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Abstract

The human upper limb is a complex musculoskeletal system that can still perform
various tasks with impressive efficacy thanks to the ability of the central nervous system
to control and modulate the activation of more than 40 muscles.

Stroke is a leading cause of long-term disability, and individuals who have experienced
a stroke often show unusual muscle activation patterns in the limb that was affected.
A thorough understanding of these changes in muscle activation is crucial for the
development of efficient rehabilitation plans.

So far, the study of the recorded electromyographic (EMG) signals has been the primary
option for investigating muscle activation during movement.

Unfortunately, given the number of muscles acting on the shoulder and arm and their
positions with respect to each other, a complete upper-limb’s muscles EMG recording
is not feasible in practice. Numerical musculoskeletal model could represent a very
useful alternative approach to gather this kind of information.

This thesis aims at extending an existing upper-limb musculoskeletal model, to capture
the overall muscle activations of a subject from its scaled recorded kinematics and a
limited number of recorded muscle EMG.
The original model was force-based and its aim was to obtain the muscle forces from
inverse dynamics (ID). However, these could not always be physiologically feasible,
indeed, after modeling the musculotendon dynamics with a Hill-type model we further
reduced their boundaries leading to unfeasible activations solutions. The ID was then
reformulated to be activation based ensuring feasible activation and force given the
muscle state. Moreover studying patients performing reaching tasks with an exoskele-
ton can lead to non-smooth kinematics, further restricting the ID possible solutions. A
flexible formulation allowing for tolerance of torques at the joints was added.

The purpose of this thesis is to present a tool that can be used to study variations in
muscle activations from healthy and stroke patients during their rehabilitation. This
means that a large dataset with multiple repetitions of the different tasks and subjects
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has to be simulated which would not be practical with the initial model. However, with
a rigid tendon muscle assumption as well as the precomputation of multiple functions
of the model, the computation time could be reduced by almost 2 orders of magnitude
when studying multiple movements.

In the last part of the thesis I could show how the model could help with a quantified
evaluation and functional diagnosis of stroke patients which is in contrast to current
assessment methods. It also establishes a study of the muscle co-contractions and
synergies given the full set of muscles acting on the shoulder and arm.
I also developed a forward dynamics methods of the model which aims was at first to
be solely driven by muscle activations, but without the closed-loop formulation, it is
too unstable in its current state because of the accumulation of numerical errors over
a simulation. It is however setting the ground for possible further development.
A graphical user interface was also developed for simpler and adaptable use of the
model, in the forward and inverse modes, and for the study of multiple subjects and
repetitions.

The achievements presented in the thesis can provide a tool to better understand the
mechanisms underlying upper limb control as well as its impairments. Moreover, it
sets a framework for future developments to be in terms used in the clinics.

Key words

musculoskeletal model, human motor control, shoulder biomechanics, inverse dy-
namics, forward dynamics, muscle activation, muscle synergies, stroke, rehabilitation,

iv



Résumé

Le membre supérieur humain est un système musculo-squelettique complexe qui
peut cependant accomplir diverses tâches avec une efficacité impressionnante grâce à
la capacité du système nerveux central à contrôler et moduler l’activation de plus de
40 muscles.

L’accident vasculaire cérébral (AVC) est l’une des principales causes d’invalidité à long
terme, et les personnes ayant subi un AVC présentent souvent des schémas d’activation
musculaire inhabituels dans le membre touché. Une compréhension approfondie de
ces changements dans l’activation musculaire est cruciale pour le développement de
plans de réhabilitation efficaces.

Jusqu’à présent, l’étude des signaux électromyographiques (EMG) enregistrés a été la
principale option pour étudier l’activation musculaire pendant le mouvement.

Cependant, étant donné le nombre de muscles agissant sur l’épaule et le bras et
leurs positions les uns par rapport aux autres, un enregistrement EMG complet des
muscles du membre supérieur n’est pas réalisable en pratique. Un modèle musculo-
squelettique numérique pourrait représenter une approche alternative très utile pour
recueillir ce type d’informations.

Cette thèse vise à étendre un modèle musculo-squelettique existant du membre su-
périeur, afin de capturer les toutes activations musculaires d’un sujet à partir de sa
cinématique et d’un nombre limité d’EMG musculaires enregistrés.
Le modèle original était basé sur l’evaluation de forces et son objectif était d’obtenir
ces dernières à partir de la dynamique inverse (ID). Cependant, celles-ci ne sont pas
toujours physiologiquement possible. En effet, après avoir modélisé la dynamique du
musculotendon avec un modèle de type Hill, leurs limites physiologiques ont encore
été réduites. Cela a conduit à des solutions irréalisables. L’ID a alors été reformulée
pour être basée sur l’activation, garantissant une activation et une force réalisables
compte tenu de l’état du muscle.

De plus, l’étude de patients effectuant des tâches visant à atteindre des cibles avec un
exosquelette peut entraîner une cinématique très irrégulière, ce qui restreint encore les
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solutions possibles de l’ID. Une formulation flexible permettant une certaine tolérance
au niveau des couples au niveau des articulations a été ajoutée.

L’objectif de cette thèse est de présenter un outil qui peut être utilisé pour étudier les
variations des activations musculaires de personnes saines et de patients victimes d’un
accident vasculaire cérébral (AVC) au cours de leur rééducation. Cela signifie qu’un
grand ensemble de données avec de multiples répétitions des différentes tâches et des
différents sujets doit être simulé, ce qui n’aurait pas été faisable avec le modèle initial.
Cependant, avec l’hypothèse d’un tendon rigide ainsi que le pré-calcul de plusieurs
fonctions du modèle, le temps de calcul a pu être diminué de près de deux ordres de
grandeur lors de l’étude de plusieurs mouvements.

Dans la dernière partie de la thèse, j’ai pu montrer comment le modèle pouvait aider à
une évaluation quantifiée et à un diagnostic fonctionnel des patients victimes d’un
accident vasculaire cérébral, ce qui contraste avec les méthodes d’évaluation actuelles
qui sont plus qualitatives pour la plupart.

J’ai également développé une méthode de dynamique directe du modèle qui visait au
départ à être uniquement piloté par les activations musculaires, mais sans la formu-
lation en boucle fermée, cette dernière est trop instable en raison de l’accumulation
d’erreurs numériques au cours d’une simulation. Elle pose cependant les bases d’un
éventuel développement ultérieur et d’autre possible utilisations du modèle.

Une interface utilisateur graphique a également été développée pour une utilisation
plus simple et adaptable du modèle, en mode direct et inverse, et pour l’étude de
multiples sujets et répétitions.

Les réalisations présentées dans cette thèse peuvent fournir un outil pour mieux
comprendre les mécanismes qui sont sous-jacents au contrôle du membre supérieur
ainsi que ses déficiences. De plus, elle établit un cadre pour les développements futurs
afin d’être en termes utilisés dans les cliniques.

Mots clefs :

modèle musculo-squelettique, contrôle moteur humain, biomécanique de l’épaule,
dynamique inverse, dynamique directe, activation musculaire, synergies musculaires,
accident vasculaire cérébral, rééducation,
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1 Introduction

1.1 Upperlimb physiological aspects

1.1.1 Anatomy and functionality

The human upper limb is a complex system that allows for the orientation and po-
sition of the hand, which is the primary component of physical interaction with the
environment. Anatomically speaking, this can be performed via a combined motion of
the shoulder, elbow and wrist joints and in particular, the coordinated movements of
each bone involved in these articulations; the clavicle, scapula, humerus, ulna, radius
and finally the bones of the hand.

In this thesis, we will focus mainly on the shoulder and elbow joints responsible
of the upper-limb reaching tasks. The complex shoulder joint is a combination of
three synovial joints acting as ball and sockets, sternoclavicular, acromioclavicular
and glenohumeral connecting the clavicula to the sternum, the scapula acromion to
the clavicula and the glenoid of the scapula to the humeral head respectively. The
elbow articulation, is similarly a combination of the ulnohumeral joint, between the
ulna and humerus, the radio humeral joint, between the radius and humerus and the
proximal radioulnar joint, between the radius and ulna allowing for the pronation and
supination movements. Fig 1.1 represents the bones and joint configuration.

The mentioned bones are kept interconnected via a combined action of various soft
tissues;(i) the cartilage, a thin, strong, flexible, and smooth surface on each bone at
the point of contact allowing for smooth movement between them, absorbing shocks
and reducing friction between the bones, (ii) the ligaments, a firm rope like tissue
connecting passively the bones to each other or forming capsules around the articula-
tions containing synovial fluid. Finally, (iii) the tendons, connecting the muscles acting
on the joints to the bones, providing further support and moving them. Additionally,

1



Chapter 1 Introduction

the bony shapes also play an important role in the movement, for instance, there is a
perfect fit between the ulna’s trochlear notch and the trochlea of the humerus.

The articulations concerned act as ball and socket joints, if small translation between
these might occur, it will not be addressed in the scope of this thesis apart from the
stability of the glenohumeral joint.

Figure 1.1: Joints considered and their corresponding bones.

42 muscles parts spanning the upper-limb joints described before are considered in this
thesis including subclavius, serratus anterior upper, middle and lower parts, trapezius
C1-C6/C7/T1/T2-T7, elevator scapulae, rhomboid minor, rhomboid major T1-T2 and
T3-T4, pectoralis minor, pectoralis major clavicular sternal and ribs, latissimus dorsi
thoracic, lumbar and iliac, deltoid clavicular, acromial and scapular, supraspinatus,
infraspinatus, subscapularis, teres minor and major, coracobrachialis, triceps brachii
long, medial and lateral, biceps brachii short and long, brachialis, brachioradialis,
supinator, pronator Teres, flexor carpi radialis and ulnaris, extensor carpi radialis long
and brevis, and extensor carpi ulnaris.

Their positions can be found in figure 1.2.

2



Introduction Chapter 1

Figure 1.2: Muscles considered and their corresponding placements. subclavius (1), ser-
ratus anterior upper (2)/middle (3)/lower (4), trapezius C1-C6 (5)/C7 (6)/T1 (7)/T2-T7
(8), levator scapulae (9), rhomboid minor (10)/major T1-T2 (11)/major T3-T4 (12), pec-
toralis minor(13)/major clavicular (14)/major sternal (15)/major ribs (16), latisimuss
dorsi thoracic (17)/lumbar (18)/Iliac (19), deltoid clavicular (20)/acromial (21)/scapu-
lar (22), supraspinatus (23), infraspinatus (24), subscapularis (25), teres minor (26)/ma-
jor (27), coracobrachialis (28), triceps brachii long (29)/medial (30)/lateral (31), biceps
brachii short (32)/long (33), brachialis (34), brachioradialis (35), supinator (36), prona-
tor Teres (37), flexor carpi radialis (38)/ulnaris (39), and extensor carpi radialis long
(40)/radialis bervis (41)/ulnaris (42). 3



Chapter 1 Introduction

1.1.2 Control of upper-limb movement physiological mechanisms

The human body is a complex system composed of numerous interconnected compo-
nents. The nervous system is the primary coordination and regulation mechanism for
these interactions. It receives information from sensors located throughout the body
and transmits signals to the muscles and glands in order to induce a reaction. The
nervous system consists of two main parts: the central nervous system (CNS), which
consists of the brain and spinal cord, and the peripheral nervous system (PNS), which
consists of sensory neurons, ganglia, and nerves that link to the CNS. The brain is the
primary control center and interprets all the information received from the PNS. The
PNS is subdivided into the somatic nervous system and the autonomic nervous system.
The somatic system governs voluntary movements, while the autonomic system con-
trols involuntary activities such as breathing and blood pressure. This categorization
enables us to comprehend the qualities of human control and the manner in which
the body’s many systems cooperate to create movement. Figure 1.3 represents the
voluntary motor control pathway.

In this thesis, we focus on the somatic nervous system and especially the control of
upper limb movements.

First, the primary motor cortex of the brain engages motor commands that are con-
nected with voluntary movements. The motor-related signals, from the upper mo-
toneurons, go through the pyramidal tract whose main component is the corticospinal
tract a descending pathway to the brainstem and the ventral horn of the spinal cord
[102, 113]. Of note, there exist alternative descending pathways from the brainstem,
the extrapyramidal tracts, but are mostly involved in involuntary movements such as
balance, locomotion, and postural control. Voluntary movements are also influenced
by the extrapyramidal tracts through an increase or decrease in muscle tone respec-
tively facilitating or inhibiting voluntary movement [97]. Additionally, the basal ganglia
and the cerebellum play a significant role in the control of voluntary motor commands,
in adjusting their activation or their timing with respect to sensory feedback for proper
limb coordination [4, 108].

The motor-related signals exit the spinal cord via the lower motor neurons to the
muscles, in particular to the muscle fibers where the lower motor neurons synapses.
To be more specific, a neurotransmitter called acetylcholine is released, and it attaches
to the receptors on the muscle fibers. The term motor unit denotes a single motor
neuron and the muscle fibers it innervates, and neural drive its action potential. [43]
The latter will cause the muscle fibers to depolarize, which in turn generates an action
potential that travels down the muscle fibers and causes the muscle fibers to contract.
The term "muscle activation" is used to denote this muscle fiber action potential. It
triggers the release of calcium ions C2+ from the sarcoplasmic reticulum, which will
then bind to the troponin protein on the muscle fibers leading to a conformational
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Figure 1.3: Schematic representation of the systems and pathways leading to voluntary
motor control. Greatly modified from Wikimedia. This file is licensed under the
Creative Commons 4.0 license.

change in another protein, tropomyosion. In other words, this C2+ release, causes a
change in the shape of the troponin-tropomyosin complex leading to the liberation
of the previously covered binding site between the myosin and the acting. A more
detailed explanation can be obtained in the following figure 1.4
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Figure 1.4: Representation of the muscle contraction (on the left) and relaxation (on
the right) mechanisms. This is a modified combination of two files from Wikimedia.
These files are licensed under the Creative Commons 4.0 license.

A muscle is innervated by multiple motor units, forming a motor nucleus or a motor
unit pool, with populations ranging from a few tens to several hundreds [42, 48, 122].
The force production of a single muscle can be fine-tuned either spatially or temporally
with the recruitment of the motor units within the motor pool and the rate at which
action potential is discharged. It was observed that there is a recruitment pattern
occurring to optimize muscle efficiency; The smallest muscle fibers are recruited
initially, followed by bigger ones when greater force is required. This recruitment
pattern was shown to maximize muscular efficiency. The "size principle" refers to
this procedure [59, 154]. Muscles that produce large and powerful movements usually
contain motor units with large numbers of fibers while the small, precise muscles
typically have fewer fibers per motor unit.

Other elements, such as the availability of energy (in the form of adenosine triphos-
phate, or ATP), the quantity of calcium ions in the muscle fibers, and the presence of
certain enzymes that serve to control muscular contraction as well as the current mus-
cle fiber lengths are also important in the process of muscle contraction. In addition,
muscular fatigue can play a part in the contraction of muscles. When muscles are used
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for prolonged periods of time or at a high intensity, they begin to fatigue, which results
in a reduction in their capacity to create force. This is related to the depletion of energy
sources, accumulation of metabolic by-products, and alterations in the muscle fibers
themselves.
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1.1.3 Muscle synergy principles

The human body’s ability to generate movement is a complex process requiring coor-
dination between hundreds of muscles and thus to thousands of motor units by the
central nervous system. Moreover, it must process the musculoskeletal properties,
such as the muscles’ strengths, their contraction velocities, stiffness, fiber sizes, and
stiffness, as well as the many requirements of the dynamics and limitations impacting
movement. More importantly, there are more muscles spanning each degree of free-
dom of the system than are technically required from a mechanical standpoint, which
means that, in theory, an endless variety of recruitment patterns are feasible. This
issue is often referred to as the redundancy problem [36] the force-sharing problem
[44].

One way for the central nervous system to complete this extensive task from a vast
set of control possibilities would be to generate motor instructions by combining
motor primitives or motor modules [11, 13, 25]. Studies and analyses of electromyo-
graphy signals in the literature have further demonstrated that those modules can
be represented as muscle synergies that would correspond to muscle co-activation
patterns [12, 25, 33, 65, 144, 165, 168]. Those would constrain how muscle groups are
recruited spatially and temporally as separate units. In other words, the concept of
muscle synergy relates to the notion that the nervous system regulates movement by
engaging a particular combination of muscle groups, as opposed to commanding each
muscle separately. This concept is unproven and may require additional research, as
the extracted synergies may represent regularities in the activities if there is limited
variability in the recorded tasks or in the possibilities in the subspace of the motor
commands arising from possible muscle lengths and contractions while performing
the activity, leading to the question of whether or not the extracted synergies are of
neural origin.[1, 25, 89]

identifying muscle synergies

In order to identify muscles involved in a group as well as the different synergies,
the electromyography signals of multiple muscles are studied. The main principle is
to apply a dimensionality reduction algorithm to these signals. There are two main
approaches that were adopted, a linear transformation of preprocessed EMG signals
and the decomposition of the preprocesseed EMG signals in time-varying activation
waveforms.[34, 35, 77]. In this review, we will focus on the first one with its larger adop-
tion, and its use within the thesis. Methods such as Nonnegative matrix factorization
(NNMF), principal component analysis (PCA) and independent component analysis
(ICA) have been mainly employed in the literature for that purpose.[34, 95, 121, 159,
167, 178]. There is not a clear consensus of which algorithm would be the most appro-
priate one [135, 178] and they mostly differ by assumptions and implementations. PCA.
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These algorithms assume that the muscle activity can be described by a linear com-
bination of these synergies, and ICA can identify non-linear relathionships. PCA and
NNMF were shown to perform similarly on EMG and joint motion data outperforming
ICA in reconstructing simple 2d examples [92]. The NNMF’s nonnegativity condition
for activation of basis vectors, on the other hand, is a beneficial feature in detecting
physiologically relevant synergies, especially with numerical models with constrained
values for muscle activations. Moreover, NNMF was shown to handle sparse data and
noisy data more effectively with respect to ICA [109]. Therefore, NNMF factorization
techniques will be picked in this thesis.

The EMGs are filtered and rectified and their envelope are collected into a matrix
M as column vectors and decomposed into two matrices, C and W, composed of
synergies temporal coefficients vectors ci and muscle synergies weights wi. With R,
the unexplained residuals leading to the following equation 1.1 and the explanatory
figure 1.5.

M = CW T +R =
∑

ciw
T
i +R (1.1)

Figure 1.5: Schematic model of muscle synergy principle, with the muscle activities
explained by the linear combination of a reduced number of weights and temporal co-
efficients signals. Modified from [3]. This file is licensed under the Creative Commons
4.0 license.

If the residuals R are negligible and if the number of synergies is less than the number
of muscles we can assume that the initial dataset of EMGs can be mapped into a
lower-dimensional space. This can be represented with the so-called VAF (variance
accounted for), which quantifies the percentage of variability that is accounted for by
the extracted synergies. If the VAF is high, the EMGs are well reconstructed otherwise,
the synergies do not sufficiently explain the EMG variance. VAF is typically computed
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as with ri the residuals components (elements of R) and ui, the signals from EMGs.

V AF = 1−
∑

r2i∑
u2i

(1.2)

The number of synergies is obtained in general from a study of this VAF. Most of the
time, it is based via a threshold level (e.g., 90%, 95%) [27, 130, 166, 175] or with the
"elbow" method. The latter is based on the principle that as the number of synergies
increases, the ability of the algorithm to fit the muscle activity data will also increase.
However, at some point, adding additional synergies will not significantly improve
the fit of the data. When plotting the VAF against the number of synergies, a sharp
inflection occurs at a specific point, this point actually is viewed as the dividing line
between "structured" and noise-dependent variability, and so it may be used to de-
termine the minimal amount of synergies required to adequately define task-related
characteristics. In general, this number is determined as the minimum number of
muscle synergies able to capture the structural variation of the dataset, so that, by
adding one more synergy, it will only add noise to the reconstructed dataset [35]. No-
tably, the preprocessing of EMGs has a substantial effect on the VAF values and curve,
making comparisons across studies difficult. Preprocessing should be performed in
the same manner within a study, for a VAF analysis of the number of synergies to be
accurate. [83, 167]
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1.1.4 Physiological assessment methods and limitations

As mentioned before, the electromyograpic signal represents the electric field gener-
ated by the depolarization of the outer muscle fiber membrane (sarcolemma). Every
time a motor unit from a motor pool fires, it generates an electrical signal; a motor
unit action potential leading to a force output in the motor unit, called a force twitch.
The muscles are composed of many motor units activated usually at the same times
and the recorded EMG signal represents the total of the action potentials of the var-
ious motor units. This signal can be measured by applying conductive elements or
electrodes to the skin surface, or invasively within the muscle with surface electrodes
and needle electrodes respectively. The EMG signal is very intricate, and its properties
are influenced by a wide variety of factors. These factors include the anatomical and
physiological properties, as well as the characteristics of the apparatus that is used to
detect and evaluate the signal. A list of non-exhaustive elements influencing the EMG
signal :

• Physiological properties

– Blood flow and temperature

– Muscle fiber conduction velocity

– Number of motor units

– Type of contraction

– Degree of motor unit synchronization

• Geometrical and anatomical

– Electrode size

– Electrode shape

– Electrode distance from muscle-tendon junctions

– Thickness of skin and subcutaneous fat

– Misalignement between electrodes and fiber alignement

In this thesis we will focus on the surface EMG signals, their processing and analysis.
The main reasons behind this choice is that intramuscular EMG are invasive, limited to
low force levels and to a few motor units only which limits the study of the overall mus-
cle force, and contraction behaviour whereas the surface electrodes record the sum of
multiple motor unit action potentials [86, 103]. In the typical recording methodology,
we measure the electrical potential difference between two points (bipolar electrode
configuration). The electrode should be placed on the muscle of interest in the direc-
tion of the predominant fiber direction, and the subject is grounded by placing an
electrode in an inactive region of the body.
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To accurately record EMG signals and study them in a meaningful way, their place-
ment and their processing should be done in a systematic way, following a set of
recommendations.

Due to the fact that EMG signals result from neuromuscular activity, they may be used
in the diagnosis of nerve and muscle injuries as well as dysfunctions brought on by
neurological and musculoskeletal conditions.
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1.2 Stroke impairments

Although the study of muscle activations is not limited to stroke patients and could be
applied to other neurological diseases that impair the neuromusculoskeletal system,
the research presented in this thesis focused on the stroke population; however, future
research could implement this for other populations as well. In this part, we will
discuss Stroke disease and the current level of knowledge about its impairments and
recovery. A stroke occurs when there is a disruption in the blood flow within the brain.
The latter can be caused by a blood clot (ischemic stroke) or bleeding (hemorrhagic
stroke) and its severity can vary depending on the location and extent of the damage.
Research has demonstrated that a focal lesion, such as one that is caused by a stroke,
has far-reaching effects within the brain and its associated networks [60]. The ischemic
stroke lesion usually consists of a core of dead neurons and a surrounding area with
a limited blood flow, the penumbra [140] that could be potentially saved if treated
rapidly via thrombolysis to dissolve blood clots or endovascular thrombectomy to
remove them, preventing further clinical outcomes. The first priority is therefore to
rapidly restore blood flow. With hemorrhagic stroke blood accumulate within the
brain tissue which leads to rapidly developing neurological dysfunction due to the
mass effect [143]. Compared to ischemic stroke, morbidity and mortality are higher in
hemorrhagic stroke patients. The main goal is to rapidly stop further bleeding.

If most survivors, experience a direct reduced motor control, due to muscle strengths,
somatosensory sensations and muscle recruitment selectivity, [20] spontaneous neuro-
biomechanical recovery occurs within the first weeks after the accident [20, 90]. How-
ever, an impairment of the upper-limb is experienced by 70 to 80% of survivors [136]
and nearly one-third of all stroke survivors will have significant long-term disability
placing it as one of the main causes of long-term disability in adults [170]. Although
different treatments are administered to the two types of strokes during the hyperacute
phase, research has shown that the recovery of motor function and overall outcome
following a stroke is not type of stroke dependant [17, 160]. This implies that the
deficits observed in behavior, as well as their progression, may be caused by shared
neurobiological mechanisms that occur after a stroke.

A key goal is to improve the spontaneous neurobiomechanical recovery occurring
during this period with rehabilitation interventions. Assessing stroke patients’ impair-
ments and determining their impact on mobility and function loss are essential steps
in their rehabilitation journey. Medical practitioners rely heavily on the evaluation and
functional diagnosis of stroke patients to create rehabilitation objectives and develop
physical therapy plans. The severity of the impairments, such as the loss of sensation,
strength, and control, as well as how they contribute to mobility and function loss,
help medical practitioners understand the patient’s condition and design effective
treatment plans.
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The current state-of-the-art methods to estimate the patient’s impairment primar-
ily involve qualitative evaluations by therapists, robot-assisted therapies, or surface
electromyography (EMG) recordings of selected muscles. Clinical scales, such as the
Fugl-Meyer Assessment (FMA) [49], are commonly used to assess therapy effectiveness.
The FMA evaluates upper-limb mobility, muscle tone, reflexes, and coordination and
assigns a score depending on the patient’s level of function. It has been extensively
evaluated in the stroke population and is acknowledged as a tool for assessing changes
in motor impairment after stroke.

However, the sensitivity of clinical tests may not accurately reflect the patient’s actual
improvements. The reliability of clinical tests is also limited by the clinicians’ inter-rater
and intra-rater reliability and by floor and ceiling effects. These limitations may result
in underestimating or overestimating the patient’s progress during the rehabilitation
process. The impact of training on the spontaneous mechanism and how the exercise
therapies affects the recovery is still an open question [20]

To address these limitations, clinicians have begun using recorded EMG signals to
help quantify muscle activity and track recovery. EMG recordings are non-invasive
and provide valuable insights into muscle function and activation patterns during
movement. They also allow clinicians to quantify muscle strength and evaluate the
efficacy of rehabilitation interventions. However, obtaining the overall muscle EMG
is not currently feasible in practice with non invasive procedures. This thesis aims at
providing the clinicians with the overall muscle activations to this extend.
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1.3 State of the art and existing upper limb models for muscle
assessment

Over the last decades, a number of musculoskeletal models have been proposed to
predict parameters that could not be measured (in particular forces and neurological
controls) and aimed at improving diagnoses, pathologies estimations and treatments
processes. [37]. The most acknowledged musculoskeletal model including at least
the shoulder and elbow are the Delft shoulder and elbow model [67, 68], The Garner
and Pandy model [53, 54], Anybody model[36] the OpenSim model [73], the Waterloo
model [40], the Case model [14], the Portuguese model [134] and the dynamic arm
simulator [22]. In all these models, the muscle are represented as sets of lines, in other
proposed models, muscles are represented as volumes with Finite Element methods
[171, 179] but consider a limited number of muscles greatly reducing the applica-
tions since it cannot be representative of the complex shoulder model. Moreover,
if surface-based and volumetric finite element muscle models are appealing with a
better representation of the muscles and their geometry, they are time-consuming
(with 30min of computation time for simulating 10s of motion[126], or 12 hours and
more[171]) which would not be optimal for a study including large dataset comparison
between subjects and movements.

The pioneer in the field was the Delft musculoskeletal model[67, 68], which could
estimate muscle and joint forces using inverse dynamics. Over time, models have
focused on accurate anatomical representation of muscles and bones, as well as new
algorithms and methods to improve the estimation of muscle forces and joint forces,
particularly to address the redundancy problem. Two main methods have been used in
the models: the first is to determine the muscle forces at each instant of the movement
using inverse dynamics and optimize these forces to minimize the muscle stresses (or
other physiological cost functions). While the second seeks to reduce the difference
between the measured and estimated activation signals by using forces derived from
the muscle contraction dynamics to predict the movement.
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1.4 Objectives and outline of the thesis

The objective of the thesis is to develop a numerical model that will try to help us
further understand the underlying mechanisms for motor control and give us a tool to
evaluate a neurological patient’s impairment to potentially improve his rehabilitation
program.

This main objective can be subdivided into multiple parts

• Develop an existing musculoskeletal upper-limb model that can predict physio-
logical muscle activations. This part is presented in Chapter 2. In this chapter,
I also present the forward dynamics formulation and potential use for further
development. I also show a GUI, developed to ease the use of the model, with a
limited need for coding.

• Confront these activations to recorded EMG with healthy subjects performing a
set of 3d reaching tasks while wearing an exoskeleton. The aim is to validate the
model and to obtain realistic muscle activation with data collected from healthy
subjects’ data within a clinical environment. This work is presented in Chapter
3.

• Present a quantitative impairment measurement tool from recorded kinematics
and a limited number of recorded EMG. This corresponds to the first part of
Chapter 4. This was done with stroke patients performing the same tasks as for
Chapter 3

• Evaluate the muscle synergies while reaching different targets, and show that
having the overall muscle activations helps us better understand patients’ reha-
bilitation with respect to healthy data. This corresponds to the second part of
Chapter 4

Finally, Chapter 5 provides a summary/conclusion of the works and most importantly
suggests possible improvements of the model and of musculoskeletal modeling in gen-
eral as well as future possible implementation within clinical rehabilitation protocols.
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2 Upper limb numerical model

2.1 Musculoskeletal modeling

As we stated before 1.1.2, the CNS regulates the movement of the human body by
generating neural commands to activate muscles, which in turn generates forces. Com-
bining these to the inertia and to the external forces acting on the body, a movement,
or motion occurs. A musculoskeletal model should capture both the dynamics of the
muscle force production and the skeletal system’s movements [101].

We mentioned in section 1.1.1 for the upper limb, the bones considered (as rigid body)
connected to each other via the joints, this ensemble forms a multibody system in
which motion is influenced by forces ( from the muscles, the environment and gravity)
and the overall constraints imposed by the articulations. In order to apply a muscular
force to the skeleton, however, the muscle path needs to be computed, from its origin
to its insertion. [76, 145, 177]

From their origin until their insertion, muscles may encounter anatomical obstacles,
such as bones, other muscles, or tissues, which they must wrap around. Because of
this, muscles cannot be modeled as straight lines from their origin to their insertions.
In the literature, different wrapping techniques were explored. Although finite ele-
ment approaches give the maximum degree of detail because of their use of muscle
deformations and accurate bone geometry for wrapping, they are computationally
costly and hence not optimal for musculoskeletal modeling [47, 99]. The majority
of musculoskeletal models, however, employ a different wrapping technique, which
consists of modeling bones and tissue obstacles using geometric elements in order to
approximate the muscle path around them [38, 51, 54, 145] or if only the muscle length
and moment arm was needed they were approximated with polynomial regression or
[112] multidimensionnal B-splines methods [151].
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Once the skeletal geometries and articulation and the muscle paths are modeled, the
muscle actuation should be considered. The feasible force produced by a muscle
depends on several parameters including its lengths, contraction velocity as well as
its activation. Hill-Type muscle models [71] are commonly used to describe muscle
behaviour from a mechanical point of view. These muscle models are crucial for
understanding the neural control of movement.

2.2 Musculokeletal geometry

Here we will present the musculoskeletal model used [75, 107, 145] that was validated
with in vivo measurements to provide estimations of the glenohumeral joint reaction
forces with an inverse dynamics method. MRI scans were used on a healthy male
subject ( 29 years, 186 cm, 85.5 kg) to model the 3d bony structures of the shoulder and
arm. Six rigid bodies are considered including the thorax, clavicle, scapula, humerus
ulna, and radius. A rigid hand was modeled and rigidly fixed to the radius mostly for
muscle and tendon insertions, but no motion was permitted yet, (future development
could include a carpal joint). As mentioned before, 1.1.1, eleven degrees of freedom
are considered, three ball and sockets joints for the sternoclavicular, acromioclavicu-
lar, and glenohumeral joints and two hinge joints for the forearm flexion/extension
and pronation/supination to replicate the anatomical joints including the humer-
oulnar, the radioulnar proximal and distal, and the humeroradial joints. The model
also incorporates two holonomic constraints that prevent the scapula from moving
anywhere else but along the rib cage. The skeletal geometry and the joints associated
are presented in the following figure 2.1

For each segment and their articulations, the ISB recommendations [174] were re-
spected to define the joints’ fixed frames and their associated index defined as fol-
lowed:

• 0. Thorax frame:

– Center: IJ

– x⃗T : normal to the plan defined by IJ, C7, 1
2 (T8 + P X)-IJ, pointing to the right

– y⃗T : normal to the x and z axis pointing forward

– z⃗T : parallel to the line between the points P1 = 1
2(PX + C7) and P2 =

1
2(T8 + IJ)

• 1. Clavicular frame:

– Center: SC

– x⃗C : parallel to the line defined by SC and AC, pointing to the right

– y⃗C : normal to the plane defined by x⃗C and z⃗T , pointing forwards
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Figure 2.1: (a) The MRI scan used for the geometric reconstruction of the bony struc-
tures, with the 6 rigid bodies modeled. (b) The bony landmarks considered for model-
ing the orientations and structures of the articulations. With at least three landmarks
per bone segment, except for the clavicle. (c) the 11 joint angles of SC, AC, GH, HU,
and RU joints, q = [q1 . . . q11]. (d) The Bony landmark used for VICON videogram-
metry systems and needed for kinematic reconstruction from [145] Theses figures are
modified from [145] with Dr. Sarshari’s consent

– z⃗C : normal to the x and y axes, pointing upwards

• 2. Scapular frame:

– Center: AC

– x⃗S : parallel to the line defined by TS and AA, pointing externally

– y⃗S : normal to the plane defined by the x and the AI-TS axes, pointing forward
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– z⃗S : normal to the x and y axes, pointing upwards

• 3. Humeral frame:

– Center: GH

– x⃗H : normal to the y and z axes, pointing externally

– y⃗H : normal to the plane defined by GH, EL and EM, pointing forwards

– z⃗H : parallel to the line between the points Ou = 1
2(EL+ EM) and GH

• 4. Ulnar frame:

– Center: Ou

– x⃗U parallel to the line between Ou and EL, pointing to EL

– y⃗U normal to the plane defined by US, EL, EM, pointing forward

– z⃗U normal to the x and y axes, pointing upwards

• 5: Radius frame

– Center: EL

– x⃗R normal to the y and z axes, pointing externally

– y⃗R normal to the plane defined by EL, RS and US, pointing forward

– z⃗R parallel to the line between EL and US, pointing to the top.

In a mathematical standpoint, the Euclidean displacements that transforms a point p⃗i
in a bone’s reference frame R⟩ into a point p⃗0,i defined in the thorax reference frame R′
are defined by:

P0,1 : p⃗0,1 = d⃗0,1 +R1,0p⃗1 (2.1)

P0,2 : p⃗0,2 = d⃗0,2 +R2,0x⃗2 = d⃗0,1 +R1,0z⃗1 +R2,0p⃗2 (2.2)

· · ·

P0,5 : p⃗0,5 = d⃗0,5 +R5,0x⃗5 = d⃗0,1 +
∑

Ri,0z⃗i +R5,0p⃗5 (2.3)

The different vectors d⃗0,i correspond to the vectors between the different centers of the
joints in the thorax reference frame, for instance, d⃗0,1 is the vector from IJ to SC in R′.
The vectors z⃗i between the centers within the bone’s reference frame, for instance: z⃗1
is the vector from SC to AC in R∞.

The rotation matrices are defined by:
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Clavicle : R1,0 = Rz,1R
T
y,1Rx,1, (2.4)

Rx,1 =

 1 0 0

0 cos(q1) − sin(q1)

0 sin(q1) cos(q1)

 , Ry,1 =

 cos(q2) 0 − sin(q2)

0 1 0

sin(q2) 0 cos(q2)

 , Rz,1 =

 cos(q3) − sin(q3) 0

sin(q3) cos(q3) 0

0 0 1



Scapula : R2,0 = Rz,2R
T
y,2Rx,2, (2.5)

Rx,2 =

 1 0 0

0 cos(q4) − sin(q4)

0 sin(q4) cos(q4)

 , Ry,2 =

 cos(q5) 0 − sin(q5)

0 1 0

sin(q5) 0 cos(q5)

 , Rz,2 =

 cos(q6) − sin(q6) 0

sin(q6) cos(q6) 0

0 0 1



Humerus : R3,0 = Rz′,2R
T
y,3Rz,3, (2.6)

Rz,3 =

 cos(q7) − sin(q7) 0

sin(q7) cos(q7) 0

0 0 1

 , Ry,3 =

 cos(q8) 0 − sin(q8)

0 1 0

sin(q8) 0 cos(q8)

 , Rz′,3 =

 cos(q9) − sin(q9) 0

sin(q9) cos(q9) 0

0 0 1


Regarding the elbow, the rotation matrices defining the flexion/extension and prona-
tion/supination from the generalized coordinates q10 and q11 are the following:

Ulna : R4,0 = Rx,4,

Rx,4 =

(
1 0 0
0 cos(q10) − sin(q10)
0 sin(q10) cos(q10)

)
(2.7)

Radius : R5,0 = Rz,5,

Rz,5 =

(
cos(q11) − sin(q11) 0
sin(q11) cos(q11) 0

0 0 1

)
(2.8)

2.2.1 Equations of movement

The rotations and the positions of the point with respect to the overall joints’ con-
figuration from the generalized coordinates q⃗ = (q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11)

corresponding to the 11 rotation angles from the model are now defined. Their center
of mass can be then obtained and the mass and inertial properties are attributed to
the bone segments according to [53].

The upper extremity equations of motion are derived from analytical mechanics using
Euler-Lagrange’s equations (Eq. 2.9)

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= t0 =

∂Ω

∂q̇
M =

∂Ω

∂q̇
Wf (2.9)
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Where, ∂Ω
∂q̇

M corresponds to the generalized force vector with Ω the horizontal matrix

including the angular velocities of all the bony segments. M , the vertical matrix,
including the resultant moments around each articulation. This corresponds to the
generalized torques t0 in the thorax frame resulting from each muscle on each bone.
M can be rewritten as Wf , with W , the moment arm matrix, and f a vector of all the
muscle force magnitudes.

The moment arm is computed using its geometric definition alongside the tendon
excursion method. ([75, 76, 145]) Where the muscle paths are modeled as massless
elastic strings approximated using the obstacle set method from [54]. The origins/in-
sertions, via points, and wrapping objects of 42 muscles spanning the upper extremity
joints are defined from the MRI scans. Each of the muscles can be represented with up
to 20 cables. The 42 muscles modeled are: subclavius, serratus anterior upper, middle
and lower parts, trapezius C1-C6/C7/T1/T2-T7, elevator scapulae, rhomboid minor,
rhomboid major T1-T2 and T3-T4, pectoralis minor, pectoralis major clavicular sternal
and ribs, latissimus dorsi thoracic, lumbar and iliac, deltoid clavicular, acromial and
scapular, supraspinatus, infraspinatus, subscapularis, teres minor and major, cora-
cobrachialis, triceps brachii long, medial and lateral, biceps brachii short and long,
brachialis, brachioradialis, supinator, pronator Teres, flexor carpi radialis and ulnaris,
extensor carpi radialis long and brevis, and extensor carpi ulnaris.

On the left hand side of equ 2.9, the acceleration and conservative forces includ-
ing Coriolis forces and gravity are included. The Lagrangian L, is the sum of all the
bone segments Lagrangian including Lscap obtained from the two scapulothoracic
constraints ([75, 145]).

L = L1 + L2 + L3 + L4 + L5 + Lscap (2.10)

The Lagrangian from each bone is defined by its kinetic and potential energies. The
general expression for the Lagrangian is given by:

Li =
1

2
{mi

˙⃗x
T
0,i

˙⃗x0,i + ω⃗T
i Iiω⃗i} −mi g ( 0 0 1 ) · x⃗0,i, i = 1 : 5 (2.11)

x⃗i, is the position of the center of gravity of the bone i in the thorax (or global) reference
frame. The vector ˙⃗x0,i corresponds to its translational velocity in the thorax reference
frame. ω⃗0,i is the instantaneous rotational velocity vector in the bone’s reference frame.
mi is the mass of the bone i and Ii, the inertia tensor, defined in the bone’s reference
frame from its longitudinal and transverse inertia such as defined below:
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Ii =

 I1,1 0 0

0 I2,2 0

0 0 I3,3

 (2.12)

Where for the clavicle and the scapula, I1,1 is the longitudinal inertia and I2,2 = I3,3 the
transverse intertia, whereas for the humerus, ulna, and radius, I3,3 is the longitudinal
inertia and I1,1 = I2,2 the transverse inertia.

2.3 Musculotendon dynamics

As mentioned in previous section the upper-limb musculoskeletal model uses 42
muscles as cables, which paths approximated using the obstacle-set method [54]
using the origins and insertions defined with MRI scans ([75, 145]). Moreover, their
associated wrapping objects are set by modifying recommendations of [53] for the
type, center, axis, and radius of the objects to best fit the MRI scans. Figure 2.2
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Figure 2.2: The musculoskeletal model: On the left, MRI scans of a healthy male subject
from which the bone morphologies, muscles origins and insertions, and wrapping
objects are obtained.On the right, the musculoskeletal model, and the 42 muscles as
cables, with their insertions in blue and origins in green. The muscles are represented
with 3 massless elastic strings in the figure but can be represented by up to 20. Modified
from [145] with the author’s consent.

we saw in eq: 2.9 the impact of the muscle forces in the dynamics in the model’s equa-
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tion; the different muscles will apply on the skeletal structure forces in the direction
given by the cables representing them. All the forces applied by a single cable on the
same bone are reduced to a single force magnitude and a moment of force at that point
and thus apply a moment of force around each joint. For a model with Np muscle
segments the force and moment of force at each joint in the inertial frame R′ is defined
by:

f0,i =

Np∑
k=1

f0,i,k i = 1 : 5 (2.13)

t0,i =

Np∑
k=1

y0,i,k × f0,i,k =

Np∑
k=1

(y0,i,k × b0,i,k)fk =

Np∑
k=1

c0,i,kfk = C0,if (2.14)

With, f0,i,k the resulting force of muscle k applied to body Bi in R′, y0,i,k the resultant
of force vector in the system for muscle k in the body Bi in R0, b0,i,k the force direction
vector. Their cross product form the moment arm: c0,i,k.

The importance of the moment arm is mostly for numerical considerations, in classical
mechanics the forces fk of magnitude fk, are applied on a rigid body Bi at a certain
point, this creates a moment of force at any other point of the body. The moment of
force is defined as the cross product between the vector from those two points, the
lever arm, and the vector of the force with its direction. The associated moment-arm
c0,i,k is defined by the same cross product but with a normalized force vector b. In our
equations: b0,i,kfk = f0,i,k. Therefore, the moment-arm is purely geometric quantity
depending on the direction of the force and its point of application. This allows the
separation between the geometric quantities of the forces and applications on joint
i in R0 with the moment-arm matrix C0,i of the system and the vector of the muscle
force magnitudes f

The muscles can only contract from their initial position, thus they can only pull the
skeletal structure leading to a muscle force constraint, to be only positive or zero.
Depending on the musculoskeletal application, the vector of muscle force magnitudes
calculation will differ. For an inverse dynamics simulation, these are unknown and
a solution must be found to satisfy the equation of motion. In forward dynamics
simulation, those will be obtained directly from their geometry and their activation
with the Hill-type muscle model [71], a musculotendon actuation model describing
the input-output behaviors of the musculotendon system and its phenomenological
properties.
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2.3.1 Musculotendon contraction dynamics

The Hill-Type models correspond to a mechanical representation of the muscle-tendon
complex [71, 172, 177]. They are extensively used in the literature for coordinated
movements and representation of the muscle force from an activation signal[100, 123,
148] They provide a single first-order ordinary differential equation representing the
contraction dynamics of the musculotendon. It associates the muscle fiber velocity to
a function of the muscle fiber length, musculotendon length and activation.

2.3.2 Activation dynamics

The activation of the muscle corresponds the active state of the musculotendon appa-
ratus, it corresponds to the physiological relative amount of calcium released in the
muscle fiber as mentioned in 1.1.2. During muscle activation, calcium ions concen-
tration increases in the sarcoplasmic reticulum, while muscle deactivation involves
the removal of calcium. However, as mentioned in 1.1.4, the physiological signals
measured, electromyographic signals, correspond to the sum of the electric fields
generated by the depolarization of the outer muscle fiber membrane. Therefore, there
is a need to model the dynamics associating from a neural excitation u(t) a muscle
activation a(t), this is done via the activation dynamics equations.

This was described previoulsy [176, 177] and later adapted [145] to the following
equation:

ȧ =
u− a

τ
,


τact

0.5 + 1.5a
u < a, activation

τdeact
0.5 + 1.5a

u ⩾ a,deactivation
(2.15)

Where a is the activation, u the excitation u (both between 0 and 1), and τact, τdeact, the
activation and deactivation time constants. The entry point excitation u(t) corresponds
to the filtered EMG signals. There is no consensus in the literature about a systematic
filtering and transformation of the EMG signals to u [74], However, there is a common
ground and a standard procedure for the processing of the EMG signals which should
be adapted for the study specificities. For their use in this thesis and our specifics,
with EMG signals recorded at 1.5kHz, the processing is done offline with MATLAB,
following the methods in [27, 83, 130, 131]. EMG signals were detrended, band-pass
filtered first at 50-500Hz with a 7th order Butterworth filter, rectified, then low-pass
filtered with a 7th order Butterworth filter with a 10Hz cut-off frequency to obtain the
envelope. We further normalized the signals by the median across all the computed
movements per subject in order to ensure a wide amplitude of signals fed to the
musculotendon contraction dynamics of the model favoring expected signals and
avoiding high-amplitude spikes caused by noises. As mentioned before, for the Hill-
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Type contraction dynamics and its underlying activation dynamics, the input signal
activation should be between 0 and 1 which is then ensured with the normalization of
the EMG by the similarly filtered maximum voluntary contraction recorded for each
muscle.

2.3.3 Contraction dynamics

the Hill-type model, gives a simplified mechanical representation of the musculoten-
don contraction [71, 172, 177]. For musculoskeletal modeling, they are key components
when the muscular activation is involved [100, 123, 148] They provide a single first-
order ordinary differential equation representing the contraction dynamics of the
musculotendon. It associates the muscle fiber velocity to a function of the muscle fiber
length, musculotendon length and activation. Fig 2.3 The musculotendon actuator is
represented as a mechanical system involving a contractile element (CE), a parallel
elastic element (PEE) and a serial elastic element (SEE) to replicate respectively the
active force production of the fiber, the passive force generated by the muscle fibers
during their elongation and the passive force replicating tendon elongation resistance.
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Figure 2.3: The Hill-type model used: (a) the physiological representation of the
modeled elements in the Hill-type model. The fiber lengths are approximated by a set
of straight parallel muscle fibers with equal lengths lM deviated with a pennation angle
α, from the axis of force production (in the direction of the muscle tendon) (b) The
corresponding mechanical representation, including the contractile element (CE), the
parallel passive elastic element (PEE) and the tendon, the serial elastic element (SEE).
The force produced by the muscle FM is the resultant of the force generated by the CE
(FOa(t)f

L(l̃M )fV (ṽM ), PEE (FOf
P (l̃M )) and SEE (FOf

T (l̃T )). The normalized functions
fP , fL, fV andfT were obtained in [145], with a curve fitting of the experimental data
from [45, 58, 66, 79, 81, 88, 105, 106, 157, 163, 164, 172, 173, 177]. In this present work,
the curves fitted of fP and fT were adapted to better reflect the curves behaviours and
avoid numerical errors. Modified from [145] with the author’s consent.
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The Hill-type approximates the different fibers of various lengths and physical proper-
ties included in a musculotendon unit to a single scaled-up version of normalized fiber.
Indeed, the multiple fibers are assumed to be parallel and of the same lengths, with
their orientation deviated from the muscle force direction with the pennation angle.
In order to describe the musculotendon actuation as a black box to be used for each of
the muscles, the muscle fiber length, velocity, tendon length and force quantities are
normalized with respect to their so-called optimum values. With these considerations,
the forces produced by the CE, PEE and SEE are defined with dimensionless functions
with the muscle force-length fL, muscle force-velocity fV , passive muscle force fP

and tendon force-length fT relationships. These were obtained by curve-fitting the
experimental data reported in the literature [45, 58, 66, 79, 81, 88, 105, 106, 157, 163,
164, 172, 173, 177]. The expressions resulting from these are shown below (equations
2.16 2.17 2.18 2.19);

fL(l̃M ) = exp(
−(l̃M − 1)2

0.0955
) (2.16)

fV (ṽM ) =
1.9108

1 + exp(−4.994ṽM )
(2.17)

fP (l̃M ) = 0.2 exp(3.2(l̃M − 1) + 0.1055) (2.18)

fT (l̃T ) = 0.550 exp(20.31(l̃T − 1) + 0.5616) (2.19)

For these forces to be scaled to a variety of human and animal muscles their values
are normalized relative to the maximum force (F0) at the optimal fiber length (lM0 ).
Additionally, the normalized muscle fiber length l̃M is defined as

l̃M =
lM

lM0
(2.20)

The normalized muscle fiber velocity as

ṽM =
vM

vM0
(2.21)

The normalized tendon lengths as

l̃T =
lT

lTS
(2.22)

With the fiber lengths lM , velocities vM and tendon lengths lT , the optimal fiber lengths
lMO , velocities vMO and tendon slack lengths lTS respectively. These parameters are highly
important in a Hill-type model and are different for each muscle modeled. The optimal
fiber length of a muscle corresponds to its length where the fiber can produce the
maximal force. At the optimal contraction velocity is obtained where the force in the
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force-velocity relationship is zero.

Given the mechanical representation of the Hill-type model (see Fig 2.3 (b) ), the
force equilibrium between the tendon and fiber leads to the following equations if the
tendon is assumed to be elastic. Of note, for a rigid tendon model, only 2.25 is valid,
since the force is directly transmitted to the insertion point.

FMT = FSEE = (FCE + FPEE) cosα (2.23)

= F0f
T (l̃T ) (2.24)

= F0[a(t)f
L(l̃M )fV (ṽM ) + fP (l̃M )] cosα (2.25)

Leading to

F0[a(t)f
L(l̃M )fV (ṽM ) + fP (l̃M )] cosα− F0f

T (l̃T ) = 0 (2.26)

Where α is the pennation angle, the deviation angle between the fiber elements and
the muscle tendon such as lM sinα = lMT − lM , with lMT the musculotendon complex
length that is obtained with the muscle path in the model. The height h of the fibers in
fig 2.3 (a), remains constant as the muscle shortens[18, 52, 114] which leads to

lM sinα = lM0 sinα0 (2.27)

We can therefore obtain the following ordinary differential equation in terms of ˙̃lM

[
a(t)fL(l̃M )fV

(
lM0
vM0

˙̃
lM
)
+ fP

(
l̃M
)]√

1−
(
sinα0

l̃M

)2

= fT

 lMT − lM0

√
l̃M2 − sinα2

0

lTS


(2.28)

Equation 2.26 or equation 2.28 alone cannot be used to estimate the force given the
length, velocity and activation of the muscle since multiple combinations of these
values can satisfy the equation. However, a unique solution can be found by solving the
equation 2.26 for the normalized muscle velocity ṽM this can be done either implicitly
on equation 2.28 [15] or explicitly with the following ordinary differential equation
including the inverse of the force-velocity curve fV

inv

ṽM = fV
inv

(
fT (l̃T )
cosα − fP (l̃M )

afL(l̃M )

)
(2.29)
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Which can be rewritten similarly to equation 2.28 in terms of ˙̃lM as

lM0
vM0

˙̃
lM = fV

inv

 1

afL(l̃M )


fT

(
lMT−lM0

√
l̃M2−sinα2

0

lTS

)
√
1−

(
sinα0

l̃M

)2 − fP (l̃M )


 (2.30)

If the equation 2.28 does not present any numerical singularities, the introduction of
the formulation with equation 2.30 presents four: a → 0 , fL(l̃M ) → 0,l̃M → sinα0 and

as ∂fV (ṽM )

∂ṽM
→ 0.

In both cases, the normalized muscle fiber is able to reach unrealistic short lengths
and cannot be simulated when fully deactivated, therefore, a unilateral constraint is
included on the candidate value obtained from: Eq: 2.28 or Eq. 2.30

˙̃
lM =

{
0

˙̃
lM < 0 and l̃M < max(fL

inv(0), sinα0)

l̃M otherwise
(2.31)

With fL
inv the inverse function of the active force-length curve. These constraints are

highly important in the numerical approaches since they can ensure a realistic lower
bound for the muscle fiber length, avoiding numerically stiff equations.

2.3.4 Rigid-tendon model

With a rigid tendon assumption, it is possible to determine the muscle length lM

and velocity vM directly from the musculotendon length lMT and velocity vMT as the
tendon is inextensible, its length lT remains lTS giving:

lMT = lT − lM cosα (2.32)

Which differentiates with respect to time to

vMT = vT + vM cosα− lM α̇ sinα (2.33)

or vT with a rigid tendon and

h = lM sinα = lM0 sinα0 (2.34)
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With h being constant, this previous equation differentiates with respect to time to
obtain:

α̇ = −vM sinα

lM cosα
(2.35)

Given the known values of lT , lMT and vMT and the system of equations 2.35 and 2.33
we can obtain vM and lM from 2.32 and 2.34.

It greatly reduces the system complexity since it transforms the contraction dynamics
into an algebraic relationship that needs no integration. Indeed, Eq. 2.25 directly gives
the output force.

However, if this assumption is appealing for a great numerical cost reduction, for
muscle with a high tendon slack length to optimal fiber length ratio is far from unity it
is not recommended as an alteration in the tendon length will most likely occur and
thus the force computation can be greatly affected [117].

2.4 Inverse dynamics formulation

The musculoskeletal model presents 11 degrees of freedom, and 42 muscle actua-
tors spanning them which is more than the technically required from a mechanical
standpoint, which means that, in theory, an endless variety of force configurations are
feasible. This issue is often referred to as the redundancy problem [36] or force-sharing
problem [44]. In the formulation of the inverse dynamicn, the kinematic of the model
is known, thus the musculotendon lengths, joint angles, velocities, and accelerations
can be obtained. Together with the Euler-Lagrange equations 2.9 the equations of
motions can be formulated in the following way:

MDYNq̈ = RHS +
∂Ω

∂q̇
M + constraints (2.36)

To compute numerically the MDYN (corresponding to the "mass" matrix) and RHS
( the right-hand side of Lagrange’s equation) in the Matlab environment using the
symbolic toolbox. The following methods are applied to the previously computed
Lagrangians from Eq. 2.11 in a symbolic formulation as functions of the generalized
coordinates q and q̇

MDYN(q) =
∂2L
∂q̇2

(2.37)
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RHS(q, q̇) =
∂L
∂q

− ∂2L
∂q∂q̇

q̇ (2.38)

These functions of the generalized coordinates are subject to the inertial properties of
the system, including the masses of the bones, the inertial tensors, the gravitational
constant, and initial bony lengths. However, their numerical computations are costly
as they must be obtained at every step in the simulation (including within the optimiza-
tion procedures). For a scaled model, these must be symbolically computed after the
scaling procedure. For a simulation based on the generic model, Matlab functions to
numerically compute these functions are precomputed in C and developed as Matlab
Mex files to speed up their computations.

With this, the inverse dynamics formulation intends to obtain the muscle forces and
their underlying activations satisfying the following equation:

MDYN(q)q̈ − RHS(q, q̇) =
[
∂Ω

∂q̇
W (q)Mc(q)

]
f̃ = Jtorque (2.39)

Where Mc accounts for the generalized moment arms of the scapulo-thorax constraints
[75, 145], and f̃ the augmented force vector including the forces fc associated to these
constraints f̃ = [f fc]. Jtorque corresponds to the resulting torques acting on the joints

Of note, Mc is obtained from the definition of the Lagrangian in Eq. 2.11 as explained
in [75, 145] in details.

From Eq. 2.39 we now have defined the dynamics of the system that the forces need
to satisfy. From Eq.2.26 we also have the constraints on the possible force produced
by a muscle given its fiber length, velocity and activation with the lower and upper
boundaries with a minimum value of activation of 0 and a maximal activation of 1
as f low

MT (a0, lMT , vMT ) and fup
MT (a1, lMT , vMT ) respectively. However, these constraints

would still not be sufficient to define the forces and a unique set of activations needed
to satisfy the system of equation. In the inverse dynamics proposed in this thesis,
we want to minimize the cost function corresponding to the squared sum of muscle
stresses. First presented in [31], its aim is to reduce overall muscle fatigue and is
frequently used in musculoskeletal models as a standard load-sharing scheme.[46,
53, 70, 123, 137, 156, 162]. The muscle stresses are obtained using the physiological
cross-section areas of the muscles, assuming the stress is evenly distributed over the
entire cross-section it is obtained as the following for a single muscle.

σi =
fi

PCSAi
(2.40)
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The cost function to minimize thus is:

Cs =
∑

σ2 = fTPf (2.41)

With P, the diagonal matrix contains the inverse squared of muscle physiological cross-
section areas. Those values are obtained from [52].

The natural corresponding optimization problem becomes the following:

min
f

f̃TP f̃

s.t f low
MT (a0, lMT , vMT ) ≤ f̃ ≤ fup

MT (a1, lMT , vMT )

MDYN(q)q̈ − RHS(q, q̇) =
[
∂Ω

∂q̇
W (q)Mc(q)

]
f̃

Cmat · JRF ≤ 0

(2.42)

Finally, a glenoid stability cone constraint was included; the glenoid fossa was ap-
proximated by a cone and to keep the joint reaction forces (JRF) inside the glenoid
and to have them facing the opposite direction of the normal vectors of the glenoid
fossa cone basis Cmat, their scalar product should be negative. Its implementation and
description can be found in both [75] and [145].

When solving this quadratic programming optimization problem using quadprog in
Matlab a solution is rarely obtained within the shown constraints. This is in contrast
to what was shown in [145] in which the force boundaries criterion was less stringent
and, more importantly, less physiologically realistic [91].

Indeed, the force boundaries presented there were defined between 0 and a value
fmax which was defined as fmaxk

= K · PCSAk, with K, the Fick constant equal to
33.011Nm−2 [31]. The problem arises from ignoring the passive forces of the muscles,
which is not null for elongated muscles, and the total musculotendon parameters.
Indeed, as presented before the contraction dynamics and the resulting forces are
highly dependent of the musculotendon properties. In fact, their primary objective
was to assess the forces operating on the upper limb. However, the muscle activations
are the emphasis of this thesis, with the calculated forces only serving as a means of
obtaining these activations. Another reason for the lack of possible solution within the
boundaries lies in the obtained dynamics. Indeed the movements recorded studied in
[145] were well-defined movements of the shoulder joint which would lead to relatively
smooth accelerations and dynamics in general. One goal of this thesis is to estimate
and study the activations of healthy subjects and impaired neurological patients while
performing 3d reaching tasks as it will be presented in chapters 3 and 4, therefore the
movements are expected to be unpredictable and noisy.
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The modified optimization problem, therefore, includes a possible error from the
inverse dynamics obtained torque at the joints Jtorque (in Eq.2.39) so that a physiologi-
cally possible solution is obtained within the force boundaries, this accounts for the
possible miscalculations of the kinematics and possible robotic interactions within
the assessments (see chapters 3 and 4). Similarly to the "hybrid EMG-informed" devel-
oped in [148] for the lower limb the joint torque is minimized alongside the absolute
difference between experimental activations and the estimated ones (in our case, for
the available ones). However, here, the sum of muscle activations is not minimized but
the previously described stress of the induced force is, which is in line with the recent
comparison between cost function [104] and their performances

The cost function becomes:

Acf =
∑

|Wmf̃ − Jtorque|+ α
∑

|arec − ã|+ βf̃TP f̃ (2.43)

Acf = ÊJ + αÊaEMG + βCs (2.44)

The α and β are positive weighting coefficients obtained experimentally ensuring
ÊJ ≤ ÊaEMG ≤ 1e−2. The activations minimizing the cost function are obtained with
the fmincon algorithm in Matlab.

Of note, the joint reaction force constraint was not implemented in this new formula-
tion. Therefore the use of the inverse dynamics method choice should be adapted to
the study itself, if the goal is to evaluate the forces and their stability at the joints and
the tasks and movements recorded are simple the optimization chosen should be the
one described in Eq. 2.42. Otherwise, the one from Eq.2.43 should be preferred.

Additionally, it is strongly advised to use the rigid tendon formulation with the Eq.2.43
since at each step of the optimization process the forces are computed. This is done
via a precomputation of the possible force values given the musculotendon state
(lMT
ti , vMT

ti ) as a function of the activation at each time step ti before the activation
optimization is solved.

fti(a) = fMTti(a, lMTti ,vMTti) (2.45)

Where fti is simply interpolated from computed forces with activations ranging from
0 to 1. To speed up the computation process the contraction dynamics to obtain the
force could be precomputed in C and used as a Matlab mex file.

2.5 Forward dynamics formulation

In forward dynamics, the inputs of the system are the forces or the associated mus-
cle activations leading to a motion. Here the Euler-Lagrange equations 2.9 can be
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formulated to obtain the joint angles accelerations to be integrated.

q̈ = MDYN(q)−1 [RHS(q, q̇) + Control(q, q̇)] (2.46)

Where Control is the input of the forward dynamics formulation. For a torque-based
formulation:

Control = Jtorque (2.47)

For a force-based formulation:

Control(q) = MA(q)f̃ (2.48)

With MA the augmented Moment arm matrix including the partial velocity matrix

MA =
[
∂Ω
∂q̇

W (q)Mc(q)
]

In an activation-based formulation, the input are the activa-

tions that will be fed in the contraction dynamics leading to forces.

This system with only the forces as input is considered the feedforward controller.
The associated solution from the inverse dynamics formulation if it exists is always a
candidate for the feedforward design [Slotine1991, 146].

The formulation from Eq. 2.46 is written as an ordinary differential equation in the
following way to be solved numerically with the Runge-Kutta Fehlber fourth and fifth
order method [41, 146].

u =

(
q

q̇

)
, u =

(
q̇

·q

)
, (2.49)

The open loop formulation, however, deviates fast from the trajectory used in the
inverse dynamics to define the control, this is due to the accumulation of successive
errors in the numerical integration and is well known in the literature [38, 61] which
happens even on reduced model of a single joint with three degrees of freedom [146].

2.6 GUI visualization and reduced model

The existing model architecture is rather complex, consisting of an excessive number
of files and functions, which may be intimidating and not really efficient when working
with. If there exists a graphical user interface (GUI), it does not support most recent
versions of Matlab and most importantly is mostly adapted to previous functions
and to force evaluations. With the newly developed inverse dynamics and forward
dynamics based on activation a new toolbox was required. This one is tailored to
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facilitate muscle analysis and activation comparisons rather than the study of forces
acting on the joints during a single movement from kinematic data. It allows for
multiple movement studies to run in parallel using the parallel computing Matlab
toolbox, which greatly reduces the computational time required for a study involving
multiple repetitions. Finally, this toolbox can be callable from the current GUI and can
open some of the available existing toolboxes making it perfectly adaptable.

In this GUI, the user has the possibility to tune selected parameters directly, or choose
the tendon model, rigid or flexible, if the kinematics should be scaled to the generic
model, if no ENG data is loaded, the model will run a static-optimization to obtain
the overall forces and activations leading to the measured kinematics. Otherwise, the
latter will be included in the EMG-assisted model. In the multiple simulations tab of
the inverse dynamics mode, the user can select the subjects of study, the assessments,
and the targets reached and the simulation will run over the repetitions across these
choices in parallel (In our recorded data, there are around 5 repetitions per subject
and targets). In the forward dynamics tab, the inputs can be either, the muscles’
activations, their forces, or the torques at the joints. Initial configuration can be set for
the feedforward simulation and for the closed loop one, the kinematics. Damping at
the joints and user-specific functions can be directly set within the GUI to have those
changes simpler for the user and to avoid accessing Matlab function. In all cases, extra
parameters or simple functions can be written in a script ( text file opened with the
extra parameters pushbutton and directly linked to the used functions) for fast and
efficient interactions within the inner Matlab functions.

37



Chapter 2 Upper limb numerical model

Figure 2.4: Graphical user interface for inverse dynamics of a single movement the
choice of the tendon model can be made, and its scaling will open the existing scaling
toolbox of the model
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Figure 2.5: Graphical user interface for inverse dynamics of a multiple movements. The
user can select the tasks and subjects to study and the repetitions of those movements
will be computed in parallel
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Figure 2.6: Graphical user interface for forward dynamics: closed loop or feedward
simulations can be selected with choices for possible custom-made dampings at the
joints

2.7 Future possibilities

The model can still be developed and improved. I could reduce the computational cost
during simulations by using precomputed functions in C and developed as Matlab
Mex files to speed up their computations. But other means could achieve great perfor-
mances. Indeed the moment arm and muscles lengths computations as functions of
joint angles for instance could be obtained via regression models, drastically reduc-
ing the computation time, however, building models like this would totally block the
model scaling features if the latter ones are not included. Unfortunately, this would
take a long computational time to obtain.

Future development of the model should take the forward dynamics methods and
directly couple it with the cost function from the inverse dynamics method. The
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forward dynamics computation is not only faster, it could compensate on its own
for the variations from the desired torque. Indeed in the cost function proposed, the
activation estimation should minimize also the difference in the measured torque at
the joints and the produced torque from the musculotendon actuation. This would
be similar to the methods proposed in [72, 148] and to more recently [2]. The current
drawbacks of the forward dynamics model would be then discarded as it would act
as a closed-loop in this mode. Moreover, given the already computed function and
methods as "black box", this should be relatively fast achieved.

With overall activations estimated from the inverse dynamics across different directions
at multiple speeds and corresponding EMG recorded. It could be possible to develop a
machine learning model for simple movements leading to the overall activations from
recorded EMG. This however would require a large dataset of EMG and movements
since the model is composed of 11 degrees of freedom but could provide a good insight
of muscular impairments and variations in movement from recorded EMG only.

Finally, the hand as a single bone and the wrist joint are already available in the model,
and most of the muscles spanning the wrist joint are already modeled. With the
current state, movement of the wrist is maintained fixed which overlooks activation
from muscles spanning this joint.

I would suggest future development starting from the mex precomputation of more
functions used in the model, and possibly even developing the model and the graphical
user interface as an application for easier use by a wider range of population, including
clinicians. This would also limit the access of most of the functions, and their behavior
could be rather simply modified by tuning a limited number of parameters as I did
for the graphical user interface and the tuning of the activation cost functions. Fur-
thermore, the existing architecture is rather cumbersome, consisting of an excessive
number of files and functions, which may be intimidating for the new user.
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3 Biomechanical model and healthy
subjects muscle activation assess-
ment

During this thesis we presented the development of the upper-limb model as well
as the inverse dynamics methods and potential use. In this chapter, the aim is to
validate the model, stating that with the reconstructed kinematic from the exoskeleton
and with the integration of a limited number of EMG recorded we can improve the
activation estimation.

Manuscript under revision

The content of this chapter is adapted from a manuscript currently under revi-
sion. Preprint available at Research Square:
Tristan Barjavel, Tommaso Proietti, Camilla Pierella and Silvestro Micera, "A real-
istic upper-limb musculoskeletal model for overall muscle activation estimation",
17 May 2023, available at Research Square https : //doi.org/10.21203/rs.3.rs−
2802018/v1

Personal contributions as first author: Implemented the model, adapted the
kinematics and EMG recordings, analyzed the results, created the figures, and
wrote the manuscript.
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3.1 Abstract

The human upper limb can perform complex tasks thanks to the ability of the central
nervous system (CNS) to control and modulate the activation of more than 40 muscles.
A deeper understanding of the strategies implemented by the CNS to perform these
movements could help develop more effective rehabilitation protocols. Unfortunately,
given the number of muscles acting on the shoulder and arm and their positions with
respect to each other, a complete upper-limb’s muscles electromyographic (EMG)
recording is not feasible in practice. Numerical musculoskeletal model could represent
a very useful alternative approach to gather this kind of information. Here, we develop
a new realistic upper-limb biomechanical model which uses a combination of few
recorded EMG data (up to max N=16) and an inverse dynamics model reducing the
muscle stress to predict the overall upper-limb muscle activations (N=42). The predic-
tions from this model (EMG-assisted) were compared to 1) a full set of 16 arm muscles
EMG data of healthy subjects performing 3D upper-limb movements, 2) a model using
none of the these recorded EMG data (static-optimization). If, predicted signals from
the EMG-assisted and static-optimization led to a 3.4% and 2.3% error respectively
in the resulting moment of joint when fed into the movement dynamics, the EMG-
assisted method presented a more physiological sharing of the muscle activations
and errors with respect to the activations from EMG signals for non used muscles in a
comparison leave-one-out method. These promising results open up to adopting this
musculoskeletal model as a tool to evaluate healthy motion data, with the potential
of applying in the future the same analysis to impaired individuals motions and to
compare inter-subject activation behaviours.
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3.2 Introduction

Human healthy individuals can easily control their upper-limb movements despite
a complex and redundant musculoskeletal system. In 1967, Nikolai Bernstein [11]
hypothesized that the central nervous system (CNS) activates groups of muscles as
muscle synergies instead of activating them independently, with each synergy spec-
ifying a particular balance of activation across a set of muscles. More recently, this
hypothesis has been tested and confirmed by other groups [12, 33, 120]. Understand-
ing how the CNS manages to perform complex tasks requires a deep comprehension of
how the different muscles activate. Because of the often-overlapping physical location
and the large number, simultaneous direct measurement of multiple muscles (e.g. the
ones in the upper-limb) via electromyography (EMG) is generally not feasible at a large
scale, in particular in a clinical environment. However, EMG is still largely considered
the gold standard for assessing muscle activity, being a non-intrusive method with
fast setup time. It is important to notice that EMG recordings are able to show the
activity of the muscles but do not provide their contribution to the general movement,
underestimating the muscles passive forces derived from their sole elongation [118].
Musculoskeletal numerical models could represent an interesting alternative approach
to directly probing the muscles [152]. Existing models mainly focus on estimating the
force produced by the different muscles, often neglecting the dynamics of muscle acti-
vation. Forces are usually computed by optimization of physiological cost-functions
and constraints, applied to equations of moment equilibrium at each joint. Most of
these optimization criteria are based on muscle-related properties, for instance, mus-
cle stress [28], muscle forces [81], and muscle’s energy consumed [63], or the so-called
min/max criterion [138, 161]. In a few studies, EMG signals were incorporated into
lower-limb musculoskeletal models [100, 148] and upper-limb musculoskeletal mod-
els[7, 50, 82, 123, 147], resulting in more accurate estimates of muscle co-contraction
estimations.

In this study, we propose an overall fast muscle activation estimator (42 muscles in
total) as a comparative and evaluation tool, that improves muscle co-contraction es-
timations with the use of a reduced number of recorded EMG signals (up to N=16).
The estimator works together with a numerical upper-limb musculoskeletal model
that uses a combination of approaches: 1) minimization of the sum of squared muscle
stresses, setting an evenly distributed load over the muscles; 2) constraining muscle
forces to keep a glenoid stability and to keep their values within their physiological
boundaries; 3) minimization of the squared differences in the obtained and experimen-
tal joint moments. Physiological boundaries are defined by the contraction dynamics
with feasible activations as well as available recorded EMGs. The minimization criteria
is different from previous models where authors mostly minimized the overall muscle
activations for non-recorded muscles while keeping a low predicted error between
joint moments and measured activations in forward dynamics for lower limb [72, 148],
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with CEINMS toolbox on OpenSim [132]. In our previous previous upper-limb model
[147], the minimization was done on the forces, using the null space from the underly-
ing matrix of the muscle moment arms; however, using this strategy a solution could
not always be met. Another difference with the state of the art is that the provided cost
function to minimize is not subject-specific as it was previously proposed [72, 148].
This important feature aims at improving the ability of the model to perform subject
comparisons with the future goal of analyzing intra-subject activation evolution to
optimize and guide subject-specific rehabilitation therapy.

Despite the different minimization criteria, the model we present is also an improved
version of our previous upper-limb models [75, 145, 147] in terms of computational
quickness and efficiency regarding inner processes, such as musculotendon param-
eters estimations, rigid tendon modelling, signal treatments, and the methods to
perform inverse dynamics. The model was tested and validated by processing data
from five healthy subjects performing 3D reaching movements using ALEx RS [98], an
upper-limb exoskeleton. In particular, we used our model to predict the activities of
the upper-limb muscles during the reaching movements and compared them with
available EMG signals recorded during the experiments. The general overview of the
work is shown in Fig.. 3.1.
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Figure 3.1: General overview of the presented estimation model. During data initializa-
tion, the recorded kinematics qALEx and EMG signals uraw are used to compute the
joint angles q and muscle activations a16. These are in turn inputs to the numerical
model and the estimation framework to obtain the overall muscle activations ã42,
where the tilde denotes an estimated value. To quantify the errors from the model (er-
ror evaluation, i.e. cross-correlation and RMSE), the estimated 16 muscles activations
are compared to the ones directly obtained from EMG measurement and to a static
optimization using no EMG data. In the musculoskeletal model representation, the red
strings represent the 42 muscles originally considered, from their origin (light green) to
their insertion (cyan) with one wrapping object represented around the glenohumeral
joint as an example. The modelled muscles are: subclavius, serratus anterior upper,
middle and lower parts, trapezius C1-C6/C7/T1/T2-T7, elevator scapulae, rhomboid
minor, rhomboid major T1-T2 and T3-T4, pectoralis minor, pectoralis major clavicular
sternal and ribs, latissimus dorsi thoracic, lumbar and iliac, deltoid clavicular, acro-
mial and scapular, supraspinatus, infraspinatus, subscapularis, teres minor and major,
coracobrachialis, triceps brachii long, medial and lateral, biceps brachii short and long,
brachialis, brachioradialis, supinator, pronator Teres, flexor carpi radialis and ulnaris,
extensor carpi radialis long and brevis, and extensor carpi ulnaris.
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3.3 Methods

3.3.1 Numerical model

In this work we present a model derived from an existing validated shoulder muscu-
loskeletal model [75, 145, 147] that was initially developed for both the muscle and
joint reaction forces prediction. The numerical musculoskeletal model, developed in
MATLAB (MathWorks, USA), is based on anthropometric cadaveric data but allows for
scaling parameters to match the dimensions of each specific subject. Tunable parame-
ters are the bone inertial properties, the skeletal morphologies as well as the muscle
architectures, all features that could benefit a proper inter-subject, healthy/impaired
muscle activation evaluation in the future [145]. However, subject-specific models re-
quire complex modeling workflows [32, 115] and well-defined methods, especially for
musculotendon parameters estimation. For our study, given the nature of the recorded
kinematics and the collected information about the subjects (see following section), a
generic model to which only the recorded data would be scaled was needed so that all
subject would have a common basis for the model outputs evaluations, based on their
movement and their EMG recorded [116]. In the original model, 42 muscle bundles
are considered, spanning 11 degrees of freedom (sternoclavicular, acromioclavicular,
glenohumeral modeled as ball and sockets joint as well as the elbow flexion-extension
and pronation-supination) between the thorax, clavicle, scapula, humerus ulna and
radius according to the ISB recommendations [174]. The muscles are represented
with their centroid lines, from their origin to their insertions, and they lie on defined
wrapping objects (Fig. 3.1). With the movement represented by the model’s angular
rotations at the joint levels, the different musculotendon lengths, their directions, their
moment arms [76], and all inertia parameters can be obtained.

3.3.2 Experimental set-up and recorded data

To validate the model, we used the EMG and kinematic recordings of five healthy
subjects (4 females, 1 male, 60 ± 12 yo, 65 ± 11 kg, 167 ± 9 cm) performing reaching tasks
while assisted by an upper-limb exoskeleton (Arm Light Exoskeleton Rehab Station,
ALEx RS from [98, 131]). The full experimental set-up and the description of the
subjects are available elsewhere[130] The robotic assessment consisted in performing
center-out 3D reaching movements toward 18 points equally distributed on a sphere
(with a 19cm radius). Subjects executed these movements with the right arm while
seated, wearing ALEx RS, 5 times and were always returning to a starting position
placed in the center of the target sphere. A monitor in front of the subject displayed
the end-effector position, the different targets of the sphere, and the specific target
to reach. The center of the spherical workspace position was defined to be aligned
with the right acromion of the subject and equidistant between the monitor and the
acromion (Fig. 3.2).
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To test the model, the targets considered were the 6 points positioned along the 3 main
directional axes from the center of the sphere, corresponding to reaching upwards
(target 1), downwards (target 5), to the left (target 7) to the right (target 3), frontwards
(target 13) and rearwards (target 10). The robot did not provide any assistance to the
subject while performing the tasks and only supported the weight of its components
to be as transparent as possible for the user [131]. During the robotic assessment,
the EMG signals of 16 muscles of the upper limb were recorded: deltoid clavicular,
acromial and scapular, trapezius C1/C7, pectoralis major clavicular, latissimus dorsi
thoracic, infraspinatus, triceps brachii long and lateral, biceps brachii short and long,
brachialis, brachioradialis and pronator teres. The EMGs were recorded at 1.5kHz
using AgCl Kendall surface EMG electrodes with a Desktop DTS wireless system (No-
raxon, USA). The electrode placement followed the European recommendations for
surface electromyography for non-invasive assessment of muscles (SENIAM) and
anatomical guidelines [69, 128]. Regarding the kinematic data, the robotic joint angles
(shoulder abduction, rotation, flexion elbow flexion, prono-supination), as well as
the end-effector position and velocities, were acquired at a 1kHz. The kinematic data
acquisition was synchronized with the EMG signals recordings via trigger signals sent
from ALEx RS when the movement started and stopped.

3.3.3 Data initialization

Matching ALEx joints kinematics to the model markers

Given that the acquired kinematics from ALEx RS does not correspond to the muscu-
loskeletal model markers requirements [75, 145], assumptions had to be made so that
the model matches the subject’s movement. First, the position of the glenohumeral
joint was considered fixed in the workspace: the arm and thorax were attached to the
robotic exoskeleton leaving a reduced possibility for the rotations and translations
of the shoulder complex. Moreover, the design of the shoulder rotation mechanism
[98] uses a remote center of rotation, which corresponds to the glenohumeral joint
center, allowing the exoskeleton kinematics to be similar to the one of the subjects.
Second, the position of the subject’s arm with respect to the robotic exoskeleton was
also fixed, thanks to the rigid anchoring that does not allow for translation during
the motion. Although we know that these assumptions reduce the accuracy of the
activation predictions for a single trial, they would still ensure that all the possible
movements performed by each subject during the different movement directions and
repetitions could be similarly numerically reconstructed.

The robot kinematics (joint angles and end-effector position), together with robot arm
lengths, allowed to obtain the skeletal positions with respect to the initial acromion
position. In particular, we reconstructed a wireframe including estimated positions of
the glenohumeral (GH) point, set as fixed, anatomical landmarks radial styloid (RS),
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ulnar styloid (US) and lateral and medial elbow (EL, EM). The GH joint is modelled as
a ball and socket joint corresponding to three shoulder rotations: abduction, rotation,
and flexion around the robotic joint axes 1, 2, and 3 corresponding to the X, Y, and Z
axes respectively, following the Cardan angle convention and the length of the robotic
upper arm. The robotic elbow could be obtained, derived from it and based on the
generic model distance between the EM and EL, the latter position could be estimated.
With the elbow flexion/extension as a pin around the joint number 4 (Z-Axis) and
the length of the forearm, the wrist position was obtained (corresponding to the joint
number 5, Y-axis) and the US point, assumed to be close to the rotational wrist axis,
could be derived. The pronation/supination of the elbow was also considered as a
pin joint and together with its rotation and the wrist length in the generic model, the
position of the RS point could be obtained from the US point.

The robotic exoskeleton was reconstructed numerically as a verification tool for the
overall point and segment positions obtained with respect to the model skeletal ones
(Fig. 3.2). Moreover, the resulting markers’ positions and their corresponding skeletal
representations were linearly scaled so that the recordings would match the skeletal
numerical model. As the result of the markers position estimations and the hypothesis
of a fixed GH point, the remaining needed markers of the numerical model could
be derived from both the original skeletal positions and the fixed distances between
the different remaining markers of the model. This procedure works only with the
hypothesis of a fixed GH point; the evaluations of the internal dynamics in the shoulder
girdle limits the model to a general overview, as the scapula dynamic is underestimated.

Once all the bony landmarks were defined and the kinematics of the robot matched
the one of the model, the joint angles of the numerical model could be computed with
the multi-segment optimization as previously reported[75, 145]. These optimization
algorithms use the minimization of the distance between measured markers and
their associated bony landmark. The output of the kinematic data initialization is the
collection of musculoskeletal joints angles, velocities, and accelerations.

3.3.4 EMG signals preprocessing and activation dynamics

The EMG signals recorded at 1.5kHz were processed offline with MATLAB, following
standard literature [130, 131]. EMG signals were detrended, band-pass filtered first at
50-500Hz with a 7th order Butterworth filter, rectified, then low-pass filtered with a
7th order Butterworth filter with a 10Hz cut-off frequency to obtain the envelope. To
ensure a wide amplitude of signals fed to the musculotendon contraction dynamics of
the model, the envelope was first normalized by the median computed across all the
executed movements, favoring expected signals and avoiding high-amplitude spikes
caused by noises. For the Hill-Type contraction dynamics described later, the input sig-
nal activation should be between 0 and 1 which is then ensured with the normalization
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Figure 3.2: Illustrations representing ALEx RS exoskeleton and musculoskeletal model
performing a task in the virtual environment. The blue spheres in the left panel are
the different available targets, the red lines are the muscle represented in the model.
The different skeletal markers used in the model, right panel, are shown in blue. The
numbered robotic joint axes and their rotations are shown in pink.

of the EMG by the similarly filtered maximum voluntary contraction recorded for each
muscle [131, 177]. For this study and for computational complexity cost reasons, the
kinematic and EMG recorded were interpolated to a timestep of 0.01 second. Adapted
from [177] and presented in previous work on this model [145], the activation dynamics
associates the filtered EMG signal, or neural excitation u, to the muscle activation.
In other words, it corresponds, if activated, to the increase of calcium concentration
by the sarcoplasmic reticulum in the muscle fiber, or if deactivated, its removal. The
activation dynamics are described in 3.1 with the activation a, the excitation u (both
between 0 and 1) and τact, τdeact, the activation and deactivation time constants.

ȧ =
u− a

τ
,


τact

0.5 + 1.5a
u < a, activation

τdeact
0.5 + 1.5a

u ⩾ a,deactivation
(3.1)

3.3.5 Activation estimation

To obtain the activations of the muscle with no recorded EMG, the following estimation
method is proposed. It is based on an inverse dynamics solver to compute the mag-
nitudes of the forces needed to generate the torques at each joint that would explain
the subject recorded movement. Given the over-actuated musculoskeletal model, (42
muscle bundles for 11 degrees of freedom), the estimation of the forces involves the
optimization of net joint moments among muscles via load-sharing schemes (SLS) [70,
162]. However, antagonistic muscles are counterproductive in the net joint moment
and SLS overlooks muscle co-contraction [7, 28, 30, 50, 123, 147]. The presented muscu-
loskeletal model solves the indeterminacy problem by minimizing the sum of squared
muscle stress and constraining the forces within physiological limits [162] which are
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derived from the available EMG recording [147] and musculotendon parameters (i.e
max isometric forces, minimum tendon force from the musculotendon actuation).
The overall activation estimation step will be presented in the following order: first, the
contraction dynamics and the estimation of the musculotendon parameters will be
presented. The EMG-based inverse dynamics will be then explained with the resulting
activation computed.

Contraction dynamics

The constitutive law derived from the Hill type model, the equations of motions and
the performance criteria in the optimization procedure can be adapted and expressed
in terms of the muscle activations instead of the muscle forces. Leading to some
advantages, with the variables now being limited between 0 and 1.

The musculotendon actuation links the muscle state and its activation to a produced
force. A hill-type model is used to describe the contraction dynamics [5, 71, 147, 177]
and consists of three different elements replicating the force production function of
the musculotendon system: the contractile element (CE), the passive elastic element
(PEE), and serial elastic element (SEE). Each of these elements produces a force defined
with normalized functions depending on the muscle intrinsic parameters as presented
in the original model [145]. This results in the ordinary differential equation for each
muscle 3.2.

FCE(lCE , vCE , a) + FPEE(lCE) = FSEE(lCE , lMTC) (3.2)

The inputs of the model are the musculotendon length lMTC and activations a together
with the fiber lengths and velocities, respectively lCE and vCE . Moreover, although the
musculoskeletal model has an elastic tendon model feature incorporated, to allow a
wider range of possible solutions for the overall muscle forces, a rigid tendon model
was used. This would limit the errors and avoid not feasible solutions from the inverse
dynamics as well as considerably reduce the simulation time, which is a critical element
for a model developed for an extended study of muscle activations across a big dataset.
In a rigid tendon model, the muscle fiber length lCE can be directly obtained from
the musculotendon length lMTC without an extra optimization. In addition to the
computational cost reduction, an elastic tendon model increases the importance of
perfectly scaled physiological musculotendon parameters. However, obtaining those
would require the knowledge of the subject’s physiological muscle and skeletal lengths
or we would need to use, as it is currently done in recent literature, an optimization on
those parameters from the output desired torques to fit a trained model [7, 100, 148,
150]. However, given the purpose of the proposed model to analyze improvement after
rehabilitation, such an optimization would lead to different outcomes if performed at
the early stages or at the end of rehabilitation. More importantly, if performed for each
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of the assessments such an optimization would lead to different muscle parameters
values which would not be possible in real life, the muscle fiber and tendon lengths
should not be altered before and after rehabilitation for instance.

With Eq. 3.2 and the rigid tendon modelization, the muscle fiber and its contraction
velocity could be direclty obtained from the musculotendon lengths and velocities,
leading to the following equation for the musculotendon force produced:

fMT (a, l̃
M , ṽM ) = F0[af

L(l̃M )fV (ṽM ) + fP (l̃M )] cosα (3.3)

With l̃M and ṽM the fiber length and velocity normalized by the muscle optimal fiber
length and maximal contraction velocity respectively. F0 the muscle maximal force
at optimal fiber length and fL, fV and fP the normalized function derived from the
force-length, force velocity and passive forces relathionships as defined in chapter 2
and shown in figure 2.3 . These were obtained by curve fitting of experimental data
and are reported in Chapter 2 and in [145].

The contraction dynamics model gives the boundary values for the physiological
muscle forces produced in the EMG-assisted inverse dynamics. The minimal force
F low
MT produced should correspond to the maximum between the force obtained with an

activation of 0 and the passive elastic one, and its maximal F up
MT should correspond to

the solution with a fully activated contractile element. The lower activation was set to
1e-5 for later mathematical purposes and to avoid numerical discrepancies. In previous
work [147], the muscle forces without using EMG data have boundaries between 0 and
a Fick constant k= 33Nm−2 times the muscle physiological cross-sectional area (PCSA)
which does not take into consideration the muscular dynamics over the movement.
In this study, however, they are defined based on the contraction dynamics, which
significantly affects their values, particularly due to the previously neglected passive
elastic component.

The musculotendon parameters such as the maximum isometric force, optimal fiber
length, pennation angle, maximum velocity contraction, and tendon slack length are
adapted from the musculoskeletal model of Garner and Pandy[53] as the muscular
architecture from our original model is the same. Using the reported methods[52,
62, 177], it was then possible to obtain those parameters adapted for the range of
muscle lengths across all the possible joint rotations in our model so that a solution
always exists for the musculotendon actuation. More precisely, we aimed at keeping
the same operating range predicted for each muscle as the ones presented in another
study[52], this means that we kept the same ratios of the normalized minimum and
maximum length over the muscle optimal fiber length. This ensures a solution for all
possible motions of the musculoskeletal model and thus, with the given scaling of the
recordings to the generic model, a possible comparison between the different subjects
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is possible.

EMG-assisted inverse dynamics

As mentioned before, the musculoskeletal system is defined with redundant muscles
acting on the same degrees of freedom, this means that in the equations of motions,
there are more unknowns than number of degrees of freedom. To estimate the muscle
forces of the over-actuated musculoskeletal model, optimizations among muscles
via static-optimization (SO) are usually performed. However, given the presence
of antagonistic muscles, co-contraction among them can be overlooked in static-
optimization as their net joint moment would compensate each other. The aim for the
model would be to simulate the central nervous system criteria on muscle recruitment
when performing a movement.

The presented musculoskeletal model solves the indeterminacy of the load-sharing
problem thanks to the following optimizations. The main optimization criterion is
the reduction of the muscle fatigue that is represented as the reduction of the overall
muscle stresses squared

∑
σ2 [31, 53] as it was shown to give the best estimation of the

muscle activations [104].

The cost function to minimize thus is:

Cs =
∑

σ2 = fTPf (3.4)

With σ the muscle stresses, P, the diagonal matrix of inverse squarded PCSA, and f , the
muscle forces magnitudes.

However, the model needs to account for constraints such as the maximal and minimal
force that the musculotendon can produce given its actual state. These boundaries
values are obtained via the contraction dynamics as mentioned before (Eq. 3.2 ) For the
16 muscles with recorded EMG, their derived activations a16rec were obtained via the
activation dynamics [145, 177] as presented in the supplementary material. Because of
inter-variability of the EMG recordings [74], the preprocessing steps and the multiple
treatments of the EMG signals and their normalization, the estimated activations from
those signals ã16 were not strictly set. Thus an error was made possible but had to be
minimized, with a cost function corresponding to:

ÊaEMG =
∑

|a16rec − ã16| (3.5)

This choice was made to maximize the feasible solutions from the inverse dynamics
while keeping a constant process for intra-subject, muscle and movement compar-
isons. This can not only compensate for possible inaccuracies from EMG signals but
also adapt the solution to the overall feasible activities defined by the movement. It
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ensures a limited deviation from the activation obtained from the activation dynamics
for the recorded muscles Given the complexity of the movement recorded with the
unconstrained 3D reaching task, some flexibility was permitted regarding the dynam-
ics of the model. Indeed, a feasible solution within the force bounds satisfying the
dynamics of the movement could not always be found. This flexibility was also intro-
duced since there might be some inaccuracies in the computed joint angles around
the scapulothoracic and acromioclavicular joints given the limited set of obtained
positions from the exoskeleton.

The cost corresponding function becomes:

ÊJ =
∑

|Wmf − Jtorque| (3.6)

With Jtorque the torque at the joint satisfying the equations of movement, Wm, the
moment arm matrix, corresponding to the cross product between the lever arms and
the force direction vectors. The Moment arm matrix, is of size (11x44) defined in the
inertial frame and its product with the vector of the 44 force magnitudes f gives the
resulting torque from the forces to the joint. Indeed, although there are 42 muscles
studied, these elements are augmented with the scapulothoracic contact constraints (
[WmTS WmAI ][λTSλAI ]

T ) ensuring the gliding of the scapula over the ribcage as defined
for the model in previous work [75, 145, 147].

Finally the overall cost function to minimize with the estimated activations becomes:

Acf = ÊJ + αÊaEMG + βCs (3.7)

=
∑

|Wmf − Jtorque|+ α
∑

|arec − ã|+ βfTPf (3.8)

The α and β are positive weighting coefficients obtained experimentally ensuring
similar order weights for ÊJ ÊaEMG The activations minimizing the cost function are
obtained with the fmincon algorithm in MATLAB. Of note, the parameters α and β were
kept constant for all the simulations as we did not want to introduce a supplementary
source of differences between the subjects and the different repetitions. For a faster
implementation, the forces from contraction dynamics were precomputed at each
time step to be functions of the activations only, greatly reducing the computational
cost in the fmincon algorithm.

3.3.6 Model results validation

In general, three main methodologies are compared to evaluate the model’s outputs,
see Fig. 3.1. The first one – static-optimization – used no EMG data in the computation
of the muscle boundaries for the inverse dynamics, which are therefore obtained with

55



Chapter 3 Numerical muscle activation assessment

a 0 or 1 muscle activation in the musculotendon actuation (low and upper bound
respectively). The second one – EMG-assisted – used for the recorded muscles their
activations obtained from the activation dynamics to compute the musculotendon
actuation. For muscle without available EMG, the boundaries are obtained with a 0 or 1
muscle activation (16 muscle activations used to estimate the overall 42 muscle bundles
activations). Finally, for the third one – from-activation-dynamics – the activations
were directly obtained via the activation dynamics from the recordings and represent
the ground truth. This last method is however only available for the 16 muscles with
recorded EMG, thus in the following results when those 16 muscles are evaluated, only
their corresponding 16 estimations from the static-optimization and EMG-assisted
methods were used.

A leave one-out signal comparison (including 15 out of the 16 EMG data) was per-
formed to further validate the estimation process and to have an overview of its ro-
bustness. To validate the signal outputs of the model and to have a quantified metric
of the similarity between estimated signals and the ones considered as ground truth,
a correlation analysis was also performed. For sake of readability, only a selection
of the most informative figures representing the results of the simulation and of the
comparison is displayed; for a full set of simulations and results, please refer to the
supplementary material.

3.4 Results

3.4.1 Raw comparison of activations for a specific target

Fig. 3.3 shows for a specific reaching target (13), the raw comparison between the
means across the repetitions of activations obtained via the static-optimization, the
EMG-assisted method, and the activations directly derived from the recorded EMG.
The duration of each repetition has been normalized so that the activations are dis-
played as a function of the percentage of movement duration. Ideally, we would expect
the static optimization model to be different from the EMG-assisted method as a
demonstration that EMG data are needed to build a good estimation, to show the
central nervous system strategy to perform a movement by reducing the overall stress
and activations given movement specificity. The first element that can be observed
is that the levels of activations over time for all muscles are similar and consistent be-
tween all estimated activations; it is important to note also that there is more variation
in the muscles activation estimations from the EMG-assisted method than from the
static-optimization for non-recorded muscles suggesting a better representation of
co-contractions and dynamics within a movement.
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Figure 3.3: Means of the estimated muscles activations across the 5 repetitions for all 5
subjects while reaching target 13 with respect to the percentage of movement. The blue
lines correspond to the activation obtained directly via the activation dynamics for
muscles with available recorded EMG (their name in blue). The red lines correspond to
the ones obtained from the presented method including the EMG available. The yellow
lines are the activations obtained from the method without using the recorded EMG,
setting the boundaries in the optimization only using the musculotendon actuation
with an activation of 0 and 1 for lower bound and upper bound respectively. The thick
lines represent the means of those activations across the 5 repetitions. The shaded
areas represent their standard deviations.

3.4.2 Error evaluation in joint moments and activations estimations

To further illustrate the overall consistency of the estimations, the mean value of the
coefficient of determination R2 between the static-optimization method and the acti-
vations from the EMG-assisted model ones over the whole set of activations obtained is
0.27± 0.28 which shows a weak with high variability, statistically significant correlation
(p<0.01 for the 5 subjects, 6 targets, 5 repetitions each target, and the 42 muscles span-
ning the shoulder, humerus, ulna, and radius). Table 3.1 shows per target reached, the
mean values of the root mean squared error (RMSE) and the R2 between the estimated
activations and the recorded ones (N=16) with respect to the method used. The overall
RMSE for the EMG-estimated method is as expected lower than the one from SO with
an overall mean of 0.03±0.01 against 0.22±0.04 (p<0.01). The same trend is observable
with the coefficient of determination R2 reported with a weak, but significant correla-
tion with the SO (mean of 0.21± 0.2 and p always <0.01). Its large standard deviation

57



Chapter 3 Numerical muscle activation assessment

indicates that the correlation coefficients have high variabilities, suggesting that some
data points are well correlated while others no. With the EMG-assisted method, we
can observe strongly correlated signals with an overall mean of 0.91± 0.21 and median
value of 0.99. To be noticed, the results while reaching target 5 show a better fit in the
static optimization method for the RMSE but a lower one for the R2 with respect to
the other targets reached. It corresponds to the reaching downwards and this could
be explained by the reduced muscle forces needed to perform the movement due to
the exoskeleton’s resistive action and its gravity compensation for transparency, as
well as the lower activation levels of the static-optimization method. In other words,
fewer differences in low activation values but more differences in their shapes, which
especially shows the importance of the introduction of EMG data in the estimations.
The presented values are also reported with respect to each of the muscles activations
in the supplementary materials. Additionally the error from the recomputed moment
of force at the joints and the one satisfying the equations of movement corresponding
to the cost function minimization of eq. 3.6 is shown. Here, values are represented
as a percentage of their maximum measured joint moment from the equations of
movement for each of the targets and repetition to have a clear and comparable un-
derstanding. These for both methods were kept low with a mean of 3.39%± 2.13 for
the EMG-assisted and 2.33%± 1.56. We can notice that this value is lower for the SO
(p<0.01) as expected since there are fewer constraints on each of the muscles’ forces
from the contraction dynamics. Figures showing the estimated moments with respect
to the ones from equations of movement can be found in the supplementary materials.

Target reached 1 3 5 7 10 13 total

NRMSE Moment EMG-assisted 2.70% ± 1.25 2.30% ± 0.06 4.01% ± 3.05 2.95% ± 1.05 4.77% ± 2.86 3.58% ± 1.82 3.39% ± 2.13
NRMSE Moment static-optimization 1.64% ± 0.42 1.89% ± 0.45 2.77% ± 2.21 1.97% ± 0.52 3.94% ± 2.31 1.79% ± 0.42 2.33% ± 1.56
RMSE activations EMG-assisted 0.04 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.02 0.03 ± 0.01
RMSE activations static-optimization 0.28 ± 0.07 0.25 ± 0.03 0.25 ± 0.05 0.29 ± 0.03 0.27 ± 0.07 0.28 ± 0.06 0.27 ± 0.05
R2 EMG-assisted 0.82 ± 0.35 0.80 ± 0.33 0.68 ± 0.38 0.82 ± 0.23 0.88 ± 0.24 0.83 ± 0.29 0.89 ± 0.20
R2 static-optimization 0.25 ± 0.24 0.16 ± 0.19 0.11 ± 0.15 0.19 ± 0.19 0.20 ± 0.20 0.32 ± 0.25 0.21 ± 0.22

Table 3.1: Table representing for each of the 6 targets reached the overall errors from
estimations and recorded data. First, the error from the computed moments and the
ones needed to satisfy the equations of movement, in both the static-optimization
and EMG-assisted cases. Values are normalized by the maximum moment from the
equations of movement for each of the target and repetition. We can notice that this
value is lower for the SO (p<0.001). Then the RMS and coefficient of determination R2
between the activations resulting from the recorded EMG and their estimations via the
EMG-assisted and SO methods are reported for each of the targets, As expected, the
EMG_assisted method presents a better fit (p<0.001 in both cases). We can see the low
means of R2 in static-optimization showing a weak correlation, the large standard de-
viation indicates that the correlation coefficients have high variability, which suggests
that the estimated signals may be somewhat correlated with the recorded signals for
some data points, but not for others. To be noticed, the Targets 5 shows a reduced fit in
both methods with respect to the other targets reached.
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3.4.3 Mean activation for all targets

Another way to validate the obtained activation signals is to compare their levels of
activation for specific movements. Fig. 3.4(a) shows these different levels of activations
for two muscles with respect to the reached target. From the figure, one can observe
that on the one hand, there is a good estimated activation level for some muscles
in the static-optimization. On the other hand, this shows its limits, overlooking co-
contractions and therefore underestimating values of activations for most muscles.
Indeed, the activation levels obtained from the static-optimization were almost al-
ways below the ones of the EMG-assisted or the activation dynamics. In any case,
the EMG-assisted method provides consistent results with respect to the activations
obtained directly from the activation dynamics, and the difference among those values
is explained by the fact that the EMG-assisted estimations take the geometrical model
state and the contraction dynamics during the motion, and therefore depends on the
muscle parameters in addition to the needs from the equations of movement. Regard-
ing the values of the estimated activations, it is clear that there is a good correlation
between the expected activation levels and the obtained ones (mean R2 = 0.89± 0.20

and median R2 = 0.99 ) as presented in Table 3.1. In the presented Fig. 3.4(a), expected
higher activation levels were met for brachialis for reaching targets 10 (involving an
elbow flexion) for all cases and a lower on for reaching target 5 (elbow extension). It was
however less evident for the biceps short which was more used for the upper sagittal
plane targets (1,10 and 13). For the static optimization, the biceps short activations
were underestimated and not physiologically expected. It seems that the combina-
tion of all the synergistic muscle forces produced still induced a torque leading to the
correct movement.

Leave-one-out cross validation

Fig. 3.4(b) represents a spider map showing for each recorded muscle that was re-
moved successively in the leave-one-out cross-validation, the root mean square errors
between the activation directly obtained from the activation dynamics and the method
using all muscle EMG signals (N=16 in the EMG-assisted method), using all EMG
available excluding the specific muscle shown (N=15 in the EMG-assisted method)
and without any. The mean RMSE for the EMG-assisted method was 0.03± 0.01, for
the leave-one-out of 0.17± 0.02 and for the static-optimization 0.22± 0.08, This shows
a slight improvement using the EMG-assisted method for the activation estimations
for non-recorded muscles (p=0.03), but most importantly, it seems to ensure a physio-
logical sharing of the load, and to give more information about the muscle’s behavior
providing a better insight of the actual co-contractions with lower variations in specific
estimated activations within same movements, being particularly noticeable with the
brachialis with the biceps and the deltoids.
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Figure 3.4: (a) Comparisons between the ranges of activations directly obtained from
activation dynamics (blue boxplot), the estimated ones with the model including the
recorded EMG (red boxplot) and the one from the model without using the recorded
EMG (yellow boxplot) with respect to the reached target. The first comparison is for
the brachialis and below for the biceps (Short head). The different reached targets
are represented, in the bottom, as red spheres and in yellow is shown the starting
position, corresponding to the center of the reachable globe. The black line is the
means trajectory of the end effector and the thinner blue lines are the 5 repetitions
recorded. (b) Spider map of the root mean square errors of the computed estimation
of the muscle activation through all targets reached and repetitions of subject 2. The
figure shows for each muscle with recorded EMG the errors between the activation
directly obtained from the activation dynamics and, in red, the method using all the
available muscle EMG signals in the EMG-assisted model (16 muscles out of 16). In
green, using all EMG available excluding the specific muscle in the EMG-assisted
model (15 muscles used out of 16), and without any EMG (in yellow) corresponding to
the static-optimization.

3.5 Discussion

This work aimed at developing a tool for an overall muscle activation estimation using
a limited amount of recorded EMG data. Knowing the inter-subject muscle parameter
differences as well as the variability in EMG signal recordings from the same motion,
the goal is not to provide an exact estimation of each specific muscle activation, but to
infer the scheme of overall muscles activation during a specific task, with the overall
values highlighted in Fig. 3.3 and Fig. 3.4. We first accurately reproduced with a
generic numerical model the trajectory performed by the subjects with the ALEx RS
exoskeleton. Then we showed that the EMG-assisted estimation process allowed us
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to have a clearer insight into the overall activation patterns. This was mostly done
by inducing restrictions using recorded EMG signals to the possible forces produced
in the contraction dynamics of the model, which resulted in a finer range of solu-
tions to the load sharing problem as it was highlighted also in another EMG-assisted
model [72]. As noticeable in Fig. 3.3, the outcome is a thorough estimation of possible
activations when using the EMG-assisted method. Despite the static-optimization
model computed activations, with no recorded EMG used in the estimation process,
has a similar root mean square error with a mean RMSE of 0.22 ± 0.08 (Fig. 3.4(b)),
the EMG-assisted model, illustrated with the leave-one-out validation, is still more
accurate in providing a general overview about the typical activations with a mean
RMSE of 0.17± 0.02 for the remaining muscles. More importantly, we can observe less
variability in the estimations, showing that its consistency is better and that it is less
prone to random fluctuations. This further validates the use of recorded signals in our
estimation process. Although the improvement of activation signal estimates using
EMG-assisted methods has been demonstrated previously, to the authors’ knowledge
this has never been performed outside of the OpenSim environment and with a com-
plex shoulder model including 11 DOF and 42 distinct muscles. Moreover, the tasks
and movements presented here do not constrain the range of motion and the plane
of action, as it was done previously while studying upper limb activations [6] or to a 3
DOF study [7]

The ground truth used in the comparisons is the activation dynamics from recorded
EMG [72]. Even though the experimental muscle activations are used in the EMG-
assisted model, giving this method an advantage over the static-optimization one in
the evaluations, the result of the leave-one-out cross-validation (Fig. 3.4(b)) indicates
that the EMG-assisted model still performs better in estimating muscle activation
without any EMG-related information.

While we could obtain estimated muscle activations with reasonable values for all
muscles during the reaching task, it is important to emphasize that the contraction
dynamics equations for the numerical estimates of forces from excitations are derived
from a rigid tendon model. One could argue that with a compliant tendon model for
the contraction dynamics we would obtain a more accurate activation. Despite true,
this would lead to a supplementary optimization process to obtain at each iteration
the muscles’ fiber lengths and their tendon lengths [145], not something that can
be easily assessed experimentally or without a computational costly optimization
[114]. Another possibility would be to use a different tendon model depending on the
ratio of the tendon slack length to the optimal fiber length as suggested in another
study [117], but for a validation process, we wanted to be consistent within the muscle
model used. Finally, the resulting nRMSE between the torques needed for the GH,
EL and PS joints in the equations of movement and the ones resulting from both
optimisation process were kept low (with means of 3.4% and 2.3% for the EMG-assisted
and static-optimization respectively). Even though we could reconstruct the motion of
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the claviculae and scapula, these were constrained by our initial assumptions, and thus
potential motions would be overlooked, reducing the activations estimation relevance.
On a general note, the EMG-assisted model predicted more accurate activations for
the muscles involved in the movement, with greater co-contractions. Apart from the
mean of comparison, using the experimental muscle activations that were used by
the EMG-assisted model, this could be explained as the SO method is solely based on
the minimization of the inverse squared of muscles’ physiological cross-section areas
criteria, disregarding possible unique activations patterns between subjects [19]. With
a full scaling of all musculotendon parameters and inertia based on subjects’ data,
which is permitted by the model[145] we could expect even better-tracked activations.

In this study, we gathered motion data from healthy individuals and the resulting model
is a promising first step toward a general understanding of the CNS strategy to control
the upper-limb. In a future application, we will apply the same methodology to trajec-
tory data from individuals with physical disability (e.g. Parkinson, stroke). Being able
to understand patterns of activation, maybe even compare pre- vs post-intervention
data in a rehabilitation scenario could be of great interest for the community and open
up new possibilities in designing optimized therapy for the patients [149] or lower
dimensional controllers for the upper-limb, as it was done with reduced models for
the frog hindlimb [10] or human lower limbs [121]. The knowledge of a generalized
activations estimation could also be used to further improve motor intention decoding
for prosthetic-end users [111] as well as improve personalized prosthesis myoelectric
control [152]. In the future, this methodology and model could also potentially be an
open tool for everyone to use.

3.6 Conclusion

This work presents the development and validation of a musculo-skeletal model usable
to increase our basic understanding of upper-limb motor control. It presents a proto-
col with ALEx RS exoskeleton to assess the overall muscle activity while performing
reaching tasks. We first reconstructed the upper-limb motion, then, with the combined
recorded EMG signals while reaching tasks, we showed how our model can estimate
the overall muscle activation with an EMG-assisted load sharing optimization method.
This protocol and the activations estimation represent a tool to evaluate inter-subject
muscle activation behavior, possible interactions and synergies. This was applied to
healthy motion data but in the future, we will target neurological diseases patient’s
motion data. Potentially, this could help with the development of novel neurorehabil-
itation strategies, lower dimensional controllers for the upper-limb, improve motor
intention decoding for prosthetic-end users as well as improve personalized prosthesis
myoelectric control.
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4 Impairment and improvement
of muscle assessments through
activation modeling

Future publication possible

This chapter is written in a hybrid thesis chapter/journal paper for future possi-
ble publication. The accent is not set on the muscle activation estimation and
the experimental protocol as it would be redundant with the previous chapter.
Personal contributions: I participated in some of the experiments recordings. I
processed the data, performed the simulations and the data analysis. I prepared
the figures and wrote the manuscript.

During this thesis, we presented the stroke neurological disease affecting the reaching
and grasping abilities (and movement in general) of patients. The severity of the
impairments, as well as how they contribute to mobility and function, helps medical
practitioners in the process of creating rehabilitation objectives, thus, the evaluation
and functional diagnosis of stroke patients are key elements of their rehabilitation
procedure. We also presented in the previous chapter the possibility to obtain the
overall muscular activation of subjects performing reaching tasks while assisted with
an exoskeleton.

In this chapter, we will discuss the potential applications and benefits of a numerical
model for assessing the muscle activation and impairments of stroke patients during
rehabilitation. In order to accomplish this, the previously discussed activation estima-
tor is applied to recorded kinematic and EMG data from stroke patients during their
initial and follow-up assessments of their personalized robotic-assisted rehabilitation
procedures, as described in previous studies [130] and [56].

The experimental setup and output of kinematic and EMG data are identical to those
used in the previous chapter with healthy participants. This chapter begins with the
validation of quantitative estimates of impairments based on estimated activations
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and the upper-limb Fugl-Meyer score of the associated patient with the introduction
of a novel metric. Following is an evaluation and investigation of antagonistic muscle
co-contraction during reaching tasks. For a more scientific observation and compre-
hension of the rehabilitation process, the muscle synergies during reaching activities
of healthy subjects and stroke patients are investigated during their initial and final
assessments.
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4.1 Abstract

Evaluation and functional diagnosis of stroke patients are essential parts of their re-
habilitation process. However, present assessment techniques do not sufficiently
evaluate the overall muscular behavior of the upper limb during reaching tasks. Here,
we hypothesized that the incorporation of a numerical upper limb model into an
exoskeleton-based rehabilitation protocol may not only precisely measure the upper
limb impairment but also provide additional information for establishing person-
alized rehabilitation objectives and designing physical therapy strategies. We use a
numerical upper-limb model in addition to a robotic exoskeleton and 16 electromyo-
graphy recordings to estimate the overall muscles involved in the reaching tasks of
stroke patients. We first demonstrate the applicability of our numerical model for a
precise estimation of the patient’s disability by comparing the differences between
patients and healthy groups and see if there is a correlation between these and their
Fugl-Meyer Score. Then, we show that it may offer additional information on muscle
co-contraction and, therefore, therapy enhancements. Finally, we demonstrate that it
has the potential to provide a deeper understanding of the muscle synergies and their
reorganization after a stroke and after rehabilitation.
Keywords Biomechanics, Electromyography (EMG), Muscle activations, Musculoskele-
tal model, Upper-limb, Stroke

4.2 Introduction

Stroke is one of the main causes of long-term disability in adults [170]. An impairment
of the upper-limb is experienced by 70 to 80% of survivors. [136] and nearly one third
of all stroke survivors will have significant long term disability. The evaluation and
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functional diagnosis of stroke patients are key elements in their rehabilitation pro-
cedure. The severity of the impairments as well as how they contribute to mobility
and function loss helps medical practitioners in the process of creating rehabilitation
objectives and developing physical therapy plans. The current state of the art to esti-
mate the patient’s impairment is mostly done via a qualitative evaluation of ranges of
motion, smoothness of movement, and muscle spasticity with therapists, evaluation
of forces and kinematics with robot-assisted therapies or with surface electromyo-
graphy (EMG) recordings with a selected number of muscles. [39, 94, 110] Clinical
scales are often used to assess therapy effectiveness, however, these measurements
may not be sensitive enough to accurately depict the actual improvements produced.
[124, 153]. Among the clinical-scales is the Fugl-Meyer Assessment (FMA), which is
intended particularly to assess stroke survivors’ impairment. It evaluates the patient’s
upper-limb mobility and assigns a score depending on thelevelo of impairment of the
stroke survivor. The FMA also assesses muscle tone, reflexes, and coordination [49]. It
has been extensively evaluated in the stroke population and is acknowledged as a tool
for assessing changes in motor impairment after stroke [57]. The reliability of clinical
tests is also limited by the clinicians’ inter-observer and intra-observer reliability [16,
64, 87] and floor and ceiling effects [93, 96, 119]. Of, note, these clinical tests can also
take a considerable amount of time and fatigue for the clinicians. Using recorded
EMG signals would help clinicians quantify muscle activity, track recovery, and inform
rehabilitation, which could aid the development of new recovery techniques for stroke
survivors [125, 158]. Moreover, a synergy analysis can be performed out of those sig-
nals, indeed, the number and structure of synergies has been associated with motor
function impairments and their analysis may provide physiotherapists and clinicians
further insight about changes occurring at the CNS and muscular level. [1, 26, 29, 139,
169] More importantly, although muscle coordination has been extensively studied
using muscle synergies[8, 12, 21, 77, 142, 155], it was not done to our knowledge using
a full set of muscular activation of the upper limb.

Here we present a tool to provide more monitoring options regarding the stroke sur-
vivor’s impairment including the overall muscle activity signals, their impairment
assessment, their co-contractions evaluations and synergy analysis. We will discuss the
potential use and advantages of a numerical model to assess the muscle activation and
impairments of stroke survivors during their rehabilitation. To this end, a numerical
muscle activation estimator is used with recorded kinematic and EMG data from stroke
survivors during their first and follow-up assessments of their personalized robotic-
aided rehabilitation procedures as described in the previous work [56, 130].Indeed, the
experimental setup is identical to the one used in the previous chapter with healthy
participants and the kinematic and EMG data output is similar.

The first element covered is the validation of the quantitative assessment of impair-
ments based on the estimated activations and the FMA score of the associated stroke
survivor. The assessment and investigation of antagonistic muscle co-contraction
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during reaching tasks follow. Lastly, muscle synergies during reaching activities are in-
vestigated for healthy subjects and stroke survivors at their first and final assessments.

4.3 Material and methods

4.3.1 Subjects

The study included a small group of 3 subjects who had all experienced a stroke. These
individuals were recruited 2 to 6 weeks after their stroke occurred, and all had right-side
paralysis and some residual motion in their shoulder and elbow joints. The partici-
pants were chosen from a larger group detailed in [130] based on their rehabilitation
outcome measured by the evolution of the upper-limb section of their Fugl-Meyer
(FM) score. These subjects were chosen to respectively represent no significant im-
provement (FM-score from 7 to 14), moderate improvement (FM-score from 17 to 34),
large improvement after the rehabilitation (FM-score from 17 to 52), characterized
in table 4.1. This study does not focus on showing the subject demographic reasons
for an increased improvement but rather to understand the changes occurring within
muscular coordination. The study also included 5 healthy individuals who were also
right-handed (4 females, 60 year old ±12 ). These healthy volunteers had normal
ranges of motion and muscular strength, as well as no known skeletal or neurological
disorders. This is the healthy group used to analyze variations in patient impairment
and improvement.

Subject Age Gender Time after stroke UL FM score A1 UL FM score A4 Classification

1 34 female 2 weeks 17 52 large improvement
2 86 male 3 weeks 17 34 moderate improvement
3 84 male 6 weeks 7 14 no significant improvement

Table 4.1: Demographics of the stroke population recruited in the study.

The original research project was conducted at two facilities, in the Neurorehabili-
tation Unit of the University Hospital of Geneva (HUG), Switzerland and in the one
of the University Hospital of Pisa (Cisanello hospital), Italy. It was approved by the
Commission Cantonale d’Ethique de la Recherche (CCER) de Genève, Switzerland, and
by the Comitato Etico Area Vasta Nord Ovet (CEAVNO) in Pisa. The recordings were
conducted in accordance with the guidelines of the Declaration of Helsinki and Good
Clinical Practice. The trial’s registration number in ClinicalTrials.gov is NCT02770300.
All participants were given an in-depth explanation of the study’s purpose, methods,
and potential risks, and all consented to having their data collected during the study
published in scientific journals before they agreed to take part.
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4.3.2 Experimental protocol

The experimental set-up corresponds to the one presented in the previous chapter
3.3.2 with the addition of recorded data from three stroke patients during their first and
last assessments (before and after the 4 weeks of training) as they performed a reaching
task with the upper-limb exoskeleton (ALEX RS, presented in [98, 131]). These subjects
could not always manage to reach the targets and were assisted by the exoskeleton
after a period of inactivity, or a certain amount of time. For healthy subjects however,
the robot did not provide any assistance to the subject while performing the tasks.
Due to the fatigue, the patients could not always do more than one repetition of some
targets. The exoskeleton is supposed to be transparent for the user, supporting its own
the weight. [131].

The targets considered in this study were the 6 points positioned along the 3 main
directional axes from the center of the sphere, corresponding to reaching upwards
(target 1), downwards (target 5), to the left (target 7) to the right (target 3), frontwards
(target 13) and rearwards (target 10).

During the robotic assessment, the EMG signals of 16 muscles of the upper limb were
recorded: deltoid clavicular/acromial/scapular, trapezius C1/C7, pectoralis major
clavicular, latissimus dorsi thoracic, infraspinatus, triceps brachii long/lateral, biceps
brachii short/long, brachialis, brachioradialis and pronator teres. The EMGs were
recorded at 1.5kHz using AgCl Kendall surface EMG electrodes with a Desktop DTS
wireless system (Noraxon, USA). The electrode placement followed the European
recommendations for surface electromyography for non-invasive assessment of mus-
cles (SENIAM) and anatomical guidelines [69, 128]. Regarding the kinematic data,
the robotic joint angles (shoulder abduction, rotation, flexion elbow flexion, prono-
supination), as well as the end-effector position and velocities, were acquired at a
1kHz. The kinematic data was synchronized with the recorded EMG signals via triggers
obtained from the exoskeleton ALEx RS, stating when the movement began and ended.
A schematic representation of the study is shown in figure 4.1.

4.3.3 Muscle activations estimations

To estimate the muscular activations, we use a musculoskeletal model presented in
Chapter 2 and 3, with eleven degrees of freedom including nine for the overall shoulder
complex (sternoclavicular, acromioclavicular glenohumeral joints modeled as ball and
sockets joints) and 2 for the elbow flexion/extension and pronation/supination.The
42 muscle actuators spanning these joints are: subclavius, serratus anterior upper,
middle and lower parts, trapezius C1-C6/C7/T1/T2-T7, elevator scapulae, rhomboid
minor, rhomboid major T1-T2 and T3-T4, pectoralis minor, pectoralis major clavicular
sternal and ribs, latissimus dorsi thoracic, lumbar and iliac, deltoid clavicular, acromial
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Figure 4.1: General overview of the presented study to evaluate subject’s impairment.
Three representative stroke survivors (large, moderate, and no significant improvement
in cyan, yellow and red respectively) and their muscular assessment are evaluated with
respect to the healthy population (in green). First, these subjects perform the reaching
tasks with the exoskeleton with their kinematics as well as 16 muscle EMG recorded.
Then these data are fed into the numerical model to estimate their corresponding
overall muscle activation for each assessment. These activations at the first and follow
up assessment for each subject are then compared with each other and with the
average healthy population assessment while performing these tasks.

and scapular, supraspinatus, infraspinatus, subscapularis, teres minor and major,
coracobrachialis, triceps brachii long, medial and lateral, biceps brachii short and long,
brachialis, brachioradialis, supinator, pronator Teres, flexor carpi radialis and ulnaris,
extensor carpi radialis long and brevis, and extensor carpi ulnaris.

As mentioned in chapter 3, the musculoskeletal model was not scaled to the subjects it
was the recorded kinematics from ALEx that were scaled to the generic model. Although
this oversees the subjects’ inter-specificities, this allowed for a possible comparison
based on the kinematics, the EMG recorded and estimated solely without induced
differences. With further information about the subjects’ weights, heights, and force
assessments the estimations would be potentially more accurate per subject. However,
for a comparison between subjects without the muscle physiological cross-section
areas (PCSA) or maximum forces, a wrongly estimated scaling method could lead to
false results and could induce differences between subjects that are not reflecting
real measures [104, 116]. More importantly, using a scaling method for the muscle
parameters such as the ones presented in [148, 150] including the maximal force at
optimal fiber length F0, optimal fiber length lM0 , pennation angle α and tendon slack
length TL

S would lead to different values of these parameters even for a same patient
from the first assessment to the final one, although this would have no physiological
meaning since those are physical parameters. Thus it would alter the variations in the
estimated signals from the different assessments and modify the outcome results.
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The kinematics obtained from ALEx exoskeleton correspond to the robotic joint angles
(shoulder abduction, rotation, flexion, elbow flexion, prono-supination). Given the
subject’s attachment to the exoskeleton, it was possible to reconstruct the model
bony landmarks which could therefore be used in the multi-segment optimization as
reported in Chapter 3 and [75, 145]. In other words, the induced constraints imposed
by the robotic exoskeleton attachments were used to reconstruct the user’s kinematics.
The output of the kinematic data reconstruction is the collection of musculoskeletal
joints angles, velocities, and accelerations. A representation of the model ALEx RS
exoskeleton, its associated rotation angles as well as the attached musculoskeletal
model and its bony landmarks used is shown in figure 3.2 from chapter 3. The red lines
correspond to the 42 muscles modeled and the blue spheres to the targets to reach.
With the reconstructed musculoskeletal joint angles, the dynamics of the model can
be computed and information about the muscles states are available at each iteration
step, including the moment arms, muscle lengths, and velocities.

Due to the redundancy of the musculoskeletal system: the muscle activations are
estimated via inverse dynamics as presented in chapter 2 and 3. The main optimization
criterion is the reduction of the muscle fatigue that is represented as the reduction
of the overall muscle stresses squared

∑
σ2 [31, 53] as it was shown to give the best

estimation of the muscle activations [104]. The parameters’ choices and flexibility
within the reconstructed torques were kept as before as this present study was already
considered.

4.3.4 Impairment estimation

Having obtained estimated the overall muscle activations from patients and from
healthy subjects their evaluation can be performed. In order to estimate the patient’s
impairment, we first have to define what are the main rotations occurring while reach-
ing the different targets and the muscles associated with these rotations for a better
representation of the impairment impact.

The table A.1 allows us to estimate the rotations occurring at the joints of the model
while reaching the different targets. The reported data correspond to the rotational
joint angle ranges from the beginning to the completion of the movements. The
addition of the standard deviations indicated if there is a high degree of variation in
the rotations that are observed during multiple repetitions of a movement, it suggests
that those rotations may not be necessary for achieving the desired target. Instead,
they could be considered unintended or accidental movements that are occurring
occasionally. The analysis of the table allows us to report in table 4.2 the dominant
rotations in reaching a specific target. The ones that are happening less frequently
or are less relevant for reaching a target are discarded. The actual rotations and their
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positive and negative values are described in Fig. 4.2.

Figure 4.2: Top: Illustrations representing the musculoskeletal joints and the associated
rotations. Bottom: The differente targets to reach considered, the initial position of the
end-effector is on the yellow sphere, and the goal is to reach the red one. The black
lines correspond the mean trajectory for healthy subjects (blues ones are the for each
repetition). The shoulder model and the exoskeleton are modeled on the model to
show the subject’s position

.

As a comprehensive examination of the effects of each muscle on the different joints
would be too difficult to illustrate, particularly, given the occurrence of unintentional
movements, such an evaluation is not realistic. Therefore, we focus the study to
examine selected "Agonist muscles" and "Antagonist muscles." This selection is ac-
complished by building the moment arm matrix at each simulation iteration. The
latter refers to the distance from the line of action of a muscle force to the joint’s ro-
tation center. Each element of the matrix represents the moment arm of a particular
muscle at a particular joint. It defines the relationship between muscle forces and
joint moments or the extent to which the magnitude of the force impacts the joint
torque and its rotation. Table 4.2 reports the primary joint rotations and the main
agonistic and antagonistic muscles affecting the moment at the joint for each target, it
is important to note that we organize them by target since the muscle moment arm
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Table 4.2: Main agonist and antagonist muscle per target reached in a geometrical
point of view, the agonist muscle listed are the ones that will produce the highest
impact on the rotation for the same force magnitude.

Reachig task Main rotation(s) Agonist muscles Antagonist muscles
Target 1 GH abduction Deltoid Clavicular (Ant) Pectoralis Major Clavicular

Deltoid Acromial (Mid) Pectoralis Major Sternal
Triceps Brachii Lateral Latissimus Dorsi Thoracic

Coracobrachialis Teres Minor
Brachioradialis Teres Major

Target 3 GH extension Deltoid Scapular (Post) Pectoralis Major Clavicular
Infraspinatus Pectoralis Major Sternal

Triceps Brachii Long Deltoid Clavicular (Ant)
Pronator Teres Brachioradialis

Target 5 GH adduction Pectoralis Major Sternal Deltoid Clavicular (Ant)
Latissimus Dorsi Thoracic Deltoid Acromial (Mid)

Latissimus Dorsi Iliac Supraspinatus
Teres Minor Coracobrachialis
Teres Major Brachioradialis

Target 7 GH flexion Pectoralis Major Clavicular Deltoid Acromial (Mid)
Pectoralis Major Sternal Deltoid Scapular (Post)
Deltoid Clavicular (Ant) Supraspinatus

Latissimus Dorsi Thoracic Infraspinatus
Target 10 GH axial rotation (+) Subscapularis Infraspinatus

HU flexion Biceps short Triceps Brachii Long
RU supination Biceps Long Triceps Brachii Lateral

Brachialis Triceps Brachii Medial
Supinator Pronator Teres

Target 13 GH abduction Deltoid Clavicular (Ant) Latissimus Dorsi Thoracic
HU extension Deltoid Acromial (Mid) Biceps Short

Triceps Brachii Medial Biceps Long
Triceps Brachii Lateral Brachialis

Extensor Carpi Radialis Brevis Supinator

changes with the joint angles.

In other words, even if the primary rotation of the joint is in the same direction, the
agonistic and antagonistic muscles that are involved in reaching different targets may
differ since the muscle moment arm changes with the different joint angles. Therefore
it explains the difference in the primary agonistic and antagonistic muscles involved
in targets 1 and 5 for instance although the joint rotation is the opposite.

To evaluate impairments, the metrics discussed in the next section 4.3.4 will be eval-
uated on the main muscles acting on the joints of interest as these muscles have the
most significant impact on the studied movement.
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Metrics for quantification

A combination of two metrics is used to quantify the subjects motor impairments. The
root mean squared error (RMSE) is a gold standard for evaluating the difference in
between signals. It however does not account for differences in timings. For instance if
two signals are delayed the RMSE will be significant but the "amount of activation"
during the movement might be similar. In our case, for instance, it depends on the
patient’s strategy. To reach the target 13, he might first extend the elbow and then
lift the humerus or do the inverse, therefore a quantitative metric for the amount of
activation of a muscle is needed, it is all the more important as some muscle might be
less activated after a neurological disease. Such a quantity can be obtained by com-
puting the cumulative sum of the signals over the movement duration (in percentage)
and to apply the Pearson’s correlation formula between these obtained signals. This
was obtained using the corrcoeff Matlab function. This cumulative sum’s Pearson’s
correlation coefficient (CSR) metric is even more important as the alignment of the
movement was not always perfect from the robotics, a smooth start was sometimes
observed or motion was starting directly. Moreover, after qualitative evaluation of the
signals, the cumulative sum was still able to capture a similitude in activation despite
variations of speed in the recorded movements.

Figure 4.3 shows, as an example for simplified signals, the differences in the metrics
used and why the use of CSR computation in addition to RMSE is important for a
good evaluation of the similarity on the overall level of activation. Of note, given the
nature of the potential signals and their cumulative sum computed, the Pearson’s
coefficient between these will always have a positive value. It presents the advantages
of combining the shape of the curve and the levels of activation which is not achievable
by using the area under the curve metrics and the most widely used one for muscle
signals similitude estimations, the coefficient of determination only.

4.3.5 Muscle co-contractions evaluations

One topic of interest within the literature, is the alteration of muscle co-contraction
after a neurological impairment [23, 24, 155]. We, therefore, want to evaluate the
muscle co-contraction with the full activation available via the numerical model. The
idea is to compare if, from the larger set of activation estimated, we can observe varia-
tions with respect to using the limited EMG signals recorded. To evaluate the muscle
co-contractions, the muscles of interest from the table 4.2 are evaluated together.
The co-contraction index (CCI) is used to describe co-contraction occurring while
performing a task [85, 141]. The adapted CCI is defined as follow:

CCI =

∑
aantagonist∑
aagonist

∗ (
∑

aantagonist +
∑

aagonist) (4.1)
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Figure 4.3: Illustrations presenting the importance of having metrics for the level of
activations. On the top, two sinusoids are generated with one delayed and scaled
up, this aims at showing two signals that should not be considered as completely
dissimilar. However, they present a RMSE and a Pearson’s coefficient R very low. With
the introduction of the cumulative sum of the signals on the bottom, the levels of
activations are considered and a Pearson’s coefficient is more representative of this
level of activation.

.

4.3.6 Muscle synergies evaluation

We used the non negative matrix factorization (NNMF) algorithm to extract muscle
synergies from activation signals. [27, 33, 95, 96]. We concatenated for each subjects,
target, and assessment the estimated muscle activations in a matrix with 42 rows
for the muscles. The NNMF algorithm extracts from the EMG envelopes a matrix of
weigths W, accounting for each of the muscle its participation in each synergy. A matrix
C of activation coefficients representing the timing of activity of each muscle synergy
is associated.

The synergy number was extracted using two methods;1) the inspection of the R2, the
fraction of total variation accounted for (VAF) [9, 35], the minimum number of muscle
synergies explaining a R2 > 95% and 2) the detection of the change in the slope of the
R2 curve or VAF curves, finding the elbow point[80]. When the number of synergies
from the two methods did not match, the larger one was picked. [127] Fig 4.4 shows for
the healthy population the VAF curves and the corresponding position of the number
of synergies.

A set of reference muscle synergies was created in order to compare the different ones
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Figure 4.4: Variance accounted for with the reconstructed signal from synergies, the
number of synergy selected correspond to the highest between the position of the knee
point of the curves and the one where VAF was higher than 95%

.

from the subjects, tasks, and groups [26, 127, 131]. This was achieved by employing a
hierarchical clustering approach based on the minimization of the Minkowski distance
between weighting coefficient vectors to classify the muscle synergies of healthy people
[27]. The muscles synergies obtained from healthy as well as from patients performing
the different tasks from the first and final assessments could then be compared with
the reference one by using the scalar product between the weights (dotH for healthy
subjects and dotSi for stroke patients.). The overall comparison procedure followed
the recommendation from a previous study [130] as a mean for results comparability.
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4.4 Results

4.4.1 Validation of the impairment assessment

The reported RMSE between estimated muscle activation signals from healthy popula-
tion and the patients during their first and final assessments are reported per target
reached for all the muscles in the appendices in tables A.2 to A.7. The Pearson’s correla-
tions of the cumulative sums (CSR) of the muscles activations are reported in tables A.8
to A.13. The same metrics are reported for the activations directly derived from the
recorded EMG signals via the activation dynamics, with for CSR, table A.14 for targets
1,3 and 5 and table A.15 for targets 7,10 and 13. For the RMSE, tables A.16 and A.17 and
show their values.

A summary representing means of the RMSE per target is presented in table 4.3. Table
4.4 shows the corresponding average CSR of activations.

S1 S2 S3
Healthy

A1 A4 A1 A4 A1 A4
From EMG recorded (N=16)
Target 1 0,105 ± 0,037 0,11 ± 0 0,099 ± 0,015 0,133 ± 0,026 0,158 ± 0,064 0,176 ± 0,008 0,191 ± 0,019
Target 3 0,097 ± 0,042 0,149 ± 0 0,093 ± 0,014 0,148 ± 0,034 0,122 ± 0,016 0,143 ± 0,028 0,184 ± 0,004
Target 5 0,076 ± 0,034 0,062 ± 0 0,069 ± 0,011 0,106 ± 0 0,106 ± 0,016 0,099 ± 0,008 0,116 ± 0,008
Target 7 0,091 ± 0,037 0,112 ± 0 0,079 ± 0,011 0,125 ± 0 0,13 ± 0,046 0,129 ± 0,015 0,136 ± 0,006
Target 10 0,11 ± 0,04 0,15 ± 0 0,101 ± 0,022 0,14 ± 0 0,142 ± 0,021 0,147 ± 0,018 0,153 ± 0,009
Target 13 0,102 ± 0,037 0,183 ± 0 0,11 ± 0,023 0,114 ± 0 0,132 ± 0,03 0,182 ± 0,009 0,181 ± 0,005
Mean ± std 0,097 ± 0,038 0,128 ± 0 0,092 ± 0,016 0,128 ± 0,01 0,132 ± 0,032 0,146 ± 0,014 0,160 ± 0,009
From overall computed activations (N=42)
Target 1 0,179 ± 0,069 0.185 ± 0 0,196 ± 0,040 0,218 ± 0,033 0,199 ± 0,039 0,161 ± 0,011 0,190 ± 0,015
Target 3 0,1970 ± 0,076 0,253 ± 0 0,182 ± 0,027 0,221 ± 0,042 0,183 ± 0,015 0,183 ± 0,047 0,211 ± 0,036
Target 5 0,172 ± 0,088 0,170 ± 0 0,152 ± 0,021 0,206 ± 0 0,163 ± 0,011 0,130 ± 0,025 0,173 ± 0,018
Target 7 0,157 ± 0,073 0,180 ± 0 0,157 ± 0,022 0,198 ± 0 0,187 ± 0,057 0,134 ± 0,020 0,145 ± 0,015
Target 10 0,203 ± 0,067 0,203 ± 0 0,197 ± 0,037 0,193 ± 0 0,206 ± 0,023 0,180 ± 0,034 0,198 ± 0,019
Target 13 0,166 ± 0,041 0,196 ± 0 0,175 ± 0,033 0,176 ± 0 0,184 ± 0,036 0,166 ± 0,020 0,198 ± 0,013
Mean ± std 0,179 ± 0,072 0,198 ± 0 0,177 ± 0,030 0,202 ± 0,013 0,187 ± 0,030 0,159 ± 0,026 0,186 ± 0,019

Table 4.3: Root mean squared errors between the means of healthy activations and the
subject’s ones. The top part includes only the RMSE corresponding to the recorded
EMG, between the 16 recorded activations directly derived from the activation dynam-
ics. The bottom part includes the overall activations estimated (from the 42 muscles).
The means are reported based on the target reached, and the overall mean is also
reported. The RMSE reported for the healthy population corresponds to the mean of
the RMSE of all healthy subject with respect to the means of activations of the overall
healthy means. A1 corresponds to the first assessment, A4 to the follow up.
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S1 S2 S3
Healthy

A1 A4 A1 A4 A1 A4
From EMG recorded (N=16)
Target 1 0.994 ± 0.004 0.996 ± 0 0.996 ± 0.003 0.989 ± 0.009 0.959 ± 0.045 0.992 ± 0.006 0.995 ± 0.003
Target 3 0.997 ± 0.002 0.928 ± 0 0.993 ± 0.005 0.976 ± 0.006 0.991 ± 0.004 0.996 ± 0.003 0.979 ± 0.009
Target 5 0.995 ± 0.003 0.997 ± 0 0.995 ± 0.003 0.985 ± 0 0.99 ± 0.005 0.996 ± 0.004 0.979 ± 0.015
Target 7 0.995 ± 0.003 0.997 ± 0 0.997 ± 0.002 0.985 ± 0 0.993 ± 0.004 0.998 ± 0.002 0.989 ± 0.005
Target 10 0.992 ± 0.003 0.917 ± 0 0.996 ± 0.003 0.934 ± 0 0.975 ± 0.012 0.994 ± 0.003 0.983 ± 0.011
Target 13 0.997 ± 0.002 0.979 ± 0 0.992 ± 0.004 0.987 ± 0 0.993 ± 0.004 0.996 ± 0.002 0.987 ± 0.005
Mean ± std 0.995 ± 0.003 0.969 ± 0 0.995 ± 0.003 0.976 ± 0.003 0.984 ± 0.012 0.995 ± 0.003 0.985 ± 0.008
From overall computed activations (N=42)
Target 1 0.969 ± 0.017 0.967 ± 0 0.959 ± 0.023 0.968 ± 0.017 0.955 ± 0.024 0.974 ± 0.014 0.958 ± 0.026
Target 3 0.965 ± 0.019 0.905 ± 0 0.961 ± 0.021 0.958 ± 0.02 0.969 ± 0.018 0.977 ± 0.019 0.953 ± 0.044
Target 5 0.97 ± 0.017 0.979 ± 0 0.972 ± 0.021 0.945 ± 0 0.971 ± 0.019 0.977 ± 0.019 0.969 ± 0.017
Target 7 0.965 ± 0.019 0.966 ± 0 0.973 ± 0.013 0.966 ± 0 0.971 ± 0.018 0.983 ± 0.01 0.979 ± 0.009
Target 10 0.959 ± 0.022 0.935 ± 0 0.965 ± 0.028 0.945 ± 0 0.966 ± 0.016 0.963 ± 0.036 0.954 ± 0.028
Target 13 0.972 ± 0.014 0.947 ± 0 0.975 ± 0.014 0.976 ± 0 0.971 ± 0.019 0.958 ± 0.026 0.954 ± 0.012
Mean ± std 0.967 ± 0.018 0.95 ± 0 0.968 ± 0.02 0.96 ± 0.006 0.967 ± 0.019 0.972 ± 0.021 0.961 ± 0.023

Table 4.4: Pearson’s correlation coefficient errors between the means of cumulative
sums of healthy activations and the subject’s ones. The top part includes only the
ones obtained from 16 recorded muscle EMG, that have been direclty derived from the
activation dynamics. The bottom part includes the overall activations estimated (from
the 42 muscles). The means are reported based on the target reached, and the overall
mean is also reported. A1 corresponds to the first assessment, A4 to the follow up.

From the result tables 4.3 and 4.4 the variations of the RMSE and CSR with respect to
the healthy population gives us details about the improvement of the subject between
the first and final assessment. Indeed, if we consider the reported error and its standard
deviation between the healthy group as a threshold for a healthy behaviour. From EMG
recorded and for the full estimated model, we observe have an improvement of S1
(28% and 10% less mean error respectively from first to final assessment) For this other
subjects on the opposite, it seems to have more error after the final assessment, but the
interesting element is that from the EMG only, for the subject 2 we would have observe
a augmentation of 3% of the error, however when using all muscles this becomes a
reduction of the error ( 8%). Regarding S3, both metrics showed an augmentation
of error . If the significance of these result is to be discussed, this still shows that
including an overall muscle activation, not only we observe expected improvement or
decrease of the performances but these are actually corresponding to the measured
one, (subject 2 had moderate improvement from FM score). A similar pattern can be
observed when viewing the CSR values, this time, S2 improved its CSR sets of evaluated
muscles, whereas this time, S3 even decreased this value in both cases. With reported
values such as the presented ones, we can target specific muscles leading to an overall
error. For instance, the Target 3 appeared to present more difficulties to subject 3 and
no improvement at all was observed with the help of table A.3 and table A.9, Flexor
Carpi Radialis Long and Extensor Carpi Radialis present both low CSR2 and high RMSE,
meaning that there might be an issue with these muscles and their interaction might
need to be investigated.
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4.4.2 Muscle co-contraction between healthy and patients groups

While studying the CCI during reaching tasks of the subjects in figure 4.5. We can ob-
serve the limits of using recorded EMG signals only to evaluate muscle co-contractions.
Indeed, the major muscles acting on joint rotations are not necessarily recorded, nor
are they necessarily the ones expected at first glance from the literature, since with
the model we have an estimate of these muscles and their potential action on the
joint that is defined within the combination of joint motions, which is essential in 3D
reaching tasks and especially for a part of the body as complex as the shoulder. We
can observe from the figure a total diminution of the CCI for target 5, this is mostly
caused by the absence of most of the main agonist muscles recorded (Latissimus dorsi
Illiac and Teres minor/major ). We can also observe low co-contractions for subject 3
while reaching target 13 with no improvement between assessments, on the opposite,
subject 1 presented a low co-contraction at the first assessment , and reached at the
assessment 4 values similar to the healthy ones displaying a improvement in that area.
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Figure 4.5: Figures showing the Co-contraction index while performing the reaching
movements, dotted lines correspond to the first assessment signals and plain lines to
the last one. In green, and with the shaded area, the healthy subjects signals and their
standard deviation are represented

.
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4.4.3 Muscle synergy analysis

The figure 4.6, represent the computed dot product per subject, assessment and Target
reached. We can observe variations with these values before and after the rehabilitation
treatment and more importantly, these variations are not necessarily the one expected
from the literature. We would expect a reorganization of the muscle synergies towards
the reference cluster obtained from the healthy group. It seems, however, that although
a reorganization occurs and changes can be observed, the synergy weight dot product,
showing the similarity with the reference, is not necessarily increasing, even for the
subject S1, presenting the higher improvement and with a FM score of 52 (out of 66
for upper-limb). Given the reduced number of stroke survivors studied in this work,
an extended analysis of the underlying activation changes would not be significant
enough to suggest a specific hypothesis. However, the figure 4.6 shows us that the
results differ when studying the full estimated muscles activations or the EMG recorded
only. Although only recorded muscles are considered when studying muscle synergies
in the literature, this result highly suggests that researchers and clinicians should
include the larger set of activations from the model for increased significance and
understanding of the physiology behind this reorganization.

These previous results should lead us to understand more about what is happening
within this reorganization. For instance, when observing in detail the synergies and
their weights for all muscles available as it is done in figure 4.7, we could observe
large variations in terms of similarity between the subject and the reference cluster
before and after the therapy for some muscle groups, however, for some of them, no
alteration is observed. Moreover, an improvement with respect to the healthy group is
not observed (with the similarity between the reference cluster and the subject from
the dot product at 0.81 for the first assessment to 0.79 for the last one). This, once
again, suggests considering the overall muscles activations in the synergy study, since
information regarding the reorganization might not be captured otherwise. For the
sake of readability, and since we argued that an extensive study of the reorganization is
beyond the scope of this thesis, only a representative figure of the result for the first
target for the subject with moderate improvement is displayed in figure 4.7. The full
set of figures for all subjects and all targets reached is available upon request.
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Figure 4.6: Bar plots of dot products from reference cluster based on the target reached.
Each row corresponds to the result for a target reached, and the bar to the mean of the
dot product between reference cluster weights and the subject’s synergy weights. On
the left,these are computed from all the estimated muscles activations. On the right,
only the recorded EMG are used in the analysis. The bottom dot product, corresponds
to the overall mean of the dot product, per subject and assessments. First assessment
is represented in blue, the last one corresponding to the follow up is represented in
magenta.
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4.5 Discussion

Including an in-depth examination of overall muscle activation in the shoulder and
arm, the current study, despite its limited applicability, holds significant promise in the
field of rehabilitation. By incorporating a broader view of the muscles involved in the
rehabilitation process, we could bserve promising results. The ability to quantitatively
evaluate muscle impairment by comparing specific metrics of impaired muscles to
those of a healthy control group is one of the key elements of this study. Indeed, includ-
ing the cumulative sum’s Pearson’s coefficient of the activations with the traditional
root mean squared error provides us with a greater source of information regarding
the level of activation of a muscle while performing a movement, when traditionally,
only the coefficient of determination or the Pearson’s coefficient are evaluated to show
a similarity. This method enables a more precise evaluation of muscle function and
variation with respect to the heatlhy group, thereby providing clinicians with valuable
information, particularly regarding muscles that are difficult to access due to ethical
considerations or discomfort for stroke survivors.

In addition, our research reveals limitations in existing studies on co-contraction,
which tend to present a limited view of muscle actions. The majority of research has
been conducted in two-dimensional plane, ignoring the potential interaction between
muscles and joint rotation and most importantly the variations of a muscle’s influence
while performing a movement. With our reevaluation of the muscle’s importance
during a motion based of the moment arm dynamics, we could potentially obtain new
information including the muscle dynamics with respect to existing methods.

In addition, despite the fact that numerous studies have investigated muscle syner-
gies, we present a preliminary illustration of the discrepancies that can arise when
considering the entire set of muscles involved in upper-limb movement with respect
to using the reduced number of recorded EMG. Current research focuses only on the
EMG to perform synergy analysis, neglecting additional muscles that might have been
included in the subject’s muscular reorganization after the therapy. This supports the
importance of employing a musculoskeletal model to estimate the activation of the
remaining muscles. This model provides a more complete view, taking into account
aspects that might otherwise be overlooked.

Nonetheless, it is essential to recognize the limitations of our study. First, the ability of
the model to replicate muscle activation is not yet error-free, as certain hypotheses
and estimates were required when reconstructing upper-limb motion. Furthermore,
the model is based on the minimization of the overall muscle stress, which might not
be the main central nervous system strategy to perform a movement. In addition,
the model was not scaled to each subject individually, which greatly diminished the
physiological relevance of the predicted activations although it allowed us to observe
variations in the muscular activations during a therapy without inducing a bias via
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optimization protocols to scale the muscle parameters. Lastly, the musculoskeletal
model employs rigid tendons, which, despite allowing for a faster and more extensive
use of the model, may result in a loss of precision in comparison to models with flexible
tendons.

It is essential to emphasize that the application of such a model holds great promise
for enhancing our understanding of rehabilitation processes. Nonetheless, it should be
viewed as a tool that provides a comprehensive overview of the involved mechanical
aspects to clinicians and researchers while studying rehabilitation. Estimations of
output activation should not be regarded as absolute truth, but rather serve as valuable
insights to guide and enhance rehabilitation strategies.

4.6 Conclusion

In conclusion, our study highlights the potential of examining overall muscle activation
in the shoulder and arm for rehabilitation. Using a limited number of three stroke
survivors representing rehabilitation outcomes with large, moderate and no significant
improvement in their upper-limb Fugl Meyer scores before and after their therapy we
could provide a quantitative evaluation from the overall muscles reflective the subject’s
FM score. Quantitative evaluation involves the inclusion of a new metric, the cumula-
tive sum’s Pearson’s coefficient of the muscle activations with the traditional root mean
squared error. It provides us additional information than the standard evaluations
of similarity using only the coefficient of determination or Pearson’s coefficient, and
hence more insight into the degree to which a muscle is activated during a movement.

Additionally, the inclusion of the joint rotation and the muscles dynamics and the
underlying modifications in the muscle moment arms while performing a movement
in this research exposed limitations in current co-contraction studies where muscles
considered highly influential in the motion were not included.

Employing a musculoskeletal model enhances our understanding of overlooked as-
pects. However, limitations still exist in this research with the estimation the overall
muscle activations which is not error-free due to assumptions and estimates made dur-
ing the upper-limb motion reconstruction and its constraints. Additionally the model’s
focus on minimizing overall muscle stress may not align with the central nervous
system’s primary strategy for movement although it was considered the most reliable.
Individual subject scaling was not implemented, reducing the physiological relevance
of predicted activations but allowing for unbiased observation of therapy-induced
muscular activation variations. The use of rigid tendons in the musculoskeletal model
compromises precision compared to models with flexible tendons but allows it to be
faster and more widely useable.
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This research greatly emphasizes on the importance of the inclusion of numerical
models to evaluate and provide advanced information to researchers and clinicians
regarding rehabilitation strategies.
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5 Conclusion and perspectives

The thesis was motivated by the need for a better understanding of the human motor
control and impairments after a neurological disease in order to improve rehabilita-
tion treatments. Recent research towards this goal propose an approach including
combined bio markers during the rehabilitation [17, 55, 84, 129, 130]. However, re-
garding the muscles, their impairment, co-contractions and synergies, their study
were based on the low number of recorded EMG signals. Among the musculoskeletal
subsystems of the human body, the shoulder presents unique challenges due to its
singular kinematics, including combined joints, and a high number of muscles acting
in coordination to control their movements. Therefore each of these muscles may
greatly introduce a reorganization and an impairment, and thus, need to be studied.
A recording of all of these is however infeasible in practice due to their overlapping
and positions as well as the complexity of the recording set-up required for this large
number of muscles. The use of a musculoskeletal model could therefore greatly help
with the overall muscles activations estimations and their study during rehabilitation.
While the knee and the hip have both been widely addressed in the literature, the
shoulder is less understood and existing musculoskeletal models are mostly based
on the study of contact forces, require an extensive number of measurement points
or a computational time not suitable for the study of large sets of data. [126, 133,
145]. The main drawback of currently existing models is that they are not usable for
a rehabilitation improvement assessment. Indeed, this requires no optimization of
the muscle parameters per subject between assessments to avoid an induced non-
physiological bias after the therapy. I first wanted to solely rely on the minimization
of the overall muscle stress, and not the overall muscle activation that could poten-
tially hinder co-contraction from occurring without necessarily being physiologically
relevant. Additionally, I wanted to include all the muscles involved in the upper limb
motions (42 muscles), and no existing model was satisfying these conditions. Lastly,
I wanted to have a fast and reliable model, that could be usable by a wider range of
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researchers and also clinicians for understanding muscle coordination and developing
rehabilitation plans.

In this thesis I therefore presented an improvement of a validated upper-limb mus-
culoskeletal model, the latter had been then tailored for the possible study of overall
muscular activation signals while performing complex tasks using an exoskeleton.
While discussions and limitations are available in each of the chapters, I will summa-
rize and discuss them more broadly, and present future research directions here.

5.1 Summary

In chapter 1, we presented the upper-limb anatomy and the background of the overall
needs and goals to understand the next parts of the thesis. In chapter 2, we showed
the upper-limb musculoskeletal model and its development. It corresponds to 11
degrees of freedom model, with the sternoclavicular, acromioclavicular and gleno-
humeral joints modeled as ball and sockets and ulna flexion/extension and radius
pro-supination as hinges following the ISB recommandations [174]. 42 muscle seg-
ments are represented, in the model each of these can be divided up to 20 parts. The
basis for a forward dynamics formulation has been developed as well as an improved
(and less prone to errors) inverse dynamics method, including the possible use of EMG
recordings for better estimates and a modified load-sharing optimization protocol.
Given the complexity of the model, the codes, and the extensive amount of files and
functions needed to run it, a graphical user interface had been developed to reduce the
understanding burden of the user. Finally, a number of functions were precomputed
and developed in C to be used as Matlab Mex files, greatly reducing the computational
time required for a simulation. A clear comparison of the time required was not feasible
since the previous model was not usable for recent Matlab versions, but it could be
approximated with a time reduction of two orders of magnitude enabling the study of
a large number of movements, and therefore activation comparisons.

In chapter 3, we showed that using this model and with the introduction of a limited
number of recorded EMG signals we could estimate physiological muscle activations
of 42 muscles from subject performing complex 3D reaching tasks using an upper limb
exoskeleton. We compared the physiological static-optimization method (with no
EMG signals included ) and the EMG-assisted one (using recorded muscles). It showed
that we can better estimate the activations with EMG-assisted while keeping a low
error in the reconstructed torques at the joints. If the estimates are not perfect, they
show a better representation of the levels of activation than with static-optimization
only as it was shown with a leave-one-out cross-validation method on the recorded
muscles. It would therefore be suitable for a comparison of muscle levels of activation
signals between subjects paving the way for the next study.
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In chapter 4 the same methodology was applied to 3 stroke patients for two assess-
ments, before and after their rehabilitation procedure. The subjects and their data
were selected among available others from a previous study [130] to represent 3 levels
of rehabilitation outcomes. 1) Subject with a great improvement after rehabilitation, 2)
subject with a moderate improvement and 3) subject with a poor improvement based
on the evolution of their upper-lib Fugl Meyer score between the first assessment and
the follow-up after the therapy. Here the goal was to show that indeed, including the
overall muscle activations estimated, we could provide more information on singular
muscles to the clinicians to improve the rehabilitation process. The metrics presented
were directly correlated with the Fugl-Meyer score of the patients, showing that when
comparing the overall muscle activations with healthy subjects only, we could obtain
a deeper understanding of the patient’s impairment. It included a novel metric for
similarity evaluation with the healthy group; the Pearson’s coefficient of the cumulative
sum of the muscle activation, that took into consideration, the timing of activation but
also the activation level. We showed a dynamics representation of the main muscles
acting on a specific movement, with the inclusion of the dynamics moment arms
while performing movement, this presented variations in terms of muscle influence
with respect to existing literature. We also shown the importance of having the overall
muscle activation estimated in the co-contraction study, shedding light on existing
studies’ limitations that might overlook main muscles influencing the movement.
Finally, we showed that outcomes from synergy analysis may differ when using the
overall muscle activation with respect to only the recorded ones. This highly suggests
the use of musculoskeletal numerical models when performing synergy analysis, as
the reorganization of muscle coordination might include non-recorded muscles.

5.2 Limitations and future developments

The model can still be developed and improved. I could reduce the computational cost
during simulations by using precomputed functions in C and developed as Matlab
Mex files to speed up their computations. But other means could achieve great perfor-
mances. Indeed the moment arm and muscles lengths computations as functions of
joint angles for instance could be obtained via regression models, drastically reduc-
ing the computation time, however, building models like this would totally block the
model scaling features if the latter ones are not included. Unfortunately, this would
take a long computational time to obtain.

Future development of the model should take the forward dynamics methods and
directly couple it with the cost function from the inverse dynamics method. The
forward dynamics computation is not only faster, it could compensate on its own
for the variations from the desired torque. Indeed in the cost function proposed, the
activation estimation should minimize also the difference in the measured torque at
the joints and the produced torque from the musculotendon actuation. This would
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be similar to the methods proposed in [72, 148] and to more recently [2]. The current
drawbacks of the forward dynamics model would be then discarded as it would act
as a closed-loop in this mode. Moreover, given the already computed function and
methods as "black box", this should be relatively fast achieved.

With overall activations estimated from the inverse dynamics across different directions
at multiple speed and corresponding EMG recorded. It could be possible to develop a
machine learning model for simple movements leading to the overall activations from
recorded EMG. This however would require a large dataset of EMG and movements
since the model is composed of 11 degrees of freedom but could provide a good insight
of muscular impairments and variations in movement from recorded EMG only.

Another possibility would be to apply reinforcement learning methods to provide a
physiological controller, as it was done previously [78]. With this the activations are
learned from current and desired joint positions and velocities given sets of prede-
fined rewards. Such a method would be particularly interesting for the evaluation of
strategies involved right after an impairment or surgery occurs.

Finally, the hand as a single bone and the wrist joint are already available in the model,
and most of the muscles spanning the wrist joint are already modeled. With the
current state, movement of the wrist is maintained fixed which overlooks activation
from muscles spanning this joint. Consequently, the inclusion of such a joint would
significantly enhance and expand the applicability of this model with minimum further
development.

I would suggest future development starting from the mex precomputation of more
functions used in the model, and possibly even developing the model and the graph-
ical user interface as an application for easier use by a wider range of population,
including clinicians. This would also limit the access of most of the functions, and
their behaviour could be rather simply modified by tuning a limited number of pa-
rameters as I did for the graphical user interface and the tuning of the activation cost
functions. Furthermore, the existing architecture is rather cumbersome, consisting
of an excessive number of files and functions, which may be intimidating for the new
user.

Regarding the use of the musculoskeletal model as a tool for a better understanding of
muscular control and impairment, although it showed really promising preliminary
results, the model’s ability to replicate muscle activation is still not perfect, due to
several assumptions made to tailor it for comparison goals. However, if long simu-
lations are permitted and more detailed kinematics are available, especially for the
scapula movements, it could really provide clinicians and scientists with a powerful
tool, enabling a complete study of the overall muscles acting on the shoulder, their
co-contractions and, as widely studied from the past decades, the muscle synergies
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but with the addition of all muscles.

Because it has the potential to be interesting for clinicians and researchers and help
them in the process of understanding and developing more tailored rehabilitation
protocols, improving the graphical user interface, simplifying its use, and developing
potential studies using it for larger sets of results and significance should be the key
goal for the future of this model.
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A.1 Appendix chapter 3

A.1.1 Joint moment reconstruction and error

An error is introduced by the cost function 3.6 between the moment of joints of equa-
tions of movement Jtorque (Eq. 2.9 ) from the measured kinematics and the ones
reconstructed after the EMG-assisted and static-optimization. After the optimization,
the augmented obtained activations signals ã were fed into the contraction dynamics.
to obtain the augmented forces for each time steps f̃ . From these, it was possible to
recompute the corresponding joint moment, using the moment arm matrix Wm.

J̃ = Wmf̃ (A.1)

Fig. A.1 shows the corresponding estimated torques of the unconstrained joints from
EMG-assisted and static-optimization obtained signals. This demonstrates a minimal
difference between the estimated ones and the measured ones. It seemed however
that the recomputed moments at the Radius pronation/supination and the humerus
axial rotations were less steady than the measured one for both optimization process.
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A.1.2 Means of activation computed per target reached

Below are the figures of the estimated activations from the EMG-assisted, static-
optimization and the ones from activation dynamics. These figures took the means
from all subjects and repetitions for sake of clarity within the figures and to reduce the
overall number of total figures. The figures of means of activations per subject and
target are available upon request.
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A.1.3 Levels of activation computed per muscle and target reached

A.1.4 Leave-one-out cross-validation for all subjects
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A.2 Appendix chapter 4

A.2.1 Rotations observed per target reached

Table A.1: Table of the rotated joint angles per target reached: The positive and negative
angles follow the described rotations from Fig. 4.2 when the standard deviation shown
is at 0, it means that there were only one repetition of the recorded movement. A1
correspond to the first assessment, before the rehabilitation and A4 correspond to the
final one.

Target and Joint Healthy S1 A1 S2 A1 S3 A1 S1 A4 S2 A4 S3 A4

T1 J7 -7.70 ± -6.20 -11.70 ± 0.00 -17.00 ± 2.80 -18.20 ± -1.60 -22.80 ± 1.70 -14.90 ± -7.10 -13.40 ± -5.00
T1 J8 -27.40 ± -3.70 -27.90 ± 0.00 -31.10 ± 2.60 -26.30 ± -0.50 -22.20 ± -0.50 -26.70 ± -4.30 -25.80 ± -2.40
T1 J9 3.40 ± -4.50 7.90 ± 0.00 9.80 ± 4.10 12.20 ± -0.80 13.00 ± 2.60 7.30 ± -3.30 6.70 ± -1.20

T1 J10 -9.90 ± -1.70 -6.00 ± 0.00 -16.20 ± 0.20 -11.70 ± 0.00 -7.40 ± 1.80 -7.90 ± 3.10 -6.80 ± 1.00
T1 J11 -13.70 ± 32.40 -9.20 ± 0.00 -5.60 ± -5.10 -4.20 ± 1.70 -8.30 ± -2.70 -5.30 ± 2.30 -5.90 ± 0.60
T3 J7 -3.70 ± -2.20 6.80 ± 0.00 -2.20 ± 9.50 -4.40 ± 7.70 2.40 ± 0.80 2.50 ± 3.60 1.30 ± 2.70
T3 J8 -2.10 ± -1.50 -4.30 ± 0.00 -7.70 ± -1.20 -4.60 ± 0.20 -7.10 ± -1.90 -4.40 ± 3.70 -4.90 ± 2.40
T3 J9 -23.50 ± -2.40 -30.70 ± 0.00 -24.20 ± 4.80 -22.60 ± 4.60 -27.10 ± 0.70 -27.20 ± 3.50 -25.30 ± 2.50

T3 J10 -7.70 ± -4.00 -8.20 ± 0.00 -12.70 ± 2.60 -11.90 ± 5.50 -11.10 ± -0.50 -7.90 ± 2.20 -8.00 ± 0.50
T3 J11 -33.70 ± 52.20 -7.50 ± 0.00 -12.20 ± -4.10 -11.00 ± 7.40 -4.80 ± 0.30 -4.00 ± 2.10 12.60 ± -5.20
T5 J7 22.80 ± 32.00 -3.10 ± 0.00 18.70 ± 0.00 15.50 ± -3.50 23.60 ± 1.50 11.00 ± 9.70 17.70 ± 1.30
T5 J8 22.30 ± 6.60 14.60 ± 0.00 17.80 ± 0.00 20.20 ± 3.10 16.80 ± -0.40 18.00 ± 3.50 15.20 ± -0.20
T5 J9 -21.90 ± 34.90 0.10 ± 0.00 -20.50 ± 0.00 -15.50 ± -2.60 -20.10 ± 2.60 -9.90 ± 7.30 -14.50 ± 1.90

T5 J10 -7.50 ± -2.90 -10.20 ± 0.00 -13.50 ± 0.00 -10.00 ± 2.20 -9.00 ± 4.40 -9.70 ± 4.60 -13.40 ± 3.70
T5 J11 -13.50 ± 32.40 -3.80 ± 0.00 -5.00 ± 0.00 -1.20 ± -1.00 -2.10 ± 3.00 -3.40 ± 0.70 2.70 ± 0.90
T7 J7 0.00 ± -1.70 -1.40 ± 0.00 -5.80 ± 0.00 -7.00 ± -3.60 -0.00 ± -1.30 1.70 ± -3.80 4.40 ± -6.90
T7 J8 -5.10 ± -1.30 -5.40 ± 0.00 -4.40 ± 0.00 -2.20 ± -0.80 -4.50 ± -1.50 -3.60 ± 0.20 -5.90 ± -3.10
T7 J9 23.80 ± -2.70 22.40 ± 0.00 28.60 ± 0.00 28.90 ± -2.90 26.60 ± -0.80 23.40 ± -4.90 22.60 ± -5.90

T7 J10 -11.70 ± -0.70 -10.80 ± 0.00 -14.70 ± 0.00 -7.60 ± -0.40 -9.50 ± 3.20 -10.10 ± 1.00 -10.60 ± 0.30
T7 J11 -13.20 ± 45.70 -3.90 ± 0.00 -4.90 ± 0.00 -1.00 ± 1.30 -3.40 ± 1.60 -3.10 ± -0.40 -5.30 ± -2.10
T10 J7 49.20 ± 12.70 53.80 ± 0.00 66.10 ± 0.00 31.30 ± 11.60 46.50 ± -12.10 39.40 ± 6.30 46.20 ± -8.00
T10 J8 14.80 ± 3.10 15.70 ± 0.00 6.70 ± 0.00 17.10 ± 0.60 7.90 ± 1.70 12.80 ± 4.40 11.50 ± 2.90
T10 J9 -12.40 ± 13.30 -31.00 ± 0.00 -42.00 ± 0.00 -14.30 ± 12.80 -33.50 ± -8.50 -22.60 ± 13.20 -30.90 ± -1.60

T10 J10 46.10 ± -1.90 43.30 ± 0.00 43.20 ± 0.00 42.80 ± 0.50 42.90 ± 3.20 41.10 ± 1.60 41.90 ± 1.90
T10 J11 -52.70 ± 20.70 33.90 ± 0.00 31.10 ± 0.00 4.50 ± -3.40 32.70 ± 0.90 25.40 ± -9.60 30.00 ± -0.60
T13 J7 -13.00 ± -5.10 -0.10 ± 0.00 -16.30 ± 0.00 -15.70 ± -0.40 -10.20 ± 5.70 -5.40 ± 7.30 -8.60 ± 10.50
T13 J8 -23.40 ± -2.80 -24.80 ± 0.00 -20.60 ± 0.00 -23.50 ± -1.30 -22.20 ± 0.70 -27.20 ± -0.90 -23.30 ± 1.80
T13 J9 8.70 ± -9.30 8.30 ± 0.00 16.10 ± 0.00 13.50 ± -1.70 16.20 ± -0.80 8.10 ± -3.70 14.00 ± 2.80

T13 J10 -53.80 ± -2.70 -51.90 ± 0.00 -55.30 ± 0.00 -52.90 ± 0.60 -56.80 ± 2.80 -57.00 ± 5.50 -54.60 ± 2.90
T13 J11 -1.70 ± 4.50 -0.70 ± 0.00 -18.00 ± 0.00 -13.40 ± 4.80 -12.50 ± 3.50 -16.30 ± -0.70 -16.60 ± -0.10
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Figure A.8: Comparisons between the ranges of activations directly obtained from
activation dynamics (blue boxplot), the estimated ones with the model including the
recorded EMG (red boxplot) and the one from the model without using the recorded
EMG (yellow boxplot) with respect to the reached target.
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Figure A.9: Comparisons between the ranges of activations directly obtained from
activation dynamics (blue boxplot), the estimated ones with the model including the
recorded EMG (red boxplot) and the one from the model without using the recorded
EMG (yellow boxplot) with respect to the reached target.
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Figure A.10: Spider maps of the root mean square errors of the computed estimation of
the muscle activation through all targets reached and repetitions of all subjects (with
the last one being the mean accross subjects). The figures show for each muscle with
recorded EMG the errors between the activation directly obtained from the activation
dynamics and, in red, the method using all the available muscle EMG signals in the
EMG-assisted model (16 muscles out of 16). In green, using all EMG available excluding
the specific muscle in the EMG-assisted model(15 muscles used out of 16), and without
any EMG (in yellow) corresponding to the static-optimization.
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A.2.2 Tables of RMSE between healthy and patients activations while reach-
ing targets
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Table A.2: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 1 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 1
S1 S2 S3

Target 1 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.031 ± 0.013 0.022 ± 0 0.041 ± 0.013 0.032 ± 0.011 0.035 ± 0.006 0.024 ± 0.001 0.035 ± 0.028
Serratus Anterior Superior 0.192 ± 0.08 0.126 ± 0 0.48 ± 0.158 0.142 ± 0.013 0.135 ± 0.001 0.134 ± 0.003 0.132 ± 0.005
Serratus Anterior Middle 0.271 ± 0.112 0.352 ± 0 0.148 ± 0.017 0.405 ± 0.036 0.315 ± 0.084 0.252 ± 0.003 0.259 ± 0.019
Serratus Anterior Inferior 0.182 ± 0.042 0.2 ± 0 0.124 ± 0.054 0.199 ± 0.041 0.202 ± 0.059 0.115 ± 0.006 0.259 ± 0.007
Trapezius C1 0.125 ± 0.043 0.12 ± 0 0.114 ± 0.026 0.119 ± 0.04 0.175 ± 0.023 0.186 ± 0.001 0.184 ± 0.034
Trapezius C7 0.152 ± 0.051 0.141 ± 0 0.093 ± 0.023 0.156 ± 0.024 0.184 ± 0.057 0.206 ± 0.011 0.16 ± 0.001
Trapezius T1 0.24 ± 0.054 0.274 ± 0 0.158 ± 0.057 0.324 ± 0.048 0.23 ± 0.105 0.194 ± 0.028 0.194 ± 0.003
Trapezius T2 - T7 0.138 ± 0.036 0.11 ± 0 0.159 ± 0.048 0.117 ± 0.017 0.133 ± 0.004 0.118 ± 0.011 0.072 ± 0.03
Levator Scapulae 0.167 ± 0.046 0.135 ± 0 0.086 ± 0.016 0.159 ± 0.05 0.144 ± 0.031 0.129 ± 0.008 0.165 ± 0.001
Rhomboid Minor 0.225 ± 0.052 0.243 ± 0 0.159 ± 0.064 0.22 ± 0.004 0.236 ± 0.016 0.196 ± 0.003 0.306 ± 0.01
Rhomboid Major T1 - T2 0.317 ± 0.072 0.382 ± 0 0.299 ± 0.035 0.405 ± 0.028 0.332 ± 0.078 0.291 ± 0.006 0.214 ± 0.015
Rhomboid Major T3 - T4 0.108 ± 0.038 0.144 ± 0 0.056 ± 0.001 0.117 ± 0.058 0.098 ± 0 0.1 ± 0 0.151 ± 0.01
Pectoralis Minor 0.056 ± 0.054 0.026 ± 0 0.049 ± 0.024 0.026 ± 0 0.026 ± 0 0.039 ± 0.003 0.029 ± 0.004
Pectoralis Major Clavicular 0.085 ± 0.027 0.109 ± 0 0.071 ± 0.002 0.071 ± 0.021 0.082 ± 0.025 0.068 ± 0.002 0.085 ± 0.001
Pectoralis Major Sternal 0.145 ± 0.052 0.128 ± 0 0.107 ± 0.004 0.169 ± 0.048 0.146 ± 0.068 0.115 ± 0.008 0.085 ± 0.03
Pectoralis Major Ribs 0.077 ± 0.07 0.033 ± 0 0.041 ± 0.005 0.034 ± 0 0.041 ± 0.01 0.055 ± 0.01 0.041 ± 0.001
Latissimus Dorsi Thoracic 0.141 ± 0.05 0.123 ± 0 0.067 ± 0.017 0.125 ± 0.029 0.159 ± 0.036 0.167 ± 0.008 0.17 ± 0.009
Latissimus Dorsi Lumbar 0.163 ± 0.077 0.127 ± 0 0.199 ± 0.089 0.079 ± 0.002 0.078 ± 0.001 0.079 ± 0 0.079 ± 0.002
Latissimus Dorsi Iliac 0.054 ± 0.042 0.034 ± 0 0.145 ± 0.127 0.026 ± 0.001 0.026 ± 0 0.026 ± 0 0.026 ± 0
Deltoid Clavicular (Ant) 0.131 ± 0.033 0.136 ± 0 0.12 ± 0.023 0.143 ± 0.012 0.176 ± 0.025 0.188 ± 0.007 0.212 ± 0.02
Deltoid Acromial (Mid) 0.101 ± 0.035 0.11 ± 0 0.072 ± 0.013 0.093 ± 0.001 0.151 ± 0.046 0.083 ± 0.008 0.172 ± 0.011
Deltoid Scapular (Post) 0.109 ± 0.056 0.069 ± 0 0.117 ± 0.018 0.153 ± 0.045 0.125 ± 0.025 0.127 ± 0.015 0.147 ± 0.029
Supraspinatus 0.24 ± 0.155 0.229 ± 0 0.592 ± 0.145 0.298 ± 0.079 0.36 ± 0.227 0.149 ± 0.007 0.372 ± 0.006
Infraspinatus 0.106 ± 0.032 0.107 ± 0 0.194 ± 0.048 0.136 ± 0.055 0.132 ± 0.046 0.168 ± 0.013 0.109 ± 0
Subscapularis 0.212 ± 0.166 0.145 ± 0 0.152 ± 0.006 0.225 ± 0.073 0.206 ± 0.002 0.149 ± 0.007 0.157 ± 0.007
Teres Minor 0.244 ± 0.105 0.192 ± 0 0.298 ± 0.177 0.25 ± 0.063 0.228 ± 0.074 0.166 ± 0 0.16 ± 0.001
Teres Major 0.405 ± 0.068 0.408 ± 0 0.396 ± 0.017 0.392 ± 0.02 0.375 ± 0.015 0.311 ± 0.016 0.381 ± 0.013
Coracobrachialis 0.268 ± 0.131 0.277 ± 0 0.262 ± 0.082 0.465 ± 0.099 0.477 ± 0.006 0.135 ± 0.007 0.16 ± 0.001
Triceps Brachii Long 0.182 ± 0.123 0.116 ± 0 0.107 ± 0.017 0.17 ± 0.019 0.149 ± 0.1 0.208 ± 0.011 0.237 ± 0.009
Triceps Brachii Medial 0.355 ± 0.05 0.351 ± 0 0.405 ± 0.043 0.426 ± 0.011 0.42 ± 0 0.386 ± 0.002 0.386 ± 0.002
Triceps Brachii Lateral 0.097 ± 0.049 0.157 ± 0 0.051 ± 0.009 0.268 ± 0.015 0.091 ± 0.046 0.064 ± 0.005 0.069 ± 0.003
Biceps Short 0.11 ± 0.043 0.086 ± 0 0.069 ± 0.012 0.175 ± 0.007 0.106 ± 0.029 0.148 ± 0.005 0.08 ± 0.004
Biceps Long 0.093 ± 0.034 0.155 ± 0 0.151 ± 0.012 0.145 ± 0.001 0.118 ± 0.02 0.117 ± 0.003 0.06 ± 0.001
Brachialis 0.121 ± 0.097 0.063 ± 0 0.109 ± 0.007 0.102 ± 0.055 0.13 ± 0.018 0.136 ± 0.007 0.142 ± 0.004
Brachioradialis 0.122 ± 0.073 0.056 ± 0 0.145 ± 0.025 0.11 ± 0.004 0.143 ± 0.085 0.135 ± 0.002 0.107 ± 0.018
Supinator 0.242 ± 0.068 0.201 ± 0 0.218 ± 0.018 0.311 ± 0.126 0.209 ± 0.001 0.257 ± 0.118 0.506 ± 0.014
Pronator Teres 0.1 ± 0.044 0.065 ± 0 0.101 ± 0.023 0.119 ± 0.01 0.086 ± 0.019 0.053 ± 0 0.115 ± 0.042
Flexor Carpi Radialis 0.136 ± 0.078 0.456 ± 0 0.1 ± 0.008 0.297 ± 0.026 0.555 ± 0.111 0.176 ± 0.01 0.094 ± 0.001
Flexor Carpi Ulnaris 0.357 ± 0.072 0.528 ± 0 0.466 ± 0.061 0.546 ± 0.03 0.489 ± 0.067 0.446 ± 0.046 0.46 ± 0.156
Extensor Carpi Radialis Long 0.35 ± 0.153 0.289 ± 0 0.449 ± 0.068 0.43 ± 0.096 0.284 ± 0.008 0.271 ± 0.004 0.398 ± 0.059
Extensor Carpi Radialis Brevis 0.379 ± 0.085 0.505 ± 0 0.549 ± 0.002 0.532 ± 0.012 0.445 ± 0.014 0.335 ± 0.036 0.55 ± 0.003
Extensor Carpi Ulnaris 0.201 ± 0.123 0.256 ± 0 0.511 ± 0.061 0.457 ± 0.057 0.143 ± 0.045 0.085 ± 0.001 0.253 ± 0.021
Total 0.179 ± 0.0957 0.185 ± 0.131 0.196 ± 0.155 0.218 ± 0.145 0.199 ± 0.133 0.161 ± 0.0947 0.19 ± 0.132
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Table A.3: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 3 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 3
S1 S2 S3

Target 3 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.037 ± 0.016 0.039 ± 0 0.073 ± 0.01 0.078 ± 0.053 0.06 ± 0.011 0.033 ± 0.01 0.029 ± 0.006
Serratus Anterior Superior 0.325 ± 0.078 0.486 ± 0 0.406 ± 0.044 0.29 ± 0.018 0.225 ± 0.031 0.294 ± 0.008 0.319 ± 0
Serratus Anterior Middle 0.3 ± 0.126 0.379 ± 0 0.18 ± 0.046 0.259 ± 0.031 0.202 ± 0.003 0.248 ± 0.068 0.312 ± 0.008
Serratus Anterior Inferior 0.191 ± 0.045 0.256 ± 0 0.146 ± 0.027 0.182 ± 0.032 0.127 ± 0.004 0.218 ± 0.107 0.293 ± 0.088
Trapezius C1 0.125 ± 0.071 0.177 ± 0 0.092 ± 0.015 0.109 ± 0.028 0.135 ± 0.022 0.135 ± 0.067 0.176 ± 0.008
Trapezius C7 0.174 ± 0.095 0.178 ± 0 0.111 ± 0.016 0.11 ± 0.021 0.133 ± 0.017 0.149 ± 0.05 0.201 ± 0.034
Trapezius T1 0.217 ± 0.053 0.26 ± 0 0.232 ± 0.012 0.217 ± 0.078 0.265 ± 0.022 0.227 ± 0.024 0.242 ± 0.044
Trapezius T2 - T7 0.194 ± 0.08 0.319 ± 0 0.217 ± 0.003 0.166 ± 0.026 0.198 ± 0.015 0.138 ± 0.025 0.163 ± 0.067
Levator Scapulae 0.143 ± 0.056 0.219 ± 0 0.124 ± 0.048 0.094 ± 0.003 0.088 ± 0.005 0.077 ± 0.039 0.107 ± 0.001
Rhomboid Minor 0.199 ± 0.045 0.337 ± 0 0.16 ± 0.04 0.258 ± 0.017 0.206 ± 0.011 0.226 ± 0.129 0.348 ± 0.01
Rhomboid Major T1 - T2 0.341 ± 0.091 0.278 ± 0 0.306 ± 0.039 0.368 ± 0.1 0.211 ± 0.043 0.241 ± 0.067 0.181 ± 0.081
Rhomboid Major T3 - T4 0.117 ± 0.057 0.101 ± 0 0.073 ± 0.016 0.144 ± 0.096 0.08 ± 0.006 0.074 ± 0.032 0.15 ± 0.003
Pectoralis Minor 0.152 ± 0.137 0.321 ± 0 0.17 ± 0.085 0.088 ± 0.005 0.088 ± 0.002 0.084 ± 0.008 0.085 ± 0.002
Pectoralis Major Clavicular 0.055 ± 0.021 0.046 ± 0 0.054 ± 0.007 0.092 ± 0.036 0.048 ± 0.004 0.037 ± 0 0.035 ± 0.007
Pectoralis Major Sternal 0.112 ± 0.072 0.064 ± 0 0.067 ± 0.005 0.1 ± 0.009 0.109 ± 0.01 0.068 ± 0.016 0.071 ± 0.013
Pectoralis Major Ribs 0.04 ± 0.041 0.016 ± 0 0.029 ± 0.016 0.029 ± 0.008 0.037 ± 0.009 0.017 ± 0.002 0.036 ± 0.026
Latissimus Dorsi Thoracic 0.126 ± 0.043 0.111 ± 0 0.091 ± 0.006 0.117 ± 0.012 0.195 ± 0.005 0.136 ± 0.072 0.188 ± 0.002
Latissimus Dorsi Lumbar 0.371 ± 0.079 0.513 ± 0 0.376 ± 0.061 0.312 ± 0.007 0.299 ± 0.001 0.392 ± 0.146 0.296 ± 0.006
Latissimus Dorsi Iliac 0.206 ± 0.102 0.285 ± 0 0.259 ± 0.087 0.142 ± 0.006 0.144 ± 0.002 0.153 ± 0.016 0.144 ± 0.001
Deltoid Clavicular (Ant) 0.111 ± 0.041 0.141 ± 0 0.1 ± 0.021 0.145 ± 0.008 0.101 ± 0.02 0.117 ± 0.02 0.149 ± 0.002
Deltoid Acromial (Mid) 0.099 ± 0.037 0.187 ± 0 0.077 ± 0.016 0.091 ± 0.013 0.085 ± 0.014 0.086 ± 0.045 0.188 ± 0.02
Deltoid Scapular (Post) 0.168 ± 0.078 0.226 ± 0 0.062 ± 0.004 0.134 ± 0.01 0.084 ± 0.011 0.191 ± 0.109 0.253 ± 0.008
Supraspinatus 0.34 ± 0.086 0.459 ± 0 0.375 ± 0.016 0.294 ± 0.04 0.349 ± 0.049 0.336 ± 0.06 0.321 ± 0.022
Infraspinatus 0.127 ± 0.054 0.211 ± 0 0.091 ± 0.018 0.133 ± 0.017 0.108 ± 0.007 0.145 ± 0.069 0.21 ± 0.058
Subscapularis 0.306 ± 0.19 0.247 ± 0 0.234 ± 0.014 0.215 ± 0.016 0.207 ± 0.038 0.235 ± 0 0.184 ± 0.076
Teres Minor 0.248 ± 0.095 0.434 ± 0 0.223 ± 0.038 0.189 ± 0.021 0.191 ± 0.009 0.144 ± 0 0.185 ± 0.027
Teres Major 0.418 ± 0.057 0.41 ± 0 0.41 ± 0.038 0.515 ± 0.08 0.507 ± 0.033 0.341 ± 0.101 0.416 ± 0.066
Coracobrachialis 0.177 ± 0.112 0.101 ± 0 0.102 ± 0.006 0.268 ± 0.082 0.34 ± 0.009 0.094 ± 0.019 0.097 ± 0.015
Triceps Brachii Long 0.181 ± 0.114 0.172 ± 0 0.112 ± 0.006 0.138 ± 0.015 0.088 ± 0.015 0.202 ± 0.011 0.233 ± 0.003
Triceps Brachii Medial 0.261 ± 0.096 0.397 ± 0 0.355 ± 0.137 0.574 ± 0.129 0.22 ± 0.004 0.422 ± 0.126 0.557 ± 0.107
Triceps Brachii Lateral 0.11 ± 0.059 0.144 ± 0 0.064 ± 0.006 0.203 ± 0.01 0.092 ± 0.01 0.092 ± 0.005 0.065 ± 0.033
Biceps Short 0.086 ± 0.033 0.069 ± 0 0.067 ± 0.004 0.174 ± 0.059 0.09 ± 0.016 0.094 ± 0.006 0.085 ± 0.027
Biceps Long 0.098 ± 0.043 0.117 ± 0 0.128 ± 0.013 0.221 ± 0.081 0.185 ± 0.048 0.079 ± 0.036 0.058 ± 0.008
Brachialis 0.093 ± 0.092 0.124 ± 0 0.119 ± 0.006 0.18 ± 0.082 0.114 ± 0.004 0.125 ± 0.002 0.139 ± 0.009
Brachioradialis 0.141 ± 0.117 0.119 ± 0 0.091 ± 0.019 0.131 ± 0.034 0.076 ± 0.002 0.166 ± 0.026 0.131 ± 0.036
Supinator 0.265 ± 0.102 0.569 ± 0 0.216 ± 0.02 0.426 ± 0.005 0.224 ± 0 0.301 ± 0.075 0.391 ± 0.206
Pronator Teres 0.107 ± 0.054 0.103 ± 0 0.097 ± 0.01 0.182 ± 0.053 0.103 ± 0.012 0.042 ± 0.012 0.081 ± 0.052
Flexor Carpi Radialis 0.065 ± 0.037 0.172 ± 0 0.046 ± 0.016 0.142 ± 0.156 0.065 ± 0.003 0.066 ± 0.051 0.091 ± 0.069
Flexor Carpi Ulnaris 0.278 ± 0.124 0.691 ± 0 0.261 ± 0.066 0.663 ± 0.099 0.27 ± 0.04 0.421 ± 0.233 0.498 ± 0.173
Extensor Carpi Radialis Long 0.408 ± 0.084 0.366 ± 0 0.495 ± 0.022 0.398 ± 0.088 0.399 ± 0.061 0.42 ± 0.027 0.483 ± 0.073
Extensor Carpi Radialis Brevis 0.387 ± 0.095 0.374 ± 0 0.352 ± 0.004 0.341 ± 0.012 0.603 ± 0.013 0.355 ± 0.05 0.349 ± 0.001
Extensor Carpi Ulnaris 0.379 ± 0.069 0.39 ± 0 0.422 ± 0.037 0.383 ± 0.075 0.334 ± 0.002 0.252 ± 0.017 0.329 ± 0.005
Total 0.197 ± 0.109 0.253 ± 0.158 0.182 ± 0.126 0.221 ± 0.14 0.183 ± 0.124 0.183 ± 0.116 0.211 ± 0.133
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Table A.4: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 5 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 5
S1 S2 S3

Target 5 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.067 ± 0.05 0.042 ± 0 0.073 ± 0.029 0.166 ± 0 0.118 ± 0.004 0.035 ± 0.005 0.045 ± 0.011
Serratus Anterior Superior 0.152 ± 0.105 0.101 ± 0 0.18 ± 0.055 0.161 ± 0 0.092 ± 0.001 0.092 ± 0.007 0.095 ± 0.001
Serratus Anterior Middle 0.152 ± 0.124 0.112 ± 0 0.073 ± 0.013 0.08 ± 0 0.062 ± 0.007 0.085 ± 0.02 0.113 ± 0.006
Serratus Anterior Inferior 0.177 ± 0.084 0.143 ± 0 0.112 ± 0.019 0.136 ± 0 0.112 ± 0.008 0.129 ± 0.027 0.101 ± 0.013
Trapezius C1 0.079 ± 0.034 0.088 ± 0 0.053 ± 0.01 0.063 ± 0 0.06 ± 0.005 0.094 ± 0.013 0.116 ± 0.009
Trapezius C7 0.122 ± 0.054 0.088 ± 0 0.067 ± 0.011 0.055 ± 0 0.081 ± 0.001 0.065 ± 0.025 0.062 ± 0.005
Trapezius T1 0.203 ± 0.082 0.089 ± 0 0.144 ± 0.021 0.154 ± 0 0.186 ± 0.009 0.127 ± 0.05 0.153 ± 0.009
Trapezius T2 - T7 0.159 ± 0.1 0.129 ± 0 0.088 ± 0.016 0.075 ± 0 0.111 ± 0.004 0.07 ± 0.033 0.07 ± 0.013
Levator Scapulae 0.119 ± 0.074 0.078 ± 0 0.077 ± 0.03 0.062 ± 0 0.059 ± 0.001 0.06 ± 0.007 0.076 ± 0.017
Rhomboid Minor 0.194 ± 0.101 0.176 ± 0 0.083 ± 0.015 0.095 ± 0 0.124 ± 0.002 0.116 ± 0.022 0.093 ± 0.007
Rhomboid Major T1 - T2 0.269 ± 0.063 0.192 ± 0 0.156 ± 0.045 0.18 ± 0 0.227 ± 0.002 0.208 ± 0.014 0.361 ± 0.021
Rhomboid Major T3 - T4 0.087 ± 0.044 0.038 ± 0 0.054 ± 0.01 0.139 ± 0 0.108 ± 0.001 0.059 ± 0.018 0.099 ± 0.016
Pectoralis Minor 0.085 ± 0.075 0.041 ± 0 0.047 ± 0.002 0.044 ± 0 0.04 ± 0.002 0.041 ± 0.001 0.04 ± 0
Pectoralis Major Clavicular 0.067 ± 0.028 0.026 ± 0 0.075 ± 0.024 0.171 ± 0 0.116 ± 0.008 0.045 ± 0.003 0.045 ± 0.003
Pectoralis Major Sternal 0.145 ± 0.089 0.074 ± 0 0.122 ± 0.006 0.107 ± 0 0.09 ± 0.008 0.079 ± 0.008 0.075 ± 0.027
Pectoralis Major Ribs 0.167 ± 0.18 0.096 ± 0 0.104 ± 0.01 0.101 ± 0 0.098 ± 0.004 0.092 ± 0.005 0.111 ± 0.009
Latissimus Dorsi Thoracic 0.084 ± 0.032 0.095 ± 0 0.083 ± 0.019 0.078 ± 0 0.169 ± 0.017 0.076 ± 0.007 0.11 ± 0
Latissimus Dorsi Lumbar 0.366 ± 0.08 0.403 ± 0 0.383 ± 0.053 0.396 ± 0 0.44 ± 0.015 0.35 ± 0.019 0.404 ± 0.004
Latissimus Dorsi Iliac 0.278 ± 0.131 0.235 ± 0 0.288 ± 0.099 0.233 ± 0 0.295 ± 0.014 0.2 ± 0.007 0.237 ± 0.001
Deltoid Clavicular (Ant) 0.076 ± 0.029 0.032 ± 0 0.043 ± 0.009 0.072 ± 0 0.064 ± 0.004 0.038 ± 0.006 0.076 ± 0.005
Deltoid Acromial (Mid) 0.067 ± 0.021 0.053 ± 0 0.101 ± 0.012 0.086 ± 0 0.074 ± 0.009 0.038 ± 0.002 0.042 ± 0
Deltoid Scapular (Post) 0.11 ± 0.085 0.094 ± 0 0.053 ± 0.009 0.087 ± 0 0.047 ± 0.004 0.108 ± 0.013 0.125 ± 0.004
Supraspinatus 0.191 ± 0.173 0.14 ± 0 0.166 ± 0.025 0.452 ± 0 0.134 ± 0.004 0.135 ± 0.003 0.132 ± 0.025
Infraspinatus 0.09 ± 0.021 0.054 ± 0 0.051 ± 0.004 0.069 ± 0 0.125 ± 0.012 0.052 ± 0.016 0.023 ± 0.004
Subscapularis 0.28 ± 0.13 0.291 ± 0 0.267 ± 0.009 0.263 ± 0 0.199 ± 0.043 0.233 ± 0.035 0.298 ± 0.001
Teres Minor 0.194 ± 0.088 0.128 ± 0 0.113 ± 0.02 0.139 ± 0 0.15 ± 0.002 0.089 ± 0.017 0.107 ± 0.011
Teres Major 0.353 ± 0.107 0.626 ± 0 0.362 ± 0.068 0.615 ± 0 0.404 ± 0.075 0.317 ± 0.056 0.612 ± 0.02
Coracobrachialis 0.148 ± 0.097 0.175 ± 0 0.095 ± 0.004 0.416 ± 0 0.136 ± 0.04 0.068 ± 0.026 0.068 ± 0.005
Triceps Brachii Long 0.164 ± 0.123 0.1 ± 0 0.081 ± 0.01 0.126 ± 0 0.063 ± 0.002 0.105 ± 0.031 0.147 ± 0.006
Triceps Brachii Medial 0.27 ± 0.1 0.331 ± 0 0.22 ± 0.037 0.52 ± 0 0.32 ± 0.007 0.259 ± 0.13 0.439 ± 0.041
Triceps Brachii Lateral 0.059 ± 0.037 0.068 ± 0 0.04 ± 0.01 0.094 ± 0 0.154 ± 0.038 0.049 ± 0.009 0.036 ± 0.015
Biceps Short 0.108 ± 0.092 0.053 ± 0 0.079 ± 0.009 0.051 ± 0 0.095 ± 0.001 0.13 ± 0.004 0.091 ± 0.008
Biceps Long 0.074 ± 0.04 0.118 ± 0 0.089 ± 0.022 0.15 ± 0 0.089 ± 0.014 0.074 ± 0.01 0.032 ± 0.005
Brachialis 0.177 ± 0.14 0.133 ± 0 0.174 ± 0.008 0.133 ± 0 0.149 ± 0.003 0.195 ± 0.002 0.197 ± 0.005
Brachioradialis 0.097 ± 0.063 0.034 ± 0 0.052 ± 0.018 0.148 ± 0 0.119 ± 0.038 0.128 ± 0.005 0.104 ± 0.015
Supinator 0.243 ± 0.108 0.2 ± 0 0.265 ± 0.057 0.488 ± 0 0.288 ± 0 0.267 ± 0.206 0.432 ± 0.036
Pronator Teres 0.106 ± 0.041 0.063 ± 0 0.129 ± 0.02 0.143 ± 0 0.052 ± 0.009 0.063 ± 0.01 0.089 ± 0.061
Flexor Carpi Radialis 0.152 ± 0.13 0.092 ± 0 0.094 ± 0.002 0.094 ± 0 0.09 ± 0.001 0.081 ± 0.01 0.095 ± 0
Flexor Carpi Ulnaris 0.325 ± 0.13 0.663 ± 0 0.236 ± 0.021 0.671 ± 0 0.314 ± 0.006 0.334 ± 0.089 0.514 ± 0.199
Extensor Carpi Radialis Long 0.367 ± 0.154 0.649 ± 0 0.631 ± 0.009 0.571 ± 0 0.551 ± 0.026 0.258 ± 0.034 0.437 ± 0.114
Extensor Carpi Radialis Brevis 0.367 ± 0.109 0.577 ± 0 0.571 ± 0.004 0.578 ± 0 0.443 ± 0.007 0.301 ± 0.03 0.576 ± 0.003
Extensor Carpi Ulnaris 0.25 ± 0.155 0.201 ± 0 0.21 ± 0.03 0.204 ± 0 0.198 ± 0.002 0.111 ± 0.029 0.192 ± 0.004
Total 0.172 ± 0.0929 0.17 ± 0.171 0.152 ± 0.133 0.206 ± 0.179 0.163 ± 0.122 0.13 ± 0.0901 0.173 ± 0.16
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Table A.5: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 7 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 7
S1 S2 S3

Target 7 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.061 ± 0.018 0.088 ± 0 0.104 ± 0.017 0.075 ± 0 0.089 ± 0.014 0.033 ± 0.004 0.04 ± 0
Serratus Anterior Superior 0.148 ± 0.072 0.096 ± 0 0.166 ± 0.036 0.108 ± 0 0.105 ± 0.007 0.1 ± 0.013 0.102 ± 0.004
Serratus Anterior Middle 0.177 ± 0.123 0.097 ± 0 0.109 ± 0.013 0.169 ± 0 0.223 ± 0.167 0.125 ± 0.011 0.137 ± 0.01
Serratus Anterior Inferior 0.202 ± 0.094 0.221 ± 0 0.147 ± 0.026 0.304 ± 0 0.232 ± 0.113 0.157 ± 0.007 0.07 ± 0.02
Trapezius C1 0.091 ± 0.034 0.15 ± 0 0.079 ± 0.006 0.097 ± 0 0.077 ± 0.008 0.126 ± 0.024 0.128 ± 0.004
Trapezius C7 0.134 ± 0.053 0.11 ± 0 0.079 ± 0.012 0.092 ± 0 0.102 ± 0.034 0.077 ± 0 0.059 ± 0.005
Trapezius T1 0.218 ± 0.108 0.178 ± 0 0.146 ± 0.031 0.289 ± 0 0.263 ± 0.187 0.12 ± 0.012 0.187 ± 0.023
Trapezius T2 - T7 0.109 ± 0.03 0.083 ± 0 0.104 ± 0.022 0.106 ± 0 0.131 ± 0.037 0.073 ± 0.023 0.093 ± 0.018
Levator Scapulae 0.139 ± 0.075 0.094 ± 0 0.084 ± 0.006 0.118 ± 0 0.173 ± 0.1 0.087 ± 0.005 0.083 ± 0.003
Rhomboid Minor 0.211 ± 0.091 0.174 ± 0 0.135 ± 0.03 0.204 ± 0 0.267 ± 0.154 0.138 ± 0.015 0.095 ± 0.011
Rhomboid Major T1 - T2 0.311 ± 0.071 0.423 ± 0 0.244 ± 0.029 0.434 ± 0 0.331 ± 0.042 0.256 ± 0.009 0.267 ± 0.033
Rhomboid Major T3 - T4 0.092 ± 0.047 0.173 ± 0 0.043 ± 0.006 0.116 ± 0 0.064 ± 0.036 0.063 ± 0.034 0.116 ± 0.008
Pectoralis Minor 0.06 ± 0.052 0.029 ± 0 0.038 ± 0.01 0.029 ± 0 0.034 ± 0.004 0.028 ± 0.001 0.029 ± 0
Pectoralis Major Clavicular 0.122 ± 0.039 0.141 ± 0 0.092 ± 0.006 0.132 ± 0 0.154 ± 0.051 0.165 ± 0.024 0.18 ± 0.001
Pectoralis Major Sternal 0.157 ± 0.073 0.162 ± 0 0.139 ± 0.018 0.129 ± 0 0.159 ± 0.08 0.095 ± 0.003 0.098 ± 0.028
Pectoralis Major Ribs 0.125 ± 0.096 0.071 ± 0 0.068 ± 0.007 0.081 ± 0 0.077 ± 0.011 0.078 ± 0.02 0.076 ± 0.009
Latissimus Dorsi Thoracic 0.088 ± 0.036 0.086 ± 0 0.065 ± 0.009 0.136 ± 0 0.136 ± 0.007 0.079 ± 0.008 0.082 ± 0.004
Latissimus Dorsi Lumbar 0.126 ± 0.076 0.141 ± 0 0.335 ± 0.077 0.087 ± 0 0.096 ± 0.037 0.25 ± 0.208 0.063 ± 0.002
Latissimus Dorsi Iliac 0.12 ± 0.165 0.07 ± 0 0.232 ± 0.082 0.068 ± 0 0.07 ± 0.006 0.066 ± 0.001 0.066 ± 0.001
Deltoid Clavicular (Ant) 0.109 ± 0.056 0.144 ± 0 0.06 ± 0.009 0.134 ± 0 0.125 ± 0.048 0.107 ± 0 0.137 ± 0
Deltoid Acromial (Mid) 0.086 ± 0.024 0.174 ± 0 0.06 ± 0.018 0.144 ± 0 0.129 ± 0.101 0.045 ± 0 0.034 ± 0.005
Deltoid Scapular (Post) 0.078 ± 0.035 0.054 ± 0 0.109 ± 0.016 0.137 ± 0 0.083 ± 0.051 0.051 ± 0.018 0.072 ± 0.001
Supraspinatus 0.232 ± 0.155 0.18 ± 0 0.209 ± 0.044 0.222 ± 0 0.172 ± 0.012 0.181 ± 0.007 0.154 ± 0
Infraspinatus 0.071 ± 0.033 0.105 ± 0 0.108 ± 0.019 0.154 ± 0 0.11 ± 0.084 0.056 ± 0.014 0.035 ± 0.003
Subscapularis 0.233 ± 0.132 0.194 ± 0 0.163 ± 0.018 0.301 ± 0 0.245 ± 0.005 0.164 ± 0.004 0.25 ± 0.002
Teres Minor 0.067 ± 0.029 0.042 ± 0 0.073 ± 0.025 0.038 ± 0 0.097 ± 0.074 0.058 ± 0.003 0.046 ± 0.007
Teres Major 0.363 ± 0.051 0.349 ± 0 0.354 ± 0.058 0.339 ± 0 0.33 ± 0.018 0.541 ± 0.028 0.32 ± 0.013
Coracobrachialis 0.219 ± 0.125 0.591 ± 0 0.215 ± 0.038 0.508 ± 0 0.386 ± 0.217 0.148 ± 0.011 0.136 ± 0.019
Triceps Brachii Long 0.125 ± 0.081 0.048 ± 0 0.052 ± 0.006 0.107 ± 0 0.095 ± 0.063 0.083 ± 0.024 0.122 ± 0.011
Triceps Brachii Medial 0.307 ± 0.092 0.35 ± 0 0.302 ± 0.044 0.346 ± 0 0.436 ± 0.021 0.247 ± 0.029 0.267 ± 0.024
Triceps Brachii Lateral 0.071 ± 0.041 0.162 ± 0 0.04 ± 0.008 0.183 ± 0 0.168 ± 0.091 0.077 ± 0.002 0.052 ± 0.007
Biceps Short 0.097 ± 0.051 0.118 ± 0 0.062 ± 0.008 0.153 ± 0 0.087 ± 0.04 0.107 ± 0.007 0.063 ± 0.01
Biceps Long 0.068 ± 0.04 0.185 ± 0 0.104 ± 0.031 0.183 ± 0 0.222 ± 0.072 0.065 ± 0.008 0.029 ± 0.003
Brachialis 0.101 ± 0.059 0.054 ± 0 0.082 ± 0.006 0.11 ± 0 0.081 ± 0.01 0.093 ± 0.004 0.09 ± 0.004
Brachioradialis 0.106 ± 0.068 0.043 ± 0 0.067 ± 0.009 0.144 ± 0 0.178 ± 0.055 0.164 ± 0.004 0.117 ± 0.018
Supinator 0.223 ± 0.07 0.263 ± 0 0.225 ± 0.027 0.282 ± 0 0.255 ± 0.002 0.228 ± 0.124 0.508 ± 0.002
Pronator Teres 0.109 ± 0.034 0.063 ± 0 0.132 ± 0.02 0.146 ± 0 0.064 ± 0.001 0.057 ± 0.002 0.093 ± 0.07
Flexor Carpi Radialis 0.079 ± 0.054 0.09 ± 0 0.046 ± 0.004 0.072 ± 0 0.205 ± 0.223 0.044 ± 0.004 0.049 ± 0.006
Flexor Carpi Ulnaris 0.333 ± 0.061 0.594 ± 0 0.313 ± 0.007 0.596 ± 0 0.34 ± 0.051 0.386 ± 0.011 0.442 ± 0.216
Extensor Carpi Radialis Long 0.238 ± 0.169 0.595 ± 0 0.783 ± 0.006 0.645 ± 0 0.483 ± 0.023 0.133 ± 0.007 0.542 ± 0.022
Extensor Carpi Radialis Brevis 0.349 ± 0.085 0.395 ± 0 0.396 ± 0.003 0.398 ± 0 0.563 ± 0.023 0.353 ± 0.088 0.396 ± 0.001
Extensor Carpi Ulnaris 0.241 ± 0.167 0.18 ± 0 0.243 ± 0.058 0.201 ± 0 0.202 ± 0.013 0.111 ± 0 0.185 ± 0.004
Total 0.157 ± 0.0858 0.18 ± 0.149 0.157 ± 0.137 0.198 ± 0.145 0.187 ± 0.122 0.134 ± 0.103 0.145 ± 0.128
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Table A.6: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 10 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 10
S1 S2 S3

Target 10 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.043 ± 0.02 0.095 ± 0 0.075 ± 0.038 0.058 ± 0 0.115 ± 0.024 0.04 ± 0.026 0.021 ± 0.007
Serratus Anterior Superior 0.145 ± 0.084 0.136 ± 0 0.247 ± 0.12 0.087 ± 0 0.119 ± 0.027 0.082 ± 0.005 0.083 ± 0.005
Serratus Anterior Middle 0.164 ± 0.082 0.096 ± 0 0.106 ± 0.052 0.091 ± 0 0.106 ± 0.007 0.096 ± 0.014 0.106 ± 0.013
Serratus Anterior Inferior 0.228 ± 0.048 0.138 ± 0 0.195 ± 0.09 0.201 ± 0 0.292 ± 0.006 0.228 ± 0.011 0.207 ± 0.046
Trapezius C1 0.104 ± 0.035 0.124 ± 0 0.108 ± 0.033 0.082 ± 0 0.099 ± 0.052 0.096 ± 0.041 0.095 ± 0.004
Trapezius C7 0.131 ± 0.059 0.128 ± 0 0.088 ± 0.018 0.09 ± 0 0.157 ± 0.005 0.136 ± 0.002 0.1 ± 0.008
Trapezius T1 0.238 ± 0.044 0.134 ± 0 0.191 ± 0.076 0.275 ± 0 0.399 ± 0.043 0.221 ± 0.099 0.226 ± 0.064
Trapezius T2 - T7 0.145 ± 0.069 0.136 ± 0 0.15 ± 0.044 0.108 ± 0 0.155 ± 0.001 0.131 ± 0.009 0.105 ± 0.008
Levator Scapulae 0.14 ± 0.086 0.077 ± 0 0.075 ± 0.013 0.073 ± 0 0.107 ± 0.003 0.094 ± 0.004 0.089 ± 0.002
Rhomboid Minor 0.214 ± 0.065 0.129 ± 0 0.155 ± 0.093 0.132 ± 0 0.279 ± 0.007 0.197 ± 0.007 0.165 ± 0.001
Rhomboid Major T1 - T2 0.289 ± 0.056 0.2 ± 0 0.243 ± 0.029 0.214 ± 0 0.358 ± 0.023 0.208 ± 0.071 0.229 ± 0.013
Rhomboid Major T3 - T4 0.118 ± 0.039 0.098 ± 0 0.076 ± 0.015 0.064 ± 0 0.11 ± 0.029 0.061 ± 0.017 0.142 ± 0.005
Pectoralis Minor 0.074 ± 0.069 0.036 ± 0 0.044 ± 0.016 0.041 ± 0 0.043 ± 0.012 0.033 ± 0.002 0.034 ± 0.001
Pectoralis Major Clavicular 0.063 ± 0.023 0.055 ± 0 0.07 ± 0.014 0.058 ± 0 0.125 ± 0.032 0.036 ± 0.007 0.039 ± 0.007
Pectoralis Major Sternal 0.113 ± 0.042 0.118 ± 0 0.09 ± 0.002 0.11 ± 0 0.077 ± 0.002 0.082 ± 0.024 0.073 ± 0.028
Pectoralis Major Ribs 0.275 ± 0.133 0.202 ± 0 0.196 ± 0.002 0.195 ± 0 0.205 ± 0.02 0.188 ± 0.001 0.195 ± 0
Latissimus Dorsi Thoracic 0.097 ± 0.036 0.1 ± 0 0.087 ± 0.024 0.099 ± 0 0.099 ± 0.011 0.086 ± 0.023 0.094 ± 0.011
Latissimus Dorsi Lumbar 0.391 ± 0.062 0.497 ± 0 0.525 ± 0.049 0.287 ± 0 0.416 ± 0.094 0.33 ± 0.035 0.346 ± 0.025
Latissimus Dorsi Iliac 0.327 ± 0.119 0.44 ± 0 0.578 ± 0.053 0.227 ± 0 0.275 ± 0.032 0.2 ± 0.058 0.245 ± 0.006
Deltoid Clavicular (Ant) 0.086 ± 0.024 0.106 ± 0 0.057 ± 0.012 0.105 ± 0 0.071 ± 0.008 0.047 ± 0.019 0.058 ± 0.003
Deltoid Acromial (Mid) 0.092 ± 0.03 0.097 ± 0 0.172 ± 0.043 0.074 ± 0 0.097 ± 0.015 0.042 ± 0.003 0.038 ± 0.001
Deltoid Scapular (Post) 0.131 ± 0.054 0.123 ± 0 0.16 ± 0.057 0.102 ± 0 0.064 ± 0.001 0.088 ± 0.064 0.121 ± 0.026
Supraspinatus 0.395 ± 0.08 0.398 ± 0 0.403 ± 0.076 0.293 ± 0 0.395 ± 0.021 0.393 ± 0.038 0.303 ± 0.044
Infraspinatus 0.111 ± 0.033 0.126 ± 0 0.086 ± 0.041 0.067 ± 0 0.117 ± 0.031 0.108 ± 0.002 0.069 ± 0.002
Subscapularis 0.36 ± 0.082 0.468 ± 0 0.39 ± 0.097 0.51 ± 0 0.358 ± 0.093 0.473 ± 0.021 0.512 ± 0.022
Teres Minor 0.11 ± 0.062 0.172 ± 0 0.126 ± 0.076 0.061 ± 0 0.106 ± 0.037 0.092 ± 0.042 0.06 ± 0.008
Teres Major 0.427 ± 0.063 0.459 ± 0 0.457 ± 0.024 0.422 ± 0 0.406 ± 0.044 0.357 ± 0.108 0.43 ± 0.079
Coracobrachialis 0.127 ± 0.077 0.079 ± 0 0.08 ± 0.01 0.33 ± 0 0.101 ± 0.029 0.065 ± 0.017 0.197 ± 0.053
Triceps Brachii Long 0.179 ± 0.087 0.151 ± 0 0.087 ± 0.011 0.169 ± 0 0.129 ± 0.003 0.144 ± 0.037 0.188 ± 0.01
Triceps Brachii Medial 0.251 ± 0.069 0.23 ± 0 0.207 ± 0.037 0.411 ± 0 0.321 ± 0.015 0.306 ± 0.253 0.454 ± 0.109
Triceps Brachii Lateral 0.14 ± 0.051 0.138 ± 0 0.078 ± 0.025 0.148 ± 0 0.16 ± 0.025 0.127 ± 0.009 0.114 ± 0.014
Biceps Short 0.161 ± 0.06 0.15 ± 0 0.08 ± 0.01 0.16 ± 0 0.182 ± 0.003 0.203 ± 0.003 0.158 ± 0.012
Biceps Long 0.147 ± 0.068 0.181 ± 0 0.116 ± 0.042 0.14 ± 0 0.126 ± 0.019 0.163 ± 0.019 0.118 ± 0.014
Brachialis 0.192 ± 0.08 0.285 ± 0 0.255 ± 0.011 0.271 ± 0 0.3 ± 0.001 0.314 ± 0.001 0.311 ± 0.004
Brachioradialis 0.181 ± 0.058 0.197 ± 0 0.189 ± 0.032 0.246 ± 0 0.182 ± 0.019 0.243 ± 0.015 0.228 ± 0.016
Supinator 0.192 ± 0.078 0.136 ± 0 0.166 ± 0.026 0.29 ± 0 0.171 ± 0.028 0.153 ± 0.069 0.518 ± 0.068
Pronator Teres 0.128 ± 0.057 0.061 ± 0 0.077 ± 0.011 0.148 ± 0 0.06 ± 0.003 0.086 ± 0.047 0.08 ± 0.004
Flexor Carpi Radialis 0.221 ± 0.158 0.124 ± 0 0.137 ± 0.003 0.134 ± 0 0.133 ± 0.011 0.12 ± 0.008 0.135 ± 0.006
Flexor Carpi Ulnaris 0.386 ± 0.086 0.572 ± 0 0.352 ± 0.019 0.508 ± 0 0.357 ± 0.026 0.363 ± 0.122 0.577 ± 0.018
Extensor Carpi Radialis Long 0.399 ± 0.116 0.397 ± 0 0.401 ± 0.01 0.334 ± 0 0.442 ± 0.03 0.517 ± 0.004 0.269 ± 0.011
Extensor Carpi Radialis Brevis 0.407 ± 0.077 0.449 ± 0 0.404 ± 0.03 0.376 ± 0 0.475 ± 0.066 0.313 ± 0.046 0.432 ± 0.015
Extensor Carpi Ulnaris 0.414 ± 0.09 0.476 ± 0 0.501 ± 0.057 0.323 ± 0 0.347 ± 0.002 0.278 ± 0.03 0.375 ± 0.003
Total 0.203 ± 0.113 0.203 ± 0.146 0.197 ± 0.145 0.193 ± 0.128 0.206 ± 0.127 0.18 ± 0.123 0.198 ± 0.148
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Table A.7: Root mean squared errors between the means of healthy activations and the
computed activations while reaching target 13 for each subjects. The RMSE reported
for the healthy population corresponds to the mean of the RMSE of all healthy subject
with respect to the means of activations of the overall healthy. A1 corresponds to the
first assessment, A4 to the final one.

Activations RMSE and standard deviations while reaching target 13
S1 S2 S3

Target 13 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.039 ± 0.015 0.066 ± 0 0.063 ± 0.013 0.052 ± 0 0.05 ± 0.011 0.032 ± 0.015 0.045 ± 0.001
Serratus Anterior Superior 0.168 ± 0.095 0.142 ± 0 0.168 ± 0.034 0.117 ± 0 0.134 ± 0.021 0.11 ± 0.006 0.114 ± 0
Serratus Anterior Middle 0.259 ± 0.087 0.262 ± 0 0.188 ± 0.047 0.207 ± 0 0.309 ± 0.097 0.254 ± 0.004 0.236 ± 0.022
Serratus Anterior Inferior 0.186 ± 0.039 0.173 ± 0 0.145 ± 0.022 0.158 ± 0 0.177 ± 0.031 0.308 ± 0.021 0.142 ± 0.008
Trapezius C1 0.107 ± 0.021 0.175 ± 0 0.111 ± 0.025 0.083 ± 0 0.1 ± 0.024 0.19 ± 0.004 0.161 ± 0.002
Trapezius C7 0.123 ± 0.041 0.127 ± 0 0.128 ± 0.01 0.069 ± 0 0.154 ± 0.066 0.119 ± 0.001 0.129 ± 0.005
Trapezius T1 0.246 ± 0.062 0.188 ± 0 0.206 ± 0.054 0.248 ± 0 0.282 ± 0.067 0.183 ± 0.027 0.202 ± 0.032
Trapezius T2 - T7 0.124 ± 0.031 0.094 ± 0 0.128 ± 0.025 0.107 ± 0 0.179 ± 0.002 0.077 ± 0.003 0.1 ± 0.009
Levator Scapulae 0.173 ± 0.075 0.127 ± 0 0.119 ± 0.019 0.12 ± 0 0.193 ± 0.026 0.142 ± 0.005 0.134 ± 0.022
Rhomboid Minor 0.23 ± 0.06 0.202 ± 0 0.154 ± 0.02 0.158 ± 0 0.239 ± 0.065 0.28 ± 0.014 0.183 ± 0.003
Rhomboid Major T1 - T2 0.319 ± 0.059 0.294 ± 0 0.263 ± 0.05 0.331 ± 0 0.315 ± 0.065 0.325 ± 0.025 0.295 ± 0.01
Rhomboid Major T3 - T4 0.096 ± 0.029 0.092 ± 0 0.058 ± 0.006 0.063 ± 0 0.082 ± 0.002 0.052 ± 0.013 0.122 ± 0.003
Pectoralis Minor 0.06 ± 0.058 0.034 ± 0 0.029 ± 0.002 0.029 ± 0 0.029 ± 0.001 0.029 ± 0.001 0.029 ± 0
Pectoralis Major Clavicular 0.107 ± 0.03 0.144 ± 0 0.081 ± 0.02 0.066 ± 0 0.087 ± 0.002 0.102 ± 0.003 0.118 ± 0.015
Pectoralis Major Sternal 0.147 ± 0.052 0.121 ± 0 0.164 ± 0.039 0.172 ± 0 0.246 ± 0.011 0.114 ± 0.001 0.118 ± 0.008
Pectoralis Major Ribs 0.038 ± 0.022 0.042 ± 0 0.045 ± 0.012 0.049 ± 0 0.022 ± 0.006 0.035 ± 0.004 0.04 ± 0.01
Latissimus Dorsi Thoracic 0.135 ± 0.044 0.16 ± 0 0.061 ± 0.009 0.084 ± 0 0.094 ± 0.017 0.16 ± 0.001 0.15 ± 0.001
Latissimus Dorsi Lumbar 0.127 ± 0.063 0.131 ± 0 0.237 ± 0.132 0.072 ± 0 0.075 ± 0.002 0.218 ± 0.103 0.072 ± 0
Latissimus Dorsi Iliac 0.039 ± 0.02 0.092 ± 0 0.148 ± 0.126 0.021 ± 0 0.021 ± 0.001 0.037 ± 0.015 0.021 ± 0
Deltoid Clavicular (Ant) 0.116 ± 0.041 0.232 ± 0 0.089 ± 0.018 0.123 ± 0 0.127 ± 0.008 0.257 ± 0.011 0.224 ± 0.002
Deltoid Acromial (Mid) 0.093 ± 0.029 0.165 ± 0 0.065 ± 0.019 0.07 ± 0 0.125 ± 0.028 0.146 ± 0.009 0.154 ± 0.003
Deltoid Scapular (Post) 0.115 ± 0.055 0.102 ± 0 0.131 ± 0.009 0.102 ± 0 0.121 ± 0.008 0.101 ± 0.026 0.119 ± 0
Supraspinatus 0.161 ± 0.055 0.635 ± 0 0.171 ± 0.037 0.261 ± 0 0.131 ± 0.009 0.116 ± 0.01 0.61 ± 0.021
Infraspinatus 0.083 ± 0.024 0.078 ± 0 0.158 ± 0.048 0.1 ± 0 0.136 ± 0.076 0.105 ± 0.006 0.068 ± 0.011
Subscapularis 0.116 ± 0.041 0.158 ± 0 0.256 ± 0.054 0.204 ± 0 0.148 ± 0.102 0.064 ± 0.014 0.234 ± 0.047
Teres Minor 0.174 ± 0.076 0.116 ± 0 0.146 ± 0.016 0.116 ± 0 0.163 ± 0.014 0.112 ± 0.002 0.113 ± 0.001
Teres Major 0.356 ± 0.091 0.224 ± 0 0.339 ± 0.078 0.316 ± 0 0.305 ± 0.005 0.524 ± 0.016 0.324 ± 0.005
Coracobrachialis 0.304 ± 0.091 0.209 ± 0 0.303 ± 0.047 0.311 ± 0 0.392 ± 0.054 0.309 ± 0.08 0.281 ± 0.039
Triceps Brachii Long 0.137 ± 0.065 0.15 ± 0 0.126 ± 0.031 0.106 ± 0 0.129 ± 0.029 0.136 ± 0.039 0.183 ± 0.002
Triceps Brachii Medial 0.315 ± 0.072 0.241 ± 0 0.255 ± 0.018 0.296 ± 0 0.433 ± 0.126 0.271 ± 0.013 0.287 ± 0.019
Triceps Brachii Lateral 0.111 ± 0.046 0.143 ± 0 0.158 ± 0.043 0.098 ± 0 0.111 ± 0.016 0.186 ± 0.026 0.137 ± 0.008
Biceps Short 0.108 ± 0.043 0.081 ± 0 0.084 ± 0.012 0.093 ± 0 0.096 ± 0.043 0.14 ± 0 0.105 ± 0.002
Biceps Long 0.087 ± 0.035 0.069 ± 0 0.165 ± 0.03 0.141 ± 0 0.301 ± 0.002 0.102 ± 0.004 0.103 ± 0.005
Brachialis 0.089 ± 0.053 0.104 ± 0 0.078 ± 0.009 0.098 ± 0 0.112 ± 0.019 0.104 ± 0.002 0.118 ± 0.01
Brachioradialis 0.121 ± 0.079 0.062 ± 0 0.154 ± 0.035 0.13 ± 0 0.128 ± 0.026 0.143 ± 0.009 0.121 ± 0.001
Supinator 0.292 ± 0.075 0.398 ± 0 0.245 ± 0.008 0.383 ± 0 0.32 ± 0.001 0.256 ± 0.164 0.393 ± 0.019
Pronator Teres 0.094 ± 0.027 0.066 ± 0 0.109 ± 0.017 0.117 ± 0 0.058 ± 0.003 0.061 ± 0.006 0.078 ± 0.015
Flexor Carpi Radialis 0.177 ± 0.108 0.295 ± 0 0.133 ± 0.003 0.132 ± 0 0.391 ± 0.303 0.117 ± 0.029 0.406 ± 0.078
Flexor Carpi Ulnaris 0.354 ± 0.118 0.639 ± 0 0.313 ± 0.059 0.653 ± 0 0.414 ± 0.133 0.423 ± 0.053 0.653 ± 0
Extensor Carpi Radialis Long 0.242 ± 0.118 0.506 ± 0 0.454 ± 0.086 0.483 ± 0 0.298 ± 0.001 0.157 ± 0.012 0.353 ± 0.099
Extensor Carpi Radialis Brevis 0.337 ± 0.121 0.68 ± 0 0.675 ± 0.004 0.678 ± 0 0.336 ± 0.003 0.247 ± 0.022 0.675 ± 0.003
Extensor Carpi Ulnaris 0.251 ± 0.111 0.208 ± 0 0.228 ± 0.022 0.166 ± 0 0.181 ± 0.002 0.118 ± 0.006 0.182 ± 0.007
Total 0.166 ± 0.0908 0.196 ± 0.158 0.175 ± 0.118 0.176 ± 0.15 0.184 ± 0.114 0.166 ± 0.107 0.198 ± 0.157
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Table A.8: Pearson’s correlation coefficient from cumulated activations between healthy
and patients’ ones for each muscle while reaching the target 1. For healthy subjects,
this shows the intervariability within the healthy population. A1 corresponds to the
first assessment, A4 to the final one. The final row correspond to the overall mean of
these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 1
S1 S2 S3

Target 1 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.961 ± 0.016 0.948 ± 0 0.987 ± 0.007 0.97 ± 0.004 0.975 ± 0.008 0.981 ± 0.005 0.977 ± 0.007
Serratus Anterior Superior 0.96 ± 0.022 0.994 ± 0 0.989 ± 0.008 0.952 ± 0.028 0.921 ± 0.025 0.969 ± 0.027 0.823 ± 0.204
Serratus Anterior Middle 0.982 ± 0.01 0.978 ± 0 0.99 ± 0.006 0.971 ± 0.002 0.98 ± 0.017 0.983 ± 0.013 0.972 ± 0.017
Serratus Anterior Inferior 0.999 ± 0.001 0.998 ± 0 0.999 ± 0.001 0.999 ± 0 0.999 ± 0 0.999 ± 0.001 0.997 ± 0
Trapezius C1 0.997 ± 0.002 0.998 ± 0 1 ± 0 0.996 ± 0.004 0.985 ± 0.015 0.995 ± 0.006 0.999 ± 0.001
Trapezius C7 0.994 ± 0.003 0.994 ± 0 0.998 ± 0.002 0.985 ± 0.006 0.992 ± 0.003 0.995 ± 0.001 0.998 ± 0.001
Trapezius T1 0.995 ± 0.003 0.998 ± 0 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.999 ± 0.001 0.994 ± 0.001
Trapezius T2 - T7 0.986 ± 0.007 0.997 ± 0 0.997 ± 0.002 0.977 ± 0.004 0.985 ± 0.008 0.991 ± 0.006 0.999 ± 0.001
Levator Scapulae 0.987 ± 0.007 0.994 ± 0 0.998 ± 0.002 0.961 ± 0.045 0.997 ± 0.001 0.996 ± 0.003 0.985 ± 0.003
Rhomboid Minor 0.997 ± 0.002 0.994 ± 0 0.998 ± 0.002 0.994 ± 0.006 0.999 ± 0.001 0.997 ± 0.003 0.992 ± 0.001
Rhomboid Major T1 - T2 0.981 ± 0.017 0.958 ± 0 0.997 ± 0.002 0.926 ± 0.024 0.984 ± 0.01 1 ± 0 0.998 ± 0.002
Rhomboid Major T3 - T4 0.992 ± 0.004 0.996 ± 0 0.998 ± 0.001 0.996 ± 0.005 0.985 ± 0.016 0.994 ± 0.007 0.997 ± 0
Pectoralis Minor 0.91 ± 0.039 0.864 ± 0 0.904 ± 0.067 0.901 ± 0.031 0.94 ± 0.011 0.837 ± 0.066 0.768 ± 0.227
Pectoralis Major Clavicular 0.99 ± 0.004 0.988 ± 0 0.987 ± 0.007 0.995 ± 0.001 0.946 ± 0.062 0.996 ± 0.003 0.986 ± 0.002
Pectoralis Major Sternal 0.958 ± 0.019 0.984 ± 0 0.795 ± 0.119 0.953 ± 0.008 0.943 ± 0.028 0.981 ± 0 0.989 ± 0
Pectoralis Major Ribs 0.933 ± 0.023 0.925 ± 0 0.901 ± 0.029 0.902 ± 0.093 0.94 ± 0.004 0.824 ± 0.097 0.923 ± 0.011
Latissimus Dorsi Thoracic 0.982 ± 0.008 0.993 ± 0 0.995 ± 0.003 0.992 ± 0.005 0.792 ± 0.278 0.959 ± 0.045 0.968 ± 0.023
Latissimus Dorsi Lumbar 0.918 ± 0.031 0.822 ± 0 0.844 ± 0.038 0.912 ± 0.037 0.954 ± 0.039 0.944 ± 0.026 0.951 ± 0.026
Latissimus Dorsi Iliac 0.914 ± 0.027 0.856 ± 0 0.853 ± 0.03 0.928 ± 0.009 0.925 ± 0 0.887 ± 0.034 0.924 ± 0.032
Deltoid Clavicular (Ant) 0.988 ± 0.007 0.99 ± 0 0.998 ± 0.001 0.991 ± 0.011 0.988 ± 0.004 0.992 ± 0.007 0.997 ± 0.002
Deltoid Acromial (Mid) 0.995 ± 0.003 0.996 ± 0 0.996 ± 0.002 0.996 ± 0.002 0.989 ± 0.003 0.996 ± 0.001 0.993 ± 0.003
Deltoid Scapular (Post) 0.992 ± 0.007 0.998 ± 0 1 ± 0 0.99 ± 0.011 0.981 ± 0.025 0.999 ± 0.001 0.987 ± 0.01
Supraspinatus 0.975 ± 0.008 0.952 ± 0 0.989 ± 0.007 0.963 ± 0.023 0.919 ± 0.015 0.996 ± 0.001 0.98 ± 0.007
Infraspinatus 0.995 ± 0.002 0.994 ± 0 0.999 ± 0.002 0.991 ± 0.006 0.964 ± 0.049 0.995 ± 0 0.994 ± 0.001
Subscapularis 0.935 ± 0.032 0.874 ± 0 0.881 ± 0.072 0.928 ± 0.053 0.894 ± 0.009 0.984 ± 0.014 0.902 ± 0.118
Teres Minor 0.905 ± 0.053 0.927 ± 0 0.9 ± 0.102 0.963 ± 0.003 0.838 ± 0.012 0.925 ± 0.06 0.946 ± 0.008
Teres Major 0.952 ± 0.031 0.871 ± 0 0.773 ± 0.096 0.931 ± 0.012 0.917 ± 0.013 0.956 ± 0.01 0.946 ± 0.062
Coracobrachialis 0.942 ± 0.038 0.944 ± 0 0.946 ± 0.054 0.981 ± 0.005 0.994 ± 0.003 0.991 ± 0.002 0.992 ± 0.003
Triceps Brachii Long 0.99 ± 0.005 0.991 ± 0 0.997 ± 0.001 0.984 ± 0.01 0.951 ± 0.064 0.992 ± 0.002 0.986 ± 0.003
Triceps Brachii Medial 0.954 ± 0.034 0.996 ± 0 0.982 ± 0.011 0.999 ± 0 0.99 ± 0.009 1 ± 0 1 ± 0
Triceps Brachii Lateral 0.98 ± 0.016 0.987 ± 0 0.997 ± 0.003 0.992 ± 0.006 0.994 ± 0.003 0.998 ± 0.001 0.997 ± 0.001
Biceps Short 0.98 ± 0.013 0.994 ± 0 0.994 ± 0.003 0.989 ± 0.009 0.971 ± 0.027 0.97 ± 0.022 0.993 ± 0.003
Biceps Long 0.978 ± 0.014 0.992 ± 0 0.997 ± 0.002 0.992 ± 0.001 0.957 ± 0.034 0.931 ± 0.036 0.993 ± 0
Brachialis 0.989 ± 0.008 0.998 ± 0 0.99 ± 0.001 0.982 ± 0.024 0.992 ± 0.009 0.998 ± 0.001 0.996 ± 0
Brachioradialis 0.99 ± 0.008 0.999 ± 0 0.974 ± 0.017 0.993 ± 0 0.976 ± 0.024 0.977 ± 0.02 0.993 ± 0.008
Supinator 0.998 ± 0.001 0.999 ± 0 0.999 ± 0 0.979 ± 0.025 1 ± 0 0.998 ± 0.001 0.955 ± 0
Pronator Teres 0.967 ± 0.038 0.999 ± 0 0.974 ± 0.02 0.979 ± 0.002 0.989 ± 0.015 0.997 ± 0.002 0.975 ± 0.026
Flexor Carpi Radialis 0.929 ± 0.053 0.995 ± 0 0.928 ± 0.059 0.889 ± 0.108 0.984 ± 0.011 0.981 ± 0.015 0.782 ± 0.178
Flexor Carpi Ulnaris 0.95 ± 0.04 0.995 ± 0 0.955 ± 0.028 0.997 ± 0.004 0.98 ± 0.025 0.999 ± 0 0.994 ± 0.008
Extensor Carpi Radialis Long 0.961 ± 0.015 0.936 ± 0 0.879 ± 0.082 0.939 ± 0.023 0.639 ± 0.069 0.921 ± 0.021 0.996 ± 0.003
Extensor Carpi Radialis Brevis 0.973 ± 0.011 0.982 ± 0 0.991 ± 0 0.993 ± 0 0.974 ± 0.023 0.968 ± 0.04 0.992 ± 0
Extensor Carpi Ulnaris 0.948 ± 0.03 0.933 ± 0 0.907 ± 0.085 0.909 ± 0.052 0.971 ± 0.032 0.995 ± 0.002 0.624 ± 0.099
Total 0.969 ± 0.0271 0.967 ± 0.0467 0.959 ± 0.0601 0.968 ± 0.0324 0.955 ± 0.0657 0.974 ± 0.0413 0.958 ± 0.0761
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Table A.9: Pearson’s correlation coefficient from cumulated activations between healthy
and patients’ ones for each muscle while reaching the target 3. For healthy subjects,
this shows the intervariability within the healthy population. A1 corresponds to the
first assessment, A4 to the final one. The final row correspond to the overall mean of
these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 3
S1 S2 S3

Target 3 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.964 ± 0.019 0.959 ± 0 0.965 ± 0.009 0.95 ± 0.064 0.947 ± 0.006 0.979 ± 0.017 0.99 ± 0.003
Serratus Anterior Superior 0.959 ± 0.035 0.806 ± 0 0.999 ± 0.001 0.886 ± 0.048 0.972 ± 0.027 0.959 ± 0.054 0.819 ± 0.136
Serratus Anterior Middle 0.988 ± 0.008 0.85 ± 0 0.983 ± 0.02 0.951 ± 0.015 0.996 ± 0.001 0.989 ± 0.014 0.97 ± 0.028
Serratus Anterior Inferior 0.999 ± 0.001 0.987 ± 0 0.996 ± 0.003 0.995 ± 0.001 1 ± 0 1 ± 0 0.997 ± 0.001
Trapezius C1 0.994 ± 0.004 0.956 ± 0 0.999 ± 0.001 0.996 ± 0.001 1 ± 0 0.996 ± 0 0.997 ± 0
Trapezius C7 0.988 ± 0.008 0.951 ± 0 0.999 ± 0.001 0.992 ± 0.004 0.995 ± 0.006 0.998 ± 0.003 0.997 ± 0.003
Trapezius T1 0.998 ± 0.001 0.99 ± 0 0.996 ± 0.005 0.992 ± 0.009 0.999 ± 0.001 0.999 ± 0.001 0.992 ± 0.002
Trapezius T2 - T7 0.99 ± 0.004 0.952 ± 0 0.994 ± 0.004 0.976 ± 0.003 0.97 ± 0.028 0.995 ± 0.004 0.978 ± 0.024
Levator Scapulae 0.959 ± 0.029 0.914 ± 0 0.981 ± 0.016 0.96 ± 0.005 0.997 ± 0.001 0.995 ± 0.002 0.994 ± 0.002
Rhomboid Minor 0.998 ± 0.001 0.962 ± 0 0.994 ± 0.004 0.976 ± 0.006 0.998 ± 0.001 0.998 ± 0.001 0.994 ± 0.002
Rhomboid Major T1 - T2 0.94 ± 0.051 0.99 ± 0 0.991 ± 0.004 0.977 ± 0.009 0.996 ± 0.003 0.993 ± 0.008 0.999 ± 0
Rhomboid Major T3 - T4 0.987 ± 0.011 0.947 ± 0 0.995 ± 0.003 0.99 ± 0.008 0.99 ± 0.001 0.994 ± 0 0.993 ± 0.004
Pectoralis Minor 0.892 ± 0.057 0.714 ± 0 0.942 ± 0.041 0.873 ± 0.113 0.912 ± 0.006 0.916 ± 0.055 0.889 ± 0.021
Pectoralis Major Clavicular 0.951 ± 0.033 0.808 ± 0 0.935 ± 0.037 0.968 ± 0.038 0.955 ± 0.033 0.986 ± 0.002 0.992 ± 0.001
Pectoralis Major Sternal 0.92 ± 0.037 0.653 ± 0 0.816 ± 0.126 0.969 ± 0.001 0.964 ± 0.017 0.867 ± 0.131 0.857 ± 0.189
Pectoralis Major Ribs 0.908 ± 0.037 0.884 ± 0 0.897 ± 0.039 0.863 ± 0.012 0.879 ± 0.13 0.929 ± 0.04 0.922 ± 0.019
Latissimus Dorsi Thoracic 0.981 ± 0.011 0.974 ± 0 0.994 ± 0.002 0.976 ± 0.01 0.998 ± 0.001 0.986 ± 0.01 0.976 ± 0.009
Latissimus Dorsi Lumbar 0.942 ± 0.031 0.992 ± 0 0.944 ± 0.026 0.874 ± 0.054 0.874 ± 0.083 0.99 ± 0.006 0.983 ± 0.005
Latissimus Dorsi Iliac 0.932 ± 0.028 0.991 ± 0 0.985 ± 0.008 0.867 ± 0.056 0.858 ± 0.115 0.977 ± 0.006 0.97 ± 0.01
Deltoid Clavicular (Ant) 0.982 ± 0.012 0.851 ± 0 0.99 ± 0.006 0.958 ± 0.004 0.992 ± 0.002 0.98 ± 0.018 0.942 ± 0.057
Deltoid Acromial (Mid) 0.997 ± 0.002 0.936 ± 0 0.995 ± 0.003 0.99 ± 0.002 0.996 ± 0.002 0.998 ± 0.001 0.994 ± 0.004
Deltoid Scapular (Post) 0.996 ± 0.002 0.934 ± 0 0.999 ± 0 0.98 ± 0.007 0.999 ± 0 0.997 ± 0 0.996 ± 0.005
Supraspinatus 0.99 ± 0.005 0.879 ± 0 0.996 ± 0.006 0.982 ± 0.01 0.948 ± 0.066 0.994 ± 0.003 0.968 ± 0.024
Infraspinatus 0.996 ± 0.001 0.9 ± 0 0.998 ± 0.001 0.98 ± 0.005 0.998 ± 0.001 0.998 ± 0.001 0.9 ± 0.136
Subscapularis 0.933 ± 0.041 0.671 ± 0 0.932 ± 0.06 0.956 ± 0.017 0.969 ± 0.017 0.868 ± 0.166 0.987 ± 0.009
Teres Minor 0.955 ± 0.029 0.774 ± 0 0.956 ± 0.014 0.929 ± 0.043 0.933 ± 0.021 0.992 ± 0.008 0.971 ± 0.005
Teres Major 0.968 ± 0.026 0.999 ± 0 0.991 ± 0.004 0.903 ± 0.08 0.896 ± 0.041 0.997 ± 0.001 0.981 ± 0.011
Coracobrachialis 0.868 ± 0.061 0.6 ± 0 0.741 ± 0.072 0.974 ± 0.003 0.985 ± 0.013 0.961 ± 0.025 0.981 ± 0.014
Triceps Brachii Long 0.997 ± 0.002 0.934 ± 0 0.992 ± 0.004 0.962 ± 0.01 0.997 ± 0.001 0.999 ± 0 0.995 ± 0.002
Triceps Brachii Medial 0.949 ± 0.02 0.922 ± 0 0.949 ± 0.031 0.985 ± 0.003 0.985 ± 0.006 0.958 ± 0.039 0.987 ± 0.004
Triceps Brachii Lateral 0.962 ± 0.024 0.839 ± 0 0.961 ± 0.026 0.985 ± 0 0.979 ± 0.017 0.915 ± 0.064 0.89 ± 0.147
Biceps Short 0.978 ± 0.02 0.997 ± 0 0.988 ± 0.006 0.982 ± 0.006 0.959 ± 0 0.995 ± 0.005 0.976 ± 0.027
Biceps Long 0.982 ± 0.009 0.961 ± 0 0.997 ± 0.001 0.993 ± 0.001 0.998 ± 0.001 0.998 ± 0.001 0.997 ± 0.001
Brachialis 0.998 ± 0.001 0.984 ± 0 0.998 ± 0.001 0.976 ± 0.015 0.998 ± 0.001 1 ± 0 0.999 ± 0.001
Brachioradialis 0.989 ± 0.008 0.996 ± 0 0.986 ± 0.01 0.994 ± 0.006 0.993 ± 0.003 0.992 ± 0.007 0.995 ± 0.003
Supinator 0.998 ± 0.001 0.899 ± 0 0.996 ± 0.003 0.967 ± 0.011 1 ± 0 0.995 ± 0.005 0.997 ± 0.003
Pronator Teres 0.948 ± 0.033 0.979 ± 0 0.885 ± 0.073 0.991 ± 0.006 0.999 ± 0 0.999 ± 0 0.879 ± 0.17
Flexor Carpi Radialis 0.91 ± 0.026 0.951 ± 0 0.818 ± 0.052 0.899 ± 0.028 0.94 ± 0.008 0.96 ± 0.008 0.69 ± 0.233
Flexor Carpi Ulnaris 0.902 ± 0.045 0.948 ± 0 0.876 ± 0.103 0.984 ± 0 0.968 ± 0.005 0.954 ± 0.038 0.762 ± 0.311
Extensor Carpi Radialis Long 0.978 ± 0.011 0.987 ± 0 0.956 ± 0.019 0.981 ± 0.025 0.95 ± 0.061 0.946 ± 0.048 0.853 ± 0.204
Extensor Carpi Radialis Brevis 0.983 ± 0.012 0.999 ± 0 1 ± 0 1 ± 0 0.926 ± 0.028 0.985 ± 0.009 1 ± 0
Extensor Carpi Ulnaris 0.962 ± 0.018 0.806 ± 0 0.958 ± 0.027 0.846 ± 0.098 0.979 ± 0.005 0.989 ± 0.005 0.975 ± 0.003
Total 0.965 ± 0.0337 0.905 ± 0.102 0.961 ± 0.0579 0.958 ± 0.0431 0.969 ± 0.0384 0.977 ± 0.0333 0.953 ± 0.07
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Table A.10: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for each muscle while reaching the target 5. For healthy
subjects, this shows the intervariability within the healthy population. A1 corresponds
to the first assessment, A4 to the final one. The final row correspond to the overall
mean of these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 5
S1 S2 S3

Target 5 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.971 ± 0.016 0.984 ± 0 0.984 ± 0.014 0.995 ± 0 0.982 ± 0.003 0.981 ± 0.013 0.966 ± 0.02
Serratus Anterior Superior 0.951 ± 0.03 0.967 ± 0 0.989 ± 0.004 0.875 ± 0 0.968 ± 0.012 0.95 ± 0.003 0.909 ± 0.095
Serratus Anterior Middle 0.986 ± 0.005 0.981 ± 0 0.996 ± 0.003 0.974 ± 0 0.994 ± 0.005 0.991 ± 0.008 0.97 ± 0.027
Serratus Anterior Inferior 0.997 ± 0.001 1 ± 0 0.998 ± 0.002 0.998 ± 0 0.997 ± 0.002 1 ± 0 1 ± 0
Trapezius C1 0.998 ± 0.001 1 ± 0 1 ± 0 0.997 ± 0 1 ± 0 1 ± 0 0.998 ± 0.002
Trapezius C7 0.986 ± 0.013 0.994 ± 0 1 ± 0 0.999 ± 0 0.998 ± 0.002 0.995 ± 0.007 1 ± 0
Trapezius T1 0.996 ± 0.002 0.999 ± 0 0.998 ± 0.001 0.996 ± 0 0.995 ± 0.005 0.998 ± 0.001 0.999 ± 0
Trapezius T2 - T7 0.985 ± 0.009 0.976 ± 0 0.999 ± 0 0.996 ± 0 0.996 ± 0.001 0.997 ± 0.003 0.999 ± 0.001
Levator Scapulae 0.984 ± 0.007 0.991 ± 0 0.994 ± 0.004 0.993 ± 0 0.991 ± 0.003 0.998 ± 0.001 0.996 ± 0.002
Rhomboid Minor 0.994 ± 0.003 0.994 ± 0 0.998 ± 0.002 0.998 ± 0 0.995 ± 0.001 0.997 ± 0.002 0.999 ± 0
Rhomboid Major T1 - T2 0.988 ± 0.01 0.99 ± 0 0.995 ± 0.004 0.994 ± 0 0.995 ± 0.002 0.997 ± 0.003 0.998 ± 0
Rhomboid Major T3 - T4 0.99 ± 0.006 0.999 ± 0 0.997 ± 0.001 0.998 ± 0 0.996 ± 0.001 0.997 ± 0.003 0.962 ± 0.044
Pectoralis Minor 0.942 ± 0.019 0.94 ± 0 0.973 ± 0.01 0.705 ± 0 0.952 ± 0.009 0.967 ± 0.042 0.91 ± 0.09
Pectoralis Major Clavicular 0.978 ± 0.015 0.996 ± 0 0.987 ± 0.011 0.998 ± 0 0.991 ± 0 0.982 ± 0.003 0.981 ± 0.025
Pectoralis Major Sternal 0.954 ± 0.029 0.991 ± 0 0.871 ± 0.093 0.943 ± 0 0.971 ± 0.021 0.995 ± 0.003 0.983 ± 0.022
Pectoralis Major Ribs 0.935 ± 0.024 0.947 ± 0 0.852 ± 0.14 0.966 ± 0 0.948 ± 0.008 0.989 ± 0.009 0.843 ± 0.004
Latissimus Dorsi Thoracic 0.986 ± 0.006 0.915 ± 0 0.961 ± 0.016 0.982 ± 0 0.997 ± 0.001 0.908 ± 0.105 0.934 ± 0.079
Latissimus Dorsi Lumbar 0.963 ± 0.026 0.971 ± 0 0.951 ± 0.046 0.781 ± 0 0.98 ± 0.014 0.937 ± 0.071 0.983 ± 0.007
Latissimus Dorsi Iliac 0.946 ± 0.035 0.906 ± 0 0.907 ± 0.094 0.715 ± 0 0.968 ± 0.027 0.885 ± 0.098 0.93 ± 0.054
Deltoid Clavicular (Ant) 0.975 ± 0.012 0.998 ± 0 0.985 ± 0.011 0.965 ± 0 0.94 ± 0.05 0.992 ± 0.005 0.99 ± 0.003
Deltoid Acromial (Mid) 0.955 ± 0.031 0.985 ± 0 0.99 ± 0.005 0.969 ± 0 0.882 ± 0.086 0.988 ± 0.005 0.975 ± 0.002
Deltoid Scapular (Post) 0.992 ± 0.004 0.997 ± 0 0.997 ± 0.003 0.984 ± 0 0.997 ± 0 0.995 ± 0.002 0.994 ± 0.004
Supraspinatus 0.928 ± 0.04 0.924 ± 0 0.992 ± 0.007 0.997 ± 0 0.903 ± 0.045 0.878 ± 0.08 0.992 ± 0.001
Infraspinatus 0.976 ± 0.012 0.995 ± 0 0.998 ± 0.001 0.993 ± 0 0.995 ± 0.003 0.977 ± 0.032 0.999 ± 0
Subscapularis 0.978 ± 0.012 0.924 ± 0 0.967 ± 0.012 0.948 ± 0 0.988 ± 0 0.933 ± 0.088 0.943 ± 0.037
Teres Minor 0.905 ± 0.072 0.978 ± 0 0.947 ± 0.036 0.85 ± 0 0.972 ± 0.025 0.963 ± 0.027 0.983 ± 0.001
Teres Major 0.965 ± 0.039 0.97 ± 0 0.975 ± 0.017 0.627 ± 0 0.987 ± 0.011 0.99 ± 0.005 0.966 ± 0.029
Coracobrachialis 0.936 ± 0.024 0.975 ± 0 0.863 ± 0.114 0.978 ± 0 0.88 ± 0.091 0.969 ± 0.034 0.976 ± 0.005
Triceps Brachii Long 0.989 ± 0.006 0.99 ± 0 0.997 ± 0.002 0.978 ± 0 0.998 ± 0.001 0.999 ± 0 0.999 ± 0
Triceps Brachii Medial 0.954 ± 0.038 0.965 ± 0 0.975 ± 0.018 0.988 ± 0 0.889 ± 0.089 0.988 ± 0.003 0.987 ± 0.003
Triceps Brachii Lateral 0.952 ± 0.019 0.986 ± 0 0.944 ± 0.058 0.973 ± 0 0.973 ± 0.003 0.968 ± 0.017 0.987 ± 0.004
Biceps Short 0.988 ± 0.006 0.997 ± 0 0.998 ± 0.002 0.997 ± 0 0.995 ± 0.003 0.997 ± 0.003 0.995 ± 0.001
Biceps Long 0.988 ± 0.011 0.999 ± 0 0.999 ± 0.001 0.996 ± 0 1 ± 0 0.991 ± 0.011 0.996 ± 0.001
Brachialis 0.996 ± 0.002 0.999 ± 0 0.999 ± 0.001 0.997 ± 0 0.993 ± 0.006 0.999 ± 0 0.999 ± 0
Brachioradialis 0.988 ± 0.01 0.998 ± 0 0.992 ± 0.009 0.99 ± 0 0.991 ± 0.003 0.992 ± 0.007 0.98 ± 0.006
Supinator 0.996 ± 0.002 1 ± 0 0.993 ± 0.005 0.993 ± 0 0.999 ± 0 0.995 ± 0.006 0.994 ± 0
Pronator Teres 0.986 ± 0.006 1 ± 0 0.97 ± 0.023 0.998 ± 0 0.999 ± 0 0.997 ± 0.003 0.949 ± 0.069
Flexor Carpi Radialis 0.909 ± 0.049 0.917 ± 0 0.878 ± 0.075 0.637 ± 0 0.97 ± 0.001 0.927 ± 0.047 0.691 ± 0.043
Flexor Carpi Ulnaris 0.943 ± 0.034 0.988 ± 0 0.986 ± 0.009 0.988 ± 0 0.923 ± 0.055 0.982 ± 0 0.954 ± 0.049
Extensor Carpi Radialis Long 0.982 ± 0.009 0.999 ± 0 0.999 ± 0 0.999 ± 0 0.992 ± 0.004 0.959 ± 0.058 0.998 ± 0.001
Extensor Carpi Radialis Brevis 0.957 ± 0.015 0.988 ± 0 0.988 ± 0 0.988 ± 0 0.915 ± 0.058 0.984 ± 0.004 0.988 ± 0
Extensor Carpi Ulnaris 0.968 ± 0.016 0.987 ± 0 0.934 ± 0.042 0.961 ± 0 0.875 ± 0.14 0.994 ± 0.003 0.987 ± 0
Total 0.97 ± 0.0243 0.979 ± 0.0267 0.972 ± 0.0405 0.945 ± 0.1 0.971 ± 0.0377 0.977 ± 0.0308 0.969 ± 0.0543

119



Chapter A Appendix

Table A.11: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for each muscle while reaching the target 7. For healthy
subjects, this shows the intervariability within the healthy population. A1 corresponds
to the first assessment, A4 to the final one. The final row correspond to the overall
mean of these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 7
S1 S2 S3

Target 7 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.962 ± 0.013 0.907 ± 0 0.98 ± 0.009 0.958 ± 0 0.96 ± 0.052 0.997 ± 0.001 0.988 ± 0
Serratus Anterior Superior 0.945 ± 0.031 0.963 ± 0 0.978 ± 0.016 0.971 ± 0 0.95 ± 0.026 0.917 ± 0.052 0.913 ± 0.015
Serratus Anterior Middle 0.979 ± 0.01 0.997 ± 0 0.971 ± 0.013 0.981 ± 0 0.987 ± 0.012 0.991 ± 0.006 0.984 ± 0.002
Serratus Anterior Inferior 0.996 ± 0.003 0.996 ± 0 0.996 ± 0.004 0.998 ± 0 0.993 ± 0.002 1 ± 0 1 ± 0
Trapezius C1 0.999 ± 0.001 1 ± 0 0.997 ± 0.002 0.996 ± 0 0.999 ± 0 0.999 ± 0 0.998 ± 0
Trapezius C7 0.967 ± 0.029 0.996 ± 0 0.989 ± 0.005 0.993 ± 0 0.993 ± 0.009 0.998 ± 0.001 0.998 ± 0.001
Trapezius T1 0.985 ± 0.006 0.991 ± 0 0.992 ± 0.003 0.996 ± 0 0.983 ± 0.019 0.995 ± 0.003 0.998 ± 0
Trapezius T2 - T7 0.985 ± 0.004 0.993 ± 0 0.991 ± 0.007 0.996 ± 0 0.974 ± 0.028 0.991 ± 0.006 0.995 ± 0.005
Levator Scapulae 0.958 ± 0.018 0.971 ± 0 0.988 ± 0.001 0.997 ± 0 0.96 ± 0.008 0.978 ± 0.004 0.978 ± 0.001
Rhomboid Minor 0.984 ± 0.006 0.985 ± 0 0.993 ± 0.006 0.998 ± 0 0.983 ± 0.012 0.998 ± 0.002 0.999 ± 0.001
Rhomboid Major T1 - T2 0.986 ± 0.01 0.989 ± 0 0.988 ± 0.011 0.994 ± 0 0.987 ± 0.011 0.996 ± 0.002 0.996 ± 0.003
Rhomboid Major T3 - T4 0.994 ± 0.004 0.999 ± 0 0.999 ± 0.001 0.992 ± 0 0.997 ± 0.003 0.998 ± 0.002 0.995 ± 0.003
Pectoralis Minor 0.889 ± 0.027 0.982 ± 0 0.943 ± 0.032 0.888 ± 0 0.957 ± 0.025 0.901 ± 0.097 0.875 ± 0.004
Pectoralis Major Clavicular 0.992 ± 0.003 0.99 ± 0 0.994 ± 0.003 0.986 ± 0 0.992 ± 0.009 0.996 ± 0.001 0.997 ± 0.001
Pectoralis Major Sternal 0.985 ± 0.005 0.997 ± 0 0.975 ± 0.011 0.986 ± 0 0.996 ± 0.002 0.997 ± 0.002 0.995 ± 0
Pectoralis Major Ribs 0.921 ± 0.035 0.827 ± 0 0.975 ± 0.018 0.893 ± 0 0.94 ± 0.054 0.961 ± 0.014 0.944 ± 0.038
Latissimus Dorsi Thoracic 0.951 ± 0.03 0.996 ± 0 0.988 ± 0.005 0.977 ± 0 0.992 ± 0.005 0.954 ± 0.026 0.94 ± 0.027
Latissimus Dorsi Lumbar 0.925 ± 0.037 0.854 ± 0 0.938 ± 0.033 0.768 ± 0 0.919 ± 0.05 0.946 ± 0.037 0.979 ± 0.002
Latissimus Dorsi Iliac 0.86 ± 0.052 0.636 ± 0 0.717 ± 0.083 0.839 ± 0 0.859 ± 0.114 0.913 ± 0.017 0.953 ± 0.024
Deltoid Clavicular (Ant) 0.993 ± 0.002 0.999 ± 0 0.999 ± 0.001 0.991 ± 0 0.982 ± 0.006 0.998 ± 0.001 0.992 ± 0.004
Deltoid Acromial (Mid) 0.987 ± 0.006 0.993 ± 0 0.997 ± 0.002 0.997 ± 0 0.987 ± 0.004 1 ± 0 0.997 ± 0
Deltoid Scapular (Post) 0.962 ± 0.031 0.996 ± 0 0.998 ± 0.001 0.98 ± 0 0.987 ± 0.006 0.992 ± 0.002 0.967 ± 0.021
Supraspinatus 0.967 ± 0.019 0.99 ± 0 0.957 ± 0.007 0.961 ± 0 0.975 ± 0.023 0.974 ± 0.009 0.998 ± 0
Infraspinatus 0.976 ± 0.009 0.973 ± 0 0.989 ± 0.009 0.989 ± 0 0.963 ± 0.034 0.984 ± 0.004 0.994 ± 0.005
Subscapularis 0.974 ± 0.013 0.976 ± 0 0.96 ± 0.018 0.886 ± 0 0.974 ± 0.01 0.983 ± 0.017 0.965 ± 0.008
Teres Minor 0.921 ± 0.042 0.909 ± 0 0.965 ± 0.013 0.924 ± 0 0.871 ± 0.087 0.938 ± 0.025 0.957 ± 0.043
Teres Major 0.921 ± 0.047 0.777 ± 0 0.945 ± 0.042 0.834 ± 0 0.961 ± 0.032 0.979 ± 0.016 0.961 ± 0.026
Coracobrachialis 0.965 ± 0.016 0.995 ± 0 0.939 ± 0.041 0.999 ± 0 0.992 ± 0.008 0.995 ± 0.001 0.998 ± 0
Triceps Brachii Long 0.992 ± 0.003 0.998 ± 0 0.997 ± 0.002 0.995 ± 0 0.996 ± 0.004 0.999 ± 0 0.998 ± 0
Triceps Brachii Medial 0.97 ± 0.035 0.992 ± 0 0.985 ± 0.01 0.999 ± 0 0.951 ± 0.02 0.995 ± 0.006 1 ± 0
Triceps Brachii Lateral 0.966 ± 0.034 0.997 ± 0 0.992 ± 0.006 0.991 ± 0 0.986 ± 0.016 0.965 ± 0.029 0.993 ± 0.001
Biceps Short 0.975 ± 0.018 0.992 ± 0 0.996 ± 0.004 0.992 ± 0 0.997 ± 0.003 0.998 ± 0.002 0.992 ± 0.007
Biceps Long 0.981 ± 0.017 1 ± 0 0.996 ± 0.003 0.984 ± 0 0.998 ± 0.002 0.999 ± 0.001 0.998 ± 0.001
Brachialis 0.986 ± 0.012 0.998 ± 0 0.999 ± 0.001 0.997 ± 0 0.999 ± 0 0.999 ± 0 0.998 ± 0
Brachioradialis 0.989 ± 0.008 0.996 ± 0 0.995 ± 0.004 0.98 ± 0 0.998 ± 0.001 0.993 ± 0.001 0.997 ± 0.003
Supinator 0.998 ± 0.002 0.997 ± 0 0.998 ± 0.002 0.998 ± 0 1 ± 0 0.991 ± 0.012 0.991 ± 0.003
Pronator Teres 0.993 ± 0.003 0.999 ± 0 0.99 ± 0.005 0.988 ± 0 0.998 ± 0.002 0.999 ± 0.001 0.959 ± 0.058
Flexor Carpi Radialis 0.939 ± 0.038 0.96 ± 0 0.879 ± 0.065 0.98 ± 0 0.929 ± 0.027 0.992 ± 0.001 0.856 ± 0.025
Flexor Carpi Ulnaris 0.96 ± 0.028 1 ± 0 0.976 ± 0.017 1 ± 0 0.955 ± 0.005 0.999 ± 0.001 0.985 ± 0.022
Extensor Carpi Radialis Long 0.94 ± 0.043 0.976 ± 0 0.996 ± 0 0.999 ± 0 0.965 ± 0.005 0.99 ± 0.005 0.993 ± 0.004
Extensor Carpi Radialis Brevis 0.968 ± 0.024 1 ± 0 1 ± 0 1 ± 0 0.946 ± 0.003 0.987 ± 0.007 1 ± 0
Extensor Carpi Ulnaris 0.963 ± 0.016 0.99 ± 0 0.929 ± 0.044 0.907 ± 0 0.943 ± 0.025 0.997 ± 0.002 0.988 ± 0.007
Total 0.965 ± 0.0303 0.966 ± 0.0714 0.973 ± 0.0475 0.966 ± 0.0537 0.971 ± 0.0322 0.983 ± 0.0253 0.979 ± 0.0324
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Table A.12: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for each muscle while reaching the target 10. For healthy
subjects, this shows the intervariability within the healthy population. A1 corresponds
to the first assessment, A4 to the final one. The final row correspond to the overall
mean of these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 10
S1 S2 S3

Target 10 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.977 ± 0.006 0.99 ± 0 0.977 ± 0.02 0.995 ± 0 0.991 ± 0.006 0.989 ± 0.012 0.993 ± 0.001
Serratus Anterior Superior 0.941 ± 0.033 0.953 ± 0 0.966 ± 0.024 0.927 ± 0 0.977 ± 0.019 0.934 ± 0.057 0.916 ± 0.015
Serratus Anterior Middle 0.969 ± 0.013 0.955 ± 0 0.995 ± 0.004 0.996 ± 0 0.982 ± 0.01 0.989 ± 0.003 0.983 ± 0.002
Serratus Anterior Inferior 0.995 ± 0.002 0.997 ± 0 0.998 ± 0.002 0.99 ± 0 0.995 ± 0.004 0.999 ± 0 0.993 ± 0.005
Trapezius C1 0.998 ± 0.001 0.98 ± 0 0.999 ± 0 0.995 ± 0 0.996 ± 0.004 1 ± 0 0.998 ± 0.001
Trapezius C7 0.991 ± 0.007 0.965 ± 0 0.998 ± 0.001 0.995 ± 0 0.969 ± 0.025 0.985 ± 0.017 0.995 ± 0.001
Trapezius T1 0.995 ± 0.002 0.999 ± 0 0.996 ± 0.004 0.976 ± 0 0.984 ± 0.007 0.996 ± 0.001 0.982 ± 0.012
Trapezius T2 - T7 0.984 ± 0.01 0.989 ± 0 0.981 ± 0.013 0.995 ± 0 0.995 ± 0 0.984 ± 0.018 0.991 ± 0.003
Levator Scapulae 0.981 ± 0.008 0.997 ± 0 0.996 ± 0.004 0.997 ± 0 0.985 ± 0.017 0.992 ± 0.004 0.995 ± 0.001
Rhomboid Minor 0.992 ± 0.002 0.996 ± 0 0.998 ± 0.003 0.996 ± 0 0.99 ± 0.01 0.999 ± 0 0.995 ± 0.002
Rhomboid Major T1 - T2 0.992 ± 0.007 0.997 ± 0 0.997 ± 0.004 0.997 ± 0 0.994 ± 0.006 0.992 ± 0.01 0.993 ± 0.006
Rhomboid Major T3 - T4 0.991 ± 0.003 0.958 ± 0 0.997 ± 0.002 0.989 ± 0 0.985 ± 0.01 0.992 ± 0.002 0.993 ± 0.001
Pectoralis Minor 0.931 ± 0.027 0.98 ± 0 0.917 ± 0.042 0.938 ± 0 0.975 ± 0.019 0.951 ± 0.029 0.968 ± 0.022
Pectoralis Major Clavicular 0.962 ± 0.027 0.868 ± 0 0.969 ± 0.035 0.99 ± 0 0.993 ± 0.005 0.998 ± 0 0.964 ± 0.037
Pectoralis Major Sternal 0.913 ± 0.07 0.767 ± 0 0.89 ± 0.123 0.843 ± 0 0.974 ± 0.02 0.909 ± 0.117 0.924 ± 0.095
Pectoralis Major Ribs 0.881 ± 0.065 0.811 ± 0 0.69 ± 0.179 0.851 ± 0 0.886 ± 0.042 0.96 ± 0.002 0.963 ± 0
Latissimus Dorsi Thoracic 0.981 ± 0.008 0.983 ± 0 0.993 ± 0.008 0.986 ± 0 0.98 ± 0.007 0.815 ± 0.221 0.861 ± 0.142
Latissimus Dorsi Lumbar 0.915 ± 0.062 0.994 ± 0 0.951 ± 0.084 0.897 ± 0 0.962 ± 0.026 0.858 ± 0.181 0.756 ± 0.125
Latissimus Dorsi Iliac 0.885 ± 0.083 0.995 ± 0 0.98 ± 0.026 0.926 ± 0 0.885 ± 0.006 0.838 ± 0.184 0.641 ± 0.056
Deltoid Clavicular (Ant) 0.955 ± 0.019 0.817 ± 0 0.961 ± 0.032 0.901 ± 0 0.991 ± 0 0.984 ± 0.019 0.99 ± 0.001
Deltoid Acromial (Mid) 0.963 ± 0.023 0.976 ± 0 0.989 ± 0.009 0.985 ± 0 0.977 ± 0.001 0.995 ± 0.004 0.996 ± 0.002
Deltoid Scapular (Post) 0.976 ± 0.011 0.958 ± 0 0.998 ± 0.001 0.974 ± 0 0.99 ± 0.003 0.995 ± 0.007 0.99 ± 0.008
Supraspinatus 0.968 ± 0.015 0.898 ± 0 0.936 ± 0.05 0.979 ± 0 0.915 ± 0.035 0.97 ± 0.014 0.942 ± 0.019
Infraspinatus 0.977 ± 0.009 0.92 ± 0 0.998 ± 0.002 0.992 ± 0 0.977 ± 0.003 0.986 ± 0.011 0.996 ± 0.002
Subscapularis 0.978 ± 0.013 0.848 ± 0 0.951 ± 0.064 0.78 ± 0 0.965 ± 0.017 0.866 ± 0.173 0.91 ± 0.107
Teres Minor 0.864 ± 0.053 0.932 ± 0 0.894 ± 0.118 0.909 ± 0 0.983 ± 0.006 0.895 ± 0.092 0.952 ± 0.005
Teres Major 0.932 ± 0.045 0.999 ± 0 0.986 ± 0.023 0.896 ± 0 0.993 ± 0.008 0.995 ± 0.006 0.792 ± 0.223
Coracobrachialis 0.913 ± 0.049 0.867 ± 0 0.929 ± 0.038 0.978 ± 0 0.975 ± 0.018 0.969 ± 0.022 0.972 ± 0.028
Triceps Brachii Long 0.986 ± 0.005 0.936 ± 0 0.995 ± 0.003 0.909 ± 0 0.977 ± 0.015 0.999 ± 0 0.999 ± 0
Triceps Brachii Medial 0.945 ± 0.029 0.877 ± 0 0.954 ± 0.022 0.993 ± 0 0.84 ± 0.107 0.976 ± 0.018 0.977 ± 0.018
Triceps Brachii Lateral 0.947 ± 0.022 0.691 ± 0 0.996 ± 0.002 0.797 ± 0 0.857 ± 0.043 0.922 ± 0.052 0.846 ± 0.145
Biceps Short 0.986 ± 0.005 0.946 ± 0 0.997 ± 0.002 0.925 ± 0 0.944 ± 0.023 0.99 ± 0.006 0.963 ± 0.027
Biceps Long 0.982 ± 0.013 0.916 ± 0 0.997 ± 0.001 0.936 ± 0 0.953 ± 0.024 0.991 ± 0.005 0.977 ± 0.009
Brachialis 0.995 ± 0.002 0.955 ± 0 0.997 ± 0 0.959 ± 0 0.98 ± 0.005 0.99 ± 0 0.987 ± 0.003
Brachioradialis 0.99 ± 0.004 0.953 ± 0 0.95 ± 0.055 0.804 ± 0 0.957 ± 0.012 0.975 ± 0.028 0.967 ± 0.029
Supinator 0.997 ± 0.002 0.999 ± 0 1 ± 0 0.996 ± 0 0.997 ± 0.002 1 ± 0 0.979 ± 0.007
Pronator Teres 0.987 ± 0.007 0.995 ± 0 0.99 ± 0.003 0.913 ± 0 0.997 ± 0.003 0.971 ± 0.037 0.988 ± 0
Flexor Carpi Radialis 0.876 ± 0.049 0.869 ± 0 0.858 ± 0.098 0.882 ± 0 0.961 ± 0.028 0.916 ± 0.056 0.969 ± 0.009
Flexor Carpi Ulnaris 0.928 ± 0.032 0.992 ± 0 0.867 ± 0.058 0.982 ± 0 0.946 ± 0.047 0.97 ± 0.03 0.995 ± 0.001
Extensor Carpi Radialis Long 0.986 ± 0.01 0.995 ± 0 0.995 ± 0 0.996 ± 0 0.965 ± 0.006 0.952 ± 0.048 0.998 ± 0.001
Extensor Carpi Radialis Brevis 0.948 ± 0.04 0.987 ± 0 0.997 ± 0.001 0.999 ± 0 0.96 ± 0.013 0.995 ± 0.001 0.996 ± 0.001
Extensor Carpi Ulnaris 0.931 ± 0.036 0.754 ± 0 0.994 ± 0.005 0.924 ± 0 0.985 ± 0.012 0.973 ± 0.025 0.979 ± 0.015
Total 0.959 ± 0.0371 0.935 ± 0.0767 0.965 ± 0.0576 0.945 ± 0.0608 0.966 ± 0.0373 0.963 ± 0.0474 0.954 ± 0.0739
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Table A.13: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for each muscle while reaching the target 13. For healthy
subjects, this shows the intervariability within the healthy population. A1 corresponds
to the first assessment, A4 to the final one. The final row correspond to the overall
mean of these values.

Pearson’s correlation coefficient from cumulated sum of the signals activations while reaching target 13
S1 S2 S3

Target 13 Healthy
A1 A4 A1 A4 A1 A4

Subclavius 0.974 ± 0.011 0.917 ± 0 0.965 ± 0.024 0.992 ± 0 0.92 ± 0.072 0.988 ± 0.005 0.969 ± 0.001
Serratus Anterior Superior 0.972 ± 0.011 0.888 ± 0 0.969 ± 0.012 0.965 ± 0 0.977 ± 0.001 0.963 ± 0.006 0.944 ± 0.026
Serratus Anterior Middle 0.97 ± 0.017 0.98 ± 0 0.986 ± 0.011 0.994 ± 0 0.98 ± 0.019 0.981 ± 0.008 0.988 ± 0.004
Serratus Anterior Inferior 0.998 ± 0.001 0.999 ± 0 0.999 ± 0.001 0.998 ± 0 0.997 ± 0.002 0.997 ± 0.001 0.999 ± 0.001
Trapezius C1 0.998 ± 0.001 0.997 ± 0 0.999 ± 0 0.999 ± 0 1 ± 0 0.997 ± 0.001 0.998 ± 0.001
Trapezius C7 0.995 ± 0.003 0.989 ± 0 0.996 ± 0.002 0.998 ± 0 0.99 ± 0.013 0.994 ± 0.004 0.985 ± 0.005
Trapezius T1 0.996 ± 0.003 0.999 ± 0 0.996 ± 0.003 0.998 ± 0 0.994 ± 0.003 0.995 ± 0 0.996 ± 0.002
Trapezius T2 - T7 0.982 ± 0.01 0.989 ± 0 0.986 ± 0.007 0.979 ± 0 0.975 ± 0.018 0.993 ± 0.002 0.985 ± 0.01
Levator Scapulae 0.972 ± 0.016 0.987 ± 0 0.994 ± 0.005 0.976 ± 0 0.988 ± 0.007 0.981 ± 0.011 0.973 ± 0.003
Rhomboid Minor 0.994 ± 0.002 0.998 ± 0 0.996 ± 0.003 0.996 ± 0 0.993 ± 0.004 0.997 ± 0.002 0.999 ± 0.001
Rhomboid Major T1 - T2 0.989 ± 0.005 0.991 ± 0 0.991 ± 0.009 0.97 ± 0 0.992 ± 0.009 0.968 ± 0.017 0.995 ± 0.003
Rhomboid Major T3 - T4 0.993 ± 0.003 0.985 ± 0 0.998 ± 0.001 0.998 ± 0 0.985 ± 0.001 0.999 ± 0 0.982 ± 0.014
Pectoralis Minor 0.943 ± 0.023 0.732 ± 0 0.976 ± 0.009 0.909 ± 0 0.934 ± 0.052 0.9 ± 0.047 0.872 ± 0.033
Pectoralis Major Clavicular 0.993 ± 0.004 0.96 ± 0 0.996 ± 0.004 0.993 ± 0 0.989 ± 0.006 0.993 ± 0.001 0.991 ± 0.005
Pectoralis Major Sternal 0.953 ± 0.025 0.865 ± 0 0.968 ± 0.014 0.939 ± 0 0.973 ± 0.028 0.889 ± 0.098 0.901 ± 0.025
Pectoralis Major Ribs 0.928 ± 0.031 0.896 ± 0 0.91 ± 0.074 0.963 ± 0 0.907 ± 0.065 0.954 ± 0.027 0.916 ± 0.023
Latissimus Dorsi Thoracic 0.967 ± 0.026 0.71 ± 0 0.995 ± 0.002 0.986 ± 0 0.992 ± 0.002 0.958 ± 0.004 0.968 ± 0.025
Latissimus Dorsi Lumbar 0.93 ± 0.025 0.927 ± 0 0.948 ± 0.03 0.938 ± 0 0.93 ± 0.007 0.842 ± 0.087 0.926 ± 0.002
Latissimus Dorsi Iliac 0.937 ± 0.023 0.945 ± 0 0.942 ± 0.039 0.905 ± 0 0.858 ± 0.131 0.766 ± 0.063 0.88 ± 0.051
Deltoid Clavicular (Ant) 0.996 ± 0.002 0.992 ± 0 0.999 ± 0.001 0.988 ± 0 0.994 ± 0.007 0.993 ± 0.006 0.998 ± 0.002
Deltoid Acromial (Mid) 0.997 ± 0.003 0.995 ± 0 0.999 ± 0.001 0.997 ± 0 0.994 ± 0.004 0.996 ± 0.002 0.99 ± 0.002
Deltoid Scapular (Post) 0.976 ± 0.017 0.988 ± 0 0.998 ± 0.001 0.981 ± 0 0.995 ± 0 0.996 ± 0.005 0.961 ± 0.007
Supraspinatus 0.976 ± 0.01 0.929 ± 0 0.982 ± 0.015 0.991 ± 0 0.978 ± 0.004 0.824 ± 0.228 0.903 ± 0.027
Infraspinatus 0.995 ± 0.002 0.983 ± 0 0.995 ± 0.006 0.984 ± 0 0.986 ± 0.014 0.989 ± 0.009 0.991 ± 0.008
Subscapularis 0.938 ± 0.021 0.844 ± 0 0.859 ± 0.055 0.916 ± 0 0.966 ± 0.008 0.956 ± 0.042 0.679 ± 0.049
Teres Minor 0.932 ± 0.032 0.721 ± 0 0.913 ± 0.048 0.91 ± 0 0.969 ± 0.014 0.916 ± 0.034 0.792 ± 0.018
Teres Major 0.934 ± 0.039 0.91 ± 0 0.964 ± 0.027 0.971 ± 0 0.95 ± 0.029 0.984 ± 0.005 0.899 ± 0.048
Coracobrachialis 0.968 ± 0.017 0.991 ± 0 0.98 ± 0.022 0.996 ± 0 0.983 ± 0.018 0.86 ± 0.11 0.995 ± 0.004
Triceps Brachii Long 0.981 ± 0.014 0.99 ± 0 0.984 ± 0.005 0.976 ± 0 0.997 ± 0.001 0.999 ± 0 0.997 ± 0.003
Triceps Brachii Medial 0.976 ± 0.017 0.997 ± 0 0.99 ± 0.01 0.998 ± 0 0.974 ± 0.013 0.987 ± 0.001 0.998 ± 0.001
Triceps Brachii Lateral 0.988 ± 0.008 0.995 ± 0 0.986 ± 0.019 0.995 ± 0 0.987 ± 0.009 0.867 ± 0.142 0.997 ± 0.001
Biceps Short 0.956 ± 0.04 0.972 ± 0 0.982 ± 0.011 0.995 ± 0 0.984 ± 0.017 0.976 ± 0.014 0.976 ± 0.003
Biceps Long 0.967 ± 0.027 0.983 ± 0 0.995 ± 0.003 0.981 ± 0 0.992 ± 0.006 0.961 ± 0.016 0.881 ± 0.042
Brachialis 0.995 ± 0.006 0.996 ± 0 0.996 ± 0.002 0.985 ± 0 0.99 ± 0.01 0.999 ± 0 0.996 ± 0.001
Brachioradialis 0.986 ± 0.01 0.998 ± 0 0.966 ± 0.008 0.987 ± 0 0.992 ± 0.001 0.989 ± 0.003 0.991 ± 0.004
Supinator 0.996 ± 0.002 0.957 ± 0 0.997 ± 0.001 0.963 ± 0 0.999 ± 0 0.993 ± 0.009 0.953 ± 0.003
Pronator Teres 0.996 ± 0.002 0.997 ± 0 0.962 ± 0.013 0.996 ± 0 0.999 ± 0 0.999 ± 0 0.99 ± 0.004
Flexor Carpi Radialis 0.957 ± 0.021 0.944 ± 0 0.964 ± 0.012 0.976 ± 0 0.977 ± 0.017 0.893 ± 0.016 0.874 ± 0.018
Flexor Carpi Ulnaris 0.957 ± 0.017 0.994 ± 0 0.953 ± 0.034 0.995 ± 0 0.909 ± 0.02 0.983 ± 0.019 0.995 ± 0
Extensor Carpi Radialis Long 0.945 ± 0.025 0.989 ± 0 0.978 ± 0.02 0.973 ± 0 0.898 ± 0.048 0.963 ± 0.041 0.988 ± 0.004
Extensor Carpi Radialis Brevis 0.952 ± 0.016 0.976 ± 0 0.977 ± 0 0.978 ± 0 0.94 ± 0.051 0.974 ± 0.003 0.978 ± 0
Extensor Carpi Ulnaris 0.969 ± 0.013 0.882 ± 0 0.928 ± 0.026 0.974 ± 0 0.947 ± 0.064 0.985 ± 0.012 0.965 ± 0.011
Total 0.972 ± 0.0223 0.947 ± 0.0757 0.975 ± 0.0293 0.976 ± 0.0262 0.971 ± 0.0329 0.958 ± 0.0563 0.954 ± 0.0648
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Table A.14: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for the recorded muscles. For healthy subjects, this shows
the inter variability within the healthy population. A1 corresponds to the first assess-
ment, A4 to the final one. These are concatenated by target [1,3,5].

S1 S2 S3|
Healthy A1 A4 A1 A4 A1 A4

Target 1
Trapezius C1 0.997 ± 0.003 0.998 ± 0 0.999 ± 0 0.991 ± 0.01 0.962 ± 0.046 0.988 ± 0.011 0.997 ± 0.003
Trapezius C7 0.993 ± 0.004 0.996 ± 0 0.999 ± 0.001 0.987 ± 0.012 0.991 ± 0.003 0.988 ± 0.012 0.996 ± 0.001
Rhomboid Major T3 - T4 0.992 ± 0.004 0.998 ± 0 0.999 ± 0 0.995 ± 0.006 0.962 ± 0.053 0.997 ± 0.003 0.999 ± 0.001
Pectoralis Major Clavicular 0.99 ± 0.004 0.998 ± 0 0.997 ± 0.001 0.99 ± 0.007 0.978 ± 0.014 0.99 ± 0.013 0.998 ± 0
Latissimus Dorsi Thoracic 0.982 ± 0.008 0.995 ± 0 0.998 ± 0.002 0.996 ± 0.002 0.912 ± 0.115 0.994 ± 0.007 0.998 ± 0
Deltoid Clavicular (Ant) 0.986 ± 0.009 0.995 ± 0 0.998 ± 0.001 0.993 ± 0.008 0.856 ± 0.163 0.985 ± 0.013 0.993 ± 0.002
Deltoid Acromial (Mid) 0.995 ± 0.003 0.994 ± 0 0.991 ± 0.004 0.987 ± 0.011 0.908 ± 0.097 0.992 ± 0 0.989 ± 0.002
Deltoid Scapular (Post) 0.991 ± 0.008 0.995 ± 0 0.998 ± 0.002 0.981 ± 0.02 0.977 ± 0.031 0.996 ± 0.001 0.994 ± 0.002
Infraspinatus 0.994 ± 0.002 0.996 ± 0 0.999 ± 0 0.994 ± 0.006 0.985 ± 0.017 0.996 ± 0.002 0.997 ± 0
Triceps Brachii Long 0.99 ± 0.005 0.995 ± 0 0.997 ± 0.002 0.983 ± 0.014 0.989 ± 0.008 0.989 ± 0.009 0.996 ± 0.001
Triceps Brachii Lateral 0.979 ± 0.016 0.994 ± 0 0.998 ± 0.001 0.986 ± 0.013 0.959 ± 0.055 0.994 ± 0 0.996 ± 0.001
Biceps Short 0.975 ± 0.018 0.994 ± 0 0.999 ± 0 0.983 ± 0.015 0.985 ± 0.02 0.98 ± 0.013 0.997 ± 0.003
Biceps Long 0.972 ± 0.019 0.991 ± 0 0.998 ± 0.001 0.992 ± 0.006 0.953 ± 0.025 0.995 ± 0.005 0.997 ± 0.002
Brachialis 0.985 ± 0.013 0.997 ± 0 0.987 ± 0.007 0.992 ± 0.011 0.984 ± 0.02 1 ± 0 0.989 ± 0.009
Brachioradialis 0.989 ± 0.008 0.999 ± 0 0.978 ± 0.017 0.993 ± 0.001 0.982 ± 0.008 0.999 ± 0.001 0.983 ± 0.014
Pronator Teres 0.967 ± 0.037 0.999 ± 0 0.996 ± 0.002 0.986 ± 0.004 0.97 ± 0.04 0.983 ± 0.009 0.998 ± 0.001
Total 0.986 ± 0.00886 0.996 ± 0.00214 0.996 ± 0.00594 0.989 ± 0.00458 0.959 ± 0.0373 0.992 ± 0.0057 0.995 ± 0.0043
Target 3
Trapezius C1 0.994 ± 0.006 0.926 ± 0 0.995 ± 0.004 0.984 ± 0.002 0.999 ± 0 0.995 ± 0 0.927 ± 0.031
Trapezius C7 0.987 ± 0.01 0.916 ± 0 0.997 ± 0.002 0.977 ± 0.001 0.998 ± 0 0.997 ± 0.003 0.985 ± 0
Rhomboid Major T3 - T4 0.986 ± 0.012 0.98 ± 0 0.998 ± 0.001 0.974 ± 0.01 0.996 ± 0.004 1 ± 0 0.997 ± 0
Pectoralis Major Clavicular 0.947 ± 0.036 0.941 ± 0 0.988 ± 0.008 0.98 ± 0.022 0.968 ± 0.029 0.996 ± 0.002 0.999 ± 0
Latissimus Dorsi Thoracic 0.979 ± 0.011 0.929 ± 0 0.999 ± 0.001 0.982 ± 0.001 0.999 ± 0.001 0.998 ± 0.002 0.991 ± 0.001
Deltoid Clavicular (Ant) 0.982 ± 0.013 0.881 ± 0 0.996 ± 0.002 0.975 ± 0.011 0.984 ± 0.001 0.992 ± 0.007 0.964 ± 0.023
Deltoid Acromial (Mid) 0.997 ± 0.002 0.861 ± 0 0.99 ± 0.003 0.965 ± 0.003 0.983 ± 0.001 0.997 ± 0 0.989 ± 0.006
Deltoid Scapular (Post) 0.995 ± 0.003 0.889 ± 0 0.997 ± 0.003 0.955 ± 0.011 0.991 ± 0.002 0.998 ± 0.001 0.974 ± 0.01
Infraspinatus 0.996 ± 0.002 0.937 ± 0 0.999 ± 0.001 0.98 ± 0 0.996 ± 0 0.998 ± 0 0.998 ± 0.001
Triceps Brachii Long 0.997 ± 0.001 0.951 ± 0 0.991 ± 0.008 0.972 ± 0.003 0.995 ± 0.002 0.997 ± 0.001 0.982 ± 0.017
Triceps Brachii Lateral 0.961 ± 0.024 0.9 ± 0 0.99 ± 0.005 0.966 ± 0.009 0.989 ± 0.008 0.998 ± 0.001 0.995 ± 0
Biceps Short 0.974 ± 0.024 0.916 ± 0 0.997 ± 0.002 0.969 ± 0 0.993 ± 0.001 0.992 ± 0.011 0.95 ± 0.004
Biceps Long 0.981 ± 0.01 0.887 ± 0 0.998 ± 0.001 0.977 ± 0.009 0.999 ± 0 0.99 ± 0.011 0.978 ± 0.024
Brachialis 0.998 ± 0.002 0.959 ± 0 0.984 ± 0.011 0.982 ± 0.008 0.983 ± 0.012 0.996 ± 0.002 0.977 ± 0.007
Brachioradialis 0.987 ± 0.008 0.98 ± 0 0.97 ± 0.018 0.99 ± 0.001 0.993 ± 0.003 0.999 ± 0.001 0.961 ± 0.014
Pronator Teres 0.939 ± 0.039 0.997 ± 0 0.992 ± 0.004 0.99 ± 0.009 0.993 ± 0.001 0.993 ± 0.007 0.997 ± 0.002
Total 0.981 ± 0.018 0.928 ± 0.0391 0.993 ± 0.00741 0.976 ± 0.00929 0.991 ± 0.00826 0.996 ± 0.00286 0.979 ± 0.0201
Target 5
Trapezius C1 0.998 ± 0.001 0.999 ± 0 0.998 ± 0.001 0.993 ± 0 0.999 ± 0 0.997 ± 0.003 0.969 ± 0.035
Trapezius C7 0.986 ± 0.012 1 ± 0 0.998 ± 0.001 0.995 ± 0 0.998 ± 0.001 0.996 ± 0.003 0.996 ± 0.001
Rhomboid Major T3 - T4 0.99 ± 0.006 1 ± 0 0.997 ± 0.001 0.99 ± 0 0.993 ± 0.005 0.998 ± 0.001 0.995 ± 0.005
Pectoralis Major Clavicular 0.978 ± 0.015 0.994 ± 0 0.993 ± 0.003 0.998 ± 0 0.996 ± 0.002 0.995 ± 0.006 0.946 ± 0.07
Latissimus Dorsi Thoracic 0.979 ± 0.007 0.998 ± 0 0.99 ± 0.003 0.986 ± 0 0.985 ± 0.005 0.999 ± 0 0.995 ± 0
Deltoid Clavicular (Ant) 0.968 ± 0.014 0.991 ± 0 0.991 ± 0.002 0.973 ± 0 0.956 ± 0.014 0.995 ± 0 0.944 ± 0.064
Deltoid Acromial (Mid) 0.936 ± 0.04 0.998 ± 0 0.988 ± 0.006 0.96 ± 0 0.97 ± 0.018 0.999 ± 0 0.988 ± 0.013
Deltoid Scapular (Post) 0.991 ± 0.004 0.999 ± 0 0.999 ± 0.001 0.984 ± 0 0.993 ± 0.006 1 ± 0 0.995 ± 0.002
Infraspinatus 0.976 ± 0.011 1 ± 0 0.991 ± 0.005 0.984 ± 0 0.99 ± 0.005 0.999 ± 0.001 0.993 ± 0.003
Triceps Brachii Long 0.989 ± 0.006 0.995 ± 0 0.998 ± 0.001 0.992 ± 0 0.999 ± 0 0.998 ± 0 0.997 ± 0.003
Triceps Brachii Lateral 0.944 ± 0.027 0.995 ± 0 0.995 ± 0.005 0.975 ± 0 0.996 ± 0.001 0.999 ± 0 0.999 ± 0
Biceps Short 0.987 ± 0.007 0.995 ± 0 0.997 ± 0.002 0.982 ± 0 0.996 ± 0.001 0.993 ± 0.008 0.979 ± 0.004
Biceps Long 0.982 ± 0.015 0.999 ± 0 0.993 ± 0.005 0.977 ± 0 0.986 ± 0.008 0.977 ± 0.022 0.978 ± 0.003
Brachialis 0.995 ± 0.004 0.998 ± 0 0.998 ± 0.001 0.982 ± 0 0.988 ± 0.004 0.999 ± 0.001 0.977 ± 0.018
Brachioradialis 0.986 ± 0.012 0.997 ± 0 0.989 ± 0.012 0.992 ± 0 0.997 ± 0.002 1 ± 0 0.94 ± 0.013
Pronator Teres 0.986 ± 0.006 0.999 ± 0 0.996 ± 0.002 0.99 ± 0 0.997 ± 0.003 0.991 ± 0.012 0.98 ± 0.001
Total 0.979 ± 0.0171 0.997 ± 0.00246 0.995 ± 0.00373 0.985 ± 0.00997 0.99 ± 0.0118 0.996 ± 0.0057 0.979 ± 0.02
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Table A.15: Pearson’s correlation coefficient from cumulated activations between
healthy and patients’ ones for the recorded muscles. For healthy subjects, this shows
the inter variability within the healthy population. A1 corresponds to the first assess-
ment, A4 to the final one. These are concatenated by target [7,10,13].

S1 S2 S3
Healthy A1 A4 A1 A4 A1 A4

Target 7
Trapezius C1 0.998 ± 0.001 1 ± 0 0.996 ± 0.003 0.993 ± 0 0.995 ± 0.004 0.997 ± 0.002 0.992 ± 0.004
Trapezius C7 0.965 ± 0.031 0.998 ± 0 0.997 ± 0.002 0.99 ± 0 0.998 ± 0.002 0.998 ± 0.002 0.985 ± 0.012
Rhomboid Major T3 - T4 0.994 ± 0.004 0.998 ± 0 0.999 ± 0.001 0.982 ± 0 0.999 ± 0 0.997 ± 0.002 0.995 ± 0.002
Pectoralis Major Clavicular 0.991 ± 0.003 0.994 ± 0 0.997 ± 0.002 0.994 ± 0 0.99 ± 0.013 0.997 ± 0.001 0.99 ± 0.007
Latissimus Dorsi Thoracic 0.951 ± 0.03 0.997 ± 0 0.996 ± 0.003 0.987 ± 0 0.997 ± 0.001 0.997 ± 0.003 0.99 ± 0.002
Deltoid Clavicular (Ant) 0.993 ± 0.003 0.997 ± 0 0.998 ± 0.001 0.99 ± 0 0.983 ± 0.012 0.995 ± 0.006 0.991 ± 0.001
Deltoid Acromial (Mid) 0.986 ± 0.007 0.999 ± 0 0.996 ± 0.003 0.992 ± 0 0.975 ± 0.001 1 ± 0 0.968 ± 0.017
Deltoid Scapular (Post) 0.954 ± 0.038 0.998 ± 0 1 ± 0 0.991 ± 0 0.989 ± 0.01 0.999 ± 0 0.974 ± 0.001
Infraspinatus 0.971 ± 0.015 0.993 ± 0 0.996 ± 0.002 0.981 ± 0 0.992 ± 0.004 0.996 ± 0.002 0.981 ± 0.012
Triceps Brachii Long 0.991 ± 0.003 1 ± 0 0.998 ± 0.001 0.985 ± 0 0.996 ± 0.004 0.998 ± 0.001 0.999 ± 0.001
Triceps Brachii Lateral 0.968 ± 0.03 0.999 ± 0 0.998 ± 0.001 0.994 ± 0 0.995 ± 0.005 1 ± 0 0.998 ± 0
Biceps Short 0.972 ± 0.02 0.995 ± 0 0.999 ± 0.001 0.991 ± 0 0.999 ± 0.001 0.995 ± 0.004 0.991 ± 0.005
Biceps Long 0.981 ± 0.018 0.998 ± 0 0.998 ± 0.001 0.983 ± 0 0.996 ± 0.005 0.998 ± 0.003 0.996 ± 0.002
Brachialis 0.983 ± 0.015 0.993 ± 0 0.995 ± 0.003 0.975 ± 0 0.993 ± 0.006 0.999 ± 0.001 0.992 ± 0.004
Brachioradialis 0.987 ± 0.011 0.996 ± 0 0.99 ± 0.01 0.974 ± 0 0.999 ± 0.001 0.999 ± 0 0.986 ± 0.001
Pronator Teres 0.993 ± 0.003 0.999 ± 0 0.999 ± 0 0.961 ± 0 0.998 ± 0.001 0.994 ± 0.003 0.998 ± 0.001
Total 0.98 ± 0.0147 0.997 ± 0.00223 0.997 ± 0.00238 0.985 ± 0.00913 0.993 ± 0.00669 0.998 ± 0.00181 0.989 ± 0.00866
Target 10
Trapezius C1 0.998 ± 0.001 0.946 ± 0 0.999 ± 0.001 0.992 ± 0 0.99 ± 0.008 0.998 ± 0.001 0.992 ± 0.004
Trapezius C7 0.991 ± 0.007 0.928 ± 0 0.998 ± 0.002 0.993 ± 0 0.98 ± 0.02 0.991 ± 0.006 0.994 ± 0.001
Rhomboid Major T3 - T4 0.992 ± 0.002 0.978 ± 0 0.998 ± 0.001 0.98 ± 0 0.984 ± 0.011 0.995 ± 0.003 0.995 ± 0.004
Pectoralis Major Clavicular 0.962 ± 0.027 0.967 ± 0 0.993 ± 0.005 0.998 ± 0 0.998 ± 0.002 0.999 ± 0 0.993 ± 0.006
Latissimus Dorsi Thoracic 0.973 ± 0.008 0.962 ± 0 0.998 ± 0.002 0.984 ± 0 0.998 ± 0.001 0.998 ± 0.001 0.996 ± 0.002
Deltoid Clavicular (Ant) 0.957 ± 0.018 0.883 ± 0 0.995 ± 0.002 0.943 ± 0 0.986 ± 0.013 0.998 ± 0 0.982 ± 0
Deltoid Acromial (Mid) 0.96 ± 0.024 0.859 ± 0 0.985 ± 0.015 0.9 ± 0 0.987 ± 0.012 0.999 ± 0 0.972 ± 0.017
Deltoid Scapular (Post) 0.975 ± 0.012 0.901 ± 0 0.989 ± 0.007 0.903 ± 0 0.993 ± 0.005 0.999 ± 0 0.992 ± 0.001
Infraspinatus 0.973 ± 0.011 0.931 ± 0 0.999 ± 0.001 0.965 ± 0 0.98 ± 0.014 0.987 ± 0.011 0.994 ± 0.006
Triceps Brachii Long 0.983 ± 0.006 0.957 ± 0 0.995 ± 0.003 0.945 ± 0 0.977 ± 0.002 0.998 ± 0.001 0.994 ± 0.002
Triceps Brachii Lateral 0.959 ± 0.017 0.88 ± 0 0.998 ± 0.001 0.863 ± 0 0.933 ± 0.028 0.993 ± 0.002 0.993 ± 0.002
Biceps Short 0.987 ± 0.005 0.859 ± 0 0.997 ± 0.002 0.909 ± 0 0.969 ± 0.018 0.986 ± 0.003 0.977 ± 0.018
Biceps Long 0.982 ± 0.015 0.804 ± 0 0.999 ± 0 0.914 ± 0 0.936 ± 0.009 0.991 ± 0.003 0.971 ± 0.012
Brachialis 0.996 ± 0.002 0.913 ± 0 0.999 ± 0.001 0.92 ± 0 0.961 ± 0.015 0.994 ± 0.001 0.955 ± 0.04
Brachioradialis 0.99 ± 0.004 0.92 ± 0 0.999 ± 0 0.919 ± 0 0.963 ± 0.02 0.993 ± 0.001 0.944 ± 0.042
Pronator Teres 0.987 ± 0.007 0.981 ± 0 0.998 ± 0.001 0.815 ± 0 0.97 ± 0.011 0.987 ± 0.014 0.982 ± 0.015
Total 0.979 ± 0.0138 0.917 ± 0.05 0.996 ± 0.00409 0.934 ± 0.0512 0.975 ± 0.0194 0.994 ± 0.00456 0.983 ± 0.0155
Target 13
Trapezius C1 0.997 ± 0.001 0.992 ± 0 0.998 ± 0.001 0.994 ± 0 0.998 ± 0.002 0.997 ± 0.003 0.994 ± 0.002
Trapezius C7 0.994 ± 0.003 0.978 ± 0 0.993 ± 0.003 0.986 ± 0 0.992 ± 0.009 0.999 ± 0 0.985 ± 0.001
Rhomboid Major T3 - T4 0.994 ± 0.002 0.998 ± 0 0.984 ± 0.007 0.975 ± 0 0.999 ± 0.001 0.998 ± 0.002 0.984 ± 0.005
Pectoralis Major Clavicular 0.989 ± 0.006 0.966 ± 0 0.999 ± 0.001 0.965 ± 0 0.969 ± 0.015 0.999 ± 0 0.993 ± 0.003
Latissimus Dorsi Thoracic 0.968 ± 0.023 0.989 ± 0 0.998 ± 0.003 0.995 ± 0 0.996 ± 0.001 0.995 ± 0.003 0.997 ± 0.003
Deltoid Clavicular (Ant) 0.994 ± 0.004 0.946 ± 0 0.998 ± 0.001 0.989 ± 0 0.996 ± 0.004 0.995 ± 0 0.984 ± 0.002
Deltoid Acromial (Mid) 0.997 ± 0.002 0.91 ± 0 0.997 ± 0.001 0.991 ± 0 0.994 ± 0.007 0.993 ± 0 0.937 ± 0.017
Deltoid Scapular (Post) 0.967 ± 0.021 0.986 ± 0 0.997 ± 0.002 0.978 ± 0 0.997 ± 0.001 0.998 ± 0 0.984 ± 0.009
Infraspinatus 0.995 ± 0.002 0.989 ± 0 0.99 ± 0.005 0.984 ± 0 0.994 ± 0.007 0.999 ± 0 0.99 ± 0
Triceps Brachii Long 0.977 ± 0.018 0.997 ± 0 0.985 ± 0.008 0.989 ± 0 0.994 ± 0.003 0.995 ± 0.001 0.996 ± 0.001
Triceps Brachii Lateral 0.979 ± 0.014 0.959 ± 0 0.991 ± 0.004 0.987 ± 0 0.989 ± 0.003 0.997 ± 0.001 0.992 ± 0.008
Biceps Short 0.946 ± 0.047 0.987 ± 0 0.996 ± 0.004 0.992 ± 0 0.997 ± 0.003 0.994 ± 0.005 0.997 ± 0
Biceps Long 0.962 ± 0.031 0.982 ± 0 0.998 ± 0.001 0.991 ± 0 0.989 ± 0.011 0.988 ± 0.005 0.999 ± 0
Brachialis 0.99 ± 0.009 0.995 ± 0 0.985 ± 0.008 0.991 ± 0 0.998 ± 0 0.995 ± 0.004 0.99 ± 0.003
Brachioradialis 0.981 ± 0.015 0.996 ± 0 0.978 ± 0.014 0.996 ± 0 0.999 ± 0.001 1 ± 0 0.97 ± 0.016
Pronator Teres 0.995 ± 0.002 0.999 ± 0 0.99 ± 0.004 0.996 ± 0 0.996 ± 0.001 0.994 ± 0.001 0.996 ± 0.002
Total 0.983 ± 0.0151 0.979 ± 0.0238 0.992 ± 0.00645 0.987 ± 0.00843 0.993 ± 0.00731 0.996 ± 0.00298 0.987 ± 0.0151
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Table A.16: RMSE values from activations between healthy and patients’ ones for the
recorded muscles. For healthy subjects, this shows the inter variability within the
healthy population. A1 corresponds to the first assessment, A4 to the final one. These
are concatenated by target [1,3,5].

S1 S2 S3
Healthy A1 A4 A1 A4 A1 A4

Target 1
Trapezius C1 0.128 ± 0.038 0.1 ± 0 0.121 ± 0.023 0.125 ± 0.035 0.189 ± 0.076 0.248 ± 0.001 0.246 ± 0.044
Trapezius C7 0.128 ± 0.035 0.142 ± 0 0.105 ± 0.027 0.139 ± 0.038 0.182 ± 0.051 0.247 ± 0.004 0.257 ± 0.035
Rhomboid Major T3 - T4 0.095 ± 0.038 0.164 ± 0 0.076 ± 0.014 0.134 ± 0.073 0.133 ± 0.065 0.102 ± 0.008 0.15 ± 0.015
Pectoralis Major Clavicular 0.092 ± 0.025 0.071 ± 0 0.068 ± 0.006 0.073 ± 0 0.101 ± 0.003 0.101 ± 0.002 0.15 ± 0.003
Latissimus Dorsi Thoracic 0.121 ± 0.048 0.13 ± 0 0.072 ± 0.012 0.11 ± 0.018 0.201 ± 0.104 0.227 ± 0.014 0.233 ± 0.021
Deltoid Clavicular (Ant) 0.128 ± 0.03 0.146 ± 0 0.102 ± 0.017 0.127 ± 0.02 0.275 ± 0.105 0.331 ± 0.026 0.32 ± 0.026
Deltoid Acromial (Mid) 0.137 ± 0.034 0.139 ± 0 0.168 ± 0.032 0.147 ± 0.029 0.242 ± 0.099 0.165 ± 0.005 0.303 ± 0.023
Deltoid Scapular (Post) 0.138 ± 0.04 0.107 ± 0 0.054 ± 0.013 0.151 ± 0.042 0.157 ± 0.077 0.147 ± 0.002 0.214 ± 0.019
Infraspinatus 0.1 ± 0.053 0.091 ± 0 0.177 ± 0.029 0.168 ± 0.056 0.141 ± 0.02 0.148 ± 0.016 0.145 ± 0.027
Triceps Brachii Long 0.096 ± 0.035 0.129 ± 0 0.095 ± 0.01 0.152 ± 0.022 0.128 ± 0.054 0.189 ± 0.016 0.199 ± 0.002
Triceps Brachii Lateral 0.11 ± 0.035 0.088 ± 0 0.054 ± 0.01 0.179 ± 0.011 0.115 ± 0.081 0.158 ± 0.01 0.18 ± 0.012
Biceps Short 0.097 ± 0.036 0.1 ± 0 0.066 ± 0.005 0.169 ± 0.017 0.125 ± 0.08 0.209 ± 0.009 0.165 ± 0.028
Biceps Long 0.085 ± 0.046 0.174 ± 0 0.084 ± 0.012 0.129 ± 0.02 0.161 ± 0.003 0.186 ± 0.002 0.177 ± 0.001
Brachialis 0.067 ± 0.03 0.064 ± 0 0.099 ± 0.007 0.096 ± 0.023 0.123 ± 0.003 0.145 ± 0.002 0.105 ± 0.019
Brachioradialis 0.067 ± 0.032 0.069 ± 0 0.187 ± 0.01 0.095 ± 0.002 0.178 ± 0.154 0.088 ± 0.003 0.083 ± 0.017
Pronator Teres 0.09 ± 0.042 0.046 ± 0 0.055 ± 0.009 0.132 ± 0.006 0.084 ± 0.047 0.129 ± 0.005 0.124 ± 0.009
Total 0.105 ± 0.023 0.11 ± 0.0378 0.099 ± 0.0437 0.133 ± 0.029 0.158 ± 0.0511 0.176 ± 0.0645 0.191 ± 0.0678
Target 3
Trapezius C1 0.095 ± 0.031 0.164 ± 0 0.115 ± 0.022 0.129 ± 0.033 0.211 ± 0.027 0.141 ± 0.069 0.189 ± 0.009
Trapezius C7 0.116 ± 0.03 0.201 ± 0 0.103 ± 0.013 0.145 ± 0.005 0.076 ± 0.009 0.198 ± 0.054 0.258 ± 0.008
Rhomboid Major T3 - T4 0.111 ± 0.05 0.107 ± 0 0.129 ± 0.01 0.164 ± 0.078 0.088 ± 0.004 0.122 ± 0.039 0.192 ± 0.005
Pectoralis Major Clavicular 0.069 ± 0.02 0.068 ± 0 0.068 ± 0.014 0.123 ± 0.043 0.062 ± 0.013 0.057 ± 0.005 0.094 ± 0.001
Latissimus Dorsi Thoracic 0.099 ± 0.053 0.16 ± 0 0.072 ± 0.007 0.134 ± 0.04 0.229 ± 0.006 0.143 ± 0.062 0.2 ± 0.008
Deltoid Clavicular (Ant) 0.096 ± 0.029 0.183 ± 0 0.11 ± 0.021 0.14 ± 0.011 0.108 ± 0.018 0.205 ± 0.034 0.219 ± 0.003
Deltoid Acromial (Mid) 0.099 ± 0.035 0.229 ± 0 0.096 ± 0.006 0.141 ± 0.006 0.12 ± 0.022 0.092 ± 0 0.257 ± 0
Deltoid Scapular (Post) 0.149 ± 0.073 0.212 ± 0 0.072 ± 0.008 0.142 ± 0.001 0.082 ± 0.009 0.121 ± 0.041 0.226 ± 0.003
Infraspinatus 0.113 ± 0.05 0.175 ± 0 0.081 ± 0.03 0.175 ± 0.069 0.159 ± 0.033 0.189 ± 0.056 0.212 ± 0.006
Triceps Brachii Long 0.098 ± 0.039 0.171 ± 0 0.142 ± 0.011 0.117 ± 0.003 0.104 ± 0.007 0.194 ± 0.001 0.191 ± 0.006
Triceps Brachii Lateral 0.123 ± 0.047 0.178 ± 0 0.07 ± 0.004 0.139 ± 0.015 0.103 ± 0.022 0.149 ± 0.011 0.182 ± 0.004
Biceps Short 0.072 ± 0.03 0.119 ± 0 0.062 ± 0.013 0.106 ± 0.018 0.068 ± 0.007 0.136 ± 0.036 0.14 ± 0.006
Biceps Long 0.068 ± 0.042 0.121 ± 0 0.066 ± 0.015 0.23 ± 0.059 0.255 ± 0.054 0.144 ± 0 0.136 ± 0.001
Brachialis 0.073 ± 0.042 0.112 ± 0 0.119 ± 0.009 0.215 ± 0.064 0.125 ± 0.005 0.136 ± 0.001 0.138 ± 0.001
Brachioradialis 0.079 ± 0.04 0.105 ± 0 0.089 ± 0.018 0.131 ± 0.065 0.082 ± 0.015 0.113 ± 0.005 0.138 ± 0.003
Pronator Teres 0.099 ± 0.065 0.076 ± 0 0.097 ± 0.017 0.14 ± 0.031 0.078 ± 0.003 0.153 ± 0.027 0.169 ± 0.007
Total 0.097 ± 0.0221 0.149 ± 0.0485 0.093 ± 0.0246 0.148 ± 0.0332 0.122 ± 0.0602 0.143 ± 0.0396 0.184 ± 0.0462
Target 5
Trapezius C1 0.095 ± 0.034 0.092 ± 0 0.078 ± 0.01 0.076 ± 0 0.077 ± 0.024 0.141 ± 0.014 0.16 ± 0.01
Trapezius C7 0.108 ± 0.027 0.06 ± 0 0.072 ± 0.008 0.1 ± 0 0.091 ± 0.005 0.172 ± 0 0.197 ± 0.005
Rhomboid Major T3 - T4 0.087 ± 0.049 0.077 ± 0 0.075 ± 0.008 0.079 ± 0 0.067 ± 0.001 0.053 ± 0.003 0.088 ± 0.008
Pectoralis Major Clavicular 0.075 ± 0.022 0.044 ± 0 0.101 ± 0.024 0.201 ± 0 0.14 ± 0.009 0.071 ± 0.023 0.119 ± 0.018
Latissimus Dorsi Thoracic 0.063 ± 0.033 0.029 ± 0 0.054 ± 0.002 0.097 ± 0 0.179 ± 0.011 0.065 ± 0.015 0.093 ± 0.007
Deltoid Clavicular (Ant) 0.073 ± 0.025 0.073 ± 0 0.065 ± 0.01 0.093 ± 0 0.089 ± 0.005 0.099 ± 0.006 0.097 ± 0.002
Deltoid Acromial (Mid) 0.058 ± 0.019 0.039 ± 0 0.075 ± 0.021 0.083 ± 0 0.071 ± 0.004 0.085 ± 0.005 0.103 ± 0
Deltoid Scapular (Post) 0.109 ± 0.054 0.085 ± 0 0.053 ± 0.005 0.113 ± 0 0.077 ± 0 0.06 ± 0.008 0.149 ± 0.003
Infraspinatus 0.064 ± 0.028 0.032 ± 0 0.056 ± 0.02 0.108 ± 0 0.131 ± 0.038 0.077 ± 0.009 0.084 ± 0.008
Triceps Brachii Long 0.067 ± 0.03 0.091 ± 0 0.087 ± 0.01 0.099 ± 0 0.045 ± 0.008 0.111 ± 0.003 0.108 ± 0.002
Triceps Brachii Lateral 0.076 ± 0.035 0.037 ± 0 0.043 ± 0.006 0.072 ± 0 0.179 ± 0.04 0.046 ± 0.031 0.088 ± 0.006
Biceps Short 0.073 ± 0.042 0.046 ± 0 0.045 ± 0.008 0.078 ± 0 0.102 ± 0.047 0.117 ± 0.001 0.096 ± 0.007
Biceps Long 0.054 ± 0.03 0.082 ± 0 0.063 ± 0.009 0.109 ± 0 0.082 ± 0.01 0.093 ± 0.001 0.084 ± 0.005
Brachialis 0.062 ± 0.03 0.065 ± 0 0.102 ± 0.007 0.131 ± 0 0.103 ± 0.012 0.126 ± 0.002 0.116 ± 0.01
Brachioradialis 0.083 ± 0.04 0.074 ± 0 0.066 ± 0.023 0.113 ± 0 0.191 ± 0.046 0.112 ± 0.001 0.126 ± 0.019
Pronator Teres 0.077 ± 0.043 0.059 ± 0 0.068 ± 0.011 0.146 ± 0 0.074 ± 0.002 0.159 ± 0.008 0.145 ± 0.01
Total 0.076 ± 0.0165 0.062 ± 0.0213 0.069 ± 0.0175 0.106 ± 0.0324 0.106 ± 0.0447 0.099 ± 0.0375 0.116 ± 0.0322
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Table A.17: RMSE values from activations between healthy and patients’ ones for the
recorded muscles. For healthy subjects, this shows the inter variability within the
healthy population. A1 corresponds to the first assessment, A4 to the final one. These
are concatenated by target [7,10,13].

S1 S2 S3
Healthy A1 A4 A1 A4 A1 A4

Target 7
Trapezius C1 0.131 ± 0.049 0.199 ± 0 0.121 ± 0.018 0.112 ± 0 0.093 ± 0.03 0.207 ± 0.03 0.204 ± 0.006
Trapezius C7 0.129 ± 0.048 0.12 ± 0 0.079 ± 0.01 0.11 ± 0 0.084 ± 0.029 0.181 ± 0.013 0.174 ± 0.013
Rhomboid Major T3 - T4 0.075 ± 0.037 0.185 ± 0 0.063 ± 0.016 0.096 ± 0 0.064 ± 0.01 0.051 ± 0.004 0.087 ± 0.002
Pectoralis Major Clavicular 0.121 ± 0.026 0.144 ± 0 0.1 ± 0.005 0.126 ± 0 0.155 ± 0.048 0.181 ± 0.051 0.251 ± 0.012
Latissimus Dorsi Thoracic 0.086 ± 0.038 0.081 ± 0 0.056 ± 0.006 0.137 ± 0 0.131 ± 0.009 0.132 ± 0.013 0.123 ± 0.007
Deltoid Clavicular (Ant) 0.104 ± 0.04 0.118 ± 0 0.084 ± 0.008 0.141 ± 0 0.137 ± 0.025 0.224 ± 0.01 0.198 ± 0.003
Deltoid Acromial (Mid) 0.075 ± 0.027 0.127 ± 0 0.06 ± 0.009 0.099 ± 0 0.139 ± 0.092 0.041 ± 0.001 0.126 ± 0.003
Deltoid Scapular (Post) 0.107 ± 0.024 0.045 ± 0 0.032 ± 0.006 0.09 ± 0 0.099 ± 0.047 0.057 ± 0.008 0.133 ± 0
Infraspinatus 0.065 ± 0.039 0.114 ± 0 0.11 ± 0.017 0.174 ± 0 0.107 ± 0.089 0.065 ± 0.03 0.077 ± 0.001
Triceps Brachii Long 0.078 ± 0.037 0.09 ± 0 0.116 ± 0.014 0.087 ± 0 0.101 ± 0.02 0.148 ± 0.005 0.147 ± 0
Triceps Brachii Lateral 0.087 ± 0.03 0.053 ± 0 0.044 ± 0.006 0.128 ± 0 0.174 ± 0.058 0.058 ± 0.025 0.1 ± 0.012
Biceps Short 0.09 ± 0.044 0.119 ± 0 0.054 ± 0.011 0.094 ± 0 0.085 ± 0.072 0.145 ± 0.032 0.102 ± 0.012
Biceps Long 0.073 ± 0.04 0.228 ± 0 0.075 ± 0.017 0.126 ± 0 0.207 ± 0.128 0.132 ± 0.001 0.112 ± 0.005
Brachialis 0.072 ± 0.037 0.071 ± 0 0.131 ± 0.008 0.155 ± 0 0.114 ± 0.018 0.146 ± 0.004 0.099 ± 0
Brachioradialis 0.071 ± 0.037 0.056 ± 0 0.069 ± 0.015 0.129 ± 0 0.304 ± 0.056 0.102 ± 0.007 0.094 ± 0.012
Pronator Teres 0.095 ± 0.046 0.041 ± 0 0.077 ± 0.019 0.188 ± 0 0.092 ± 0.007 0.187 ± 0.005 0.155 ± 0.014
Total 0.091 ± 0.0214 0.112 ± 0.0559 0.079 ± 0.0291 0.125 ± 0.0297 0.13 ± 0.0593 0.129 ± 0.0596 0.136 ± 0.049
Target 10
Trapezius C1 0.102 ± 0.029 0.154 ± 0 0.094 ± 0.015 0.087 ± 0 0.151 ± 0.097 0.135 ± 0.051 0.134 ± 0.008
Trapezius C7 0.112 ± 0.036 0.186 ± 0 0.083 ± 0.006 0.117 ± 0 0.156 ± 0.016 0.198 ± 0.032 0.195 ± 0.018
Rhomboid Major T3 - T4 0.119 ± 0.036 0.101 ± 0 0.107 ± 0.014 0.115 ± 0 0.115 ± 0.028 0.14 ± 0.015 0.169 ± 0.01
Pectoralis Major Clavicular 0.065 ± 0.025 0.053 ± 0 0.09 ± 0.029 0.089 ± 0 0.166 ± 0.029 0.058 ± 0.035 0.079 ± 0.006
Latissimus Dorsi Thoracic 0.065 ± 0.029 0.084 ± 0 0.06 ± 0.011 0.099 ± 0 0.1 ± 0.029 0.074 ± 0.022 0.076 ± 0.013
Deltoid Clavicular (Ant) 0.08 ± 0.026 0.118 ± 0 0.063 ± 0.011 0.108 ± 0 0.092 ± 0.01 0.092 ± 0 0.079 ± 0.005
Deltoid Acromial (Mid) 0.063 ± 0.016 0.151 ± 0 0.131 ± 0.05 0.101 ± 0 0.093 ± 0.004 0.068 ± 0.002 0.099 ± 0.011
Deltoid Scapular (Post) 0.118 ± 0.04 0.141 ± 0 0.105 ± 0.055 0.146 ± 0 0.122 ± 0.002 0.087 ± 0.008 0.157 ± 0.014
Infraspinatus 0.108 ± 0.033 0.16 ± 0 0.072 ± 0.019 0.131 ± 0 0.13 ± 0.05 0.158 ± 0.04 0.152 ± 0.017
Triceps Brachii Long 0.121 ± 0.049 0.149 ± 0 0.096 ± 0.019 0.148 ± 0 0.134 ± 0 0.162 ± 0.007 0.161 ± 0.001
Triceps Brachii Lateral 0.148 ± 0.048 0.169 ± 0 0.083 ± 0.031 0.18 ± 0 0.182 ± 0.027 0.137 ± 0.035 0.179 ± 0.01
Biceps Short 0.141 ± 0.051 0.175 ± 0 0.098 ± 0.025 0.169 ± 0 0.13 ± 0.006 0.193 ± 0.012 0.166 ± 0.003
Biceps Long 0.134 ± 0.068 0.22 ± 0 0.117 ± 0.037 0.148 ± 0 0.146 ± 0.007 0.187 ± 0.001 0.175 ± 0
Brachialis 0.143 ± 0.037 0.215 ± 0 0.193 ± 0.01 0.204 ± 0 0.234 ± 0 0.251 ± 0.001 0.23 ± 0.004
Brachioradialis 0.137 ± 0.058 0.218 ± 0 0.159 ± 0.014 0.186 ± 0 0.154 ± 0.023 0.218 ± 0.007 0.207 ± 0.022
Pronator Teres 0.107 ± 0.053 0.112 ± 0 0.062 ± 0.002 0.211 ± 0 0.164 ± 0.004 0.196 ± 0.011 0.19 ± 0.005
Total 0.11 ± 0.0286 0.15 ± 0.0481 0.101 ± 0.036 0.14 ± 0.0406 0.142 ± 0.0362 0.147 ± 0.0585 0.153 ± 0.0475
Target 13
Trapezius C1 0.133 ± 0.035 0.215 ± 0 0.136 ± 0.035 0.116 ± 0 0.112 ± 0.006 0.234 ± 0.004 0.192 ± 0.006
Trapezius C7 0.128 ± 0.038 0.206 ± 0 0.159 ± 0.021 0.099 ± 0 0.137 ± 0.061 0.207 ± 0.015 0.17 ± 0.009
Rhomboid Major T3 - T4 0.069 ± 0.027 0.052 ± 0 0.075 ± 0.013 0.102 ± 0 0.062 ± 0.026 0.081 ± 0.004 0.098 ± 0.005
Pectoralis Major Clavicular 0.108 ± 0.041 0.165 ± 0 0.077 ± 0.009 0.124 ± 0 0.122 ± 0.02 0.084 ± 0.028 0.188 ± 0.004
Latissimus Dorsi Thoracic 0.118 ± 0.039 0.223 ± 0 0.081 ± 0.02 0.095 ± 0 0.093 ± 0.013 0.231 ± 0.009 0.189 ± 0.005
Deltoid Clavicular (Ant) 0.116 ± 0.026 0.344 ± 0 0.101 ± 0.012 0.172 ± 0 0.13 ± 0.028 0.358 ± 0.003 0.327 ± 0.007
Deltoid Acromial (Mid) 0.115 ± 0.039 0.301 ± 0 0.095 ± 0.011 0.185 ± 0 0.123 ± 0.006 0.164 ± 0.001 0.306 ± 0.007
Deltoid Scapular (Post) 0.123 ± 0.039 0.18 ± 0 0.051 ± 0.008 0.094 ± 0 0.094 ± 0.008 0.137 ± 0.001 0.19 ± 0.003
Infraspinatus 0.08 ± 0.042 0.116 ± 0 0.197 ± 0.055 0.126 ± 0 0.148 ± 0.104 0.121 ± 0.018 0.09 ± 0.006
Triceps Brachii Long 0.101 ± 0.045 0.242 ± 0 0.126 ± 0.035 0.123 ± 0 0.147 ± 0.059 0.254 ± 0.006 0.251 ± 0
Triceps Brachii Lateral 0.116 ± 0.041 0.182 ± 0 0.128 ± 0.041 0.088 ± 0 0.1 ± 0.011 0.146 ± 0.043 0.195 ± 0.002
Biceps Short 0.101 ± 0.032 0.192 ± 0 0.074 ± 0.009 0.095 ± 0 0.101 ± 0.044 0.238 ± 0.005 0.165 ± 0
Biceps Long 0.085 ± 0.028 0.178 ± 0 0.07 ± 0.007 0.102 ± 0 0.298 ± 0.011 0.221 ± 0.001 0.204 ± 0.003
Brachialis 0.083 ± 0.033 0.154 ± 0 0.099 ± 0.021 0.092 ± 0 0.151 ± 0.016 0.181 ± 0 0.103 ± 0.005
Brachioradialis 0.075 ± 0.045 0.095 ± 0 0.204 ± 0.049 0.108 ± 0 0.199 ± 0.069 0.1 ± 0.002 0.089 ± 0.007
Pronator Teres 0.089 ± 0.042 0.077 ± 0 0.086 ± 0.018 0.105 ± 0 0.093 ± 0.004 0.162 ± 0.011 0.142 ± 0.006
Total 0.102 ± 0.0199 0.183 ± 0.0767 0.11 ± 0.0452 0.114 ± 0.028 0.132 ± 0.0548 0.182 ± 0.0734 0.181 ± 0.0703
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