the crack front (see examples in Fig. 2.9),
e.g., parts of the front get pinned by strong heterogeneities. The deformations of the
front alter the stress intensity factor locally, which can in turn affect the propagation of
the entire rupture front. Crack front deformations are thus reminiscent of the material
disorder, and understanding how they occur can tell us about the properties of a given
material. The reader interested in the subject is redirected to [34; 35] for reviews on the
topic.

Line tension model

Perturbative approaches in fracture mechanics are widely used in the literature to
study heterogeneous fracture problems. The line tension model, proposed by Rice [36]
based on the weight functions theory of Bueckner [37] allows computing local stress
intensity factor variations arising from small perturbations of the crack front geometry.
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(a) (b)

Figure 2.9: (a) Tensile fracture experiment on Plexiglas, taken from [32]. The top shows
a raw picture of the specimen, with black being the intact material. Here the crack
propagates from the bottom to the top. The location of the crack front is presented at
the bottom. (b) Peeling experiments of a silicon elastomer block from a patterned glass
substrate, taken from [33]. The deformation of the front is due to the presence of a large
toughening obstacle at the center of the specimen. The location of the crack front is
shown in white. The inset is a view centered on the tough obstacle, while the main panel
shows the front profile of half of the specimen.

When coupled with a local propagation criterion of the type K(x) = Kc(x), one can
evaluate crack propagation in heterogeneous fields of toughness. This framework has
been successfully applied to the study of front deformations in the presence of various
shapes of inclusions [33; 38; 39], to the computation of the effective fracture toughness of
heterogeneous materials [40; 41; 42] and to rationalize the intermittent dynamics of front
propagation in disordered media [43]. This framework has been extended to dynamics
with the works of [44; 45]. However, the line tension model is based on the assumption
of the LEFM for which the process zone size is negligible. All asperity scales are thus
treated in the same way. Yet, as elasticity breaks down at the scale of the process zone,
heterogeneities that are smaller than this dissipation length scale are expected to affect
the crack behavior differently than larger ones. Indeed, recent studies have shown, for
example in the context of the propagation of a shear crack along a one-dimensional
interface (thus without front deformations) [46] that heterogeneities in the propagation
of the crack direction only alter the crack dynamics if their size is comparable to the
process zone. Chapter 4 is dedicated to the study of front deformations in heterogeneous
materials when the process zone size is assumed to not be negligible. In this chapter, we
compare the dynamic cohesive line tension model to numerical simulations. This model is
the dynamic version of the quasi-static cohesive line tension model, a recent extension of
the classical line tension model whose derivation is recalled in Appendix A [10].
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2.3 Friction

Frictional systems are ubiquitous in natural and man-made systems and are found at all
scales, ranging from geological tectonic faults [47] to engineering structures and devices
[48]. Understanding how two solids in contact slip relative to each other is of paramount
importance in describing the dynamics of such systems. For engineering applications,
the objective might be to decrease the frictional resistance to reduce the energy required
to overcome friction (one-fifth of the energy in the world is dissipated by friction [3]).
On the contrary, specific applications aim at maximizing the friction force, for example
for car brakes. In addition, understanding how frictional instabilities might develop
and lead to catastrophic motion is of great interest to studying earthquake physics, for
example. Due to its prevalence in nature and its implications in engineering, friction is
one of the oldest scientific problems known to mankind. Evidence of practical solutions
employed by man to modify friction is found in Ancient Egypt murals illustrating a
man wetting sand to reduce the friction between the ground and a statue being pulled
[49], see Fig. 2.10. Another historical example comes from the notebooks of Leonardo Da
Vinci who was the first to conduct a systematic study of the force resisting the relative
motion between bodies using weights attached by strings and pulleys [50], see Fig. 2.11.

Figure 2.10: A wall painting from 1880 B.C. on the tomb of Djehutihotep [49].

Friction is an inherently complex phenomenon as it couples several length scales and
time scales, and involves strongly non-linear behavior. The accumulation of strain
energy prior to failure usually occurs over long time scales (e.g., tectonic loading taking
years) while slip events are extremely fast in comparison. At small length scales, the
contact between two surfaces occurs at the asperity level due to the inherent roughness
of surfaces [51] and the mechanics of the micro-contacts are responsible for the highly
non-linear response of frictional interfaces: the asperities are loaded under extreme
conditions and continuously evolve [52; 53]. In the context of tectonic fault, the contact
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Figure 2.11: Sketches from two different pages in Leonardo’s notebooks: (a, b) from
Codex Atlanticus, Biblioteca Ambrosiana, Milan (CA folio 532r c. 1506–8), and (c) from
Codex Arundel, British Library, London (Arundel folio 41r c. 1500–05), a figure taken
from [50].

is not directly between two solid bodies, but rather a third granular body called gouge
mediates the frictional behavior. In addition, at large-scale, different parts of the bulk
surrounding the frictional interface are coupled through long-range elastodynamics
which controls the release of strain energy through slipping. When a slip nucleates
somewhere along an interface, it might progressively propagate and invade the contact
plane still at rest. The propagation of these slip fronts is driven by a balance of energy
similar to the propagation of shear cracks. Fig. 2.12 shows a typical frictional system.
This section introduces the various models of friction, the rupture modes in frictional
rupture and the analogy with fracture mechanics. A discussion on the existence of
statistical complexity in frictional systems concludes this section.
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σ0

τ0

Figure 2.12: A schematic of a frictional system. Two bodies are in contact along an
interface (in brown) that is composed of several microcontact junctions (zoom in). The
system is loaded with normal and tangential stresses far from the interface (note that it
can also be driven by imposed displacement or velocity). The stress state at the interface
results from the interaction between the rheology of the microcontacts and the stresses
mediated by the elastic bulk surrounding it, including the loading and the long-ranged
interaction of various parts of the interface that have slipped differently (shown by the
double head arrow).

2.3.1 Models of friction

2.3.1.1 A brief history of friction

Friction, and hence the friction force associated, describe the resistance to the sliding
motion of a body on top of another. Our modern understanding of friction starts with
the works of Amontons [4] and Coulomb [5] and their observations that the frictional
force τ str resisting the motion between two bodies is independent of the surface area
but increases with the normal pressure. One can write the frictional force as a function
of the pressure σ0

τ str = fσ0, (2.32)

with f being called the friction coefficient. As long as the existing shear stress τ applied
on the interface is lower than fσ0 there is no relative motion between the two bodies,
i.e., the interface is sticking. When the shear strength is exceeded, sliding starts. For
Coulomb, the origin of the friction coefficient f emerges from the shear stress required
to initiate slip between two corrugated surfaces [54], and its value depends on the
topography of the contact surfaces. Several decades later, Bowden and Tabor [55]
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showed that the contact between two solid bodies only occurs over a tiny portion of the
apparent contact area A and that this real area of contact Ar increases with the normal
pressure [52; 53; 56]. Bowden and Tabor [55] reinterpreted the Amontons-Coulomb
law with this real contact area. As the bodies are touching only at microcontacts, these
contact points are highly stressed and the local pressure reaches the material yield stress,
σy such that one can write the far field normal pressure as:

σ0 = Ar
A

σy. (2.33)

The shear stress is also localized at the contact points and can be written

τ = Ar
A

τy, (2.34)

with τy the yield strength of the contact junctions. Hence, the ratio between the macro-
scopic shear stress and the normal stress is independent of the apparent contact area

f = τy/σy. (2.35)

Another rupture mechanism involves the fracture of the microcontacts [57] instead of
their plastic deformation. Recently, the transition between the two mechanisms (brittle
fracture and plastic shearing of the contact asperities) has been shown to occur at a
critical contact size [58; 59].

δ

τstrs

τ str(a)

0 δ

τstrd

∆τ

(b)
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Gc

(c)

δc δ

(d)

Figure 2.13: Frictional strength τ str = fσ0 for various friction laws: (a) constant Coulomb
friction (b) Static/dynamic friction (c) Constant stress cohesive model [20; 21] (d) Linear
slip weakening [60; 61; 62]. The area in gray represents the energy Gc that is dissipated
during the transition from static to dynamic friction.

Although the constant friction coefficient model of Coulomb (see Fig. 2.13a) is a great
approximation that is useful for many engineering applications, it cannot describe the
complex dynamics of frictional systems such as stick-slip. Indeed, the succession of
stick and slip events arises from the weakening of the interface when slipping. Further
models introduce a dynamic friction coefficient fd which is typically lower than the
static one fs, thus introducing a notion of stress drop ∆τ = (fs − fd)σ0 and allowing
slip instabilities. Several different models describe how the transition between these
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two coefficients occurs: in the most simple view, the friction coefficient drops to the
dynamic value as soon as slip occurs (see Fig. 2.13b). In cohesive models, a given
amount of energy Gc has to be dissipated to transition to the dynamic values. These
models were initially proposed for regularizing stress concentration in tensile fracture,
by Dugdale and Barrenblatt [20; 21]. They first assumed constant cohesive stress (see
Fig. 2.13c), and were then modified by Palmer and Rice to include a linear decrease
of the stress with the distance [63]. Rabinowicz [64] showed that a characteristic slip
distance δc controls the transition between static and dynamic friction values, leading
to the slip weakening model proposed by Ida [60] and Andrews [61; 62]. The latter is
frequently used in the literature for describing the behavior of frictional interfaces. For
this slip-weakening law shown in Fig. 2.13d, the frictional strength transition from a
peak value τ str

s to a dynamic value τ str
d over a given slip distance δc which is associated

with the micro-contact evolution or grain rearrangement. These models provide a direct
analogy with the cohesive models used in the framework of fracture.
However, it has also been experimentally observed that the dynamic friction coefficient
depends on the sliding velocity and the time of contact of the interfaces. These observa-
tions motivated the rate and state friction framework initially proposed by Dieterich [65]
and Ruina [7], in which the friction coefficient fd(v, ϕ) is function of the slip rate v and a
state variable ϕ which represents the maturity of the micro-contacts. This framework is
discussed in detail hereafter.

2.3.1.2 The rate and state friction framework

These models were initially introduced as phenomenological laws based on laboratory
observations of friction experiments at low slip velocity showing that the dynamic
friction coefficient fd is not a constant value. In what follows, we drop the subscript d for
readability. The first observation is a strengthening occurring during stationary contact,
with a logarithmic increase of the friction coefficient with time [65; 66]

f ∝ log(t). (2.36)

Second, the friction coefficient depends on the sliding velocity and decreases with the
logarithm of the velocity [67; 68; 69; 70]

f ∝ − log(v). (2.37)

The reader interested in the details can refer to Marone’s review [71]. These observations
lead Dieterich [67; 6] and Ruina [7] to propose a generic empirical function for f(v, ϕ).

fDR(v, ϕ) = f0 + a log
(

v

v∗

)
+ b log

(
v∗ϕ

D

)
. (2.38)

In Eq. (2.38), v is the slip velocity and ϕ is an internal state variable that describes the
evolution of the interface state (and thus its memory). f0, a, b, v∗, D are empirical param-
eters derived from laboratory experiments. Their physical interpretation is discussed
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later. In Eq. (2.38), the term with the logarithm of the velocity accounts for the non-linear
viscosity of the interface while the term with the state variable represents the evolution
effect. The typical response due to sudden changes in velocity predicted by a generic
rate and state friction law is shown in Fig. 2.14. In addition to the relation for the friction
coefficient given by Eq. (2.38), an evolution law ϕ̇(v, ϕ) is also required. Several versions
of this evolution law exist. The first two that were proposed are the so-called aging law
[6]

ϕ̇(v, ϕ) = 1 − vϕ

D
, (2.39)

and the slip law [7]

ϕ̇(v, ϕ) = vϕ

D
log

(
vϕ

D

)
, (2.40)

One of the usual interpretations of the state variable ϕ is the maturity of the micro-
contacts, i.e., their average lifetime. The aging law hence represents the increase in real
contact area for stationary contact due to the creep of microcontacts that was observed
by Dieterich and Kilgore [52]. During sliding, the law describes how microcontacts are
rejuvenated. For steady-state sliding, the destruction of existing microcontacts and the
creation of new ones occur at the same rate such that ϕ reaches a constant value (ϕ̇ = 0):

ϕss = D

vss
, (2.41)

with vss the steady-state sliding velocity. D is the characteristic size of the microcontacts.
Slip is required to occur over this length scale in order to bring the interface from one
state to another.
Combining Eq. (2.38) and Eq. (2.41), it can be seen that rate and state friction is velocity
weakening if

dfss

d log (vss) = a − b < 0. (2.42)

This behavior has been extensively observed experimentally [53] but materials can also
feature velocity strengthening behavior (e.g. granite at high-temperature [72; 73]). The
sign of a − b thus controls the stability: a fault is unstable if the associated friction law
is velocity-weakening. Note that this is a necessary but not a sufficient condition for
rupture nucleation: the perturbation of a velocity weakening fault will result in the
spontaneous propagation of frictional rupture fronts only if the perturbed size is larger
than a critical nucleation size Lc. The determination of the latter is extensively discussed
in the literature [74; 7; 75; 53; 76; 77; 78; 79; 80]. One implication of the stability of
frictional interfaces being governed by a − b in the context of geophysics is that a − b is a
non-monotonous function of the depth [81]. Crustal faults are strengthening at low and
large depth, with a rate weakening zone in between, determining where earthquakes
can potentially be nucleated.
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Figure 2.14: Evolution of the friction coefficient f to a sudden change in sliding velocity.
The system is initially in steady-state sliding at velocity v1 with a steady-state friction
coefficient fss(v1). The velocity is then raised to v2 and the friction coefficient increases
immediately. It is then followed by a slow decrease of the friction coefficient related to
the evolution of the state variable. After some time (and slip), the system reaches again
a steady-state, characterized by v2 and fss(v2). Bringing back the velocity to v1 results in
an immediate drop in the friction coefficient, followed by a slow increase that is again
related to the evolution of the microcontacts.

It is important to note that during fast slip, the rate and state friction framework can
be mapped to a slip weakening behavior [80; 82; 83; 84]. It is then possible to define an
apparent critical slip distance

δeff
c ≈ D log

(
vr
vbg

)
, (2.43)

with vr the residual velocity left behind the rupture and vbg the background velocity.
From this critical slip distance, one can estimate an equivalent fracture energy [80; 83]

Gc ≈ 1
2Dbf0σ0 log2

(
vr
vbg

)
. (2.44)

Although the original formulations assumed a − b to be independent of the sliding
velocity, several works illustrated non-monotonous behavior of the friction law with the
velocity [53; 85; 86; 87; 88; 89]. One of the formulations that goes beyond the rate and
state formulation originally proposed by Dieterich and Ruina is the N-shaped rate and
state law that features rate-weakening at intermediate velocities and a strengthening
behavior at really low and high sliding velocities. This friction law writes:

fN(|v|, ϕ) =
[
1 + b log

(
1 + ϕ

ϕ∗

)]
×
[

f0√
1 + (v∗/|v|)2 + a log

(
1 + |v|

v∗

)]
, (2.45)

and
g(|v|, ϕ) = 1 − |v|ϕ

D

√
1 + (v∗/v)2 , (2.46)

28



2.3 Friction

10−6 10−4 10−2 100

vss [m/s]

0.25

0.30

0.35

0.40

0.45

0.50

f s
s

[-
]

fN
ss(vss)

fDR
ss (vss)

Figure 2.15: The steady-state frictional strength fss vs. the steady-state slip velocity vss,
presented on a semi-logarithmic scale for two constitutive laws. The first (solid brown
curve), which features an N shape and is denoted by fN

ss (v) (see legend), corresponds to
Eqs. (2.45)-(2.46). The second constitutive law (dotted-dashed orange curve) corresponds
to the original formulation given in Eq. (2.38) with either of Eq. (2.39) or Eq. (2.40) (the
steady-state for the aging and the slip law is the same) and is denoted by fDR

ss (vss).

with ϕ∗ an additional empiric parameter. This formulation differs from the original
one in three major aspects: the "+1" term in the logarithm of the velocity and the
function

√
1 + (v∗/|v|)2 ensures that the friction coefficient vanishes for v = 0 and that

the behavior at very small velocity is rate-strengthening (this regime is related to the
creep of microcontacts). The "+1" term in the logarithm of the state leads to the existence
of a velocity-strengthening branch at large velocity [86]. Finally, the modification of the
evolution law with the term

√
1 + (v∗/|v|)2 ensures that the state variable saturates after

an extremely long time instead of diverging to infinity.
While the rate and state friction framework was originally proposed as an empirical
framework, significant efforts have been made to physically motivate this formulation
[90; 91]. Baumberger [53] linked it to the microcontacts model that was originally
formulated by Bowden and Tabor [55] and related the state field to the real contact
area as Ar ∝ 1 + b log(ϕv∗/D). The rate dependence of the friction resistance is usually
described using a stress-biased thermal activation process [53; 86].

2.3.1.3 Beyond friction

Even if the friction law discussed in the previous paragraph goes beyond the original
formulation of rate and state friction law by including a non-monotonic evolution of
the friction coefficient with the sliding velocity, it is at most logarithmically dependent
on the velocity. However, experimental evidence of dramatic velocity weakening at
high speed shows a relationship stronger than logarithmic with the velocity as f ∝ 1/v

[92; 93; 94]. Plus, in the absence of a strong weakening mechanism, the temperature rise
occurring during earthquakes should result in large-scale melting of the faults, but this is
not supported by field observations of exhumed faults. Some thermal weakening should
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Figure 2.16: Schematic representation of the slip velocity profile of frictional ruptures
in the case of: (a) a bilateral crack-like rupture propagation and (b) a slip pulse. For
the bilateral crack-like rupture, two frictional rupture fronts propagate at a velocity
cR and invade a stick portion of the interface v ≃ 0. A slipping state with large slip
velocity v > 0 characterizes the interface behind the rupture fronts. For the slip pulse,
a rupture front propagates unilaterally at velocity cR and is followed by a healing
front propagating at cH. The interface is sticking both ahead and behind the slip pulse,
resulting in a small localized portion of the interface slipping at a given time. A slip
pulse can spatially expand, decay, or remain stable depending on the relation between
cR and cH.

thus exist in the context of rapid slip to limit the temperature rise. Several mechanisms
are thought to be relevant in this context. One of them is the flash heating theory [95; 96],
which originated in engineering tribology to describe the dependence on slip rate for dry
metal friction [97]. The rapid heating and weakening of frictional asperities in contact
between sliding surfaces results in a significant loss of frictional strength. Another
mechanism is the thermal pressurization of pore fluids [98; 99; 100; 95]. Faults are often
filled with granulated material (gouge) and fluids. With increasing temperature, the
increase in pressure of the fluids results then in a drop in the normal pressure acting on
the fault and hence significantly reduces the shear strength. These two mechanisms are
expected to occur at sliding velocities below the one observed during earthquakes. Their
influence on rupture mode dynamics in addition to regular rate and state friction is of
significant interest for fast slip. Other chemical mechanisms, such as the decarbonation
of rocks, might contribute to the enhanced weakening for high slip velocities [101; 102].
Note that while this thesis only considers interfaces that are driven with far-field stress
and velocity, frictional rupture can be driven differently, e.g., in the context of hydraulic
fracturing in which the injected fluid drives the propagation [103; 104].

2.3.2 Rupture modes

One fundamental characteristic of the various constitutive models used to characterize
the behavior of frictional interfaces, is that they share a weakening response, and thus
frictional systems are prone to host frictional instabilities. Their development results
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(a) (b)

Figure 2.17: Experimental results taken from [109]. Photoelastic pattern of the maximum
shear stress contour, with the profile of relative slip velocity at the interface superim-
posed in red. The letter T indicates the location of a rupture tip, and M is the location of
the velocimeter. (a) crack-like rupture (b) slip pulse.

in the propagation of slip along friction interfaces that are mediated by rupture modes.
There are two main types of rupture modes: (a) expanding crack-like rupture and
(b) compact self-healing slip pulse [105; 106; 107; 108; 109; 110; 111; 112; 113; 114; 115;
116; 117; 118]. In the former (represented in Fig 2.16a), the sliding velocity remains
finite behind the rupture front and the entire area that has slipped is still in motion
until the entire rupture stops. In the case of slip pulses, the rupture front (Fig 2.16b)
is closely followed by a healing front behind which the sliding velocity vanishes, thus
only a localized portion of the interface is sliding at a given time. Note that similar
behaviors can be found in other systems if a healing mechanism exists, e.g., re-bonding
during the peeling of soft-adhesives [119]. A great variety of these rupture modes
exist, depending on the propagation velocity of the fronts cR that can be subshear
or supershear. For slip pulses, the velocity of the healing front cH compared to the
rupture front one determines the type of slip pulse: it can spatially expand (cR > cH),
decay (cR < cH) or propagate steadily (cR = cH) [120; 121]. The condition under
which a frictional system will give rise to a specific rupture mode is not yet entirely
clear [122; 114; 113; 123; 116; 82; 124; 117; 125; 120; 126; 127; 128]. Several potential
mechanisms have been proposed to explain the emergence of slip pulses: bi-material
coupling [115; 129; 112], heterogeneous fault conditions [130] or velocity-weakening
friction. For the latter, the level of pre-stress has an influence on the rupture mode
[123; 109] as well as the size of the perturbation/nucleation zone [120; 121]. The influence
of the type of boundary conditions (stress or velocity controlled) has received much less
attention. This issue and the properties of emergent slip pulses under velocity-driven
sliding are discussed in Chapter 5.
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2.3.3 Analogy with fracture

Rationalizing the behavior of frictional rupture using tools from dynamic fracture
mechanics has gained increasing attention in the last few years. Obvious similarities
exist between a shear crack and a "crack-like" frictional rupture: rupture fronts propagate
into an intact state and let behind them a residual sliding velocity level and a lower
stress. The latter is zero for classical tensile fracture, and some residual frictional
stress for friction. Cohesive models that have been developed to regularize the infinite
stresses near the tip of a crack are similar to the slip-weakening law that describes
the evolution of the frictional strength with slip. Taking advantage of the linearity of
the bulk surrounding the frictional fault, one can try to map the behavior of frictional
interfaces to dynamic fracture mechanics after subtracting the residual level of stress
after the passing of the frictional rupture front.
Laboratory earthquake experiments conducted on blocks of PMMA showed that the
fields near the rupture tip of a frictional rupture are consistent with the asymptotic
fields of fracture mechanics for both sub-Rayleigh [56; 127] and supershear propagation
velocities [131]. An example is shown in Fig. 2.18 where the strain fields near the tip
of a frictional rupture are compared to the corresponding LEFM prediction. Similar
observations were also done on granite [132]. The propagation velocity of frictional
cracks is also consistent with the equation of motion of regular cracks [133; 134]. The
length and conditions of arrest of frictional ruptures have also been well described by
LEFM using the concept of energy balance [135; 136; 137].
However, the cohesive zone model of friction assumes that two quantities are known
beforehand: the residual level of stress and the "fracture energy" of the interface. While
the first quantity is obvious for tensile rupture (free surfaces cannot hold any tensile
stress, thus it is zero), it is not clear what is the residual stress for a frictional crack.
LEFM and cohesive zone modeling provide insights into the mechanics of frictional
rupture, but understanding the physical origin of the emergence of stress drops and
crack-like properties of frictional rupture is still lacking. To what extent the analogy
between fracture mechanics and frictional rupture is valid is also an open question:
one striking observation from large earthquakes is that the estimated fracture energy
is always significantly larger compared to the experimental measurement of fracture
toughness, implying that additional dissipation takes place in frictional rupture. These
issues are discussed in Chapter 5 using the rate and state friction framework.

2.3.4 Complexity in frictional systems

In this section, we discuss friction from a statistical point of view and no longer deal
with single slip events. While friction is an intrinsically complex phenomenon that can
result in a variety of slip events, some universal scaling relations do exist for slip events.
Taking here the example of earthquakes, numerous power law distributions apply to
the description of various quantities of interest in seismology. The most famous is the
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Figure 2.18: Experimental results of friction between PMMA blocks taken from [127]. (a)
Strain tensor variations ∆ϵij near the frictional rupture tip for different front velocities.
The black line is the corresponding predictions from LEFM. (b) Average value of the
strain tensor variations for a fast rupture, with the corresponding LEFM prediction. (c)
A space map of the strain tensor variations near the tip, with the blue square indicating
the location of the strain gauge.

Gutenberg15-Richter16 law that describes the frequency-magnitude relation as [138; 139]

n(S) ∝ S−1−β, (2.47)

with n(S) the number of earthquakes with magnitude S, and β ≃ 2/3 a constant. This
law implies universal fractal behavior of earthquakes, i.e., scale invariance. Another
famous one describes the temporal decay of aftershocks following an earthquake, known
as Omori’s17 law [140; 141]:

15Beno Gutenberg (1889-1950)
16Charles Francis Richter (1900-1985)
17Fusakichi Omori (1868-1923)
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∆N

∆t
= t0(t + t1)−p (2.48)

with N the cumulative number of events with a magnitude larger than a given value, t

the time measured from the main earthquake, t0 and t1 constants, and p ≃ 1. Several
other power laws describe the waiting time between events [142], the relation between
the slip of an earthquake versus the rupture length [143], between rupture duration and
magnitude [144; 145], rupture area and seismic moment [142], etc... Readers interested
in this topic are referred to classical textbook [146] or reviews on statistical physics
approach of earthquakes [147; 47; 148]. In what follows, statistical complexity refers to the
existence of these broad distribution laws.
One of the main questions arising from the emergence of complexity in earthquake
physics is its physical origin. While it is true that natural faults are rough at all scales [149]
and feature heterogeneities in material properties and stress conditions, one can wonder
if the non-linearity of the frictional behavior is sufficient for the emergence of complexity
or if disorder in the material properties is required. The origin of complexity has gathered
significant attention in the literature, with a variety of models and hypotheses. The
pioneer works go back to the Burridge-Knopoff slider block model [150]. It consists of
several blocks that are driven through springs connected to a slider, interacting with their
neighbors with other springs. The friction of each block is described by a constitutive
behavior that involves a weakening mechanism to allow for stick-slip. This type of
model, discrete by definition, has been widely used with various hypotheses (with or
without inertia, different long-range interactions, friction laws...). Complexity in these
systems has been observed to emerge even in the absence of material heterogeneities
with velocity-weakening friction [151; 152] and rate and state friction [153; 154]. Rice
and coworkers however argued that the observed complexity for small events is an
artifact of the discreteness of the modeled system and that they do not represent truly
homogeneous conditions [129; 77; 155; 156; 157; 158]. For them, complexity is related to
the presence of strong material heterogeneities: inertial dynamics on a homogeneous
fault is not sufficient to generate a broad class of events by itself, at least generically.
Other works used a continuum approach and did observe complexity in the absence
of material disorder [113; 116; 159; 160] but were conducted either with friction laws
that feature strong weakening or the complexity was not generic, i.e., limited to a small
parameter range. Complexity can also emerge from the geometry of the fault itself, for
example when multiple faults interact [161]. We bring our contribution to this topic
in Chapter 6, in which the emergence of complexity in a frictional system of finite
dimension in the absence of material heterogeneities is discussed.
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The work conducted in this thesis relies on the numerical modeling of dynamic rupture.
This is in itself a difficult challenge, as it requires modeling discontinuities. The length-
scales and time-scales involved in such problems make it even more difficult: the
dissipation occurs on a small length-scale near the crack tip (the process zone) but
the dimension of propagation of the rupture might be several orders of magnitude
larger. The loading of such systems occurs over long time scales, while the ruptures are
comparatively extremely fast. Thus, large and finely discretized time and space domains
are required to model dynamic rupture, resulting in complex and computationally
expensive modeling. Two types of models are used for fully dynamic simulations in
this thesis, the finite element method, and the spectral boundary integral method. This
chapter describes the basics of these methods, with their advantages and drawbacks.
Both methods consist of solving the partial differential equations of elastodynamics that
are described in section 2.1.5.

3.1 Finite element method

The finite element method is a domain-based method that is known for its versatility and
adaptability. It relies on the discretization of the full body of interest into small pieces
called elements, see Fig. 3.1, over which a discretized version of the weak formulation of
the problem is solved. It can be used for any geometry and bulk constitutive behavior.
Various approaches to include discontinuities (i.e., cracks) can be employed, such as
cohesive elements [162], node-to-node algorithm [163], or the phase field approach [164].
Here we give a brief introduction to the formulation and the usual scheme to model
explicit dynamics. The reader interested in the details of the method is directed to
reference textbooks [165]. The finite element code used in this thesis is an in-house open
source library called Akantu [8].

3.1.1 Bulk elements

The displacement field u(x, t) on an element is written as:
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Ω

∂Ωu

τ

Figure 3.1: Schematic representation of a body Ω in black that is meshed with triangular
finite elements, in green. Dirichlet boundary conditions are enforced on part of the
boundary ∂Ωu, and some traction τ (i.e., Neumann BC) on another part of the body. The
part where nothing is specified are traction-free conditions.

u(x, t) = Nue, (3.1)

where N are known as the shape functions, which are piece-wise interpolation functions
describing the shape of the displacement field (commonly used shape functions are
linear and quadratic) and ue the displacements at the nodes of the elements (their
number per element depends on the order of the shape functions). The derivatives of
the shape functions A give the relation between the displacements and the strains as:

Aue = ϵ. (3.2)

The weak form of the problem, given in Eq. (2.12) is evaluated over each element as:

δuT
e

∫
Ωe

AT C A uedV + δuT
e

∫
Ωe

ρ NT N üe dV −, δuT
e

∫
∂Ωe

NT τ dA = 0, (3.3)

where δun is a virtual nodal displacement field, Ωe is the volume of the element, ∂Ωe its
boundary, C the constitutive relationship, τ the applied boundary stress, and e subscript
indicates that the term is for a single element. Evaluating the different integrals allows
computing the element stiffness matrix Ke, the element mass matrix M e and the external
force vector Fext as :

Ke =
∫

Ωe

AT C dV

M e =
∫

Ωe

ρ NT N dV

F ext
e =

∫
∂Ωe

NT τ dA.

(3.4)

To assemble the global stiffness K (and mass M ) matrix for the problem, the connectivity
of the mesh is considered. The term in the global stiffness matrix associated to a given
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degree of freedom (i.e., a nodal displacement in a given direction) is the sum of the
local contributions for each element that are connected to this degree of freedom. The
same procedure is done to assemble the global external force vector F ext. For the entire
system, one can write:

Ku + Mü = F ext, (3.5)

with u a vector containing all the nodal displacements of the system. Note that Eq. 3.5 is
valid under the assumptions of no velocity damping. If damping would be included, an
additional term Du̇ would be added to the left-hand term of the equation, with D the
damping matrix of the system.
As we are interested in dynamics behavior, we want to solve the system of equations
given by Eq. 3.5 over time. The latter is discretized in small-time steps. Eq. 3.5 can be
solved either implicitly or explicitly. In this thesis, we opt for an explicit time integration
scheme. We use the Newmark1-β [166] scheme with parameters α = 0 and β = 1/2.
This scheme computes the nodal fields at a time step based on the fields at the previous
time step. In order to insure the convergence, the time step ∆tF has to be chosen small
enough according to the Courant2-Friedrichs3-Lewy4 condition [167]. It writes:

∆tF = αF
∆x

c
, (3.6)

with ∆x the minimum dimension of an element in the mesh and c the maximum
characteristic velocity. For linear elasticity, this is cd, the dilatational wave speed. αF is a
security coefficient smaller than one. For linear elasticity, it can be chosen as large as
αF ∼ 0.8.
The system of equation for the Newmark-β scheme is expressed as:

Kun+1 + Mün+1 = F ext
n+1

un+1 = un + ∆tFu̇n + 1
2(∆tF)2ün

u̇n+1 = u̇n + ∆tF
2 (ün + ün+1) ,

(3.7)

with the subscripts n and n + 1 indicating the time step. Eqs. 3.7 are solved using a
predictor-corrector approach:

1. Predictor: the displacement field at the next time step is computed. One part of

1Nathan Mortimore Newmark (1910-1981)
2Richard Courant (1888-1972)
3Kurt Otto Friedrichs (1901-1982)
4Hans Lewy (1904-1988)

37



Chapter 3. Numerical framework

the velocity of the next time step, the predicted velocity u̇P
n+1 is computed:

un+1 = un + ∆tFu̇n + 1
2(∆tF)2ün

u̇P
n+1 = u̇n + ∆tF

2 ün.

(3.8)

2. Residual: the acceleration increment is computed based on the difference between
the applied external forces and the internal forces which are based on the updated
displacement F int

n+1 = Kun+1 :

δün+1 = M−1
(
F ext

n+1 − F int
n+1 − Mün

)
. (3.9)

3. Corrector: the acceleration at the time step n + 1 is computed based on the acceler-
ation increment, and the velocity is corrected accordingly:

ün+1 = ün + δün+1

u̇n+1 = u̇P
n+1 + ∆tF

2 δün+1.
(3.10)

3.1.2 Modeling discontinuity in finite elements

The previous section introduces how the finite element method allows computing the
elastodynamics equation for a solid, but lacks the description of discontinuity, like cracks.
Various methods have been developed to include them in finite element models. In this
thesis, the node-to-node contact algorithm is the principal method used in the context of
frictional rupture.

Node to node contact

The node to node contact algorithm allows to couple two independent solids at a
planar interface between them, as represented in Fig. 3.2. The two solids need to have
conforming mesh at their shared interface (i.e., matching nodes). Two corresponding
nodes are coupled together through matching (opposite) normal and tangential forces
that depend on the fields at both nodes. First, one needs to rewrite the expression for
the acceleration as new forces are to be considered on the interface nodes. Eq. (3.9) in
this case can be written as :

ün+1 = δün+1 + ün = M−1
(
F ext

n+1 − F int
n+1 + F N

n+1 + F T
n+1

)
, (3.11)

with F N
n+1 and F T

n+1 respectively the contact and the frictional forces at the contact
interface. Note that they are zero for any nodes that are not on the interface.
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Figure 3.2: Schematic representation of the node to node contact for a finite element mesh.
Two bodies Ω+ and Ω− that are meshed with triangular finite element (respectively in
brown for the top body and green for the bottom one) are in contact at a planar interface
Γc, in dashed black. The two meshes are conform, i.e., each node has a corresponding
node on the other surface. On the right, the forces acting on a pair of nodes i are
represented with black arrows. The vector normal to the top n+ and bottom n− surfaces
are represented with brown arrows.

Contact forces

To compute the contact forces, we start with a non overlapping condition in the normal
direction gives:

[[x]]Nn+2 ≥ 0, (3.12)

where [[x]] indicates the difference between the jump in fields between the nodal position
x of the node in the top body and its matching node in the bottom body, and the
superscript N the normal direction. Eq. (3.12) can be expressed as:

[[x]]Nn+2 = [[x]]N + [[u]]Nn+2 ≥ 0, (3.13)

Using Eq. (3.8), the gap in displacement [[u]]Nn+2 can be expressed as the gap in the fields
at the previous time step:

[[x]]N + [[u]]Nn+1 + ∆tF[[u̇]]Nn+1 + 1
2(∆tF)2[[ü]]Nn+1 ≥ 0. (3.14)

Replacing the velocity by its expression based on the predicted velocity and the accelera-
tion increment, one gets
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[[x]]N + [[u]]Nn+1 + ∆tF[[u̇P ]]Nn+1 + 1
2(∆tF)2

(
[[δü]]Nn+1 + [[ü]]Nn+1

)
≥ 0. (3.15)

Replacing [[δü]]Nn+1 by [[ü]]Nn+1 − [[ü]]Nn , and using Eq. (3.11) results in:

[[x]]N+[[u]]Nn+1+∆tF[[u̇P ]]Nn+1−1
2(∆tF)2[[ü]]Nn +(∆tF)2M−1

(
[[F ext]]n+1 − [[F int]]n+1 + [[F ]]Nn+1

)
≥ 0.

(3.16)
Let us define [[üfree]]Nn+1 = M−1 ([[F ext]]n+1 − [[F int]]n+1

)
the acceleration related to the

residual of the bodies that are not related by the node to node algorithm. The contact
forces can be written as [[F ]]Nn+1 = A[[T ]]Nn+1 with A the area associated to the contact
nodes, and T N

n+1 the contact stress. As the stress on the top and bottom matching nodes
are equal and opposites, one can replace [[T ]]Nn+1 by −2T N

n+1. Let us introduce the variable
Z

Z−1 = ∆tF
2
(
M−1

+ A+ + M−1
− A−

)
. (3.17)

We can then simplify Eq. (3.16) as:

[[x]]N + [[u]]Nn+1 + ∆tF[[u̇P ]]Nn+1 − 1
2(∆tF)2[[ü]]Nn + (∆tF)2[[üfree]]Nn+1 − 2∆tFZ−1T N

n+1 ≥ 0.

(3.18)
In Eq. (3.18), all the terms except one are independent of the node to node algorithm.
Let us introduce a last variable Ifree, that we call here the interpenetration of the free
bodies:

Ifree
n+1 = [[x]]N + [[u]]Nn+1 + ∆tF[[u̇P ]]Nn+1 − 1

2(∆tF)2[[ü]]Nn + (∆tF)2[[üfree]]Nn+1. (3.19)

Then, if Ifree
n+1 ≥ 0, it means that there is no need for corrective contact forces to forbid

interpenetration, and thus T N
n+1 = 0. However, if Ifree

n+1 ≤ 0, then contact forces need to
be computed as:

T N
n+1 =

ZIfree
n+1

2∆tF
, (3.20)

and the forces are then applied on the nodes as:

F N
n+1 = AT N

n+1. (3.21)

Friction forces

For the tangential (friction) forces, a similar derivation is done, but this time starting
with a condition on the relative velocity in the tangential direction of the matching nodes
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3.1 Finite element method

at the mid-time step. This first condition assumes that the friction forces are sufficient to
hold the body together and thus there is no gap in velocity:

[[u̇]]Tn+3/2 = 0. (3.22)

The velocity at the mid-time step is given by u̇T
n+3/2 = u̇T

n+1 + üT
n+1∆tF/2. Thus, we can

write:

[[u̇]]Tn+1 + ∆tF
2
(
[[δü]]Tn+1 + [[ü]]Tn+1

)
= 0. (3.23)

Defining [[F ]]Tn+1 = A[[T ]]Tn+1 and using the argument that the frictional forces are equal
and opposite [[T ]]Tn+1 by −2T T

n+1, we can write:

[[u̇P ]]Tn+1 − ∆tF
2 [[ü]]Tn + ∆tF[[üfree]]Tn+1 − 2Z−1T T

n+1. (3.24)

Similarly to the contact force, let us introduce Rfree as:

Rfree
n+1 = [[u̇P ]]Tn+1 − ∆tF

2 [[ü]]Tn + ∆tF[[üfree]]Tn+1. (3.25)

The tangential force that acts in between two matching nodes is then simply given by:

T T
n+1 =

ZRfree
n+1

2 . (3.26)

Now that the tangential forces required to forbid any relative movement between the
top and bottom nodes have been computed, one needs to compare these forces with
the actual strength of the interface. The latter is given by a constitutive law, which in
this work is chosen as a rate and state friction law, as introduced in section 2.3.1.2. The
strength is given by:

Sn+1 = F N
n+1f(v, ϕ), (3.27)

in which f(v, ϕ) is a rate and state friction law and the velocity that is used to evaluate
f is chosen as the relative velocity v = [[u̇P ]]Tn . Two cases can occur: (1) the strength is
larger than the forces required to maintain the bodies together, S ≥ T T and in this case
the forces applied in the tangential direction are given by Eq. (3.26); (2) the strength is
not sufficient to forbid a relative velocity between the two surfaces, then the forces are
limited by the strength T T

n+1 = T N
n+1f(v, ϕ).

Note that when using such frictional behavior for the node to node algorithm, the
security factor for the time step αF has to be significantly reduced compared to a
simulation involving only bulk elements, see [168]. For the typical simulations described
in this thesis, αF = O(0.01).
The updated explicit scheme relies on adding both the contact and the frictional forces
T N

n+1 and T T
n+1 when the residual is evaluated, by using Eq. (3.11) instead of Eq. (3.9)

to compute the acceleration increment. During the corrector step, the velocity and
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Chapter 3. Numerical framework

acceleration will be corrected by a term that accounts for the additional forces at the
contact interface.

3.2 Spectral boundary integral method

While the finite element method is a well-established and versatile method to solve
elastodynamics problems, it still requires meshing the entire body of interest and thus
can be computationally expensive. The boundary-based methods allow for reducing
the dimensionality of the problem. These methods are limited to specific geometry and
require strong assumptions regarding the behavior of the bulk. The spectral boundary
integral method allows solving the traction and displacements at the interface between
two semi-infinite homogeneous linear elastic bodies. This method has been proposed by
Geubelle and Rice [169]. Two variants exist: (i) the combined formulation in which both
bodies are solved at the same time [169; 170] and (ii) the independent formulation which,
as suggested by its name, solves each body independently. The latter is more stable
and allows describing bi-material interfaces. In this thesis, we use an in-house open
source library called cRacklet [9] that implements the independent formulation. More
details about cRacklet are given in Appendix B. Here, we recall the main equations of the
method.
Let consider an interface between two semi-infinite continua that lies in the plane y = 0.
The interfacial stress τ acting on the top (+), respectively bottom (−) surface, is given as:

τ ±(x, z, t) = τ ∞,±(x, z, t) − V
(
u̇±(x, z, t) − u̇0

)
+ s±(x, z, t), (3.28)

with τ ∞,±(x, z, t) the far field loading. V (u̇±(x, z, t) − u̇0) is known as the radiation
damping [155; 122; 123] and represents the instantaneous stress response of the interface
due to a change in velocity. It corresponds to waves being radiated in the bulk, thus its
name radiation damping. V depends on the bulk parameters:

V = µ

cs

1 0 0
0 η 0
0 0 1

 , (3.29)

with η = cd/cs. u̇0 is a reference velocity, which is usually zero for fracture problems, but
can be a finite value for a frictional system that slides at a steady state velocity initially.
The last term s±(x, z, t) is a spatio-temporal integral term that accounts for the history
of displacement at the interface. The latter is computed in the spectral domain, thus
explaining the term spectral in the name of the method. There is no close form for the
convolution kernels that are used to compute the stress from the displacement in the
Fourier5 domain, and so they are pre-computed numerically. Their expressions can be
found in [171].
In order to solve the problem, the interface is discretized with an evenly spaced grid.

5Jean-Baptiste Joseph Fourier (1768-1830)
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3.2 Spectral boundary integral method

The problem is integrated in time using an explicit time stepping

un+1 = un + ∆tSu̇n. (3.30)

At each time step n, two quantities are unknown: the interfacial stress (τn, left-hand
side of Eq. (3.28)) and the velocity u̇±

n (x, z). The spectral boundary integral method thus
needs to be coupled with an interfacial constitutive law that limits the strength of the
interface. In this thesis, we use two types of constitutive behavior: (i) a linear-weakening
law for studying mode I fracture in Chapter 4 and (ii) rate and state friction laws for
studying the behavior of frictional interfaces in Chapter 5.

Linear slip weakening law

In the former, the strength of the interface is a function of the relative displacement
between the top and the bottom solid δ(x, z, t) = u+(x, z, t) − u−(x, z, t).

τ str(x, z, t) = σc(x, z) max [1 − δ(x, z, t)/δc(x, z), 0] , (3.31)

with σc the maximum strength of the interface, and δc the critical opening at which the
strength goes to zero. In this case, the resolution consists of the following steps:

1. Update the displacement un+1 for the new time step based on the fields at the
previous time step un and u̇n.

2. Compute the stress at the interface τn+1 = τ ∞
n+1 + sn+1, assuming that there is no

relative velocity.

3. Evaluate the strength τ str(un+1)

4. Compare the stress and the strength. There are now two possible cases:

• τn+1 < τ str: there is no relative motion, u̇n+1 = 0.

• τn+1 > τ str: the strength is not sufficient. Solve for u̇n+1. Eq. (3.28) with the
left-hand side being equal to the strength.

5. Increment to the next time step.

Rate and state friction law

When studying friction, we employ laws that are dependent on the sliding velocity and
an additional state variable, as discussed in section 2.3.1.2. The strength of the interface
is given by

τ str = f(v, ϕ)τyy, (3.32)

with v = u̇+ − u̇− the relative slip velocity at the interface. Both the left-hand and the
right-hand term of Eq. 3.28 depend on the velocity u̇+, such that we solve directly for u̇
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using a Newton-Raphson6 scheme.
The time step is chosen according to the Courant-Friedrichs-Lewy condition [167]

∆tS = αS
∆x

cs
, (3.33)

with αS ∼ 0.2 for the linear-slip weakening law and 0.1 for rate and state friction laws.
While both methods presented here can be used to simulate dynamic rupture prop-
agation, they are not tailored for the same type of problems. The spectral boundary
integral method is extremely efficient but is limited to planar interfaces laying between
semi-infinite homogeneous elastic solids, while the finite-element method can handle
any geometry and can include bulk heterogeneities or non-linearities but can be costly if
one wants to get rid of finite boundary effects. In Chapter 7, we discuss the coupling of
the two methods, intending to take advantage of their respective benefits. The objective
is to use the spectral boundary method to model boundary conditions that do not reflect
waves. This will allow decreasing the computational cost of a finite element simulation
by truncating the domain that needs to be discretized.

6Joseph Raphson (c.1668–c.1715)
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4 Crack front deformations in
cohesive materials

When a crack interacts with material heterogeneities, its front distorts due to the disorder
in the fracture energy landscape. Understanding how fronts deform allows rationalizing
the effective properties of heterogeneous microstructures and helps predict out-of-plane
damage. However, the usual model for studying front deformations is based on the
linear elastic fracture mechanics framework, which overlooks the influence of the finite
dissipation length scale near the crack front, the process zone. Neglecting this length
scale results in treating all asperities independently of their scale, whereas one would
expect asperities that are smaller than this length scale to be treated differently than the
larger ones. In this chapter, we study the deformation of crack fronts in heterogeneous
cohesive materials by conducting fully dynamic numerical simulations of tensile fracture
propagating through a heterogeneous interface described by a cohesive law. We show
that a finite process zone size introduces scale effects in the deformation of the crack
front, that are mitigated by the dynamics of the crack. The process zone renders the
front more compliant to perturbations, but at the same time smooths out the fluctuations
of strength and process zone. The dynamic contraction of the process zone diminishes
these effects for fast-propagating cracks. Independently, the crack front stiffens with
increasing propagation velocity, reducing the overall amplitude of deformations. To
rationalize these observations, we extend to dynamics the quasi-static cohesive line tension
model that was developed by Dr. Mathias Lebihain. We show that the dynamic cohesive
line tension model predicts accurately the front deformation amplitudes measured in the
numerical simulations.

This chapter is an adapted version of the following scientific articles:

M. Lebihain, T. Roch, and J.-F. Molinari, “Quasi-static crack front deformations in cohe-
sive materials,” Journal of the Mechanics and Physics of Solids, vol. 168, p. 105025, 2022

T. Roch, M. Lebihain, and J.-F. Molinari, “Dynamic crack front deformations in cohesive
materials,” 2022. arXiv:2206.04588 [cond-mat] Under review
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Chapter 4. Crack front deformations in cohesive materials

4.1 Introduction

The propagation of fronts, defining the border between two distinct phases, occurs in
numerous physical contexts such as paper wetting [173], combustion [174], polymer-
ization [175] and fracture mechanics [32]. Fronts usually roughen due to interaction
with heterogeneities. In fracture mechanics, a front marks the spatial separation be-
tween intact material and crack, and is thereby called a crack front. It deforms as a
consequence of the heterogeneous landscape of toughness, the material resistance to
crack propagation. Understanding how these deformations occur allow rationalizing the
properties of composite materials [34; 35]. In addition, the transition between faceting
and micro-branching for fast crack propagation is thought to be related to high in-plane
curvature of the front [176]. Studying the dynamics of front deformations is thus key to
unraveling the complex dynamics of heterogeneous dynamic rupture. Coplanar crack
propagation is usually studied using perturbative approaches, such as the first-order
model derived by Rice [177] based on the weight functions theory of Bueckner [37]. This
approach has then been extended to dynamic rupture [44; 45] and also to higher orders
[178; 38; 176]. This framework has been successfully applied to the deformation of crack
front for various shapes of defects [33; 38; 39] as well as predicting the effective tough-
ness of heterogeneous materials [40; 41; 42] and rationalizing the intermittent dynamics
of crack front propagation in disordered media [43]. These models are however built
on the linear elastic fracture mechanic (LEFM) framework and thereby assume that the
dissipation at the crack tip occurs in a finite region, the process zone, of negligible size. As
a consequence, LEFM-based models are bound to treat each asperity scale indifferently.
Yet, elasticity is expected to break down along a finite region at the tip of the crack,
and heterogeneities smaller or larger than this length scale are expected to affect the
crack dynamics differently [179; 180]. Cohesive zone models of fracture [20; 21] allow
considering a finite dissipation length scale through the introduction of stresses resisting
the crack opening near the tip over a finite length, the process zone size. Regarding
crack distortion, a recent theoretical study [10] shed light on the importance of consid-
ering the process zone size for quasi-static cracks. The presence of a finite dissipation
length scale (i) controls the stability of crack fronts and (ii) introduces scale effects in
the pinning of crack fronts by heterogeneities of fracture energy, and these effects are
strongly dependent on how the toughness variations are achieved. For dynamic rupture,
the process zone size is known to shrink with increasing propagation velocity, thus
increasing the importance of this length scale relatively to the size of the heterogeneities
[22; 181; 127]. In this manuscript, we first investigate numerically the dynamic front
deformations of co-planar cracks loaded under normal tensile stress (mode-I) conditions
and propagating through a heterogeneous toughness field. We solve this problem using
our open-source implementation [9] of the spectral boundary integral formulation of the
elastodynamic equations [169; 171] and study the influence of toughness heterogeneities
arising from heterogeneities of i) peak strength and ii) process zone size. We then extend
the theoretical model of [10] to dynamic rupture and compare the numerical results with
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the newly derived dynamic cohesive line tension model for a broad range of parameters,
thus providing a validation of this model. All in all, we provide a comprehensive
framework describing dynamic crack front deformations for cohesive materials.

4.2 Problem description

We consider two semi-infinite elastic bodies of section Lx, Lz that are in contact along
a planar interface located at y = 0 (see Fig. 4.1a). Periodic boundary conditions are
imposed in the x and z directions. The bodies are loaded under mode-I conditions that
drive a cohesive crack through a planar interface (crack in brown, process zone in orange
in Fig. 4.1b) in the positive x direction at a constant velocity vc. The propagation in the
−x direction is prevented. The crack initially propagates inside a homogeneous field
of reference toughness G0

c . The interface properties are then gradually changed along
a distance lt towards an x invariant field composed of a stripe of larger toughness Gs

c
(dark green) of width d embedded in a weaker toughness field Gw

c (light green). The
average toughness in the z direction is kept equal to the reference one, (Gs

c +Gw
c )/2 = G0

c ,
resulting in an effective toughness in the weak pinning regime that is equal to G0

c [10].
The gradual transition of properties allows for reducing the oscillations of the crack
front deformations, as discussed in section 4.3. In this manuscript, we use d = Lz/2,
Lx = 8Lz. We study the propagation for only x < 0.75Lx to neglect the effect of periodic
boundary conditions. We employ a linear cohesive law (see Fig. 4.1c) to describe the
cohesive behavior of the interface, for which the stress decays linearly from a peak value
σc to 0 with the opening δ up to a critical value δc :

σstr(x, z, t) = σc(x, z) max
[
1 − δ(x, z, t)

δc(x, z) , 0
]

. (4.1)

For the linear slip weakening law, the process zone size at rest ω0 can be estimated as:

ω0 ≃ 0.731(1 − ν)µ δc
σc

, (4.2)

see [182], with ν and µ respectively the Poisson’s ratio and the shear modulus of the
bulk. The opening is defined as the difference between the displacement fields of the
top and bottom solids. In this work, we investigate two types of heterogeneities: (1)
heterogeneities of peak strength σc with equal process zone size (see Fig. 4.1d) or (2)
heterogeneities of varying quasi-static process zone size ω0 with constant peak strength
(see Fig. 4.1e). The toughness contrast is defined as ∆Gc = Gs

c − Gw
c .

4.2.1 Material properties

The simulations reported in this chapter have been conducted using the elastic material
properties of Homalite: Young’s Modulus E = 5.3 × 109 [Pa], Poisson’s ratio ν = 0.35 [-]
and shear wave speed cs = 1263 [m/s]. For the interface behavior, the fracture toughness
G0

c = 90 [J/m2] is defined by a couple of maximum stress and critical opening values
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Figure 4.1: (a) Two identical semi-infinite elastic bodies of section Lx, Lz are in contact at
a planar interface located at y = 0. Periodic boundary conditions are imposed for the x
and z axes. The bodies are loaded under normal tensile stress that drives a crack through
a heterogeneous toughness field in the positive x direction at a constant velocity vc. (b)
The layout of the interface: the crack is in brown, the finite process zone in orange, and
the toughness field is represented by shades of green. The crack front is the separation
between the process zone and the intact material and is shown with the dashed black
line. The toughness is slowly varied from its reference value G0

c to respectively Gw
c and

Gs
c along the transition length lt. (c) Traction-separation law for the reference material.

The contrast in toughness can be achieved by (d) changing the peak strength σc but
keeping the process zone size equal, or (e) changing the quasi-static process zone ω0 size
but keeping the peak strength constant.

between (σ0
c , δ0

c ) = (7.79× 106,2.31× 10-5) [Pa,m] and (σ0
c , δ0

c ) = (2.08× 106,8.64× 10-5)
[Pa,m] . The process zone at rest associated to these parameters goes from ω0 = 6.54×
10-3 [m] to ω0 = 9.15× 10-2 [m].

4.2.2 Numerical scheme

The problem is solved by conducting full-field dynamic calculations, using an in-house
open-source implementation of the spectral boundary integral method [169; 170; 171]
called cRacklet [9]. This method relates the displacements u± of the fracture plane to
the stresses τ acting on it. The details of the method are available in 3.2. The numerical
parameter αS is chosen to ensure the stability and the convergence of the numerical
scheme, and is typically set to 0.2. In our numerical simulations, the interface is initially
at rest under homogeneous tensile stresses. A crack is slowly grown until it sponta-
neously propagates at the targeted velocity. The loading is tailored from a reference
simulation in a two-dimensional setup with homogeneous interfacial properties such
that the crack velocity is constant during propagation.
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4.3 Time evolution of the crack deformations and crack front
waves

During a typical simulation, the crack front is initially perfectly straight. It starts deform-
ing when it reaches the heterogeneous field of toughness. The dynamic deformation
of the crack front is mediated by the propagation of crack front waves [181; 183; 184],
resulting in the front oscillating over an equilibrium configuration. We measure the
amplitude A of the front deformations as the distance between the most advanced point
in the process zone at the axis of the strong band and at the axis of the weak band, as
shown in Fig. 4.4d. If the change in toughness is abrupt, the front deformation ampli-
tude overshoots its final value and then oscillates around it. The amplitude of these
oscillations decreases slowly with time ∝ 1/

√
t. As we are interested in the value of the

equilibrium amplitude, we change progressively the toughness properties along a length
lt to reduce the amplitude of these oscillations, such that the simulated cracks are closer
to a permanent regime. We illustrate in Fig. 4.2 the time evolution of the amplitude of
the crack front normalized by the heterogeneity size in two cases: one with an abrupt
change of toughness, i.e., lt = 0 (yellow diamonds) and a case with lt = 5ωv (brown cir-
cles), with ωv the dynamic process zone size. For these two simulations, ∆Gc/G0

c = 0.4,
vc/cr = 0.7 and ω0/d ∼ 0.42. The oscillations of the front amplitude are significantly
reduced when the material properties are slowly changed over the transition length lt.
A longer transition length would diminish the oscillations even more, but would require
enlarging the length of the system and increase the computational cost.
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Figure 4.2: Evolution of the amplitude of the front deformations as a function of time
for two simulations with vc/cr = 0.7, ∆Gc/G0

c = 0.4 and ω0/d ≃ 0.42. The yellow
diamonds correspond to an interface with an abrupt change of properties lt = 0. The
results corresponding to an interface with a gradual change of properties over the
transition length lt ≃ 5ωv are shown with brown circles. The green line indicates the
steady-state amplitude around which the instantaneous amplitude oscillates.

The period of oscillations is characteristic of the propagation velocity of the crack front
waves: the time interval between two local extrema corresponds to the time required for
the crack front waves to propagate across a distance d. When possible, we computed the
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Chapter 4. Crack front deformations in cohesive materials

velocity of the crack front waves and reported them in Fig. 4.3. Note that in some cases
the oscillations are almost completely eliminated, and thus it is not possible to measure
the velocity of the crack front waves easily. This is mostly the case for simulations with
large process zone sizes. The change of properties in the x direction is averaged over
the process zone size, leading to an apparent change in toughness that is smoother and
results in crack front waves with lower amplitude. The velocities of the crack front waves
in our simulations are in agreement with the theoretical prediction given by Ramanathan
[185] (in dashed gray in Fig 4.3). The spread around the theoretical prediction for a
given crack velocity is related to the difficulty in computing the crack front wave
velocity. Contrarily to the case originally explored by Morrissey [181] in mode I or
later by Fekak [183] in mode II, in which a single asperity creates a perturbation whose
propagation along the front is clearly visible, the heterogeneous pattern investigated
in this manuscript results in the front shape changing at every position along z at the
same time, leading to a challenging identification of the front wave velocity. The latter is
computed as explained previously by identifying the period of oscillations, and thus
requires finding local extrema of a discrete set of points. The procedure used here
involves smoothing the data, which might alter slightly the precision of the results.

0.0 0.2 0.4 0.6 0.8 1.0

vc/cr

0.0

0.2

0.4

0.6

0.8

1.0

c f
/c

r

Heterogeneity

δσc

δω

0.0 0.5 1.0

vc/cr

0

1

ω
0
/d

∆Gc/G0
c

0.1

0.3

0.5

0.7

0.9

Figure 4.3: Crack front wave velocity cf as a function of the front velocity vc. The dashed
gray line is the theoretical prediction for mode I [185]. Not all the simulations are shown
in this figure, as it is not always possible to determine the crack front wave velocity
properly.

4.4 Toughness contrast with constant process zone size

Preliminary to the study of dynamic and process zone effects on the crack deformations,
we verified that our numerical model accurately results in a linear increase of front
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4.4 Toughness contrast with constant process zone size

deformation amplitude with the toughness contrast for a given velocity. The process
zone is kept relatively small compared to the heterogeneities size, and the contrast in
toughness is achieved by varying the peak strength while keeping the process zone size
constant across the interface. The amplitude of the front deformations, normalized by
the heterogeneities size, is shown in Fig. 4.4a as a function of the toughness contrast
for ∆Gc/G0

c ∈ [0.1, 1.4]. Fig. 4.4b-d are snapshots of the crack front configuration for
∆Gc/G0

c = 0.3, 0.7, 1.2. The crack is shown in brown, the process zone size in orange,
and the shades of green stand for the toughness of the intact part of the interface. We
observed a roughly linear increase of the front deformations with increasing fracture
toughness contrast. For brittle materials (i.e., no process zone size), the Fourier transform
of the quasi-static front deformations δa is given by, see [10],

δ̂a(k) = − 1
|k|

δ̂Gc(k)
G0

c
, (4.3)

with δGc the fluctuations of fracture toughness, k the wavenumber and .̂ indicates a
Fourier transform. Eq. (4.3) predicts a linear dependency of the front amplitude on the
toughness contrast, which is consistent with our observations. For large contrasts, the
observations deviate from the predictions, which is expected as second-order effects
start being relevant.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

∆Gc/G
0
c

0.0

0.5

A
/d

(a)

0.45 0.50 0.55

x/Lx

0.0

0.5

1.0

z
/L

z

(b)

0.45 0.50 0.55

x/Lx

(c)

0.45 0.50 0.55

x/Lx

A

(d)

Figure 4.4: (a) Scaling of the amplitude A of the front deformations with the toughness
contrast ∆Gc/G0

c . (b)-(c)-(d): snapshots of the crack front deformation for respectively
∆Gc/G0

c = 0.3, 0.7, 1.2. The crack is in brown, the process zone in orange, the strong
toughness in dark green and the weak one in light green. The crack velocity in these
simulations is vc/cr = 0.5.
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Chapter 4. Crack front deformations in cohesive materials

4.5 Crack propagation velocity

We investigate now the effect of the propagation velocity on the dynamic crack front
deformations. The process zone size at rest ω0 is kept relatively small compared to
the heterogeneities size, and the contrast in toughness is achieved by varying the
peak strength while keeping the process zone size at rest constant across the interface.
According to [186], a front dynamically stiffens with increasing propagation velocity
and thus diminishes its deformations. We show in Fig. 4.5a the amplitude A of front
deformations as a function of the propagation velocity with vc/cr ∈ [0.3 − 0.9] (black
diamonds), with cr the Rayleigh wave speed. The amplitude indeed decreases for faster
cracks. The effect of dynamic stiffening on front deformations can be quantified by the
function DI(vc) which only depends on the propagation velocity and whose derivation is
given hereafter. We consider a permanent regime, i.e., a crack that has been propagating
at a constant velocity for an infinite amount of time. An expression for the perturbation
of the dynamic stress intensity factor for a small deviation from straightness of a crack
is provided by [44]. The general structure of the equation relates the perturbed stress
intensity factor to the original stress intensity factor and a convolution of the front
deformations with a function P , see Eq. (8.10) in [44]:

KI(z, t) = K0
I (z)+δKI(z, t) = K0

I (z)+δK0
I

∂a
(z)δa(z, t)−PV

∫ +∞

−∞
P (z, t)K0

I (z′)
[
δa(z, t) − δa(z′, t)

]
dz′.

(4.4)
For a mode I crack, its perturbed stress intensity factor KI writes as Eq. (4.4). K0

I is
the stress intensity factor in the unperturbed configuration, and PV denotes a Cauchy
principal value. P (z, t) is a kernel whose expression in the wavenumber-frequency
domain (z → k), (t → θ) is given by [185; 186]. We consider only the permanent
regime for which there is no time dependency (θ = 0) and in this case P (z, t) reduces to
DI(v)|k|/2 with DI(v) given by Eq. (4.5):

DI(vc) = 1/

(
2√

1 − (vc/cr)2 − 1√
1 − (vc/cd)2 − (vc/cr)2

∫ cd

cs
ϕ(v)dv

)
, (4.5)

and

ϕ(v) =
√

2
π [(v/cr)2 − (vc/cr)2] arctan

(
4
√

1 − (v/cd)2
√

(v/cs)2 − 1
(2 − (v/cs)2)2

)
. (4.6)

It corresponds to the dynamic stiffening term associated with mode I solicitation. The
dashed black line in Fig. 4.5a is DI(vc)Alefm/d, with Alefm the predicted amplitude of
front deformation based on the classical line tension model which is valid for small
process zone size. It tends towards 1 for the quasi-static case vc = 0 and towards 0 for
cracks approaching the limiting propagation velocity, the Rayleigh wave speed cr.
The predicted amplitude DI(vc)Alefm/d matches the amplitude observed in the simula-
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4.6 Process zone size and type of heterogeneities

tions. Fig. 4.5b-d are snapshots of the crack front configuration for vc/cr = 0.3, 0.6, 0.9.
The crack is shown in brown, the process zone size in orange, and the shades of green
stand for the toughness of the intact part of the interface. In these snapshots, two effects
of an increasing crack velocity are visible: (i) a decrease of the deformations and (ii) a
decrease of the process zone size. The latter is known as the Lorentz contraction [22] of
the process zone and is highly relevant for the following when we assess the effect of
this length scale on front deformation. The instantaneous process zone size for a mode I
crack is given by ωv = ω0/AI(vc) with AI a universal function of the crack velocity [15].
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Figure 4.5: (a) Scaling of the amplitude A/d of the front deformations with the propa-
gation velocity vc/cr. A is defined as the distance along x between the most advanced
points in the process zone size at z = 0 and at z = 0.5Lz as shown in panel (b). The
dashed black line corresponds to the prediction of the classical line tension model
Alefm/d corrected to take into account the dynamic stiffening of the front by the term
DI(vc), see details in the text. (b)-(c)-(d) : snapshots of the crack front deformation for,
respectively vc/cr = 0.3, 0.6, 0.9. Note that the x-scale and z-scale are different. The
crack is in brown, the process zone in orange, the strong toughness in dark green and the
weak one in light green. The toughness contrast in these simulations is ∆Gc/G0

c = 0.4.

4.6 Process zone size and type of heterogeneities

The influence of the process zone size is investigated. We consider two different cases:
heterogeneities of peak strength σc (with constant process zone, see Fig 4.1d), and
heterogeneities of process zone size at rest ω0 with constant peak strength, see Fig 4.1e).
We vary in both cases the average value ω0 of the quasi-static process zone size while
keeping the toughness contrast and the propagation velocity constant. The amplitude
of crack front deformations is shown in Fig. 4.6a, for vc/cr = 0.5, ∆Gc/G0

c = 0.4 and
ωv/d ∈ [0.05 − 1.5] for heterogeneities of peak strength (diamonds) and process zone
size (circles). For small relative process zone size ωv/d the front deformation amplitude
is similar for both types of heterogeneities. However, they get significantly farther

53



Chapter 4. Crack front deformations in cohesive materials

apart with increasing process zone size. On one hand, the amplitude increases with the
dissipation length scale for heterogeneities of peak strength (diamonds in Fig. 4.6a and
snapshots in Fig. 4.6b-d). On the other hand, the amplitude diminishes with the process
zone size for heterogeneities of process zone (circles in Fig. 4.6a and snapshots in Fig. 4.6e-
g). Changes in process zone size are accommodated more easily by a crack front than
changes in peak strength. These observations are striking: the deformations of a cohesive
crack propagating through a heterogeneous microstructure are strongly dominated by
the nature of the heterogeneities. For two interfaces sharing the same fracture toughness
contrast, the difference between the two types of heterogeneities investigated in this
work reaches up to a factor 4 when the process zone and the heterogeneities have the
same size ωv/d ∼ 1. The deformations are not tied directly to the toughness contrast, but
rather to the variations of the cohesive parameters. For the slip weakening law used in
this manuscript and heterogeneities that are achieved by varying both the peak strength
and the process zone size (not presented in this manuscript), we expect the behavior to
be bounded by the two limiting cases that were investigated. Note that this difference is
expected to vanish for negligibly small relative process zone size, which can occur either
with brittle materials or when cracks propagate at a velocity close to the limiting wave
speed due to the Lorentz contraction.
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Figure 4.6: (a) Scaling of the amplitude A of the front deformations with the process zone
size ωv for heterogeneities of constant process zone size (diamonds, snapshots shown in
(b)-(c)-(d) for ωv/d ∼ 0.2, 0.6, 1.25) and constant peak strength (circles, snapshots shown
in (e)-(f)-(g) for ωv/d ∼ 0.2, 0.6, 1.25). For the latter, the value of ωv is the average of
ωv(z) over the crack front. The crack velocity in these simulations is vc/cr = 0.5.

4.7 Dynamic cohesive line tension model

In order to understand these surprising observations, we go back to the quasi-static
cohesive line tension model [10]. The derivation is recalled in Appendix A for complete-
ness. This model extends Rice [22] first-order theory by including the effect of cohesive
stresses that resist the crack opening and is based on the weight functions associated to a
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4.7 Dynamic cohesive line tension model

point force located at a given distance from the front (i.e., inside the process zone). Two
competing mechanisms arise from the presence of a cohesive zone : (i) the front stiffness
is reduced and (ii) the fluctuations of strength δσc and process zone δω are smoothed out.
They are extensively discussed in [10]. It is predicted that these competing effects can
have two different outcomes in the quasi-static regime: for heterogeneities of strength
only, the front deformation amplitude is enhanced, while for heterogeneities of process
zone they are diminished. This is in qualitative agreement with the results reported in
Fig. 4.6a. However, our simulations correspond to fully dynamic rupture while [10]’s
model is limited to quasi-static cracks. Two additional effects are expected to emerge
when extending this model to dynamics: (iii) the process zone size changes dynamically
with the propagation velocity: it shrinks when a crack accelerates due to the Lorentz
contraction [22] and (iv) the front stiffens with increasing crack velocity [186]. For the
same interface layout, a faster crack is expected to deform less, and the differences
between the type of heterogeneities should be reduced.
In order to validate our observations, we thus derive a dynamic cohesive line tension model,
building on the quasi-static model of Lebihain et al. [10]. We derive it in the permanent
regime (i.e., constant propagation velocity). The difficulty resides in computing the
expression of the stress intensity factor k of the deformed front F∗ that is generated at a
point z = z0 by a pair of unitary forces that are applied at a given distance x behind the
crack front at a point z = z1, see Eq. (A.4). In the permanent dynamic regime, it writes

k (F∗; z0, z1, x, vc) = k (F ; z0, z1, x, vc) + DI(vc)
∫ +∞

−∞
k (F ; z; z1, x, vc)

δa(z) − δa(z1)
(z − z1)2 dz,

(4.7)
where k (F ; z0, z1, x, vc = 0) is known analytically for the semi-infinite coplanar crack
with a straight crack front F .
The derivation of the dynamic cohesive line tension model follows then the one pre-
sented in Appendix A for the quasi-static case for the crack face weight functions and
the cohesive stress intensity factor, with two main differences: the process zone to be
considered is the instantaneous cohesive zone size ωv instead of the rest one ω0, and the
pre-factor DI(vc) multiplies the terms. The complete prediction for the deformation of a
front in the dynamic regime due to both heterogeneities of strength and process zone
thus corresponds to Eq. (A.17) with the two changes mentioned above, which results in
Eq. (4.8):

δ̂a(k) = −DI(vc)
(

ωv
Σ̂(|k|ωv)
Â(|k|ωv)

δ̂σc(k)
σ0

c
+ ωv

Ω̂(|k|ωv)
Â(|k|ωv)

δ̂ω(k)
2ωv

)
. (4.8)

with k the wavenumber and .̂ indicates a Fourier transform. ωv is the instantaneous
process zone size (related to (iii) above) and DI(vc) is a function of the velocity and
represents the dynamic stiffening of the front (point (iv) above). Â and Σ̂ and Ω̂ are
functions of the nature of the weakening, the wavenumber k and the process zone size.
The exact formulation for these functions is given in section 4.10. The term Â acts as the
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Chapter 4. Crack front deformations in cohesive materials

loss of stiffness of the front due to the introduction of a finite-size region of dissipation
mentioned in point (i), while Σ̂ and Ω̂ smooth out the fluctuations of material properties
mentioned in point (ii). Note that as DI(vc = 0) = 1, we recover the formulae for the
quasi-static front deformation in presence of a process zone. For cracks propagating at
the limiting velocity, we have DI(vc = cr) = 0, resulting in theoretically undeformable
crack front in this limit (in the hypothesis of co-planar crack propagation). In practice,
fast cracks will often trigger out-of-plane damage and instabilities before reaching the
limiting velocity.

4.8 Comparison between theory and simulations

Crack front deformation simulations have been conducted for a broad range of param-
eters, including variations of process zone size at rest ω0, toughness contrast, type of
heterogeneities, and crack front velocity vc. In Fig. 4.7a the front deformation amplitude
measured from the simulations is plotted versus the prediction from the standard line
tension model that does not consider the existence of a finite dissipation length scale near
the crack tip, but including the dynamic stiffening term from Eq. (4.3). This prediction
fails, as we have established previously that a finite process zone size strongly impacts
the crack front deformations. For a given prediction based on the LEFM theory (take
for example Alefm/d = 0.25) there is a large spread of measured amplitude, which can
be either larger or lower than the predicted one (the dashed-gray line has a slope of 1)
depending on the type of heterogeneities. It is expected from the observations of Fig. 4.6
that simulations with a small process zone (e.g., for fast ruptures) will result in a sig-
nificantly smaller difference between the two types of heterogeneities. This is apparent
with the data points corresponding to fast cracks (yellow-green in Fig. 4.7a) that are
significantly closer than the ones for slower cracks (blue data points). The effect of the
front stiffening with increasing velocity is also visible from Fig. 4.7a, with large velocities
resulting in small amplitudes. In Fig. 4.7b, the prediction of Eq.(4.8), the dynamic cohesive
line tension model, is tested: all the data are falling close to a linear master curve, strongly
supporting the validity of our model for rationalizing the effect of a finite process zone.
While the predictions of Eq. (4.8) are based on the assumption of a semi-infinite crack,
finite-size cracks have been considered in the simulations. Plus, the simulated ruptures
are not in a steady permanent regime as assumed in the model. Second-order effects
might also be required to accurately describe the deformations of cohesive fronts, as
the latter can display larger curvatures than the classical line tension fronts. This could
potentially explain the small deviation from the predictions. Nonetheless, the proposed
model successfully predicts the numerical observations and thereby the non-trivial
influence of a finite dissipation length scale for crack front deformations at constant
propagation velocity: not only does the process zone influence front deformations, but
also its outcome varies strongly depending on the description of the heterogeneities.
Note that a comparison with experiments was done in [10] in the quasi-static case.
Including the effect of the process zone size on the front deformation helps to improve
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4.9 Discussion

the prediction of the crack front profile when encountering a strong heterogeneity. In
particular, the cohesive line tension model can predict significantly stronger curvature near
the defect compared to the classical line tension model.
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Figure 4.7: The amplitude of the front deformations measured in simulations is com-
pared with: (a) the prediction from the LEFM theory that does not account for a finite
process zone, (b) the prediction from our newly derived dynamic cohesive line tension
model. The simulations shown here explore a broad range of parameters, including vari-
ations of the crack propagation velocity vc, the process zone size at rest ω0 the toughness
contrast ∆Gc and the type of heterogeneities (constant process zone or constant peak
strength).

4.9 Discussion

The deformations of a dynamic cohesive crack propagating through a heterogeneous
field of toughness have been investigated numerically using the spectral boundary inte-
gral method coupled with a cohesive zone model. While the influence of the toughness
contrast on front deformation amplitude is in agreement with the prediction of the
classical line tension model (i.e., a linear increase of amplitude with contrast), modifying
the process zone size introduces scale effects in the deformation of the crack front that
are non-trivial. For the same toughness contrast and average process zone size, the
crack front deformation amplitude is enhanced when considering heterogeneities of
peak strength and diminished for heterogeneities of process zone. When considering
the dynamics of the front, these differences are mitigated by the Lorentz contraction of
the process zone size, and the amplitude of front deformations is decreased due to the
dynamic stiffening of the front with increasing crack velocity. To rationalize these obser-
vations, we extended the cohesive line tension model recently proposed in [10] to dynamic
rupture. This model predicts accurately the amplitude of the observed deformations,
taking into account the instantaneous average process zone size and the propagation
velocity. All in all, our model reveals the non-trivial effect of a finite dissipation length
scale on the front deformations, and particularly the importance of the nature of the
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Chapter 4. Crack front deformations in cohesive materials

heterogeneities. Building a complete cohesive model including change in velocity and
variations of properties along the front propagation direction remains a challenge. For
the latter, the process zone size is expected to be also the relevant length scale, as the
properties are averaged over the process zone size [179]. This work provides the neces-
sary ingredients to characterize the front roughness of disordered materials [187; 188],
giving access to an estimate of the Larkin length. This directly impacts the prediction
of the effective propagation threshold in cohesive composites[189]. Finally, this work
might help understand the occurrence of out-of-plane damage as a consequence of high
in-plane curvature of the front [176], and more generally the deformations of a three-
dimensional crack front for which the process zone size changes with the orientation
from the crack tip.

4.10 Supplemental material

For completeness, we recall here the expression for Â and Σ̂ and Ω̂. Note that these
expressions slightly differ from the one given by [10] as we consider here the dynamic
process zone size ωv and not the static one ω0.

Â (|k|ωv) = − 1
Cw

∫+∞
0

f ′
w (u)
u1/2

(
1 − e−|k|ωvu

)
du

Σ̂ (|k|ωv) = 1
Cw

∫+∞
0

fw (u)
u1/2 e−|k|ωvudu

Ω̂ (|k|ωv) = − 2
Cw

∫+∞
0 f ′

w (u) u1/2e−|k|ωvudu

(4.9)

with Cw =
∫+∞

0 fw (u) u−1/2du and fw(x/ω) the shape function that relates to the nature
of the weakening. For the linear traction separation law considered in this work there is
no analytical expression for the shape function as a function of the distance, but it can
be computed numerically, see [10] Appendix C.4. for details.
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5 On the dynamics of frictional
interfaces described by rate and
state friction laws

Frictional sliding is an intrinsically complex phenomenon, emerging from the inter-
play between driving forces, elasto-frictional instabilities, interfacial nonlinearity and
dissipation, material inertia, and bulk geometry. Frictional rupture propagation cor-
responds to a high slip rate state invading a relatively low slip rate area ahead of the
frictional rupture front. This picture of frictional rupture is reminiscent of the classical
representation of fracture, in which a displacement discontinuity invades the intact
material. However, several fundamental differences exist between frictional rupture
and classical fracture. First, the residual strength that is left behind the rupture front is
not zero for frictional rupture, while broken surfaces in tensile fracture cannot sustain
any stress. If the residual stress is well-defined and is smaller than the far-field stress,
then an analogy between friction and fracture can be maintained, i.e., edge singularity
and energy balance might be applicable. While these assumptions have been consistent
with fields and laboratory measurements, there is not yet a basic understanding of
the physical mechanism for the emergence of stress drops in frictional rupture. Once
the origin of the stress drop is established, one can wonder to what extent frictional
rupture might be viewed as an ordinary fracture process in terms of edge singularity
and energy balance. I contributed answering to these questions with Dr. Fabian Barras
at the end of his thesis [190]. The main results are presented in the first part of this
chapter. The second fundamental difference with fracture arises from the rupture modes
existing in frictional rupture, crack-like rupture but also compact self-healing slip pulses.
The latter consists of a rupture front closely followed by a healing front, such that the
slip velocity behind the front goes to zero over some finite length-scale, contrarily to
crack-like ruptures where it remains finite. The conditions under which slip pulses are
favored in place of crack-like rupture are not yet clear, and the property of such objects
have not yet been studied in depth. In the second part of this chapter, the emergence of
slip pulses in velocity-driven frictional sliding is presented. The slip pulses are analyzed
using the analogy with fracture mechanics to derive their equation of motion.
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Chapter 5. On the dynamics of frictional interfaces described by rate and state
friction laws

This chapter is an adapted version of the following scientific articles:

F. Barras, M. Aldam, T. Roch, E. A. Brener, E. Bouchbinder, and J.-F. Molinari, “Emer-
gence of cracklike behavior of frictional rupture: The origin of stress drops,” Physical
Review X, vol. 9, p. 041043, 2019

F. Barras, M. Aldam, T. Roch, E. A. Brener, E. Bouchbinder, and J.-F. Molinari, “The
emergence of crack-like behavior of frictional rupture: Edge singularity and energy
balance,” Earth and Planetary Science Letters, vol. 531, p. 115978, 2020

T. Roch, E. A. Brener, J.-F. Molinari, and E. Bouchbinder, “Velocity-driven frictional
sliding: Coarsening and steady-state pulses,” Journal of the Mechanics and Physics of Solids,
vol. 158, p. 104607, 2022
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5.1 Emergence of crack-like behavior of frictional rupture

5.1 Emergence of crack-like behavior of frictional rupture

5.1.1 Introduction

Frictional rupture consists of a state with a large slip rate invading a state of low (stick)
slip rate, through the propagation of a rupture front. In this sense, it is analogous to
ordinary tensile cracks (mode I fracture), for which a finite displacement discontinuity
behind the crack tip invades an intact material with no displacement discontinuity.
However, there exists a significant difference between frictional rupture and tensile
one. A tensile crack is composed of free surfaces that cannot sustain tensile stress,
and thus stress vanish behind the crack tip. This difference in stress, called stress
drop, is compensated by a large concentration of stress near the tip, in the form of a
mathematical singularity, and its intensity controls the crack behavior. For frictional
rupture, the bodies remain in contact behind the rupture front and stress does not drop
to zero. The analogy between fracture and friction can hold if, as widely assumed, the
residual stress level is well-defined and smaller than the background stress such that
a finite stress drop emerges. It is usually assumed that the residual friction stress is
a property of the frictional interface, often linked to the dynamic friction coefficient.
Under these conditions, a finite stress drop emerges, and it is expected that the main
concepts of fracture mechanics (edge singularity, energy balance) are valid. This has
been assumed widely assumed in numerical modelling [60; 63; 61; 194; 179; 195; 115;
196; 197; 198; 199; 200; 201; 202; 203; 204; 135; 205], has been consistent with geophysical
observations [206; 205] and confirmed with laboratory earthquakes experiments [207;
208; 209; 127; 136; 210; 211; 133]. However, there is no basic understanding of how
and under what conditions the crack-like behavior of frictional rupture emerges from
fundamental physics. First, one needs to understand the origin of the finite stress drop
∆τ and the conditions required for its emergence. We show in this chapter that the
stress drop for rapid frictional rupture is related to waves radiated from the interface to
the bulk and thus is not an interfacial parameter, but rather is related to the interaction
between the frictional behavior and long-range bulk elastodynamics. Once the existence
of a finite stress drop is established for frictional rupture, we show that frictional rupture
is quantitatively described by a crack-like energy balance equation. In particular, we
show the existence of a square root singularity of the velocity and stress fields near
the rupture tip and verify the local energy balance between the related energy release
rate and fracture energy. This leads to an adapted equation of motion for frictional
rupture fronts that is validated with numerical simulations. We conclude this chapter by
showing that there exists additional energy dissipation that is non-edge localized and
illustrate deviations from the classical picture of fracture mechanics.
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Figure 5.1: A schematic representation of the class of frictional systems under consid-
eration. Two identical elastic bodies of width W and height H are in contact along an
interface located at y =0 (brown line). The bodies are under constant normal (compres-
sive) stress σ0 and are driven anti-symmetrically at the upper and lower boundaries with
constant shear stress τ0. Periodic boundary conditions are imposed in the x direction.

5.1.2 The physical origin of stress drops

The frictional system under consideration for our argument consists of two identical
homogeneous bodies in contact at a planar interface located at y = 0, see Fig. 5.1. The
solids are linear elastic, i.e., are described according to Hooke’s law. The behavior of
the interface involves three bulk quantities: the slip velocity at the interface v(x, t) =
u̇x(x, y = 0+, t) − u̇x(x, y = 0−, t) where ux is the displacement field, the dot represents
a time derivative, and ± denote the top and bottom bodies, the interfacial shear stress
σxy(x, y = 0, t) that is in equilibrium with the frictional stress τ(x, t) and the normal
stress acting on the interface σyy(x, y = 0, t). The interfacial constitutive law also
depends on an internal state variable that describes the structural state of the interface
and its history, commonly noted ϕ(x, t). The interfacial constitutive law writes as
follows:

τ = σyyf(|v|, ϕ). (5.1)

The complete description of the interface behavior also requires describing the state
variable evolution, with a function ϕ̇ = g(vϕ/D). ϕ is usually interpreted as representing
the maturity or age of the microcontacts at the interface, see section 2.3 for more details.
Usually, g(1) = 0 and D is the characteristic slip displacement that controls the transition
from stick conditions to steady sliding at slip velocity v characterized by a state value
ϕss = D/v. The exact function of g(.) does not play a role in the following discussion.
We first consider a generic frictional behavior f(|v|, ϕss) that is N shaped under steady-
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5.1 Emergence of crack-like behavior of frictional rupture

state conditions, i.e., it is rate strengthening at small and really large velocities, and rate
weakening at intermediate velocities. This generic behavior has been observed for a
large range of slip rates for numerous materials [86] and is shown in Fig. 5.2a in brown.
Now consider that the system under consideration is driven at a constant stress τ0. Then,
what kind of frictional rupture can emerge under these conditions?
As we established before, a frictional rupture is composed of a fast slip state propagating
into a sticking state. This can be related to the intersection of the frictional steady-state
curve with the driving stress. The left-most intersection is in the rate-strengthening
branch for small velocities (marked with a red star) and corresponds to the state of the
interface ahead of the rupture edge. The rightmost intersection (also indicated with a red
star) features a large slip velocity v > 0 and corresponds to the state behind the rupture
edge. The transition between these two configurations depends on the evolution law ϕ̇

and bulk elastodynamics. Note that a third intersection exists, in the rate-weakening
branch, but this one is not stable due to the existence of frictional instabilities associated
with rate-weakening effects. The important thing to notice here is that the stress ahead
and behind the rupture edge is τ = τ0 and thus the expected stress drop is zero, ∆τ = 0.
In front of this apparent absence of stress drop and consequently crack-like behavior,
one might wonder what would occur with another generic friction law widely used in
the literature, that does not feature the rate strengthening branch at high slip velocities,
as shown in brown in Fig. 5.3. Here, only a single stable point exists at small slip velocity
for a constant driving stress τ0. Then, the slip behind the rupture edge is expected to
continuously accelerate and no finite stable stress drop can emerge.
The previous theoretical discussion is in sharp contrast with the observations of a stress
drop in various frictional systems [212; 207; 208; 127; 210; 136; 133; 213]. Then, how one
can reconcile these two apparently incompatible observations?
We write in detail the elastodynamics relations at the interface between two solids
that are driven by a constant stress far from the interface, τ0. In these conditions (and
not specifically at steady-state), the interfacial stress writes σxy = τ0 + s̃(x, t) with s̃ a
spatiotemporal integral that describes the long-range stress transfer between two parts
of the interface. Under strict homogeneous steady-state before any slip, s̃(x, t) → 0 and
thus the equilibrium at the interface give the left-most intersection on Fig. 5.2a (and
Fig. 5.2b). However, at finite times after rupture, the term s̃(x, t) makes a contribution
that describes the deviation from steady-state. If one considers finite times before the
elastic waves have time to reach the system boundaries at y = ±H , the spatiotemporal
contribution can be decomposed into two terms: (i) the instantaneous response of
the interface due to a change in slip velocity, known as the radiation damping term
µ/(2cs)(v − v0) with µ the shear modulus of the bulk, cs the shear wave velocity, and v0
the reference sliding velocity, (ii) and a non-local contribution s(x, t) [169; 170; 171]. One
can write:

σxy(x, t) = τ0 − µ

2cs
[v(x, t) − v0] + s(x, t). (5.2)
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Figure 5.2: (a) The steady-state normalized frictional strength fss (solid brown line)
vs. the steady-state slip velocity vss on a semilogarithmic scale. The curve has a generic
N shape [86], with two rate-strengthening branches (dfss/dvss >0) separated by a rate-
weakening branch (dfss/dvss < 0). The dashed horizontal orange line represents an
imposed driving stress f0 = τ0/σ0. It intersects the steady-state friction curve at three
points: the first one, for small velocity, is stable (on a rate-strengthening branch) and
describes the state of the system before perturbation ("Initial steady state"). There is
another stable-fixed point at large velocities that describes the state of the interface
after rupture to equilibrate the friction coefficient with the driving stress ("Long term
steady state"). The last one is unstable and is located on the rate-weakening branch.
The latter will be discussed later in this chapter, when we will consider velocity-driven
sliding. (b) The effective steady-state friction curve (dotted dashed green line) obtained
by adding the radiation damping term (vssµ/2cs) to the solid brown line. The driving
stress intersects the effective friction curve at a different velocity, marked as the "Post-
rupture steady state". The corresponding stress drop ∆τ/σ0 is indicated by the black
double arrow.

The radiation damping term plays an important role in the emergence of a stress drop.
Consider a system that is sufficiently large such that the spatiotemporal integral term
s(x, t) vanishes far behind the rupture edge, but the radiation damping term is still
relevant, i.e., wave reflection at the boundaries and back to the interface has not occurred
yet. Then, the equilibrium of stress far from the rupture front can be written as:

τ(vres) ≃ τ0 − µ

2cs
[vres − v0] , (5.3)

with vres the residual sliding velocity far behind the front. Thus, the residual stress can
be written as τres = τ0 − µ

2cs
vres and the corresponding finite stress drop is the radiation

damping term:
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Figure 5.3: The same figure as Fig. 5.2 but for a steady-state friction law that is purely
weakening at high velocities. (a) The steady-state normalized frictional strength fss (solid
brown line) vs. the steady-state slip velocity vss on a semilogarithmic scale. The dashed
horizontal orange line represents an imposed driving stress f0 =τ0/σ0. Contrarily to the
N-shaped law, the driving stress intersects the steady-state friction curve only at two
points: at small velocity and in the weakening branch. There is no "Long term steady
state" in this case. However, when adding the radiation damping term to obtain the
effective steady-state friction curve (b), there is a stable point that again gives the stress
drop according to Eq. (5.4).

∆τ ≃ µ

2cs
vres. (5.4)

The previous equation is valid only for timescale O(H/cs). This situation is represented
in Fig. 5.2b, in which the friction law with the addition of the radiation damping term
(left-hand side of Eq. (5.3)) is the dotted dashed green curve. This effective steady-state
friction intersects the driving stress at a smaller velocity than the initial friction law. For
the friction law with no minimum (Fig. 5.3b), this creates a new stable point compared
to the initial law, which is only valid at finite times. The corresponding stress drop is
indicated with black double arrow in Fig. 5.2b and Fig. 5.3b. Note that this physical
picture is limited to timescale before the reflections of shear waves at the boundaries
and back to the interface. After that, the stress drop is expected to decrease to zero in
discrete steps corresponding to each wave reflection, see [79].

5.1.3 Simulation support for the emergence of ∆τ

We now aim at verifying the prediction of Eq.(5.4) by conducting numerical simulations
of frictional rupture in infinite systems, such that no wave reflection occurs. We use the
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spectral boundary integral method described in chapter 3.2 to simulate the behavior
of two semi-infinite elastic homogeneous bodies in contact along a frictional interface.
Periodicity at the extremity of the interface (x = 0, x = W ) is employed, and we load
the system in anti-plane shear (mode III) conditions. Both the N-shaped friction law
Eq. (2.45) and the one without minimum at high velocities are tested. The interface is
initially at steady-state with a small sliding velocity v0 ≃ 0 and under constant shear
stress τ0. Rupture is nucleated at the center of the interface by introducing a Gaussian
perturbation in the slip velocity field (with an amplitude sufficiently large that the
interface behavior in the perturbed area is velocity weakening). The outcome of a
typical simulation is shown in Fig. 5.4. The velocity (panel (a), brown curve) and the
stress (panel (b), orange curve) profiles reveal two propagating rupture fronts going in
opposite directions at a rupture velocity cR = 0.84cs. As expected, the residual velocity
reaches a plateau far behind the rupture edge, with the stress also saturating at a finite
value. One can thus measure the observed stress drop (indicated with black double
arrow in Fig. 5.4b) and compare it to the prediction of Eq. (5.4).
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Figure 5.4: (a) A snapshot of the slip velocity v(x) normalized by the residual velocity
behind the tip vres. Two fronts are propagating in opposite directions at high velocity
(here cR = 0.84cs). The rupture invades the interface that is currently sticking v ≃ 0
and lets behind it some residual velocity. The axe is truncated for visual clarity (b) A
snapshot of the shear stress τ normalized by the compressive stress σ0. The rupture
fronts propagate in regions characterized by the driving stress τ0, and let behind them a
well-defined residual stress τres < τ0. Thus, a finite stress drop ∆τ emerges.

This comparison is shown in Fig. 5.5. The theoretical predictions are shown in solid
brown for the N-shaped law and orange for the no-minimum friction law, while the
results of numerical simulations are shown with brown circles (N-shaped) and orange
squares (no-minimum), for various driving stress τ0. The agreement between prediction
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and numerical results is excellent (note that it is better for the N-shaped law). The reader
interested in detailed explanation regarding the error for the no-minimum curve is redi-
rected toward [191]. A similar discussion for slow ruptures in which the spatiotemporal
term s(x, t) might be dominant is also presented in [191], as well as a comparison with
experiments.
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Figure 5.5: Theoretical prediction for the value of the stress drop given by Eq. 5.4 for ∆τ
for rapid ruptures, for respectively the N-shaped friction law shown in Fig. 5.2 (brown
curve) and the no-minimum law shown in Fig. 5.3 (orange curve). The brown circles
correspond to the stress drop measured in numerical simulations with the N-shaped
law, while the orange squares are for the no-minimum law.

5.1.4 Crack-like behavior of frictional rupture

Once the emergence of a finite stress drop is established, one can explore the implication
on the behavior of frictional rupture. First, the existence of a stress drop implies that the
region near the rupture tip should carry an increased amount of stress to compensate
for this reduction. In the theory of linear elastic fracture mechanics, this amplification of
stress is singular near the rupture edges, as:

σxy ∝ K(L, cR)√
x − xr

, (5.5)

where K = ∆τ
√

LK(cR/cs) is the stress intensity factor, L is the size of the rupture, cR
the velocity of the rupture front (not to be confused with the Rayleigh wave speed cr),
xr the location of the rupture edge and K(cR/cs) a dimensionless function of the rupture
edge’s propagation velocity. The slip velocity near the rupture edges follows a similar
scaling, as :

v ∝ cRK(L, cR)
µ

√
x − xr

. (5.6)

Note that Eqs. (5.5,5.6) are valid independently of the rupture mode (for in-plane shear
and out-of-plane shear). One of the fundamental principles of fracture mechanics is that
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the square root singularity at the tip is accompanied by a finite flux of energy at the
crack tip, the so-called energy release rate G. It is directly related to the stress intensity
factor, and writes:

G(L, cR) ∝ A(cR/cs)
[K(L, cR)]2

µ
, (5.7)

in which A(cR/cs) is a dimensionless function of the rupture velocity and depends
on the rupture mode. If the local energy balance is valid (as expected from fracture
mechanics), the energy release rate is equal to the fracture energy G = Gc. It is important
to note that contrarily to ordinary tensile brittle fracture (mode I) where the dissipation
is localized at the tip, in the case of frictional rupture, dissipative processes are in play
on the entire interface. Once a stress drop exists, are the fields near a frictional rupture
front square root singular, and if so, can one extract the fracture energy from the entire
dissipation occurring at the interface? Is the local energy balance valid for frictional
rupture? Before addressing all of these questions, that have been partially discussed
in the literature already [200; 82; 80; 214; 215; 216; 217], we address the question of the
frictional rupture front equation of motion.

5.1.4.1 Equation of motion

Assuming that the previous equations are valid, and combining them, one can obtain
the propagation velocity as a function of a length-dependent stress drop quantity, as :

cR
cs

= F
(

L

LG(∆τ)

)
, (5.8)

and

LG(∆τ) = µGc/ (∆τ)2 , (5.9)

where LG(∆τ) is a generalized Griffith-like length. The previous equation is valid under
the assumption that the fracture energy is constant and independent of the rupture
velocity cR. F is an increasing monotonous function that depends on the rupture mode.
We test this prediction with the simulations that were used to determine the stress drop
shown in Fig. 5.5. We compute the local rupture velocity cR and the frictional rupture
length L (as the distance between the two frictional rupture tips) and represent them
in Fig. 5.6a. According to Eq. (5.8), all the curves should be collapsing when rescaling
by the Griffith-like length LG(∆τ). This is done in Fig. 5.6b, in which Gc = 0.65 [J/m2]
and a unit prefactor have been used. All the curves cR(L) collapse on a master envelope
after rescaling. Some deviations are observed at early times for each curve, which is
expected, as the crack-like nature of frictional rupture is not valid during the nucleation
stage. This first preliminary verification provides strong support to the assumptions of
crack-like behavior. We now aim at verifying it directly.
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Figure 5.6: (a) The rupture velocity cR normalized by the shear wave speed cs as a
function of the size of the frictional rupture L, normalized by the system size W for
various driving stress value τ0/σ0 using the N-shaped friction law shown in Fig. 5.2.
(b) The rupture velocity versus the rupture size normalized by a generalized Griffith-
like length LG(∆τ) as given by Eq. 5.9. The curves collapse on a master envelope as
predicted by Eq. 5.9.

5.1.4.2 Stress singularity and energy balance

We represent in Fig. 5.7 a zoom on the fields near a rupture tip: the stress in dashed
orange ((τ − τ0)/σ0) and the slip velocity in solid brown (vµαs(cR)/2cRσ0). We then
fit the two fields such that they share the same stress intensity factor K and the same
rupture tip location xr (details about the procedure can be found in [192]), and plot the
corresponding square root singular fields in dashed black. The latter represent faithfully
the velocity and stress fields near the rupture tip, supporting the existence of singular
fields for frictional rupture once a stress drop is present. The inset illustrates this match
in a double logarithmic scale, with the square root singularity being indicated as a line
with slope −1/2. The range over which the velocity field is square root singular is
significantly larger than its stress counterpart. From this fit, one can extract the value of
the stress intensity factor and then compute the energy release rate associated with the
rupture front, as was done in [190].
To assess if the concept of local energy balance is valid, we need to compute the fracture
toughness independently. This verification was done by Dr. Fabian Barras [190], and
we recall it here for completeness. The dissipated energy during frictional rupture at a
given location x is given by:

EBD(δ, x) =
∫ δ

0

(
τ(δ′) − τres

)
dδ′. (5.10)

The dissipated energy, here called breakdown (and not fracture energy yet) is computed
at distinct locations behind the rupture tip (noted x = li with i = 1 − 3, 1 being the
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Figure 5.7: The normalized profile of the shear stress τ(x, t) (orange) and the slip
velocity v(x, t) (brown) near a rupture edge, propagating towards the left with a velocity
cR ≃ 0.94cs. The position x is shifted by the position of the rupture edge xr. The dashed
lines are the result of fitting the singular fields of fracture mechanics as described in
Eqs. (5.5,5.6). (inset) The same as the main panel, but in a double logarithmic scale,
illustrating the quality and the range of the fit for the singular fields.

closest to the nucleation site and 3 the farthest). We plot the breakdown energy in Fig. 5.8
for the three locations. The three curves are perfectly equivalent for small slips, but
then show some location dependency for larger slip values. This can be understood
as follows: the shear stress features a strong decay close to the tip location, and then a
slow decay towards its residual value on a significantly larger length-scale. The latter
is related to the rate and state nature of the friction law, with a residual steady-state
that is slowly reached. In addition, the rupture front accelerates (as shown in Fig. 5.6),
which implies that the function τ(δ) is different for each location. The localized edge
dissipation should be understood as the effective fracture energy Gc that appears in
the equations of fracture mechanics. This value is indicated with a black horizontal
line in Fig. 5.8. One possibility to evaluate Gc independently relies on the observations
that, around the rupture tip, the function vϕ/D is significantly larger than 1 [190]. We
recall here that vϕ/D being larger or smaller than unity determines if the contact area is
reduced or increased, as it directly controls the sign of the evolution law ϕ̇. To estimate
Gc, one can thus compute the dissipated energy only in the region where the state value
is decreasing (i.e., microcontacts are broken), with:

Gc = 1
cR(t)

∫
vϕ/D>1

(τ(x, t) − τres) v(x, t)dx. (5.11)

The ratio between this quantity and the energy release rate estimated from the singular
fields is shown in the inset of Fig. 5.8, with the ratio being close to 1. The breakdown en-
ergy, however, can be in significant excess compared to Gc, implying that non-localized
friction dissipation is a generic feature of interfaces following a rate and state friction
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Figure 5.8: Breakdown energy EBD as a function of the slip for three interface locations
on the interface with ℓ1 = 0.15W , ℓ1 = 0.2W and ℓ1 = 0.25W . The three curves are
collapse up to EBD ≃ 0.65 [J/m2] which is identified as Gc. (inset) The ratio between the
energy release rate G and the fracture energy Gc computed independently as a function
of the position of the rupture tip.

5.1.5 Conclusion

In the first part of this chapter, we show that contrarily to what is usually assumed,
the stress drop in frictional rupture is not a characteristic property of the interface,
but is rather a quantity that is determined by the bulk elastodynamics (through wave
radiations and long-range wave transfer), the friction law and the driving stress. This
stress drop (for rapid rupture) is a finite time effect that is limited by the time of travel
of waves in the system. We then evaluate if frictional rupture, once a finite stress drop
exists, behaves like regular cracks. We show that for the constitutive relations considered
here (rate and state friction), the near tips fields are approximately square root singular.
The local balance of energy near the tip is satisfied once one has extracted the fracture
energy from the total dissipated energy, which also involves frictional dissipation that is
non-edge-localized. The effective fracture energy computed here is constant, while the
total breakdown energy features position dependency. The analogy between frictional
rupture and ordinary fracture is thus not complete. The deviations from the classical
picture of fracture mechanics have been discussed in [218; 219; 220], and have significant
implications in understanding the total energy budget of earthquakes.
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5.2 Velocity-driven frictional sliding: coarsening and steady-
state pulses

Frictional sliding is an intrinsically complex phenomenon, emerging from the interplay
between driving forces, elasto-frictional instabilities, interfacial nonlinearity and dissipa-
tion, material inertia, and bulk geometry. We show that homogeneous rate-and-state
dependent frictional systems, driven at a prescribed boundary velocity — as opposed
to a prescribed stress — in a range where the frictional interface is rate-weakening,
generically host self-healing slip pulses, a sliding mode not yet fully understood. Such
velocity-driven frictional systems are then shown to exhibit coarsening dynamics satu-
rated at the system length in the sliding direction, independently of the system’s height,
leading to steadily propagating pulses. The latter may be viewed as a propagating phase-
separated state, where slip and stick characterize the two phases. While the coarsening
process is limited by the system’s length — leading in the presence of periodic boundary
conditions to a pulse train with periodicity identical to the system’s length —, the single
pulse width, characteristic slip velocity, and propagation speed exhibit rich properties,
which are comprehensively understood using theory and extensive numerics. Finally,
we show that for sufficiently small system heights, the pulse is accompanied by periodic
elasto-frictional instabilities.

5.2.1 Introduction

Frictional systems are composed of two bodies coupled at a contact interface, formed by
compressive forces that hold them together. Frictional motion is typically driven in shear
(either stress-controlled or velocity-controlled) applied far from the frictional interface.
The frictional interface and its spatiotemporal dynamics are generically characterized
by strong nonlinearity and dissipation, where the interfacial response depends on the
local slip velocity v and on the structural state of the interface, carrying memory of
its history [7; 74; 71; 221; 53; 222; 223; 76]. Different parts of the frictional interface are
coupled through long-range spatiotemporal interactions mediated by the bodies in
contact. The latter corresponds to the bulk elastodynamics of the bodies, dependent
on their elastic response functions — which in turn depend also on their geometry —
and on material inertia. Consequently, frictional dynamics inherently emerge from the
coupled effects of interfacial and bulk physics, as discussed in the previous section and
in [191; 79; 192].
The interplay between external driving forces, interfacial nonlinearity and dissipation,
material inertia, and bulk geometry gives rise to very rich spatiotemporal dynamics,
which characterize a wide variety of natural and man-made frictional systems, rang-
ing from geological earthquake faults to a multitude of engineering structures and
devices [47; 224; 48; 225; 226; 227]. Understanding, predicting and controlling frictional
dynamics remain major scientific and technological challenges. An inseparable aspect
of these challenges is that frictional systems host various spatiotemporal instabilities;
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among these, the most well-characterized instability is associated with rate-weakening
friction, i.e. with physical situations in which the steady frictional resistance is a de-
creasing function of the slip velocity v [228; 156; 129; 229; 230; 158; 80; 83; 84; 231;
232; 233; 234; 235; 236; 78; 120]. This interfacial destabilizing process is counteracted
by stabilizing bulk elastic interactions, giving rise to a critical elasto-frictional length
for the onset of instability (to be accurately defined below). Such instabilities typi-
cally result in rapid slip propagation along frictional interfaces, mediated by rupture
modes [122; 114; 113; 123; 116; 229; 82; 124; 117; 125; 120; 126; 127; 128].
Spatiotemporal rupture propagation modes can be generally classified into expanding
crack-like rupture fronts and compact self-healing slip pulses [105; 122; 114; 113; 123;
116; 229; 237; 121; 238; 118; 239]. In the former, v at an interfacial position behind the
propagating mode remains finite as long as propagation persists, while in the latter, v

vanishes over a finite time as propagation persists. The emergence of self-healing slip
pulses and their properties are not yet fully understood, though it is currently accepted
that this mode of frictional rupture propagation is relevant in various frictional systems
and physical situations [105; 107; 229; 109; 112; 106; 118; 239]. For example, it is not yet
clear how and under what conditions the very same frictional system can feature both
crack-like rupture and slip pulses [122; 114; 113; 123; 116; 229; 82; 124; 117; 125; 120; 126;
127; 128; 239]. Moreover, whether steady-state slip pulses exist and if so whether they
are stable, how the pulse width and propagation velocity are self-consistently selected
in the presence of rate and state dependent friction, and what is the dependence of such
rupture modes on the type of external driving are not yet clear.
In this section, we show that there exist generic, and in fact widely used, external driving
forces that may lead to the generation of slip pulses. In particular, we show that velocity-
driven frictional sliding — as opposed to stress-driven frictional sliding — may give
rise to propagating periodic slip pulse trains, whose emerging properties are extensively
studied below. It is important to stress that while slip pulses are commonly (but not
exclusively) associated with bimaterial frictional interfaces (i.e., interfaces separating
bodies made of different materials, see for example [112] and references therein), we
show that slip pulses naturally emerge in the absence of a bimaterial contrast under
velocity-driven conditions (though our basic reasoning applies to bimaterial frictional
interfaces as well).
To understand the qualitative differences between velocity-driven and stress-driven
frictional sliding, consider the frictional system illustrated in Fig. 5.9a, composed of
two identical bodies of height H and length W , and characterized by elastic constants
µ (shear modulus) and ν (Poisson’s ratio), and mass density ρ. The bodies are held
together by a homogeneous normal (compressive) stress σ0 and are subjected to some
shear-related boundary conditions. In the figure, the boundary conditions at the upper
and lower edges are denoted by v0/2, implying that in this case the applied velocity
(of overall magnitude v0) is kept fixed. However, one could also consider a situation in
which the applied shear stress τ0 is kept fixed, as discussed in the previous section.
To explain why these two types of driving forces may lead to qualitatively different
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Figure 5.9: (a) A schematic representation of the class of frictional systems under consid-
eration. Two identical elastic bodies of width W and height H are in contact along an
interface located at y =0 (brown line). The bodies are under constant normal (compres-
sive) stress σ0 and are driven anti-symmetrically at the upper and lower boundaries with
a constant shear velocity v0/2 such that the overall applied slip rate is v0. Periodic bound-
ary conditions are imposed in the x direction. (b) The steady-state normalized frictional
strength fss (solid brown line) vs. the steady-state slip velocity vss (normalized by vmin,
the minimum of fss) on a semi-logarithmic scale. The curve has a generic N shape [86],
with two rate-strengthening branches (dfss/dvss > 0) separated by a rate-weakening
branch (dfss/dvss <0), see text for additional discussion. The dashed horizontal orange
line represents an imposed driving stress f0 =τ0/σ0, which intersects the steady-state
friction curve at three points. Two are stable fixed-points on the rate-strengthening
branches of the friction law (black squares), while the third one is an unstable fixed-
point on the rate-weakening branch (black circle). The dashed-dotted vertical green line
corresponds to an imposed driving velocity v0 — as in panel (a) — and intersects the
friction law at a single point on a rate-weakening branch. As is extensively discussed
in the text, imposing a slip velocity v0 on the unstable rate-weakening branch cannot
result in spatially-homogeneous sliding; rather, it leads to a dynamic and spatially-
inhomogeneous phase separation between low velocity (‘stick phase’, left-pointing
arrow) and high velocity (‘slip phase’, right-pointing arrow) regions. The outcome is a
propagating phase-separated state in the form of a pulse train. (c) A generic sketch of
a pulse train observed under velocity-controlled frictional sliding. The train travels at
a velocity cp and features periodicity Wp and pulses of width wp. The pulses feature a
maximum slip velocity vm and propagate into the stick phase of a characteristic stick
velocity vs, which is vanishingly small. The dashed-dotted horizontal green line corre-
sponds to the driving velocity v0.

physical consequences, we plot in Fig. 5.9b the steady-state frictional resistance, fss =
τss/σ0 (where τss is the steady-state frictional strength/stress), as a function of the
logarithm of the steady-state slip velocity vss. By steady-state we mean that we focus on
a point along the frictional interface that experiences a slip velocity vss for a sufficiently
long time, and measure the resulting frictional strength/stress τss; the steady-state
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friction coefficient, which out of steady-state depends on the instantaneous slip velocity
v and on a set of structural (internal) variables (see below), is simply given by fss =τss/σ0,
as stated above. The steady-state friction curve fss(vss) features a generic N shape [86],
where friction is rate-strengthening at both low and high slip velocities (the latter occurs
above the minimum of the curve, denoted by vmin), and rate-weakening at intermediate
velocities (typically spanning a few orders of magnitude, note again the logarithmic
vss-axis).
To highlight the differences between velocity-driven and stress-driven sliding, consider
the frictional system illustrated in Fig. 5.9a under the application of a fixed (total) slip
velocity v0, which resides in the rate-weakening branch of the steady-state friction
curve (marked by the dashed-dotted vertical green line in Fig. 5.9b). Consider also
the stress-driven counterpart of this system, i.e. the case in which a fixed shear stress
τ0 is applied. The latter corresponds to f0 = τ0/σ0 (marked by the dashed horizontal
orange line in Fig. 5.9b) and is chosen such that f0 = fss(v0), i.e. the dashed-dotted
vertical and dashed horizontal lines intersect the steady-state friction curve at the very
same point, marked by a black circle in Fig. 5.9b. The horizontal line, corresponding to
stress-driven sliding, intersects the steady-state friction curve also at two other points
on the two rate-strengthening branches, marked by black squares. Let us focus first on
the stress-driven case and ask whether spatially homogeneous and stable steady sliding
can emerge under these conditions. It is clear that steady sliding of the whole system
at v0 is not possible because the rate-weakening branch is unstable (for W larger than
the critical elasto-frictional length). On the other hand, homogeneous and stable steady
sliding at the velocities corresponding to the black squares is possible, because the latter
reside on rate-strengthening branches, which are stable [191].
This situation is in sharp and qualitative contrast to the velocity-driven case, where the
sliding velocity v0 is enforced on the outer boundaries. In this case, spatially homoge-
neous sliding is impossible because v0 resides on the rate-weakening branch, implying
instability, and no other spatially homogeneous velocity solutions are possible either
(unlike the stress-driven case). Consequently, either steady sliding does not exist at
all or spatially inhomogeneous steady-state v(x, t) emerges (x here denotes the spatial
coordinate along the frictional interface and t is the time) such that W −1∫W

0 v(x, t) dx=v0
at any time. In the latter situation, v(x, t) must take the form of a steadily propagat-
ing pulse train, illustrated in Fig. 5.9c. The pulse train is characterized by a spatial
periodicity Wp and a propagation velocity cp. Each pulse within the train features a
characteristic width wp (to be accurately defined below), a maximal velocity vm >v0, and
a minimal velocity vs < v0. Since vs is typically much smaller than v0, it is termed the
‘stick velocity’, corresponding to a nearly non-sliding state, which is termed the ‘stick
phase’ (cf. Fig. 5.9b). The parts of a pulse train that feature v(x, t)>v0 can be regarded as
‘slip phases’ (cf. Fig. 5.9b); consequently, a pulse train may be viewed as a propagating
mode composed of alternating stick and slip phases.
This physical picture of pulse trains as propagating modes composed of alternating stick
and slip phases, emerging under velocity-driven conditions, may suggest an analogy
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to phase separation (and the associated Maxwell construction) in equilibrium thermo-
dynamics [240]. In the latter, phase separation emerges when the pressure-volume
isotherm of a system in equilibrium features a non-monotonic behavior, corresponding
to a non-convex free energy [240]. If then the system is enforced to have a volume in
the non-monotonic region of the pressure-volume isotherm, where the pressure is an
increasing function of the volume (thermodynamic stability requires the pressure to be a
decreasing function of the volume), it cannot attain a (single) homogeneous phase; rather,
the system undergoes a phase transition that leads to the co-existence of two phases
of different densities [240]. While fss(vss) of Fig. 5.9b is by no means an equilibrium
pressure-volume isotherm, rather it corresponds to a strongly dissipative interfacial
response function of a driven open system, and while the imposed slip velocity v0 inside
the rate-weakening (unstable) branch is by no means the volume of an equilibrium
system, there exists a clear and direct analogy between the two physical situations. In
the frictional case, the result is not static phase separation, but rather a periodic and
propagating phase-separated state of alternating stick and slip phases, the train of pulses
illustrated in Fig. 5.9c.
It is important to stress that in practical terms, velocity-driven frictional sliding is the
rule, rather than the exception. That is, velocity is almost always what is actually being
controlled; in order to maintain a fixed stress, one needs to employ a feedback loop
such that the velocity is precisely varied so as to keep the stress fixed. This procedure
depends on the dynamics of the system, which may be fast, and is in general difficult to
achieve. In most cases, it is just the velocity that is prescribed.
Our goal in this section is to understand the spatiotemporal dynamics of velocity-
driven frictional systems, and in particular the emergence of steadily propagating pulse
trains. Moreover, we aim at understanding the selection of the train properties, i.e. its
spatial periodicity and propagation velocity, as well as the properties of a single pulse
within the train. These goals are achieved using extensive numerical simulations —
employing several computational methodologies — and theoretical analysis performed
within a generic rate-and-state friction constitutive framework (to be detailed below).
In particular, we employ the Boundary Integral Method in the H →∞ limit; while this
method is formulated for stress-driven sliding in terms of τ0 [169; 170; 171], we show
that it can nevertheless be employed to mimic velocity-driven frictional dynamics. For
finite H , we employ the Finite Element Method, as explained below.
We find that frictional systems under velocity-driven conditions, where the imposed
velocity v0 resides on an unstable rate-weakening branch of the steady-state friction
curve, feature coarsening dynamics that lead to pulse trains whose periodicity Wp is
determined by the system length W (where periodic boundary conditions in the sliding
direction are employed, see below), independently of H . That is, surprisingly, peri-
odic “pulse trains” emerge in our calculations due to the employed periodic boundary
conditions in the sliding direction, but not due to any other train periodicity selection
process. The terms “pulse train" and “train periodicity” are used hereafter in this sense.
We also show that in the small H limit, coarsening competes with elasto-frictional in-
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stabilities, giving rise to pulse trains with Wp = W that experience repeated/periodic
instabilities. Furthermore, we show that the pulse train propagation velocity cp, the
average single pulse slip velocity, and the single pulse width wp are related through an
equation of motion inspired by fracture mechanics [15]. The latter involves the pulse
leading edge singularity and the emergence of an effective fracture energy. Finally,
we show that the single pulse width wp reveals non-trivial dependencies on Wp = W

and v0, featuring properties that are qualitatively different from those of ideal pulse
solutions [241; 242; 243]. Taken together, we provide a comprehensive physical picture
of velocity-driven frictional sliding in general, and of the properties of the emerging
pulse trains in particular.

5.2.2 Simulating velocity-driven frictional dynamics

The rich spatiotemporal dynamics featured by frictional systems, with the multitude
of physical factors at play (as discussed above), make purely analytical treatments
of this class of problems practically impossible. Consequently, one needs to resort
to numerical simulations, at least at the initial stages of investigating a given set of
questions. Independently of the approach taken — either analytic, computational, or
hybrid — one should first adopt bulk and interfacial constitutive relations, which is done
in Sect. 5.2.2.1. To fully define the problem at hand, one should then specify the bulk
geometry and external driving forces (boundary conditions) — here following Fig. 5.9a
—, and finally one needs to select a solution method for the coupled bulk-interface
problem. Focusing first on computational methods, we explain in Sect. 5.2.2.2 how the
Boundary Integral Method — conventionally formulated in terms of stress boundary
conditions — can be used to mimic velocity-driven frictional dynamics in the H →∞
limit. Next, in Sect. 5.2.2.3, we discuss the usage of the Finite Element Method to address
the finite H regime.

5.2.2.1 Bulk and interfacial constitutive relations: Linear elastodynamics and rate-
and-state friction

The frictional system illustrated in Fig. 5.9a is formed by two symmetric bodies, each
satisfying its own continuum momentum balance equation ρ ü(x, y, t) = ∇· σ(x, y, t),
where ρ is the mass density, u(x, y, t) is the displacement vector field, σ(x, y, t) is the
stress tensor field, (x, y) is a two-dimensional Cartesian coordinate system and t is the
time (a superposed dot represents a partial time derivative). σ in each body is related to
u through a bulk constitutive relation, which is taken here to be that of linear elasticity,
i.e. we adopt Hooke’s law [244] of the form (1 + ν)µ

[
∇u+(∇u)T

]
= σ − ν(Iσ − σ).

Here I is the identity tensor, ν is Poisson’s ratio and µ is the shear modulus of each
body. Note that body forces are neglected in the momentum balance equation and that
the interface resides at y =0 (cf. Fig. 5.9a). An interfacial constitutive law is an implicit
boundary condition for the two bulk problems defined above, formulated in terms of a
functional relation between the interfacial shear stress, the interfacial normal stress, and
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the slip velocity (and typically also additional interfacial state fields, see below). In the
problems considered in this section, the interfacial normal stress is constant (uncoupled
to frictional sliding), i.e. σyy(x, y =0, t)=−σ0, where σ0 is the applied compressive stress
(cf. Fig. 5.9a).
The slip velocity v(x, t) is the time derivative of the slip displacement δ(x, t), v(x, t)=
δ̇(x, t). Under in-plane shear (the so-called mode-II) conditions, where u(x, y, t) =
(ux(x, y, t), uy(x, y, t), 0) (here the z component of the displacement vector field, uz(x, y, t),
vanishes), one has δ(x, t) ≡ ux(x, y → 0+, t) − ux(x, y → 0−, t), where +/− correspond
to the upper/lower bodies, respectively. The relevant interfacial shear stress, in this
case, is σxy(x, y =0, t). Under anti-plane shear (the so-called mode-III) conditions, where
u(x, y, t)=(0, 0, uz(x, y, t)) and z is the out-of-plane direction (perpendicular to the x−y

plane), one has δ(x, t)≡uz(x, y →0+, t) − uz(x, y →0−, t), and relevant interfacial shear
stress, in this case, is σyz(x, y = 0, t). The interfacial shear stress, either σxy(x, y = 0, t)
(mode-II) or σyz(x, y =0, t) (mode-III), is continuous across the interface and equals the
frictional stress/strength τ(x, t). Below we present results for both mode-II and mode-III,
which are qualitatively and even semi-quantitatively similar. Mode-III (corresponding
to scalar elastodynamics) is, however, mathematically and computationally simpler.
The frictional stress/strength τ(x, t) is related to v(x, t), σyy(x, y =0, t) (which in our case
equals −σ0) and additional interfacial state fields through the interfacial constitutive
law. The latter, at any position x along the interface and at any time t, is described by
the following local relation

τ(σ0, v, ϕ) = σ0 (v) f(|v|, ϕ) , (5.12)

where ϕ(x, t) is a non-equilibrium order parameter, sometimes termed an internal-state
field, which represents the structural state of the interface and encodes its history [7;
74; 71; 221; 53; 222; 223; 76]. Extensive evidence indicates that ϕ physically represents
contact’s age/maturity [74; 71; 221; 53; 222; 223; 76] and that its evolution follows

ϕ̇ = g

(
ϕ|v|
D

)
, (5.13)

with g(1) = 0. The characteristic slip displacement D controls the transition from a
stick state v ≈ 0 to a steadily slipping/sliding state vss ̸= 0, with ϕss = D/vss (the latter
corresponds to ϕ̇ = g(1) = 0). Under steady-state sliding conditions and a controlled
normal stress σ0, the function fss(vss) = f(|vss|, ϕss = D/vss) = τss(vss)/σ0 has been
measured over a broad range of slip rates v for many materials [86]. fss(vss) is generically
N-shaped, as shown in Fig. 5.9b, where the precise functional form of f(·) and g(·) are
detailed in section 5.2.7.1.
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5.2.2.2 Mimicking velocity-driven frictional dynamics in infinite systems using the
boundary integral method

With the bulk and interfacial constitutive relations at hand, the coupled bulk-interface
problem is fully defined once the bulk geometry is specified. The system length is taken
to be W , as shown in Fig. 5.9a; in order to avoid lateral edge effects, we employ periodic
boundary conditions along this direction. The remaining geometric length scale in the
problem is H , i.e. the height of each body (cf. Fig. 5.9a). It makes a difference whether H

is taken to be arbitrarily large or finite, as is explained below. Here we first discuss the
H →∞ case.
In the H →∞ limit, i.e. when the upper and lower boundaries are located infinitely away
from the frictional interface, and no wave reflections from these boundaries take place,
one can naturally invoke a Green’s function approach. The latter allows eliminating
the two bulk problems altogether, reducing the coupled bulk-interface problem to an
interfacial integro-differential equation of the form [169; 156; 170; 171; 75]

τ [v(x, t), ϕ(x, t)] = τ0(t) − µ

2cs
[v(x, t) − v0] + s(x, t) . (5.14)

where ϕ(x, t) satisfies Eq. (5.13) and the right-hand side is the interfacial shear stress.
The latter contains three physically distinct contributions, to be discussed next.
The first contribution is the applied (spatially homogeneous) stress τ0(t), i.e. this ap-
proach is directly applicable to stress-controlled conditions. The second contribution
is the so-called radiation damping term [155; 122; 123; 245], where cs is the shear wave
speed and v0 is set as a reference slip velocity (to be identified with the applied slip
velocity v0 in our velocity-controlled setting, see below). The radiation damping term
locally depends on v(x, t) and physically represents plane-waves being radiated away
from the interface into the surrounding bulks, serving as effective damping from the
perspective of the interface. Finally, the third contribution s(x, t) is non-local in space
and time, and physically represents the spatiotemporal interaction of different points
on the interface, mediated by bulk elastodynamics. s(x, t) generally does not admit
real-space representation, and is related to the gradient of δ(x, t) in the spectral domain
via a convolution integral, which is different for mode-II and mode-III [169; 170; 171].
The spectral nature of the formulation fits the choice of periodic boundary condition in
the lateral/sliding direction (with periodicity W ), and is reflected in its common name,
the spectral Boundary Integral Method (BIM).
As explained above, and as evident in Eq. (5.14), the BIM is most suitable for stress-
controlled boundary conditions represented by τ0(t). Yet, we propose here an approach
in which the BIM formulation can be nevertheless used to mimic velocity-driven fric-
tional dynamics that are of interest here. The idea is the following: as explained above,
under velocity-driven conditions and once the system reached steady-state, one has

1
W

∫ W

0
v(x, t) dx = v0 . (5.15)
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Consequently, one can choose τ0(t) — an a priori unknown function of time t — such
that Eq. (5.15) is satisfied at any time t. That is, we propose to treat τ0(t) in Eq. (5.14) as
unknown and instead to impose Eq. (5.15) for any t. Thinking about a numerical imple-
mentation of the formulated problem, where both the time t and the spatial coordinate
x are discretized, it is clear that the above suggestion leads to a well-defined problem; at
each discrete time ti, we added a single unknown τ0(ti) and a single constraint (Eq. (5.15)
at ti). Moreover, as v0 is the relevant slip velocity in this modified BIM formulation, we
used it as a reference velocity in the radiation damping term in Eq. (5.14).
The modified BIM formulation, aimed at mimicking velocity-driven frictional sliding,
has both clear advantages and potential limitations. On the one hand, it is a relatively
computationally cheap and very robust approach, which is expected to reveal velocity-
driven steady-states in the H →∞ limit (if these exist). On the other hand, as Eq. (5.15)
is strictly valid only in steady-state — i.e. some deviations from it are expected in early-
time, out of steady-state dynamics — some dynamical aspects of the full velocity-driven
problem may not be accurately captured. We address this potential limitation in two
ways; first, we mainly focus on the long-time, steady-state behavior of the system, where
our modified BIM formulation is strictly valid. Second, we verify through Finite Element
Method (FEM) that the possible deviations of the transient dynamics in the H →∞ BIM
calculations from the exact transient dynamics have no effect on the obtained steady-
state solutions. More importantly, the FEM formulation to be discussed next allows us
to understand the roles played by a finite H on the physics of the problem at hand.

5.2.2.3 Simulating velocity-driven frictional dynamics in finite systems using the
finite element method

The length scale H may play important roles in velocity-driven frictional sliding. Conse-
quently, it is essential to supplement the H →∞ BIM calculations with FEM ones, which
allow probing the finite H regime. Moreover, finite H FEM calculations can be used to
verify the validity of the modified BIM calculations, as discussed above, for selected test
cases in which H is chosen to be large enough (see below). The new physics introduced
by a finite H is the wave interaction of the frictional interface with the boundaries at
y =±H , which is absent in the H →∞ limit, where waves are being radiated from the
interface to ±∞ without reflections.
FEM simulations of frictional systems, especially when rate-and-state friction is taken
into account, are significantly more challenging and computationally demanding than
their BIM counterparts [168]. They are also prone to numerical and physical instabilities
(associated with the finite H) that are absent in their BIM counterparts. One such
physical instability is encountered in our large-H FEM calculations. This issue, along
with the full details of our FEM simulations, are addressed in section 5.2.7.4. Agreement
between our FEM and BIM calculations for mode-II (simpler mode-III calculations
are performed only using BIM) is demonstrated in the next section, where we start
discussing the emergent physics of velocity-driven frictional systems, and pulse trains
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in particular.

5.2.3 Coarsening dynamics: The selection of pulse train periodicity

The first question we aim at addressing is whether steady-state pulse trains indeed
emerge under velocity-driven sliding conditions and if so, what determines the train
periodicity Wp. As the latter is of length dimension, one can a priori ask what quantities
of length dimension existing in the posed problem could possibly determine Wp. The
problem at hand, as formulated above, features 3 length scales: the system height H , the
system length W and in addition to these two geometric/extrinsic length scales, we also
have the intrinsic interfacial length D. As D is a mesoscopic length that characterizes the
interfacial response, it does not appear in itself in the macroscopic coupled bulk-interface
problem. Rather, it appears through the elasto-frictional length Lc that characterizes the
rate-weakening (dfss/dv <0) elasto-frictional instability [7; 228; 156; 129; 230; 158; 80; 83;
84; 231; 232; 233; 234; 235; 236; 78; 120].
The elasto-frictional length Lc can be determined using a systematic linear stability
analysis [78; 79], which is very briefly reviewed in section 5.2.7.2. Here we are mainly
interested in the scaling structure of Lc, taking the form

Lc(H, D) = H F
(

µ D

−σ0Hv0 dfss/dv0

)
, (5.16)

where F(X )∼X for X ≪1 and F(X )∼
√

X for X ≫1 [79], with X ≡−µD/(σ0Hv0 dfss/dv0).
X clearly manifests the coupled bulk-interface nature of Lc, incorporating the shear
modulus µ of the bodies in contact, their height H (a geometric/extrinsic length), the
applied normal stress σ0, the mesoscopic interfacial length D and the constitutive inter-
facial property v0 dfss/dv0 = dfss(v0)

dlog v <0. Note that the limiting behaviors of F(X ), stated
above, imply that Lc is independent of H in the limit H → ∞. The length Lc implies
that infinitesimal perturbations of wavelength larger than Lc, on top of homogeneous
sliding with slip velocity v0, are linearly unstable. That is, for Lc < W the system is
linearly unstable as unstable perturbations can fit in (to ensure that this is the case, we
use Lc ≪ W throughout this work). Moreover, the wavelength of the fastest growing
mode of instability features the same scaling properties as Lc in Eq. (5.16).
To address the question of whether Wp exists, i.e whether steady-state pulse trains
emerge, and if so how Wp depends on Lc(H, D), H and W , we first explore the H →∞
limit using the BIM formulation of Sect. 5.2.2.2. That is, we first consider the case
Lc ≪W ≪H . A representative result under mode-III conditions is presented in Fig. 5.10a,
where a space-time plot of v(x, t)/v0 is shown. It is observed that, as expected, at early
times the velocity-driven frictional system experiences instabilities, resulting in multiple
interacting slip pulses. As time progresses (increasing vertical direction in the space-time
plot), the number of pulses decreases until — in the long-time limit — a single pulse sur-
vives. The latter corresponds to a steady-state pulse train of periodicity W , i.e. Wp =W

(recall that throughout this work we employ periodic boundary conditions along the
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sliding direction). That is, the frictional system undergoes coarsening dynamics that are
saturated at the system length W . To test the robustness of this observation, we varied
W and the interfacial parameters over a wide range (cf. section 5.2.7.1 and 5.2.7.3); inde-
pendently of these variations, we always observed Wp =W in our H →∞ calculations,
indicating coarsening dynamics that are truncated at the system length.
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Figure 5.10: (a) A space-time plot of the slip velocity field v(x, t) (normalized by v0)
obtained using a BIM simulation (H →∞) with v0 =3×10−3m/s, W =28.14m and the
N-shaped steady-state friction law of Fig. 5.9b. Black regions correspond to the stick
phase, v(x, t) < v0. At early times, the system host several instabilities. The interface
progressively coarsens with increasing time until a single pulse remains in the periodic
domain. The asymptotic pulse propagation velocity cp/cs is shown as the slope of the
slip phase v(x, t)>v0. The normalized pulse width wp/W corresponds to the extent of
the slip phase along the x axis at a given time t. A movie of this simulation is available
in section 5.2.7.9. (b) A snapshot of v(x, t) of a steady-state pulse train, comparing a
BIM simulation (dashed orange line) and a FEM simulation (solid brown line) with
v0 = 1×10−3m/s, W = 6m and the steady-state friction law of Fig. 5.15. The dashed-
dotted horizontal green line corresponds to the driving velocity v0. Both pulses are
propagating towards the left at the same velocity cp ≃0.35cs and their shapes are almost
identical.

Next, we aim at understanding whether a finite height H can result in a qualitative
change in this physical picture, i.e. whether the pulse train periodicity Wp can be
affected/determined by H . To address this question, one clearly needs to resort to
FEM calculations. Due to numerical stability considerations, we use a rate-and-state
friction law that does not feature the very low velocity rate-strengthening branch, see
section 5.2.7.5 for discussion and details. In particular, we focus on the regime where H ≃
W ≫Lc in order to see whether H affects Wp in addition to W (as they are comparable).
In this regime, we encountered in addition to the elasto-frictional instability associated
with Lc also a system-size instability. In this instability, the slip velocity vanishes
throughout the interface for some period of time, and then the interface starts sliding
almost homogeneously. That is, this instability appears to feature a space-independent
stick-slip behavior (see section 5.2.7.6), which is likely to be related to the finite-H
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elasto-frictional instabilities discussed in [246]. We have not studied this instability in
depth; yet, it is not easy to imagine that an interface separating two deformable bodies
would feature such a space-independent stick-slip behavior over increasingly large
lengths and time scales. At the same time, FEM calculations with large W performed
over long times are very demanding from the computational perspective, hence we
cannot explicitly demonstrate the disappearance of the space-independent stick-slip
behavior for sufficiently large W and times. Instead, we effectively eliminated this
space-independent instability by breaking translational symmetry along the interface
using a constraint similar to Eq. (5.15), as explained in section 5.2.7.6.
In Fig. 5.10b, we present a snapshot of the long-time behavior of an FEM simulation
(as described above) of a frictional system with H =2W (solid line), where yet again a
steady-state pulse train with Wp =W is observed. This result is further strengthened by
additional FEM calculations where the value of H has been varied for a fixed W , still
having H ≃W ≫Lc, yielding Wp =W independently of H . The independence of Wp on
H also suggests that for a fixed set of frictional parameters and W , the H = 2W FEM
calculation and the H →∞ BIM calculation should give rise to very similar results. Such
a quantitative agreement is possible if the radiation damping term is not too large. This
is the case if cp is not close to the relevant wave speed.
In Fig. 5.10b, we superimposed the H →∞ BIM results (dashed line, for mode-II as in
the FEM calculation) on top of the H = 2W FEM ones (the two snapshots are shifted
along x for visual clarity). It is observed that in both cases Wp =W and that the pulse
shape is almost identical (the same applies to the pulse train velocity cp ≃ 0.35cs, see
figure caption). These convergent results demonstrate the robustness and validity of our
FEM calculations. More importantly, they show that velocity-driven frictional systems
exhibit coarsening dynamics that are saturated at the system length, independently of
the system’s height H in the regime Lc ≪W ≤H , leading to steadily propagating pulse
trains with Wp = W . In light of the independence of Wp on H , we would like next to
understand whether Lc can affect Wp, which requires considering the small H regime.

5.2.4 The small H limit: The competition between coarsening and elasto-
frictional instabilities

The results of the previous section strongly suggest that we have Wp =W independently
of H for Lc ≪W ≤H , where Lc does not seem to play a role in the long-time pulse train
as well. To address the possible role of Lc in the selection of the pulse train periodicity
Wp, we explore here the small H limit for which H < Lc ≪ W. Before discussing our
FEM calculations in this regime, let us invoke some theoretical considerations regarding
their possible outcomes. One possibility is that we find steady-state pulse trains with
Wp ≃Lc. While we cannot a priori rule out this possibility, we note that — if true — it
implies that coarsening dynamics play no role whatsoever in this regime. It is not easy to
imagine this in light of the fact that coarsening dynamics strongly dominate the physics
for Lc ≪ W ≤ H . Another possibility is that coarsening dynamics remain dominant,
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Figure 5.11: (a) A space-time plot as in Fig. 5.10a for a FEM simulation with v0 =
2×10−3m/s, W =4m, H =0.2m and the dashed-dotted orange steady-state friction law
of Fig. 5.15. The observed behavior is similar to the BIM example (H →∞) of Fig. 5.10a,
with the notable difference that the pulse train that remains in the system in the long-
time coarsening limit features repeated oscillations (visible from the variation of the
width and slip rate of the pulse). A movie of this simulation is available in section 5.2.7.9.
(b) Successive snapshots of v(x)/v0 are presented in the co-moving frame of the pulse
train (with xp being the pulse’s leading edge). The pulse profiles are ordered in time
as follows (line colors): dashed yellow, dashed-dotted orange, dotted brown, and solid
dark brown. The dashed-dotted horizontal green line corresponds to the driving velocity
v0. As time progresses, both the pulse width wp and the slip velocity increase, indicating
an elasto-frictional instability. A movie of the instability in the co-moving frame of
the pulse is available in section 5.2.7.9. (inset) The time evolution of the normalized
maximum velocity vm (solid black curve) of the dynamics shown in panel (b), presented
on a semi-logarithmic scale. The green dashed line is the best linear fit, corresponding
to an exponential growth characterizing a linear instability, with the growth rate being
the slope of this line. tc corresponds to the time at which the growth becomes nonlinear.
(c) The time evolution of vm/v0. The vertical lines indicate the time of the snapshots in
panel (b), with the same style and color codes. Two events of this repeated behavior
(growth and decay of the pulse) are shown.

leading to Wp =W as before. This, however, cannot lead to a strict steady-state.
To understand this statement, let us consider some of the properties of the slip velocity
field inside a pulse within a pulse train, for both large and small H . In the former
case, the slip velocity inside the pulse is significantly amplified compared to v0 over
a large fraction of the pulse width wp, such that most of the pulse is characterized by
a slip velocity out of the unstable rate-weakening branch of the friction curve. This is
demonstrated in the pulse shown in Fig. 5.10b (see Sect. 5.2.5.1 for additional discussion
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of the slip velocity amplification). This is qualitatively different from the small H case,
H < Lc ≪ W ; here, the slip velocity is amplified over a scale H that is significantly
smaller than wp. This situation is closely related to the finite height strip problem of
fracture mechanics [243], where the controlling length scale is the strip height H . This
implies that a significant fraction of the pulse/interface is characterized by v(x, t)≃v0,
and since wp ≫ Lc (see Sect. 5.2.5.2 for additional discussion of the properties of wp),
this extended region is characterized by a slip velocity belonging to the rate-weakening
branch of the friction curve and hence is unstable. Consequently, if Wp = W also for
H <Lc ≪W , then we expect to observe repeated instabilities on top of the pulse train.
That is, we expect the competition between coarsening and elasto-frictional instabilities
to prevent the system from reaching a strict steady-state.
In Fig. 5.11a we present a space-time plot (in the same format of Fig. 5.10a) obtained using
FEM simulations in the H <Lc ≪W regime. It is important to note that in this regime we
do not observe the space-independent stick-slip instability discussed in Sect. 5.2.3 and
hence no additional constraints that break translational symmetry along the interface are
introduced. The results in Fig. 5.11a indicate that coarsening dynamics dominate in this
regime as well, leading to a pulse train with Wp =W . This pulse train, however, is not
in strict steady-state as it is clearly observed to be repeatedly/periodically interrupted
by bursts of large slip velocities (compare to Fig. 5.10a, where these bursts are absent
and the system reaches a strict steady-state). These observations support the physical
picture discussed in the previous paragraph, where coarsening dynamics compete and
coexist with repeated elasto-frictional instabilities in the H <Lc ≪W regime.
In order to better understand these complicated spatiotemporal dynamics, we focus
in Fig. 5.11b on a sequence of snapshots of v(x) of the pulse within the pulse train
observed in the long-time dynamics of Fig. 5.11a, during one of the bursts (the snapshots
are shown in the pulse train co-moving frame, see figure caption). The snapshots are
ordered in time, where the smallest v(x) corresponds to early time and the largest to
late time. The time points in which the snapshots were taken are marked by vertical
lines in Fig. 5.11c (same colors and line styles as in the curves of Fig. 5.11b), where the
maximal slip velocity vm is plotted as a function of time. The early time field reveals a
long plateau, larger than Lc (recall that here Lc ≪W ), featuring v(x)≃v0, as predicted
above. Consequently, an elasto-frictional instability is indeed expected.
As is evident from both Fig. 5.11b and Fig. 5.11c, the slip velocity inside the pulse
grows significantly, indicating an elasto-frictional instability. A clear signature of the
linear elasto-frictional instability associated with Lc is an exponential growth of the slip
velocity at the early stages of the instability development. This is indeed demonstrated
in the inset of Fig. 5.11b, supporting the physical picture discussed above. Moreover,
the observed exponential growth rate appears to be in the ballpark of the theoretically
estimated growth rate (not shown). Finally, the repeated nature of the instability, already
observed in Fig. 5.11a, is evident also in Fig. 5.11c. There, the maximal slip velocity
vm is plotted as a function of time, and it is observed that after the instability shown
in Fig. 5.11b relaxes, another instability with very similar properties occurs after some
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interval of time.
The results of this section and of the previous one suggest that velocity-driven frictional
systems, at least the rather generic class of frictional systems considered in this section,
are strongly dominated by coarsening dynamics that lead to pulse trains characterized
by periodicity determined by system length in the sliding direction. For H <Lc ≪W ,
the train pulse experiences repeated elasto-frictional instabilities, but for larger H’s the
pulse train is a stable steady-state solution. It is important to note that in this section
we do not study in depth and quantitatively the coarsening dynamics themselves (this
will be done elsewhere), but rather focus on their long-time outcome. Next, we shift our
focus to other salient features of the observed pulse trains, i.e. their propagation velocity
cp and the properties of single pulses within the train.

5.2.5 Single pulse properties in the large H limit

Self-healing slip pulses, as explained in Sect. 5.2.1, are frictional rupture modes that are
believed to be quite prevalent, yet they are not fully understood [105; 123; 107; 120; 106;
121]. Our analysis above established that self-healing slip pulses, as part of pulse trains,
generically and robustly emerge in velocity-driven frictional sliding dynamics. These
results offer a rather unusual opportunity to better understand the physical properties
of single pulses, which is the main goal of this section.
A steady-state pulse train is composed of single pulses that repeat themselves with
spatial periodicity Wp, extensively discussed above. Once the train periodicity Wp is
known — it was shown above to be coarsening-limited (i.e. equal to the system length,
Wp =W ) —, one is interested in the selection of the train velocity cp (which is obviously
also the single pulse propagation velocity) and in the spatial distributions of slip velocity
v(x) and stress τ(x) within the single pulse. Obtaining closed-form solutions for the
field distributions is a difficult challenge not addressed here; instead, we focus below
on the behavior of v(x) and τ(x) near the leading edge of the single pulse, and on some
characteristic properties of v(x) and τ(x). Mort importantly, as already introduced in
Fig. 5.9, we are interested in the single pulse width wp and in its average slip velocity vp.
The single pulse width wp, as illustrated in Fig. 5.9c, is defined as the size of the portion
of the single pulse for which v(x)≥v0. Accordingly, the average slip velocity of a single
pulse is defined as vp ≡ w−1

p
∫ wp

0 v(x̃)dx̃, where x̃ = 0 in this context corresponds to the
spatial point on the pulse’s leading edge such that v(x̃ = 0) = v0 (the corresponding
relation at the trailing edge reads v(x̃ = wp) = v0). Our goal in this section is to gain
physical insight into the single pulse quantities cp, wp and vp as a function of the control
parameters W and v0 for the adopted interfacial constitutive law, in the H → ∞ limit.
Moreover, we would like to understand the interrelations between cp, wp and vp, and
clearly three such relations are needed in order to determine these three quantities.
One such relation is readily obtained from the steady-state condition of Eq. (5.15). The
latter implies

W −1[wpvp + (W − wp)vs]=v0 =⇒ wpvp ≃Wv0 , (5.17)
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where the slip velocity in the ‘stick region’, vs (cf. Fig. 5.9c), has been assumed to be
negligibly small (as is indeed the case). Note that Eq. (5.17) does not explicitly include
the propagation velocity cp. In Sect. 5.2.5.1 we show that another relation between cp, wp
and vp emerges from the pulse’s leading edge behavior, a relation that may be viewed
as a pulse equation of motion. A third relation is discussed in Sect. 5.2.5.2, where we
focus on the pulse width wp.

5.2.5.1 Pulse equation of motion: Leading edge singularity, effective fracture energy,
and propagation velocity

A slip pulse, like other rupture fronts, is expected to feature nearly singular fields near its
leading edge, where the negligibly small slip velocity ahead of the pulse, vs, dramatically
increases to the peak velocity, vm (cf. Fig. 5.9c), over a short length scale. It has been
recently shown [191; 192; 219; 218] that for the class of rate-and-state friction constitutive
laws illustrated in Fig. 5.9b, where the rate dependence of friction is rather weak, the
singular leading edge behavior is described by the classical square-root singularity of
Linear Elastic Fracture Mechanics (LEFM) [15] to a good approximation.
In the framework of LEFM, the slip velocity behind the leading pulse edge is expected
to take the following universal form [15]

v(x) ≃ 2 cp KIII

αs(cp) µ
√

2π(x − xp)
, (5.18)

where αs(cp) =
√

1 − (cp/cs)2, xp is the leading edge position and KIII is the mode-III
stress intensity factor, quantifying the amplitude of the universal square root singularity
(Eq. (5.18) refers to mode-III conditions, which we focus on in this section, but the
same singularity applies to mode-II conditions [15]). In Fig. 5.12 we plot v(x) (properly
normalized, see legend) over the entire pulse train period Wp = W (solid brown line,
left y-axis). To test whether the observed amplified slip velocity near the leading edge
indeed follows the square root singularity of Eq. (5.18), we plot in the inset the same
normalized v(x) behind the leading edge against (x − xp)/W on a double-logarithmic
scale. As is indicated by the dashed line of slope −1

2 , there exists a spatial range near the
leading edge, over which v(x) follows the square root singular behavior of Eq. (5.18).
The singular slip velocity behavior of Eq. (5.18) behind the pulse’s leading edge is
accompanied by a shear/frictional stress field τ(x) that features the same square root
singularity ahead of the leading edge and a predominantly constant residual stress
behind it [191; 192]. In Fig. 5.12 we present τ(x) (properly normalized, see legend) again
over the entire pulse train period Wp = W (dashed orange line, sharing the same left
y-axis with the normalized v(x) field). It is observed that indeed τ(x) features significant
amplification ahead of the leading edge (its quantification is not presented here) and that
it is approximately constant behind the leading edge inside the pulse. Finally, we present
in Fig. 5.12 v(x)ϕ(x)/D (dashed-dotted green line, right y-axis), whose deviation from
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Figure 5.12: The normalized (see legend) profiles of the velocity v(x) (solid brown line,
left y-axis), the shear/frictional stress τ(x) (dashed orange, left y-axis) and v(x)ϕ(x)/D
(dashed-dotted green line, right y-axis) of a steady-state pulse train propagating to the
left at cp = 0.85cs, as obtained by a BIM simulation (H → ∞) with v0 = 3×10−3m/s,
W =14.07m and the N-shaped steady-state friction law of Fig. 5.9b. The leading edge is
indicated by xp/W and the pulse width by wp/W (and a double-arrow). Both the stress
and the velocity fields reveal a singular behavior near the pulse leading edge, see text
for discussion. (inset) The velocity field v(x) (solid brown line) behind the leading edge,
on a double-logarithmic scale, with the x axis being (x − xp)/W . The dashed black line
features a slope of −1/2, characteristic of the square root singularity of LEFM, see text
for additional discussion.

unity provides a measure of the degree by which ϕ(x) is out of steady-state with respect
to v(x). It is observed that inside the pulse v(x)ϕ(x)/D≃1 (see horizontal dashed line)
almost everywhere. That is, inside the pulse away from the leading edge transition
region, ϕ(x) is “equilibrated” with v(x).
The approximate validity of Eq. (5.18) has significant implications for the pulse dynamics.
Most notably, the square root singular fields are accompanied by a finite (non-singular)
flux of energy G into the leading edge region. The latter is dissipated near the leading
edge, i.e. it is balanced by an effective fracture energy Gc, which quantifies the dissipation
involved in slip pulse propagation (on top of the background frictional dissipation [247;
192]). That is, we expect the following relation [15]

Gc ≃ G = K2
III

2αs(cp) µ
, (5.19)

to approximately hold. The effective fracture energy Gc can be independently estimated
using the interfacial constitutive law, following [80; 83] and as shown in section 5.2.7.7.
With Gc at hand, one can eliminate KIII between Eqs. (5.18)-(5.19), yielding an expression
for the singular part of v(x) near the leading edge of the pulse.

88



5.2 Velocity-driven frictional sliding: coarsening and steady-state pulses

The resulting v(x) allows to derive a relation between cp, wp and vp. It is important to
note that the latter two quantities characterize the whole pulse, not just its singular part.
To bridge over this gap, we assume that the singular part of v(x) describes reasonably
well the entire pulse, up to an overall shift that dominates the trailing edge behavior.
The shift can be determined by demanding v(xp +wp) = v0, which follows from the
definition of wp, leading to

v(x)
cs

≃
√

4Gc
πµ

cp

cs

√
αs(cp)

(
1

√
x − xp

− 1
√

wp

)
+ v0

cs
. (5.20)

With this approximation at hand, we can then calculate vp according to its definition
vp =w−1

p
∫ xp+wp

xp
v(x̃)dx̃, leading to

cp

cs

√
αs(cp)

∼
√

π µ wp
Gc

vp − v0
2cs

. (5.21)

The prediction in Eq. (5.21) is a relation between cp (left-hand side), and wp and vp
(right-hand side), where the pre-factor is expected to be O(1). It may be viewed as
an equation of motion for the pulse. Moreover, note that Eq. (5.17) (which has been
independently verified) can be used to eliminate vp from the right-hand side of Eq. (5.21),
making it a function of wp alone. Equation (5.21) is tested in Fig. 5.13 over a broad range
of W and v0 values. It is observed that the theoretical prediction is strongly supported
by the simulational data, where the pre-factor is indeed O(1). Consequently, only one
additional relation between cp, wp and vp is needed in order to fully determine the single
pulse properties. In particular, predicting the pulse width wp in terms of W and v0
would be sufficient since Eqs. (5.17) and (5.21) would then allow to calculate vp and cp,
respectively. Therefore, we next consider wp(W, v0).

5.2.5.2 The pulse width

Our goal in this subsection is to discuss the pulse width wp(W, v0). It would be useful in
this context, as a preparatory step, to consider the “ideal” solution for an isolated pulse.
The latter corresponds to an isolated pulse in an infinite medium (H →∞) whose slip
velocity v(i)(x) (the superscript (i) denotes hereafter “ideal pulse”) vanishes for x<xp

and x > 2w
(i)
p + xp, and the frictional strength is constant for xp ≤ x ≤ 2w

(i)
p + xp. The

solution takes the form [241; 242; 243]

v(i)(x) = v0

√√√√2w
(i)
p + xp − x

x − xp
(5.22)

for xp ≤ x ≤ 2w
(i)
p + xp. Note that the solution in Eq. (5.22) features the square root

singularity of Eq. (5.18) in the x → x+
p limit and it is consistent with the single pulse
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Figure 5.13: Testing the theoretical prediction of Eq. (5.21) for a broad range of param-
eters, including variations of the system length W , the driving velocity v0, the shear
modulus µ and the characteristic slip displacement D, see section 5.2.7.1 and 5.2.7.3 for
additional details and the exact values used. The data correspond to BIM simulations
with the N-shaped friction law of Fig. 5.9b, revealing very good agreement with the
prediction, with an O(1) pre-factor. Gc has been estimated following [80; 83], see sec-
tion 5.2.7.7 for more details.

width definition adopted throughout this paper. That is, we have v(i)(x=w
(i)
p +xp)=v0

such that w
(i)
p retains its meaning as the pulse width.

The physics underlying the ideal pulse solution in Eq. (5.22) differs from the physics
underlying the train pulse solutions derived above in three major respects: (i) Our
solutions correspond to rate-and-state friction, while Eq. (5.22) corresponds to a constant
frictional strength inside the pulse. (ii) Eq. (5.22) corresponds to an isolated pulse, i.e. to
a single pulse that does not interact with other pulses in the train over the periodicity
scale Wp =W . (iii) w

(i)
p in Eq. (5.22) is not selected, an issue that is obviously related to

points (i) and (ii).
An attempt to remedy points (ii) and (iii) above, which is inevitably superficial, would
be to impose the steady-state pulse train condition of Eq. (5.15) on Eq. (5.22), resulting
in w

(i)
p /W =1/π. That is, we construct an approximate pulse train solution by concate-

nating/superimposing the ideal pulse solutions of Eq. (5.22) with periodicity Wp =W

and a single pulse width w
(i)
p /W =1/π. Below we show that this artificially constructed

pulse train qualitatively fails to describe our rate-and-state friction pulse train solutions,
where wp/W is not a constant, but rather depends on both W and v0. Moreover, while
both the ideal pulse solution of Eq. (5.22) and our pulses (cf. Figs. 5.10b and 5.12) do
not feature a singularity at the trailing edge, the pulse shape v(x) near the trailing edge
differs quite significantly. Another difference between the two solutions is that while the
ideal pulse solution is truly singular at the leading edge, the singularity in our solutions
is self-consistently regularized on small scales near the leading edge.
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In light of the discussion of the ideal pulse above, which mainly served to highlight the
differences compared to our pulse train solutions, our next goal is to better characterize
the function wp(W, v0)/W . The first question we need to address is how to properly
nondimensionalize W and v0, i.e. the dimensionless pulse width wp/W should be
expressed in terms of dimensionless quantities. We suggest that the proper way to
nondimensionalize W and v0 is through their relation to the elasto-frictional instability,
which is a necessary condition for the emergence of pulse trains.
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Figure 5.14: The dimensionless pulse width wp/W as a function of both the normalized
driving velocity v0/vmin and system size Lc/W , see text for additional discussion. Each
black circle corresponds to one of the simulations shown in Fig. 5.13, spanning a broad
range of system parameters (including variations of the system size W , driving velocity
v0, shear modulus µ and the characteristic slip displacement D). Variations of µ alter the
elasto-frictional length Lc, while variations of D affect both Lc and vmin. The surface is
interpolated from the data points, supporting the existence of a smooth and monotoni-
cally increasing function wp/W =G(Lc/W, v0/vmin), as predicted theoretically (see text
for discussion).

The elasto-frictional instability exists if the system is driven at a velocity v0 that resides
on the rate-weakening branch of the steady-state friction curve fss(v) (cf. Fig. 5.9b),
i.e. when v0 is larger than the slip velocity at which fss(v) attains its maximum and
smaller than vmin. In the limit v0 →vmin, the system will approach a stable homogeneous
sliding state; that is, as v0/vmin is increased toward unity, we expect the pulse width to
approach W (and obviously its slip velocity to approach v0). For v0 < vmin, the elasto-
frictional instability manifests itself only for Lc <W , i.e. when an unstable perturbation
can fit into the system. Consequently, in the limit W →L+

c the system will approach a
stable homogeneous sliding state; that is, as Lc/W is increased toward unity, we expect
the pulse width to approach W .
Taken together, these physical considerations lead us to expect that there exists a smooth
function wp/W =G(Lc/W, v0/vmin) that monotonically increases with its two arguments.
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This prediction is tested in Fig. 5.14, where wp/W is plotted against Lc/W and v0/vmin.
It is observed that a smooth wp/W =G(Lc/W, v0/vmin) function seems to exist, and that
wp/W indeed increases with both of its arguments. The theoretical derivation of the
precise functional form of wp/W = G(Lc/W, v0/vmin) is left as a challenge for future
research. With this analysis, we conclude our discussion of the single pulse properties
cp, wp, and vp in the large H limit.

5.2.6 Summary and discussion

In this work, we extensively studied velocity-driven frictional systems, using a combi-
nation of computational and theoretical approaches. Velocity-driven frictional systems
exist in a broad range of engineering and tribological applications, as well as in geophys-
ical contexts. We show that such frictional systems, described within the experimentally
motivated rate-and-state friction constitutive framework, give rise to the emergence
of pulse trains once driven at a sliding velocity for which the frictional interface is
rate-weakening. Such slip pulses do not require the existence of material contrast across
the frictional interface. The propagating pulse train is a non-equilibrium dissipative
analog of equilibrium phase separation in thermodynamic systems. We find that such
velocity-driven frictional systems undergo coarsening dynamics leading to steady-state
train periodicity set by the size of the system in the sliding direction, independently of
the height of the system. Interestingly, the infinite height rate-and-state friction simula-
tions of [229] (see section 6.4 therein) demonstrated the emergence of transient (i.e., out
of steady-state) pulse trains behind crack-like rupture fronts at moderate stress levels,
whose periodicity is set by the elasto-frictional length Lc (i.e., by the fastest growing
mode of the linear elasto-frictional instability). The properties of single pulses in our
simulations are quantitatively and comprehensively analyzed and interpreted. In partic-
ular, the pulse propagation velocity, width, and average slip rate are shown to be related
through an equation of motion that is associated with the nearly singular fields in the
vicinity of the leading pulse edge.
Throughout this work, we employed periodic boundary conditions in the sliding di-
rection. Similar periodic boundary conditions have been employed in the velocity-
driven frictional simulations of [118], where instability has been induced by various
physical processes leading to a reduction in the effective normal stress, rather than by
rate-weakening friction per se (note that the possible emergence of pulse trains under
rate-strengthening friction has been discussed in [124]). While coarsening dynamics
have not been discussed in [118], the results therein (cf. Fig. 4 in [118]) do indicate
similar coarsening dynamics as found here. Such periodic boundary conditions natu-
rally emerge in annular/rotary shear geometry experiments [248; 249], which is also
characteristic of many engineering systems. Such an experimental setup offers a natural
test bed for our predictions. Moreover, we believe that the coarsening dynamics revealed
in this work are physically relevant for sufficiently long systems (large W ) that do not
feature periodic boundary conditions, as well as for geophysical fault dynamics, issues
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that should be addressed in future work.
This work offers a rather robust framework for studying self-healing pulses, which
are of importance in many frictional systems. Our results also pose several interest-
ing questions. First, calculating the single pulse shape and consequently its width wp
(cf. Fig. 5.14) remain open challenges. Second, we have not studied in any detail the
coarsening dynamics themselves but rather focused on their long-time outcome. Yet,
earlier time coarsening (cf. Fig. 5.10a) may be characterized by rather complex spatiotem-
poral dynamics, possibly chaotic ones. Quantitatively analyzing these dynamics and
their acoustic emission signature may be important for understanding the non-steady
frictional response of various physical systems. Moreover, in an even broader statistical
physics context, such complex dynamics may reveal how anomalous statistical proper-
ties (e.g. fat power-law statistical distributions [147; 148]) spontaneously emerge even in
the absence of input disorder (quenched or thermal). These interesting issues will be
discussed in the following chapter 6.

5.2.7 Supplemental material

5.2.7.1 The interfacial constitutive law

The rate-and-state friction constitutive framework [53; 7; 71; 221] has been formulated in
Eqs. (5.12)-(5.13). Here we specify the constitutive functions f(·) and g(·), which appear
in these two equations respectively, taking the explicit forms [53; 7; 71; 221; 76; 250; 86;
251; 79; 78; 121; 191]

fN(|v|, ϕ) =
[
1 + b log

(
1 + ϕ

ϕ∗

)]
×
[

f0√
1 + (v∗/|v|)2 + a log

(
1 + |v|

v∗

)] (5.23)

and
g(|v|, ϕ) = 1 − |v|ϕ

D

√
1 + (v∗/v)2 . (5.24)

These functions feature 6 parameters: f0, a, b, D, v∗ and ϕ∗, whose values are specified in
Table 5.1. The superscript ‘N’ in Eq. (5.23) denotes the fact that the steady-state friction
curve fss(v) corresponding to Eqs. (5.23)-(5.24) features an N shape, as shown in Fig. 5.9b
and again here in Fig. 5.15 (solid brown curve).
The N-shaped steady-state friction curve features rate-strengthening at very low veloc-
ities, rate-weakening at intermediate velocities and again rate-strengthening at high
velocities, i.e. it follows a strengthening-weakening-strengthening (SWS) sequence with
increasing slip velocities. As highlighted in the text, the most crucial branch for the
emergence of pulse trains is the rate-weakening one. Consequently, we also considered
two variants of SWS-related function fN(|v|, ϕ) of Eq. (5.23). One variant corresponds to
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replacing Eq. (5.23) with

fWS(|v|, ϕ)=f0

[
1+b log

(
1+ ϕ

ϕ∗

)]
+a log

(
1+ |v|

v∗

)
. (5.25)

The resulting steady-state curve is rate-independent at very low velocities, rate-weakening
at intermediate velocities, and rate-strengthening at high velocities. Consequently, we
use the superscript ‘WS’ for this function and plot the corresponding steady-state curve
in Fig. 5.15 (dotted-dashed orange curve).
The second variant corresponds to omitting the ‘+1’ in the logarithm that multiplies
b in the first square brackets on the right-hand side of Eq. (5.23). This modification
eliminates the high velocities rate-strengthening branch of the steady-state friction
curve [86]. Consequently, we term the resulting f(·) that replaces Eq. (5.23) fSW(|v|, ϕ)
and plot the corresponding steady-state curve in Fig. 5.15 (dashed green curve). All three
steady-state curves, corresponding to fN(|v|, ϕ), fWS(|v|, ϕ) and fSW(|v|, ϕ), essentially
share the same rate-weakening behavior at intermediate slip velocities. Results for
fWS(|v|, ϕ) and fSW(|v|, ϕ) are presented below.

Parameter Value Unit
f0 0.28 ...
a 0.005 ...
b 0.075 ...
D 5 × 10-7 m
v∗ 1 × 10-7 m/s
ϕ∗ 3.3 × 10-4 s

Table 5.1: Typical values of rate-and-state parameters used in this work. In addi-
tion, D has been varied from 1.25 × 10-7 to 1.5 × 10-6m in the results appearing in
Figs. 5.13, 5.14, 5.17.

5.2.7.2 The elasto-frictional length Lc

The calculation of the elasto-frictional length Lc associated with the rate-weakening
instability appears in previous works [74; 7; 75; 53; 76; 78; 79], so here we just very
briefly highlight the structure of the calculation. A linear stability analysis of an interface
sliding at a constant velocity v0 is performed; that is, the starting point is a space and
time independent solution featuring a steady-state frictional stress τ = σ0fss(v0). One
then introduces small perturbations to all fields, each assumed to be proportional to a
Fourier mode eΛt−ikx, where Λ is the complex growth rate and k is the wavenumber.
Obtaining expressions for the perturbation of the interfacial shear stress, from the bulk
elastodynamic equations corresponding to bodies of height H , and for the perturbation
of the frictional strength, one obtains (by equating the two) the linear perturbation
spectrum Λ(k). The elasto-frictional length is related to the critical wavenumber kc for
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Figure 5.15: The normalized steady-state frictional strength fss vs. the steady-state
normalized slip velocity vss, presented on a semi-logarithmic scale for three constitutive
laws. The first (solid brown curve), which features an N shape and is denoted by fN

ss (vss)
(see legend), corresponds to Eqs. (5.23)-(5.24) and has already been presented in Fig. 5.9b.
The local minimum of fN

ss (vss), denoted by vmin, is used to normalize vss. The second
constitutive law (dotted-dashed orange curve) corresponds to Eqs. (5.24)-(5.25) and is
denoted by fWS

ss (vss), see text for additional discussion. Finally, the third constitutive law
(dashed green curve) features no local minimum (see text for discussion) and is denoted
by fSW

ss (vss). All three constitutive laws share the same rate-weakening behavior of the
steady-state frictional strength at intermediate slip velocities, which plays a major role
in this work.

the onset of instability according to Lc(H) = 2π/kc, where kc is determined from the
zero crossing of the real part of Λ, i.e. by ℜ[Λ(kc, H)]=0. The general structure of Lc(H)
appears in Eq. (5.16).

5.2.7.3 The spectral boundary integral formulation

The infinite height (H →∞) calculations are performed using an in-house open-source
implementation (called cRacklet, see [9]) of the spectral boundary integral formulation
of the elastodynamic equations [169; 170; 171]. The basic relation between the interfacial
shear stress and the slip displacement in this case is given in Eq. (5.14), where the
Fourier representation of the spatiotemporal integral term s(x, t) for both mode-II and
mode-III symmetries can be found in [171]. In our numerical calculations, the interface
is assumed to be initially at steady-state with vss = v0 and ϕss = D/v0. The interface
is then perturbed by adding spatial Gaussian noise to the state variable ϕ(x, t), and
the resulting slip velocity is computed by combining Eq. (5.14) and the rate-and-state
friction law τ =σ0(v)f(|v|, ϕ). Note that τ0(t) in Eq. (5.14) is treated as unknown and that
we impose the constraint of Eq. (5.15). The slip displacement u(x, t) is then integrated in
time using an explicit time-stepping scheme u(x, t + ∆t)=u(x, t) + 1

2v(x, t)∆t, with the
time step being ∆t=αBIM∆x/cs, where ∆x is the numerical grid spacing. The numerical
parameter αBIM is chosen to ensure the stability and the convergence of the numerical
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scheme, and is typically set equal to 0.1.
The exact shape of the initial perturbation has no impact on the long-time behavior of
the system (i.e. it does not alter the properties of the emergent steady pulse trains). The
coarsening dynamics, which are not studied in detail in this work, may depend on the
initial perturbation. The bulk parameters in our calculations have been set equal to
µ=9×109Pa, ν =0.33 and ρ=1200kg/m3. In addition, µ has been varied from 2.25×109

to 9×1010Pa in the results appearing in Figs. 5.13, 5.14, 5.17.

5.2.7.4 Finite element method formulation

The finite height H calculations follow the system configuration sketched in Fig. 5.9a.
The top and bottom boundaries are loaded by a horizontal velocity v0/2 (in opposite
directions, cf. Fig. 5.9a) and by a constant compressive normal stress of magnitude
σ0. The bodies are initially moving uniformly in opposite directions at a velocity v0/2,
and periodic boundary conditions are enforced at the lateral edges, x = 0 and x = W .
The interface is initially at steady-state with vss =v0 and ϕss =D/v0. Perturbations are
introduced by adding spatial Gaussian noise to the state variable, as in the BIM case.
The bulk parameters used for the FEM simulations and their BIM counterparts (see, for
example, Fig. 5.10b) are set equal to µ=3.1×109Pa, ν =0.33 and ρ=1200kg/m3.
The FEM calculations are performed using the explicit dynamic finite element frame-
work, based on an in-house open-source finite element library called Akantu [8]. The
domain is discretized into a regular mesh composed of bilinear quadrilateral elements
(Q4). The sliding interface between the two elastic bodies is modeled using a node-to-
node contact algorithm, whose details can be found in [168]. Time is integrated using the
central difference method and the time step is taken small enough to eliminate the nu-
merical instabilities associated with the explicit finite element modeling of rate-and-state
friction, as explained in [168]. In our simulations, we set the time step to ∆t=αF∆tCFL ,
where ∆tCFL is set by the Courant-Friedrichs-Lewy condition and αF is typically taken
to be O(0.01).

5.2.7.5 The WS friction law

As explained in the main text and in section 5.2.7.1, the most important aspect of the
interfacial constitutive relation for our results is the existence of a rate-weakening branch
of the steady-state friction curve and that the applied velocity v0 resides on it. To
demonstrate this point, we performed exactly the same BIM simulations except that in
one case we used fN(|v|, ϕ) of Eq. (5.23) and in the other fWS(|v|, ϕ) of Eq. (5.25), which
are mainly distinguished by the different steady-state behavior at very low velocities,
see Fig. 5.15. The long-time behavior of the system in the two cases is presented in
Fig. 5.16 (employing the same line type and color scheme of Fig. 5.15). It is observed that
the results are quantitatively similar, in terms of the train periodicity (Wp =W ), single
pulse shape, and propagation velocity (see figure legend), substantiating our claim.
It turned out that this robustness of our results against changes in the low velocity
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Figure 5.16: Snapshots of the steady-state slip velocity field v(x)/v0 obtained in two
BIM simulations, one with the N-shaped friction law (Eq. (5.23), solid brown curve,
cf. Fig. 5.15) and the other with the WS friction law (Eq. (5.25), dotted-dashed orange
curve, cf. Fig. 5.15). The two simulations are otherwise identical, employing v0 =
1×10−3m/s and W =40m. In both cases, the resulting pulse train periodicity satisfies
Wp = W , the single pulse shape is quantitatively similar (note that the two snapshots
are shifted along x for visual clarity) and the propagation velocity is also quantitatively
similar (cN

p ≃0.73cs for the N-shaped law and cWS
p ≃0.70cs for the WS law).

behavior of the friction law (while preserving a very similar rate-weakening behavior) is
of technical importance in relation to our FEM calculations. In particular, we found that
the FEM calculations suffered from numerical instabilities associated with the low fric-
tional strength featured by the N-shaped interfacial constitutive relation at low velocities.
These numerical instabilities can be eliminated by using Eq. (5.25) instead of Eq. (5.23),
without affecting the emerging physics. Consequently, in our FEM calculations, we
adopted the WS friction law of Eq. (5.25).

5.2.7.6 The space-independent stick-slip like behavior for H ≃W ≫Lc

As explained in the main text, our FEM calculations with H ≃ W ≫ Lc featured time
periods where the slip velocity almost vanished homogeneously across the interface,
followed by nearly homogeneous large slip velocity periods. This space-independent
stick-slip like behavior appears to substantially deviate from the steady-average velocity
condition of Eq. (5.15), and hence is not expected to persist in the large W and long-time
limits. Consequently, we slightly modified our numerical scheme to eliminate this
behavior by adding a constraint in the FEM H ≃W ≫Lc simulations. In particular, at
each time step, we computed the average slip rate ⟨v⟩ of the interface and compared
it to the driving velocity v0. We then introduced a small spatially-homogeneous shift
∆v =v0 − ⟨v⟩ to the velocity field and ∆a=2(v0 − ⟨v⟩)/∆t to its acceleration counterpart
(a= v̇ and ∆a is the small shift in a) in computational nodes along the interface (with
opposite signs for nodes belonging to the top/bottom body, to preserve the shear
symmetry). This amounts to the application of a spatially-homogeneous external stress
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on the top/bottom nodes along the interface. This stress is typically very small, less
than one percent of the initial frictional stress τ0 =σ0fss(v0), yet it nevertheless ensures
that the average driving condition of Eq. (5.15) is nearly satisfied at all times.

5.2.7.7 The effective fracture energy

The effective fracture energy Gc of interfaces obeying rate-and-state friction law is self-
selected by the interfacial dynamics. In order to test the pulse equation of motion of
Eq. (5.21), we computed Gc using two different methods. The first method relies on an
approximated mapping of slip-weakening (rather than rate-weakening) friction laws
— characterized by a slip-weakening distance — to rate-and-state ones, as discussed
in [82]. In [82] it has been shown that an effective slip-weakening distance δeff

c can be
extracted in rate-and-state friction calculations and that it approximately follows the
relation δeff

c ≈ D log(vr/vbg), where vbg is the background slip velocity that a rupture
mode propagates into and vr is the residual slip velocity left behind it. This relation has
been later used in [80; 83] to obtain an approximate expression for the effective fracture
energy in the form Gc ≈ 1

2Dbf0σ0 log2(vr/vbg). We used this estimate for Gc, with vbg =vs
and vr =v0, in Fig. 5.13. The results strongly supported the prediction in Eq. (5.21).
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Figure 5.17: Testing the theoretical prediction of Eq. (5.21), using the same data as in
Fig. 5.13, but this time with Gc being estimated from the fit of the singular fields near
the rupture edge, which is denoted by Gfit

c (see text for discussion). The results reveal
reasonably good agreement with the prediction, with an O(1) pre-factor, similarly to the
results of Fig. 5.13.

The second method relies on the extraction of the nearly singular fields in the vicinity
of the leading edge of the propagating pulse, shown in Fig. 5.12 to be reasonably well
approximated by the classical square-root singular fields of LEFM. In particular, such a
procedure allows to extract the stress intensity factor KIII by fitting simulational data to
Eq. (5.18). Invoking then the leading edge energy balance of Eq. (5.19), one can obtain
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an estimate of the effective fracture energy, which in this context is denoted by Gfit
c . In

Fig. 5.17, we present the very same data (and combinations of physical quantities in the
x and y axes) as in Fig. 5.13, but this time using Gfit

c for Gc, estimated from fitting the
singular fields near the pulse leading edge, as just described. The results yet again agree
with the prediction in Eq. (5.21) reasonably well, demonstrating the validity of the latter
independently of the method used to estimate the effective fracture energy.

5.2.7.8 The SW friction law

Many studies available in the literature employ a rate-and-state friction law that does
not feature rate-strengthening at relatively high slip velocities (and hence no local mini-
mum as observed in Fig. 5.9b) [122; 123; 80; 83; 252]. Such behavior is exhibited by the
strengthening-weakening (SW) friction law discussed in section 5.2.7.1 (which corre-
sponds to using fSW(|v|, ϕ) in Eq. (5.23)), whose steady-state curve is shown in Fig. 5.15
(dashed green curve). For completeness, we performed mode-III BIM calculations
(H →∞) with the SW friction law. We find qualitatively similar results to those obtained
for the N-shaped law, i.e. coarsening dynamics towards a pulse train with periodicity
set by the system length, Wp =W . A representative movie of such calculations is avail-
able below. We do note that the SW friction law leads to sharper pulses and typically
features higher slip and propagation velocities compared to their N-shaped counterparts.

5.2.7.9 Supplementary data

Movies are available as follows:

• M1: Infinite domain with the N-shaped friction law, see Fig. 5.10a.

• M2: H <Lc < W with the WS friction law, corresponding to Fig. 5.11.

• M3: H < Lc < W with the WS friction law, corresponding to Fig. 5.11 in the
co-moving frame of the pulse.

• M4: H ≃W ≫Lc with the WS friction law.

• M5: Infinite domain with the SW friction law, see section 5.2.7.8.

The movies are available at the following link: https://www.youtube.com/watch?v=
UVD4VeJHnRM&list=PLT7c4IN61XQM8dk-hq9ZWtwGCvhT54nt7
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6 Statistical and dynamical complex-
ity in a driven frictional system
without disorder

This chapter discusses the emergence of statistical and dynamical complexity in a
frictional system that does not feature material heterogeneities or bulk non-linearities.
Understanding what are the minimal ingredients that give rise to statistical complexity
in frictional systems, i.e., the existence of broad fat-tailed distributions of the slip events
characteristics, is a basic problem of interest due to its existence in real frictional systems
such as earthquakes. We study this problem in a frictional system of finite size that
is velocity driven, where the dissipation and nonlinearity are confined to the contact
interface, and the long-range elasto-dynamic interactions are mediated through wave
propagation in the elastic bodies. We show that this frictional system features statistical
and dynamical complexity even in the absence of material (bulk and frictional) disorder.
We use finite element modeling to simulate the behavior of a periodic system (analog
to a rotary apparatus) of finite H that embed a homogeneous planar contact interface
whose behavior is given by a rate-and-state dependent constitutive law. First, we show
that the characteristics of the slip events occurring in this system (duration, average slip,
seismic moment) are broadly distributed. In particular, we find that slip events can be
classified into two types: small, mainly non-propagating events, which follow a power-
law distribution, and large propagating rupture events, which approximately follow
a log-normal distribution. The broad distributions emerge from self-generated stress
and interfacial (contact area) heterogeneity, which is accompanied by spatiotemporal
complexity. The latter reveals intricate interactions between the two types of slip events,
between the current state of the interface and its history, and triggering/arrest effects
mediated by wave reflections from finite boundaries, which are associated with a travel
time 2H/cs (cs being the shear wave speed). These results demonstrate that complexity
might emerge in systems that feature no quenched disorder and bulk nonlinearity.
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This chapter is an adapted version of the paper:

Statistical and dynamical complexity in a driven frictional system without disorder,
Roch, T., Brener, E. A., Bouchbinder, E., Molinari, J.-F. In preparation
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6.1 Introduction

The statistical description of slip dynamics in frictional systems, in particular in the
context of geophysics and earthquake science, is known to feature broadly distributed
event characteristics. For example, the magnitude of earthquakes is power-law dis-
tributed [138; 139], as well as the temporal decay of aftershocks after a main event
[140; 139], and several scaling laws describing the relation between the characteristics of
slip events feature power-laws [144; 145; 142; 143; 146]. The existence of these specific
scaling laws implies scale independence and has strong implications on the physical
mechanisms driving slip events. How statistical complexity emerges in frictional system
is however not yet clear. In a broader physical context, the emergence of complexity can
be related to the disorder of the system (e.g., heterogeneities in material properties) or
to strong dissipation and nonlinearity. Natural faults are rough at all scales [149] and
highly complex in terms of geometry, material and frictional properties, and loading
conditions. Heterogeneous interfacial properties are often assumed when studying
frictional rupture [179; 253; 254]. However, one can wonder if the apparent complexity
in frictional systems originates from the instabilities associated with the inherent weak-
ening of frictional motion or from the complexity of the system itself. This question has
been discussed extensively in the literature using various modeling techniques. One
of the first models that investigated the emergence of broadly distributed slip events
is the Burridge-Knopoff [150] mass and spring model, which has been used with vari-
ous formulations for the friction law acting on each block [151; 152]. Complexity has
been observed to emerge in these systems even in the absence of input disorder in the
material properties. However, other authors have argued that the apparent complexity
is an artifact of the discreteness of the system, with the model not being representative
of a smooth homogeneous fault [77; 155; 157; 156; 129]. For Rice and coworkers, slip
event complexity is a consequence of material heterogeneities. Different continuum
models demonstrated some kind of statistical complexity in the absence of material
disorder but were thought not to be generic as it was limited to specific friction laws
with significant weakening or limited to some parameters range [160; 113; 159; 116].
Other origins for statistical complexity, such as geometric complexity (i.e., non-planar or
multiple faults) have also been investigated [161]. Despite the abundant literature on
the subject, it is not yet clear what is the minimal system in which generic complexity
emerges, and in particular if material heterogeneities are mandatory to observe both
small and large event complexity. In this chapter, we investigate the possibility that the
finiteness of the system, i.e., the interaction between fault and finite boundaries through
wave-mediated stress transfers, might bring sufficiently complex interactions for the
emergence of complexity in the absence of material heterogeneities. In particular, we
expect that the propagation of waves in the bulk will trigger both dynamic slip and
arrest, giving rise to a variety of slip events.

We study the frictional behavior of a homogeneous planar fault laying between two
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elastic bodies of finite height H using finite element simulations. The interface follows
a rate and state frictional law. We start by describing the methodology for identifying
independent slip events occurring during the simulation and defining the quantities of
interest. We show that slip complexity emerges in this system even in the absence of
material disorder. First, we investigate the emergent statistical complexity of the main
characteristics of the slip events (duration, average slip, and seismic moment). Two
types of events are occurring in this frictional system and feature different probability
functions: 1) Small non-propagating slip events which are power-law distributed and 2)
large propagating rupture events which are log-normal distributed. We show that these
distributions are generic and independent of the system parameters, and demonstrate
the collapse of these distributions after appropriate rescaling. This broad distribution
emerges from self-generated heterogeneity at the sliding interface (in the stress τ and
state ϕ fields) and waves traveling in the bulk. This results in spatio-temporal complexity
in the system, with intricate interactions between the two types of slip events, the
current state of the interface and its history, and the geometry of the system with waves
traveling in the bulk and triggering or arresting slip events. We then demonstrate that the
characteristic time scale for wave propagation from the interface to the top (or bottom)
boundary and back is relevant both for spatio-temporal complexity and for the statistical
one, illustrating that interactions with finite boundaries might lead to the emergence of
complexity in a system that does not feature material heterogeneities and nonlinearity in
the bulk. We conclude this chapter by discussing the possible implications on frictional
dynamics.

6.2 Model

The frictional system of interest is composed of two identical elastic bodies of length
L, height H and width w that are maintained in contact by a compressive stress σ0, as
shown in Fig. 6.1a. The system is periodic, i.e., rotary, and is driven at a constant angular
velocity v0/L at y = ±H such that the (tangential) sliding velocity at the interface is v0.
The frictional interface behavior is given by a weakening rate and state friction law (see
Fig. 6.1b) given by Eq. (6.1) with the state evolution law of Eq. (6.2):

f(|v|, ϕ)=f0

[
1 +b log

(
ϕ

ϕ∗

)]
+a log

(
1+ |v|

v∗

)
, (6.1)

g(|v|, ϕ) = 1 − |v|ϕ
D

√
1 + (v∗/v)2. (6.2)

The resulting steady-state curve is rate-independent at very low velocities, and rate-
weakening at intermediate and high velocities. The driving velocity v0 is chosen such
that it resides in the rate-weakening branch. The system is chosen sufficiently large such
that it can host several frictional instabilities (L ≫ Lc). The constitutive behavior of the
bulk is chosen to follow linear elasticity, i.e., Hooke’s law [244]. The bulk and frictional
parameters of the problem are summarized in Table. 6.1. The top and bottom bodies are
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Figure 6.1: (a) A rotary (periodic) frictional system, composed of two identical de-
formable annuli (white and grey are just used to make a visual distinction) of diameter
L/π, height H and thickness w, is sketched. The two annuli are pressed one against the
other by a normal stress σ0 and each is driven by an angular velocity of magnitude v0/L
(anti-symmetrically). The frictional interface (brown) is described by a homogeneous
rate-and-state dependent interfacial constitutive law, such that the slip velocity v0 resides
on its velocity-weakening branch (see text for details). (b) The steady-state frictional
strength fss vs. the steady-state slip velocity vss, presented on a semi-logarithmic scale.
The vertical dashed line is the driving velocity v0.

initially in equilibrium and moving at a steady (tangential) velocity v0/2 and −v0/2, and
the interface is at steady-state with vss =v0 and ϕss =D/v0. Perturbations are introduced
by adding spatial Gaussian noise to the state field ϕ(x), resulting in the destabilization
of the entire interface.

Parameter Value Unit
ν 0.33 ...
µ 9×109 Pa
ρ 1200 kg/m3

f0 0.28 ...
a 0.005 ...
b 0.075 ...
D 5 × 10-7 m
v∗ 1 × 10-7 m/s
ϕ∗ 3.3 × 10-4 s

Table 6.1: Typical values of bulk and rate-and-state parameters used in this work. In
addition, D has also been varied by a factor 1/3 and 3.
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6.3 The numerical method

The calculations are performed using the explicit dynamic finite element framework,
based on an in-house open-source finite element library called Akantu [8]. The domain
is discretized into a regular mesh composed of bilinear quadrilateral elements (Q4). The
sliding interface between the two elastic bodies is modeled using a node to node contact
algorithm, whose details are given in section 3.1.2. Time is integrated using the central
difference method and the time step is taken small enough to eliminate the numerical
instabilities associated with the explicit finite element modeling of rate-and-state friction,
as explained in [168]. In our simulations, we set the time step to ∆tF =αF∆tCFL, where
∆tCFL is set by the Courant-Friedrichs-Lewy condition and αF is typically taken to be
O(0.01).

6.4 Identification of slip events

Here we summarize the procedure that is followed to identify distinct events. The slip
activity on the fault is expected to be strongly heterogeneous, both in time and space
(fast - spatially localized slip events followed by long waiting periods), see an example in
Fig. 6.2a. Most of the time, the interface is sticking. As we are interested in slip events, to
sample valuable data, we come up with a slip interval instead of a time interval for data
sampling. This method is used in the context of depinning physics. Using slip sample
allows us to get detailed information during slip events and reduces the amount of data
corresponding to the waiting time between slip events where the velocity of the interface
vanished, i.e., almost zero slip. To proceed, we define a slip threshold δth setting the
precision of the measure during the simulation. We record the time that a point along
the interface spent to slip from δ = 0 to δ = δth, then from δ = δth to δ = 2δth and so
on. When the slip accumulated during a single time step is shared between two slip
thresholds, the time is allocated based on the relative weight of the two contributions.
If a point has slipped more than one slip threshold during a time step, the time spent
between the different slip thresholds will be linearly interpolated based on the exact
cumulative slip value and its previous value, resulting in duration between thresholds
that can be lower than the time step of the numerical scheme itself.
The outcome of this procedure is called a space-slip map of the duration. An example is
shown in Fig. 6.2b, with the corresponding space-time plot of the velocity in Fig. 6.2a.
The slip is normalized by D, the characteristic asperity size from the rate and state
friction framework. In this space-slip map, the dark green/blue colors correspond to
short durations ∆t required to slip a given δth, i.e., a large sliding velocity, while the
bright blue/white areas correspond to stick conditions. This map contains much more
information than the one shown in Fig. 6.2a. Before any quantitative analysis of the slip
events, one can notice the highly complex dynamics in play in the system, with events
of various sizes and durations happening at the interface.
To identify distinct slip events, we start with time clustering. We convert the space-slip
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Figure 6.2: (a) Space-time plot of the velocity during a typical simulation. The part of
the plot in dark blue corresponds to the interface sticking. (b) Space-slip plot of the time
required to slip over a distance δth. The lower values in dark green/blue indicate a rapid
slip while the largest ones in bright white indicate a long waiting period, i.e., sticking
condition.

duration map into a space-slip map of the time t(x, δ) that indicates the time at which a
given cumulative slip threshold value has been reached, with

t(x, δ) =
n=δ∑
n=0

∆t(x, n). (6.3)

Fig. 6.3a shows the space-slip time map obtained from Fig. 6.2b. As we are not consid-
ering any spatial information yet, the entire data set from the space-slip time map is
put into a vector tNSE which is sorted by time of occurrence. It contains the information
on when a single node has reached a new slip threshold, which we refer to as a nodal
slip event (NSE). We then compute the waiting time between two NSE anywhere on
the interface, as ∆tNSE = tNSE,i+1 − tNSE,i where the subscript NSE indicates that we are
referring to nodal slip events. If the waiting time is sufficiently large, it means that the
interface is entirely sticking and thus indicates the separation between two independent
global slip events. An extract of this vector taken at an arbitrary time is illustrated in
Fig. 6.3c, where nNSE is the number of NSE. Note that in the entire simulation shown in
Fig. 6.3a, there are O(107) NSE. One needs to decide on a waiting time threshold. We
choose it in relation to the number of points on the interface, the driving velocity, and
the slip threshold.
The system is driven at a given velocity v0, such that in average, a node on the interface
will slip by an amount δth every

∆tn=1 =
δth

v0
. (6.4)
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Figure 6.3: (a) Space-slip map of the time t at which a given cumulative slip value δ/D
has been reached at a given position on the interface x/L. An area sharing the same
color corresponds to a slip that occurred at the same time, while discontinuity in the
colors indicates a waiting period. (b) The corresponding space-slip map of the distinct
slip events, see text for more details on the procedure.

The interface is discretized with N nodes such that there is in average one NSE every

∆tN =
∆tn=1

N
=

δth

v0N
. (6.5)

Waiting time significantly below this value means parts of the interface are sliding faster
than the imposed driving velocity, while a large waiting time corresponds to the entire
interface sticking. The threshold is defined as α∆tN with α an arbitrary constant. The
value of α is chosen such that it does not affect the statistical distributions of the slip
events, but still allows the method to distinguish between slip events. This threshold is
indicated in Fig. 6.3c with the horizontal green line.
All the NSE that falls in between two values exceeding the threshold (for example,
from nNSE ≃ 200 to nNSE ≃ 430 in Fig. 6.3c) are grouped inside a single global slip
event. This information is then digitized back on the space-slip map, and we obtain a
visual description of the distinct slip events as shown in Fig. 6.3b in which each color
corresponds to a (global) slip event. There are O(104) slip events after applying this
procedure in Fig. 6.3b. Note that slip events that are too small, both spatially O(dx) and
in terms of duration O(δth), are removed from the analysis. An example of a single slip
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Figure 6.4: (a)Space-slip map of the time t at which a given cumulative slip value δ/D
has been reached at a given position on the interface x/L for a single event. Only the
colored area is part of the event. (b) The space-time velocity map of this event. It was
reconstructed from the information from the space-slip map.

event is shown in Fig. 6.4a in the space-slip map of the time, with the corresponding
space-time map of the velocity shown on Fig. 6.4b. The latter has been reconstructed
from the information stored in the space-slip map of the duration and is not directly
sampled in time. The red patch in Fig. 6.4b, spanning from x/L = 0.4 to 0.47 is the main
rupture area with a sliding velocity going up to O(10v0). This rupture is growing and
propagating spatially. Around x/L = 0.35, there is some non-sticking velocity (light
blue) but these are not propagating events and slip is most likely triggered by wave
reflections in the bulk due to past slip events and interactions with finite boundaries.
We can investigate the structure of the slip events. One can assess if they are continuous
in space or composed of spatially unconnected slipping patches, which we call here
clusters. Once again, the smallest clusters O(δth) or O(dx) are filtered out. The distri-
bution of the number of clusters nc per slip event is shown in Fig. 6.5. Most events
are composed of a single cluster. The distribution seems to roughly follow a line in a
semi-logarithmic scale, indicating an exponential probability density function.
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Figure 6.5: Number of slip events ne(nc) composed of nc clusters, normalized by the
total number of events.

Now that the slip events are identified, we can compute their characteristics: rupture
length Lr, duration T , average slip u, seismic moment Lruµ with µ the shear modulus
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of the bulk surrounding the interface, waiting time between events ∆T , average slip
velocity < v >, etc... We can do this for slip events (identified based on the time of
occurrence) or for spatially independent clusters. In this section, we report the results for
the statistics on the slip events (and not the clusters), but the observations are similar as
most of the slip events are composed of a single cluster. Note that the first and last events
in each simulation are excluded from this analysis. The first one is always spanning the
entire interface and is triggered by the initial noise, while the last one is potentially not
complete when we stop the simulation.

6.5 Time dependence of the statistics

Before looking in detail at the statistics themselves, we first want to evaluate if the
statistical description of the slip events recorded during our simulations is dependent
or independent of the time. We start by computing a measure of the activity A on
the interface/fault defined as the number of global slip events (identified following
the procedure presented before) per time interval to assess its evolution during the
simulation. In Fig. 6.6, we compare the mean activity (in purple) to the activity computed
by dividing the simulation in respectively 20, 50 and 100 evenly sized time intervals. The
results shown in Fig. 6.6 correspond to the richest simulation at disposal, with H = 0.1
[m], L = 4 [m] and v0 = 2 × 10−3 [m/s]. The activity is roughly constant over time,
indicating that our system is in a permanent regime.
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Figure 6.6: Activity A of the system as a function of the time computed using various
time intervals.

Then we evaluate if the description of these events changes with time. In Fig. 6.7 we
show the probability density functions (PFDs) for the average slip u, the duration T ,
and the seismic moment M0 for the entire simulation (in orange) and two subsets of
events corresponding respectively to the events occurring during the first fifth of the
simulation (dotted dashed brown, t < 0.2ts) and the last fifth of the simulation (dashed
green, t > 0.8ts). Irrespectively of the time interval, the PDFs are perfectly collapsing
with the one computed based on the entire data range, thus the statistics are also time
independent (stationary), and we will use the entire data set for each simulation for the
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subsequent analysis.
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Figure 6.7: Probability density function p(x) (a) of the average slip u (normalized by D)
(b) the duration T (normalized by D/v0) and (c) the seismic moment M0 (normalized by
µD2) for three sets of events: the entire data set (orange), the first fifth of the simulation
(dotted dashed brown) and the last fifth (dashed green).

This first result suggests that the system is in a self-organized permanent regime that is
likely to be sustained by the various mechanisms in play in the system. This includes the
aging of the interface, the dissipative processes through slip events, and bulk mediated
wave propagation. The statistics are discussed below.

6.6 Statistical complexity

We now study the statistical distribution of the observable quantities of the slip events
recorded during a reference simulation with H = 0.1 [m], L = 4 [m] and v0 = 2 × 103

[m/s]. We consider three main quantities: the average slip u, the duration T and the
seismic moment M0. The probability density functions (PDFs) of these quantities are
presented in Fig. 6.8 (in brown). Note that the characteristics of the PDFs discussed
here are not restricted to this specific simulation, but are rather generic to the type of
frictional system discussed in this section. The three PDFs have similar characteristics
and reveal that the observed slip events are broadly distributed, over several orders of
magnitude. We first consider the PDF of the average slip p(u), see Fig. 6.8a. For small
slips, the statistical distribution follows a power law scaling as:

p(x) = Cx−β. (6.6)

This is highlighted by the linear dashed black line in double logarithmic scale, with
an exponent β ∼ 2.45. The distribution features a change in behavior for large slips
occurring roughly around u = D (indicated by the vertical line). The origin of this break
in behavior is discussed below.
The PDFs of the duration and the seismic moment share the same characteristics, with
a power law scaling for small quantities (with an exponent of respectively β ∼ 2.2
and 2) and a different behavior for large values. The presence of distinct behaviors for
small and large events implies that two different types of slip events are occurring at
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the interface. On one hand, we have small/non-propagating slip events that feature
an average slip lower than D (i.e., the slip accumulated during the event is not large
enough to change the state of the interface and nucleate a rupture) and large rupture-
like propagating events. The spatio-temporal description of the events validates this
distinction between the two typologies of events. The apparent propagation velocity of
the events as ca = Lr/T with Lr the rupture length confirms this as well: the large events
have propagating velocity in the range of the elastic wave speeds while the small events
have non-physical apparent propagation velocity, several orders of magnitude larger
than the theoretical limiting propagation velocity (which is cd for supershear ruptures).
The small events are likely triggered by bulk-mediated stress transfer but do not result
in rupture nucleation (and therefore propagation). These events are reminiscent of the
events called breather in [154]. To distinguish between the two types of events, we use
the criterion of the average slip, with slip larger than D corresponding to rupture-like
events, as illustrated with the vertical line in Fig. 6.8a. We plot the PDFs of the large
propagating events p(x)[ux > D] in dashed green in Fig. 6.8b,c. (Note that we do not plot
the p(u)[ux > D] as it corresponds exactly to p(u) on the right of D). These distributions
follow roughly a log-normal law (orange curve in the insets of Fig. 6.8b,c) that is given
by:

p(x) =
1

xs
√

2π
exp

[
−

(ln(x) − x)2

2s2

]
, (6.7)

with x and s the mean and standard deviation of the variable’s natural logarithm. This
type of statistical distribution for large propagating events features a somewhat fat tail
for large events (but is not as broad as a power law distribution).
It is important to note that these features of the statistical distributions of the charac-
teristics quantities of the slip events are generic: changing the geometry (H, L), the
characteristics of the friction law (D, α) and the driving velocity v0 result in similar
PDFs. In the next paragraph, we show that with some proper renormalization, the PDFs
are quantitatively collapsed. In Fig. 6.9, we also show an example of the interrelation
between the observable quantities (u,T ,M0 and Lr), which also reveals some apparent
non-trivial power law relationships between them, as observed for real earthquakes.

6.7 Collapse of the probability density functions

We explore the parametric space of our system by changing the length L by a factor 2
and 1/2, the height H again by a factor 2 and 1/2, and the characteristic slip distance D

by a factor 3 and 1/3. We show in Fig. 6.10a,b,c the (unnormalized) PDFs for the average
slip u, the duration T and the rupture length Lr. We show the rupture length instead of
the seismic moment M0 as the latter is a combination of both the rupture length and the
average slip: collapsing the PDFs for these two quantities should result in the collapse
of the seismic moment distribution.
The first striking observation is the immediate collapse of the PDFs for the average slip
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Figure 6.8: (a) The probability distribution function (PDF), p(ū), of the average slip
ū of slip events measured in a long-time simulation of the finite-size velocity-driven
frictional system sketched in Fig. 6.1a (for w≪L, H , see text for details). ū is normalized
by the characteristic slip D distance of the rate-and-state friction law (also marked by
the vertical line), see text for the precise definition of slip events and D. Events with ū
smaller than D are broadly distributed, following a power-law distribution (the dashed
line has a slope ∼ −2.45, and note the double-logarithmic axes used). For ū > D, slip
events appear to follow a different distribution. (b) The PDF p(T ) of the duration T
of slip events (solid brown line), normalized by D/v0. Events that feature ū < D, see
panel (a), are again power-law distributed (the dashed line has a slope ∼ −2.2). The
(non-normalized) PDF of events with ū > D is superposed (dashed green line) and is
shown in the inset to follow a log-normal distribution (solid orange line). See text for an
extensive discussion of the distinction between events featuring ū < D and ū > D. (c)
The same as in panel (b), but for p(M0), where M0 =µūLr is the seismic moment, Lr is
the event size and µ is the shear modulus. M0 is normalized by µD2 (the dashed line
has a slope ∼−2).
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Figure 6.9: Scatter plots of (a) the duration T versus the average slip u (b) the average
slip u versus the seismic moment M0 and (c) the rupture length Lr versus the seismic
moment M0.

p(u) for the power law (small non-propagating events) part, without any normalization
parameters. The transition between small and large events changes with variations of
D (as expected, as modifying D directly changes the slip value required to transition
from one state to another), but more surprisingly also with variations of H . This is an
indication that the reflection of waves at the top and bottom boundaries (y = ±H) plays
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a role in the statistics and the dynamics, and this will be discussed in detail later on.
L does not play a role in any part of the distribution, apart from increasing the cutoff
of observable large events. Note that changing the driving velocity v0 does affect p(u)
and a rescaling by t∗v0 is required to collapse the small event power law, where t∗ is a
characteristic time-scale that is not specified here. The impact of v0 on the statistics is
not discussed in detail in this manuscript, but the generic features are not altered when
changing the driving velocity. The PDFs of the duration T , see Fig. 6.10b are almost
perfectly collapsing except for the variations of D (in brown and pink). Rescaling p(T )
by D as shown in the inset leads to a collapse in the small event range. Again, the change
of behavior between small and large propagating events is affected by H , and L only
affects the cutoff of large durations.
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Figure 6.10: PDFs (a) of the average slip u (b) the duration T and the rupture length
Lr for various system parameters (variations of H, L, D) For the average slip, all the
PDFs collapse in the power law regime without rescaling parameters. In the case of
the duration, the PDFs collapse after normalization by D, see (e). The rupture length
requires a more complex normalization with

√
H/L/D which is shown in panel (d).
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The PDF of the rupture length p(Lr) is slightly different. First, the range of observed
rupture length is strictly controlled on the small scale by the spatial discretization and on
the large end by the domain size. The tiny event distribution is an increasing function of
the rupture length up to a maximum, then the behavior is a power law for intermediate
events followed by a change of distribution for large events. The first part is completely
absent from p(u) and significantly less relevant for p(T ). Without normalization, all
the functions p(Lr) are qualitatively similar but do not collapse. A rescaling involving
the three length scales L, H , and D is thus required. Using

√
H/LD as the rescaling

parameter allows collapsing the intermediate (small non-propagating events) part of the
distribution, but note that this rescaling is not as good as for the other quantities. We
do not provide here a physical explanation of the rescaling by

√
H/L. The PDFs for the

seismic moment are also successfully collapsed by rescaling u and Lr.
The emergence of broad statistical distributions in the type of frictional system discussed
here is thus generic and robust, and the characteristics of the distributions do not depend
on the system characteristics for the small non-propagating events. Note that variations
of v0 and of the friction law parameters (namely the weakening rate and the presence
or not of a strengthening branch at large velocity) have also been investigated, and the
generic features of the PDFs remain unchanged. In the following section, we look at the
spatio-temporal organization of these events.

6.8 Dynamical complexity

The slip events at the interface are spatially and temporally related to each other and
depend on the history of the interface itself. A detailed sequence of events is shown
in Fig. 6.11. In panel (a), a space-time plot of the velocity field v(x, t) normalized by
the driving velocity v0 is shown, for a time interval that is chosen arbitrarily during a
simulation (here t ranges from 2 to 4.2cs/L). The interface is mostly sticking (in dark blue)
and the slip events are shown with colors ranging from bright blue, white, and red for
large slip velocities. One large propagating (rupture-like) event is indicated with a green
arrow and is called event 1. This event is expanding spatially in time, but eventually
arrests. Note that the dynamics that are simulated here are truly two-dimensional, (see
section 6.11.2), allowing the propagation of rupture-like events featuring square-root
singularities at their tips. The inset of Fig. 6.11a is a zoom on the arrest region of the
left edge of rupture 1, after the event. Note that the scale for the velocity in the inset is
different (it shows much smaller velocities compared to the main panel) and this reveals
some slip patches that were not perceptible with the scale of the main panel. We mark
events 2, 3, and 4 with respectively yellow, orange, and brown arrows. The accumulated
slip profiles δ relative to the slip before event 1 (called δ0) are shown in Fig. 6.11b with
the corresponding colors. The slip accumulated during event 1 is significantly larger
than D which is consistent with a propagating event. The shape of the slip accumulated

during this event is similar to the slip of a crack δ(xt) ∼
√

L2
r − x2

t with xt the position
taken from the tip of the rupture and Lr the rupture length (the equivalent of the crack
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size). The state ϕ(x), see Fig. 6.11c, and the stress τ(x), in Fig. 6.11c, before (in black) and
after (green) event 1 are strongly heterogeneous, even if the absence of material disorder.
The heterogeneities are self-generated by the system due to its history. The vertical lines
in these two panels indicate the arrest locations of event 1: the state variable is reduced
to almost 0 over the rupture length, while it increases over the rest of the interface due to
aging, indicated by black arrows (the real contact area increases with time in the absence
of sliding while it is reduced during fast slip as microcontacts are broken). The locations
of rupture arrest correspond to local minima in the stress profile that existed before
the rupture and suggests that arrest of event 1 is related to these low-stressed regions.
Other mechanisms can arrest rupture in this system, such as elastic waves unloading
the interface locally. Stress concentrations are left at the edges of the rupture.
The subsequent slip events are localized at one of these stress concentrations (we focus
on the left one around x/L = 0.2, but slipping is also occurring on the right around
x/L = 0.45). The accumulated slip during events 2, 3, and 4, relative to the slip after
event 1 (called δ1), is shown in the first inset on the top right of Fig. 6.11b. The second
inset only shows events 2 and 3 with another y − scale as they are smaller than D and
could not be properly resolved by the scale of the main panel and first inset. The shape
of the slip accumulated during these small non-propagating events are also of the form

δ(xt) ∼
√

L2
r − x2

t . A rupture is eventually nucleated (event 4) after this succession of
stick/slip in this overstressed area. Note that the velocity goes back to zero in between
events.
This spatio-temporal description of successive events is generic during the simulation,
as can be seen in Fig. 6.11a : event 4 is followed by several small non-propagating
events (in between tcs/L = 3 − 3.75, around x/L = 0.2) until a large propagating
rupture is nucleated. The small events are thought to be triggered by wave reflections
and participate in the build-up of stress concentrations that lead to large propagating
ruptures. This small extract from a simulation is another demonstration of the broadly
distributed type of slip events at the interface.

6.9 Influence of wave reflection

As the reflection of waves seems to play an important role in the complex dynamics
at stake in this frictional system, we study the effect of finite geometry in a system
that host a single perturbation (in place of the chaotic system discussed before). We
start from an interface sliding at a uniform, steady velocity v0 (in the rate weakening
branch of the rate-and-state friction law) and introduce a Gaussian perturbation in
the state field ϕ. The size of the system is chosen such its length L is larger than the
critical length for frictional instability Lc. The perturbation is centered at x/L = 0.5 A
linear frictional instability develops and leads to the nucleation of a frictional rupture.
The outcome of this procedure is illustrated with a space-time plot of the slip velocity
for two different system heights, H = 0.1 [m] and H = 0.2 [m] in Fig. 6.12a,b. The
velocity (note the logarithmic scale) accelerates at the center of the interface, and this
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Figure 6.11: (a) A space-time plot of the slip velocity field v(x, t), normalized by v0, where
x is the coordinate along the interface (normalized by L) and t is the time (normalized
by L/cs, where cs is the shear wave speed. Dark blue regions correspond to the sticking
part of the interface (v(x, t) < v0, see color bar). A zoom in on the space-time interval
x/L = 0.2−0.45 and tcs/L = 2.25−2.4 is shown (note the change in scale in the color
bar therein). Four events are indicated (different numbers and colors), to be further
discussed in subsequent panels. (b) The accumulated slip δ(x) (in unit of D) of the
different slip events marked in panel a (see also upper legend in panel b), relative to the
accumulated slip δ0(x) prior to event 1 (slip history), denoted as event 0 in the legend.
The two insets show a consecutive zoom in (see gray boxes and lines as guides), on
smaller spatial scales, of the accumulated slip events 2,3,4, measured relative to the
accumulated slip δ1(x) of event 1 (see right y-axis). See extensive discussion of the
presented complex spatiotemporal dynamics in the text. (c) The frictional state field
ϕ(x), which determines the real contact area, both before (black) and after (green) event
1. The arrows indicate contact aging, and the two vertical lines show the interfacial
region that slipped during event 1. (d) The interfacial shear stress τ(x), normalized by
σ0, before (black line) and after (green line) event 1. See text for extensive discussion of
these results.

fast slipping patch (in red) starts expanding spatially. The slip velocity then rapidly
drops to zero. The characteristic reflection time-scale for elastic waves caused by slip at
the interface is 2H/cs (with cs the shear wave speed) and is indicated on both panels at
x/L = 0.5. The time scale over which the interface slides significantly faster than v0 (in
red) matches this characteristic time scale of reflection. It is expected that by doubling
the system height, the duration of fast slip at x/L = 0.5 will also double. This is verified
in Fig. 6.12b. This simple case illustrates that elastic waves can locally alter the dynamics
of a slipping patch. It occurs as follows: elastic waves are radiated from the interface
when slipping, and then propagate in the bulk up to y = H where they are reflected due
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to the imposed velocity boundary condition. The waves that travel back to the interface
unload the interface and arrest sliding. For H = 0.1 [m], this is sufficient to stop the
rupture altogether, but for H = 0.2 [m], the rupture patch is sufficiently developed such
that the two rupture fronts continue their propagation after the return of the elastic
waves. In the latter, a crack-like rupture is split into two slip pulses by the return of
the elastic waves. Note that these pulses are propagating at supershear velocities, as
indicated by the slopes representing the elastic wave speeds (cr cs and cd) in white.
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Figure 6.12: (a) A space-time plot of v(x, t) (same format as in Fig. 6.11a) for a system
of height H = 0.10 m and a perturbation introduced at t = 0 at x/L = 0.5 (see text for
details). The shear wave travel time 2H/cs is marked, as well as the 3 wave speeds:
cR (Rayleigh), cs (shear) and cd (dilatational), see white lines. (b) The same as panel
(a), but for H =0.2 m. Panels (a) and (b) are extensively discussed in the text. (c) p(T )
(normalized as in Fig. 6.8) for 3 values of H , separated by a factor of 2 (see legend and
note that H = 0.1 m therein). The wave travel time 2H/cs in each case is marked by a
vertical line. It is observed that while T of small, non-propagating events are barely
affected by H , the large, propagating events distribution is systematically shifted to
higher values with increasing 2H/cs. (d) The same as panel (c), but for p(ū). Here, the
vertical lines correspond to 3v0×2H/cs, see text for discussion.

Interestingly, this time scale is not only related to dynamical complexity, but also to
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statistical complexity. The probability density functions of the duration p(T ) for systems
with various heights (H/2 in dotted dashed orange, H in solid brown and 2H in dashed
green with H = 0.1 [m]) are shown in Fig. 6.12c and the reflection time-scale for each
system is indicated by vertical lines of the same color and line style. This time scale
coincides with the change of behavior observed in the PDFs p(T ) between small / non-
propagating events and large / rupture-like events. An equivalent observation can
be made from the PDFs of the average slip p(u) in Fig. 6.12: instead of the reflection
time-scale 2H/cs, the vertical lines indicate a characteristic slip distance associated to
this time-scale, as γv0 × 2H/cs where γv0 is a characteristic slip velocity during slip
events, with γ = O(1), and in this plot specifically γ = 3. This implies that the finite
height H plays an important role both for the spatio-temporal description of the slip
events and for their statistical descriptions.

6.10 Summary and discussion

In this section, we studied the emergence of statistical and dynamical complexity in
a driven frictional system in the absence of disorder. We first show that in a finite
system driven at a constant velocity and in which the dissipation only takes place at
the interface and does not feature any material heterogeneities (neither in the bulk nor
in the frictional properties), broad slip events occur. In particular, the duration, the
average slip, and the seismic moment of the recorded slip events span several orders of
magnitude. We show that the slip events can be divided into two categories: small/non-
propagating events, whose distribution follows a power law, and large/rupture-like
events, described by a log-normal probability density function. The small events are
characterized by an average slip that is lower than D, the characteristic slip distance of
the rate-and-state law that describes the frictional behavior. They are mostly triggered
by elastic waves that propagate in the elastic bulk, but these perturbations do not result
in a spatial expansion of the slipping area. The emergence of complexity is related to
self-generated heterogeneities at the interface level: the complex interactions between
weakening during slip, aging, and long-ranged elastic stress transfers through elastic
waves propagation lead to highly heterogeneous stress and state (which is a proxy for the
contact area) of the interface, in the absence of material heterogeneities. This is a different
result compared to the picture of emergent statistical complexity being a manifestation
of the material heterogeneities, which has been discussed in [77; 157; 129]. The presence
of finite boundaries and the subsequent waves reflections allows for an additional
mechanism for rupture triggering and arrest. This is the case with re-nucleation of slip in
laboratory-earthquake experiments [255], which is thought to be dynamically triggered
by wave-mediated stress transfer. While the wave reflections in this chapter occurred
at the solid boundaries, they could also originate from bi-material contrast in the bulk
surrounding the interface (e.g., asperities, damage zone near faults). They are expected
to be relevant for various frictional systems. To conclude, finite geometry, even in the
simplest form employed here (i.e., regular and symmetric geometry), alongside generic
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rate and state friction law at the interface, seems sufficient for the emergence of statistical
complexity.

6.11 Supplemental material

6.11.1 Independence of the statistics on the thresholds

To illustrate the independence of the statistical descriptions of the slip events on the time
threshold ∆tth, we show in Fig. 6.13 the probability density function of the average slip,
duration and seismic moment for the same simulation computed using ∆tth = 15, 30, 60.
For values significantly larger than that, numerous slip events are grouped together
up to a point where the entire interface is considered as a single slip event. The main
characteristics of the PDFs do not depend on the threshold: (i) the power law scaling for
small events, (ii) the change in scaling law occurs around the same value, and (iii) the
large propagating events are roughly log-normal distributed. The behaviors near the
cut-offs are however different (as expected): modifying the threshold directly affects the
minimal event size. Plus, increasing ∆tth result in grouping large event together and
thus increase the maximum observed event size.
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Figure 6.13: Probability density function p(x) (a) of the average slip u (normalized by D)
(b) the duration T (normalized by D/v0) and (c) the seismic moment M0 (normalized by
µD2) for three value of time threshold used to identify events, with ∆tth = 30.

6.11.2 Nucleation length for finite height system

To verify that the system studied is fully resolving two-dimensional dynamics (i.e., is
not in the quasi-one-dimensional limit), we compute the theoretical nucleation length
for two homogeneous elastic bodies of height H in contact along a planar interface by
conducting a linear stability analysis (LSA), see [78] for details on the procedure. The
resulting function Lc(H) is shown with the solid brown line in Fig. 6.14. The theoretical
nucleation length of the largest system studied H = 0.2 [m] is almost equal to the one for
an infinite system (vertical green line). In contrast, for the other heights (H = 0.05 and
H = 0.1 [m]), the nucleation length corresponds to roughly 65% and 80% of Lc(H → ∞),
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supporting the hypothesis of a two-dimensional system.
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Figure 6.14: Nucleation length Lc as a function of the system height H . In brown, the
theoretical nucleation length is based on a linear stability analysis following [78]. The
horizontal green line indicates the theoretical nucleation length in the limit of H → ∞.
Results of numerical simulations (see text for details) that lead to the development of a
frictional linear instability are indicated with orange dots, while dying perturbations are
shown with black crosses.

To assess the validity of the theoretical estimation for Lc, we conduct finite element
simulations of the frictional system discussed here and introduce a single perturbation
of length Lp. We report in Fig. 6.14 the outcome of this perturbation. It either decays
and dies (black crosses) or grows and leads to rupture nucleation (orange circles). The
numerical results are in good agreement with the theoretical prediction, validating the
two-dimensional nature of the system studied. This implies that singular rupture fronts
can develop in this system, which is impossible if we were in the quasi-one-dimensional
limit. Note that the typical mesh size is ∆x =2.5×10-3 [m] such that the nucleation length
is discretized with Lc/∆x = O(100) elements. The process zone size can be estimated as
ω = O(µD/bσ[1 − ν]) =9.5×10-2 [m], see [256], resulting in roughly 40 elements in the
process zone.
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7 Coupling the finite element method
and the spectral boundary integral
method

This chapter presents the coupling between the two numerical methods used thus far
in this thesis: the finite element method, and the spectral boundary integral method.
Modeling dynamic rupture problems is computationally challenging, as it involves
complex physics and requires resolving length and time scales that can span orders of
magnitude. The finite element method is versatile and can be adapted to any geometry,
material heterogeneity, and behavior, allowing to model dynamic rupture problems.
However, the entire domain has to be discretized, which can be costly if one wants to
get rid of the interactions with the boundaries. The spectral boundary integral method,
however, is an efficient tool that describes the response of the free surface of a semi-finite
homogeneous elastic body. Here, we use the latter as a boundary condition to truncate
the simulation domain of a finite element model that encompasses all the non-linearities
and dissipation of the problem of interest. We first present the coupling algorithm, based
on a strict continuity of velocities at the coupling interface. The validity of the coupling
scheme is assessed with a simple example of elastic wave propagations, and its accuracy
is compared with another coupling formulation based on a staggered scheme. We show
an example of spontaneous crack propagation using extrinsic cohesive elements.

This chapter is an adapted version of the paper:

Coupling the finite element method and the spectral boundary integral method for
dynamic rupture simulations, Roch, T., Molinari, J.-F. In preparation
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7.1 Introduction

The numerical modeling of dynamic rupture is usually challenging, as it involves discon-
tinuities, non-linearities, and dissipation. In addition, the nucleation and propagation
of rupture fronts involve a broad range of length and time scales. The dissipation at
the tip of a dynamic rupture front occurs over a short distance called the process zone,
which can be several orders of magnitude lower than the dimension of the interface over
which it propagates. The ruptures themselves are often fast, propagating at velocities
close to the elastic wave speeds, while the loading of such systems can be comparatively
extremely slow (e.g., tectonic loading can take hundreds of years before triggering a con-
sequent earthquake). Thus, modeling such problems requires large but finely discretized
time and spatial domains, and proves to be a technical challenge.
The numerical modeling techniques for simulating elastodynamic problems can usually
be classified into two categories. On one hand, domain-based methods, such as the
finite difference method and the finite element method (FEM), in which the entire
body of interest needs to be discretized. These methods are flexible and allow for
considering various bulk constitutive behavior, heterogeneities, and non-linearities.
Several techniques to model discontinuities in domain-based methods are commonly
used, such as cohesive elements [162], the node-to-node discretization of an interface,
and also mesh-independent techniques like phase-field approach of brittle fracture [164].
Any rupture geometry can thus be modelled, including complex faults networks or even
cases in which the path of the rupture is not known beforehand (e.g., the growth of
microbranches [257]). The main drawback of domain-based methods is the necessity to
model a sufficiently large domain such that the dynamics of the problem are not altered
by the interaction with boundaries, which can result in simulated domains significantly
larger than the area of interest. On the other hand, boundary-based methods are
comparatively computationally cheaper as they allow for reducing the dimensionality
of the problem. In these methods, the partial differential equations are solved only on
the boundaries of the body with the help of Green’s functions. The spectral boundary
integral method (SBIM) presented in section 3.2 describes the stresses and velocities
at the free surface of a semi-infinite elastic body [169; 170; 171]. This method however
requires the bulk to be homogeneous linear elastic, limiting its applicability to specific
rupture problems. The difficulty to derive closed forms for the Green’s functions for
other configurations seriously hinders the possibility to extend this method.
A natural solution for solving the main limitation of the domain-based method is to
truncate the simulation domain using boundary conditions that do not reflect waves in
the domain of interest. This has been achieved with various numerical methods, includ-
ing infinite elements [258; 259], absorbing boundary conditions [260; 261], absorbing
layer methods [262; 263], and perfectly matching layers [264; 265; 266]. These methods,
however, suffer to some degree from artificial reflections at the interface and need to
be taken sufficiently far from the area hosting the dynamic rupture for good accuracy.
Using the SBIM to radiate waves inside a semi-infinite elastic continuum is a promising
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alternative, as the propagation of waves is solved exactly with this method. The coupling
between SBIM and domain based-method has gained increased attention in the last few
years, with a coupling between FD and SBIM [267] and coupling between FEM and
SBIM [268; 269; 270; 271]. The latter used a staggered approach, with the response of
the semi-infinite elastic body being applied either as Dirichlet [268] or Neumann [271]
boundary conditions on the finite element domain.
Building on this idea of truncating a finite element domain using the SBIM to simulate
interfaces with semi-infinite elastic bodies, we propose a novel formulation for the
hybrid FEM/SBIM method relying on a strong coupling of the velocities at the interface,
instead of a staggered approach. The principle of the method is schematized in Fig. 7.1.
A dynamic rupture problem is embedded inside an infinite body Ω∞ (or sufficiently
large that the interactions with the finite boundaries are not relevant for the problem).
Modeling this problem with SBIM is not possible, as the non-planar interface and the
heterogeneities can not be considered with this method. One could use FEM, but this
requires simulating a large domain. Interfaces with SBIM are thus introduced around
the area where dynamic rupture occurs (see Fig. 7.1b) to reduce the size of the domain
that needs to be discretized.
First, we present the formulation of the coupling algorithm. A validation of the scheme
is presented with a simple elastic problem of elastic wave radiations. We compare the
accuracy of the proposed coupling algorithm with an existing staggered scheme. Then,
we show an example using extrinsic cohesive elements, in which a crack loaded in
tension spontaneously propagates. We conclude this chapter with a summary of the
method and its potential applications.

7.2 Coupling method

We couple two in-house open source software called Akantu1 [8] and cRacklet2 [9],
respectively, for the finite element method and the spectral boundary integral method.
First, we recall the main steps of the time integration scheme in both methods.

7.2.1 Finite element method

In what follows, the subscript stands for the time step, and the superscript F indicates
that the field is related to the finite element method. As presented in section 3.1, the time
integration scheme that we use is based on a Newmark-β [166] scheme with β = 0.5
and α = 0 :

1https://akantu.ch/
2https://gitlab.com/cracklet/cracklet
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Ω∞

Complex rupture path
Heterogeneities

SBIM

SBIM

FEM

u̇F = u̇S

(a) (b)

Figure 7.1: Schematic representation of the coupling between the finite element method
and the spectral boundary integral method. (a) A complex dynamic rupture problem
involving tortuous rupture path and heterogeneities is embedded inside a homogenous
elastic body Ω∞. (b) The numerical representation of this problem using the coupling
scheme. A thin stripe of finite element is used to model the region of interest with
the rupture and the heterogeneities. The top and bottom boundaries of this finite
element mesh are coupled with the free surface from the spectral boundary integral
method (in blue). Nodes are matching in between the FEM mesh and the SBIM surface.
The continuity is enforced at the coupling interface by imposing equality between the
velocities at the coupling nodes from the finite element mesh u̇F and the velocities at the
surface of the SBIM u̇F.

uF
n+1 = uF

n + ∆tu̇F
n + (∆t)2

2 üF
n

u̇F
n+1 = u̇F

n + ∆t

2
[
üF

n+1 + üF
n

]
,

(7.1)

with uF the displacement vector-field. A superposed dot represents a partial derivative
with time, such that u̇F is the velocity vector field and üF is the acceleration vector
field. All these fields are functions of the position x = (x, y, z) in a three-dimensional
Cartesian coordinate system, but we drop the argument for the sake of readability. ∆t is
the time step, chosen according to the Courant-Friedrichs-Lewy condition [167].
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The system is solved with a predictor-corrector approach:

1. Predictor:

uF
n+1 = uF

n + ∆tu̇F
n + 1

2 (∆t)2 üF
n ,

u̇P,F
n+1 = u̇F

n + ∆tüF
n ,

(7.2)

2. Solve:
δüF

n+1 = M−1
(
F ext

n+1 − F int
n+1 − MüF

n

)
, (7.3)

3. Corrector:

üF
n+1 = üF

n + δüF
n+1,

u̇F
n+1 = u̇P,F

n+1 + ∆t

2 δüF
n+1.

(7.4)

The internal forces in Eq. (7.3) are computed as F int
n+1 = KuF

n+1. K and M are respec-
tively the stiffness and the mass matrix. Note that there might be additional terms in the
residual Eq.(7.3) (for example, if one part of the problem includes an interface modeled
with a node-to-node algorithm), but they are relevant only for the part of the finite
element mesh that is not directly coupled to the spectral boundary integral method, so
we exclude them for simplicity.

7.2.2 Spectral boundary integral method

The scheme used for the spectral boundary integral method [169; 170; 171] is an explicit
time stepping algorithm, but is different from the one of the FEM as the acceleration
is never computed but rather the velocity at each time step is solved directly. In what
follows, the superscript S indicates that the field is related to the spectral boundary
integral method:

uS
n+1 = uS

n + ∆tu̇S
n, (7.5)

with the velocity u̇S
n given by the stress condition at the interface:

τ S
n = τ ∞

n − V
(
u̇S

n − u̇S
0

)
+ fS

n , (7.6)

with

V = µ

cs

1 0 0
0 η 0
0 0 1

 , (7.7)

and η = cd/cs the ratio between the dilatational wave speed and the shear wave speed.
The last term fS is non-local in space and time and represents the spatio-temporal
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interaction of different points on the interface mediated by bulk elastodynamics. It is
computed via a convolution integral in the spectral model of the displacement history
uS(n, n − 1, ...). The kernels used to compute fS are given in [171]. For readability, we
assume that there is no reference velocity, u̇S

0 = (0, 0, 0).

7.2.3 Coupling condition

The velocities at the interface between FEM and SBIM have to be equal at every time
step. As the two schemes are different (there is no acceleration in the SBIM), the coupling
condition writes:

u̇F
n+1 + ∆t

2 üF
n+1 = u̇S

n+1, (7.8)

with Eq. (7.8) valid for any nodes on the coupling interface. This condition ensures that
the displacements at each time step are also equal at the coupling interface:

uS
n+1 = uF

n+1. (7.9)

Using Eq. (7.4), the coupling condition at the step n + 1 writes:

u̇P,F
n+1 + ∆t

2 δüF
n+1 + ∆t

2
[
üF

n + δüF
n+1

]
= u̇S

n+1, (7.10)

and introducing the expression for the predicted velocity u̇P,F
n+1 from Eq. (7.2):

u̇F
n + 3∆t

2 üF
n + ∆tδüF

n+1 = u̇S
n+1. (7.11)

Using the expression for the acceleration increment δüF
n+1 of Eq. (7.3) gives:

u̇F
n + 3∆t

2 üF
n + ∆t

[
M−1

(
−KuF

n+1 + F cF
n+1

)
− üF

n

]
= u̇S

n+1, (7.12)

with F cF
n+1 the coupling forces that will be specified below. The stresses at the surface

of the SBIM are given by τ cS
n+1, allowing to compute the velocity in the SBIM as:

u̇S
n+1 = V −1

(
τ ∞

n+1 + fS
n+1 − τ cS

n+1

)
. (7.13)

The coupling interface is required to be at equilibrium, i.e., the forces from the FEM
should compensate for the forces in the SBIM. This additional condition writes:

F cF
n+1 = τ cS

n+1An, (7.14)

with A the surface of influence of the nodes at the coupling interface, and n the vector
normal to the surface of the coupling interface.
Combining Eqs. (7.12),(7.13) and (7.14) leads to:
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u̇F
n + ∆t

2 üF
n + ∆tM−1

(
−KuF

n+1 + F cF
n+1

)
= V −1

(
τ ∞

n+1 + fS
n+1 − F cF

n+1A−1n−1
)

.

(7.15)
The only unknown in Eq. (7.15) is the vector of coupling forces F cF

n+1. One can reorga-
nize Eq. (7.15) and write:

F cF
n+1 = H−1

[
V −1

(
τ ∞

n+1 + fS
n+1

)
− u̇F

n − ∆t

2 üF
n + ∆tM−1KuF

n+1

]
, (7.16)

with H a condensation operator that only depends on the system geometry and material
parameters:

H = ∆tM−1 + V −1A−1n−1. (7.17)

It can be pre-computed (assuming no change in area and density). The term inside square
brackets in the right-hand side of Eq. (7.16) only depends on fields at the previous time
step (recall that üF

n+1 and üS
n+1 are computed from the fields at the previous time step, see

Eqs. (7.2) and (7.5)). One can solve for the coupling forces F cF
n+1 and the corresponding

coupling stress for the SBIM, see Eq. (7.14). These forces ensure continuity through the
models.

7.2.4 Coupling algorithm

We detail in Table. 7.1 the exact steps followed during the coupling scheme for both the
FEM and SBIM parts.

7.3 Validation

7.3.1 Setup and qualitative analysis

To validate the coupling scheme, we simulate the travel of elastic waves through the
interface between the two methods. The system under consideration is shown in Fig. 7.2.
We consider a body occupying a half-plane y > 0 in a two-dimensional Cartesian system.
Displacements are imposed on a small part of the free surface y = 0 as a function of time,
resulting in elastic waves being radiated in the bulk. We test the FEM/SBIM coupling
by comparing two systems: one where a large finite element mesh is used such that
there is no reflection occurring in the simulation timeframe, and one with a coupled
FEM/SBIM where waves propagate through the coupling interface Γc. The expected
intended behavior is that no waves should be reflected at the coupling interface.
The imposed displacement at the center of the free surface is given by:

ud
y(t) =

{
sin
(

2πt
T

)
if t < T/2

0 otherwise.
(7.18)
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FEM SBIM

Initialization Init K, M , uF
0 ,u̇F

0 ,üF
0 ,F F

0 Init V , uS
0 , u̇S

0 , τ ∞
0

Match nodes on coupling interface, compute A, H

1. uF
n+1 = uF

n + ∆tu̇F
n + (∆t)2 üF

n/2 uS
n+1 = uS

n + ∆tu̇S
n

u̇P,F
n+1 = u̇F

n + ∆tüF
n

2. üP,F
n+1 =

(
−KuF

n+1 + F extF
n+1

)
M−1 Compute fS

n+1

3. F cF
n+1 = H−1

[
V −1

(
τ ∞

n+1 + fS
n+1

)
− u̇F

n − ∆tüF
n/2 + ∆tM−1KuF

n+1

]
τ cS

n+1 = F cF
n+1A−1n−1

4. δüF
n+1 = üP,F

n+1 − üF
n + F FM−1 u̇S

n+1 =
(
τ ∞

n+1 + fS
n+1 − τ cS

n+1

)
V −1

u̇F
n+1 = u̇P,F

n+1 + ∆tδüF
n+1/2

üF
n+1 = üF

n + δüF
n+1

Table 7.1: Algorithm for the coupling between finite element method and spectral
boundary integral method.

ΩF

Ω∞

Γc

PBC PBC

ud(t)x

y
H

Figure 7.2: System used for the validation of the FEM/SBIM coupling in two dimensions.
Dirichlet boundary conditions are imposed on a small part of the free surface at y = 0 of
a solid laying on the half plane y > 0, i.e., a displacement field ud(t). Periodic boundary
conditions are enforced on the x direction. Only the body ΩF of height H is discretized
with a finite element mesh, and a coupling interface Γc with the semi-infinite body Γ∞

represented by a spectral boundary integral method interface is achieved using the
coupling method presented in the previous section.

The evolution of the displacement fields ux,uy is presented in Figs. 7.3, 7.4. In each of
these figures, the fields from a reference simulation (from a finite element simulation
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with a domain of height 2H) are shown on the left, with the corresponding fields from a
simulation where a coupling interface is located at y/H = 1 on the right. Elastic waves
are radiated due to the imposed boundary conditions at the free surface, starting at
t = 0. They reach the coupling interface around tcd/H = 1, which corresponds to the
travel time of dilatational waves. At this point, they start interacting with the coupling
boundary and thus propagate in the semi-finite elastic, represented by the spectral
boundary integral method. There is no apparent reflection from the qualitative results
shown in Figs. 7.3, 7.4. The same figures are shown in section 7.6.1 for the velocity fields,
which are similar. Subsequently, the same is true for the strain and stress fields, not
shown here.
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Figure 7.3: Displacement field ux(x, y, t) for the problem schematized in Fig. 7.2,(a-d) in a
simulation where the entire system is modeled with finite elements, (e-g) in a simulation
using a coupling interface with an infinite half-body, at y/H = 0.5, represented in
dashed black lines. Each row corresponds to a given time step. The displacement fields
are the same in both systems, without any visible reflections from the boundary with
the spectral integral boundary method.
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Figure 7.4: Displacement field uy(x, y, t) for the problem schematized in Fig. 7.2,(a-d) in a
simulation where the entire system is modeled with finite elements, (e-g) in a simulation
using a coupling interface with an infinite half-body, at y/H = 0.5, represented in
dashed black lines. Each row corresponds to a given time step. The displacement fields
are the same in both systems, without any visible reflections from the boundary with
the spectral integral boundary method.

7.3.2 Quantitative analysis of the error

We quantify the error between the reference case and the coupling one by computing
the ℓ2-norm of each field, defined as:

E(∆x) =

√√√√ n∑
k=i

∆x2
k, (7.19)

with ∆x the difference between the field from the reference simulation and the simu-
lation done with the coupling. We evaluate the norm over the entire domain that is
simulated with finite elements in the coupling algorithm. As we aim at comparing errors
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computed based on vectors of different sizes to assess the convergence of the method,
we compare the weighted error based on the size of the vector:

E(∆x) = E(∆x)√
n

, (7.20)

with n the size of the vector. Note that this is not an error relative to an analytical solution,
but rather a comparison with a reference numerical method. Using the coupling might
even improve the error relative to the exact solution: the SBIM is more accurate than
FEM as the latter features artificial dispersion. We plot on Figs. 7.5 and 7.11 the evolution
of the error as a function of time for respectively the displacement and the velocity fields.
The results corresponding to the coupling algorithm presented in this section are shown
in solid lines. The dashed lines will be discussed below. Up to tcd/H ≃ 1, there is no
error, as the elastic waves have not yet interacted with the coupling interface. Then,
when the waves are transmitted through the coupling interface. At this point, the error
starts increasing but then eventually stabilizes toward a constant value after the main
part of the input signal has been transmitted inside the semi-infinite elastic half-space.
The error decreases with the discretization of the interface (nx is the number of nodes of
the coupling interface). With better discretization, the oscillations in the error vanish,
illustrating that the coupling scheme is not constantly adding noise to the system.
In Figs. 7.5 and 7.11, the dashed curves correspond to another coupling scheme between
FEM and SBIM [271]. This method relies on a staggered Neumann approach. It consists
in solving Eq. (7.6) that gives the stresses in the SBIM using the displacements and the
velocities that have been computed from the FEM problem and applying these stresses
as a Neumann boundary condition to correct for the response of the semi-infinite elastic
half-space. The typical scheme is available in [271]. Note that a similar staggered
method relying on using Dirichlet boundary conditions has also been proposed [268]. It
is expected that the strong coupling presented in this chapter results in a lower error
when compared to the staggered scheme, as our formulation ensures that both the
velocity and the stress are coupled at each time step. This is indeed the case, with the
error being larger for the staggered scheme compared to our coupling, for the same
discretization, as can be seen in Figs. 7.5 and 7.11.
The convergence of the coupling algorithm is illustrated in Fig 7.6, showing the maxi-
mum error during our test case, alongside a comparison with the Neumann staggered
scheme of [271]. Both algorithms seem to have the same convergence rate, but for fine
discretization, the strong coupling results in roughly half of the error compared to the
staggered scheme. Note that the additional computational costs of solving the strong
coupling are small compared to the total cost of the problem. Indeed, the computation
of the coupling forces is fully explicit and does not require any iterative scheme. Plus, it
is done only over a dimension N − 1, where N is the dimension of the finite element
problem. The strong coupling is thus a more efficient alternative to the staggered scheme,
at a comparable computational cost.
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Figure 7.5: Time evolution of the error for (a) ux and (b) uy. The solid curves correspond
to the coupling presented in this section, for different discretizations, nc being the
number of nodes at the coupling interface. The dashed curves correspond to a staggered
coupling scheme as introduced by [271].

7.4 Example: spontaneous propagation of a crack loaded in
tension

The previous validation does not feature any dissipation or non-linearity inside the finite
element stripe. We present here the basic problem of spontaneous crack propagation
in pure mode I. The system is shown in Fig. 7.7. Only a small stripe of the problem is
modeled using finite elements ΩF, and two interfaces with semi-infinite homogeneous
elastic continua Γc,+ and Γc,+ are modeled using the SBIM. This allows for reducing
significantly the size of the problem. The crack size a is taken larger than the Griffith
crack length (the critical size for stability) LG such that it starts propagating once
the dynamic simulation is initiated. The first step consists in computing the static
equilibrium of the body under the far field loads. At this point, the loading is applied as
external forces directly on the finite element model. Note that damage is not allowed
at this stage. Then, the finite element model is coupled to the two SBIM interfaces
and the far field load is moved to the term τ∞ in the SBIM scheme. To model the
propagation of the crack, we use extrinsic cohesive elements [272]. During the simulation,
cohesive elements are dynamically inserted in between two bulk elements if the stress
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Figure 7.6: Convergence rate of the error of the displacement field for the (a) x component
and the (b) y component. The average error is normalized by the amplitude of the input
displacement field. The results from the coupling presented in this section are in green,
and the errors using a Neumann staggered scheme in orange.

reaches a critical value. The cohesive elements follow a linear cohesive law of the type
τ = σcmax(1 − δ/δc; 0) with σc and δc respectively the maximum stress and the critical
opening of the cohesive law. With this approach, the crack path is not prescribed (but
still needs to follow the mesh) and the stiffness of the model is not artificially altered by
the presence of cohesive elements from the start. The dynamic part of the simulation is
solved with the coupling scheme.
The cohesive elements are inserted at the tip of the original crack, on the plane y = 0 due
to the loading mode. Several snapshots of the velocity field during crack propagation
are shown in Fig. 7.8. The elastic waves radiated by the crack are transmitted to the
semi-infinite continua without reflection. Some energy is released initially when the
simulation transitions from the static equilibrium to inserting cohesive elements in the
over-stressed area, resulting in a bit of noise ahead of the rupture front. The mesh
near the crack is unstructured, resulting in a crack path that is not perfectly straight.
However, due to the location of the stress concentration at the crack tip, the crack path
stays around y/H = 0.

135



Chapter 7. Coupling the finite element method and the spectral boundary integral
method

ΩF

Ω∞

Γc,+

Γc,−

PBC PBC

σ∞

σ∞

Figure 7.7: A crack of length a is embedded inside an infinite body Ω∞ and loaded in
tension with far field stress σ∞.
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Figure 7.8: Snapshots of the velocity field in the problem presented in Fig. 7.7. Two SBIM
interfaces are located at y/H ± 1. The initial crack of length L is centered in x = 0 and is
on the plane y = 0. Cohesive elements are inserted around y = 0, note the discontinuity
between the velocity fields.

7.5 Conclusion

In this chapter, we proposed a novel coupling scheme between the finite element method
and the boundary integral method. The latter is used to simulate infinite boundary
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conditions and radiate waves out of the domain of interest that is simulated using the
former. This coupling is based on a strict continuity of the velocities at the interface
between the methods. We demonstrated the validity of the coupling scheme with a
simple problem of wave propagations and highlighted its better accuracy compared to a
staggered coupling scheme. The coupling method was used to simulate the spontaneous
propagation of a mode I crack using extrinsic cohesive elements. While the examples
presented in this chapter are rather simple, this method provides an efficient tool to
model dynamic rupture problems in large domains for which the interactions with
finite boundaries are not relevant. Studying the occurrence of out-of-plane damage (e.g,
microbranches) during fast dynamic rupture or the dynamics of earthquakes nucleation
and propagation on complex fault networks are amongst the many potential problems
that could be investigated with this new method.

7.6 Supplemental material

7.6.1 Additional results for the reference problem

Here, we show snapshots of the velocity fields Figs. 7.9 and 7.10, alongside the evolution
of the error on the velocity in Fig. 7.11 and the convergence rate for the error on the
velocity in Fig. 7.12. Note that the error here is normalized by T/u0 which we define as
the characteristic velocity from the loading function given by Eq. (7.18).
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Figure 7.9: Velocity field u̇x(x, y, t) for the problem schematized in Fig. 7.2,(a-d) in a
simulation where the entire system is modeled with finite elements, (e-g) in a simulation
using a coupling interface with an infinite half-body, at y/H = 0.5, represented in
dashed black lines. Each row corresponds to a given time step. The velocity fields are
the same in both systems, without any visible reflections from the boundary with the
spectral integral boundary method at y/H = 0.5.
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Figure 7.10: Velocity field u̇y(x, y, t) for the problem schematized in Fig. 7.2,(a-d) in a
simulation where the entire system is modeled with finite elements, (e-g) in a simulation
using a coupling interface with an infinite half-body, at y/H = 0.5, represented in
dashed black lines. Each row corresponds to a given time step. The velocity fields are
the same in both systems, without any visible reflections from the boundary with the
spectral integral boundary method at y/H = 0.5.
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Figure 7.11: Time evolution of the error for (a) u̇x and (b) u̇y. The solid curves correspond
to the coupling presented in this section, for different discretizations, nc being the
number of nodes at the coupling interface. The dashed curves correspond to a staggered
coupling scheme as introduced by [271].
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Figure 7.12: Convergence rate of the error of the velocity field for the (a) x component
and the (b) y component. The average error is normalized by the ratio of the period over
the amplitude of the input displacement field. The results from the coupling presented
in this section are in green, and the errors using a Neumann staggered scheme in orange.
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8 Conclusion

8.1 Summary

This thesis explored the richness and complexity of dynamic rupture arising from friction
and fracture. We investigated the dynamics of planar interfaces lying between homo-
geneous elastic symmetric bodies. Despite the apparent simplicity of these systems,
they host a large variety of behaviors. Among other things, modifying the boundary
conditions affect the rupture modes in frictional rupture. The interactions with the
disorder also affect the behavior at different levels. In tensile fracture, heterogeneities at
the interface deform crack fronts. For frictional interfaces, self-generated heterogeneities
related to the evolution and history of the interface give rise to complex slip events of all
sizes. We summarize here the main observations and conclusions of this research.

The dynamics of fast-propagating cracks are intrinsically heterogeneous and result
from the interactions of the crack fronts with the microstructure. In particular, fronts
distort when encountering variations in the fracture toughness field. Therefore, these
deformations are reminiscent of the material disorder and can tell us about the effective
properties of a heterogeneous material. However, the usual tool used in this context,
the line tension model, overlooks the influence of the dissipation length scale, called the
process zone size. This results in treating all asperity scales indifferently. We used a
cohesive zone model to introduce this length scale and study tensile cracks interacting
with a regular microstructure. The presence of a process zone alters how the crack
fronts interact with heterogeneities. In particular, it results in scale effects for front
deformations, with a decrease of the front stiffness that increases their amplitude, and
a smoothing of the disorder experienced by the crack, which oppositely diminishes
them. Depending on the nature of the heterogeneities, these competing effects can lead
to either larger or smaller front deformations, stressing the importance of this length
scale for heterogeneous rupture. For fast cracks, the contraction of the process zone
mitigates these effects. Independently, the dynamic stiffening of the front reduces the
overall amplitude of deformations. This study paved the way for a better understanding
of the front roughness in disordered materials, impacting the prediction of the effective
properties of cohesive composites. It might also help predict the occurrence of out-of-
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plane damage subsequently to high in-plane front curvature.

The dynamics of frictional interfaces share similarities with classical tensile fracture, with
the propagation of rupture fronts, i.e., the propagation of a discontinuity in a continuous
field. However, several important differences exist between fracture and friction. First,
the residual stress level behind the rupture front in frictional rupture is, contrary to
tensile fracture, not zero, but rather depends on the evolution of the friction coefficient
with slip rate. The dynamics of a stress-driven frictional interface obeying a rate and
state friction law revealed how the stress drop is selected from the interactions between
the interfacial frictional behavior and bulk elastodynamics through the radiation of
elastic waves. Once this stress drop is present, the analogy between frictional rupture
and classical fracture holds for the presence of the square root singularity near the
rupture front, which allowed us to derive an equivalent equation of motion for frictional
crack-like rupture. However, this analogy is limited to the time scale before the return of
waves, and even during that time, an excess of energy is dissipated in frictional rupture
compared to its fracture equivalent. Second, slip pulse is a rupture mode that can emerge
in frictional rupture due to the healing mechanism related to the evolution of the real
contact area, but is absent from tensile fracture. The conditions under which slip pulses
are favored were investigated by studying numerically a velocity-driven frictional sys-
tem. We showed that under these conditions and the hypothesis of a steady state, a train
of pulses emerges as an analog to phase separation in equilibrium thermodynamics, with
alternating stick and slip phases propagating at a steady velocity. Coarsening dynamics
saturated at the system width preceded the emergence of the pulse train, setting its
periodicity, independently of the system height. For small heights, these coarsening
dynamics compete with linear elasto-frictional instabilities on top of the pulse train. The
properties of a single pulse were intensively studied, as this framework offered a robust
way to generate stable pulses, which is not trivial. Despite the fundamental differences
between a slip pulse and the classical representation of a crack, the presence of singular
fields at its rupture front allows using the analogy with fracture to provide an equivalent
pulse equation of motion that relates the pulse width, velocity, and average slip rate.
This work offers a rather robust framework to study self-healing slip pulses, which are
relevant in many frictional systems.

Friction is an intrinsically complex phenomenon involving physics occurring at various
scales, ranging from the micromechanics of the contacting asperities to the long-range
stress transfers coupling various parts of an interface together. Despite this complex-
ity, the statistical distributions of slip events in frictional systems are mostly given by
power laws, implying scale independence. The emergence of statistical complexity can
be related either to the interfacial strongly nonlinear dynamics or to the presence of
material disorder. We studied a finite-size velocity-driven frictional system following a
generic rate and state friction law that does not feature bulk or frictional heterogeneities.
Complexity emerges in these conditions; in the sense of broadly distributed slip event
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characteristics. Two main types of events occur: small/mainly non-propagating slip
events that follow a power-law distribution and large/rupture-like slip events whose
distribution is log-normal. This statistical complexity emerges from self-generated het-
erogeneity of stress and state (a proxy for the real contact area) at the interface. These
heterogeneous conditions are due to the complex interactions between interfacial non-
linearity and dissipation, history effects, and elastic waves travel and reflection in the
bulk. The statistical complexity is accompanied by dynamical complexity, with intricate
spatio-temporal relations between slip events. Wave reflections can dynamically arrest
or modify a slip event. The characteristic reflection time scale also affects the statistical
distributions of the events. This study illustrated how complexity might emerge in
systems that do not feature bulk and frictional heterogeneities.

The last chapter of this thesis is dedicated to overcoming the difficulties in modeling
complex dynamic rupture problems. As it usually requires large but finely discretized
time and space domains, modeling these problems can be costly. In this thesis, two meth-
ods were used: the spectral boundary integral method, which is powerful but limited
to interfacial ruptures between two semi-infinite homogeneous elastic solids, and the
finite element method, which is versatile and can be used to model complex geometry
and include bulk heterogeneities and dissipation but at an increased computational
price. Using the spectral boundary integral method to truncate the domain that needs
to be discretized by the finite element method is thus a natural solution to improve
the efficiency of dynamic rupture modeling for problems in unbounded domains. We
presented a coupling algorithm based on a strict continuity of velocities at the coupling
interface and demonstrated its validity with some basic examples. This method is an
important tool for pushing the study of dynamic rupture toward the third dimension,
by including the possibility of out-of-plane damage or complex interface geometry.

8.2 Future perspectives

The numerical studies conducted during this thesis described a variety of behavior in
dynamic rupture, both for fracture and friction. The insights gained in both topics open
several interesting research directions. Some of these directions are discussed below.

First, understanding the impact of the process zone size in the deformations of crack
fronts is a promising step in rationalizing the properties of heterogeneous microstruc-
tures. While it has been studied here for a regular microstructure, this analysis can
be extended to describe the development of front roughness in disordered materials
and characterize the propagation threshold in composite materials. The numerical
framework used in this work, i.e., the spectral boundary integral method coupled with
a cohesive zone model, could also be applied to studying the intricate dynamics in play
in tensile rupture for fast crack propagation. An example is the formation of comet
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like-pattern on the fracture surfaces of PMMA specimen [31], in which the propagation
of the main crack occurs through the nucleation of multiple micro-cracks. Studying
how small defects can be nucleated ahead of a tensile crack is a promising direction for
understanding microcracking dynamics. Furthermore, the development of the coupling
between the finite element method and spectral boundary integral method allows for
studying three-dimensional crack dynamics and the occurrence of out-of-plane dam-
age. With increasing crack velocity, the shape of the stress fields ahead of the crack tip
evolves and the maximum hoop stress is deviated out of the crack plane, even for a crack
loaded purely in mode I. The interactions between a crack and out-of-plane material
heterogeneities might trigger and control the occurrence of dynamic instabilities such
as microbranching. Ideally, the phase-field method [164] should be employed, as it is
mesh-independent and allows for complex crack geometry and branching.

Despite the apparent simplicity of the systems studied in the context of frictional rupture,
i.e., planar homogeneous interface between two symmetric homogeneous elastic bulks,
this thesis shed light on the richness and complexity of slip events at friction interfaces.
Again, it opens several directions for future investigations. First, conducting rotary
velocity-driven friction experiments to test the predictions for the emergence of stable
trains of pulses might shed light on their existence and stability in real systems. Then,
expanding the numerical and theoretical studies to different frictional behavior might be
of interest. In this thesis, we used various rate and state friction laws: one characterized
by an N-shape (rate-strengthening at low and large slip velocity, and rate-weakening in
between), and a variant without the rate-strengthening behavior at large slip rates. While
going beyond the original rate and state formulation that was purely velocity-weakening
[6; 7], they do not include the increased weakening mechanism at high slip rates that
could be related to flash heating or thermal pressurization of pore fluids. Rate and
state law thus might rather be generically M-shaped, with a stronger than logarithmic
weakening for fast slip rates. The influence of such constitutive laws on the selection of
rupture modes and the behavior of rupture fronts should be investigated. Indeed, the
singular fields near the rupture tip of frictional rupture are expected to deviate from
the square-root singularity of linear elastic fracture mechanics if the interfacial behavior
exhibits strong rate dependency [218; 219], which might have strong implications on
their dynamics.

Taking advantage of the coupling method again, one might move from the rather sim-
plified systems that were considered in this thesis toward more realistic geophysical
systems. This can be achieved in several ways: by considering geometric asymmetry,
bulk heterogeneity, subduction zone geometry and loading, non-planar or branched
network of faults, or by allowing for off-fault damage and plasticity, etc... This last
point offers endless possibilities to probe the results obtained in simple systems to more
complex ones. One interesting point would be to study how the statistical description
of slip events is affected when incorporating additional complexity in the system and
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8.2 Future perspectives

comparing it to the minimal case presented in this thesis. This could shed new light on
how the various physical ingredients interact and give rise to broad event distributions.

To conclude, this thesis explored the richness and complexity existing in dynamic rup-
ture. In the case of dynamic fracture, this richness arises from the interaction between a
dynamic crack and microscopic heterogeneities. In frictional systems, the constitutive
behavior itself gives rise to various rupture modes. The complex interactions between
the self-generated heterogeneities resulting from the history of the interface, the aging
of the microcontacts, and the interactions with the finite geometry and boundary condi-
tions are sufficient for statistical complexity to emerge. This thesis gave an enlightening
viewpoint on the variety in dynamic rupture, using efficient numerical methods. The
last development with the coupling should offer an efficient tool to progressively com-
plexify the systems of interest, slowly moving towards more realistic engineering and
geophysical setups.
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A Derivation of the quasi-static
cohesive line tension model
We recall here the derivation of the quasi-static cohesive line tension model that was derived
by Dr. Mathias Lebihain in [10]. This model extended Rice [22] first-order theory by
including the effect of cohesive stresses that resist the crack opening and is based on the
weight functions associated to a point force located at a given distance from the front
(i.e. inside the process zone). We recall here the main steps of the derivation so that we
can explain in the Chapter 4 how the dynamic cohesive line tension model is derived. The
goal is to compute the contribution of the cohesive stress to the stress intensity factor.

Figure A.1: The mode I stress intensity factor k (F∗; z0; z1, x∗) generated at z = z0 by
a pair of unitary forces applied along ey at a distance x∗ behind the point z1 of the
perturbed crack front F∗ (in black) in the direction of the vector e∗

x(z1) can be inferred
from that generated by a pair of unitary forces applied along ey at a distance x∗∗ behind
the point z1 of the auxiliary front F∗∗ (in red) in the direction of the vector e∗∗

x (z1). Figure
taken from [10]

According to Bueckner-Rice’s weight function theory [37; 36], the stress intensity factor
related to cohesive stress Kczm can be expressed as:

Kczm (z) =
∫

Γ∗
k∗ (Γ∗; z, z′, x

)
σ (x) dz′dx (A.1)

where k∗ (Γ∗; z, z′, x) is the mode I crack face weight function (CFWF). It corresponds to
the stress intensity factor generated at point z by a pair of unitary tensile forces applied
at a point (z′, x) located on the faces of Γ∗. The main difficulty consists in computing
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Appendix A. Derivation of the quasi-static cohesive line tension model

the expression of this CFWF. Let us start by defining two distinct crack face weight
functions:

• k∗ (F∗; z0; z1, x∗), which corresponds to the stress intensity factor generated at
z = z0 by a pair of unitary forces applied along ey at a distance x∗ behind the point
z1 of the perturbed crack front F∗ in the direction of the vector e∗

x(z1);

• k (F∗; z0; z1, x), which corresponds to the stress intensity factor generated at z = z0
by a pair of unitary forces applied along ey at a distance x behind the point z1 of
the perturbed crack front F∗ in the direction ex.

At first order in the perturbation, one has:

k∗ (F∗; z0; z1, x∗) = k (F∗; z0; z1, x) (A.2)

as the error introduced on the position of the point of application of the forces is of
second order in δa [273]. Rice [36] showed that if the crack advance δa(z) satisfies the
condition:

δa(z0) = 0 and δa(z1) = 0, (A.3)

then k (F∗; z0; z1, x) can be expressed from the CFWF k (F ; z0; z1, x) of the reference
straight front following:

k (F∗; z0; z1, x) = k (F ; z0; z1, x) + 1
2π

∫ +∞

−∞
k (F ; z; z1, x) δa(z)

(z − z0)2 dz. (A.4)

where k (F ; z0; z1, x) is known analytically for the semi-infinite coplanar crack with a
straight crack front Γ:

k (F ; z0; z1, x) =
√

2
π3/2

√
x

(z0 − z1)2 + x2 . (A.5)

The condition given by (A.3) is however not satisfied for an arbitrary perturbation δa.
We rely on the ideas of [274] and compute the perturbed CFWF associated to Γ∗ based
on those a reference crack Γ∗∗ that results from a combination of a translation and a
rotation δa∗∗ making δa∗(z) = δa(z) − δa∗∗(z) vanish in z0 and z1:

δa∗∗(z) = δa(z0) + δa(z1) − δa(z0)
z1 − z0

(z − z0) = δa(z1) + δa(z1) − δa(z0)
z1 − z0

(z − z1) (A.6)

(e∗∗
z (z0, z1), e∗∗

x (z0, z1), ey) denotes the natural basis of vectors associated to the straight
crack front F∗∗ of Γ∗∗, and (z∗∗, x∗∗, y) the point coordinates in this basis (see Fig. A.1).
One may then define:

• k∗∗ (Γ∗; z∗∗
0 , z∗∗

1 , x∗∗), which corresponds to the stress intensity factor generated at
z∗∗ = z∗∗

0 by a pair of unitary forces applied along ey at a distance x∗∗ behind the
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point z∗∗
1 of the perturbed crack front F∗∗ in the direction e∗∗

x (z0, z1). Since Γ∗∗ is a
semi-infinite coplanar crack with a straight crack front, k∗∗ (Γ∗; z∗∗

0 , z∗∗
1 , x∗∗) reads:

k∗∗ (F ; z∗∗
0 ; z∗∗

1 , x∗∗) =
√

2
π3/2

√
x∗∗

(z∗∗
0 − z∗∗

1 )2 + x∗∗2 (A.7)

• k∗ (Γ∗; z∗∗
0 , z∗∗

1 , x∗∗), which corresponds to the stress intensity factor generated at
z∗∗ = z∗∗

0 by a pair of unitary forces applied along ey at a distance x∗∗ behind the
point z∗∗

1 of the perturbed crack front F∗ in the direction e∗∗
x (z0, z1). Applying

Eq. (A.4) to Γ∗∗ and Γ∗ yields:

k∗∗ (Γ∗; z∗∗
0 , z∗∗

1 , x∗∗) = k∗∗ (Γ∗∗; z∗∗
0 , z∗∗

1 , x) + 1
2π

PV
∫ +∞

−∞
k∗∗ (F∗∗; z∗∗; z∗∗

1 , x∗∗) δa(z∗∗) − δa∗∗(z∗∗)
(z∗∗ − z∗∗

0 )2 dz∗∗

(A.8)

Again, the error on the position (z∗∗, x∗∗) with respect to (z, x) is of second order in δa.
In the (ez, ex, ey) basis, Eq. (A.8) writes as:

k (Γ∗; z0; z1, x) =
√

2
π3/2

√
x

(z0 − z1)2 + x2 + 1
2π

PV
∫ +∞

∞

√
2

π3/2

√
x

(z − z1)2 + x2
δa(z) − δa∗∗(z)

(z − z0)2 dz

(A.9)
Combined with Eq. (A.6), Eq. (A.9) provides a direct way to evaluate Eq. (A.1) numeri-
cally. Readers interested in the complete formulation of k (Γ∗; z0; z1, x) and its derivation
are redirected to Eq.(15) of [10] and its Appendix A.

Using Eq. (A.9), it is now possible to compute at first order in δa the stress intensity factor
Kczm of Eq. (A.1) generated by the cohesive stress acting in the wake of the perturbed
crack front F∗. We take the simplified case of a translationally invariant material in the
propagation direction (Ox). One can write the cohesive stress as:

σ (z, x) = σc(z)fw (x/ω(z)) (A.10)

where σc(z) and ω(z) are the local strength and process zone size at position z, x is the
distance to the crack tip located at (z, δa(z)), and fw is a shape function that relates to
the nature of weakening.

In the classical line tension approach, perturbation of the crack front δa arises from
fluctuation of fracture toughness Gc. With the cohesive description adopted here, the
perturbations of the front may be related to spatial variations of strength σc and process
zone size ω. The latter is related to variations of both strength σc and critical crack
opening δc. We decompose σc and ω in uniform contributions σ0

c and ω0 associated to a
reference homogeneous material, and spatial fluctuations δσc and δω:σc(z) = σ0

c + δσc(z)
ω(z) = ω0 + δω(z)

(A.11)
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Appendix A. Derivation of the quasi-static cohesive line tension model

where σ0
c and ω0 correspond to the spatial averages of σc and ω respectively. We can now

insert Eqs. (A.2), (A.9), (A.10), and (A.11) into Eq. (A.1) that gives the cohesive stress
intensity factor Kczm(z) acting along the perturbed crack front F∗. It yields:

Kczm(z) =
∫ +∞

0

∫ +∞

−∞
σ
(
z′, x

)
k∗ (Γ∗; z; z′, x

)
dz′dx

=
∫ +∞

0

∫ +∞

−∞
σc(z′) fw

(
x/ω(z′)

) [
k
(
Γ; z; z′, x

)
+ δk

(
Γ∗; z; z′, x

)]
dz′dx

(A.12)

The cohesive SIF Kczm(z) can be expressed as the sum of a zero-order term K0
czm, and

first-order variations δKczm(z) that relates to the perturbations δa, δσc and δω. Following
Irwin’s criterion [2], K0

czm corresponds to the mode I toughness K0
Ic of the reference

material when the crack propagates.
The expression of the first-order variations of cohesive stress intensity factor ˆδKczm(z)
in the Fourier space is given by (see details in the Appendix B of [10]):

δ̂Kczm (k)
K0

Ic
=
(

Â (|k|ω0)
ω0

− |k|
2

)
δ̂a (k) + Σ̂ (|k|ω0) δ̂σc (k)

σ0
c

+ Ω̂ (|k|ω0) δ̂ω (k)
2ω0

(A.13)

with: 

Â (|k|ω0) = − 1
Cw

∫+∞
0

f ′
w (u)
u1/2

(
1 − e−|k|ω0u

)
du

Σ̂ (|k|ω0) = 1
Cw

∫+∞
0

fw (u)
u1/2 e−|k|ω0udu

Ω̂ (|k|ω0) = − 2
Cw

∫+∞
0 f ′

w (u) u1/2e−|k|ω0udu

(A.14)

We recall here the expression of the perturbed stress intensity factor Klefm written in
Fourier space [177]:

δ̂Klefm (k)
K0

I
=
(

1
K0

I

∂K0
I

∂a
− |k|

2

)
δ̂a (k) (A.15)

Combining Eq. (A.13) and Eq. (A.15), one finds the equation ruling quasi-static crack
propagation in heterogeneous cohesive materials:

K0
I

[
1 +

(
1

K0
I

∂K0
I

∂a
− |k|

2

)
δ̂a (k)

]
= K0

Ic

[
1 +

(
Â (|k|ω0)

ω0
− |k|

2

)
δ̂a (k) + Σ̂ (|k|ω0) δ̂σc (k)

σ0
c

+ Ω̂ (|k|ω0) δ̂ω (k)
2ω0

]
(A.16)

At first order in the perturbation, the propagation criterion Eq. (A.16) yields for hetero-
geneities of strength and process zone size:

δ̂a(k) = −ω0
Σ̂(|k|ω0)
Â(|k|ω0)

δ̂σc(k)
σ0

c
− ω0

Ω̂(|k|ω0)
Â(|k|ω0)

δ̂ω(k)
2ω0

(A.17)
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B Contribution to open source
software
During this thesis, I have been involved in the development and maintenance of several
open source Software. The open source philosophy is an integral part of the Com-
putational Solid Mechanics Laboratory mindset at École Polytechnique Fédérale de
Lausanne, as a way to guarantee reproducibility in research. I have contributed to
the Finite Element library Akantu as an active developer and community manager. I
also worked on the Spectral Boundary Integral Method library cRacklet. During my
PhD, we improved the accessibility of the latter by implementing a python interface,
documenting the code, and writing tutorials for new users, with the goal of providing
an efficient tool for interfacial rupture simulation to the community.

This chapter is an adapted version of the following scientific article that describe the
features of cRacklet:

T. Roch, F. Barras, P. H. Geubelle, and J.-F. Molinari, “cRacklet: a spectral boundary
integral method library for interfacial rupture simulation,” Journal of Open Source Software,
vol. 7, no. 69, p. 3724, 2022
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B.1 Summary

The study of dynamically propagating rupture along interfaces is of prime importance
in various fields and system sizes, including tribology (nm to µm), engineering (mm to
m) and geophysics (m to km) [224; 47; 48]. Numerical simulations of these phenomena
are computationally costly and challenging, as they usually require the coupling of two
different spatio-temporal scales. A fine spatial discretization is needed to represent
accurately the singular fields associated with the rupture edges. Besides, the problems
of interest usually involve a larger length scale along which rupture will propagate,
driven by long-range traveling elastic waves. The physical phenomena at play also
occur at different timescales, from the slow process of rupture nucleation to the fast
propagation of crack front close to the elastic wave speeds. Large and finely discretized
spatio-temporal domains are required, which are computationally costly. In addition,
the behavior of such interfaces can be highly non-linear, thus increasing the problem
complexity. The use of boundary integral methods reduces the dimensionality of the
problem. This enables to focus the computational efforts on the fracture plane and
allows for a detailed description of the interfacial failure processes.

B.2 Statement of need

cRacklet is a C++ library with a Python interface [275] initiated as a collaboration be-
tween the Computational Solid Mechanics Laboratory at EPFL and the Department
of Aerospace Engineering of the University of Illinois at Urbana-Champaign. cRacklet
implements a spectral formulation of the elastodynamics boundary integral relations
between the displacements and the corresponding traction stress acting at a planar inter-
face between two homogeneous elastic solids [169; 171]. The formulation implemented
is the independent one, which considers the top and bottom solids separately [171]. The
stresses acting at the interface are related to the history of interfacial displacements via
a time convolution evaluated in the Fourier domain. The convolutions are efficiently
computed within a shared-memory parallel framework using FFTW3/OpenMP. The
prescription of an interfacial behavior allows for solving the continuity of tractions and
displacements through the interface. Time integration is achieved using an explicit
time-stepping scheme. cRacklet is aimed at researchers interested in interfacial dynamics,
ranging from nucleation problems to dynamic propagation of rupture fronts. While
the spectral boundary integral formulation is a well-established method that has been
extensively referenced in the literature [276; 277], we believe that cRacklet will be a
useful addition to the community by gathering in the same framework various kinds of
interfacial problems and constitutive laws, and by offering an easy to handle software
thanks to its python interface. cRacklet is efficient, accessible (C++ or Python), and suited
to study a broad class of problems (fracture and friction). We wish that cRacklet will
become a link between model developers and users by providing both adaptability and
usability.
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B.3 Features

1. cRacklet is versatile and can be used to study a broad class of problems focused
on the behavior of an interface between two semi-infinite solids. The code is
particularly suited to study planar dynamic fracture and friction. The interface can
be either between two or three-dimensional solids. It can be loaded in any combi-
nation of normal traction, in-plane, and out-of-plane shear solicitations. cRacklet
handles the simulation of interfaces bonded between dissimilar elastic solids. Any
stress or material heterogeneity along the fracture plane can be resolved. Several
interfacial behaviors are included in the library, such as:

• Cohesive fracture law [20; 21]: the cohesive strength is a linearly decreasing
function of the opening gap. This law can be coupled with a friction law to
handle surface interactions in the case of post-failure contact between the
solids. Two implementations are available, the classical Coulomb friction law
and a regularized one [278].

• Rate and state dependent friction laws: the frictional resistance is a function
of the slip velocity and the history of the interface (the state variable). Several
formulations are implemented, including the original ones by [6; 7]. More
novel formulations such as rate and state friction with velocity-strengthening
behaviors (i.e., N-shaped) are also available, see [86].

2. cRacklet is accessible and adaptable. It provides access through both its C++ and
Python API to several options to design the various kind of problems mentioned
before. cRacklet is adaptable due to its object-oriented implementation: it is simple
to implement additional behavior for the interface without having to deal with
the technical core of the code that handles the computation of the stresses in the
Fourier domain. cRacklet can also be loaded as an external library to easily interact
with other existing computational software. cRacklet also has tutorials available on
Binder [279] which allows for a quick and easy introduction to its functionality.

3. cRacklet is efficient: the Fourier transforms and the convolutions are computed
within a shared-memory parallel framework using FFTW3/OpenMP. We illustrate
in B.2 the scaling capability of cRacklet and compare it to Amdahl’s law [280]. The
scaling study shows that approximately 85% to 90% of the program is parallelized:
this includes the computation of the Fourier transform of the displacements, the
convolution, and the invert transform of the stresses back to the real domain.

B.4 Example

The onset of sliding between two rough surfaces in frictional contact is an illustrative
example of a multiscale rupture problem. Macroscopic shearing is resisted by the micro-

155



Appendix B. Contribution to open source software

Figure B.1: Time required to solve 105 time steps with 212 discretization points, as a
function of the number of threads. The code uses cRacklet 1.0.0-pre and FFTW 3.3.8, is
compiled using GCC [281] and runs on the computational facilities of EPFL, here on a
node (2 Intel Broadwell processors running at 2.6 GHz with 14 cores each and 128 GB
RAM) of the computing cluster Fidis. The dashed gray lines correspond to Amdahl’s
law for the theoretical speedup, respectively with 90% (upper bound) and 85% (lower
bound) of the program parallelized.

contacts, i.e., by the sparse contacting junctions existing between the asperities of the
two surfaces. The successive panels of Fig. B.2 illustrate the nucleation and propagation
of a frictional rupture at the interface between two solids, from the individual failure of
the microcontacts in panel (b) to the propagation of a macroscopic circular rupture in
panel (d). The spatially heterogeneous strength used in this example is a representation
of the heterogeneous map of contact between two rough surfaces. In Fig. B.2 (a), the
initial configuration of the system is shown. The areas in white are sticking (i.e. no
velocity) and correspond to asperities in contact. Colored areas are sliding (blue is for
low slip velocity and red for larger ones). The shear load is increased with time in
the following panels. The slip velocities increase and previously sticking parts of the
interface start sliding (micro-contacts are broken). The inset of Fig. B.2 (b) is a zoomed
view of the interface where rupture starts at the asperity scale. In Fig. B.2 (d), frictional
cracks have expanded over almost the entire interface.

B.5 Publications

The following publications have been made possible with cRacklet:

• F. Barras, D. S. Kammer, P. H. Geubelle, and J.-F. Molinari, “A study of frictional
contact in dynamic fracture along bimaterial interfaces,” International Journal of
Fracture, vol. 189, no. 2, pp. 149–162, 2014

• F. Barras, P. H. Geubelle, and J.-F. Molinari, “Interplay between Process Zone and
Material Heterogeneities for Dynamic Cracks,” Physical Review Letters, vol. 119,
no. 14, p. 144101, 2017

• F. Barras, R. Carpaij, P. H. Geubelle, and J.-F. Molinari, “Supershear bursts in the
propagation of a tensile crack in linear elastic material,” Physical Review E, vol. 98,
no. 6, p. 063002, 2018
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B.5 Publications

Figure B.2: Snapshot of the slip velocity at the interface between two elastic solids under
shear loading. The initial strength is highly heterogeneous. Loading and time have
increased between the snapshots, starting from (a) to (d). White areas correspond to
sticking conditions (no velocity) while colored ones are sliding. Low velocities are in
blue and large ones in red. The code is compiled using [282]. This simulation involves
224 points and was run on one node (with two 16-core Intel E5-2683v4 2.1 GHz and
512 GiB RAM) of the computing cluster Fram from the Norwegian e-infrastructure for
research and education.

• E. A. Brener, M. Aldam, F. Barras, J.-F. Molinari, and E. Bouchbinder, “Unstable
Slip Pulses and Earthquake Nucleation as a Nonequilibrium First-Order Phase
Transition,” Physical Review Letters, vol. 121, no. 23, p. 234302, 2018

• F. Barras, M. Aldam, T. Roch, E. A. Brener, E. Bouchbinder, and J.-F. Molinari,
“Emergence of cracklike behavior of frictional rupture: The origin of stress drops,”
Physical Review X, vol. 9, p. 041043, 2019

• F. Barras, M. Aldam, T. Roch, E. A. Brener, E. Bouchbinder, and J.-F. Molinari, “The
emergence of crack-like behavior of frictional rupture: Edge singularity and energy
balance,” Earth and Planetary Science Letters, vol. 531, p. 115978, 2020
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• F. Fekak, F. Barras, A. Dubois, D. Spielmann, D. Bonamy, P. H. Geubelle, and J. F.
Molinari, “Crack front waves: A 3D dynamic response to a local perturbation of
tensile and shear cracks,” Journal of the Mechanics and Physics of Solids, vol. 135,
p. 103806, 2020

• R. Rezakhani, F. Barras, M. Brun, and J.-F. Molinari, “Finite element modeling of
dynamic frictional rupture with rate and state friction,” Journal of the Mechanics and
Physics of Solids, vol. 141, p. 103967, 2020

• E. A. Brener and E. Bouchbinder, “Unconventional singularities and energy balance
in frictional rupture,” Nature Communications, vol. 12, no. 1, p. 2585, 2021

• M. Lebihain, T. Roch, M. Violay, and J.-F. Molinari, “Earthquake Nucleation Along
Faults With Heterogeneous Weakening Rate,” Geophysical Research Letters, vol. 48,
no. 21, p. e2021GL094901, 2021

• T. Roch, E. A. Brener, J.-F. Molinari, and E. Bouchbinder, “Velocity-driven frictional
sliding: Coarsening and steady-state pulses,” Journal of the Mechanics and Physics of
Solids, vol. 158, p. 104607, 2022
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C Scientific communication and Art

Communicating scientific results and raising interest outside its own scientific commu-
nity is both a duty, as science is mostly founded on public money, which implies that
the public should be aware of the scientific advances, and a challenge, as it involves
discussing with a public that is not expert. One way to disseminates scientific question
and results is to do it through Art. I participated in the SNSF Scientific Image Competi-
tion 2022 contest with the goal of sharing my scientific interests. I submitted the image
“Moutains of friction” that is shown in Fig. C.1, and have been awarded a Jury distinction
in the category “Object of Study”. This image is the result of a computer simulation of
earthquakes, whose apparent complexity is reminiscent of a mountainous landscape.
Earthquakes’ dynamics are characterized by anomalous statistical properties, notably
fat-tailed power-law distributions. We investigate them by simulating the evolution of
a fault for thousands of successive slip events. The shades of blue represent the slip
velocity in an abstract map: continuous patches of dark blue correspond to slip events,
separated by waiting periods in white. This simulation generates complex statistics,
featuring events spread across orders of magnitude in size, duration and waiting times.

Here is the comment of the jury:

“An abstract image quite unlike any other, demonstrating that computer calculations can
accidentally produce something beautiful. Aesthetically appealing, but also mysterious,
it has the viewer wondering what it is they’re looking at. It is a playful and self-referential
image, as plate tectonics lie at the origin of both the earthquakes studied here and of the
mountains the picture reminds us of.”
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Figure C.1: Mountains of friction.
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2017-2018 Conseils Ingénierie Lémanique, Engineer, Marin, France
○ Design of steel structures: pedestrian bridge in St-Gingolph, France

○ Design of retaining structures: stabilisation of St-Gingolph’s docks, France

○ On site work monitoring

2014-2015 BG Ingénieurs Conseils SA, Intern, Lausanne, Switzerland
○ Design of underground structures

○ On site work monitoring: Tunnel du Pinchat in Geneva, Switzerland

○ Inspection of existing structures (bridges, retaining walls) on the Swiss highway

Voluntary work

2013-2014 Travel GC, Sponsorship Manager, Student association that plans and finances the study
trip at the end of the Bachelor for the Civil Engineering students.


	Acknowledgements
	Abstract (English/Français/Italiano)
	Contents
	List of Figures
	List of Tables
	Symbols
	Introduction
	Motivation
	Objectives
	Outline

	State of the art
	Continuum solid mechanics
	Kinematics
	Equilibrium and conservation
	Constitutive law
	Boundary conditions
	Elastodynamics

	Fracture mechanics
	Linear elastic fracture mechanics
	Dynamic fracture mechanics
	Heterogeneous fracture mechanics

	Friction
	Models of friction
	A brief history of friction
	The rate and state friction framework
	Beyond friction

	Rupture modes
	Analogy with fracture
	Complexity in frictional systems


	Numerical framework
	Finite element method
	Bulk elements
	Modeling discontinuity in finite elements

	Spectral boundary integral method

	Crack front deformations in cohesive materials
	Introduction
	Problem description
	Material properties
	Numerical scheme

	Time evolution of the crack deformations and crack front waves
	Toughness contrast with constant process zone size
	Crack propagation velocity
	Process zone size and type of heterogeneities
	Dynamic cohesive line tension model
	Comparison between theory and simulations
	Discussion
	Supplemental material

	On the dynamics of frictional interfaces described by rate and state friction laws
	Emergence of crack-like behavior of frictional rupture
	Introduction
	The physical origin of stress drops
	Simulation support for the emergence of 
	Crack-like behavior of frictional rupture
	Equation of motion
	Stress singularity and energy balance

	Conclusion

	Velocity-driven frictional sliding: coarsening and steady-state pulses
	Introduction
	Simulating velocity-driven frictional dynamics
	Bulk and interfacial constitutive relations: Linear elastodynamics and rate-and-state friction
	Mimicking velocity-driven frictional dynamics in infinite systems using the boundary integral method
	Simulating velocity-driven frictional dynamics in finite systems using the finite element method

	Coarsening dynamics: The selection of pulse train periodicity
	The small H limit: The competition between coarsening and elasto-frictional instabilities
	Single pulse properties in the large H limit
	Pulse equation of motion: Leading edge singularity, effective fracture energy, and propagation velocity
	The pulse width

	Summary and discussion
	Supplemental material
	The interfacial constitutive law
	The elasto-frictional length Lc
	The spectral boundary integral formulation
	Finite element method formulation
	The WS friction law
	The space-independent stick-slip like behavior for HWLc
	The effective fracture energy
	The SW friction law
	Supplementary data



	Statistical and dynamical complexity in a driven frictional system without disorder
	Introduction
	Model
	The numerical method
	Identification of slip events
	Time dependence of the statistics
	Statistical complexity
	Collapse of the probability density functions
	Dynamical complexity
	Influence of wave reflection
	Summary and discussion
	Supplemental material
	Independence of the statistics on the thresholds
	Nucleation length for finite height system


	Coupling the finite element method and the spectral boundary integral method
	Introduction
	Coupling method
	Finite element method
	Spectral boundary integral method
	Coupling condition
	Coupling algorithm

	Validation
	Setup and qualitative analysis
	Quantitative analysis of the error

	Example: spontaneous propagation of a crack loaded in tension
	Conclusion
	Supplemental material
	Additional results for the reference problem


	Conclusion
	Summary
	Future perspectives

	Derivation of the quasi-static cohesive line tension model
	Contribution to open source software
	Summary
	Statement of need
	Features
	Example
	Publications

	Scientific communication and Art
	Bibliography
	Curriculum Vitae



