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Abstract

This thesis delves into the potential of magnetic fusion energy, and in particular focuses
on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D)
magnetic fields that confine a thermonuclear plasma in a topologically toroidal volume,
and thus do not, in general, require an externally driven plasma current. This is one of
the main advantages of the stellarator, as the absence of strong currents in the plasma
makes it intrinsically more stable than his cousin, the tokamak. It also comes at a price,
since the stellarator needs to break axisymmetry to provide confinement, which is a
major engineering challenge.

The fusion performance in stellarators increases with β, i.e. the plasma pressure
normalized by the magnetic pressure. At finite pressure however, the plasma generates
additional currents, and therefore its own magnetic field, that adds up to the vacuum
magnetic field generated by the external coils. The computation of the vacuum field
produced by the external coils is thus not sufficient to design, optimize, operate, and
interpret experimental results. Instead, it is crucial to compute the magnetohydrody-
namical (MHD) equilibrium, which takes into account the non-linear contributions from
the plasma.

Of particular interest is the magnetic field line topology of 3D magnetic equilibria.
These equilibria are in general composed of nested magnetic surfaces, magnetic islands
and chaotic field lines, where the latter two topologies are, in general, detrimental to
core confinement. Configurations with large regions filled with nested magnetic surfaces
are thus usually sought. While it is possible to design stellarators with nested magnetic
surfaces in vacuum, the plasma contribution to the total magnetic field can destroy the
carefully designed magnetic surfaces at finite plasma β, thereby setting the maximum
achievable β in stellarators, and ultimately limiting their performance.

This thesis investigates the effect of pressure and currents generated by the plasma on
the topology of magnetic field lines in MHD equilibria. Tools to compute free-boundary
3D MHD equilibria with magnetic islands and chaotic field lines are presented and
extended. In particular, the Stepped Pressure Equilibrium Code (SPEC) is expanded to
allow the prescription of the net toroidal current profile, and is used to perform large
parameter scans to identify the equilibrium β-limits in different stellarator geometries,
taking into account the effect of the bootstrap current. New measures are developed to
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Abstract

evaluate the amount of chaotic field lines in an equilibrium, and to calculate their impact
on particle transport. An analytical model is then proposed to explain the numerical
results and expose the underlying scaling laws. Finally, this thesis explores the use of
SIMSOPT, a python optimization framework, to optimize a configuration equilibrium
β-limit.

Broadly, this thesis contributes to the ongoing research on magnetic fusion reactors and
the potential of nuclear fusion as a clean, safe, and abundant energy source. Specifically,
it provides a better understanding of the effect of pressure on the topology of magnetic
field lines in MHD equilibria, and how it impacts the performance of the stellarator.
Additionally, this thesis gives insight into how optimizations can improve the performance
of the stellarator and increase the equilibrium β-limit.

Keywords: nuclear fusion, plasma, stellarator, magnetohydrodynamic, equilibrium,
chaos, optimization
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Résumé

Cette thèse s’intéresse au potentiel des réacteurs à fusion magnétique, en se concentrant
en particulier sur le concept de stellarator. Les stellarators utilisent des bobines externes
pour produire un champ magnétique tridimensionnel (3D) qui confine un plasma thermo-
nucléaire dans un tore, et ne nécessite donc pas, en général, de conduire un courant dans
le plasma. C’est l’un des principaux avantages du stellarator, car l’absence de courants
dans le plasma le rend plus stable que son cousin le tokamak. Cela a également un
prix, car le stellarator doit briser l’axisymétrie pour permettre le confinement, ce qui
complexifie l’ingénierie des machines.

L’efficacité des stellarators augmente avec β, i.e. la pression du plasma normalisée
par la pression magnétique. Cependant, à une pression finie, le plasma génère des
courants supplémentaires, et donc son propre champ magnétique, qui s’ajoute au champ
magnétique du vide généré par les bobines externes. Le calcul du champ produit par
les bobines externes n’est donc pas suffisant pour concevoir, optimiser, exploiter et
interpréter les résultats expérimentaux. Au contraire, il est crucial de calculer l’équilibre
magnétohydrodynamique (MHD), qui prend en compte les contributions non linéaires du
plasma.

La topologie des lignes de champ magnétique des équilibres 3D présente un intérêt
particulier. Ces équilibres sont en général composés de surfaces magnétiques imbriquées,
d’îlots magnétiques et de lignes de champ chaotiques, ces deux dernières topologies
étant, en général, préjudiciables au confinement du plasma. Des configurations avec de
grandes régions remplies de surfaces magnétiques imbriquées sont donc préférables. Bien
qu’il soit possible de concevoir des stellarators avec des surfaces magnétiques imbriquées
dans le vide, la contribution du plasma au champ magnétique total finit par détruire
les surfaces magnétiques soigneusement conçues à une valeure finie de β, fixant ainsi la
valeur maximale réalisable de β dans les stellarators, et limitant leur performance.

Cette thèse étudie l’effet de la pression et des courants générés par le plasma sur
la topologie des lignes de champ magnétique dans les équilibres MHD. Des outils pour
calculer les équilibres MHD 3D avec des îlots magnétiques et des lignes de champ
chaotiques sont présentés et étendus. En particulier, le Stepped Pressure Equilibrium
Code (SPEC) est étendu pour permettre la prescription du profil de courant toroïdal,
et est utilisé pour effectuer de large balayages de paramètres afin d’identifier la limite
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β d’équilibre dans différentes géométries de stellarator, en prenant en compte l’effet du
courant de bootstrap. De nouvelles mesures sont développées pour évaluer la quantité
de lignes de champ chaotiques dans un équilibre, et pour calculer leur impact sur le
transport des particules. Un modèle analytique est ensuite proposé pour expliquer les
résultats numériques et exposer les lois d’échelle sous-jacentes. Enfin, cette thèse explore
l’utilisation de SIMSOPT pour optimiser la limite β d’équilibre d’un stellarator.

De manière générale, cette thèse contribue à mieux comprendre l’effet de la pression
sur la topologie des lignes de champ magnétique dans les équilibres MHD, et son impact
sur les performances du stellarator. En outre, cette thèse donne un aperçu des possibles
optimisations pour améliorer les performances du stellarator et augmenter la limite β
d’équilibre.

Mots clefs : fusion nucléaire, plasma, stellarator, magnetohydrodynamique, équilibre,
chaos, optimisation
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Acronyms

3D 3-dimensional

CPU central processing unit

ECRH electron cyclotron resonance heating

ECCD electron cyclotron current drive

FOCUS flexible optimized coils using space curves

GDP gross domestic product

HBS high beta stellarator

HDI human development index

JET joint european torus

LHD large helical device

MHD magnetohydrodynamic

MPI message passing interface

MRxMHD multi-region relaxed magnetohydrodynamic

NBCD neutron beam current drive

NBI neutral beam injection

NCSX national compact stellarator experiment

QA quasi-axisymmetric

QFM quadratic flux minimizing

QH quasi-helically symmetric

QI quasi-isoynamic
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Acronyms

QP quasi-poloidally symmetric

QS quasi-symmetry

RFP reversed-field pinch

SPEC stepped-pressure equilibrium code

TFTR tokamak fusion test reactor

UNDP United Nations development programme

VMEC variational moment equilibrium code

W7-A Wendelstein 7-A

W7-AS Wendelstein 7-AS

W7-X Wendelstein 7-X
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1 Introduction

In the future, nuclear fusion energy could become one additional source of energy,
alongside existing energy sources, such as nuclear fission, renewable energies or fossil
fuels. In this introduction, we discuss advantages and disadvantages of nuclear fusion as
an energy source. We then focus on the stellarator, which is a nuclear fusion power plant
concept that uses 3-dimensional (3D) magnetic fields to confine a thermonuclear plasma,
in which fusion reactions take place.

1.1 Energy consumption and quality of life

The human development index (HDI) (UNDP, 1990) is a measure of human development,
developed by the United Nations development programme (UNDP) as an alternative
to traditional measures of development, such as the gross domestic product (GDP),
which do not take into account other important dimensions of well-being such as health,
education, and living standards. The HDI is a measure of the average achievements of a
country in these three dimensions, and is calculated using life expectancy at birth, mean
years of schooling, and gross national income per capita. On Figure 1.1, we show the
HDI as a function of the average energy consumption per inhabitant, for a wide range
of different countries. One striking observation is that the HDI grows with the energy
consumption per inhabitant — in other words, the more energy is available, the higher
the quality of life is. This is true up to an upper limit, where increasing the energy
availability further has little to no effect on the life quality.

Indeed, energy is a critical factor in human development because it plays a vital role
in supporting economic growth and improving people’s quality of life. Access to energy
allows people to participate in economic activities, access education and healthcare, and
improve their living standards. For example, access to electricity can enable people to
use lighting or other modern technologies that can improve their living conditions and
increase their productivity. It can also increase access to basic services such as healthcare
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Chapter 1. Introduction

Figure 1.1: Top: HDI versus the average energy consumption per country’s inhabitant.
Size of dots are proportionals to the total country population. Colors indicate the region
the country belongs to, according to the World Bank classification, shown on the bottom
map. The HDI data were obtained from the UNDP website (hdr.undp.org, consulted
on the 26.12.2022), while the energy consumption in each country and its number of
inhabitant were obtained from the World Bank website (data.worldbank.org, consulted
on the 26.12.2022). The data dates from 2014; at the time of writing this thesis, there
were no extensive dataset that postdates 2014.

2
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1.2 The need for a new source of energy

and education. Similarly, the availability of energy can support economic development by
enabling the production of goods and services, improving transportation, communication,
and other essential activities.

While the HDI is a widely used measure of human development, it is important to
recognize its limitations (McGillivray and White, 1993; Bagolin and Comim, 2008; Dervis
and Klugman, 2011). The HDI is based on three indicators, but it does not capture many
other important aspects of human well-being. There have been proposals for alternative
measures of human development that address some of these limitations (see for example
the work by Biggeri and Mauro (2018), and references therein), but none of these have
gained the same level of attention as the HDI. It is also worth considering that there
may be cultures where the concept of happiness and success does not align with having
a high HDI. These philosophical debates about the limitations of the HDI have been
ongoing for many years and are beyond the scope of this thesis. Here, we assume that
development correlates with the HDI, and, according to Figure (1.1), with the available
energy. It is thus primordial to develop an energy source that can support and sustain
the World consumption.

1.2 The need for a new source of energy

There are three main categories of energy sources: renewable energies, fossil fuels, and
nuclear energy. Each energy source has its own advantages and disadvantages, discussed
briefly below. A more extensive discussion can be found in numerous books; for instance,
see Parisi and Ball (2019).

1.2.1 Renewable energies

Renewable energies, such as solar, wind, hydropower, biomass, and geothermal, are not
depleted once consumed and have been in use for centuries. Some examples of renewable
energy include windmills powered by wind, or the use of solar panels to convert solar
rays into electricity. In the recent years, these energy sources have gained increasing
public and private traction as a mean to transition from a fossil energy based economy
to a renewable economy, and fight the anthropologically generated climate change (Allan
et al., 2021). Indeed, one of the main advantages of renewable energy sources is that
they do not release additional greenhouse gases in the atmosphere, which is the main
drive to climate change. In addition, renewable energies are widely available, even in
the most remote areas of the globe. In consequence, the energy production can often
be located close to the energy consumer. Being widely available also contributes to the
geopolitical stability, as there are less dependencies between countries.
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Figure 1.2: Energy consumption by source, for China, Mexico, France, and the World
(Ritchie, 2021).

However, renewable energies also have disadvantages. Their energy density is relatively
low, and large portion of land have to be used for power plants. For example, hydropower
uses about 0.12m2W−1, and solar panels 0.11m2W−1 (if installed on the ground) (Ritchie,
2022). This means that large areas have to be used for energy production, and large
structures have to be built. Another challenge of renewable energy sources is their
intermittent nature - solar panels only produce energy during the day and wind turbines
only when there is wind. Energy storage, such as through water pumping, hydrogen
production, or large batteries, can help mitigate this issue, but it comes with energy
losses and can only be scaled up to meet global demand with massive infrastructural
changes. As a result, renewable energies alone probably cannot provide a consistent
base-load power supply to the grid. In 2021, about 12 % of the total consumed energy in
the World was produced by renewable sources (see Figure 1.2).

1.2.2 Fossil fuels

The second class of energy source is the fossil fuels, such as coal, oil and natural gas.
These fuels are formed from the remains of plants and animals over millions of years.
Once extracted, these fuels can be burnt to generate electricity, power motors, or, in
the case of oil, can be used as raw material to manufacture a wide variety of products,
including plastic, chemicals and pharmaceuticals. These energy sources, thanks to their
high power density, powered the industrial revolution, and are the foundation of our
civilization in the 21st century. Fossil fuels do not suffer from the same shortcomings as
renewable energy sources — they are not intermittent, and can easily be turned on and
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off to follow the demand. Their land usage can be relatively small. For example, gas
power plants use 0.01m2W−1, about ten times less land than renewable energy sources.

They however have many downsides. First and foremost, the consumption of fossil
fuels is one of the main sources of greenhouse gases, which contribute to global warming
and climate change (Allan et al., 2021). Furthermore, the fuel often has to be transported
from its extraction location to the power plant, which requires large infrastructures, and
consumes energy. Fossil fuels are not globally well distributed, which is the source of
multiple inequalities and to numerous geopolitical instabilities around the world. Finally,
being non-renewable, there is only a limited amount of fossil fuels on Earth, which will
eventually run out. Even if all disadvantages of fossil fuels are somehow avoided, our
economy will have to transition away from fossil fuels because of their limited amount.
Given the known reserves and the worldwide consumption of fossil fuels in 2020, coal
supplies will be exhausted in 139 years, oil supplies in 54 years, and gas supplies in 49
years (BP, 2020). All these downsides motivate many to seek alternative energy sources,
i.e. renewable and nuclear energy.

1.2.3 Nuclear energy

The third class of energy source is nuclear energy. Today, nuclear power plants produce
electricity by leveraging the nuclear fission of Uranium. Fission power plants operation
does not generate any greenhouse gases, is not intermittent, and is routinely used to
generate electricity for base-load consumption. The large energy density of Uranium
means that nuclear power plants have the best land use to energy production ratio,
with 2.3 · 10−3m2W−1. Tens of nuclear reactors can be enough to power a country. For
instance, France produced 380TWh in 2021 with 56 reactors, about 70% of its electricity
consumption (World Nuclear Association, 2023).

The Uranium is however not well distributed globally, and is mainly being mined
in Kazakhstan, Canada, Australia and Niger. Again, as for fossil fuels, this uneven
distribution of resources is the source of geopolitical instabilities. Uranium is not
renewable, and the world will eventually run out of fuel. According to the World Nuclear
Association (World Nuclear Association, 2022), the world’s current annual consumption
of uranium is around 61,000 tons per year. If this rate of consumption were to continue,
the known land resources of uranium would last for around 90 years. However, this is
a very rough estimate and does not take into account a number of factors that could
affect the availability and use of uranium, such as the development of breeder reactors,
changes in demand for electricity, or the exploitation of sea-water uranium (4.6 billion
tons of uranium) (Dungan et al., 2017). Another downside to nuclear fission is that the
reaction generates long-lived nuclear wastes dangerous for living organisms. In addition,
the risk of loss of control of the power plant, such as during the infamous accidents of
Chernobyl in 1986 and Fukushima in 2011, can lead to catastrophic releases of nuclear
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material in the atmosphere. New power plant designs, with smaller amount of fission fuel
in their core, and additional safety measures, can however make their use safer. Despite
these disadvantages, nuclear fission is today the only energy source that can generate
the amount of energy our civilization consumes without releasing greenhouse gases and
without the inherent variability of renewable energies.

As of today, there are thus two pathways for future energy production without fossil
fuels: either massive structures are built across the globe to generate enough renewable
energy, or massive funding is invested in developing and constructing new generations of
fission nuclear power plant, or a combination of both. An alternative is to develop a new
source of energy: nuclear fusion.

1.3 Nuclear fusion as a source of energy

Nuclear fusion is the process of forming a nucleus from two, lighter nuclei. This is the
process that powers all stars in the universe, and that is envisaged to power future fusion
nuclear reactors. Nuclear fusion is the opposite of nuclear fission, where two nuclei
are formed by breaking one, heavier nucleus, which is commonly used to power today’s
nuclear fission power plants. The advantages of nuclear fusion as a source of energy are
numerous: the reaction does not generate any greenhouse gases, and, as for fission power
and fossil fuels, is not intermittent. Nuclear fusion does not face the same problems as
nuclear fission regarding nuclear wastes, as the reaction does not produce any radioactive
byproducts. Finally, nuclear fusion reactors are intrinsically safe, as the reaction is not a
chain reaction, and thus cannot undergo a core meltdown as nuclear fission reactors.

Nuclear fusion comes also with its own disadvantages. As of today, the proposed
reactor prototypes are large and expensive to build, and require a large upfront investment.
Reaching the conditions for fusion is extremely difficult, and there is no reactor concepts
that have yet produced net electricity production. The National Ignition Facility (NIF)
recently achieved a net power gain (Bishop, 2022) on the fusion fuel, but is still far from
a net energy gain when taking into account all the power plant energy consumption.
Tokamaks are also getting close to obtaining a net power gain, with for example the
tokamak fusion test reactor (TFTR) tokamak, reaching a peak output over input power
ratio of 0.27 (McGuire et al., 1995), or the joint european torus (JET) reaching an ouput
over input power ratio of a third, sustained other five seconds (Gibney, 2022). Another
disadvantage of nuclear fusion, is that the proposed reactor concepts require large amount
of rare earth materials, for example to build superconducting coils.

In addition, while the fusion reaction does not generate any waste, high energy
neutron fluxes are produced, that would inevitably activate the machine materials, and
generate medium level radioactive waste (Gilbert et al., 2017, 2019; Bailey et al., 2021b,a;
Gonzalez de Vicente et al., 2022). It is hard to predict exactly how much waste would be
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1.3 Nuclear fusion as a source of energy

Figure 1.3: Binding energy per nucleon. Credits: Wikipedia Commons.

produced over the lifetime of a nuclear fusion reactor. Nevertheless, nuclear fusion, in
comparison to fossil fuels and nuclear fission, would certainly produce smaller amounts
of harmful waste.

Atomic nuclei are composed of neutron and protons, and are kept bound together
by the strong nuclear interaction. The binding energy of the nucleon, defined as the
minimum energy required to separate a nucleus as a collection of its nucleons, measures
then how tightly bound a nucleus is. The binding energy per nucleon, shown on Figure 1.3,
is low for hydrogen, grows with atomic number until reaching a maximum for the iron,
and then decreases with increasing atomic number. In general, fusing two nuclei lighter
than iron will then release energy, and so does breaking one nucleus heavier than iron.

Of particular interest for commercial fusion power plants is the fusion of deuterium
2
1H with tritium 3

1H, which generates a nucleus of helium 4
2He with 3.5MeV of kinetic

energy, and a neutron 1
0n with 14.1MeV of kinetic energy (see Figure 1.4),

2
1H + 3

1H → 4
2He( + 3.5 MeV) + 1

0n( + 14.1 MeV). (1.1)

The neutron, which carries most of the reaction energy as kinetic energy, can be slowed
downed in water, which heats the water, creates steam, rotates turbines, and ultimately
generates electricity. Deuterium can be found in sea water, at a concentration of 155

7
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Figure 1.4: Sketch of a Deuterium-Tritium fusion reaction. Credits: Wikipedia Commons.

parts per millions (ppm), while Tritium is found in extremely small quantities on Earth,
but can be produced by exposing lithium to a neutron flux,

6
3Li + 1

0n −−→ 4
2He + 3

1T. (1.2)

Lithium 6 is found in natural lithium, at a concentration of 7.5%. Though lithium is
not equally distributed on Earth, extraction from seawater (Zhao et al., 2019) could
be a future solution to this issue. Among potential fusion reactions, the deuterium-
tritium reaction is the most promising, because the reaction cross-section is the highest.
Nevertheless, deuterium-tritium fusion reactions require a temperature of at least 10keV,
i.e. about 100 millions degrees. At these temperatures, the fuel is a plasma, where
electrons are stripped away from their nuclei. It is a collection of electrons and ions,
interacting with one another, and with external electromagnetic fields. The challenge
is then to confine the plasma for a sufficiently long time such that enough reactions
have the time to occur. More specifically, we define the Q-factor as the ratio of power
generated by the fusion reactions over the input power required to power the reactor,
Q = Pfus/Pin. To get plasma ignition, i.e. to get a plasma where plasma self-heating via
the helium 4

2He energy fully compensates the energy losses, Q = ∞, one can show that
the fusion triple product, defined as the product of the plasma density, n, the plasma
temperature, T , and the energy confinement time, τE , has to satisfy the so-called Lawson
criterion (Lawson, 1957; McNally, 1977),

nTτE > 1.5 · 1021keV s m−3. (1.3)
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In addition, the plasma temperature cannot be too low, otherwise the fusion cross-section
would be too small and Bremsstrahlung losses would fully compensate the generated
fusion power. Note that ignition, while desirable, is not a necessity, and a realistic nuclear
fusion power plant could probably be economically profitable for large, but finite values
of Q. From the Lawson criterion (1.3), one can identify two paths towards a nuclear
fusion power plant: (i) inertial fusion, where one maximizes the density for a very short
amount of time, but does not confine the plasma, or (ii) magnetic confinement, where
one keeps comparatively lower densities, but increases the energy confinement time by
confining the plasma using carefully designed magnetic fields. One particularly important
parameter to assess the performance of a magnetic fusion reactor is the ratio between the
plasma pressure p = nT , with the magnetic pressure, averaged over the plasma volume
VP ,

β = 1
VP

∫∫∫
VP

2µ0p

B2 dv, (1.4)

where µ0 is the vacuum permeability, B is the magnetic field strength, and dv is a volume
element. The fusion triple product, defined in Eq.(1.3), scales with β as

nTτE ∼ B2βτE ∼ β0.81, (1.5)

where the ISS04 scaling (Dinklage et al., 2007) was used to get the dependence of τE on
β. Increasing β thus increases the performance of the magnetic fusion reactor. We will
now focus on one particular design of magnetic confinement reactor called the stellarator,
which we explain in section 1.4.4.

1.4 Magnetic fusion reactor concepts

We discuss here how magnetic fields can be used to confine a plasma. The Virial theorem
(Freidberg, 2014) states that a plasma cannot generate a magnetic field to confine itself;
an external magnetic field needs to be provided. In general, electromagnets are used
to generate the external magnetic field, though configurations with permanent magnets
have also been proposed (Helander et al., 2019; Qian et al., 2022; Zhu et al., 2022). The
first requirement on the magnetic field is that it should be able to confine a single charged
particle inside the magnetic fusion reactor. We thus start by summarizing single particle
dynamics in a magnetic field. Extensive discussion can be found in various textbooks;
see for example Freidberg (2007) or Wesson (2011).
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1.4.1 Single particle confinement

In a magnetic field, single particles move freely along the magnetic field lines, and
rotate around the magnetic field line in the perpendicular plane, thereby describing a
gyromotion, with radius ρ and frequency ω, given by

ρ = v⊥
ω

(1.6)

ω = |q|B
m

, (1.7)

where v⊥ is the velocity of the particle perpendicular to the magnetic field line, q is the
charge of the particle, B is the magnetic field strength, and m is the particle’s mass. The
dynamics of single particles in a magnetic field can be greatly simplified if the magnetic
field varies on scales larger than the gyroradius, ρ|∇B|/B = δb ≪ 1, and if the magnetic
field variations in time are much slower than a gyroperiod, 1/(ωB)∂B/∂t = δt ≪ 1. The
equations of motion can then be averaged over a gyroperiod, and the motion of the
particle is described by the trajectory of its guiding center (see Figure 1.5).

We write the position of the particle as

x = r + ρs, (1.8)

where r is the position of the gyrocenter, and s is a unit vector that rotates with the
gyrophase γ. We require the gyroaverage of the second term on the right-hand side of
Eq.(1.8) to be zero, i.e.

⟨ρs⟩γ = 1
2π

∫ 2π

0
ρsdγ = 0, (1.9)

meaning that the vector r is the gyroaveraged position ⟨x⟩γ = ⟨r⟩γ = r, which we call
the guiding center. The particle velocity is then

v = u + dρs
dt
, (1.10)

with v = dx/dt the particle velocity, and u = dr/dt the guiding center velocity. Taking
the equations of motion,

dv
dt

= q

m
(E + v × B) (1.11)

dx
dt

= v, (1.12)

with E the electric field, one can show that, to the leading order in the expansion
parameters (δb, δt), the guiding center velocity in an electromagnetic field can be written
as a combination of four different drifts (Wesson, 2011),

u = VE + V∇B + Vκ + Vp + v∥b̂, (1.13)
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ρs

r

x

γ

x

r

VE + V∇B + Vκ

u

u∥b̂

Figure 1.5: Sketch of a charged particle trajectory in a magnetic field. Figure (a) shows
the trajectory in the plane perpendicular to the magnetic field, while Figure (b) shows
the 3-dimensional trajectory. The light blue lines are the magnetic field lines, the red
curve is the particle’s trajectory, the black line is the particle’s guiding center trajectory,
and the dark blue arrows are the particle’s velocity vectors.

with v∥ the particle velocity parallel to the magnetic field, b̂ = B/B, and

The E × B drift VE = E × B
B2 (1.14)

The ∇B drift V∇B = ±v2
⊥

2ω
B × ∇B
B2 (1.15)

The curvature drift Vκ = ±
v2

∥
ω

B × ∇B
B2 (1.16)

The polarization drift Vp = ± 1
ωB

dE⊥
dt

, (1.17)

where the positive and negative signs are taken for ions and electrons respectively, E⊥ is
the electric field perpendicular to B, and v⊥ is the particle velocity perpendicular to the
magnetic field. Because of these drifts, the guiding center trajectory does not necessarily
follow a magnetic field line (see Figure 1.5 (b)).
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To confine a plasma, one must then design a magnetic field that does not cancel
anywhere in space — otherwise the plasma would escape through this "hole" in the
magnetic field. A straight magnetic field, B = Bzez confines a charged particle in the
direction perpendicular to the magnetic field, but lets the particle move freely in the
direction parallel to the magnetic field. We therefore also need the magnetic field to
close upon itself. One could attempt to confine the plasma in a torus, using a purely
toroidal magnetic field, B = Beϕ, where eϕ is a unit vector in the toroidal direction. In
this thesis, the toroidal direction is defined as the long way around the torus, and the
poloidal direction as the short way around it (see Figure 1.6). To generate such a field,
circular coils surrounding the plasma poloidally can be used. Assuming that a current Ic
flows through the torus hole, we get, by Ampere’s law, B ∼ Ic/2πR, with R the torus
major radius, i.e. the magnetic field is stronger close to the torus hole, and weaker on
the outer side of the machine, thereby defining a high-field side and a low-field side to
the machine. In such magnetic field, a single particle will experience both a ∇B drift
and a curvature drift in the same vertical direction eZ . Because both drift directions
depend on the sign of the particle electric charge, electrons will drift in the opposite
direction as the ions, and a charge separation will appear. A vertical electric field will
emerge, which, due to the E × B drift, will push the particles outside the torus, thereby
losing confinement (see Figure 1.7). A purely toroidal magnetic field is thus not sufficient
for confining a plasma.

Adding a poloidal component to the magnetic field solves this problem — due to their
motion parallel to the magnetic field lines, particles will move from the upper portion
of the torus to the lower one, and vice versa, which prevents the charge separation to
occur, stops the electric field to emerge, and ultimately provides confinement within the
torus to the particles. A magnetic field with a toroidal and a poloidal component wraps
around the torus both in the poloidal and toroidal directions, foliating nested toroidal
surfaces, thereafter called magnetic surfaces. One can then define a radial like coordinate
r, with r = 0 at the innermost surface in the plasma core, and r = a at the plasma edge,
and such that B · ∇r = 0 on magnetic surfaces (see Figure 1.8). At r = 0, the magnetic
surface is degenerate and is a curve, called the magnetic axis, which we assume here
to be unique. The existence of magnetic surfaces is beneficial for particle confinement;
thanks to the finite poloidal magnetic field, the guiding center drift averages to zero
over a particle poloidal orbit, subsequently confining a particle to a magnetic surface,
and preventing the particle to move radially towards the plasma edge. This property
can be formally proven for instance in axisymmetric fields by looking at symmetries of
the particle’s Lagrangian (Helander and Sigmar, 2002). As we shall see in section 1.5,
magnetic surfaces are however not guaranteed to exist, and different magnetic field line
topologies can deteriorate confinement.
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eZ

Figure 1.6: Sketch of a torus. The red line follows the poloidal direction, while the black
line follows the toroidal direction.

Rc

Vκ + V∇B

Vκ + V∇B

∇B

E

VE

eZ

Figure 1.7: Sketch of the guiding center drifts in a purely toroidal magnetic field (zero
rotational transform).
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r

B

Figure 1.8: Sketch of a toroidal magnetic field with magnetic surfaces. In black: plasma
boundary. Dashed gray lines: magnetic surfaces with r = const. Red arrow: magnetic
field line on the plasma boundary.

The magnetic field line twist generated by the poloidal magnetic field is described
mathematically by the rotational transform, defined as

ι- = B · ∇θs
B · ∇ϕ

, (1.18)

where θs and ϕ are the straight field line poloidal angle and toroidal angles respectively
(see appendix A.1). The rotational transform is thus a measure of how many poloidal
turns a magnetic field line does per toroidal turn around the torus. In the next section,
we discuss the different ways rotational transform can be generated.

1.4.2 Sources of rotational transform

We discuss now how a rotational transform can be generated in a toroidal magnetic
configuration. The discussion is based on an expansion of the magnetostatic Maxwell’s
equations, ∇ · B = 0 and ∇ × B = µ0J, around the magnetic axis, which we denote by
x0(l), with l the arc length. Assuming that magnetic field lines lie on magnetic surfaces,
it can be shown that these surfaces must be ellipses close to the magnetic axis (Helander,
2014). An ellipse in the (x, y) plane can be parametrized by

x2

r2
min

+ y2

r2
max

= 1, (1.19)
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with rmin = re−η/2 and rmax = reη/2 the minor and major radii of the ellipse respectively,
which are controlled by the parameter η (η = 0 for a circle). On the magnetic axis, we
can define the so-called Frenet-Serret coordinate system (ê1, ê2, ê3), with

The tangent unit vector ê1 = dr0
dl

= B
B

≡ b̂ (1.20)

The normal unit vector ê2 = 1
κ

dê1
dl

(1.21)

The binormal unit vector ê3 = ê1 × ê2, (1.22)

with κ the curvature. Furthermore,

dê3
dl

= −τ ê2, (1.23)

where τ is the torsion, which measures the departure of a curve (here the magnetic axis)
from a plane (here, the plane Z = const). It can be shown (Mercier, 1964; Helander,
2014) that the rotational transform on the magnetic axis, defined as the limr→0 ι-, is

ι-axis = 1
2π

∫ [
µ0J

2B0
− (cosh η − 1)d′ − τ

]
dl

cosh η −N, (1.24)

with µ0 the vacuum permeability, J and B0 the parallel current density and the magnetic
field magnitude on the axis respectively, d the angle between the minor radius of the
elliptical magnetic surfaces and the normal unit vector ê2, the prime denotes a derivative
with respect to l, and N counts the number of rotations of ê2 around the magnetic axis
for one toroidal transit (see Figure 1.9).

ê2

ê3

x rmin

y

rmax
d

Figure 1.9: Illustration of an elliptical magnetic surface close to the magnetic axis. In
red: the magnetic axis; In blue: the magnetic surface. The x and y axes are in the
direction of the ellipse minor and major radii respectively.
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The rotational transform can thus be generated by three mechanisms: either (i) by
driving a toroidal current J ̸= 0 in the plasma, or (ii) by shaping the magnetic surfaces
close to the magnetic axis as ellipses that rotate around the magnetic axis as the toroidal
angle changes, namely η ̸= 0 and d′ ̸= 0 ∀ϕ, or (iii) by having magnetic axis torsion,
i.e. τ ̸= 0. The two main classes of magnetic confinement devices, the tokamak and the
stellarator, do not use the same mechanisms to generate rotational transform. This is
discussed in the following section.

1.4.3 The tokamak concept

The tokamak, arguably the most advanced concept for a magnetic fusion reactor, uses
generally an external transformer to drive a strong toroidal current in the plasma in order
to generate the rotational transform (see Figure 1.10). With regard to Eq.(1.24), the
tokamak thus uses the first mechanism, J ≠ 0. Note that there are tokamak scenarios,
i.e. the so-called advanced scenarios, that would not need any inductively-driven plasma
current, and instead would rely on currents externally driven by electromagnetic waves
and neutral beam injection, and on currents self-generated by the plasma (Taylor, 1997).
The tokamak greatest advantages is that the configuration is axisymmetric — i.e. there
are no dependencies on the toroidal position. This property implies good single particle
confinement, and, from an engineering point of view, makes the tokamak a relatively
simple reactor to build. Driving a strong toroidal current comes however at a cost

— if the current is driven by an external transformer, the operation of the machine is
pulsed, forbidding continuous operation and generating stress on the different components,
ultimately reducing the lifetime of the machine. The current in the plasma is also a source
of free energy, which can drive violent instabilities that have to be controlled. Many
types of instabilities can ultimately cause plasma disruptions, characterized by a sudden
loss of the plasma confinement. Tokamaks therefore require extensive diagnostics and
real time control for operation (Degrave et al., 2022). We can summarize the tokamak
concept as a device that is relatively simple to build, but complex to operate.

1.4.4 The stellarator concept

The stellarator uses all three mechanisms to generate the rotational transform. In general,
the stellarator mainly relies on the ellipticity of the magnetic surfaces and their rotation,
η ̸= 0 and d′ ̸= 0, and on the magnetic axis torsion, τ ̸= 0. This means that the magnetic
field can be entirely generated by external coils, there is no need for a central transformer,
and the machine can be operated continuously. There are no current-driven instabilities
(unless the plasma generates a large current by itself), meaning that disruptions are less
common in stellarators than in tokamaks. The rotation of the elliptical magnetic surfaces
and the magnetic axis torsion come however at the cost of losing axisymmetry: the
configuration is now fully 3-dimensional (see of Figure 1.11). Single particle confinement
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is in general worse than in tokamaks, and extensive additional optimization is required to
obtain good particle confinement properties. In particular, fast ions confinement, i.e. the
confinement of fusion-born helium ions, is a great challenge in stellarators (Faustin et al.,
2016a,b; Velasco et al., 2021). In addition, the 3-dimensionality of the coils and their
necessary precise positioning is a formidable engineering challenge, and can increase the
cost of the machine substantially. The national compact stellarator experiment (NCSX),

Figure 1.10: Schematic of a tokamak (Li et al., 2014).

Figure 1.11: Schematic of a stellarator, credits: Max-Planck Institut für Plasmaphysik,
https://www.ipp.mpg.de/en.
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for example, was canceled in May 2008 (Orbach, 2008), due to "the budget increases,
schedule delays and continuing uncertainties" of the NCSX experiment. The stellarator
concept can then be summarized as a machine that is hard to build but easy to operate.

In addition, thanks to the 3D nature of stellarators, their configuration space is
orders of magnitude greater than tokamaks. Stellarators can thus be optimized for
different properties, for example quasi-symmetry (QS) (Landreman and Paul, 2022), quasi-
isodynamicity (Goodman et al., 2022), or low turbulent transport (Xanthopoulos et al.,
2014). For instance, the Wendelstein 7-X (W7-X) stellarator built in Greifswald, Germany,
has been optimized for low neo-classical transport (i.e. non-turbulent transport), which
has been verified experimentally (Beidler et al., 2021). Recent advances in stellarator
optimization improved the confinement properties of stellarators beyond what can be
achieved by a tokamak (Landreman et al., 2022).

One of the challenges related to stellarators is related to the topology of their
magnetic field lines. In tokamaks, it can be shown (Grad and Rubin, 1958; Shafranov,
1966; Freidberg, 2014) that all magnetic field lines lie on toroidally nested magnetic
surfaces, which is ideal for particle and energy confinement. In stellarators, other field
line topologies can be present, as discussed in the next section.

1.5 Magnetic field line topologies

We discuss here the magnetic field line topologies, following the discussion by Helander
(2014). As ∇ · B = 0, any magnetic field can be expressed as the curl of a magnetic
potential, B = ∇ × A. Working with general toroidal coordinates (r, θ, ϕ), with θ and ϕ
the poloidal and toroidal angles respectively, we can write

A = Ar∇r +Aθ∇θ +Aϕ∇ϕ. (1.25)

We define

g(r, θ, ϕ) =
∫ r

c
Ardr (1.26)

ψ = Aθ − ∂g

∂θ
(1.27)

χ = −Aϕ + ∂g

∂ϕ
, (1.28)

and thus we obtain the Clebsch representation of the magnetic field,

A = ψ∇θ − χ∇ϕ+ ∇g (1.29)
B = ∇ψ × ∇θ + ∇ϕ× ∇χ. (1.30)
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Note that the magnetic field representation (1.30) is completely general, and does not
assume the existence of magnetic surfaces. Now, consider a particle of charge Ze and
mass m. Its Lagrangian is given by

Lp = mv2

2 + ZeA · v − ZeΦ, (1.31)

with Φ the electrostatic potential. If Φ = 0 and we take the limit m → 0, the particle
exactly follows magnetic field lines. The particle’s trajectory, and therefore the magnetic
field line, minimizes the action Sp, with

Sp =
∫

Lpdt = Ze

∫
A · vdt = Ze

∫
A · dr = Ze

∫
ψdθ − χdϕ, (1.32)

where the ∇g · dr term has been dropped since it only adds constants to the action and
therefore vanishes once the variation of the action is evaluated. The action (1.32) has
the familiar form of an action expressed from a Hamiltionian H(p, q, t), where (q, p) are
the generalized coordinate and momentum, and

S =
∫
pdq −Hdt, (1.33)

which is stationary when the Hamilton’s equations are satisfied. Going back to the
action (1.32), we identify ϕ as the time t, χ as the Hamiltonian H, θ as the generalized
coordinate q, and ψ as the generalized momentum p. The action is thus stationary when

dψ

dϕ
= −∂χ

∂θ
(1.34)

dθ

dϕ
= ∂χ

∂ψ
, (1.35)

where the derivatives are taken along the field lines. Eqs.(1.34)-(1.35) define the trajectory
of our imaginary massless particle, and therefore define the magnetic field line. Magnetic
field lines thus have a Hamiltonian structure, if one considers the advancement of the
toroidal angle ϕ as time. This important result allows the application of all the non-linear
theories of dynamical systems to study magnetic field lines; see for example the review
paper by Meiss (1992). In particular, it implies the existence of magnetic field lines that
do not lie on nested magnetic surfaces. We discuss now a simple example of a so-called
magnetic island.

Magnetic surfaces exist in the case where χ = χ(ψ), since then B · ∇ψ = 0, and thus
the surface ψ(r = const, θ, ϕ) is a magnetic surface. Under the condition B · ∇ψ = 0, the
function ψ can then be used as a magnetic surface label, and acts as a radial coordinate.
We now focus on a rational surface ψ = ψ0 where ι-(ψ0) = dχ0/dψ = n/m, with m,n ∈ N,
and consider the perturbed Hamiltonian

χ = χ0(ψ) + χ1(ψ) cos(mα) = χ0(ψ) + f(ψ, α), (1.36)
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with α = θ − ι-(ψ0)ϕ. The function χ thus only depends on ψ and α and we can write
the Hamiltonian in the coordinate system (ψ, α),

H(ψ, α, ϕ) = χ0(ψ) + f(ψ, α) − ι-(ψ0)(ψ − ψ0), (1.37)

where the last term has been included to keep the Hamiltonian structure of the field line
equations, i.e.

dψ

dϕ
= −∂χ

∂θ
= −∂f

∂α

∂α

∂θ
= −∂f

∂α
= −∂H

∂α
(1.38)

dα

dϕ
= dθ

dϕ
− ι-(ψ0) = ∂χ

∂ψ
− ι-(ψ0) = ∂H

∂ψ
. (1.39)

Notice that the Hamiltonian (1.37) is independent of ϕ; we therefore have an autonomous
(i.e. "time-independent") Hamiltonian, which guarantees the existence of surfaces. We
assume that the amplitude of the perturbation to the Hamiltonian, χ1, is constant around
the resonance, χ′

1(ψ0) = 0, and therefore, dH/dψ = 0 at ψ = ψ0. Making a Taylor
expansion of H around ψ0, we thus obtain

H = χ0(ψ0) + f(ψ0, α) + χ′′(ψ0)(ψ − ψ0)2

2 + O(ψ3) (1.40)

= χ′′(ψ0)(ψ − ψ0)2

2 + χ1(ψ0) cos(mα) + O(ψ3), (1.41)

where we are free to set the constant χ0(ψ0) = 0 as it has no impact on the magnetic
field line equations. Note that by defining pγ =

√
χ′′(ψ0)(ψ − ψ0), g = χ1(ψ0), γ = mα,

and neglecting the terms O(ψ3), the Hamiltonian (1.41) becomes

U(γ, pγ) =
p2
γ

2 − g cos γ, (1.42)

which is the Hamiltonian of a classical pendulum of unit mass and unit length, with g

the gravitational acceleration, γ the angle between the −g vector and the pendulum
axis, and pγ = γ̇ the canonical momentum. Analyzing the phase space of the pendulum
is thus equivalent to looking at the phase space of the Hamiltonian (1.41). We plot
the constant-U curves in the (γ, pγ) phase space in Figure 1.12. As time evolves, the
pendulum will follow the trajectory U = E, where E is the mechanical energy of the
pendulum. The corresponding interpretation for the magnetic field line is that as the
toroidal angle ϕ increases, the magnetic field line will map the trajectory H = const,
shown in black on Figure 1.12.

The phase space is separated in two regions — one region is enclosed by the separatrix
(in red), while the other is not. The field lines enclosed by the separatrix form a so-called
magnetic island. The separatrix passes through the point ψ = ψ0, α = 0, meaning that
on the separatrix, H = χ1. At mα = π, the separatrix extends to ψ − ψ0 = ±

√
4χ1/χ′′

0.
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Figure 1.12: Phase space of a pendulum. In black: pendulum trajectories, defined as
constant-energy curves. In red: separatrix.

Finally, noting that χ′′
0 = ι′(ψ0), we find that the island width is given by

∆ψ = 4
√

χ1
ι-′(χ0) . (1.43)

We thus see that in case of a perturbed Hamiltonian as described by Eq.(1.37), the
existence of nested magnetic surfaces everywhere is not guaranteed. The existence of
magnetic surfaces and magnetic islands has been experimentally verified, for instance
via injection of an electron beam in a low-density neutral gas in the W7-X stellarator
(Pedersen et al., 2016), which allowed the precise measurement of the position of magnetic
surfaces (Figure 1.13a) and of the magnetic island chain at the plasma edge (Figure 1.13b).
In the right panel of Figure 1.13, a single magnetic field line traces out 6 magnetic islands,
where each island has the same structure as the magnetic island shown in Figure 1.12.

If the field line Hamiltonian is perturbed by more than a single harmonic as in the
example (1.37), the analogy with the classical pendulum breaks down. If there are
multiple rational surfaces that are excited by different harmonics, multiple island chains
can open at different ψ coordinates. When two island chains overlap, the magnetic field
lines become chaotic (Chirikov, 1979), and the magnetic field can fill ergodically a finite
volume. To study these complicated magnetic fields, one can look at their Poincaré
sections. Suppose that a magnetic field B is known everywhere, i.e. at any position
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(a) Magnetic surface (b) Magnetic islands

Figure 1.13: Measurement of the field line topology in W7-X via injection of an electron
beam in a dilute gas (Pedersen et al., 2016).

(r, θ, ϕ). Magnetic field lines are followed by solving the differential equation

dθ

dϕ
= B · ∇θ

B · ∇ϕ
(1.44)

dr

dϕ
= B · ∇r

B · ∇ϕ
, (1.45)

with initial condition r(0) = r0, θ(0) = θ0 where (r0, θ0) are the initial field line
coordinates at ϕ = 0. An example of a field line followed on a magnetic surface is shown
on Figure 1.14a. The field line is followed for multiple toroidal transits, and its position
(rk, θk) is saved whenever ϕ = 2kπ, with k ∈ N. The Poincaré section is then a collection
of (rk, zk)k={1,...,N} positions, plotted on the (R,Z) plane. An example of a Poincaré
section with different field line topologies is shown on Figure 1.14b.

Magnetic field line topologies are intrinsically connected to particle confinement. At
zeroth order in the Larmor radius, particles follow magnetic field lines and are constrained
to remain on magnetic surfaces, i.e. magnetic surfaces provide radial confinement.
Magnetic islands and magnetic field line chaos, on the other hand, allow particles to move
in the radial direction, thereby causing a flattening of the pressure profile, which lowers
the peak pressure in the plasma core, and affects the reactor’s performance. Note that
structures in regions occupied by chaotic field lines can still potentially support pressure
gradients (Hudson and Breslau, 2008). In general however, the presence of magnetic
islands and magnetic field line chaos will lower the peak pressure in the plasma core, and
are thus undesirable.
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(a) Field line (b) Poincaré section

Figure 1.14: Example of field line tracing and Poincaré section in a rotating ellipse. Left:
3D mesh of a magnetic surface (red) and a traced field line over two periods (blue). Right:
Poincaré section of multiple field lines, with, in particular, a magnetic surface (orange),
a magnetic island (blue) and a chaotic field line (red).

1.6 Magnetic equilibria

It is crucial for stellarator design and operation to compute accurately the magnetic field
in the plasma. This is however not a trivial task, as one has to take into account both
the magnetic field produced by coils external to the plasma, Bc, and the magnetic field
generated by the plasma itself, Bp. Indeed, complex non-linear interactions generate
currents in the plasma. Consider the single particle guiding center drifts described in
1.4.1. All drift directions, at the exception of the E × B drift, depend on the particle
charge, and therefore generate a finite macroscopic current density J. This macroscopic
current density will then generate its own contribution to the total magnetic field.

Magnetic equilibria, as will be discussed in chapter 2, are steady state magnetic fields
where the macroscopic plasma currents are self consistent with the magnetic field. Over
the years, numerous codes have been developed to compute magnetic equilibria. The goal
of equilibrium codes is to compute the magnetic field B, given, for example, the pressure
and the rotational transform in the plasma. Boundary conditions can be either given by
the plasma shape (fixed-boundary calculation), or by information on the vacuum magnetic
field generated by the coils (free-boundary calculation, Henneberg et al. (2021b)). As
discussed in section 1.4.4, stellarators do not assume axisymmetry as tokamaks. Therefore
their magnetic equilibria are three dimensional, and can contain magnetic islands and
magnetic field line chaos, which greatly complicates their computation. Examples of
3D equilibrium codes are the variational moment equilibrium code (VMEC) (Hirshman,
1983), BETAS (Betancourt, 1988), NSTAB (Taylor, 1994), PIES (Greenside et al., 1989),
HINT2 (Suzuki et al., 2006), SIESTA (Hirshman et al., 2011), SPEC (Hudson et al.,
2012a, 2020), GVEC (F. Hindenlang, private communication), BIEST (O’Neil and Cerfon,
2018) or DESC (Dudt and Kolemen, 2020).
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As an example of magnetic equilibria, we show on Figure 1.15 the Poincaré section of
magnetic equilibria calculated in a 3D quasisymmetric stellarator configuration designed
by Henneberg et al. (2019). Three different equilibria at different β are evaluated. The
left plot is the magnetic equilibrium evaluated at β = 0.08%, and in this example the
plasma is filled with magnetic surfaces. The middle plot is a magnetic equilibrium at
β = 1.72%; the magnetic equilibrium is only weakly affected by the plasma generated
currents. On the right plot, the magnetic equilibrium is evaluated at a higher β, i.e.
β = 3%. We see that the magnetic equilibrium is strongly affected by the increase in β,
as local current densities are generated by the plasma when β increases. These current
densities then generate magnetic fields that perturb the magnetic field generated by the
coils. On the right plot of Figure 1.15, the magnetic field is sufficiently perturbed for
magnetic islands and chaos to emerge. In this perturbed equilibrium, the magnetic islands
and magnetic field line chaos may be less efficient at confining particles than magnetic
surfaces. Additional power deposited in the plasma, for example by electron cyclotron
resonance heating (ECRH) or neutral beam injection (NBI), may thus leak through
the damaged magnetic surfaces, and limit the maximum reachable β in the stellarator.
This process of loss of magnetic surfaces therefore defines a so-called equilibrium β-limit,
above which the magnetic surfaces present in low-β equilibria are lost, and the radial
confinement of particles is degraded in the regions of magnetic field line chaos and
magnetic islands. In these regions, the pressure and temperature profiles might flatten,
thereby preventing the creation of large density and pressure peaks in the plasma core,
and ultimately reducing the maximum achievable fusion triple product in a stellarator.

(a) β = 0.08%
;

(b) β = 1.72%
;

(c) β = 3.00%
;

Figure 1.15: Poincaré section of three different 3D magnetic equilibria at different β
(Henneberg et al., 2019). Here R and Z are the usual cylindrical coordinates.
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There are, of course, other processes that can limit the maximum β in a stellarator.
For example, turbulence generated by micro-instabilities in the plasma will generate a
finite radial transport of particle across magnetic surfaces. The macro-stability of the
equilibrium might also set a stability β-limit. However, as stellarators have often small
currents in the plasma in comparison to tokamaks, their plasmas tend to be less prone
to current-driven instabilities. The equilibrium β-limit is thus thought to be one of the
main causes limiting the maximum β in stellarators (Helander, 2014; Suzuki et al., 2020),
in conjunction with the stability β-limit set by pressure-driven macro-instabilities.

1.7 Scope of this thesis

In this introductory chapter, we made the case that nuclear fusion energy could become
a clean, safe and abundant future energy source. Among nuclear fusion reactor concepts,
we introduced in particular the stellarator, and discussed the importance of stellarator
optimization — stellarators need to be optimized to obtain sufficiently good single
particle confinement. We also discussed the importance of computing magnetic equilibria
in stellarators while taking into account the plasma contribution in setting the total
magnetic field, and we described what kind of magnetic field line topologies can be
present in stellarator magnetic equilibria. Finally, we gave an example where plasma
generated currents perturbed a vacuum magnetic field with magnetic surfaces sufficiently
for magnetic islands and chaos to emerge, thereby defining a so-called equilibrium β-limit,
above which magnetic surfaces start to degrade.

Various studies already analyzed the effect of β on the magnetic field line topologies. In
the case of a classical stellarator, Loizu et al. (2017) proposed a model for the equilibrium
β-limit of a configuration with zero net toroidal current as well as one where the rotational
transform at the plasma edge is held fixed. However, as discussed in section 1.6, plasma
generated currents must be taken into account in any finite β equilibrium calculation.
In their study, Loizu et al. showed the possibility to study equilibrium β-limits with
the stepped-pressure equilibrium code (SPEC) code, and, for the first time, modeled
analytically the critical β at which chaotic field lines emerge. Their work must however
be extended to different stellarator geometries, and more realistic pressure and current
profiles. Other studies computed high β equilibria in a number of experimentally relevant
stellarator configurations and predicted the emergence of magnetic field line chaos at
sufficiently large β. For instance, Suzuki et al. (2020) studied the emergence of chaotic
magnetic field lines in the large helical device (LHD), but assumed zero net toroidal
current. Reiman et al. (2007) reconstructed equilibria with magnetic islands and chaotic
field lines in Wendelstein 7-AS (W7-AS) using the PIES code, while considering the
measured pressure and net toroidal current profile. These studies however required
numerically expensive calculations. Extensive parameter scans were not considered due
to the computational cost, and therefore the equilibrium β-limit dependence on design
parameters could not be investigated. With the emergence of new 3D equilibrium codes,
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such as the SPEC code, that can rapidly compute equilibria with magnetic islands and
magnetic field line chaos, large parameter scans to model the equilibrium β-limit in
stellarators become possible, therefore pushing further today’s knowledge frontier on
stellarator physics.

This thesis explores some of these fundamental plasma physics questions, attempting
to understand the effect of β and plasma generated currents on the magnetic field
line topologies, and investigates the possible applications of SPEC to compute the
equilibrium β-limit in stellarators. In this thesis, we present work on the numerical and
analytical modelling of the equilibrium β-limit, and, in particular, we present studies of
the dependence of this equilibrium β-limit on the main stellarator design parameters. In
addition this thesis shows potential applications of these results to stellarator optimization.

Stellarator optimization is often performed while assuming the existence of magnetic
surfaces — see for example the optimizations by Strickler et al. (2004), or Henneberg
et al. (2019). Once an optimum is found, additional iterations are usually made with 3D
equilibrium codes to ensure that there are no large islands nor regions occupied by chaotic
field lines in the volume of interest — see for example the pioneering work by Hudson
et al. (2002). Recently, Landreman et al. (2021b) optimized the vacuum field for good
quasi-symmetry at the same time as ensuring the existence of good magnetic surfaces,
clearly showing that multi-objective optimizations that include a target on the magnetic
field line topology are possible. Understanding the effect of plasma β and currents on the
magnetic field line topology could improve our knowledge of stellarator equilibria, and
facilitate the optimization of stellarators at finite β and current. This thesis delves into
stellarator optimization, and improves on state-of-the-art optimization of stellarators by
studying the possibility to optimize the equilibrium β-limit in a simplified stellarator
geometry at finite β and current.

To reach these goals, we first describe different mathematical models for 3D mag-
netohydrodynamic (MHD) equilibria in chapter 2. In chapter 3 we describe SPEC, a
3D magnetohydrodynamic (MHD) equilibrium code, and we implement new capabilities
to compute free-boundary, finite β, finite current, 3D MHD equilibria with magnetic
islands and magnetic chaos. In chapter 4 different numerical diagnostics to measure the
confining properties of the magnetic equilibrium computed by SPEC are discussed. The
so-called Greene’s residues (Greene, 1968, 1979), and the volume of chaos (Meiss, 1992;
Loizu et al., 2017) are reviewed, and a new metric, called the fraction of effective parallel
diffusion, is introduced. These diagnostics are then exploited in chapter 5 to evaluate
the equilibrium β-limit in different stellarator configurations. Finally, we describe how
SPEC was coupled with the SIMSOPT python framework for stellarator optimization
(Landreman et al., 2021a), and explore the different degrees of freedom available for
optimizing the equilibrium β-limit in chapter 6. Chapter 7 provides a summary and
outlook of the research presented in this thesis.
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2 Three-dimensional magnetohydro-
dynamic equilibria

The description of a plasma in a fusion reactor starts with a mathematical model for
its equilibrium. In this chapter, we introduce the ideal MHD model, and in particular
its equilibrium equations. Some important properties of ideal 3D MHD equilibria
are discussed, and we present briefly the problem of the Pfirsch-Schlüter diverging
current singularities associated with the assumption of the existence of magnetic surfaces
(Grad, 1967). We introduce the multi-region relaxed magnetohydrodynamic (MRxMHD)
equilibrium model (Hole et al., 2006), which models magnetic equilibria with stepped-
pressure profiles and that are weak solutions to the ideal MHD equilibrium model.
The MRxMHD equilibrium model is of particular interest as it can describe magnetic
equilibria with finite pressure gradients and with magnetic islands and chaos, which is
crucial for studying the effect of pressure on magnetic field line topology. Furthermore,
these equilibria are mathematically well defined as they can be constructed to avoid the
Pfirsch-Schlüter singularities. Finally we discuss how these different equilibrium models
can be derived by extremizing the MHD energy functional under different constraints.

2.1 Ideal MHD

Ideal MHD is probably the most well-known and used model to describe macroscopic
plasma equilibria. It describes relatively slow phenomena on macroscopic scales. In
MHD, quasi-neutrality is assumed, i.e. ne = ni = n, where ne and ni are the electron
and ion densities respectively. The plasma is modeled with a single fluid approximation,
where the pressure is isotropic and defined as the sum of the ion and electron pressure,
p = pi + pe = 2nT , and the temperature is defined as the average of the ion and electron
temperature, T = (Ti + Te)/2. Isotropic pressure is achieved in plasmas with sufficiently
large collisionality, vT iτii/a ∼ vTeτee/a ≪ 1, where vTα = (kbTα/mα)1/2 is the species α
thermal velocity, kb the Boltzmann constant, τii and τee are the typical ion and electron
collision times respectively, mα is the mass of species α, and a is the plasma characteristic
length. In addition, it is assumed that electromagnetic waves have phase velocities
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Chapter 2. Three-dimensional magnetohydrodynamic equilibria

negligible in comparison to the speed of light, ω/k ≪ c, with k the wave number, and
that the thermal velocities of ions and electrons are non-relativistic, vT i ≪ vTe ≪
c. Phenomena described by MHD have frequencies smaller than the electron plasma
frequency, ω ≪ ωpe = (nee2/meϵ0)1/2, with e the elementary charge, and ϵ0 the vacuum
permittivity, and smaller than the ion gyrofrequency, ω ≪ ωci = qiB/mi, with qi the ion
electric charge, and B the magnetic field strength. In addition, the plasma gradients
have a characteristic length larger than the Debye length, a ≫ λD = (kTe/4πnee2)1/2. It
is also assumed that the ion gyroradius is smaller than the characteristic plasma gradient
scale, ρi/a ≪ 1, and, if there is a finite plasma flow u > 0, it is also assumed that
(ρi/a)(vT i/u) ≪ 1. Ideal MHD is finally obtained by neglecting the effect of resistivity,
η = 0. This is typically justified when(

me

mi

)1/2 (ρi
a

)2 ( a

vT iτii

)
≪ 1, (2.1)

which defines a upper bound on the collisionality.

The ideal MHD equations are (Freidberg, 2014),

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.2)

ρ
du
dt

= J × B − ∇p (2.3)

d

dt

(
p

ργ

)
= 0 (2.4)

E + u × B = 0 (2.5)
∇ × B = µ0J (2.6)
∇ · B = 0 (2.7)

∇ × E = −∂B
∂t
, (2.8)

where J and ρ are the current and mass densities, µ0 is the vacuum permeability, E
is the electric field, γ is the heat capacity ratio, and u is the fluid velocity. Note that
Ampere’s law, Eq.(2.6), implies charge conservation,

∇ · J = 0. (2.9)

It can be shown that the plasma dynamics across magnetic field lines is well described by
the MHD model. The plasma dynamics along the magnetic field lines is, however, poorly
described, unless time scales are long compared to the typical time between particles
collision (Freidberg, 2014). In this thesis, we are interested in the plasma equilibrium,
that the plasma tends to reach after an infinite time, t → ∞. Thus, for equilibrium
calculations, the physics across and along the magnetic field lines is well described by
the MHD model.
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2.1 Ideal MHD

At equilibrium, all time derivatives vanish (∂/∂t = 0), and assuming zero flow (u = 0),
we get the ideal MHD equilibrium equations,

J × B = ∇p (2.10)
∇ × B = µ0J (2.11)
∇ · B = 0. (2.12)

Note that flows are damped in general magnetic equilibria, making the assumption
u = 0 reasonable. Special cases are QS fields (Boozer, 1983; Nührenberg and Zille, 1988;
Helander, 2014; Rodríguez et al., 2020), where strong flows can be generated in the
direction of the symmetry (Spong, 2005; Helander and Simakov, 2008; Simakov and
Helander, 2011). In tokamaks, spontaneous rotation occurs (Diamond et al., 2009), and
can be generated by external drives, such as NBI (Suckewer et al., 1979), and can reach
orders of sound speed Cs =

√
(Te + γTi)/mi. In this thesis however, we neglect plasma

flow, as indeed this is a good approximation for the highly non-symmetric magnetic
configurations studied here.

Writing the current density as the curl of the magnetic field, and using the relation
a × (∇ × a) = ∇(a2)/2 − (a · ∇)a, the force balance equation (2.10) becomes

(B · ∇)B
µ0

= ∇
(
B2

2µ0
+ p

)
, (2.13)

where the term on the left hand side can be identified to a magnetic tension force density,
which opposes the bending of field lines, while the right hand side can be understood as
a pressure force, composed of the plasma pressure in addition to the magnetic pressure,
which pushes to expand the plasma outwards and opposes the compression of magnetic
field lines.

2.1.1 Figures of merit of magnetic equilibria

In the previous section, we introduced the ideal MHD model; before discussing some
of its properties, we introduce here important figures of merit of ideal MHD equilibria.
We consider a toroidal plasma volume VP at equilibrium, in which the pressure p and
magnetic field B are known everywhere. We assume an arbitrary poloidal angle θ and a
toroidal angle ϕ, and their corresponding basis vector eθ and eϕ. We assume that the
magnetic field has a unique magnetic axis, and construct a radial coordinate s = r/a,
where s = 0 on the magnetic axis, s = 1 at the plasma boundary, and s = c on a magnetic
surface parametrized by x(θ, ϕ) = R(θ, ϕ)êR + Z(θ, ϕ)êZ , with (êR, êϕ, êZ) the usual
cylindrical coordinate basis. For more details about the toroidal coordinate system, and
the derivation of the covariant basis vectors, the contravariant basis vectors, and the
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jacobian, see appendix A.2. On the magnetic surface,

eθ = ∂R

∂θ
êR + ∂Z

∂θ
êZ (2.14)

eϕ = ∂R

∂ϕ
êR +Rêϕ + ∂Z

∂ϕ
êZ (2.15)

n = êθ × êϕ, (2.16)

where n is a vector normal the magnetic surface and pointing outwards. We can define
the toroidal flux ψt and poloidal flux ψp as the magnetic flux through a toroidal surface
S[ϕ = const] and through a poloidal ribbon S[θ = const] respectively, i.e.

ψt =
∫∫

S[ϕ=const]
B · dS =

∫ 2π

0

∫ c

0
Bϕ√

gdθds (2.17)

ψp =
∫∫

S[θ=const]
B · dS =

∫ 2π

0

∫ c

0
Bθ√gdϕds, (2.18)

where √
g is the jacobian of the coordinate (s, θ, ϕ). In the presence of nested magnetic

surfaces, and if ψt is a monotonously increasing function of s, one can use ψt as a
radial-like coordinate to replace s. When possible in this thesis, we will then use ψt as
radial coordinate.

As S[s = c] is a magnetic surface, the magnetic field is everywhere tangential to
the surface, B · n = 0, and wraps around the surface. A crucial figure of merit is the
rotational transform ι- which is a measure of the tilt of the field line in the (θ, ϕ) plane,
that was introduced in section 1.4.1. The rotational transform is the inverse of the safety
factor q = 1/ι-, more common in the tokamak literature. We have

ι-(s) =
〈B · ∇θ

B · ∇ϕ

〉
, (2.19)

where ⟨·⟩ denotes the flux surface average, defined as the volume average between two
neighboring magnetic surfaces (Helander, 2014). The volume enclosed by a magnetic
surface is

V (ψt) =
∫ ψt

0
dψ

∫ 2π

0
dθ

∫ 2π

0

√
gdϕ, (2.20)

with √
g the (ψt, θ, ϕ) coordinate jacobian. The flux surface average of any function f is

then
⟨f⟩ = 1

V ′(ψt)

∫∫
fdS

|∇ψt|
=
∫∫

fdS

|∇ψt|

/∫∫
dS

|∇ψt|
, (2.21)

with dS = √
g|∇ψt|dθdϕ. Using straight field line coordinates (θs, ϕ) (see appendix A.1),

field lines are straight in the (θs, ϕ)-plane (see Figure 2.1) and the rotational transform,
Eq.(2.19), is thus

ι-(s) = B · ∇θs
B · ∇ϕ

, (2.22)
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0 2π 0 2π
0

2π

0

2π

ϕ ϕ

θ θs

ι-(s, θ, ϕ)

B ι-(s)

B

Figure 2.1: Sketch of a field line. Left: using general coordinates (θ, ϕ) and right: using
straight field line coordinates (θs, ϕ).

retrieving Eq.(1.18). We will differentiate the case of a rational magnetic surface, where
ι- = n/m ∈ Q, from an irrational magnetic surface, where ι- ∈ R \ Q. On an irrational
surface, a magnetic field line virtually closes on itself after an infinite number of toroidal
transits, thereby passing through virtually every point on the magnetic surface, while on
a rational surface, a field line will close on itself after n poloidal and m toroidal transits.

Equation (2.10) implies that B ·∇p = 0, i.e. the pressure is constant along a field line.
If the pressure profile is smooth and not constant in any region, then equation (2.10)
implies that magnetic field lies on surfaces of constant pressure, which are thus magnetic
surfaces. Assuming the existence of rational magnetic surfaces where ∇p ≠ 0 is however
the source of potentially diverging currents, as we shall discuss in sections (2.1.3)-(2.1.4).

Another figure of merit is the normalized pressure, that we already introduced in
section 1.4.1. We remind here that β is defined as the ratio between the plasma pressure
and the magnetic pressure. It is often evaluated on the magnetic axis,

β0 = 2µ0p0
B2

0
, (2.23)

or averaged over the plasma volume,

β = 1
VP

∫∫∫
VP

2µ0p

B2 dv, (2.24)

with VP the plasma volume and dv a volume element. We also define here two useful
quantities to describe plasma equilibria from energy principles (see section 2.4): the
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plasma potential energy W and the magnetic helicity K, defined as

W =
∫∫∫

VP

dv

(
B2

2µ0
+ p

γ − 1

)
, (2.25)

and
K =

∫∫∫
VP

dvA · B, (2.26)

with A the magnetic vector potential, B = ∇ × A. In ideal MHD, the magnetic helicity
is exactly conserved in every plasma volume bounded by magnetic surfaces, as we shall
see in section 2.4.1.

2.1.2 Ideal MHD equilibrium solution in an axisymmetric cylinder

As an illustration, we solve here the ideal MHD equilibrium equations (2.10)-(2.12) in an
axisymmetric cylinder of length 2πL and radius a, sometimes referred to as a screw-pinch
(see Figure 2.2). We work with cylindrical coordinates (r, θ, z). We assume that the
cylinder boundary is a magnetic surface, i.e. B · ∇r = 0 at r = a. Assuming symmetries
along θ and z (equivalent to axisymmetry in a toroidal geometry), we immediately get
from Eq.(2.10) that p = p(r), i.e. isopressure surfaces are cylinders with constant radii.
Since the magnetic field lies on constant pressure surfaces, axisymmetry implies the
existence of magnetic surfaces everywhere.

We now search for a solution to the equilibrium equation. One gets from Eq.(2.12)

1
r

∂

∂r
(rBr) = 0, (2.27)

eθ

er
ez

a

2πL

Figure 2.2: Sketch of a plasma cylinder
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which, once the boundary condition is applied, leads to Br = 0, confirming that surfaces
S[r = const] are magnetic surfaces. In addition, exploiting Ampere’s law, we write the
current densities as

µ0Jr = 0 (2.28)

µ0Jθ = −∂Bz
∂r

(2.29)

µ0Jz = 1
r

∂

∂r
(rBθ). (2.30)

Finally, taking the cross product of the current density with the magnetic field in the
radial direction and rearranging the terms, one gets

d

dr

(
µ0p+ B2

θ +B2
z

2

)
+ B2

θ

r
= 0. (2.31)

This equation describes the force balance in a cylindrical plasma. The first term is the
gradient of the total pressure, i.e. the plasma pressure p and the magnetic pressure B2/2,
and it is compensated by the second term, which is the magnetic field line tension, as
described by Eq.(2.13).

The equilibrium is thus completely determined if one provides (i) a pressure profile
p(r) and (ii) a constraint on either the poloidal or toroidal magnetic field — for example
by providing the poloidal flux profile ψp(r), or the rotational transform profile ι-(r), given
here by

ι-(r) = LBθ
rBz

. (2.32)

The equation (2.31) can then be rewritten as

d

dr

[
µ0p+ 1

2

(
1 + L2

r2ι-2

)
B2
θ

]
+ B2

θ

r
= 0, (2.33)

which can be solved for Bθ if the profiles p(r) and ι-(r) are given as inputs. Similarly,
the magnetic field in the cylinder is completely determined if one provides the profiles
p(r) and Iz(r), i.e. the net toroidal current enclosed by a surface r = const. Applying
Ampere’s law, we can express the poloidal magnetic field as

Bθ(r) = Iz(r)
2πr , (2.34)

and Eq.(2.31) becomes

d

dr

(
µ0p+ I2

z

8π2r2 + B2
z

2

)
+ I2

z

4π2r3 = 0. (2.35)

which can be solved for Bz numerically or analytically depending on the profiles p(r) and
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Iz(r). When integrating Eq.(2.35), one has to set an integration constant, usually by
providing the magnetic field on axis, Bz(0) = B0, or by constraining the toroidal flux
enclosed by the cylinder. Notice how the magnetic field in the cylinder depends on the
pressure profile — the magnetic field has to reorganize itself to satisfy the force balance
according to the pressure profile. From this simple example, we understand that (i) the
magnetic equilibrium depends on the pressure profile and (ii) the magnetic field is fully
determined if one provides the pressure and the net toroidal current profiles. In the next
section, we explore the different kinds of current densities that are present in ideal MHD
equilibria.

2.1.3 Currents in ideal MHD equilibria

The MHD equilibrium equations, Eq.(2.10), imply the existence of a finite current density
J to support the pressure gradient ∇p. We discuss here the properties of these current
densities. First, we write the current density as the sum of a component parallel to the
magnetic field J∥b̂, with b̂ = B/B, and of a component perpendicular to the magnetic
field, J⊥. We express the perpendicular current by taking the cross product of B with
Eq.(2.10), and obtain

J⊥ = B × ∇p
B2 , (2.36)

called the diamagnetic current. In general, the diamagnetic current density J⊥ is however
not divergence free; parallel currents J∥ are then generated by the plasma to ensure
charge conservation, Eq.(2.9). We write the parallel current density as the sum of two
parts (Helander, 2014),

J∥ = u(ψt, θ, ϕ) dp
dψt

B +
⟨J∥B⟩B

⟨B2⟩
, (2.37)

with the second term on the right hand side being a contribution to the parallel current
density that is divergence-free. Note that here we assume that magnetic surfaces exist,
and that the toroidal flux is monotonically increasing from the plasma core to the plasma
edge so that it can be used as a radial coordinate. To satisfy the charge conservation
equation, we impose ∇ · (J∥b̂) = −∇ · J⊥, and the function u(ψt, θ, ϕ) must then satisfy

∇ ·
(
uBp′ + B × ∇ψt

B2 p′
)

= 0, (2.38)

with p′ = dp/dψt. Using the vectorial identity ∇ · (fv) = v · ∇f + f∇ · v, with f a scalar
and v a vector, we get

∇ ·
(
uB + B × ∇ψt

B2

)
= 0, (2.39)
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which can be casted as a magnetic differential equation for u,

B · ∇u = −(B × ∇ψt) · ∇
( 1
B2

)
. (2.40)

The total current density is thus

J = B × ∇p
B2 +

(
u(ψt, θ, ϕ) dp

dψt
+

⟨J∥B⟩
⟨B2⟩

)
B, (2.41)

where the first term on the right hand side of Eq.(2.41) is the diamagnetic current,
the second is the Pfirsch-Schlüter current, determined by Eq.(2.40), and the last term
encompasses other parallel currents, such as externally driven currents (Ohmic, electron
cyclotron current drive (ECCD), neutron beam current drive (NBCD)) or bootstrap
current (see section 5.1). The function u(ψt, θ, ϕ) is only determined up to the addition
of an integration constant C(ψt) (Coronado and Wobig, 1992). There is some freedom
in the choice of this constant, as the corresponding current density, JC = C(ψt)p′B, is
divergence-free and can be absorbed by the last term of Eq.(2.41). One choice is to fully
determine this constant by considering the parallel momentum balance equation; the
resulting Pfirsch-Schlüter current density would then depend on diverse neo-classical
effects. Another choice, common in equilibrium calculations, is to choose the integration
constant C such that the flux surface average of the Pfirsch-Schlüter toroidal current
density vanishes. Working in Boozer coordinates (see appendix A.1), we obtain

〈
uB · ∇ϕbp′〉 = p′

〈
u

√
gb

〉
= p′

G+ ι-I ⟨uB2⟩, (2.42)

where we used the general relation B · ∇ϕb = √
gb

−1. The condition that the flux surface
average of the Pfirsch-Schlüter toroidal current density vanishes, ⟨uB · ∇ϕbp′⟩ = 0, is
then satisfied when the integration constant C(ψt) is chosen such that

⟨uB2⟩ = 0. (2.43)

As discussed in the example of a cylindrical plasma in section 2.1.2, the net toroidal
current in the plasma plays a central role in setting the magnetic equilibrium. It is thus
interesting to discuss which current density described in equation (2.41) dominates when
setting the net toroidal current. To evaluate each contribution, it is convenient to work
in Boozer coordinates (see appendix A.1). We take the flux surface average of the total
current density projected in the Boozer toroidal direction, J · ∇ϕb, following notes by J.
A. Alonso (personal communication, 2023). Starting by looking at the contribution from
the diamagnetic current density, we write the magnetic field in its contravariant form,

B = I(ψt)∇θb +G(ψt)∇ϕb +K(ψt, θb, ϕb)∇ψt, (2.44)
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with I(ψt) = µ0Iϕ/2π, where Iϕ is the net toroidal current enclosed inside a magnetic
surface, G(ψt) = µ0Iθ/2π, where Iθ is the net poloidal current outside a magnetic surface,
and K(ψt, θb, ϕb) a function. The flux average of the diamagnetic current density is then

⟨J⊥ · ∇ϕb⟩ = p′
〈(B × ∇ψt

B2

)
· ∇ϕb

〉
(2.45)

= p′
〈

1
√
gbB2 (I(ψt)eϕb

−G(ψt)eθb
) · ∇ϕb

〉
= p′I(ψt)

〈
1

B2√
gb

〉
, (2.46)

where we used the relation eθb
= √

gb∇ϕb × ∇ψt and eϕb
= √

gb∇ψt × ∇θb, with eθb
, eϕb

the covariant basis vectors of the Boozer coordinates θb and ϕb respectively. Using the
expression of the jacobian in Boozer coordinates, Eq.(A.32), we get

⟨J⊥ · ∇ϕb⟩ = Ip′

G+ ι-I . (2.47)

Interestingly, the diamagnetic current contributes to the net toroidal current only if
there are other sources of toroidal current in the plasma, I ≠ 0, which must come from
externally driven or bootstrap current, as the Pfirsch-Schlüter current does not generate
any net toroidal current. The contribution from the externally driven currents and the
bootstrap current is

⟨J∥B⟩
⟨B2⟩

⟨B · ∇ϕb⟩ =
⟨J∥B⟩
⟨B2⟩

〈
1

√
gb

〉
=

⟨J∥B⟩
G+ ι-I . (2.48)

The flux surface average of the total current density projected on ∇ϕb is then

⟨J · ∇ϕb⟩ = Ip′

G+ ι-I +
⟨J∥B⟩
G+ ι-I . (2.49)

We can now estimate which current contributes the most to the net toroidal current by
taking the ratio of the first and second terms on the right hand side of Eq.(2.49),

Ip′

⟨J∥B⟩
∼ Iϕµ0p0
JϕBψa

∼ µ0p0
B2 ∼ β. (2.50)

Here we assumed that p′ ∼ p0/ψa, with ψa ∼ πa2B the toroidal flux enclosed by the
plasma, and a the minor radius. We also assumed J∥ ∼ Jϕ ∼ Iϕ/πa

2. As β ≪ 1,
we conclude that the main contribution to the flux-surface averaged current density
comes from the externally driven and bootstrap currents. The Pfirsch-Schlüter flux-
surface averaged current density vanishes, and the diamagnetic flux surface averaged
current density is negligible. While the diamagnetic and Pfirsch-Schlüter currents are by
construction included in any magnetic equilibrium calculation, it is thus crucial to also
include the contribution from the externally driven and bootstrap current to compute
the full effect of the currents on the magnetic field. This will be particularly important
when we discuss, in chapter 5, the equilibrium β-limit of a stellarator.
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2.1.4 Classes of well posed 3D magnetic equilibria

The magnetic differential equation (2.40) has important implications on the existence of
3D magnetic equilibria with nested magnetic surfaces. In the discussion below, we solve
equation (2.40) assuming the existence of magnetic surfaces and using the coordinate
system (ψt, θb, ϕb), where (θb, ϕb) are the poloidal and toroidal Boozer angles (see appendix
A.1). We first write the left hand side of Eq.(2.40) as

B · ∇u = B · ∇θb
∂u

∂θb
+ B · ∇ϕb

∂u

∂ϕb
+ B · ∇ψt

∂u

∂ψt
(2.51)

=
(
ι- ∂u
∂θb

+ ∂u

∂ϕb

)
B · ∇ϕb. (2.52)

Then, expressing the magnetic field B on the contravariant Boozer coordinate basis,

B = I(ψt)∇θb +G(ψt)∇ϕb +K(ψt, θb, ϕb)∇ψt, (2.53)

we write the right hand side of Eq.(2.40) as

(B × ∇ψt) · ∇ 1
B2 = (I∇θb × ∇ψt +G∇ϕb × ∇ψt) · ∇ 1

B2 (2.54)

= 1
√
gb

(
G

∂

∂θb
− I

∂

∂ϕb

) 1
B2 , (2.55)

with ∇ψt · (∇θb × ∇ϕb) = 1/√gb the inverse of the Boozer coordinate jacobian. Writing
the functions u(ψt, θb, ϕb) and B−2(ψt, θb, ϕb) as double Fourier series,

u(ψt, θb, ϕb) =
∑
m,n

umn(ψt)ei(mθb−nϕb) (2.56)

B−2(ψt, θb, ϕb) =
∑
m,n

hmn(ψt)ei(mθb−nϕb), (2.57)

we can substitute Eqs.(2.52) and (2.55) in Eq.(2.40) and obtain

(mι- − n)umn = −(mG+ nI)hmn, (2.58)

where we used the general property that √
gb

−1 = B · ∇ϕb. The solution for umn in (2.58)
is then

umn = ∆mnδ(ψt − ψt,mn)−(mG+ nI)
mι- − n

hmn, (2.59)

where ∆mn is a constant and ψt,mn is the toroidal flux enclosed by the rational magnetic
surface where ι- = n/m (Helander, 2014). Note that the delta function appears since the
general solution to the equation xf(x) = h(x), for two arbitrary functions f(x) and h(x),
is f(x) = h(x)/x+ cδ(x), with c a constant. This delta function describes a current sheet
with zero width. It is physically meaningful because the corresponding net current, given
by the integral over a surface S[ϕ = const] of the delta function, is finite. This current
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sheet arises when the topological constraint of the existence of a magnetic surface is
enforced on a resonance, which prevents magnetic field lines forming magnetic islands. A
current sheet must then be generated to "untangle" the magnetic field lines so that they
remain on the magnetic surface (Loizu et al., 2015a; Helander, 2014). The existence of
delta-function current sheets is thus a necessary condition when constraining magnetic
surfaces to exist, instead of letting magnetic islands form.

The second term on the right hand side of equation (2.59) leads to the Pfirsch-Schlüter
current density,

JPSmn = −(mG+ nI)
mι- − n

hmnp
′(ψt). (2.60)

At rational surfaces, where ι- = n/m, the current density (2.60) seems to diverge as a
1/x singularity if the pressure gradient is finite and if the magnetic field harmonic hmn
is non zero. This particular singularity might be unphysical since the integrated net
toroidal current could diverge. To circumvent the issue of unphysical diverging currents
and obtain well defined, ideal MHD solutions, one has to consider restricted classes of
equilibria.

One possibility is to consider equilibria for which the inverse magnetic field squared
resonant harmonic is zero at each rational surface, i.e. hmn = 0, discussed by Weitzner
(2014). Another is to relax the assumption of smooth, continuous solutions, and consider
rotational transform profiles that are stepped — essentially jumping from irrational
to irrational values, and entirely avoiding rational surfaces. This has been discussed
by Loizu et al. (2015b). Similarly, one could consider equilibria where the pressure is
constant around resonant surfaces. Since rationals are dense in R, the pressure profile is
either stepped (Bruno and Laurence, 1996) or fractal (Grad, 1967). A combination of the
second and third class discussed above, where the rotational transform profile and the
pressure profile are alternatively constant, can be constructed to obtain solutions with
continuous profiles (Hudson and Kraus, 2017). Recently, a final class of equilibria has
been proposed by Y.-M. Huang (Huang et al., 2023), where the delta function current
densities in Eq.(2.59) would modify the radial dependency of G, I, p and ι- such that the
Pfirsch-Schlüter current density JPSmn remains integrable.

In the remaining of this thesis, we will work with stepped-pressure equilibria. The
reasons are threefold: (i) these equilibria are numerically tractable, e.g. there are no
fractal structures in the considered profiles, (ii) solutions with magnetic islands and chaos
can be obtained and (iii) solutions have been proven to exist close to axisymmetry by
Bruno and Laurence (1996). In particular, we will work with MRxMHD equilibria, which
are a specific class of stepped-pressure equilibria and can be seen as a combination of
Taylor states, described in the following section.
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2.2 Taylor state

In stepped-pressure equilibria there are regions with flat pressure profiles, ∇p = 0. In
these regions, the Pfirsch-Schlüter current density, Eq.(2.60), vanishes, meaning that the
issue of diverging currents discussed in the previous section is avoided. According to
equation (2.10), in these regions the magnetic field and the total current density must
satisfy J × B = 0, meaning that the current density is parallel to the magnetic field,
J = µ(x)B. These magnetic fields are called force-free fields, and are the building blocks
of the stepped-pressure equilibria.

The Taylor state (Taylor, 1974, 1986) is a particular case of force-free fields where
the function µ is a constant, which gives the Taylor equilibrium equation, also called
Beltrami equation,

∇ × B = µB. (2.61)

Solutions to the equation (2.61) in a slab and a cylinder are derived below.

2.2.1 Solution in a plasma slab

We solve equation (2.61) in a plasma slab. We use cartesian coordinates (x, y, z) with
(ex, ey, ez) the basis vectors. The plasma slab is bounded by two surfaces at x = x− = 0
and x = x+ = a, and we assume that these surfaces are magnetic surfaces, i.e. B · ex = 0.
We first assume periodic boundary conditions in the y and z directions, and assume that
the equilibrium is independent of the y and z coordinates, i.e. B = B(x) (see Figure 2.3).

ex
ey

ez

2π

2π

a

Figure 2.3: Sketch of a plasma slab
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The equation ∇ · B = 0 implies that Bx = 0, while equation (2.61) can be written as

∂Bz
∂x

= −µBy (2.62)

∂By
∂x

= µBz, (2.63)

whose solution is

By = B0 cos(µ(x− x0)) (2.64)
Bz = −B0 sin(µ(x− x0)), (2.65)

where B0 and x0 are integration constants, which can be fixed by providing, for example, a
constraint on the poloidal and toroidal fluxes. Note that, in this geometry, three constants
(or constraints), (µ,B0, x0), have to be provided to fully determine the equilibrium. The
rotational transform is then given by

ι- = By
Bz

= − 1
tan(µ(x− x0)) . (2.66)

In this problem, we assumed that B was independent of y and z. As a consequence,
we obtained a solution filled with magnetic surfaces, defined by x = const, as Bx = 0
everywhere (see the left panel of Figure 2.4). If we relax the y− and z−symmetry
assumption, and perturb the plasma slab boundaries, magnetic islands and magnetic field
line chaos can be generated. As an example, we solve numerically the Beltrami equation
(2.61), in a plasma slab where we perturb both boundaries with three different modes,

x+ = a+ x21 cos(2y − z) + x31 cos(3y − z) + x32 cos(3y − 2) (2.67)
x− = x21 cos(2y − z) + x31 cos(3y − z) + x32 cos(3y − 2). (2.68)

The values of µ and ψp, necessary to fully define the Taylor state in a plasma slab,
have been chosen such that the rotational transform profile goes through the (m,n) =
(3, 1), (2, 1), (3, 2) resonances (see Figure 2.5). The Poincaré section for small and large
values of xmn is plotted in the middle and right panel of Figure (2.4) respectively. In
the case of small perturbations, islands open in the plasma, but they do not overlap,
and magnetic surfaces still exist between each main island chain. In the case of larger
perturbations, the (2, 1) island overlaps with the (3, 2) island and chaotic magnetic field
lines emerge. The rotational transform profile, shown on Figure (2.5), shows the expected
flattening around the magnetic islands. Clearly, the Taylor state can describe force-free
fields with magnetic surfaces, magnetic islands and magnetic field line chaos.
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(a) x21 = x31 = x32 = 0 (b) x21 = 0.02, x31 = x32 = 0.005 (c) x21 = x32 = 0.05, x31 = 0.005

Figure 2.4: Taylor state in a plasma slab, with unperturbed boundary (left), weakly
perturbed boundary (middle), and strongly perturbed boundary (right). Colored surfaces
are the slab lower and upper boundary, x− and x+ respectively.

Figure 2.5: Rotational transform of a Taylor state in a plasma slab. Red: unperturbed
boundary. Gray: weakly perturbed boundary. Blue: strongly perturbed boundary.
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2.2.2 Solution in a plasma cylinder

We now solve equation (2.61) in a plasma cylinder. We use cylindrical coordinates (r, θ, z),
and assume that the z coordinate is 2π-periodic. The plasma cylinder is bounded by a
single surface at r = a, which we assume to be a magnetic surface, i.e. B · ∇r = 0 at
r = a. Again, we assume the equilibrium to be axisymmetric, i.e. B = B(r), and assume
periodic boundary conditions in the θ and ϕ directions (see Figure 2.2), analogous to the
x− y symmetry in the equilibrium slab calculation (see section 2.2.1).

The equation ∇ · B = 0 implies that Br = 0, and equation (2.61) leads to

µBθ = −∂Bz
∂r

(2.69)

µBz = 1
r

∂

∂r
(rBθ). (2.70)

Defining x = µr, we thus obtain

x2∂
2Bθ
∂x2 + x

∂Bθ
∂x

+ (x2 − 1)Bθ = 0, (2.71)

which we identify to be Bessel’s differential equation. The solutions are then

Bθ = B0J1(µr) (2.72)
Bz = B0J0(µr), (2.73)

where Ji is the Bessel function of the ith order, and we set Bθ = 0 at r = 0. Here B0 is
an integration constant, which can be fixed by providing an additional constraint, for
example the toroidal flux. Note that in a cylinder only two constants (or constraints)
(µ,B0) have to be provided to fully determine the equilibrium. This is in opposition
to the plasma slab case, where three constants had to be provided. This difference is
intrinsically linked to the topology of the domain; in a slab, there are two boundaries to
the plasma, one at x = 0 and one at x = a, while in a cylinder there is only one boundary,
at r = a. These important topological properties are also true in toroidal geometries;
two constants are required to fully determine the Taylor state in a torus, while three
constants are required in a toroidal annulus (see Figure 2.6).

As a side note, we remark that the Taylor state in an axisymmetric cylinder, described
by Eqs.(2.72)-(2.73), is given by a combination of Bessel functions — the sign of Bz
or Bθ can thus switch from positive to negative (if B0 > 0), depending on the value of
µ. This would typically apply to describe the magnetic equilibrium of a reversed-field
pinch (RFP), which was historically Taylor’s motivation to develop this model.
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2.3 Multi-region relaxed magnetohydrodynamics

Taylor states alone cannot describe plasma equilibria with pressure profiles. An alternative
is proposed by the MRxMHD equilibrium model, which describes weak solutions to the
ideal MHD equilibrium equations, Eqs.(2.10)-(2.12), assuming stepped-pressure profiles.
The pressure steps are supported by magnetic surfaces Il, l ∈ {1, . . . , Nvol}, with irrational
rotational transform, i.e. ι- ∈ R \ Q, which define a finite number of volumes Vl between
each adjacent pair of interfaces (see Figure 2.6). In each volume, the magnetic field is
described by a Taylor state,

∇ × B = µlB. (2.74)

We remark that while ideal MHD equilibria are defined by two free functions (e.g. the
pressure and the rotational transform profiles, p(ψt) and ι-(ψt), or the pressure and
the net toroidal current profiles, p(ψt) and Iϕ(ψt) — see section 2.1.2), MRxMHD
equilibria require two scalars to determine the solution in an annular volume Vl, in
addition to the pressure and toroidal flux — this is similar to what has been discussed
in section 2.2.1. This can be considered as three independent discrete profiles that are
required to determine an equilibrium. Examples are {pl, µl,∆ψp,l}l=1,...,Nvol

, with ψp,l the
poloidal flux enclosed by the interface Il, or {pl, µl,Kl}l=1,...,Nvol

, with Kl the magnetic
helicity in volume Vl, or {pl, ι-−

l , ι-
+
l }l=1,...,Nvol

, with ι-±
l the rotational transform on the

inner and outer side of the interface Il, as functions of {ψt,l}l=1,...,Nvol
, i.e. the toroidal

flux enclosed by the interface Il. The innermost volume is a special case, since it only
has one boundary; the magnetic field in the innermost volume is thus fully determined
by two scalars, for example (µ1, ψt,1), as discussed in section 2.2.2.

The geometry of the volumes’ boundary is obtained such that force balance is achieved,
i.e. the total pressure (plasma and magnetic pressure) is continuous across each volume’s
interface Il, [[

p+ B2

2µ0

]]
l

= 0, (2.75)

where [[x]]l ≡ xl+1 − xl denotes the discontinuity across interface lth. The MRxMHD
equilibrium can then be seen as a collection of nested Taylor states at equilibrium with
one another.

MRxMHD equilibria are thus stepped-pressure equilibria that extend the Taylor state
to equilibria with pressure gradients. Magnetic field lines are discretely constrained to lay
on magnetic surfaces at the volumes’ boundaries, while magnetic islands and magnetic
field line chaos can be present in the volumes between the interfaces. Diverging currents,
as described in section 2.1.4, are avoided if pressure gradients are only supported by
irrational magnetic surfaces. There are however some drawbacks; the magnetic field,
and so the rotational transform, pressure and other physical profiles, are in general
discontinuous across the interfaces. Furthermore, interfaces may not always exist. If an
interface is close to a magnetic island chain or chaotic field lines, the surface might be
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V1

V2
V3

V4

I1

I2

I3

I4

Figure 2.6: Illustration of 4 nested volumes, V1 to V4, separated by 4 interfaces, I1 to I4.
Volume V1 is a torus, while volumes V2−4 are toroidal annuli.

fractal and thus can not be represented with analytical basis functions, e.g. a Fourier
basis (Qu et al., 2021). Another possibility is that the pressure jump is too large for a
single surface to support it and no solutions to Eq.(2.75) exist (McGann et al., 2010).
Therefore, care must be taken when constructing MRxMHD equilibria, and in their
analysis.

2.3.1 Currents in MRxMHD

One important part of the work presented in this thesis is the implementation of a new
capability in the stepped-pressure equilibrium code (SPEC) (introduced in Chapter 3) to
run at fixed net toroidal current profile. The numerical implementation will be explained
in great details in section 3.2; we describe in this section how currents are represented
in the MRxMHD theory. This section is adapted from parts of the publication by A.
Baillod et. al., Computation of multi-region, relaxed magnetohydrodynamic equilibria
with prescribed toroidal current profile, Journal of Plasma Physics 87, 4, 905870403
(2021), published under the license CC BY 4.0.

In MRxMHD, two spatially distinct net toroidal current profiles co-exist, namely
currents flowing in the volumes, {Ivl,ϕ}l={1,...,Nvol}, and surface currents flowing at the
volumes’ interfaces, {Isl,ϕ}l={1,...,Nvol−1} (current sheets), where the subscript ϕ refers to
the toroidal angle.
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The volume current Ivl,ϕ in volume Vl is easily evaluated using Eq.(2.74),

µ0I
v
l,ϕ = µ0

∫∫
S[ϕ=const]

J · dS = µl

∫∫
S[ϕ=const]

Bl · dS = µl(ψt,l − ψt,l−1), (2.76)

where S[ϕ = const] is a constant-ϕ surface in volume Vl and dS is the differential surface
element. Volume currents represent externally driven currents such as ECCD, NBCD
or Ohmic current. Eq.(2.76) might be surprising since toroidal currents are usually
expressed in terms of functions of the poloidal fluxes and not the toroidal fluxes. In
essence, the poloidal flux dependence is contained in µl, which is related to the parallel
current density, as µl = µ0Jl · Bl/B

2
l , with jl the current density in volume Vl.

The surface current Isl,ϕ at interface Il can be evaluated using Ampere’s law,

µ0I
s
l,ϕ =

∫
Γθ,l

[[B]]l · dl =
∮ 2π

0
[[Bθ]]l dθ ≡ 2π

[[
B̃θ
]]
l
, (2.77)

where Γθ,l is a closed curve following the interface Il poloidally and B̃θ is the m = n = 0
Fourier mode of the covariant component of the poloidal magnetic field. In Eq.(2.77), the
poloidal and toroidal angles, θ and ϕ, are as-of-yet arbitrary. However the surface currents
Isl,ϕ are, as expected, independent of these angles choice, since the surface currents only
depend on the m = n = 0 mode of the field. Surface currents represent all equilibrium
pressure-driven currents, such as diamagnetic, Pfirsch-Schlüter, and bootstrap currents,
as well as shielding currents arising when an ideal interface is positioned on a resonance
(Loizu et al., 2015a) — see section 2.1.3. Note that the net poloidal current at the interface
Il can be obtained by considering integrals over Γϕ,l, i.e. a closed curve following the
interface toroidally, as

µ0I
s
l,θ =

∫
Γϕ,l

[[B]]l · dl =
∮ 2π

0
[[Bϕ]]l dϕ ≡ 2π

[[
B̃ϕ
]]
l
, (2.78)

where B̃ϕ is the m = n = 0 Fourier mode of the covariant component of the toroidal
magnetic field.

Furthermore, it is interesting to note that the current density at the interface Il is

µ0Jsl = n̂ × [[B]] δ(x − xl), (2.79)

where n̂ = ∇s/|∇s|, s is a radial coordinate with s = sl on Il, and xl ∈ Il. Equation
(2.79) can be proven in its weak form by taking surface integrals. Since B · ∇s = 0 at
the interface Il, we find

µ0Jsl = (∇s× ∇θ [[Bθ]] + ∇s× ∇ϕ [[Bϕ]]) δ(x − xl)
|∇s|

. (2.80)

Integrating over a toroidal surface S[ϕ = const], and using the relation δ(x − xl) =
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δ(s− sl)|∇s|, we obtain the net toroidal current at the interface,

µ0

∫∫
S[ϕ=const]

Jsl · dS =
∫∫

S[ϕ=const]
∇s× ∇θ [[Bθ]] · ∇ϕδ(s− sl)

√
gdsdθ (2.81)

=
∫∫

S[ϕ=const]
[[Bθ]] δ(s− sl)dsdθ (2.82)

=
∮

[[Bθ]]l dθ = µ0I
s
l,ϕ, (2.83)

retrieving Eq.(2.77). The net poloidal current at the interface is obtained similarly by
integrating over a poloidal surface S[θ = const],

µ0

∫∫
S[θ=const]

Jsl · dS =
∫∫

S[θ=const]
∇s× ∇ϕ [[Bϕ]] · ∇θδ(s− sl)

√
gdsdϕ (2.84)

=
∫∫

S[θ=const]
[[Bϕ]] δ(s− sl)dsdϕ (2.85)

=
∮

[[Bϕ]]l dϕ = µ0I
s
l,θ. (2.86)

Equations (2.83) and (2.86) show that the current density (2.79) leads to the same net
toroidal and poloidal current as obtained with Ampere’s law in Eqs.(2.77)-(2.78).

Currents discretization

Typically, continuous current profiles are provided by theoretical models or after equi-
librium reconstruction using experimental data. We now discuss how these profiles can
be represented in the framework of MRxMHD. Consider an externally driven current
profile, e.g ECCD, provided as the enclosed toroidal current as a function of the toroidal
magnetic flux, i.e. Iϕ,ECCD(ψt), and a pressure-driven current profile, e.g. the bootstrap
current, provided similarly as the enclosed toroidal current as a function of the toroidal
flux, Iϕ,BS(ψt). We also assume that the pressure profile, p(ψt), the number of volumes,
Nvol, and their enclosed toroidal fluxes, {ψt,l}l=1,...,Nvol

, are given (see Figure 2.7). The
question of how many volumes and where to position their interfaces to best represent a
given pressure profile is not addressed in this chapter.

A proposed representation of these current density profiles in MRxMHD is achieved
as follows. The ECCD current is an externally driven, parallel current and is thus
represented as a volume current since it flows parallel to the field lines; on the other hand,
the bootstrap current is a pressure-driven, self-generated current and is represented as
a surface current, since it is localized at the pressure gradients. Volume currents are
obtained by integrating the externally driven current density in each volume (Figure 2.8),
which is simply given by the difference

Ivl,ϕ = Iϕ,ECCD(ψt,l) − Iϕ,ECCD(ψt,l−1), (2.87)
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Figure 2.7: Sketch of a pressure profile as a function of the toroidal flux. Blue: continuous
pressure profile obtained via experiment or analytical model. Red: MRxMHD discretized
pressure profile. Black dashed lines: volumes’ interfaces.

Figure 2.8: Sketch of externally driven current density (red curve). Colored area
correspond to the MRxMHD volume current. Black dashed lines represent volumes’
interfaces.
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Figure 2.9: Sketch of pressure driven current density. Colored area correspond to the
MRxMHD surface current. Black dashed lines represent volumes’ interfaces.

and the surface currents are obtained by integrating the pressure driven current density
around each interface (Figure 2.9), which is expressed as

Isl,ϕ = Iϕ,BS(ψl,out) − Iϕ,BS(ψl,in), (2.88)

with

ψl,in =

0 if l = 1
ψt,l−1+ψt,l

2 otherwise
(2.89)

ψl,out =

ψa if l = Nvol − 1
ψt,l+ψt,l+1

2 otherwise
, (2.90)

with ψa the total toroidal magnetic flux enclosed by the plasma. In Eqs.(2.89)-(2.90),
care has been taken for the first and last interfaces, where the surface of integration
has been extended to include the current density from the magnetic axis and up to
the plasma boundary. Note that this difference in the definition of the first and last
surface currents vanishes as the number of volumes Nvol is increased. Eqs.(2.87)-(2.90)
are only one possible discretization of the continuous current profiles, proposed here for
illustration. Advantages of this particular representation are (1) that the total toroidal
current is always preserved and (2) that the currents are approximately localized at the
same location in the discretized than in the continuous case.
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2.4 Energy principles

To complete this chapter, we discuss here how the ideal MHD equilibrium equations,
Eqs.(2.10)-(2.12), the Taylor state, Eq.(2.61), and the MRxMHD equilibrium equations
can all be derived from an energy principle, Eqs.(2.74)-(2.75). In fact, all three models
derive from the same energy functional, which is extremized under different topological
constraints. We first start by discussing the relation between magnetic helicity and field
line topology conservation.

2.4.1 Conservation of field line topology

An important property of the ideal MHD model is that the magnetic helicity K, defined
in Eq.(2.26) is conserved everywhere under ideal MHD evolution (Woltjer, 1958). Indeed,
we find

∂K

∂t
=
∫∫∫

V
dx3 ∂

∂t
(A · B) +

∫∫
δV

A · B(n · v)dx2. (2.91)

where V is any volume in the plasma bounded by magnetic surfaces, n is a unit vector
normal to δVi, and v is the velocity describing the motion of the boundary δV . The first
term of the right hand side of Eq.(2.91) can be simplified using Faraday’s law,

∂

∂t
(A · B) = ∂A

∂t
· B − A · (∇ × E) (2.92)

= E · B + B · ∂A
∂t

− ∇ · (E × A) (2.93)

= −∇ · (ΦB + E × A), (2.94)

where we used the relation ∇ · (A × E) = A · ∇ × E + E · B to get to the second
equation, and the electric field was expressed in terms of the electrostatic potential Φ as
E = −∇Φ − ∂A/∂t to get the third equation. Using the divergence theorem to rewrite
the second term of Eq.(2.94) as a surface integral, and noting that B · n = 0 since δV are
magnetic surfaces, we obtain

∂K

∂t
=
∫∫

δV
(A · B(n · v) − (E × A) · n)dx2 (2.95)

=
∫∫

δV
(n × A) · (E + v × B)dx2. (2.96)

Applying the ideal Ohm’s law (Eq.(2.5)), we obtain ∂K/∂t = 0, i.e. the magnetic
helicity is conserved everywhere in the plasma according to ideal MHD. Interestingly,
it has been shown that the magnetic helicity is also approximately conserved during
certain non-ideal processes, such as fast reconnection events (Berger, 1999), and tokamak
sawtooth crashes (Heidbrink and Dang, 2000).
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(a) Gauss linking number is 1 (b) Gauss linking number is 3

Figure 2.10: Sketch of two intertwined curves (one in red, one in blue), and their related
Gauss linking number

Magnetic helicity can be linked to the magnetic field line topologies. Using the
Coulomb gauge to express the magnetic vector potential, ∇ · A = 0, one can show
(Moffatt, 1969; Arnold and Khesin, 2021; Berger, 1999) that the magnetic helicity is
the sum of the Gauss linking number over every pair of field lines within a volume,
where the Gauss linking number is a measure of how intertwined field lines are (see
Figure 2.10). Note the following implication: in ideal MHD, the magnetic helicity is
conserved everywhere, meaning that the magnetic topology is conserved during plasma
motion, a reflection of Alfvén’s frozen-in-flux theorem (Alfvén, 1942). Therefore, no
magnetic reconnection event can be described by ideal MHD dynamics.

2.4.2 Ideal MHD equilibrium

Consider a plasma filled with nested magnetic surfaces and initially at rest with potential
energy W given by Eq.(2.25). In general, this initial state will not be at equilibrium. We
follow Kruskal and Kulsrud (1958) to minimize W under ideal MHD motions.

The first step in the derivation is to find a new time-invariant of the system. From
Eq.(2.4), we find that p1/γ = kρ, with k a constant. Multiplying both sides by a volume
element dv, we get p1/γdv = kρdv = kdm, with dm the mass contained in dv. Mass
conservation implies that dm is a constant, and thus p1/γdv is also constant in time. We
can thus define the conserved quantity M(c), which is proportional to the plasma mass,
as

M(c) =
∫
ψt≤c

p1/γdv, (2.97)

where c is a flux surface label, and c = C is the plasma boundary. Variation of M with
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respect to p gives

0 = δM = 1
γ

∫
ψt≤c

p1/γ−1δpdv (2.98)

= 1
γ

∫ c

0
dc

∫∫
S[ψt=c]

p1/γ−1δp
dS

|∇ψt|
. (2.99)

The plasma will dissipate its energy until reaching an equilibrium, characterized by the
minimum of its energy, where δW = 0. Variation of the energy with respect to p thus
gives

0 = δW = 1
γ − 1

∫ C

0
dc

∫∫
S[ψt=c]

dS

|∇ψt|
δp. (2.100)

Both equation (2.99) and (2.100) have to be satisfied for any variation δp; in particular,
we can choose a variation such that p1/γ−1δp/|∇ψt| = δ(x − x1) − δ(x − x2), with xi
a point on the surface ψt = c. Then equation (2.99) is satisfied by construction, and
equation (2.100) implies

0 =
∫∫

S[ψt=c]

δpdS

|∇ψt|
=
∫∫

S[ψt=c]

dS

p1/γ−1 [δ(x − x1) − δ(x − x2)], (2.101)

which is satisfied if p(x1) = p(x2). Since the xi are arbitrary, the pressure must be a
function of c, i.e. p = p(c). Taking the derivative of equation (2.97) with respect to c,
we can write

p(c) =
[

M ′(c)∫
ψt=c dS/|∇ψt|

]γ
. (2.102)

We now use the assumption of the existence of magnetic surfaces to express the magnetic
field using straight-field line coordinates (c, θs, ϕ) (see appendix A.1) using the Clebsch
form,

B = ∇ψt × ∇α, (2.103)

with
α = θ + λ(c, θ, ϕ) − ι-ϕ, (2.104)

and λ a function that transforms arbitrary toroidal coordinates (c, θ, ϕ) into straight field
line coordinates with θs = θ + λ. Variation of the energy function W with respect to λ
gives

0 = δW =
∫

VP

B · (∇ψt × ∇δλ)dv = −
∫

VP

δλ∇ · (B × ∇ψt)dv, (2.105)

which implies
∇ψt · (∇ × B) = 0, (2.106)

i.e. magnetic surfaces are current surfaces as well. The final stage of the derivation is to
consider variations of W with respect to the toroidal flux. Careful consideration of how
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the pressure varies as the toroidal flux is varied leads to∫
VP

δp(c)dv =
∫∫∫

VP

pδ log pdv =
∫ C

0
dc

∫
S[ψt=c]

dS

|∇ψt|
pγδ

[
log

(
M ′(c)∫∫
dS/|∇ψt|

)]
.

(2.107)

Let us define I(c) =
∫
ψt=c dS/|ψt| to lighten the notation. Expanding the variation of

the logarithm, we obtain

δ

[
log

(
M ′(c)
I(c)

)]
= I(c)
M ′(c)

δ(M ′(c))I(c) −M ′(c)δ(I(c))
I(c)2 (2.108)

= δ(I(c))
I(c) , (2.109)

where we used that M(c) is an ideal MHD invariant, i.e. δM(c) = 0 and thus δM ′(c) = 0.
Note that the variation of I(c) can be written as

δ(I(c)) = δ

(∫∫
S[ψt=c]

dS

|∇ψt|

)
= δ

d

dc

∫∫∫
VP

dv = − d

dc

∫
S[ψt=c]

dS
δψt

|∇ψt|
, (2.110)

which leads to ∫∫∫
VP

δp(c)dv = γ

∫ c

0
dcp(c) d

dc

∫∫
S[ψt=c]

dS
δψt

|∇ψt|
(2.111)

= −γ
∫ c

0
dcp′(c)

∫∫
S[ψt=c]

dS
δψt

|∇ψt|
(2.112)

= −γ
∫∫∫

VP

dvp′(ψt)δψt, (2.113)

where we integrated by part the first equation, and used the assumption that δψt = 0 on
the plasma boundary. We can now finally write the variation of the energy,

0 = δW =
∫∫∫

VP

dv

[
B · δB + p′δψt + δp

γ − 1

]
(2.114)

=
∫∫∫

VP

dv
[
B · (∇δψt × ∇α+ ∇ψt × ∇δλ) − p′δψt

]
(2.115)

=
∫∫∫

VP

dv
[
B · (∇δψt × ∇α) − p′δψt

]
(2.116)

=
∫∫∫

VP

dvδψt
[
(∇ × B) · ∇α− p′] , (2.117)

To obtain the force balance equation, one needs to take the cross product between ∇ × B
and B. We get

B × (∇ × B) = [(∇ × B) · ∇ψt]∇α+ [(∇ × B) · ∇α]∇ψt = −p′∇ψt, (2.118)
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which is equivalent to
(∇ × B) × B = ∇p, (2.119)

thereby retrieving the force balance equation (2.10). The plasma state that extremizes
the energy W under ideal MHD variations is thus described by the MHD equilibrium
equation. Since only ideal MHD variations were allowed, the magnetic field line topologies
are conserved between the initial and final state — the equilibrium is thus filled with
nested magnetic surfaces.

2.4.3 Taylor state

Taylor states do not assume the existence of magnetic surfaces; as a matter of fact, the
magnetic helicity is conserved globally, as opposed to its local conservation in ideal MHD.
To enforce this constraint in the energy minimization, we employ the Lagrange multiplier
method and minimize the functional

F =
∫

VP

(
p

γ − 1 + B2

2µ0

)
dv − µ

µ0
(K −K0), (2.120)

where K0 is the magnetic helicity of the initial state. Variation with respect to µ enforces
the constraint K = K0, while variation with respect to the vector potential A gives

0 = δF = δW − µ

µ0
(δK −K0) (2.121)

=
∫

VP

BδBdv − µ

∫
VP

(δA · B + A · δB)dv (2.122)

=
∫

VP

(B · ∇ × δA − µA · δB − µB · δA) dv, (2.123)

where δB = ∇×δA. We now write the first term as B·∇×δA = (∇×B)·δA+∇·(δA×B),
and apply the divergence theorem to write∫

VP

B · ∇ × δAdv =
∫

VP

(∇ × B) · δAdv +
∫
δVP

(δA × B) · dS. (2.124)

Without loss of generality, we can choose a gauge such that δA × dS = 0 on δVP ; the
second term in equation (2.124) thus vanishes, and we find

δF =
∫

VP

(∇ × B − µB) · δAdv − µ

∫
VP

A · ∇ × δAdv. (2.125)

Note that here, the variation δA is completely arbitrary, reflecting the possibility of
magnetic field line reconnection. We wish now to prove that the second term of equation
(2.125) vanishes. We write ∇ × δA = δB and we make use of Faraday’s law to write
δB = ∇ × Eδt where δt is an infinitesimal time over which the plasma motion takes
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place. We thus get

A · δB = [∇ · (E × A − E · B)] δt (2.126)
= ∇ · (E × A)δt, (2.127)

where we used Ohm’s law (2.5) to find E · B = 0. Finally, taking the integral over the
plasma volume and applying the divergence theorem, we get∫

VP

A · ∇ × δAdv =
∫

ΓP B

(E × A) · dSδt =
∫

ΓP B

A · (dS × E)δt = 0, (2.128)

where we applied the boundary condition dS × E = 0 on the plasma boundary ΓPB.
Equation (2.125) reduces then to∫

VP

(∇ × B − µB) · δAdv = 0, (2.129)

which implies the Taylor equilibrium equation (2.61).

2.4.4 MRxMHD

The MRxMHD equilibrium equations derive as well from an energy principle (Dewar et al.,
2015). As described in section 2.3, MRxMHD equilibria can be seen as a combination
of nested Taylor states at equilibrium with one another. It is thus natural to define
the energy functional as the sum of the Taylor’s state energy functional relative to each
volume, i.e.

F =
Nvol∑
l=1

∫
Vl

[
p

γ − 1 + B2

2µ0

]
dx3 + µl(Kl −Kl,0). (2.130)

Minimization with respect to variations in the magnetic field leads to the Taylor state
equation (2.74) in each volume Vl, while variation with respect to the volume’s boundary
motion leads to the equilibrium condition (2.75). The derivation is rather tedious —
further details can be found in the publication by Dewar et al. (2015).
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2.5 Summary

This chapter introduced the ideal MHD model which can be used to describe plasma
equilibria in stellarators. Important figures of merit were defined, in particular the
normalized pressure, β, which is a crucial parameter for the efficiency of the reactor. We
also discussed the different kinds of currents that are present in ideal MHD equilibria.
The diamagnetic current is generated by the plasma to satisfy the force balance equation,
while the Pfirsch-Schlüter current emerges in order to satisfy the charge conservation
equation. Calculating the flux averaged current density of both currents, we showed
that only the diamagnetic current contributes to setting a net toroidal current in the
plasma, and only if there are other sources of net toroidal current — for example the
bootstrap current, or externally driven currents. Furthermore, estimates showed that the
net toroidal current in the system is dominated by the bootstrap and externally driven
currents, which strongly motivates their inclusion in the calculation of any magnetic
equilibria. As we shall see in chapter 5, the bootstrap current has indeed a strong effect
on the equilibrium.

Furthermore, we discussed the singular properties of the Pfirsch-Schlüter current.
Different classes of equilibria were proposed to keep the Pfirsch-Schlüter current integrable.
In particular, we discussed the Taylor state, which is a force-free field that allows the
emergence of magnetic islands and chaos, and the stepped-pressure equilibrium, where
the pressure gradient is supported by a finite number of interfaces. We introduced the
MRxMHD equilibrium equations, which describes the plasma as a set of nested Taylor
states at constant pressure, with pressure discontinuities at the volume’s interfaces.
This class of equilibrium is of particular interest because it (i) allows the emergence
of magnetic islands and magnetic field line chaos, (ii) describes equilibria with finite
pressure gradients, (iii) does not have singular Pfirsch-Schlüter current densities, and (iv)
has been proven to have solutions in 3D under some conditions. In this thesis, we will
uniquely work with MRxMHD equilibria.

In this chapter, we also discussed some of the properties of the MRxMHD equilibria.
We showed that there are two types of currents in MRxMHD equilibria, namely volume
currents, that are parallel to the magnetic field and flow in the volumes, and surface
currents, that are current sheets with zero width that flow at the volume’s interfaces.
Volume currents encompass all externally driven currents, while interface currents rep-
resent the pressure-driven currents and shielding currents that emerge when an ideal
interface is positioned on a resonance.

Finally, we discussed how the ideal MHD, the Taylor state and the MRxMHD
equilibrium equations could be derived from an energy principle. This property is
exploited by different numerical codes to find 3D equilibria — indeed, the equilibrium
can be directly computed from an initial state by minimizing an energy functional
instead of computing the entire time evolution and trajectory of the plasma. While the
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time evolution can be of great importance for some applications, it is often a waste of
computational time and resources if only the equilibrium state is sought. For example,
the VMEC code (Hirshman, 1983; Hirshman et al., 1986a) finds ideal 3D MHD equilibria
by minimizing Eq.(2.25), and the SPEC code (Hudson et al., 2012a, 2020) can find
MRxMHD equilibria by minimizing the equation (2.130). The next chapter will focus
on describing the SPEC code, and how the capability to constraint the toroidal current
profiles was implemented.
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3 The stepped-pressure
equilibrium code

The stepped-pressure equilibrium code (SPEC) was developed in the past decade to solve
the MRxMHD equilibrium equations (see section 2.3). In 2012, Hudson et al. published
a first version that computes fixed-boundary, stepped-pressure equilibria. Since then,
SPEC has been upgraded to allow free-boundary calculations (Hudson et al., 2020) and
to allow the prescription of a net toroidal current profile (Baillod et al., 2021) — the
implementation of this constraint is explained in more detail in section 3.2. The numerical
robustness of the code was (and is still being) continuously improved: Qu et al. (2020)
improved the radial discretization and the numerical solvers in the innermost volume of
the plasma, and a new representation for the interfaces of neighboring volume domains,
based on the work by Henneberg et al. (2021a), has been implemented. Details about
the implementation of this new representation in SPEC are given in section 3.3.

In addition to these numerical developments, SPEC has been extensively used in
the past decade to study diverse physics topics. The code has been rigorously verified
in stellarator geometry (Loizu et al., 2016), and has been successfully applied to study
current sheets at rational surfaces (Loizu et al., 2015a,b; Huang et al., 2022), tearing mode
stability (Loizu and Hudson, 2019) and nonlinear tearing saturation (Loizu et al., 2020),
equilibrium β-limits in a classical stellarator (Loizu et al., 2017), the penetration and
amplification of resonant magnetic perturbations in the ideal limit (Loizu et al., 2016),
the modelling of the non-linear plasma response to resonant magnetic perturbations by
allowing islands formation (Wright et al., 2022), the stability of MRxMHD equilibria
(Kumar et al., 2021, 2022), relaxation phenomena in reversed field pinches such as the
formation of helical states (Dennis et al., 2013) or the relaxation of flow during sawteeth
(Dennis et al., 2014; Qu et al., 2020), and the modelling of ECCD induced sawteeth
crashes in W7-X (Aleynikova et al., 2021).
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In this chapter, an overview of the SPEC code is given. In section 3.1 some important
parts of the SPEC algorithm are explained. In section 3.2 the implementation of the net
toroidal current constraint is described. Section 3.3 discusses some limitations of SPEC
that are related to its numerical fragility, and presents the implementation of a new angle
representation, which is shown to be a step towards improving SPEC robustness. Finally,
section 3.4 concludes the chapter with some summarizing remarks.

3.1 SPEC algorithm

We recall that MRxMHD describes the plasma as a collection of nested neighboring
volumes Vl, separated by interfaces Il (see Figure 2.6). The SPEC code solves the
MRxMHD equilibrium equations (2.74)-(2.75), which we rewrite here for convenience:

in Vl : ∇ × B = µlB (3.1)

at Il :
[[
p+ B2

2µ0

]]
l

= 0 (3.2)

at Il : B · n = 0, (3.3)

with B the magnetic field, µl a constant specific to the volume Vl, [[·]]l denotes the
discontinuity across the interface Il, p is the pressure, µ0 the vacuum permeability, and
n a vector normal to the interface Il. To solve these equations, SPEC is constructed
as a number of nested loops. The innermost loop solves equation (3.1) to obtain the
magnetic field in each volume Vl, that satisfies the boundary condition, Eq.(3.3), given
the geometry of their interfaces and some constraints — for example the rotational
transform on each boundary of the volume can be imposed. Given the magnetic field
in each volume, the force imbalance at each interface, [[p+B2/2µ0]]l, can be evaluated.
The second loop is then an iteration over the geometry of the volume interfaces until the
force balance condition (3.2) is satisfied. Finally, an additional but optional final loop
iterates on the boundary condition of the outermost volume in case of free-boundary
calculations (see section 3.1.4).

For a fixed-boundary calculation, one needs to provide a plasma boundary ΓPB,
a number of volumes Nvol, the pressure pl, and the enclosed toroidal flux ∆ψt,l =
ψt,l+1 − ψt,l in each volume, with ψt,l the toroidal flux enclosed by the interface Il, and
with l ∈ {1, . . . , Nvol}. As discussed in section 2.2, the magnetic field in each annular
volume requires two additional constraints to be fully determined, for example µl and the
poloidal flux ∆ψp,l = ψp,l+1 −ψp,l, with ψp,l the poloidal flux enclosed by the interface Il.
In the first volume, only one additional constant, µ1, is required to fully determine the
magnetic field. Note that SPEC can be run with different constraints; one can constrain
for example the toroidal flux in each volume and the rotational transform on each side of
the volume’s interfaces (∆ψt,l, ι-−, ι-+). We will in particular describe in section 3.2 how
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the capability to run at fixed net toroidal current profile has been implemented, i.e. how
one can constrain the net toroidal current in each volume and at each volume interface
(see section 2.3.1). We discuss now how, given these inputs, SPEC finds fixed-boundary
equilibria.

3.1.1 Parameterization of interfaces and magnetic field

Using the standard cylindrical coordinate system (R,ϕ, Z), the plasma boundary ΓPB
is parameterized by R(θ, ϕ), Z(θ, ϕ), where θ is an as-of-yet undetermined poloidal
angle, and ϕ is the usual cylindrical angle. Toroidal surfaces can be written as double
Fourier series in the toroidal and poloidal directions, thereafter named the standard
representation,

R(θ, ϕ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

Rmn cos(mθ − nNfpϕ) (3.4)

Z(θ, ϕ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

Zmn sin(mθ − nNfpϕ), (3.5)

where Mpol and Ntor are the maximum poloidal mode number m and toroidal mode
number n respectively, Rmn and Zmn are the Fourier modes of R and Z respectively,
and Nfp is the number of field periods (discrete symmetry) of the system. Note that
we assumed stellarator symmetry (Dewar and Hudson, 1998) to lighten the notation. If
stellarator symmetry was not assumed, both R and Z Fourier series would have odd and
even terms (sine and cosine series), thereby doubling the number of Fourier harmonics
required to describe the surface.

Each volume’s interface Il is represented by such Fourier series, with modes {Rlmn, Z lmn}.
Between each interface, SPEC uses toroidal coordinates (s, θ, ϕ) (see Figure 3.1), where
s ∈ [−1, 1] is a radial-like coordinate. In each volume Vl, coordinates x = R(s, θ, ϕ)eR +
Z(s, θ, ϕ)eZ are constructed by interpolation between the volumes’ interfaces, i.e.

R(s, θ, ϕ) = Rl−1(θ, ϕ) + [Rl(θ, ϕ) −Rl−1(θ, ϕ)]flmn(s) (3.6)
Z(s, θ, ϕ) = Zl−1(θ, ϕ) + [Zl(θ, ϕ) − Zl−1(θ, ϕ)]flmn(s), (3.7)

with flmn given by

flmn =
{ 1+s

2 if l ̸= 1 or m = 0(
1+s

2

)m
if l = 1 and m ̸= 0,

(3.8)

where the power law in m is chosen in order to regularize the coordinates in the innermost
volume (l = 1) close to the magnetic axis. The innermost volume, which contains the
magnetic axis, is particular in the sense that a coordinate axis, (R0(ϕ), Z0(ϕ)), has to be
chosen. A clever algorithm that maximizes the coordinate jacobian in the first volume
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eθ eθ
eϕ eϕ

Figure 3.1: Sketch of the coordinate system used in SPEC, in a toroidal volume (left)
and an annular volume (right). In red: volume interfaces, at s = ±1. In blue: constant-s
surfaces. In purple: constant-θ surfaces.

by moving the coordinate axis was implemented, so that ill-defined coordinate systems
are more easily avoided, ensuring well-defined coordinate mappings for star-like domains
(Qu et al., 2020). Coordinate covariant and contravariant basis are easily computed (see
appendix A.2).

The poloidal angle θ is an as-of-yet undetermined angle. In SPEC, the poloidal angle
on an interface Il is chosen so that the required number of Fourier harmonics is minimized.
In appendix A.3 we discuss how this so-called spectral condensation is implemented. For
the purpose of the discussion, we simply mention here that the poloidal angle on Il is
chosen such that a certain function, which we call here Yl(θ, ϕ), is set to zero. Expressed
on a Fourier basis, we get

Yl =
Mpol∑
m=0

Ntor∑
n=−Ntor

Ylmn sin(mθ − nNfpϕ), (3.9)

where again stellarator symmetry has been assumed.

In each volume Vl, the covariant component of the magnetic field vector potential Al,

Al = Al,s∇s+Al,θ∇θ +Al,ϕ∇ϕ, (3.10)

is expanded on a polynomial basis in the radial direction and a double Fourier series in
the poloidal and toroidal directions,

Al,i =
Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

AlikmnTkm(s) cos(mθ − nNfpϕ), (3.11)

where i = {s, θ, ϕ}, the polynomials Tkm(s) are Zernike polynomials in the innermost
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volume (Qu et al., 2020), and Tkm = Tk are Chebyshev polynomials in the other volumes,
and Lrad is the highest considered order of the polynomials. Note that gauge freedom is
used to set Al,s = 0 ∀l. The magnetic field is then given by

Bl = es√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

−(mAlϕkmn + nAlθkmn)Tkm(s) sin(mθ − nNfpϕ) (3.12)

+ eθ√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

−AlϕkmnT ′
km(s) cos(mθ − nNfpϕ) (3.13)

+ eϕ√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

AlθkmnT
′
km(s) cos(mθ − nNfpϕ), (3.14)

where the prime denotes the derivative.

3.1.2 Beltrami solver

At the core of SPEC stands the Beltrami solver, which finds the magnetic field that
satisfies the Beltrami equation (2.74) given the volume interfaces geometry and the input
profiles. We first remark that the constraints given by the fluxes (∆ψp,l,∆ψt,l) depend
linearly on the vector potential harmonics. Indeed, using Eqs(3.13)-(3.14), we obtain

∆ψt,l =
∫∫

S[ϕ=const]
Bϕ√

gdθds = 2π
Lrad∑
k=0

Alθk00[Tk0(1) − Tk0(−1)] (3.15)

∆ψp,l =
∫∫

S[θ=const]
Bθ√gdϕds = −2π

Lrad∑
k=0

Alϕk00[Tk0(1) − Tk0(−1)] (3.16)

Similarly, the boundary conditions, i.e. enforcing the volumes interfaces to be magnetic
surfaces, is set by requiring Bs = 0. Using Eq.(3.12), we obtain

Lrad∑
k=0

(mAlϕkmn + nAlθkmn)Tkm(±1) = 0. (3.17)

Finally, the Beltrami equation (2.74) can be written as a linear system by minimizing
the MHD energy functional, Eq.(2.120), while constraining the enclosed poloidal and
toroidal fluxes, and while satisfying the boundary conditions (3.17) — see appendix A.4
for more details. We can then construct matrices Gl, Dl and Cl, and we write(

Gl[X l
mn, X

l+1
mn ] − µlDl[X l

mn, X
l+1
mn ]

)
al = Cl[∆ψp,l,∆ψt,l], (3.18)

where al is an array where, in particular, the coefficients Alikmn are packed, and the
X l
mn are the Rlmn and Z lmn harmonics.
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Solving Eq.(3.18) provides the vector potential harmonics al consistent with the
volume’s geometry, the constant µl, and the enclosed fluxes (∆ψt,l,∆ψp,l). If the input
profiles are the rotational transform ι-±

l on the inner and outer boundary of the volume
Vl, initial guesses for (µl,∆ψp,l) are used for a first Beltrami solve. The Beltrami field is
then solved multiple times for different values of (µl,∆ψp,l) until the rotational transform
constraint is matched. Note that the matrices Gl and Dl, which require multiple volume
integral evaluations, are expensive to evaluate. They however only depend on the volume
geometry. Consequently, these matrices do not have to be recalculated for each new
set of values of (µl,∆ψp,l). We finally remark that the rotational transform ι-±

l only
depends on the magnetic field in volume Vl — we say that it is a local constraint to
the volume Vl. This is different from global constraints, that depend on the magnetic
field in multiple volumes. An example of a global constraint is the net toroidal current
constraint, discussed in section 3.2.

The output of the Beltrami solver is the magnetic field Bl in agreement with the
constraint and the volume geometry. As an example, we compute now the solution to
the Beltrami equation (2.74) in the W7-X geometry (see Figure 3.2a). We consider here
only one volume, Nvol = 1, meaning that the pressure is flat in all the plasma. There
is no pressure gradient, thus the absolute value of the pressure is irrelevant and we set
it to zero. As we consider a single volume, there are no interfaces where the magnetic
field line topology is constrained, excepted on the plasma boundary. Finally, we set the
toroidal flux enclosed by the plasma boundary to ψt,1 = 2Tm2 — note however that this
parameter only scales the modulus of the magnetic field. We solve the Beltrami equation
for µ1 = 0 (i.e. in a vacuum), and for µ1 = −8 · 10−2, meaning that a net toroidal
current is flowing in the volume, as Ivϕ,1 = µ1ψt,1. Here, we set Mpol = Ntor = 10, and
Lrad = 16. The Poincaré section of the magnetic field is plotted for different toroidal
angles on the middle and lower panels of Figure 3.2, and the rotational transform profile
for both cases is plotted on Figure 3.3. Note that the negative sign of ι- is due to the
definition of the poloidal angle θ (see Figure 3.1). We see that, as expected, imposing a
net toroidal current in the plasma shifts the rotational transform profile — in vacuum,
the rotational transform crosses the ι- = 5/6 resonance, and an island chain opens with
a 6-fold periodicity in the poloidal direction, as measured experimentally (see Figure
1.13b). With µ = −8 · 10−2, the rotational transform crosses now the ι- = 5/5 resonance,
and an island chain with a 5-fold periodicity in the poloidal direction opens.

To evaluate MRxMHD equilibria with multiple volumes, Nvol > 1, the SPEC code
needs to evaluate the force at each interface Il, given the magnetic field B in each volume.
We discuss now how the force is evaluated, and how SPEC iterates on the geometrical
degrees of freedom to set the force to zero.
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Figure 3.2: Top: W7-X geometry. Colors indicate the magnetic field strength obtained
with SPEC on the plasma boundary in vacuum. Middle and bottom: Poincaré section
of the Beltrami field evaluated by SPEC in W7-X geometry. Left: vacuum field, with
µ = 0. Right: µ = −0.08.
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Figure 3.3: Rotational transform profiles in W7-X for two different values of µ, as
evaluated by SPEC. The value of R labels the starting point of the field-line tracing, at
ϕ = 0, Z = 0.

3.1.3 Force solver

SPEC searches the geometry of the volume interfaces Il, l ∈ {1, . . . , Nvol − 1}, that
minimizes (i) the physical force density, i.e. Eq.(2.75) and (ii) the spectral constraint,
i.e. Eq.(3.9). We denote by X the array where all geometrical degrees of freedom, i.e. all
{X l

mn} = {Rlmn, Z lmn}, are packed. In total, there are (Nvol − 1)Nx geometrical degrees
of freedom, with Nx the number of Fourier harmonics per interface,

Nx = 2[Ntor +Mpol(2Ntor + 1)] + 1. (3.19)

The physical force density is an even function of the poloidal and toroidal angles, and
can be written as a double Fourier series

Fl(θ, ϕ) =
[[
p+ B2

2µ0

]]
l

=
∞∑
m=0

∞∑
n=−∞

Flmn cos(mθ − nNfpϕ). (3.20)

The double Fourier series requires an infinite number of Fourier harmonics, because of
the nonlinear B2 term in the force. In SPEC, the assumption is however made that the
Fourier resolution set by the user is high enough to capture the dominant force harmonics
by truncating the force at (Mpol, Ntor), i.e.

F (θ, ϕ) ≈
Mpol∑
m=0

Ntor∑
n=−Ntor

Flmn cos(mθ − nNfpϕ). (3.21)
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Only the force harmonics with m ≤ Mpol, |n| ≤ Ntor are then considered in SPEC
algorithm. As discussed later in the conclusion of this chapter, this particular choice in
SPEC’s implementation might be one source of numerical fragility in the case of strongly
shaped stellarator geometries, i.e. in configuration with either large torsion or elongation.

Given the magnetic field in each volume computed by the Beltrami solver (see
section 3.1.2), one can evaluate the magnetic field on a (θ, ϕ) grid on each side of each
interface using Eqs.(3.12)-(3.14). Taking the difference between the outer and inner side,
and performing a Fourier transformation gives the Fourier harmonics Flmn. All Fourier
harmonics of the (truncated) physical force and of the spectral constraint are packed
in a single array, thereafter named F. Using a hybrid-Powell method (Powell, 1971),
which is a modified Newton method, SPEC will then iterate on all geometric degrees of
freedom of the interfaces, X, until all elements of F are smaller than a tolerance set by
the user. Analytical derivatives of F with respect to the interface geometry harmonics X
are provided to speed up the calculation. Details about the computation of the force
derivatives are given in the case of the toroidal current constraint in section 3.2.2.

It is important to remark that while Newton-like methods are fast to converge towards
the root of a function if a good initial guess is provided, these methods can also get
stuck in local minima, or diverge, if the initial guess is too far from the solution. As it
will be illustrated in section 3.3, SPEC sometimes requires a very good initial guess for
the geometry of the interfaces to find the solution to F = 0, when considering strongly
shaped stellarator geometries with large elongation or torsion.

Let us finally introduce a useful scalar, thereafter named force scalar, to represent
the force-balance convergence of SPEC, provided by the L2-norm of F,

|f | = 1
Nf

√√√√√Nvol−1∑
l=1

Mpol∑
m=0

Ntor∑
n=−Ntor

(Flmn)2 + (Ylmn)2, (3.22)

with Nf the number of elements in F, which can be easily evaluated to

Nf = (Nvol − 1){2[Ntor +Mpol(2Ntor + 1)] + 1}, (3.23)

which is equal to the number of geometrical degrees of freedom Nx(Nvol − 1), with Nx

given by Eq.(3.19).

As an example, let us consider once again the W7-X geometry (see Figure 3.2a).
We now compute a MRxMHD equilibrium with two volumes, Nvol = 2, and attempt at
retrieving the vacuum field obtained with Nvol = 1 (see Figure 3.2). We set the profiles
to pl = µl = 0 for l = {1, 2}, and choose the toroidal flux enclosed by each interface to
be ψt,1 = 0.75Tm2, and ψt,2 = 2Tm2. The poloidal flux enclosed by the second interface,
ψp,2, needs to be carefully chosen to ensure that there is no net toroidal current at the
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volume’s interface I1. Here, we assume that this particular poloidal flux is known, and
we set ψp,2 = −5.22 · 10−1Tm2; we will describe in section 3.2 how it can be obtained.
We interpolate an initial guess for the geometry of I1 from the geometry of the plasma
boundary. Evaluating the Beltrami field using the initial guess for the geometry of I1,
SPEC evaluates a force scalar of |f | = 3.14 · 10−2. After 150 iterations on the interface
geometry, SPEC eventually finds the I1 geometry for which |f | is of the order of machine
precision, and thus satisfies the equations (2.74) and Flmn = Ylmn = 0 for m ≤ Mpol,
|n| ≤ Ntor — see the top left panel of Figure 3.4. As expected, SPEC retrieves the
same magnetic field as obtained with a single vacuum volume, with the same rotational
transform profile (see top right panel of Figure 3.4). Again, we observe and island chain
with a 6-fold periodicity in the poloidal direction (see the bottom panels of Figure 3.4).
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Figure 3.4: SPEC computation of a W7-X vacuum field with Nvol = 2. Top left: force
scalar (3.22) as a function of the number of Beltrami solve. Top right: rotational
transform profile. Bottom: Poincaré section, with ϕ = 0 on the left and ϕ = π/5 on the
right. The innermost red surface is I1, while the outermost red surface is the plasma
boundary.
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Figure 3.5: Normalized residual force on an interface of a W7-X vacuum SPEC equilibrium.
Left: real space. Right: Fourier space. The red box surrounds the space of Fourier
harmonics that are not truncated.

On Figure 3.5 is plotted the normalized force residual evaluated at the interface I1,
[[(B/B0)2/2]], with B0 the magnetic field strength on axis. In real space (left panel), we
see that the force is not zero, and is of the order of 10−2. In Fourier space (right panel)
however, the Fourier modes Flmn with m ≤ Mpol and |n| ≤ Ntor are all of the order
of 10−12, i.e. close to machine precision. The Fourier modes Flmn with m > Mpol or
|n| > Ntor, are however much larger, of the order of 10−2. Interestingly, the largest Fourier
modes of the force are the modes (m,n) = (Mpol + 1, n) and (m,n) = (m,±(Ntor + 1)).
Clearly, SPEC only minimizes the Fourier harmonics of the force that are not truncated,
meaning that the force in real space is not necessarily minimized. One must then be
careful to set the truncation Mpol, Ntor sufficiently high so that SPEC minimizes all
relevant modes of the force. Indeed, one can show that the residual force evaluated in
real space decreases as the resolution is increased (Loizu et al., 2016).

We remark that the agreement between the vacuum calculations with Nvol = 1 and
Nvol = 2 only occurs because the vacuum magnetic field possesses magnetic surfaces, and,
in particular, because we positioned I1 on a magnetic surface for the Nvol = 2 calculation.
Note that computing this vacuum magnetic field while assuming the existence of magnetic
surfaces everywhere, for example by using the VMEC code, would lead to a different
result than what has been obtained with SPEC. Indeed, if one enforces the existence
of a magnetic surface at the ι- = 5/6 resonance, a current sheet ∆65δ(ψt − ψt,65) would
emerge (see section 2.1.4), with ψt,65 the toroidal flux enclosed by the ι- = 5/6 resonance.
Resolving such current sheet in VMEC requires an infinite radial resolution. Even if this
current sheet was resolved, it would modify the global solution for the magnetic field,
and therefore not provide the correct solution.
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Figure 3.6: Rotating ellipse. Colors indicate the magnetic strength on the boundary in
vacuum, as evaluated by SPEC.

We now show an example where the magnetic equilibrium is evaluated in a plasma
with a non-trivial pressure profile. We consider a five field period classical stellarator
geometry, also called a rotating ellipse (see Figure 3.6), whose boundary is described by

R(θ, ϕ) = 10 − 0.25 cos θ − 1.25 cos(θ − 5ϕ) (3.24)
Z(θ, ϕ) = −0.25 sin θ + 1.25 sin(θ − 5ϕ). (3.25)

We construct a continuous pressure profile p = p0(1−ψt/ψa)2, and approximate it with
seven equi-pressure steps supported by seven interfaces, Il, l = {1, . . . , 7}, which, together
with the plasma boundary, define eight plasma volumes (see top panel of Figure 3.7). We
interpolate an initial guess for the geometry of each Il from the plasma boundary, and run
SPEC once in vacuum, and once at finite β. For the vacuum calculation, we set p0 = 0,
µl = 0 for l = {1, . . . , 8}, and choose the poloidal flux in each volume such that there are
no current sheets at the volume interfaces. For the finite-β calculation, we keep the same
µ- and ψp-profiles, but raise the pressure to µ0p0 = 5 · 10−3T2, which gives a plasma
averaged β of 0.67%. The Poincaré section of both equilibria are plotted at ϕ = 0 on the
lower panels of Figure 3.7. We observe that the magnetic surfaces in the finite-pressure
equilibrium are pushed outwards; this is the so-called Shafranov shift (Freidberg, 2014).
On the top left panel, the force scalar (3.22) is shown to decrease from ∼ 10−2 down to
machine precision in 38 and 81 iterations on the Il geometries, respectively. As expected,
the finite pressure equilibrium calculation requires more iterations, as the surfaces are
further away from the initial guess that is provided for the volumes’ interfaces geometry.
The rotational transform profiles are plotted on the top right panel of Figure 3.7. While
the vacuum field rotational transform profile is continuous, the rotational transform
profile of the finite-β equilibrium is not. This is expected, since in order to satisfy the
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constraint on the poloidal flux, current sheets are generated at the volumes’ interfaces
(see section 2.3.1).

The normalized force residual on the seventh interface, [[(B/B0)2/2]]7, evaluated for
the finite-β equilibrium found by SPEC, is shown in Figure 3.8. As in the case of the
W7-X geometry, the residual force in real space is larger than machine precision, though
in the case of the rotating ellipse, the force residual is about an order of magnitude
smaller. Again, the Fourier harmonics of the force with m ≤ Mpol and |n| ≤ Ntor are
successfully minimized by SPEC down to machine precision; there are however other
modes, with m > Mpol or |n| > Ntor, that are of the order of 10−4. We remark that in the
case of the rotating ellipse, the spectrum of modes that are not minimized is more narrow
than in the case of the W7-X geometry. This is a reflection of the fact that the magnetic
field, and therefore the interface geometry, require less Fourier modes to be accurately
described in a simple geometry as a rotating ellipse than in a complex geometry as W7-X.
We conclude that while SPEC is able to find an interface geometry that minimizes the
Fourier harmonics of the force below a certain truncation, the truncation has to be large
enough to represent both the magnetic field and the geometry of the interfaces.

It is worth noting that even though the magnetic helicity is not conserved when
SPEC iterates on {Rlmn, Z lmn} to find an equilibrium that matches a given input
{∆ψt,l,∆ψp,l, µl}l=1,...,Nvol

or {∆ψt,l, ι-+
l , ι-

−
l }l=1,...,Nvol

, the final equilibrium satisfies
the MRxMHD equilibrium equations given by Eqs.(2.74)-(2.75). There is in fact a mag-
netic helicity profile {Kl}l=1,...,Nvol

corresponding to this equilibrium which is unknown a
priori. Thus, the same equilibrium could have been found by minimizing the MRxMHD
energy functional while keeping the magnetic helicity profile constant if the initial state
had the same magnetic helicity profile (bifurcations are not considered in this thesis).
This capability is also available in SPEC, and details can be found in the literature
(Hudson et al., 2012b; Dennis et al., 2013).

We have thus far discussed how SPEC evaluates fixed-boundary equilibria. First,
the Beltrami solver finds the magnetic field in each volume consistent with the volume’s
geometry and the input profiles. Then SPEC evaluates the force on each interface, and
iterates on the interfaces geometry until the force is below a tolerance set by the user.
This algorithm is summarized in Figure 3.9. In the next section, we explain how an
additional loop on fixed-boundary calculations can be used to evaluate free-boundary
equilibria.
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Figure 3.7: Vacuum and finite β fixed-boundary equilibria computed with the SPEC
code. Top: Pressure profile. Black: continuous pressure profile. In blue: finite pressure
(p0 = 5 · 10−3), and in red: vacuum field (p0 = 0). Middle left: force scalar, as defined by
Eq.(3.22), as a function of the number of iterations on the volumes’ interfaces geometry.
Middle right: rotational transform profile. Bottom: Poincaré section at ϕ = 0, in vacuum
(left) and at β = 0.67% (right). Colored lines are the volumes interface.
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Figure 3.8: Normalized residual force in real space (left) and in Fourier space (right) on
an interface of an equilibrium found by SPEC in a rotating ellipse geometry at finite β.
The red box surrounds the space of Fourier harmonics that are not truncated.

1) Read inputs and initial guess for
volume’s interfaces geometry {X}.

2) Evaluate the geometry de-
pendent matrices Al and Dl.

2) Given Al,Dl and {∆ψt,l,∆ψp,l, µl},
solve the Beltrami equation and get al.

3) Given al, evaluate constraint if nec-
essary. Test if constraints match input
profiles within user specified tolerance.

False

3) Given al, compute F and the deriva-
tives ∂F/∂X. Test if all Fi < tol.
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4) Prepare output; run final diagnostics.

True

False

Figure 3.9: Main components of the fixed-boundary SPEC algorithm
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3.1.4 Free-boundary iterations

In the case of free-boundary calculations, the plasma is allowed to move in a vacuum.
We define a toroidal computational boundary ΓCB outside the plasma and inside the
coils (see Figure 3.10). This boundary is an otherwise arbitrary mathematical surface,
and is generally not a magnetic surface, i.e. B · n = (Bc + Bp) · n ̸= 0, with Bc the
magnetic field produced by the coils, Bp the magnetic field produced by the plasma, and
n the normal to ΓCB. The vacuum region, outside ΓPB and inside ΓCB, can be seen as
an additional MRxMHD volume surrounding the plasma where µ = 0, p = 0.

The computational boundary, parametrized with Fourier harmonics (RCBmn , ZCBmn ), and
the normal magnetic field produced by the coils on the computational boundary, Bc · n
are inputs to SPEC. As for fixed-boundary calculations, the pressure, toroidal flux, and
two additional constraints have to be provided in each plasma volume. To fully define
the magnetic field in the vacuum region, the total toroidal current flowing in the plasma,
Iϕ, and the total poloidal current flowing outside ΓCB through the torus hole, Icoil, have
to be provided as well.
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I4 = ΓPB

ΓCB

Vacu
um

Figure 3.10: Sketch of a SPEC equilibrium with four volumes. The plasma boundary,
ΓPB = I4, is the dark gray surface and the computational boundary, ΓCB, is the light
gray surface.
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While the piece of magnetic field on the computational boundary that is produced by
the coils, Bc · n, is an input, the contribution from the plasma, Bp · n is not known a
priori. This information is however required for the Beltrami solver in the vacuum region
to find the magnetic field in agreement with the boundary condition (Bp + Bc) · n. To
find self consistent solutions, an additional loop in SPEC is thus implemented. An initial
guess for the Fourier harmonics of Bp · n, denoted B0

mn, is given as input; SPEC finds
the magnetic field and plasma geometry in agreement with the corresponding boundary
condition and recomputes the Fourier harmonics of Bp · n, denoted B̃1

mn, using a virtual
casing method (Lazerson, 2012; Hanson, 2015). Generally, B0

mn ̸= B̃1
mn. Thus, a Piccard

iteration is performed,
B1
mn = αB0

mn + (1 − α)B̃1
mn, (3.26)

with α ∈ [0, 1[, and SPEC re-evaluates the equilibrium with B1
mn as a new guess for the

Fourier harmonics of Bp · n. This loop wraps around fixed-boundary SPEC calculations
and continues until Bi

mn − B̃i+1
mn is smaller than a tolerance set by the user.

In free-boundary calculations, the plasma boundary ΓPB is not an input. Its geometry
is modified by SPEC to find force balance for each iteration of the free-boundary
loop. As an output, SPEC will then provide the plasma geometry ΓPB as well as the
interfaces geometry Il, the magnetic field inside the plasma, and the magnetic field in the
vacuum region. In its current implementation, free-boundary SPEC calculations require
substantially more computational time than fixed-boundary calculations, since it requires
multiple fixed-boundary evaluations. Recently, Henneberg et al. (2021b) reformulated
the free-boundary problem of MRxMHD equilibria such that the free-boundary loop is
no longer necessary, and free-boundary calculations become as fast as fixed-boundary
calculations. This new algorithm is currently being implemented in SPEC; all calculations
presented in this thesis will however use the free-boundary algorithm that was presented
in this section.
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3.2 Implementation of the toroidal current constraint

The computation of equilibria at fixed toroidal current profile is crucial for basic physic
studies (Loizu et al., 2017; Suzuki et al., 2020), equilibrium reconstruction (Lao et al., 1985;
Hanson et al., 2009), and stellarator optimization (Geiger et al., 2010, 2015; Landreman
et al., 2022). Most MHD equilibrium codes (VMEC (Hirshman, 1983; Hirshman et al.,
1986a), SIESTA (Hirshman et al., 2011; Peraza-Rodriguez et al., 2017), HINT (Harafuji
et al., 1989; Suzuki et al., 2006), or PIES (Reiman and Greenside, 1986; Drevlak et al.,
2005)) can calculate equilibria at chosen rotational transform or toroidal current profile.
SPEC could run at fixed rotational transform but only recently its capability to run at
fixed toroidal current profile has been implemented (Baillod et al., 2021). This capability
is crucial for studying the effect of toroidal current on 3D magnetic equilibria. Examples
are the study of the effect of bootstrap current on equilibrium β-limits, or the study of
the sensitivity of a given equilibrium to toroidal current perturbations. In this chapter
we describe the implementation of the new capability for SPEC, that allows MRxMHD
equilibria to be calculated at prescribed toroidal current profiles.

This section is adapted from parts of the publication by A. Baillod et al., Computation
of multi-region, relaxed magnetohydrodynamic equilibria with prescribed toroidal current
profile, Journal of Plasma Physics 87, 4, 905870403 (2021), published under the license
CC BY 4.0.

3.2.1 Constraining the toroidal current profiles in SPEC

As described in section 2.3.1, two kinds of net toroidal currents co-exist in MRxMHD equi-
libria: the volume currents {Ivϕ,l}l={1,...,Nvol} and the surface currents {Isϕ,l}l={1,...,Nvol−1}.
The SPEC code has been extended to allow the triplet {∆ψt,l, Ivl,ϕ, Isl,ϕ}l=1,...,Nvol−1 as a
constraint, herein current constraint. In the case of the rotational transform constraint,
SPEC finds the solution to the linear system (2.74) volume by volume and iterates on
{µl,∆ψp,l} until the field has the desired rotational transform at the volume’s interfaces.
In the case of the current constraint, the constants {µl}l=1,...,Nvol

are determined using
Eq.(2.76), without the need for iterations, and this directly constrains the value of the
volume currents {Ivl,ϕ}l=1,...,Nvol

.

Regarding the poloidal fluxes, it can be shown (Appendix A.5) that the surface
currents depend linearly on the poloidal fluxes, i.e.

Is = Mψp + Q, (3.27)

where Is and ψp are arrays containing all {Isl }l=1,...,Nvol−1 and all {∆ψp,l}l=2,...,Nvol

respectively, and the matrix M and the array Q depend only on the geometry of the
interfaces {X}. In this section, we consider the geometry, toroidal fluxes and the constants
{µl}l=1,...,Nvol

to be fixed and seek how the poloidal flux profile ψp has to be constrained
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in order to obtain a surface current profile matching the input profile Is. The unknown
Q is eliminated by subtracting Eq.(3.27) evaluated at two different values of ψp, i.e.
evaluated once at ψp and once at ψp,

M(ψp −ψp) = Is − Is, (3.28)

where ψp is an arbitrary choice of poloidal fluxes, and Is is the surface current profile
calculated from the Beltrami fields {al}l=1,...,Nvol

obtained when the poloidal fluxes are
constrained to the values ψp.

The matrix M is evaluated by taking the derivatives of Eq.(3.27) with respect to the
poloidal fluxes, i.e.

Mij =
∂Isi,ϕ
∂∆ψp,j

, (3.29)

which, when taking the derivative of Eq.(2.77), leads to the following bi-diagonal matrix

M = 2π
µ0



∂B̃−
θ,2

∂∆ψp,2
0 · · · · · · 0

−
∂B̃+

θ,2
∂∆ψp,2

∂B̃−
θ,3

∂∆ψp,3
0 · · · 0

0 −
∂B̃+

θ,3
∂∆ψp,3

∂B̃−
θ,4

∂∆ψp,4
0 0

... . . . . . . . . . 0

0 · · · · · · 0 −
∂B̃+

θ,Nvol−1
∂∆ψp,Nvol−1

∂B̃−
θ,Nvol

∂∆ψp,Nvol



, (3.30)

where we remind that B̃±
θ,l is the (m,n) = (0, 0) Fourier harmonic of the covariant poloidal

magnetic field on the inner and outer side of volume Vl respectively. Derivatives of B̃±
θ,l

with respect to the poloidal flux can be obtained by applying matrix perturbation theory
on the linear system (3.18) (Hudson et al., 2012a),

(Gl − µlDl) ·
[

∂

∂∆ψp,l
al

]
= −

[
∂Gl

∂∆ψp,l
− µl

∂Dl

∂∆ψp,l

]
· al + ∂

∂∆ψp,l
Cl, (3.31)

Solving Eq.(3.31) for ∂al/∂∆ψp,l, one can then evaluate ∂B̃±
θ,l using Eq.(3.13). Due

to the linear nature of Eq.(3.27), the coefficients of the matrix M, i.e. Eq.(3.29), are
independent of ψp and thus can be evaluated once at any arbitrary value of ψp. We thus
conveniently evaluate them at ψp. Equation (3.28) is then solved to obtain the poloidal
flux profile ψp.
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1) Set the toroidal flux profile {∆ψt,l}l=1,...,Nvol

from input and the constants {µt,l}l=1,...,Nvol

using the volume current profile and Eq.(2.76)

2) Solve Beltrami equations consistently with the input surface current constraint

2.1) Chose an
arbitrary ψp

2.2) Solve Beltrami
equation (2.74)
by constraining

the poloidal fluxes
to the values
ψp to get al

2.3) Solve perturbed
matrix equation

(3.31) to get ∂al
∂∆ψp,l

2.4) Build matrix
M by constructing
∂B̃±

θ,l

∂∆ψp
from ∂al

∂∆ψp,l

2.5) Solve equation
(3.28) and get ψp

2.6) Find a by
solving Eq.(3.32)

Figure 3.11: Flow of the algorithm used to constrain the net toroidal current profile for
a given toroidal flux profile and geometry.

Finally, instead of solving a second time the Beltrami equation, Eq.(2.74), at ψp, we
take advantage of the linear dependence of a on ψp, Eq.(3.18), and solve

Al,i = Al,i − ∂Al,i
∂∆ψp,l

(∆ψp,l − ∆ψp,l), (3.32)

where Al,i is one element of al. The algorithm flow is summarized in Figure 3.11. In the
case of a free-boundary computation, the toroidal flux in the vacuum region is varied to
satisfy the poloidal linking current Icoil. This slightly modifies the linear system (3.28).
Details can be found in Appendix A.6.

Note that the current constraint is a global constraint, in the sense that the net
toroidal current at the interface Il depends on the magnetic field on each side of the
interface, and thus, on the solution to the Beltrami equation in volume Vl and Vl+1. This
has important implication for the parallelization of the code, as we will discuss in section
3.2.3.

Constraining the toroidal current profile takes away the control of other profiles
such as the rotational transform or the magnetic helicity. However, as for the case of
the rotational transform constraint, the equilibrium can be accessed by a relaxation
process at constant magnetic helicity if the final magnetic helicity is known a priori. The
MRxMHD equilibrium equations are thus still satisfied by an equilibrium obtained by
constraining the toroidal current profiles.
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3.2 Implementation of the toroidal current constraint

3.2.2 Force gradient

The hybrid-Powell algorithm used in SPEC to iterate on the interfaces geometry uses ana-
lytic derivatives, which is faster than finite differentiation. To keep good performance while
using the current constraint, derivatives of the force Fourier coefficients, {Flmn}, with
respect to the interfaces degrees of freedom, {xi}, at constant {∆ψt,l, Ivl,ϕ, Isl,ϕ}l=1,...,Nvol

are derived here. Here xi is one of the Fourier harmonics Xk
mn, , one of the Rkmn or Zkmn of

an interface Ik. Derivatives are first evaluated in real space and then Fourier-transformed.
Using the chain rule,

d

dxi

[[
p+ B2

2µ0

]]
l

= 1
µ0

(
B−
l+1

dB−
l+1

dxi
−B+

l

dB+
l

dxi

)
(3.33)

with dB±
l

dxi
= ∂B±

l

∂xi
+ ∂B±

l

∂∆ψp,l
d∆ψp,l
dxi

+ ∂B±
l

∂µl

dµl
dxi

+ ∂B±
l

∂∆ψt,l
d∆ψt,l
dxi

(3.34)

where B−
l , B+

l are the magnetic field strength on the inner and outer side of volume l,
respectively, and the pressure, pl, is considered constant in each volume with respect
to variations in the geometry, µl and ∆ψp,l. Note that all derivatives are taken at
constant toroidal flux, volume current and surface current. Enforcing d∆ψt,l/dxi = 0
and dIvl,ϕ/dxi = 0 leads to dµl/dxi = 0 using Eq.(2.76). The surface current constraint,
dIsl,ϕ/dxi = 0, leads to a system of coupled equations using Eq.(2.77),

∂B̃−
l+1,θ
∂xi

+
∂B̃−

l+1,θ
∂∆ψp,l+1

∂∆ψp,l+1
∂xi

−
∂B̃+

l,θ

∂xi
−

∂B̃+
l,θ

∂∆ψp,l
∂∆ψp,l
∂xi

= 0, (3.35)

which can be written as a linear system using the matrix M defined in Eq.(3.30),

M


d∆ψp,2
dxi...

d∆ψp,Nvol

dxi

 = 2π
µ0


∂B̃+

θ,1
∂xi

−
∂B̃−

θ,2
∂xi...

∂B̃+
θ,Nvol−1
∂xi

−
∂B̃−

θ,Nvol

∂xi

 . (3.36)

Derivatives of B̃θ,l with respect to ∆ψp,l and xi can be obtained by applying matrix
perturbation theory to the Beltrami system (3.18). The solution of Eq.(3.36), together
with Eq.(3.33) provides the required derivatives of the force with respect to the geometry.
Derivatives of the Fourier components of the force, dFlmn/dxi, are obtained by taking
the Fourier transform of equation (3.33) and, together with the derivatives of the spectral
condensation Ymn with respect to xi, are packed in a matrix ∇F of size N2, henceforth
named force gradient.

Note that here we only discussed how the physical force could be derived with respect
to the volumes’ interfaces geometry, and did not describe how the derivatives of the
spectral constraint Ymn are evaluated. These are however relatively easy to compute,

77



Chapter 3. The stepped-pressure equilibrium code

since the spectral constraint depends only explicitly on the geometrical degrees of freedom
xi (see appendix A.3). Appendix A.6 provides details on the free-boundary case.

3.2.3 Implementation details and parallelization

The new current constraint has been parallelized with message passing interface (MPI) in
a similar way to the other constraints: each volume is associated to one central processing
unit (CPU); since the solution to the Beltrami equation (2.74) in a volume is independent
from other volumes, each CPU can solve the linear system (3.18) in parallel. In the case
of a local constraint, each volume iterates on the (µl,∆ψp,l) until its local constraint is
satisfied. In the case of a global constraint, additional communications between CPUs
are required. In the case of the current constraint, the master CPU gathers all required
derivatives to construct the matrix M and solves the linear systems (3.28) and (3.32),
before broadcasting the values of {∆ψp,l}l=2,...,Nvol

and {al}l=1,...,Nvol
to all CPUs.

Regarding communications, we reduced them to a minimum. The global toroidal
current constraint is computed using Eq.(2.77), which only depends on the first even
Fourier coefficient of Bθ in each volume. We thus compute locally (by each MPI task)
these coefficients before sending them to the master task. This requires the communication
of 2(Nvol − 1) doubles. All communications are implemented using basic MPI point-
to-point communications, though a gathering communication could be more efficient.
The master task then solves Eqs.(3.28) and (3.32) and broadcasts the elements al and
ψp. We don’t expect a communication bottleneck due to the reasonably low amount of
communications.

3.2.4 Verification of the current constraint

In this section we present a rigorous verification of the new capability of SPEC against
analytical solutions in a screw pinch geometry and against a reference SPEC solution
obtained with the rotational transform constraint in a classical stellarator geometry. All
results presented in this section were obtained with SPEC version 2.10.

Verification in cylindrical geometry

We consider a fixed-boundary screw pinch MRxMHD equilibrium that only depends on the
radius R and whose solutions can be written analytically (Appendix A.7). We choose a set
of somewhat arbitrary input parameters, i.e. a cylinder of minor radius a = 1 and length
L = 2π, Nvol = 3, pl = 0 ∀l ∈ {1, 2, 3}, ψt = {1/9, 4/9, 1}Tm2, µ0Iv = {0.2, 0.2, 0.4}Tm
and µ0Is = {−0.4, 0.5}Tm, which uniquely define the analytical solution. SPEC is then
run with the same input parameters and the solutions are compared (Figure 3.12). Very
good agreement between the analytical solution and the SPEC solution is obtained.
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3.2 Implementation of the toroidal current constraint

Note that by constraining the toroidal current profiles, we lose control on the rotational
transform profile, since only two profiles can be constrained in addition to the pressure
profile. Hence discontinuities in the magnetic field components arise at the volumes’
interfaces, even when there is no pressure, unless the input parameters are carefully
selected.

The force gradient, which is here a matrix of size 2 × 2, (∇F )ij = ∂Fi/∂Rj , with Rj
the position of the interfaces, can also be expressed in terms of Bessel functions integrals
(see Appendix A.7). Figure 3.13 shows the normalized maximum absolute error between
the force gradient obtained with SPEC and that obtained analytically as a function of
the radial resolution Lrad. As Lrad is increased, exponential convergence is observed up
until 10−13, where the error in the evaluation of the Bessel integrals starts to dominate.

Verification in toroidal geometry

A verification is proposed here in the more complex case of a free-boundary, rotating
ellipse with seven plasma volumes (Nvol = 7). The pressure is set to zero and the
computational boundary is defined by Eqs.(3.24)-(3.25) — see Figure 3.6. We suppose
here that some hypothetical coils with a total current of µ0Icoil = 42.87Tm are able
to generate a vacuum field without normal component to the computational boundary.
The total toroidal magnetic flux in the plasma is set to ψa = 0.61Tm2 and the toroidal
magnetic flux in the vacuum region is set to ∆ψt,V = 1.39Tm2, adding up to a total
toroidal magnetic flux enclosed by the computational boundary of ∆ψt,V + ψa = 2Tm2.

To our knowledge, no analytical solution to Eqs.(2.74) and (2.75) exists in this
geometry. The verification is thus carried out as follows: first, a rotational transform
constraint case is run with an input ι--profile that is chosen to be 10% larger than
the vacuum rotational transform ι-vac, i.e. ι- = 1.10 · ι-vac, so that there is a non-zero
contribution from the current to the rotational transform. Note that the rotational
transform is only prescribed at the interfaces Il, and is free within the volumes. In
particular, the rotational transform is unconstrained at the computational boundary. The
volume and surface currents are evaluated from the fixed rotational transform equilibrium
and used to run a second calculation where the net toroidal current is constrained. The
same initial guess for the geometry and the interfaces is used for both calculations. The
rotational transform profile ῑ- is then extracted from the second equilibrium and compared
to the reference ι--profile.

The vacuum rotational transform profile, as well as the profiles ι- and ῑ- are shown in
Figure 3.14 (left). The toroidal current enclosed by the plasma is mostly contained in
the volumes and adds up to a total of ∼ 2.7kA, see Figure 3.14 (right). As expected the
surfaces currents, Isϕ,l, remain small (< 10−2kA), since there are no pressure gradients
to drive them. The constraint on the rotational transform ι- is enforced on each side of
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Figure 3.12: Magnetic field components as a function of the radius in the case of a screw
pinch. Solid and dashed lines: analytical solution as given in Appendix A.7. Circles and
triangles: SPEC solution using the current constraint.
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Figure 3.13: Maximal absolute error between the analytical force gradient, ∇FAN , and
the force gradient obtained from SPEC, ∇F , as a function of the radial resolution for
the screw pinch case.
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the volumes’ interfaces, indicated by gray dashed lines on Figure 3.14 (left). The value
of ι- at the computational boundary is not constrained. Agreement between ι- and ῑ- up
to a relative error of max(| ι- − ῑ- | / | ι- |) ∼ 10−5 is observed, showing that the same
equilibrium can be obtained using either constraint. The maximum error between both
profiles decreases as the numerical resolution is increased (data not shown).

To verify the force gradient components, we use a fourth-order centered finite difference
formula (Fornberg, 1988),

df

dx
= f(x− 2∆x) − 8f(x− ∆x) + 8f(x+ ∆x) − f(x+ 2∆x)

12∆x + O(∆x4), (3.37)

to obtain ∇FFD, i.e. a finite-difference estimate of the force gradient, and compare it
to ∇F , i.e. the force gradient calculated in SPEC by using analytical derivatives (see
section 3.2.2). The finite difference estimate is evaluated by perturbing each geometrical
degree of freedom {xi}l=1,...,N by a constant value ∆R. Convergence as ∆R → 0 is
shown in Figure 3.15. A convergence of order O(∆R4) is observed down to ∼ 10−11

for ∆R ∼ 10−4. For lower values of ∆R, the finite difference approximation error is
dominated by round-off error. This shows that the analytical derivatives (the force
gradient) is correctly implemented in SPEC.

In this section, we have explained how the net toroidal current in SPEC can be
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Figure 3.14: Left: rotational transform profile versus effective minor radius. Red line: ι-,
the rotational transform profile obtained by SPEC when when the rotational transform
is prescribed. Note that here ι- is only constrained at the interfaces Il, indicated by gray
dashed vertical lines. Black, dashed line: ῑ-, the output profile obtained from SPEC when
run at fixed toroidal current profile. Blue line: ι--profile in vacuum. Right: total toroidal
current enclosed by each volume. Surface currents (not plotted), Isϕ,l, are smaller than
10−2[kA] and are negligible in comparison to the volume current.

81



Chapter 3. The stepped-pressure equilibrium code

constrained, and how this new constraint has been implemented. This will, in particular,
be used in chapter 5 to include bootstrap current effects in SPEC calculations, and
in chapter 6 to optimize the injected current profile to minimize the size of magnetic
islands in an equilibrium. This new capability of the SPEC code is also useful to evaluate
vacuum fields with multiple volumes (see for example the W7-X vacuum field evaluated
in section 3.1.3), or for predicting the nonlinear saturation of tearing modes (Loizu et al.,
2020). Before looking at applications of the SPEC code, we discuss in the following
section some of its limitations and an attempt to remove them.

Figure 3.15: Normalized maximum absolute error between SPEC force gradient and a
finite difference estimate in the case of a rotating ellipse. The dashed line has slope of 4.
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3.3 Implementation of a unique angle representation

In simple geometries, SPEC provides solutions to the MRxMHD equations in a fast and
reliable way. For example, see the studies of Qu et al. (2021); Loizu et al. (2020) in slab
geometry, Kumar et al. (2021) in cylindrical geometries, Kumar et al. (2022) or Baillod
et al. (2022) in some toroidal geometries, or the examples presented in section 3.1.3.
However, any attempt in strongly shaped geometries, i.e. geometries with large elongation
or torsion, and with multiple volumes will require an initial guess for the geometry of
the interfaces Il very close to the solution for SPEC to find the geometry that satisfies
the equilibrium equations. In some extreme cases, SPEC does not find an equilibrium,
as it will be now illustrated.

As an example, let’s consider a strongly shaped quasi-isoynamic (QI) stellarator with
one field period and ι- ≈ 0.6 in vacuum on the magnetic axis, obtained by Goodman et al.
(2022), and plotted on the top panel of Figure 3.16. We start by computing the vacuum
field by solving the Beltrami equation (2.74) with µ = 0 in the volume enclosed by the
provided boundary. The Poincaré section of the vacuum magnetic field is shown on the
middle and lower panels of Figure 3.16. We remark that most of the volume is occupied
by nested magnetic surfaces, excepted for a small (m,n) = (5, 3) island chain. As for the
W7-X example presented in section 3.1.3, we thus expect that the same magnetic field
can be retrieved in a two-volume SPEC calculation, if the volume’s interface is positioned
on one of the magnetic surfaces.

We thus attempt a two-volume SPEC calculation of the vacuum magnetic field. We
set the toroidal flux to ψt,1 = 8 · 10−4Tm2 and ψt,2 = 0.01Tm2, which corresponds to the
position of a magnetic surface as computed by the single volume SPEC calculation. To
constrain the field to be in vacuum, we leverage the current constraint (see section 3.2)
to impose the net toroidal current in both volumes and at the interface to be zero, i.e.
Ivϕ,1 = Ivϕ,2 = Isϕ,1 = 0 and set the pressure to zero in both volumes. As a first attempt,
we let SPEC interpolate an initial guess for the interface geometry from the plasma
boundary. We show on the middle and lower panels of Figure 3.16 SPEC’s interpolated
initial guess, in green, in comparison to the Poincaré section of the vacuum field. To the
eye, the initial guess seems to be very different than the magnetic surfaces. Nevertheless,
we see on Figure 3.17 (green curve) that |f | ∼ 3 · 10−4 initially; then SPEC iterates
on the geometrical degrees of freedom ∼ 120 times to lower the force scalar down to
|f | ∼ 4 · 10−5, where it saturates. Obviously, the Hybrid-Powell method used in SPEC
got stuck in a local minimum. To improve the result, it is attempted below to construct
a better initial guess.

To construct a good initial guess for the interface separating both volumes, we proceed
as follows. We start by running a field line tracing algorithm on the single-volume SPEC
vacuum calculation, as described in section 1.5, and extract a set of points xi along a
selected field line. Then, we use the DESCUR code (Hirshman and Meier, 1985) to
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obtain the spectrally condensed harmonics (R1
mn, Z

1
mn) of a surface that fits the points

xi. Finally, we use the (R1
mn, Z

1
mn) harmonics as initial guess for the two-volumes SPEC

calculation. The comparison between the Poincaré plot obtained from the single volume
SPEC calculation and the DESCUR computed initial guess is shown on Figure 3.16 (blue
surface). We first remark that this method generates, to the eye, a better initial guess
than the interpolation method. There are no visible differences between the DESCUR
surface and the Poincaré section of SPEC single volume calculation. When used as initial
guess in the SPEC two-volumes calculation however, the initial force scalar is of the order
of |f | ∼ 5 · 10−4, and SPEC does not find the interface’s geometry that satisfies force
balance, since after ∼ 130 iterations on the geometry, the force scalar is still of the order
of 10−4 (see Figure 3.17). One may think that this is because the Fourier resolution used
in SPEC is too low; increasing the Fourier resolution does however not solve the problem
(see blue curve on Figure 3.17).

We plot on Figure 3.18 the normalized residual force, [[(B/B0)2/2]], in real space
and in Fourier space, at the local minimum found by SPEC. Two local minima are
compared; the first is obtained by SPEC when the initial guess for the inner interface
geometry is provided by the DESCUR procedure, while the second one is obtained
when the initial guess for the inner interface geometry is provided by an interpolation
of the plasma boundary. In real space (see the left panels of Figure 3.18), both local
minima have very different structures. Clearly, both local minima found by SPEC are
different. This indicates that the force Fourier harmonics probably have multiple minima
in the space spanned by the interface’s geometrical degrees of freedom, in which the
hybrid-Powell method gets stuck, thereby preventing SPEC to find the solution to the
MRxMHD equilibrium equations. In Fourier space, we remark that at both local minima,
the Fourier harmonics of the force that are minimized by SPEC remain large, in contrast
to what has been observed in the case of the W7-X geometry (see Figure 3.5), or in the
case of a rotating ellipse (see Figure 3.8). This again confirms that SPEC got stuck in a
local minimum, and could not find an interface geometry that would lower further down
the target Fourier harmonics of the force.

Why SPEC is not able to find the interface geometry that satisfies the equilibrium
equation, despite having such a good initial guess, is a truly puzzling question. We expect
that, even in a space filled with local minima, a sufficient good initial guess would let
SPEC find the solution. One hypothesis is that the spectrally condensed angle from
DESCUR is different from the spectrally condensed angle from SPEC (DESCUR does
not include the "spectral length" constraint as in SPEC — see appendix A.3). This
means that while the initial guess is close geometry-wise, its parametrization might be
far from the one that satisfies SPEC’s spectral constraint. Another hypothesis is that
the spectral condensation harmonics Ylmn is the source of the numerous local minima in
the space of degrees of freedom describing the interface geometry. A potential solution
to these problems would be to choose a representation of the interface geometries where
spectral condensation is not required. This can be achieved by defining a unique angle
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(b) ϕ = 0 (c) ϕ = 0, zoom

(d) ϕ = 2.29 (e) ϕ = 2.29, zoom

Figure 3.16: Strongly shaped QI stellarator. Top: 3D-plot of the computational boundary.
Colors indicate the magnetic field strength calculated by SPEC in vacuum. Middle and
bottom: Comparison between SPEC Poincaré section, the interpolated initial guess, and
the DESCUR constructed initial guess. The SPEC calculation was performed with a
single plasma volume. In red: plasma boundary. In green: SPEC interpolated initial
guess for the interface geometry. In blue: DESCUR surface reconstructed from SPEC
Poincaré data.
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Figure 3.17: Strongly shaped QI geometry, two-volume SPEC calculation. Force scalar
as a function of the number of iteration on the interface geometry. Green: Mpol = 8,
Ntor = 6, interpolated initial guess. Blue: Mpol = 8, Ntor = 6, initial guess constructed
from the vacuum field using DESCUR. Black: Mpol = 8, Ntor = 10, initial guess
constructed from the vacuum field using DESCUR.

Figure 3.18: Normalized residual force on an interface from a QI equilibrium obtained
with SPEC, in real space (left) and in Fourier space (right). Top: local minimum found by
SPEC when using the DESCUR-generated initial guess for the inner interface geometry.
Bottom: local minimum found by SPEC when using an interpolated initial guess from
the plasma boundary for the inner interface geometry. The red box surrounds the Fourier
harmonics of the force that are not truncated.
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θh. Of course, there are an infinite number of choices for the poloidal angle θh, and
many have been proposed in the literature — see, for example, Hirshman and Weitzner
(1985), Hirshman and Breslau (1998) and Carlton-Jones et al. (2021). In the following
section, we will discuss the implementation of an alternative parametrization for the
toroidal surfaces proposed by Henneberg et al. (2021a), which uses a unique poloidal
angle optimal for representing elliptical surfaces.

3.3.1 The Henneberg representation

One potentially advantageous choice of angle θh, called thereafter the Henneberg angle, is
to choose θh to be the optimal angle to represent rotating ellipses. Since magnetic surfaces
close to the magnetic axis have elliptical cross-sections (Helander, 2014), we expect this
particular choice of poloidal angle to be efficient to represent magnetic surfaces, at least
close to the magnetic axis. This angle was first proposed by Henneberg et al. (2021a),
and was shown to reduce the number of local minima in stellarator optimization problems.
With this angle, a toroidal surface is parametrized by

R(θh, ϕ) = R0(ϕ) + ρ(θh, ϕ) cos(αϕ) − ζ(θh, ϕ) sin(αϕ), (3.38)
Z(θh, ϕ) = Z0(ϕ) + ρ(θh, ϕ) sin(αϕ) + ζ(θh, ϕ) cos(αϕ), (3.39)

where α is the number of poloidal rotations of the elliptical magnetic surfaces close to the
magnetic axis per field period — typically, α = 1/2. Here (ρ, ζ) describes a coordinate
system, defined by (eρ, eζ), centered at (R0(ϕ), Z0(ϕ)), and tilted by an angle αϕ with
respect to the the coordinate system (eR, eZ) (see Figure (3.19)).

For each plane ϕ = const, we now construct a circle C(ϕ), centered at (R0(ϕ), Z0(ϕ)),
and with radius b(ϕ),

b(ϕ) = 1
2

(
max
ϕ=const

ζ − min
ϕ=const

ζ

)
(3.40)

= 1
2

(
max
ϕ=const

[Z cos(αϕ) −R sin(αϕ)] − min
ϕ=const

[Z cos(αϕ) −R sin(αϕ)]
)
. (3.41)

For any magnetic surface (R(θ, ϕ), Z(θ, ϕ)), with a single maximum and single minimum
along the ζ direction for all ϕ, there is thus a one-to-one mapping between the magnetic
surface and the torus generated by the circle C(ϕ). We project the magnetic surface on
C(ϕ) by writing

ζ(θh, ϕ) = b(ϕ) sin(θh − αϕ), (3.42)

which uniquely defines the angle θh as

θh = arcsin
(
ζ

b

)
+ αϕ. (3.43)
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Finally, we write the functions ρ(θ, ϕ), b(ϕ), R0(ϕ), and Z0(ϕ) as Fourier series,

ρ(θh, ϕ) =
M∑
m=1

N∑
n=−N

ρmn cos(mθh + nϕ− αϕ), (3.44)

b(ϕ) =
N∑
n=0

bn cos(nϕ), (3.45)

R0(ϕ) =
N∑
n=0

rn cos(nϕ) (3.46)

Z0(ϕ) =
N∑
n=1

zn sin(nϕ). (3.47)

Note that this representation of the magnetic surface is unique, in the sense that two
different sets of harmonics {rn, zn, ρmn, bn} will always describe two different surfaces.

eR

eZ
eρ

eζ

b(ϕ) θh

αϕ

R0(ϕ)

Z0(ϕ)

(R,Z)

ζ ρ

C

Figure 3.19: Sketch of a toroidal surface (blue) in the (R,Z) plane, and the corresponding
coordinates of the Henneberg representation. The coordinate system (ρ, ζ) is tilted with
an angle αϕ. A point (R,Z) on the toroidal surface is projected in the eρ direction onto
a circle of radius b(ϕ) and centered in (R0(ϕ), Z0(ϕ)).
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One can easily derive a linear relation between the Fourier harmonics (Rmn, Zmn)
and (rn, zn, ρmn, bn). Expanding equation (3.38) with the Fourier series (3.44)-(3.47), we
get

R(θh, ϕ) = +
N∑
n=0

rn cos(nϕ) +
M∑
m=1

N∑
n=−N

ρmn cos(mθh + nϕ− αϕ) cos(αϕ) (3.48)

−
N∑
n=0

bn cos(nϕ) sin(θh − αϕ) sin(αϕ) (3.49)

= +
M∑
m=1

N∑
n=−N

ρmn
2 [cos(mθh + nϕ− 2αϕ) + cos(mθh + nϕ)] (3.50)

−
N∑
n=0

bn
4 [cos(θh − (n+ 2α)ϕ) + cos(θh − (−n+ 2α)ϕ) (3.51)

− cos(θh − nϕ) − cos(θh + nϕ)] +
N∑
n=0

rn cos(nϕ), (3.52)

from which we easily identify

R0n = rn (3.53)

Rmn = 1
2(ρm,−n+2α + ρm,−n) + δm1

4 [bn + b−n − bn−2α − b−n+2α] , ∀m > 0. (3.54)

Similarly, we get

Z0n = zn (3.55)

Zmn = 1
2(−ρm,−n+2α + ρm,−n) + δm1

4 [bn + b−n + bn−2α + b−n+2α] , ∀m > 0. (3.56)

Note that the relations (3.54) and (3.56) assume that the (Rmn, Zmn) are constructed
using the same angle θh as the Henneberg representation. In addition, in order not to
lose information, if the (Rmn, Zmn) are non-zero for m < Mpol, |n| < Ntor, the Fourier
series of ρ must have non-zero modes for m < M , |n| < N , with

M = Mpol (3.57)
N = Ntor + 2α. (3.58)

Packing the geometrical modes (Rmn, Zmn) in a one-dimensional array X and the modes
(rn, zn, ρmn, bn) in another one-dimensional array xh, one can thus write

X = Hxh, (3.59)
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where H is a matrix of size (Nh ×Nx), with

Nh = 3N +M(2N + 1) + 2 (3.60)
= 3Ntor +Mpol(2Ntor + 1) + 4αMpol + 6α− 1, (3.61)

and Nx is given by Eq.(3.19). In general, Nh ̸= Nx, and H is not a square matrix. Note
that, when Mpol ≫ 1 and Ntor ≫ 1, Nh/Nx ∼ 1/2, i.e. the Henneberg representation
uses about half the number of Fourier harmonics used by the standard representation, as
long as both are using the same poloidal angle. Of course, in general Nh > Nx if the
standard representation uses a spectrally condensed angle.

As an example, consider a rotating ellipse (see Figure 3.6) parametrized by

R0(ϕ) = R0 (3.62)
Z0(ϕ) = Z0 (3.63)

ρ(θh, ϕ) = ρ10 cos θh (3.64)
b(ϕ) = b0 (3.65)
α = 0.5. (3.66)

Applying the forward map (3.59), we immediately find

R(θh, ϕ) = R0 + ρ10 + b0
2 cos θh + ρ10 − b0

2 cos(θh −Nfpϕ) (3.67)

Z(θh, ϕ) = Z0 + ρ10 + b0
2 sin θh − ρ10 − b0

2 sin(θh −Nfpϕ). (3.68)

We remark here that ρ10 and b0 are the major and minor radii of the ellipse respectively.
With this simple example we have shown that if one knows the harmonics {rn, zn, bn, ρmn},
it is straightforward to obtain the harmonics {Rmn, Zmn}. It is however not trivial to
obtain the harmonics {rn, zn, bn, ρmn} from a geometry R(θ, ϕ), Z(θ, ϕ), as it will be
discussed in the following section.
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3.3 Implementation of a unique angle representation

3.3.2 Construction of the Henneberg harmonics

Here we suppose that a general surface (R(θ, ϕ), Z(θ, ϕ)) is given, and we develop an
algorithm to find the Fourier harmonics (rn, zn, ρmn, bn) that fit best the input surface.
We can first construct the function b(ϕ). As b(ϕ) is independent of (R0, Z0), we can set
R0 = Z0 = 0 and identify the poloidal angle θ that extremizes the ζ coordinate for each
angle ϕ,

ζ̃(θ+, ϕ) = max
θ∈[0,2π]

ζ̃(θ, ϕ) (3.69)

ζ̃(θ−, ϕ) = min
θ∈[0,2π]

ζ̃(θ, ϕ) (3.70)

with ζ̃ the coordinate ζ if R0 = Z0 = 0,

ζ̃(θ, ϕ) = Z cos(αϕ) −R sin(αϕ). (3.71)

Then we can evaluate the radius of the circle C as

b(ϕ) = 1
2
[
ζ̃(θ+, ϕ) − ζ̃(θ−, ϕ)

]
, (3.72)

Working in the ϕ = const plane, the position (R0(ϕ), Z0(ϕ)) must then be at equal
distance from the point (R(θ+, ϕ), Z(θ+, ϕ)) than from the point (R(θ−, ϕ), Z(θ−, ϕ)).
We can thus write

R0(ϕ) = −Z0(ϕ)R(θ+, ϕ) −R(θ−, ϕ)
Z(θ+, ϕ) − Z(θ−, ϕ) . (3.73)

Equation (3.73) only constrains R0 as function of Z0, but does not fully determine the
position of the point (R0, Z0). The idea is now to write an optimization problem to fit
the input surface, using as degrees of freedom the Fourier harmonics rn. First, given the
harmonics rn, we can evaluate R0(ϕ) from Eq.(3.46) and Z0(ϕ) from Eq.(3.73) in real
space. Then, the coordinate ρ(θ, ϕ) can be evaluated with

ρ(θ, ϕ) = (R−R0) cos(αϕ) + (Z − Z0) sin(αϕ), (3.74)

and the Henneberg angle θh can be evaluated via equation (3.43). The Fourier harmonics
(bn, ρmn) can then be obtained by standard Fourier transforms. The corresponding
surface, reconstructed in real space using Eqs.(3.38)-(3.47), can then be compared with
the input surface (R(θ, ϕ), Z(θ, ϕ)). The algorithm then iterates on the rn harmonics until
both surfaces match. This method can be used to transform inputs that use the more
conventional standard representation, Eqs.(3.4)-(3.5), into inputs that use the Henneberg
representation. The only free parameter in this transformation is the parameter α, that
has to be chosen by the user. Note that a similar algorithm has been implemented in the
ROSE optimization code (Drevlak et al., 2019).
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(a) ϕ = 0 (b) ϕ = π/5

Figure 3.20: Plasma boundary of W7-X. In black: using the standard representation,
and in red: using the Henneberg representation.

As an example, we compute the harmonics {ρmn, bn, rn, zn} that best fit the W7-X
geometry (see Figure 3.2a). The W7-X boundary is represented using the standard
representation with Mpol = Ntor = 10, meaning that there are 442 different {Rmn, Zmn}
Fourier harmonics. Using the Henneberg representation, we set M = 12, N = 10, and
use the algorithm presented above to compute the harmonics {ρmn, bn, rn, zn}, for a
total of 295 different Fourier harmonics. The obtained boundary parametrized by the
Henneberg representation is compared to the boundary parametrized using the standard
representation on Figure 3.20. We see that, to the eye, there are no significant differences
between both boundaries, which confirms that the Henneberg representation is suitable
for parameterizing complex stellarator geometries. Clearly, in this particular case, the
number of Fourier harmonics required by the Henneberg representation is smaller than
those required by the standard representation. This is however not true in general; using
a spectrally condensed angle might only require the same amount or less Fourier modes
than the Henneberg representation to parametrize a surface.

3.3.3 Implementation in SPEC

To use the Henneberg representation in SPEC, the geometrical degrees of freedom
on which SPEC iterates to find force balance need to be the xh = {rln, zln, bln, ρlmn}
harmonics. Then, before entering the Beltrami solver, the mapping (3.59) is applied to
get the corresponding X = {Rlmn, Z lmn} harmonics (notice that this is a direct evaluation
of Eq.(3.59), there is no need to invert H). Once the field has been computed and the
force has been evaluated, a new iteration on the geometry can be made by changing the
xh harmonics. No backward map from the standard representation to the Henneberg
representation is thus required.
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3.3 Implementation of a unique angle representation

Note that the matrix H is independent of the geometry, and can be evaluated once at
the beginning of SPEC execution. This is of course very advantageous for SPEC speed.
The force gradient, i.e. the derivatives of the force Fourier harmonics Flmn with respect
to the harmonics xh, can be easily obtained by applying the chain rule,

dFlmn
dxh,i

= dFlmn
dxk

∂xk
∂xh,i

, (3.75)

where the matrices elements dFlmn/dxk are the force gradient derivatives computed
using the standard representation, described in section 3.2.2, and the matrices element
∂xk/∂xh,i are obtained by taking the derivative of equation (3.59).

Finally, one has to be careful about the truncation of the force in Fourier space.
The hybrid-Powell method used to iterate on the interfaces geometry requires the same
number of degrees of freedom as equations, i.e. the force must be truncated such that it
has Nh Fourier harmonics. This is possible if

m ≤ Mf
pol = Mpol + 1 (3.76)

|n| ≤ Nf
tor = Ntor, (3.77)

where Mf
pol and Nf

tor refer to the truncation of the force harmonics. The magnetic field
and vector potential are, however, still truncated at the same resolution as the standard
representation, Mpol and Ntor. The Fourier truncation used to represent different physical
quantities in SPEC is summarized in table 3.1.

Rmn, Zmn, Bmn Flmn Ylmn ρlmn, b
l
n, r

l
n, z

l
n

Standard m ≤ Mpol m ≤ Mpol -
representation |n| ≤ Ntor |n| ≤ Ntor -
Henneberg m ≤ Mpol = M m ≤ Mf

pol = M + 1 - m ≤ M

representation |n| ≤ Ntor = N + 2α |n| ≤ Nf
tor = N - |n| ≤ N

Table 3.1: Summary of the different truncations in Fourier space used in SPEC, for the
standard representation and the Henneberg representation. A dash indicated that the
corresponding quantity is not used in SPEC with this representation of the geometry.
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3.3.4 Verification and comparison with the standard representation

We compare here the solutions obtained by SPEC using the Henneberg representation to
the ones obtained using the standard representation. In this section, we will only consider
fixed-boundary calculations. We run SPEC using both the standard representation and
the Henneberg representation in different stellarator geometries, and compare its outputs.
To compare the convergence properties, we plot the scalar force |f | from Eq.(3.22), which
usually goes down to machine precision (∼ 10−16) when the equilibrium is found, as a
function of the number of force evaluations.

Bean shaped tokamak

We first look at an axisymmetric configuration with a bean shaped cross-section (see
Figure 3.21), proposed by Hirshman and Meier (1985). The boundary is described by

R(θ, ϕ) = −0.32 + 1.115 cos θ + 0.383 cos 2θ − 0.0912 cos 3θ (3.78)
+ 0.0358 cos 4θ − 0.0164 cos 5θ (3.79)

Z(θ, ϕ) = 1.408 sin θ + 0.154 sin 2θ − 0.0264 sin 3θ. (3.80)

The same boundary can be represented using the Henneberg representation. The
harmonics {rn, zn, bn, ρmn} are obtained using the algorithm presented in section 3.3.2,

R0(ϕ) = −0.32 (3.81)
Z0(ϕ) = 0 (3.82)
ρ(θ, ϕ) = 1.184 cos θ + 0.208 cos 2θ − 0.1433θ (3.83)

+ 0.064 cos 4θ − 0.032 cos 5θ + 0.011 cos 6θ (3.84)
b(ϕ) = 1.419 (3.85)
α = 0. (3.86)

We attempt a two-volume fixed-boundary SPEC calculation, with ψt,1 = 0.61Tm2 and
ψt,2 = 2Tm2, and where we impose the rotational transform to be equal of ι-1 = 0.28
on each side of the inner plasma interface, and ι-2 = 0.31 at the plasma boundary. We
set the Fourier resolution to Mpol = M = 6, Ntor = N = 2, and the radial resolution to
Lrad = 12 in both volumes. Note that due to Eqs.(3.76)-(3.77), SPEC seeks a geometry
that minimizes more Fourier harmonics of the physical force when using the Henneberg
representation, but does not have to minimize the numerical force related to the spectral
condensation (see table 3.2). Finally, we construct an initial guess for the inner plasma
interface geometry via interpolation of the plasma boundary. This initial guess is the
same for both SPEC calculations, running either with the standard or the Henneberg
representation.
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Figure 3.21: Tokamak with bean shaped cross-section as described by Eqs.(3.78)-(3.80).
Colors indicate the magnetic field strength in vacuum.

Figure 3.22: Bean shaped tokamak. Left: Poincaré section, with the volume’s interface
and plasma boundary highlighted in color. Middle: rotational transform profile, and
right: scalar force as a function of the iteration number. Red: standard representation
and blue: Henneberg reprexsentation.

Rmn, Zmn, Bmn Flmn Flmn ρmn, bn, rn, zn
Standard m ≤ 6 m ≤ 6 -
representation |n| ≤ 2 |n| ≤ 2 -
Henneberg m ≤ Mpol = 6 m ≤ 7 - m ≤ 6
representation |n| ≤ Ntor = 2 |n| ≤ 2 - |n| ≤ 2

Table 3.2: Bean shaped tokamak test case, summary of the different Fourier resolutions
used in SPEC calculation using the standard and Henneberg representation.
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The poincaré section of the obtained equilibria, rotational transform profile and
force scalar are plotted on Figure 3.22. Both representations are able to find the same
equilibrium; the inner volume interface is visually the same, and the rotational transform
profiles are very close. Interestingly, we see that SPEC using the standard representation
(in red) requires about twice more force evaluations to find the equilibrium than those
required when using the Henneberg representation. This is expected since SPEC needs
to satisfy the spectral constraints when running with the standard representation, which
almost doubles the amount of force harmonics to minimize. In addition, the standard
representation has more degrees of freedom than the Henneberg representation.

Circular cross-section, large torsion configuration

The second case of interest is a stellarator with circular cross-section and large magnetic
torsion (see Figure 3.23), described in the Henneberg representation by α = 0, and

R0(ϕ) = 10 + cos(5ϕ) (3.87)
Z0(ϕ) = − sin(5ϕ) (3.88)
ρ(θ, ϕ) = 1.25 cos θ (3.89)
b(ϕ) = −1.25 (3.90)

which can be expressed by the standard representation by using Eq.(3.59),

R(θ, ϕ) = 10 + 1.25 cos θ + cos(5ϕ) (3.91)
Z(θ, ϕ) = −1.25 sin θ − sin(5ϕ). (3.92)

We evaluate a vacuum field by performing a two-volume fixed-boundary SPEC
calculation. We set the toroidal flux to ψt,1 = 0.3 and ψt,2 = 1Tm2, and constraint the
net toroidal current in each volume and at their interface to be zero, i.e. Isϕ,1 = 0 and
Ivϕ,1 = Ivϕ,2 = 0, in order to reproduce a vacuum field. We set the poloidal resolution to
Mpol = M = 6, toroidal resolution to Ntor = N = 4 and radial resolution to Lrad = 14
in both volumes. The different Fourier resolution used in both SPEC calculations are
written in table 3.3 . The initial guess for the interface geometry is interpolated from the
plasma boundary, and is the same for either representation.

The Poincaré section, rotational transform profile and force scalar are plotted on
Figure 3.24. SPEC finds the equilibrium in about ∼ 50 force evaluations using either
representation. The equilibrium found with the Henneberg representation is the same as
the one found with the standard representation. This test case, in addition to the bean
shaped tokamak presented above, shows that the Henneberg representation is correctly
implemented in SPEC for a tokamak or stellarator boundary that has α = 0. We will
now explore cases where α ̸= 0.
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Figure 3.23: Circular cross-section, large torsion configuration. Colors indicate the
magnetic field strength in vacuum.

Figure 3.24: Circular cross-section, large torsion configuration. Left: Poincaré section,
with the volume’s interface and the plasma boundary highlighted in color. Middle:
rotational transform profile, and right: scalar force as a function of the iteration number.
Red: standard representation, and blue: Henneberg representation.

Rmn, Zmn, Bmn Flmn Flmn ρmn, bn, rn, zn
Standard m ≤ 6 m ≤ 6 -
representation |n| ≤ 4 |n| ≤ 4 -
Henneberg m ≤ Mpol = 6 m ≤ 7 - m ≤ 6
representation |n| ≤ Ntor = 4 |n| ≤ 4 - |n| ≤ 4

Table 3.3: Circular cross-section and large torsion test case. Fourier resolutions used in
SPEC calculation using the standard and Henneberg representation.
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Rotating ellipse

We now look at the case of a rotating ellipse (see Figure 3.6), whose boundary is described
by setting α = 0.5, and

R0(ϕ) = 10 (3.93)
Z0(ϕ) = 0 (3.94)
ρ(θ, ϕ) = 1.5 cos θ (3.95)
b(ϕ) = −1 (3.96)

which can again be expressed with the standard representation by using Eq.(3.59),

R(θ, ϕ) = 10 + 0.25 cos θ + 1.25 cos(θ − 5ϕ) (3.97)
Z(θ, ϕ) = 0.25 sin θ − 1.25 sin(θ − 5ϕ), (3.98)

Note that b0 < 0 ensures a right-handed coordinate system. We again attempt a two-
volumes, fixed-boundary, vacuum SPEC calculation, and set the toroidal flux in each
volume to ψt,1 = 0.3 and ψt,2 = 1Tm2 respectively. We constrain the equilibrium to
be a vacuum by setting the pressure in each volume to zero, pl = 0, as well as the
net toroidal current in the volumes and at the interface, Isϕ,l = Ivϕ,l = 0. The standard
representation is run with Mpol = 6, Ntor = 5, while the Henneberg representation is
run with M = 5, N = 5. The Fourier resolution has been chosen such that both SPEC
calculations truncates the force at the same Fourier resolution (table 3.4). The initial
guess for the geometry of the interface is obtained by interpolating the plasma boundary,
and is the same for each SPEC calculation.

Rmn, Zmn, Bmn Flmn ρmn, bn, rn, zn

Standard m ≤ 6 m ≤ 6 -
representation |n| ≤ 5 |n| ≤ 5 -
Henneberg m ≤ 5 m ≤ 6 m ≤ 5
representation |n| ≤ 6 |n| ≤ 5 |n| ≤ 5

Table 3.4: Rotating ellipse test case, summary of the different Fourier resolutions used in
SPEC calculation using the standard and Henneberg representation.

Again, the Poincaré section, rotational transform profile and force scalar are plotted
on Figure 3.25. While it seems that both SPEC runs find the same equilibrium, we remark
that the force scalar |f | saturates at ∼ 3 · 10−8 when using the Henneberg representation.
This is surprising, since this representation is supposed to be using an optimal angle for
representing ellipses. We would thus expect that, at equilibrium, the geometry of the
inner interface could be expressed using the Henneberg representation, and thus that
SPEC would be able to find it.
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Figure 3.25: Classical stellarator. Left: Poincaré section, with the volume’s interface
and the plasma boundary highlighted in color. Middle: rotational transform profile, and
right: scalar force as a function of the iteration number. Red: standard representation
and blue: Henneberg representation.

The normalized residual force, [[(B/B0)2/2]], evaluated in real space, and its Fourier
harmonics, calculated at the equilibrium found by SPEC using the standard representa-
tion, are shown on the top panels of Figure 3.26. Not surprisingly, as only the Fourier
harmonics of the force with m ≤ Mpol, and |n| ≤ Ntor, are minimized to zero by SPEC,
the force in real space is not zero — it is of order 10−4. This is also clearly visible on
the top right panel of Figure 3.26. The same analysis can be done for the equilibrium
obtained with SPEC using the Henneberg representation (see lower panels of Figure 3.26).
Again, we observe that higher order Fourier modes keep the force in real space relatively
large. In real space, the force residuals have structures different than in the case where
the standard representation was used. The Fourier modes of the force that are minimized
by SPEC are of the order of 10−4, i.e. orders of magnitude larger than machine precision.

This example suggests that the implementation of the Henneberg representation in the
SPEC code does not solve its robustness issues — it actually made it worse, since SPEC
could not find the equilibrium in a rotating ellipse geometry using this new representation.
The hypothesis, that unfortunately could not be verified in the time frame of this thesis,
is that the different truncations of the Fourier series in SPEC when using the Henneberg
representation are causing the issue when α ̸= 0. Indeed, potential implementation errors
are possible but unlikely, as each submodule implemented in SPEC, namely the mapping
(3.54)-(3.56), and the implementation of the chain rule to evaluate the force gradient
(3.75), have been both verified independently to return the right values.

In summary, we have implemented the Henneberg representation as an alternative
representation for the toroidal surfaces in SPEC in an attempt to solve its robustness
issues. Unfortunately, SPEC does not converge towards an equilibrium when α ̸= 0. For
that reason, all further results in this thesis will use the standard representation. In
addition, only simplified stellarator geometries, or, in some cases, more shaped geometries
but with a limited number of volumes will be considered.
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Figure 3.26: Normalized residual force on an interface from a rotating ellipse equilibrium
obtained with SPEC. Left: real space, right: Fourier space. Top: standard representation.
Bottom: Henneberg representation. The red box surrounds the space of modes that are
not truncated.
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3.4 Summary

In this chapter, we explained some important features of the SPEC algorithm. Details
were given on the main loops of the SPEC algorithm, namely the Beltrami solver, the
force minimization, and the free-boundary iterations. In addition, we showed how the net
toroidal current profile could be constrained in SPEC. Two different net toroidal current
profiles co-exist in MRxMHD: the volume current profile, flowing through the volumes,
and the surface current profile, flowing at each volume’s interface. Both profiles were
implemented as new constraints in the SPEC code, which can now compute MRxMHD
equilibria for a given toroidal current profile. Analytical derivatives of the force on
each volume’s interface with respect to the geometry of the interfaces at fixed toroidal
current have been derived and implemented in SPEC. These derivatives speed up
substantially the hybrid-Powell iterations on the geometry of the interfaces. Both the
new constraint and the force gradient implementation have been verified in cylindrical
and toroidal geometries. In cylindrical geometry, we considered an axisymmetric screw
pinch, where the equilibria and force gradient obtained with SPEC could be compared to
analytical solutions. In toroidal geometry, a classical stellarator has been considered. The
equilibrium at fixed toroidal current profile has been verified to match the equilibrium
obtained by constraining the rotational transform profile in SPEC, and the force gradient
has been compared to a finite difference estimate.

In addition to the capability to constrain the net toroidal current in SPEC, the
Henneberg representation was implemented as an alternative way of parameterizing the
geometry of the interfaces. This representation uses a unique poloidal angle, which allows
SPEC to be run without the spectral condensation, and was foreseen to be a potential
solution to SPEC robustness issues in finding force-balance in strongly shaped geometries.
In addition, the derivatives of the force with respect to the new geometrical degrees of
freedom were implemented. The implementation was verified in multiple geometries,
namely a bean-shaped tokamak, a stellarator with circular cross-section and strong
torsion, and a rotating ellipse. While promising results in the case of the stellarator with
circular cross-section and torsion were obtained, it showed disappointing results in the
case of a rotating ellipse. It is thought that the different Fourier truncations used in
SPEC when α ̸= 0 might be the source of the issue. The robustness issues in SPEC that
arise in strongly shaped calculations thus remains unsolved.

It is however important to emphasize that while this new representation does not
solve SPEC robustness issues, it greatly simplifies the problem of numerical fragility.
Essentially, we decoupled the issues related to the spectral condensation to the potential
robustness issues related to the physical force. The next obvious step is to make SPEC
more robust using the Henneberg representation. Once SPEC is able to reliably find a
solution with zero physical force, one can look at implementing a more robust spectral
condensation algorithm. Ideas to improve SPEC convergence are numerous. We could
try to combine both representations — use the Henneberg representation when SPEC
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is far from the equilibrium, and switch to the standard representation once the force is
already quite small. Another proposition would be to change the hybrid-Powell method
for another algorithm that might be more adapted to the MRxMHD equilibrium problem
(e.g. descent-like methods). Finally, one could improve how the force is numerically
evaluated. Indeed, the force is a quadratic function of the magnetic field; by truncating
its Fourier series with the same modes as the magnetic field, one might lose important
information. A solution would be to evaluate the force in real space on a number of
cleverly chosen collocation points (as proposed by the DESC team (Dudt and Kolemen,
2020)), and to minimize the L2-norm of the force. This would have the benefit of
considering all Fourier modes of the force. These ideas could unfortunately not be
explored further in the time frame of this thesis.
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4 Measures of magnetic field
line topology

In magnetic fusion devices such as stellarators, zeroth order confinement of particles and
energy is obtained by constructing an equilibrium with magnetic surfaces. Magnetic
islands and magnetic field line chaos are detrimental to confinement, i.e. they contribute
to increased radial transport of particle and energy (Hudson and Nakajima, 2010). While
it is possible to design equilibria with good magnetic surfaces in a vacuum (Cary and
Kotschenreuther, 1985; Cary and Hanson, 1986; Pedersen et al., 2016), pressure-driven
plasma currents, such as diamagnetic, Pfirsch-Schlüter and bootstrap currents, perturb
finite β equilibria, and, at a sufficiently large pressure, magnetic islands and chaos emerge.

A pressure increase can also sometimes heal magnetic islands (Bhattacharjee et al.,
1995). While this mechanism can improve confinement locally, other islands might open
elsewhere in the plasma as β increases. Starting from a vacuum magnetic field with
magnetic surfaces, there is thus a critical value of β at which magnetic islands open and
magnetic field line chaos emerges. This defines an equilibrium β-limit. Note however
that the equilibrium β-limit is a soft limit, since crossing it does not lead to a loss of
control of the plasma. Additional input power may however leak through the damaged
magnetic surfaces more easily (Rechester and Rosenbluth, 1978), thereby preventing a
further increase of β. Crossing the equilibrium β-limit may thus not be as concerning as
crossing a stability limit (which may lead to plasma disruptions), but it still limits the
overall performance of the reactor, and by definition its Q-factor. It is consequently of
crucial importance to understand these equilibrium β-limits better, especially for the
operation of existing experiments and the design of new machines. Configurations where
good magnetic surfaces are preserved over a large range of β have to be sought, which
will help to ultimately identify configurations whose equilibrium β-limit is large enough
for good plasma performance.

In view of assessing the capability of a magnetic equilibrium to confine a plasma,
and ultimately calculating its equilibrium β-limit, one has to define metrics to measure
the confinement properties of magnetic equilibria, such as numerical diagnostics that
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can determine the topology of a magnetic field line. In this chapter, we first review two
different metrics, namely the Greene’s residue (Greene, 1968, 1979), and the volume of
chaos (Loizu et al., 2017). We then propose a new metric, the fraction of net parallel
diffusion (Baillod et al., 2022), and develop an associated numerical diagnostic that does
not have the same limitations as the volume of chaos, and provides more physics-based
insights on the effect of magnetic field line topology on particle transport. In subsequent
chapters, these metrics will be used in different applications. The volume of chaos and
the fraction of parallel diffusion will be used to measure the equilibrium β-limit in a
classical stellarator (chapter 5), while objective functions will be constructed using the
Greene’s residues of some specific resonances to optimize stellarator equilibria for good
magnetic surfaces (chapter 6).

Parts of this chapter are adapted from the following publication: A. Baillod et.
al., Equilibrium β-limits dependence on bootstrap current in classical stellarators,
arXiv:2211.12948v2 (2022) (Baillod et al., 2022).

4.1 Greene’s residues

The first metric discussed in this chapter is the Greene’s residue (Greene, 1968, 1979).
This measure is a local indicator of the presence of an island on a rational surface. First,
note that the Poincaré section of a magnetic equilibrium can be understood as the map
T (R,Z) : R2 → R2, that maps any point (Ri, Zi) of the RZ-plane to another point
(Ri+1, Zi+1) after each toroidal transit of the magnetic field. We remark here that, as
magnetic field lines are described by a Hamiltonian set of equations (1.34)-(1.35), the map
T (R,Z) is symplectic (Lichtenberg and Lieberman, 2013). In 2 dimensions, symplectic
maps are maps that preserve the area (Meiss, 1992).

Orbits are then characterized by a sequence of points {(R0, Z0), . . . , (Rn, Zn)}, and
can form either periodic orbits, which correspond to rational magnetic surfaces, or
quasiperiodic orbits, which correspond to irrational surfaces. In case of a resonance,
periodic orbits fill a finite volume of the space, i.e. a magnetic island is formed. Of
particular interest are the O- and X-points of the island chain, thereafter denoted xo
and xx respectively, located at the center and at the edge of the islands. These points
are fixed-points of the map T , that is T (xo/x) = xo/x. The asymptotic behavior of the
orbits close to these points can be studied by looking at the Taylor expansion of the map
T around xo/x,

T (xo/x + δx) = xo/x + JT (xo/x)δx, (4.1)

where δx is a small displacement from xo/x, and JT (xo/x) is the jacobian of T . As T is
symplectic (Meiss, 1992), det(JT ) = 1, and the eigenvalues of the jacobian are

λ± = 1
2

(
Tr(JT ) ±

√
Tr(JT )2 − 4

)
, (4.2)
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4.1 Greene’s residues

with Tr(JT ) the trace of the jacobian matrix, and, as expected by the symplectic property
of T , we have λ+ = 1/λ−. At a fixed point xo/x, the following cases are then possible
(Lichtenberg and Lieberman, 2013):

1. The eigenvalues are real, with λ+ < −1 and −1 < λ− < 0. The trace of the
jacobian matrix is then Tr(JT ) < −2. In this case, orbits close to the fixed-point
trace hyperbolas, and are reflected on the opposite side of the fixed-point at each
map iteration. The orbits are therefore called reflective hyperbolic orbits, and the
fixed-point is an X-point (see Figure 4.1(a)).

2. The eigenvalues are real, with λ+ > 1 and 0 < λ− < 1. The trace of the jacobian
matrix is then Tr(JT ) > 2. Again, orbits close to the fixed-point trace hyperbolas.
In this case however, orbits stay on the same side of the fixed-point at each map
iteration; they are therefore called hyperbolic orbits, and the fixed-point is also an
X-point (see Figure 4.1(e)).

3. The eigenvalues are two complex conjugate values, λ± = e±2πiω, with ω a constant,
and corresponds to the case where the trace of the jacobian matrix is |Tr(JT )| < 2.
Orbits close to the fixed point are elliptic orbits; the fixed-point is thus an O-point
(see Figure 4.1(c)).

4. The two remaining cases describe the transition between hyperbolic and elliptic
orbits, and are called parabolic orbits. The transition between reflective hyperbolic
orbits and elliptic orbits occurs when λ+ = λ− = −1, and Tr(JT ) = −2. Using
Eqs.(1.34)-(1.35) to describe a magnetic field line, the Poincaré map of a mag-
netic field line around a fixed-point is characterized by a sequence of points with
alternating signs of χ (see Figure 4.1(b)).

5. The transition between elliptic and hyperbolic orbits occur when λ+ = λ− = 1,
and Tr(JT ) = 2. In this case, the Poincaré map of magnetic field lines around the
fixed-point is characterized by a sequence of points with χ = const, i.e. a magnetic
surface (see Figure 4.1(d)).

The Greene’s Residue R is a measure used to differentiate between the cases (1)-(5),
which is more practical than the eigenvalues λ±. It is defined as

R = 1
4 (2 − Tr(JT )) . (4.3)

For reflection hyperbolic orbits, R > 1; for elliptic orbits, 0 < R < 1; for parabolic orbits,
R = 1; for hyperbolic orbits, R < 0; and for orbits that trace magnetic surfaces, R = 0.
We will discuss in chapter 6 how stellarators can be optimized for good magnetic surfaces
by minimizing the square of the Greene’s residue of some targeted resonances. As an
illustrative example, we describe in the next section the standard map and compute its
Greene’s Residue.
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Figure 4.1: Sketch of a reflective hyperbolic orbit (a), a hyperbolic orbit (e), an elliptic
orbit (c) and of two parabolic orbits (b) and (d). The order (a)-(e) follows the increasing
value of Tr(JT ). Red lines: island separatrix and grey: magnetic field line orbits. Black
dot: position of the fixed-point. In the case of parabolic orbits (b) and (d), the separatrix
is not well defined and is not traced. Arrows indicate the direction the magnetic field
line moves along the orbit after each toroidal transit. Blue points are the position of a
magnetic field line after 1 − 4 toroidal transits.
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4.1.1 Standard map

The standard map is a canonical example of a 2-dimensional non-linear map. It is defined
as (x′, y′) = T (x, y), with

y′ = y − k

2π sin(2πx) (4.4)

x′ = x+ y′, (4.5)

with k a parameter, that controls the non-linearity strength in the system. We plot the
phase space of the standard map for four different values of k in Figure 4.2. For k = 0,
the map is linear, and there are no islands nor chaos in the system. For k = 0.3, some
resonances are excited, but their corresponding islands remain small. At k = 0.9, islands
start to overlap, and the phase space is filled with islands, and some chaotic orbits. At
k = 1.3, most orbits are chaotic.

Figure 4.2: Phase space of the standard map for four different values of k, as described
by Eqs.(4.4)-(4.5). Colors indicate different orbits. Here we plot 200 orbits, with initial
condition x = 0, 1 and y = k/100, with k = {0, . . . , 99}, and plot 4000 iterations of the
map for each orbit.
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The points xo = (x = 0, y = 0) and xx = (x = 1/2, y = 0) are both fixed points of
the standard map, as T (xo/x) = xo/x. We study the behavior of the orbits close to these
points by looking at the jacobian of T ,

JT =
(

1 − k cos(2πx) 1
−k cos(2πx) 1

)
. (4.6)

The eigenvalues of JT are then

λ± = 1
2

(
2 − k cos(2πx) ±

√
(2 − k cos(2πx))2 − 4

)
, (4.7)

and the Greene’s residue is
R = k

4 cos(2πx). (4.8)

At xo, the Greene’s residue is zero if and only if k = 0, which, as seen on top left panel
of Figure 4.2, corresponds to a phase space without island. For 0 < k < 4, the Greene’s
residue is 0 < |R| < 1, which corresponds to the existence of an island. The orbits around
the xo fixed points are elliptic, which corresponds to and O-point at xo. Finally, for
k > 4, the orbits become hyperbolic. For such large values of k however, the phase space
is mostly filled with chaotic orbits, making any observation difficult. Regarding the xx
fixed-point, it is again zero if and only if k = 0. For any values of k > 0 however, the
residue is smaller than 0. Orbits close to the fixed point are hyperbolic, which correspond
to an X-point at xx.

The Greene’s residues are a great measure to assess whether or not a rational surface
is resonant, or more generally if magnetic islands are present. This does however require
that the fixed points of the magnetic field Poincaré map are known. In practice, this
means that for any given magnetic equilibrium, resonances of interest must be selected,
and the location of their fixed point must then be found. The Greene’s residue is
thus a local measure — as it will be discussed in chapter 6, this can be a limitation
when performing stellarator optimization. In addition, the Greene’s residue gives no
information on the impact of the field line topology on the plasma confinement.
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4.2 Volume of chaos

4.2 Volume of chaos

We build here an alternative global metric, that measures the volume occupied by chaotic
field lines. We first seek to discriminate between a chaotic field line and other magnetic
field line topologies by evaluating the fractal dimension D of the field line Poincaré
section, for example using a box-counting algorithm (Meiss, 1992). Assuming that a
field line Poincaré section is provided as a set of Np points in the RZ-plane, we split
the RZ-plane into a grid made of squares of dimension L × L and count the number
N of grid elements that contain at least one point from the field line (see top panel of
Figure 4.3). The box-counting dimension (also called fractal dimension or Hausdorff
dimension) is then given by

D = lim
L→0

logN(L)
logL0/L

, (4.9)

with L0 the typical dimension of the map. The value of N(L) as a function of L is
plotted on the lower panel of Figure 4.3. For large values of L, all points from a magnetic
field line Poincaré section are contained in a single grid element, and N = 1. For small
values of L, each grid element contains at most one point from the magnetic field line
Poincaré section, and N = Np. Between these two saturated values, the curve can be
approximated by a linear function, log(N) ≈ D log(L0/L) + C, with C an irrelevant
constant. The fractal dimension D can thus be extracted by fitting the linear part of the
curve (Arbez, 2021).

An almost binary behavior is then observed: either a magnetic field line stays on
a magnetic surface whose Poincaré section is a one-dimensional object, D = 1, or the
magnetic field line has a fractal dimension D > Dcrit, with 1 < Dcrit < 2. For example,
for the two lines showed on Figure 4.3, we find D = 1.0 for the blue line and D = 1.4 for
the red line. Loizu et al. (2017) proposed to evaluate the volume occupied by chaotic
field lines with

Vchaos = VP

Nlines∑
i=1

(ψt,i − ψt,i−1)
ψa

H(Di −Dcrit), (4.10)

where Nlines is the number of considered field lines, Di is the fractal dimension of the ith

line, H is the Heaviside function, VP is the total plasma volume, ψt,i − ψt,i−1 measures
the enclosed toroidal flux between field lines i and i − 1, and ψa is the toroidal flux
enclosed by the plasma.

As an illustration of the volume of chaos, we evaluate it for the standard map defined
in Eqs.(4.4)-(4.5) as a function of the parameter k for different values of Dcrit (see
Figure 4.4). The same trend is observed for the three considered values of Dcrit: for low
values of k, the volume of chaos is zero; a critical value of k, between 0.5 and 0.8, marks
the emergence of chaotic orbits; for large values of k, the normalized volume of chaos
tends to 0.8 — the remaining non chaotic orbits are those close to O-points inside islands
(Arbez, 2021).
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Slope=1.4

Slope=1.0

Figure 4.3: Evaluation of the fractal dimension of two field lines Poincaré section. Top:
Poincaré section of two field lines. A grid with elements of size L is plotted over; each
grid cell that contains at least a point from the field line is colored with the field line
color. In this example, N(L) = 46 for the blue line and N(L) = 177 for the red line.
Bottom: Number N of grid element with at least one point as a function of the grid
element size L.
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Figure 4.4: Normalized volume of chaos in the standard map as a function of k for
different values of Dcrit (Arbez, 2021).

When applied to Poincaré maps of magnetic field lines, the volume of chaos is a global
measure of the amount of chaotic field lines in the system, in opposition to the Greene’s
residue, which was a local measure of the field line topology (see section 4.1). The
equilibrium β-limit could then be defined as the β above which Vchaos > 0. This criterion,
however, is uniquely based on the magnetic field lines topology, and does not take into
account the possibility that a chaotic magnetic field could still confine the plasma, at least
to a certain level. Indeed, structures present in chaotic magnetic field lines and magnetic
islands can, potentially, support temperature and density gradients (Hudson and Breslau,
2008; Hudson and Dewar, 2009). Considering all magnetic islands and chaotic field lines
as detrimental for confinement can thus be a pessimistic diagnostic of the confinement
properties of the magnetic equilibrium. In the next section, we propose an alternative
measure, specific to the Poincaré map of stellarator magnetic fields, that counts the
fraction of resonances in the equilibrium that are important sources of transport.
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4.3 Fraction of effective parallel diffusion

We now introduce a novel, alternative measure to the volume of chaos to determine if
the destruction of magnetic surfaces significantly impacts the radial transport. In what
follows, the parallel and perpendicular directions are defined as the directions along
and across the magnetic field respectively, and the radial direction r as the direction
perpendicular to isotherms, ∇T × ∇r = 0, with T the temperature. In recent work,
Paul et al. (2022) discussed the properties of the anisotropic heat diffusion equation,
∇ · (κ∥∇∥T + κ⊥∇⊥T ) = 0, where κ∥ and κ⊥ are the parallel and perpendicular heat
conductivities. In particular, Paul et al. demonstrated that, under the assumption
that κ∥, κ⊥, and ∇ · κ are analytical, isotherms are topologically constrained to be
toroidal surfaces — this forbids isotherms to align with the magnetic field in regions
occupied by magnetic islands and magnetic field line chaos. Here κ is the diffusion tensor,
κ = κ⊥I + (κ∥ − κ⊥)BB/B2, with I the identity tensor. Motivated by comparing the
local parallel diffusion to the local perpendicular diffusion, Paul et al. introduced the
volume of effective parallel diffusion, which is the volume of plasma where the parallel
heat transport dominates over perpendicular heat transport,

VPD = 1
VP

∫
VP

H(κ∥|∇∥T |2 − κ⊥|∇⊥T |2)dx3, (4.11)

where H is the Heaviside function, and the parallel and perpendicular gradients are defined
as ∇∥ = B(B · ∇)/B2 and ∇⊥ = ∇ − ∇∥ respectively. In regions occupied by magnetic
islands and magnetic field line chaos, the constraint on the isotherms topology implies
that the magnetic field has a non-zero radial component, thus ∇∥T > 0. Depending on
the ratio κ∥/κ⊥, the volume of effective parallel diffusion can then be greater than zero.
On the contrary, in regions occupied by magnetic surfaces, isotherms largely coincide
with magnetic surfaces, which means that ∇∥T is negligible, and consequently the volume
VPD is zero. We can thus define the equilibrium β-limit as the β above which VPD > 0.

To determine the equilibrium β-limit, it is only required to determine if VPD is zero
or not; its absolute value is irrelevant. We thus construct a proxy function for VPD
that does not depend on the temperature profile, but only on the magnetic field. We
start by noticing that the Heaviside function in Eq.(4.11) is greater than zero when
κ∥|∇∥T |2 ≥ κ⊥|∇⊥T |2. As we expect the radial magnetic field to be small in comparison
to the total magnetic field, Br = B · êr ≪ B, with êr a unitary vector perpendicular to
the isotherms, we can write ∇∥T ∼ ∇T Br/B, and ∇⊥T ∼ ∇T . The volume of effective
parallel diffusion is then greater than zero if there is a finite volume where(

Br
B

)2
≥ κ⊥
κ∥

≡
(
Br,crit
B

)2
. (4.12)

We now consider the electron heat transport as a figure of merit for the confinement
properties of the equilibrium. We write κ⊥,e = nχ⊥,e, where χ⊥,e is typically given by
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turbulence or neoclassical transport, with χ⊥,e ∼ 1m2s−1, and we use the Spitzer-Härm
conductivity for κ∥,e (Braginskii, 1965) to get

(
Br,crit
B

)2
= 5.2 · 10−22ne log Λ χ⊥,e

T
5/2
e

, (4.13)

where log Λ is the Coulomb logarithm. Here everything is to be expressed in SI units
except Te, which is in eV . For temperatures and densities between 1 to 10 keV and 1019

to 1020m−3 respectively, Br,crit/B ranges from 10−6 to 10−4. For example using typical
values for W7-X high performance experiments (Klinger et al., 2019), i.e. ne = 4·1019m−3,
Te = 5 keV, we obtain a critical normalized radial magnetic field of Br,crit/B ∼ 10−5.
As a side note, we remark that the criterion (4.12) can also be derived by considering
the radial heat flux of electrons, qr = −κ⊥,e(∇⊥Te)r − κ∥,e(∇∥Te)r ∼ −κ⊥,edTe/dr −
κ∥,edTe/drB

2
r/B

2. Magnetic islands and chaos play then an important role in setting the
local heat radial transport when the second term in the expression for the electron heat
flux is larger than the first, which occurs when B2

r/B
2 ≥ κ⊥/κ∥, recovering equation

(4.12).

The volume of effective parallel diffusion can thus be written using the criterion on
the radial magnetic field (4.12),

VPD ∼ 1
VP

∫
VP

H
([

Br
B

]2
−
[
Br,crit
B

]2
)
dx3. (4.14)

This measure is however impractical for the purpose of this thesis, as it would require to
evaluate the radial magnetic field everywhere in the plasma. Instead, the radial magnetic
field is evaluated where it is expected to be the largest, i.e. on a selected number of
rational surfaces. We then construct the fraction of parallel diffusion,

fPD = 1
Nres

Nres∑
i=1

H
([

Br
B

]2
−
[
Br,crit
B

]2
)
, (4.15)

where Nres is the number of considered resonances, and the algorithm used to evaluate
the radial magnetic field Br from SPEC equilibria is described in section 4.3.1. The
fraction of effective parallel diffusion is then the fraction of resonances in the plasma
that contribute to the transport, i.e. the fraction of resonances over which the diffusion
due to parallel dynamics dominates. Note that fPD ̸= VPD, but if fPD > 0, then we can
expect VPD > 0. The fraction of parallel diffusion can then be used as a proxy function
to determine if the volume of parallel diffusion is zero or not. The equilibrium β-limit
can thus be defined by the value of β above which fPD > 0.
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4.3.1 Measure of the radial magnetic field

To evaluate the radial magnetic field Br, it is useful to construct a general set of
coordinates, such as quadratic flux minimizing (QFM) surfaces (Dewar et al., 1994;
Hudson and Dewar, 1996, 1998), or ghost surfaces (Hudson and Dewar, 2009), which
have been shown to coincide with isotherms (Hudson and Breslau, 2008). We construct
QFM surfaces using the pyoculus package1. These surfaces, thereafter named Γmn, are
smooth toroidal surfaces that pass through the X- and O- points of the island chain
corresponding to the ι- = n/m rational resonant surface, and are constructed by finding
the surfaces Γmn minimizing the weighted quadratic flux

∫
Γmn

w(x)(B · n)2dS, where the
weight w(x) is cleverly chosen such that the underlying Euler-Lagrange equation has
non-singular solutions. Some examples of QFM surfaces are plotted in Figure 4.5. The
radial coordinate r is then defined as the direction perpendicular to the QFM surfaces.

Figure 4.5: Black: Poincaré plot with magnetic surfaces and magnetic islands. Red:
QFM surface r = const. The coordinate s is a radial-like coordinate.

We can now measure the radial component of the magnetic field at each resonant
surface ι- = n/m in a SPEC equilibrium. We start by identifying all potential resonances
(m,n) ∈ N in each volume Vl within the plasma boundary, such that (i) n/m is within
the rotational transform extrema in the volume, and (ii) n is a multiple of the number of
field periods. We construct QFM surfaces for each of the identified resonances ι- = n/m.

1https://github.com/zhisong/pyoculus
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4.4 Summary

The magnetic field perpendicular to the QFM surface, Br, is obtained by projecting the
magnetic field on the normal direction, and the magnetic field resonant harmonic, Br,mn
is obtained after a standard Fourier transform of Br. Here, the poloidal angle is the
straight-field line angle of the magnetic field tangential to the QFM surface. The Fourier
spectrum of Br is largely dominated by the (m,n) harmonic — it has been verified that
Br,mn is at least twice as large as other Fourier harmonics of the radial magnetic field.
We can thus assume Br ≈ Br,mn to filter out numerical noise that may be generated by
the QFM surface construction.

Only resonances with large radial magnetic field will significantly participate to the
radial transport. Since the magnetic field harmonics Br,mn are expected to decrease
exponentially with the square of their mode numbers m and n (Qu et al., 2021), i.e.
Bmn ∼ exp(−m2 − n2), we can discard resonances with large poloidal and toroidal mode
number and study only harmonics with mode number smaller than a given resolution,
m ≤ Mres and n ≤ Nres. In this thesis, we set Mres = 25 and Nres = 10.

We have thus constructed the fraction of effective parallel diffusion, which is a proxy
function for the volume of effective diffusion, and is greater than zero if radial transport
is strongly impacted by the field line topology anywhere in the plasma. We also discussed
how the radial magnetic field could be evaluated numerically by constructing QFM
surfaces. In chapter 5, we will apply this diagnostic to compute the equilibrium β-limit
in a classical stellarator.

4.4 Summary

This chapter introduced different metrics to evaluate the capability of a magnetic
equilibrium to confine a plasma. First, we discussed the Greene’s Residue, which is
a local measurement of the magnetic field line topology on rational surfaces. While
very useful to define optimization target functions for minimizing an island’s width, this
measure is impractical to assess the magnetic field capability at supporting pressure
gradients. As an alternative, the volume of chaos is a second diagnostic that measures
the volume of plasma occupied by chaotic magnetic field lines. To assess if a field line is
chaotic or not, the fractal dimension of its Poincaré section is evaluated. This diagnostic
has the advantage to be a global diagnostic, but, as for the Greene’s residues, fails to
provide information on the magnetic field capability to support pressure gradients; indeed,
structures in chaotic magnetic field can potentially support pressure gradients. The
Greene’s residue and the volume of chaos will be used in different stellarator optimization
applications in chapter 6.

The third diagnostic introduced in this chapter is the fraction of effective parallel
diffusion. Constructing QFM surfaces, one can evaluate the radial magnetic field for any
resonance in the plasma. By comparing the parallel transport in the radial direction
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to the radial transport generated by turbulence, a critical radial magnetic field can
be estimated, above which the resonance has an important impact on setting the net
radial transport. This measure, in opposition to the Greene’s residue and the volume
of chaos, is not uniquely based on the topology of the magnetic field line, as it also
includes information on whether or not the damaging of magnetic surface is detrimental
to confinement. The fraction of effective parallel diffusion will be used in chapter 5 to
measure the equilibrium β-limit.
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In this chapter, we deploy the SPEC code, introduced in chapter 3, and the numerical
diagnostics and metrics discussed in chapter 4 to study the equilibrium β-limit in
stellarators. We perform large parameter scans of finite β-equilibria, including the
bootstrap current contribution, to both numerically and analytically model the impact
of the pressure and the bootstrap current on the equilibrium topology, and to determine
how the equilibrium β-limit depends on the device parameters. After having introduced
the mechanisms that drive the bootstrap current in a plasma, we will first compute the
equilibrium β-limit in a classical stellarator with bootstrap current, and model these
results analytically using the high beta stellarator (HBS) model. We then study a more
complex quasi-axisymmetric (QA) stellarator geometry, and compute its equilibrium
β-limit while considering the self-consistent bootstrap current.

5.1 Bootstrap current

The bootstrap current is a parallel current self-generated by toroidally confined plasmas.
It is a kinetic effect, described by the neo-classical theory (Helander and Sigmar, 2002),
and it is therefore not described by the MHD model. Nevertheless, its contribution
can be taken into account in magnetic equilibrium calculations by including it as a
divergence-free current density, i.e. the last term of Eq.(2.41). A precise derivation
of bootstrap current in general stellarator geometries can be found in Helander et al.
(2011) and references therein; in this section, we qualitatively explain the basic physics
at the origin of this current in a tokamak. Similar arguments can be made in stellarator
geometries.

5.1.1 Passing and trapped particles

Assuming that the magnetic field strength varies on large scales in comparison to the
gyroradius, ρ|∇B| ≪ B, and that it varies slowly in comparison to the gyrofrequency,
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Figure 5.1: Sketch of a trapped and passing particle. Here θ = 0 and θ = ±π designate a
position on the plane Z = 0, on the low-field and high-field side of the torus respectively.

1/ω∂B/∂t ≪ B, a particle trajectory can be approximated by its guiding center motion
(see section 1.4.1). Furthermore, it can be shown (Helander and Sigmar, 2002) that the
magnetic moment mv2

⊥/2B is approximately conserved, where v⊥ is the component of v
perpendicular to the magnetic field. In addition, in the absence of collisions, and if E = 0,
the particle’s kinetic energy, Wk = mv2

∥/2 +mv2
⊥/2, is also conserved. Now, suppose that

a charged particle follows a straight magnetic field line. If the magnetic field strength
increases, by conservation of the magnetic moment, the particle’s perpendicular velocity
increases, which means that its parallel velocity decreases. Ultimately, if the particle’s
kinetic energy is not large enough, the parallel velocity will reach zero, and the particle
will bounce back in the opposite direction along the field line.

In tokamaks, the magnetic field is stronger on the inner side of the torus, and weaker
on the outer side, as B ∼ 1/R, thereby defining the so-called high-field side and low-field
side of the torus. Now suppose that an ion is located at a point A, on the midplane
Z = 0 and on the low-field side of the torus (see Figure 5.2). As this ion moves along a
magnetic field line, it moves closer to the high-field side of the torus, where the magnetic
field strength is larger, and thus the ion decelerates in the direction parallel to the field
lines. Particles whose kinetic energy is large enough will complete their poloidal orbit,
and are therefore called passing particles (see the blue curve in Figure 5.1). On the
other hand, particles whose kinetic is too small will bounce back before completing a full
poloidal orbit, and are thus called trapped particles (see the red curve in Figure 5.1).

As discussed in section 1.4.1, particles do not follow exactly magnetic field lines,
as they experience guiding center drifts. Working in standard cylindrical coordinates
(R,ϕ, Z), we assume a mostly toroidal magnetic field, B ≈ Bêϕ. Furthermore, we
assume that the plasma current flows in the −êϕ direction, which, according to Ampere’s
law, generates a poloidal magnetic field in the −êθ direction (see Figure 5.2). Writing
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∇B

V∇B + Vκ

Ip

Bθ

Bϕ
êθ

Figure 5.2: Sketch of a banana orbit. The black surface indicates the plasma boundary,
while inner, dashed, grey surfaces represents magnetic surfaces. In red and orange,
the banana orbit of an ion passing by A with a positive and negative parallel velocity
respectively.

∇B ∼ −B/RêR, and using Eqs.(1.15)-(1.16), we obtain the sum of the ∇B and curvature
drifts,

V∇B + Vκ = ±
v2

⊥ + 2v2
∥

2Rω êZ , (5.1)

where the positive and negative signs are taken for ions and electrons respectively. Ions
thus drift in the êZ direction, while electrons drift in the −êZ direction. These drifts
will generate a finite radial excursion of the particle from the trajectory traced by a
magnetic field line. Take for example a trapped ion, with initially a positive parallel
velocity, v∥ > 0, and positioned at a point A as shown on Figure 5.2. In the upper part
of the torus, Z > 0, the ion drifts away from the plasma core, while in the lower part
of the torus, Z < 0, the ion drifts towards the plasma core. The resulting orbit of the
ion is sketched in red on Figure 5.2, and is called a banana orbit, for obvious reasons.
Remark that trapped ions at the point A, with negative parallel velocity v∥ < 0 will
follow a different banana orbit, than ions with a positive parallel velocity. Their banana
orbit is traced in orange on Figure 5.2. Trapped electrons also follow banana orbits, as
discussed above for the ions. As they drift in the opposite direction than ions, electrons
will however move along the banana orbit in the opposite direction than ions.
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5.1.2 Banana and bootstrap current

The banana current is a consequence of the banana orbits and emerges in the presence
of a density or temperature gradient. In general, unless the density profile is hollow,
the closer the banana is to the magnetic axis, the greater is the density, meaning there
are more ions with negative parallel velocity than positive parallel velocity at a point A
(see Figure 5.2). There is thus a net parallel flow of ions at A in the −êϕ direction, that
generates a net parallel current density, called the banana current density, in the −êϕ
direction. This ion banana current thus increases the plasma current Ip. Electrons move
in the opposite direction than ions along a banana orbit, and therefore there is a net
parallel flow of electrons in the êϕ direction. As electrons are negatively charged, this
corresponds to a net electron banana current density in the −êϕ direction. The electron
banana current thus also increases the plasma current Ip. Note that the banana current
is parallel to the magnetic field, and is thus mostly toroidal.

The banana current is however relatively small in comparison to the bootstrap
current. The bootstrap current emerges from the interaction between the passing and
trapped particle population. The net parallel momentum of trapped electrons and ions
is transferred to passing particles via collisions, which generates a net momentum in the
passing particle population, and ultimately the bootstrap current. Again, the bootstrap
current is a parallel current, and therefore is mostly toroidal. The calculation of the
bootstrap current depends on numerous parameters, for instance the plasma collisionality,
the density and temperature of ions and electrons, and the geometry of the magnetic
surfaces — see for example the work of Sauter et al. (1999) or, more recently, Redl et al.
(2021). In a low collisionality, large aspect ratio tokamak approximation, one can show
(Helander and Sigmar, 2002) that the bootstrap current density reduces to

jϕ =
√
ϵR

dp

dψp
, (5.2)

where
√
ϵ is the fraction of trapped particles, and ϵ = r/R is the inverse aspect ratio.

In tokamaks, the net radial drift of a trapped particle, averaged over its banana
orbit, is zero. In stellarators, particle orbits are more complex; they can be trapped
in regions where the guiding center drifts do not average to zero over a banana orbit,
leading to the loss of the particle. In some particular configurations, for example in
quasi-symmetric (QS) stellarators, one can show that trapped particles are confined
(Helander, 2014). QS stellarators are a special class of stellarators where the magnetic
field strength only depends on two coordinates when expressed in Boozer coordinates,
B = B(ψt,Mθb −Nϕb). We differentiate quasi-axisymmetric (QA) configurations, with
M ̸= 0 and N = 0, from quasi-helically symmetric (QH) configurations, with M ̸= 0
and N ̸= 0, and from quasi-poloidally symmetric (QP) configurations, where M = 0 and
N ̸= 0. To compute the trajectory of trapped particles in any stellarator and the resulting
bootstrap current, numerical codes are required, such as the SFINCS code (Landreman
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et al., 2014). In QS configurations however, one can apply an isomorphism with tokamaks
(Boozer, 1983), and use tokamak-specific semi-analytic formulas to evaluate the bootstrap
current, thereby avoiding the necessity to use expensive kinetic numerical computations.

In section 5.2, we construct a classical stellarator model with bootstrap current,
and evaluate its equilibrium β-limit using the SPEC code. We then numerically and
analytically model the equilibrium β-limit dependence on design parameters and on the
bootstrap current strength. In section 5.3, we compute the magnetic equilibrium in
a QA stellarator for a wide range of temperature and densities while considering the
self-consistent bootstrap current evaluated with the Redl et al. formulas.

5.2 Equilibrium β-limit in a classical stellarator

This section is adapted from the following publication: A. Baillod et. al., Equilibrium
β-limits dependence on bootstrap current in classical stellarators, arXiv:2211.12948v2
(2022) (Baillod et al., 2022).

In recent work, Loizu et al. (2017) modelled numerically and analytically the equilib-
rium β-limit in a current-free classical stellarator using the SPEC code. In this chapter,
we propose to extend the work of Loizu et al. (2017) to the case of a classical stellarator
with bootstrap current and a more realistic pressure profile. While a rotating ellipse
is arguably a simple geometry, it is relevant since all stellarators without torsion are
rotating ellipses close to the magnetic axis (Helander, 2014). An experimental instance
of rotating ellipse was the Wendelstein 7-A (W7-A) stellarator (Grieger et al., 1985).

We construct a free-boundary classical stellarator equilibrium. The computational
boundary ΓCB, shown on Figure 5.3, is given by

RCB(θ, ϕ) = R0 +R10 cos(θ) +R11 cos(θ −Nfpϕ) (5.3)
ZCB(θ, ϕ) = Z10 sin(θ) + Z11 sin(θ −Nfpϕ), (5.4)

with Nfp = 5 the number of field periods, R0 = 10m, R10 = −Z10 = 1m, R11 = Z11 =
0.25m. The effective minor radius is aeff = √

rminrmax, with rmin = R10 − R11 and
rmax = R10 + R11 the minor and major radii of the ellipse, respectively. We define
ϵa = aeff/R0 as the inverse aspect ratio.

We assume that a coil system exists such that Bc · n = Bvêz · n on ΓCB, where Bc is
the magnetic field produced by the coils, and Bvêz is a vertical field, which is applied to
keep the plasma within the computational boundary at high β. We set Bv = −0.03T.
This vertical field has little to no impact on the results presented hereafter; its only
purpose is to keep the plasma within the volume defined by ΓCB. We fix the total current
flowing in the torus hole to Ic = 17.1MA, which determines the toroidal flux enclosed by
the computational boundary, ψt,V = 1Tm2.
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Chapter 5. Equilibrium β-limits

Figure 5.3: Rotating ellipse with coils. In red: tentative coil design, obtained with
the flexible optimized coils using space curves (FOCUS) code (Zhu et al., 2017). The
3D-colored surface is the computational boundary, ΓCB, described by Eqs.(5.3)-(5.4).
Colors indicate the magnetic field strength in vacuum, as evaluated by SPEC, assuming
B · n = 0 on ΓCB.

We choose a pressure profile with a linear dependence on the toroidal flux, i.e.
p = p0(1 − ψt/ψa), where p0 is a free parameter that controls the value of β, and
ψa = 0.25Tm2 is the total toroidal flux enclosed by the plasma boundary ΓPB. We
approximate the pressure profile with seven steps of equal magnitude [[p]]l = −p0/Nvol

(see Figure 5.4). We thus define seven plasma regions, i.e. Nvol = 7, surrounded by
a vacuum region. This means that ψt,l = lψa/Nvol and pl = p(ψt,l). The number of
volumes determines how the pressure profile is represented — more volumes means more
and smaller pressure steps. As each interface is a discrete constraint on the magnetic
topology, increasing the number of volumes reduces the available space for reconnection
and thus the maximum size of magnetic islands and regions of magnetic field line chaos.
In this chapter, we are however interested in the onset of loss of magnetic surfaces, which
is not affected by the volume available for islands to grow. Therefore our results are very
weakly dependent on the number of volumes.

Finally, two current profiles have to be provided to SPEC: the profile of volume
currents, {Ivϕ,l}, and the profile of surface currents {Isϕ,l} (see section 3.2). Here we
study the case of an equilibrium with zero externally driven currents and with bootstrap
current. No externally driven currents implies, in SPEC, that there are no currents in
the plasma volumes, i.e.

Ivϕ,l = 0. (5.5)
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5.2 Equilibrium β-limit in a classical stellarator

Figure 5.4: Pressure profile, with linear dependence on the toroidal flux. Black dashed
line: continuous profile. Stepped blue curve: SPEC’s pressure profile. Here ψt/ψa = 1 is
the plasma boundary.

The bootstrap current is a pressure-driven current, and is consequently described by
a surface current at the volume’s interfaces. We model it with

Isϕ,l = −C
(
ψt,l
ψa

)1/4
[[p]]l , (5.6)

where (ψt,l/ψa)1/4 ≈
√
ϵl/ϵPB is related to the fraction of trapped particles, with ϵl the

inverse aspect ratio of interface Il, and ϵPB the aspect ration of the plasma boundary.
Here, [[p]]l is a measure of the local pressure gradient; and C is a coupling constant,
in [APa−1], which controls the strength of the bootstrap current in the system. A full
neoclassical calculation of the bootstrap current, for example with the SFINCS code
(Landreman et al., 2014), would require the density and temperature profiles as inputs —
and the freedom in the choice of the coupling constant C reflects the freedom in these
profiles. In this chapter, we will consider a bootstrap current that increases the vacuum
rotational transform, as in tokamaks or QA stellarators. This means that Isϕ,l > 0,
and thus C > 0, as [[p]]l < 0. Note that in stellarators, the bootstrap current can
also decrease the vacuum rotational transform — this is in particular the case in QH
stellarators (Boozer and Gardner, 1990).

The current density associated to the current in Eq.(5.6) is

jϕ,l = −Cψa
πa2

eff

(
ψt,l
ψa

)1/4 dp

dψt
. (5.7)
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Note that if
C = C0 ≡

√
ϵaR0
ι-vB0

, (5.8)

with ι-v the edge rotational transform in vacuum and B0 such that µ0Icoil = 2πR0B0,
Eq.(5.7) reduces to the well-known large-aspect ratio tokamak bootstrap current approxi-
mation, Eq.(5.2). The constant C0 will be used to normalize C, i.e. we define Ĉ ≡ C/C0.
In the case of a large aspect ratio circular tokamak, we thus have Ĉ = 1, while in a
stellarator with no bootstrap current, Ĉ = 0.

We use the recently implemented capability of SPEC to prescribe the toroidal current
profile (Baillod et al., 2021), with the profiles defined in Eqs.(5.5) and (5.6). Unless
stated otherwise, the Fourier resolution used in all results presented in this chapter is
|n| ≤ Ntor = 8, m ≤ Mpol = 8, with n the toroidal mode number and m the poloidal
mode number, meaning that 2[Ntor +Mpol(2Ntor + 1)] + 1 = 289 Fourier modes are used
to describe each interface geometry. Results presented in this chapter have been checked
for convergence with respect to Fourier resolution.

In summary, we can construct free-boundary SPEC equilibria with a simple bootstrap
current model and we are left with two free parameters, namely (i) β which controls the
total pressure in the system and (ii) Ĉ, a dimensionless parameter, that controls the
bootstrap current strength for a given plasma β. We start by calculating the vacuum
field, i.e. the equilibrium corresponding to β = 0 and Ĉ = 0. We show on Figure 5.5a the
vacuum rotational transform profile, and on Figure 5.5b-d, the Poincaré section of the
vacuum field at three different poloidal planes. We remark that the vacuum rotational
transform on the outer side of the plasma boundary is ι- = 0.27. The volume enclosed
by the plasma boundary, and the vacuum region between the plasma boundary and the
computational boundary, are all filled with magnetic surfaces. In the next section, we
perform extensive scans over β and Ĉ and describe the effect of the increasing pressure
and bootstrap current on the magnetic field line topology.

5.2.1 Scans over Ĉ and β

A scan has been performed with β ∈ [0, 2%] and Ĉ ∈ [0, 2.26] representing 680 SPEC
calculations, each requiring about 24 CPU-hours on the MARCONI cluster1. Figure 5.6
and 5.7 show some selected Poincaré sections at different values of β and Ĉ, while
Figure 5.8 shows the edge rotational transform, i.e. the rotational transform on the outer
side of ΓPB, as a function of β for four different values of Ĉ.

For small values of Ĉ, namely for Ĉ < Ĉcrit ≈ 0.59, the edge rotational transform
decreases with increasing β and eventually reaches zero (Figure 5.8, black stars and red
dots), at which point an m = 1, n = 0 island opens and forms a separatrix at the plasma

1https://www.hpc.cineca.it/hardware/marconi
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(a) ι--profile (b) ϕ = 0

(c) ϕ = 0.39 (d) ϕ = 0.81

Figure 5.5: Top left: vacuum rotational transform profile (in red) in a rotating ellipse, as
evaluated by the SPEC code. The black dashed line highlights the position of the plasma
boundary. Here ι-a is the rotational transform at the plasma edge, i.e. on the outer side
of the plasma boundary. Top right, and bottom: Poincaré section, at three different
poloidal planes, of the vacuum field as evaluated by SPEC. In yellow: computational
boundary. In blue: plasma boundary. In red: interfaces Il, l = {1, . . . , 7}.
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β = 0.4%

β = 1.24%

β = 1.65%

Figure 5.6: Poincaré plot (black dots) of SPEC equilibria at toroidal angle ϕ = 0 and at
different values of β, for Ĉ = 0.46 < Ĉcrit. Red lines: inner plasma volume interfaces;
blue line: plasma boundary; and yellow line: computational boundary.
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β = 0.4%

β = 1.42%

β = 1.75%

Figure 5.7: Poincaré plot (black dots) of SPEC equilibria at toroidal angle ϕ = 0 and at
different values of β, for Ĉ = 0.91 > Ĉcrit. Red lines: inner plasma volume interfaces;
blue line: plasma boundary; and yellow line: computational boundary.
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Ĉ = 0.46

Ĉ = 0.64

Ĉ = 1.37

Figure 5.8: Edge rotational transform, ι-a, as a function of plasma average β, for different
values of Ĉ; stars, circles, crosses and squares are SPEC calculations while full lines are
given by the analytical model, Eq.(5.9).

boundary (see Figure 5.6). We will refer to this β-limit as the ideal equilibrium β-limit,
denoted by βideallim , since it is well described by ideal MHD theory (see section 5.2.2).
The value of βideallim obtained with SPEC is shown as a function of Ĉ in Figure 5.9 (red
triangles).

The ideal equilibrium β-limit can also be observed in tokamaks, although the un-
derlying mechanism is different. In a tokamak, the plasma may be kept centered by
applying a vertical magnetic field BZ . As β grows, BZ has to be increased, until it
compensates the poloidal field Bp on the high field side. When this happens, the field
at the plasma boundary is purely toroidal and a separatrix opens. In a stellarator, the
poloidal magnetic field does not have to cancel for a separatrix to open, it merely has
to be such that a field line never completes a poloidal turn. If this happens, the edge
rotational transform is zero and a separatrix opens. In our calculations, the net toroidal
current is constrained in the plasma volumes and at the interfaces. However the actual
dependencies of the current density on the toroidal and poloidal angle are unconstrained.
Pfirsch-Schlüter and diamagnetic currents angular dependencies are the source of the
poloidal magnetic field perturbation, the lowering of the edge rotational transform, and
ultimately the opening of the separatrix. This is why, even in a zero net-toroidal-current
stellarator (Ĉ = 0), the edge rotational transform reaches zero as β is increased.
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5.2 Equilibrium β-limit in a classical stellarator

For values of Ĉ > Ĉcrit, the (now strong enough) bootstrap current is able to prevent
the edge rotational transform from reaching zero for any β, and hence no m = 1, n = 0
island appears anywhere (see the blue crosses and green squares in Figure 5.8). Instead,
the edge rotational transform increases until many island chains open in the plasma and
in the vacuum region (see Figure 5.7). When these islands are large enough to have a
significant impact on the radial transport, the chaotic equilibrium β-limit is reached,
denoted by βchaoslim . Finally, for all values of Ĉ, islands start to overlap and generate large
regions of chaotic field lines at sufficiently large values of β (bottom panels of Figures 5.6
and 5.7).

It may be argued that volume interfaces might not be able to support the pressure if
islands or chaos are close by (see, for example, the lower panel of Fig.5.7) — i.e. that
SPEC equilibria might not be trusted at large β without further analysis. This question
has been thoroughly studied in slab geometry by Qu et al. (2021). They identified two
reasons why a solution might not exist.

The first possibility is that the magnetic surface is fractal and can not be represented
by Fourier series. In our calculations above the equilibrium β-limit, large magnetic
islands and chaotic regions develop close to volumes interfaces. In this situation, it is

Figure 5.9: Equilibrium β-limit as a function of Ĉ. Black: ideal equilibrium β-limit.
Triangles: βlimideal, as obtained from SPEC. Solid black line: analytical prediction for
βlimideal from Eq.(5.14). The dashed vertical line indicates the analytical value of Ĉcrit
from Eq.(5.15). Red: chaotic equilibrium β-limit. Dots indicate the values obtained
from SPEC for Br,crit/B = 10−5, and the rectangular boxes showing the range obtained
from SPEC for Br,crit/B ∈ [10−6, 10−4]. Solid red line: analytical prediction obtained by
solving from Equation (5.18). Blue squares: SPEC values for which ι-a = 2ι-v.
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indeed not known if the solution exists and additional analysis would be required, for
example with convergence studies as proposed by Qu et al. (2021). Below the equilibrium
β-limit, however, only small islands are present. The interfaces are not perturbed by
neighbouring, large magnetic islands, and it is likely that the volumes interfaces are
magnetic surfaces. Since we are only interested in computing the equilibrium β-limit,
it is sufficient to calculate equilibria below or equal to the equilibrium β-limit; larger β
equilibria are irrelevant, and thus the question of existence of interfaces is eluded. In
practice, we observe that large magnetic islands and chaotic field lines get close to the
volume interfaces only for equilibria with β sufficiently large, giving strong confidence
into the results presented in this chapter. Nevertheless, convergence studies have been
performed, and results presented in this chapter have been shown to be independent of
the numerical resolution.

The second possibility is that the pressure jump on an interface is too large and
a solution to the force-balance equation (2.75) does not exist (McGann et al., 2010).
This is a possible explanation for when SPEC does not find an interface geometry that
satisfies the force balance equation. However, in our calculations, SPEC finds magnetic
geometries that do satisfy force balance. This means that the pressure jump across
the interfaces is small enough and a solution exists. To summarize this discussion, we
can trust SPEC solutions for all β smaller or around the equilibrium β-limit, which is
sufficient for the study presented in this chapter.

To evaluate the chaotic equilibrium limit numerically, the volume of chaos (Vchaos)
introduced in section 4.2 can be exploited. The chaotic equilibrium β-limit could then be
defined as the β above which Vchaos > 0. The volume of chaos, however, while very useful
as a measure of the amount of chaotic field lines, does not provide enough information
about whether or not the radial transport is enhanced by the destruction of magnetic
surfaces. In addition, the volume of chaos is sensitive to the numerical resolution of
the equilibrium — the larger the number of Fourier modes, the greater the number of
potential resonances in the equilibrium. Due to overlap between small islands chains
generated by high order rationals, chaos may emerge at smaller β as the Fourier resolution
is increased. For example, in Figure 5.10 the volume of chaos is plotted as a function of
β for two different Fourier resolutions, M = N = 6 and M = N = 10 (blue lines). We
see that with this diagnostic, the measured chaotic equilibrium β-limit would drop from
∼ 1.5% to ∼ 1% if it were defined as the β above which Vchaos > 0. However, in the
M = N = 10 scan, some of the chaotic field lines are formed by high order rationals and
their associated smaller islands are expected to participate weakly to the radial transport,
and could potentially be ignored.

Instead, we define the equilibrium β limit as the β above which the volume of effective
parallel diffusion, VPD, is greater than zero (see section 4.3). To evaluate this critical
β, we use the fraction of effective parallel diffusion fPD as a proxy function. With
this definition, only resonances with large radial magnetic field component matter (we
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Figure 5.10: Vchaos/Vtotal (blue), and fPD evaluated for Br,crit/B = 10−5 (red) versus
plasma averaged β, for M = N = 6 (crosses) and M = N = 10 (circles).

recall that the radial direction is the direction perpendicular to isotherms); increasing
the Fourier resolution of the equilibrium only introduces resonances with small radial
magnetic field components, and thus does not impact the value of fPD — see for example
the comparison between two β-scans with resolution M = N = 6 and M = N = 10 in
Figure 5.10 (red curves). The critical β at which fPD becomes larger than zero is quite
insensitive to the Fourier resolution. In that sense, this new diagnostic is more robust
than the diagnostic based on the volume of chaos.

Note that this does not define an equilibrium β-limit from an experimental point of
view — the metric fPD is positive as soon as one resonance satisfies Eq.(4.12), which
would, in practice, only flatten the temperature and density profiles locally. It is certainly
possible to increase the plasma averaged β further by increasing the input power. Our
metric fPD however informs us that the effect of field line topology starts to become
important and has to be taken into account in transport calculations for β > βchaoslim . One
could imagine to combine the volume of chaos given by Eq.(4.10) with the criterion given
by Eq.(4.12), and only consider resonances that span a sufficiently large volume and that
contribute significantly to the radial transport. This idea will not be explored in this
chapter, and is left for future studies.

The chaotic equilibrium β-limit obtained using the metric fPD defined in Eq.(4.15)
is plotted in Figure (5.9) with red rectangles, spanning the range of βchaoslim obtained
when varying Br,crit/B from 10−6 to 10−4. We remind here that this range of values
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was obtained by considering typical temperature and densities that cover most regimes
in stellarators (see section 4.3). The value of βchaoslim obtained for Br,crit/B = 10−5 is
shown with red dots. We observe that the largest β-limit occurs at Ĉ ≈ 0.75. A small,
but non-zero bootstrap current thus increases the equilibrium β-limit with respect to a
classical stellarator without any net toroidal current (Ĉ = 0), and is thus beneficial. An
analytical model that explain the results will be derived in section 5.2.2.

In practice, the metric fPD is greater than zero when relatively small islands in
comparison to the plasma minor radius emerge (using Br,crit/B = 10−5). Thus, as
long as the SPEC volumes are large enough to allow these islands to grow, the number
of volumes does not affect the metric evaluation. In addition, given a sufficiently
large number of volumes, the pressure profile is well resolved by the stepped-pressure
approximation and thus the equilibrium does not depend strongly on the number of
volumes. In summary, the number of volumes has to be large enough to resolve well the
pressure profile, but small enough to allow islands to grow — this is how it has been
decided to use seven plasma volumes (and one vacuum region).

5.2.2 Analytical prediction for the equilibrium β-limits

We now derive an analytical model that predicts both the ideal and chaotic equilibrium β-
limits. We make use of high-β stellarator (HBS) expansion theories derived by Wakatani
(1998) and Freidberg (2014) to describe how the rotational transform at the plasma
edge ι-a evolves with β, taking into account the effect of the bootstrap current as well.
Once a formula for ι-a(β) has been derived, we can find whether an ideal β-limit is
reached by solving ι-a(β) = 0. When no solution is possible, a chaotic β-limit may also
be estimated by assuming that the edge iota is modified by order one with respect to the
vacuum rotational transform, ι-a(β) − ι-a(0) ∼ ι-a(0), at which point it is likely that many
resonances exist.

Assuming that (i) ϵ ≪ 1, δ = |Bp|/Bϕ ∼ ϵ3/4 with Bp the poloidal magnetic field,
β ∼ ϵ and Nfp ∼ ϵ−1/2, that (ii) magnetic surfaces are circular, and (iii) considering
Solove’v profiles for the pressure dp/dψp = const, and the surface averaged toroidal
current density ⟨jϕ⟩ = const, one can derive (Wakatani, 1998; Freidberg, 2014) an
analytical model for the edge rotational transform,

ι-a = (ι-I + ι-v)
√

1 − ν2 (5.9)

with ι-I = R0
2ψa

µ0Iϕ(β) (5.10)

and ν = β

ϵa(ι-I + ι-v)2 , (5.11)

where Iϕ is the net toroidal current enclosed by the plasma and ι-v is the edge rotational
transform in vacuum.
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The bootstrap current model we employed in our equilibrium calculations (Eq.(5.6))
implies a linear relation between the net toroidal current in the system and the plasma
β, thus

ι-I = σβ, (5.12)

where σ is a proportionality constant. It can be related to C by integrating Eq.(5.7) to
compute Iϕ in Eq.(5.11), leading to

σ = 2
5

1
πϵ

3/2
a ι-v

Ĉ. (5.13)

Combining Eqs.(5.9)-(5.13), analytical expressions of the edge rotational transform as
a function of β for different values of Ĉ can be obtained. Figure 5.8 compares the analytical
curves to results obtained with SPEC. We observe reasonable agreement especially at
low β. As β increases however, Eq.(5.9) consistently underestimates the actual value of
the rotational transform found by SPEC. Thus, even though the equilibrium constructed
in section 5.2 does not exactly satisfy the assumptions used to derive Eq.(5.9), the
assumptions are reasonable enough to use this analytical model to understand our
numerical results. Equation (5.9) provides indeed an analytical (non-linear) relation for
ι-a(β) which can be used to predict both the ideal and chaotic β-limits, as described in
the following subsections.

Ideal equilibrium β-limit

The solution to the relation ι-a(βideallim ) = 0 is given by

βideallim = 1
ϵaσ2

[1
2 − ι-vϵaσ −

√
1 − 4ι-vϵaσ

]
, (5.14)

which is real for σ < (4ι-vϵa)−1, or

Ĉ ≤ 5
8

ψa

ϵ
3/2
a R2

0B0
≡ Ĉcrit. (5.15)

Note the limit
lim
σ→0

βideallim = ϵaι-2
v, (5.16)

retrieving the result from Freidberg (2014) and Loizu et al. (2017) for a zero-net-current
stellarator (Ĉ = 0).

The curve βideallim (Ĉ) is plotted in Figure 5.9 with a black line. We observe that
as Ĉ increases, the ideal equilibrium β-limit increases. Comparison with data points
measured from SPEC equilibria (red triangles) shows good agreement, especially for
weaker bootstrap current (Ĉ < 0.5). The analytical value of Ĉcrit ≈ 0.48, obtained from
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Eq.(5.15), is reasonably close to the one obtained with SPEC, namely Ĉcrit ≈ 0.59 (thus
smaller by about 18%).

Chaotic equilibrium β-limit

For larger values of Ĉ, i.e. Ĉ > Ĉcrit, the equilibrium β-limit is due to the emergence
of chaos and its effectiveness in increasing the transport, thus estimating the chaotic
equilibrium β-limit with Eq.(5.9) is not trivial - it is not known, a priori, which resonance
will participate to the radial transport first. However it is reasonable to assume that
when the bootstrap current modifies the edge rotational transform by order one with
respect to ι-v, i.e.

∆ι-a ≡ ι-a − ι-v = ι-v, (5.17)

magnetic islands and chaos are expected to appear. The values of β computed with SPEC
at which the condition Eq.(5.17) is satisfied are plotted with blue squares in Figure 5.9.
We observe good agreement with the chaotic equilibrium β-limit (red dots) for Ĉ > 1.

We can also directly solve equation (5.17) using equation (5.9). We obtain a fourth
order polynomial equation for β,

β4 + 4 ι-v
σ
β3 +

(
2 ι-

2
v

σ2 − 1
ϵ2aσ

4

)
β2 − 4 ι-

3
v

σ3β − 3
(
ι-v
σ

)4
= 0. (5.18)

The real, positive root of Eq.(5.18) is plotted with an orange line in Figure 5.9. Direct
comparison with the numerical data (blue squares) shows that Eq.(5.18) consistently
underestimates the values of β that satisfy Eq.(5.17); this is a direct consequence of
the underestimate of ι-a by the analytical model (Figure 5.8). The general dependence
on Ĉ is however recovered, capturing the chaotic equilibrium β-limit trend (red dots
in Figure 5.9) observed numerically for Ĉcrit < Ĉ < 1.5. We remark that there are
no free parameters in this analytical model. For Ĉ > 1.5, the analytical model (5.18)
underestimates greatly the chaotic equilibrium β-limit obtained with SPEC. This region
is however less relevant for experiments, as it corresponds to bootstrap currents much
larger than what is found in tokamaks, which is usually not sought in stellarators.

5.2.3 Dependence of the equilibrium β-limit on design parameters

The edge rotational transform in vacuum is approximately equal to the rotational
transform on axis (low shear configuration), and can be estimated by a zeroth order near
axis expansion (Helander, 2014; Loizu et al., 2017),

ι-axisv ≈ ι-v = Nfp

2
(rmax − rmin)2

r2
max + r2

min

. (5.19)
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Figure 5.11: Analytical predictions of the equilibrium β-limit for different numbers of
field period Nfp. Full lines: ideal limit (ι-a = 0) as predicted by Eq.(5.14), dashed lines:
chaos limit (ι-a = 2ι-v) as predicted by Eq.(5.18)

For low values of Ĉ, the ideal equilibrium β-limit grows quadratically with the vacuum
rotational transform (see equation (5.16)). For example, increasing the number of field
periods increases ι-v, thus also the equilibrium β-limit, as shown in Figure 5.11. These
results were corroborated by a limited amount of SPEC calculations with Nfp = 2 and
Nfp = 10 (data not shown). More generally, any mechanism that increases the rotational
transform in vacuum will increase the ideal and chaotic equilibrium β-limits. An increase
in rotational transform can be achieved by either increasing the number of field periods,
increasing the ellipse eccentricity (i.e. increasing the harmonic R11 = Z11) or adding
some torsion to the magnetic axis. Magnetic axis torsion can however have an impact on
the computed equilibrium, and additional studies would be required to see if it affects
the conclusions of this chapter.

Equation (5.15) gives Ĉcrit ≈ 0.48, i.e. the equilibrium β-limit is maximized for a
bootstrap current that has half the strength of the bootstrap current in an equivalent
circular tokamak. Interestingly, if we approximate the total toroidal flux in the plasma
as ψa ≈ πa2B0, we get Ĉcrit = 5π√

ϵa/8, which only depends on the inverse aspect ratio.

In this section, we have constructed a free-boundary equilibrium in a rotating ellipse
geometry, and included a simple analytical model for the bootstrap current in SPEC.
We have identified two equilibrium β-limits, namely the ideal β-limit and the chaotic
β-limit, and computed their dependencies on the bootstrap current strength. Finally,
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we applied the HBS expansion to model analytically our results. The idea to work in a
classical stellarator geometry was motivated by two reasons: (i) in a simplified geometry,
analytical work is more tractable, and it is possible to keep an analytical understanding
of the results, and (ii) SPEC is not robust enough to compute scans in strongly shaped
stellarators (see the discussion in section 3.3), especially when multiple plasma volumes
are considered. In the same spirit as (i), the study presented here used a simple bootstrap
current model to keep the analytical work tractable. In the next sections, we relax these
limitations, and present scans in temperature and densities in a quasi-axisymmetric (QA)
geometry, with self-consistent bootstrap current calculations.

5.3 Quasi-axisymmetric configuration

We consider here a QA stellarator, with two field periods (Nfp = 2), that is determined
by the geometry of one magnetic surface in vacuum, which we denote ΓQA, obtained by
Nies et al. (2022). QA stellarators are a particular type of stellarator where the magnetic
field is three-dimensional, but its modulus is independent toroidal angle expressed in
Boozer coordinates. On an magnetic surface, we define the QA metric,

fQA =

√√√√√∑
m

∑
n̸=0

(
Bb,mn
Bb,00

)2

, (5.20)

where Bb,mn are the Fourier modes of the modulus of B in Boozer coordinates. For a
perfectly QA field, Bb,mn = 0 for all n ̸= 0, and therefore fQA = 0. The configuration we
study here is a large aspect ratio configuration with an inverse aspect ration at the plasma
edge of ϵa = 1/30, and vacuum rotational transform at the plasma edge −ι-a = 0.11 (see
Figure 5.12).

We first evaluate the vacuum magnetic field by evaluating a single plasma volume, free-
boundary SPEC equilibrium. We set the computational boundary to ΓCB = ΓQA, and we
assume that there exist coils that generates a vacuum magnetic field such that Bc · n = 0
on ΓQA, with n a normal vector to ΓQA. We assume that the total current flowing in
the torus hole is 5.1MA, and set the plasma enclosed toroidal flux to 3.5 · 10−3Tm2.
The Poincaré section of the vacuum field at three different poloidal planes is shown on
Figure 5.13. We observe that the plasma and the surrounding vacuum are filled with
magnetic surfaces. To evaluate the QA metric fQA on the plasma boundary, we couple
the SPEC code to the booz_xform python package (Landreman, 2022). This package
can evaluate the boozer angles (θb, ϕb) and the Fourier harmonics of the modulus of
B, i.e. Bb,mn, on a magnetic surface, provided the surface geometry and the magnetic
field on the magnetic surface. As the magnetic field is in general discontinuous across
SPEC’s interfaces, and in particular across the plasma boundary, the Fourier harmonics
Bb,mn will be different on each side of the interfaces, and so does the metric fQA. The
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5.3 Quasi-axisymmetric configuration

Figure 5.12: QA configuration. Top: 3D shape, colors indicate the magnetic field strength
on the computational boundary in vacuum. Bottom: rotational transform profile in
vacuum obtained with SPEC (red stars). Here the rotational transform is negative
because of the poloidal angle definition in SPEC (see Figure 3.1). The position of the
plasma boundary is indicated by a black dashed vertical line.
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(a) ϕ = 0 (b) ϕ = 1.08 (c) ϕ = 2.26

Figure 5.13: Poincaré section of the vacuum field for the QA configuration, at three
different toroidal sections. The red surface is the plasma boundary in SPEC, the
outermost black surface is the computational boundary in SPEC, which coincides with
the boundary provided to describe this QA configuration.

Fourier spectrum of the magnetic field strength in Boozer coordinates on the inner and
outer side of the plasma boundary of the QA configuration in vacuum is shown in Figure
5.14. We observe that the symmetry breaking harmonics Bb,mn, with n ̸= 0, are of the
order of 0.013% of the B00 harmonic at the plasma boundary. Evaluating the metric
fQA, we obtain fQA = 1.6 · 10−4 and fQA = 2.6 · 10−3 on the inner and outer side of the
plasma boundary, respectively. Note that configurations with fQA orders of magnitude
lower than the configuration shown here can be obtained (Landreman and Paul, 2022).
Before discussing how the self-consistent bootstrap current can be calculated in a SPEC
equilibrium, we first look at the equilibrium β-limit when there is no plasma current.

5.3.1 Equilibrium β-limit in a current-free QA stellarator

We evaluate the equilibrium β-limit when the net toroidal current is set to zero for all
values of β. We use the current constraint to compute SPEC equilibria while maintaining
the net toroidal current to zero both in the plasma volume and at the plasma boundary,
Ivϕ,1 = Isϕ,1 = 0. The plasma β is controlled by the pressure p1 in the plasma volume.

We evaluate 28 free-boundary equilibria, from β = 0% to β = 0.036%, and plot the
rotational transform evaluated at the plasma edge, as a function of β, on Figure 5.15.
We observe a similar behavior as in the case of a rotating ellipse (see the black stars on
Figure 5.8) — the rotational transform at the plasma edge decreases with increasing β,
until reaching ι-a = 0, where the ideal equilibrium β-limit is hit. On Figure 5.15, we show
the analytical curve obtained with the HBS theory, Eq.(5.9). While the HBS theory is
derived assuming a classical stellarator geometry, we remark that it qualitatively retrieves
the dependence of ι-a on β in the case of the QA configuration. Furthermore, in the case
of the classical stellarator, the HBS theory underestimates the ideal equilibrium β-limit,
while in the case of the QA configuration, it overestimates it. Indeed, from the analytical
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5.3 Quasi-axisymmetric configuration

Figure 5.14: Fourier harmonics of the modulus of B on the plasma boundary, using
Boozer coordinates, as evaluated by the booz_xform python package coupled to the
SPEC code. Left: inner side of the plasma boundary, and right: outer side of the plasma
boundary.

predictions of the ideal equilibrium β-limit in a current-free stellarator, i.e. Eq.(5.16),
we get

βideallim = ϵaι-2
v = 0.04%, (5.21)

which is larger than the value obtained with SPEC, βideallim = 0.03% (see Figure 5.15). We
conclude that the additional shaping in the QA configuration is, for the case presented
here, detrimental to the equilibrium β-limit. In particular, this shows that the ideal
equilibrium β-limit depends on the plasma geometry, and thus could potentially be
optimized to larger values by modifying the plasma shape, while keeping the rotational
transform at the plasma edge constant. In chapter 6, we will discuss how the chaotic
equilibrium β-limit can be increased by optimizing different sets of degrees of freedom.

In this section, the equilibrium β-limit of the QA configuration was obtained when
the net toroidal current in the plasma was set to zero. In the next section, we include
the effect of the bootstrap current by evaluating the self-consistent bootstrap current for
a wide range of density and temperature values.

5.3.2 Self-consistent bootstrap current and equilibrium β-limit

We now describe how a free-boundary SPEC equilibrium in the QA geometry can be
evaluated with self-consistent bootstrap current. We use the bootstrap current formulas
derived by Redl et al. (2021), and apply the isomorphism between tokamaks and QS
stellarators (Boozer, 1983), to describe the bootstrap current in QS stellarators, and,
in particular, in QA stellarators (Landreman et al., 2022). The formula by Redl et al.,
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Figure 5.15: Rotational transform at the plasma edge of a current-free QA stellarator.
Red stars: rotational transform as evaluated by SPEC. Black, dashed line: analytical
prediction, given by Eq.(5.9).

modified for QA stellarators, provides the bootstrap current on a magnetic surface as

⟨J · B⟩Redl = −G

ι-

(
L31

[
neTe

d lnne
dψt

+ niTi
d lnni
dψt

]
+pe(L31 + L32)d lnTe

dψt
+ pi(L31 + L34α)d lnTi

dψt

)
. (5.22)

Here, G(ψt) is the total poloidal current flowing around the magnetic surface, Lij and
α are coefficients that depend on the magnetic surface geometry, on the magnetic field
evaluated at the magnetic surface and expressed with Boozer coordinates, and on the
effective collisionalities of electrons and ions (see the appendix in Landreman et al. (2022)
for more details). With stepped-density and stepped-temperature profiles, Eq.(5.22)
evaluated at a SPEC interface Il reduces to

⟨J · B⟩Redl
l,± = −

G±
l

ι-±
l

(
L±

31,l

[
T±
e,l[[ne]]l + T±

i,l[[ni]]l
]

+n±
e,l(L

±
31,l + L±

32,l)[[Te]]l + n±
i,l(L

±
31,l + L±

34,lα
±
l )[[Ti]]l

)
δ(ψt − ψt,l), (5.23)

where here the l subscript indicates a quantity evaluated at the interface Il, and the ±
refers to the inner (−) and outer (+) side of the interface.

As expected, the bootstrap current, as it is a pressure-driven current, is a delta-
function localized at the interface. The bootstrap current on each side of the interface
Il can thus be evaluated for any SPEC equilibrium, if the densities and temperature
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5.3 Quasi-axisymmetric configuration

profiles are provided. Similarly, the flux surface averaged parallel current density can be
evaluated from a SPEC equilibrium by using Eq.(2.79). Assuming that magnetic surfaces
exist, we work with the (ψt, θ, ϕ) coordinate system and obtain

⟨J · B⟩SPEC
l,± = 1

V ′(ψt,l)

∫∫
dS

|∇ψt|

{
(n̂ × [[B]]l) · B±

l δ(x − xl)
}

(5.24)

= 1
V ′(ψt,l)

∫∫
dθdϕ

{(
[[Bθ]]lB±

l,ϕ − [[Bϕ]]lB±
l,θ

)
δ(ψt − ψt,l)

}
. (5.25)

We can thus evaluate the bootstrap current averaged on each side of the interface
Il, with ⟨J · B⟩Redl

l = (⟨J · B⟩Redl
l,+ + ⟨J · B⟩Redl

l,− )/2, and the flux surface averaged
parallel current in a SPEC equilibrium, averaged on each side of the interface Il, with
⟨J · B⟩SPEC

l = (⟨J · B⟩SPEC
l,+ + ⟨J · B⟩SPEC

l,− )/2.

The difference between the bootstrap current evaluated by the Redl et al. formula,
and the flux surface averaged parallel current evaluated from a SPEC equilibrium, can
be minimized by optimizing SPEC input profiles, for example the net toroidal current at
the interfaces, {Isϕ,l}. For a single plasma volume free-boundary SPEC equilibrium, we
construct a target function

fbootstrap =
(
⟨J · B⟩Redl

l − ⟨J · B⟩SPEC
l

)2
, (5.26)

with l = 1. By iterating on SPEC’s input profiles, an optimizer can then minimize the
target function fbootstrap. When fbootstrap = 0, a SPEC equilibrium with self-consistent
bootstrap current is found. Typically, this requires about 30 free-boundary SPEC
computations.

We now consider the vacuum QA configuration constructed in section 5.3.1, and
compute free-boundary SPEC equilibria with self-consistent bootstrap current for a
large range of temperature and densities, n ∈ [1018, 1019]m−3 and T ∈ [50, 500]eV. We
consider a single plasma volume and a vacuum region, even though the same procedure
could be applied to multi-volume equilibria. Here the pressure gradient is thus uniquely
supported by the plasma boundary. We assume quasi-neutrality, ni = ne = n in Eq.(5.23),
and set the ion temperature to be one tenth of the electron temperature, Ti = Te/10.
This choice is somewhat arbitrary; the motivation here is to describe a plasma where
electrons are the ones absorbing the external heating power (e.g. ECRH), and are not
confined long enough to thermalize with the ions. We consider stepped-density and
stepped-temperature profiles, where the density and temperature in the plasma are
constant, and are zero in the vacuum region. The pressure in the plasma is thus given
by p = n(Ti + Te)/2. We constrain the net toroidal current in the plasma volume to be
zero, Ivϕ,1 = 0, and constraint the net toroidal current at the plasma boundary to be a
self-consistent bootstrap current, that we evaluate by iterating on SPEC, using the net
toroidal current at the interface, Isϕ,1, as a degree of freedom, until fbootstrap is minimized.
We use the SIMSOPT python framework for stellarator optimization (Landreman et al.,
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2021a), which has been recently coupled to SPEC, to drive the optimization. This
optimization is run for each pair of values (n, Te).

The Poincaré section of the magnetic field at ϕ = 0, for three different pairs of (n, T ) is
shown on Figure 5.16. We observe that, increasing either the density or the temperature
leads to the opening of a central (m,n) = (1, 0) island, which is characteristic of the ideal
equilibrium β-limit. Additional figures of merit are presented on Figures 5.17-5.18. As
expected, β increases as the density or temperature increases — see Figure 5.17a. For
large values of densities or temperature, SPEC is not able to find the equilibrium, and the
force scalar, shown on Figure 5.17b, goes from 10−13 in vacuum to 10−7 for the largest
considered densities and temperatures. The QA metric is not affected by the increase in
pressure, as it stays close to 10−6 for all densities and temperatures. The Redl formulas
can thus be applied for all considered densities and temperatures. On Figure 5.18a, we
show the net bootstrap current at the plasma boundary. It shows interesting features,
with combinations of densities and temperature leading to negative or positive bootstrap
current. This is surprising: in QA configurations, we expect the bootstrap current to
increase the amount of rotational transform; as the rotational transform is negative
here, we thus expect the bootstrap current to be negative. This apparent contradiction
with the results would require careful investigations of the implementation, which is
unfortunately not possible in the time frame of this thesis.

The value of Ĉ is a useful metric for comparison with the analytical theory we
developed in section 5.2.2. At the plasma boundary, ψt,l = ψa and Eq.(5.6) reduces to
Isϕ,l = −C[[p]]l. In the SPEC calculations, only one plasma volume was considered, thus
[[p]]l = −p0. We thus obtain

Ĉ = C

C0
=
Isϕ,l
p0

ι-vB0√
ϵaR0

, (5.27)

where C0 is defined in Eq.(5.8). Here ϵa = reff/R0 is the inverse aspect ration of the
plasma boundary; the effective minor radius, reff , is evaluated such that a circular
tokamak with the same major radius would have the same plasma volume,

reff =
√

VP
2π2R0

, (5.28)

with VP the volume enclosed by the plasma boundary. The value of Ĉ is shown in
Figure 5.18b, where purple and orange colors indicate values larger and smaller than
the critical value Ĉcrit = 5√

ϵa/8, respectively. Interestingly, for low densities and large
temperatures, we expect to observe a chaotic equilibrium β-limit, as Ĉ > Ĉcrit, while the
ideal equilibrium β-limit is expected to be observed for smaller temperatures and larger
densities. This contradicts our numerical results, as the ideal equilibrium β-limit was
found for any choice of density. Nevertheless, the theoretical predictions made in section
5.2.2 still apply for a large range of densities and temperatures.
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(a) n = 3 · 1018m−3, T = 165eV

(b) n = 3 · 1018m−3, T = 275eV

(c) n = 7 · 1018m−3, T = 165eV

Figure 5.16: Poincaré section of the magnetic field, obtained with SPEC, in the QA
configuration with self-consistent bootstrap current, for different values of density and
temperature.
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(a) Plasma β[%] (b) Force scalar, log10 |f |

(c) Rotational transform −ι-a (d) QA metric fQA

Figure 5.17: Scan in density and temperature in a QA stellarator. Top left: plasma aver-
aged β. Pink and green colors indicate β-values smaller and larger than the equilibrium
β-limit found in the current-free case, respectively. Top right: Force scalar |f |. Bottom
left: rotational transform at the plasma edge. Bottom right: QA metric, as defined by
Eq.(5.20). The red dashed line shows the ideal equilibrium β-limit. Data is shown if
|f | ≤ 10−12.
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(a) Bootstrap current Is
ϕ,1, in Ampere (b) Equivalent Ĉ

Figure 5.18: Left: net bootstrap current at the plasma boundary. Red and blue colors
indicate negative and positive values respectively. Right: Ĉ, evaluated with Eq.(5.27).
Purple colors indicate Ĉ > Ĉcrit, while orange colors indicate Ĉ < Ĉcrit. The red dashed
line shows the ideal equilibrium β-limit. Data is shown if |f | ≤ 10−12.

We plot the rotational transform at the plasma edge as a function of density and
temperature in Figure 5.17c. As density or temperature increases (i.e. as pressure
increases), the rotational transform at the plasma edge increases until reaching zero —
this is again the ideal β-limit identified already in the case of a rotating ellipse with
small bootstrap current (see section 5.2.1), or in the current-free QA configuration
(see section 5.3.1). The ideal equilibrium β-limit is of the same order as in the case
of the current-free QA configuration, βideallim ∼ 0.03%. For some choice of density and
temperature however, the bootstrap current is positive, and reduces the amount of
rotational transform, which lowers the equilibrium β-limit, as opposed to what has been
observed in the case of the classical stellarator.

5.4 Summary

This chapter introduced the concept of bootstrap current and presented studies of the
equilibrium β-limits in a classical stellarator and in a QA stellarator. As discussed in
section 2.1.3, externally driven currents and bootstrap currents are the main sources of
net toroidal current in a magnetic fusion reactor, and in particular in stellarators. It is
crucial to include their contribution when computing magnetic equilibria, either with an
analytical model or with self-consistent bootstrap current calculations.

In the case of the classical stellarator, a simple analytical bootstrap current model was
developed. In this model, the bootstrap current amplitude was controlled by a parameter
Ĉ. The SPEC code was used to perform a large number of free-boundary stellarator
equilibrium calculations including bootstrap current that allowed us to completely
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characterize classical stellarators in terms of their equilibrium β-limit. For configurations
with low bootstrap current (Ĉ < Ĉcrit), an ideal equilibrium β-limit was identified, where
a central (m,n) = (1, 0) island appears. Stronger bootstrap current (Ĉ > Ĉcrit) prevents
this central island opening. Instead, a chaotic equilibrium β-limit is reached, where the
radial heat transport generated by pressure-induced magnetic islands and magnetic field
line chaos competes with turbulence. An analytical model, based on the HBS expansion,
showed good agreement with the ideal equilibrium β-limit obtained numerically for
weak bootstrap current. The general trend for the chaotic equilibrium β-limit could
also be obtained analytically for stronger bootstrap current, up to Ĉ ∼ 1.5. Analytical
insights provided ways to predict the effect of design parameters on the equilibrium
β-limit; for example, the ideal β-limit was shown to increase with Ĉ, while the chaotic
equilibrium β-limit decreases with Ĉ, thereby showing a peak equilibrium β-limit around
Ĉcrit. Interestingly, we found that the critical value of Ĉcrit depends only on the inverse
aspect ratio, under reasonbale assumptions.

We then studied the case of a large aspect ratio QA configuration with small vacuum
rotational transform, ι-v ≈ 0.1. Constraining the net toroidal current to be zero, we
observed a similar behavior as in the case of the rotating ellipse and an ideal equilibrium
β-limit was found. Despite being derived assuming a classical stellarator geometry,
the HBS theory showed good agreement with the results obtained with SPEC in the
current-free QA stellarator. In addition, we showed that the shaping of the plasma
lowered the ideal equilibrium β-limit in this particular QA geometry, meaning that the
equilibrium β-limit depends on the plasma geometry. This is of particular importance
for stellarator optimization, since it means that the equilibrium β-limit can be increased
by modifying the plasma shape, as it will be discussed in chapter 6.

We then included the effects of the bootstrap current by considering wide ranges
of temperature and densities, and evaluating free-boundary magnetic equilibria with
self-consistent bootstrap current for each pair of temperature and density. To evaluate
the self-consistent bootstrap current, SPEC was coupled to the booz_xform code, that
computes the Boozer coordinates on each of SPEC volume’s interface. The net toroidal
current at each of SPEC interface was then optimized such that it was consistent with
the bootstrap current evaluated using the formulas proposed by Redl et al. (2021). As a
consequence of the small vacuum rotational transform, and as predicted by the analytical
model developed in the case of the classical stellarator, the equilibrium β-limit in this
configuration was again found to be the ideal equilibrium β-limit.

In the QA study presented here, the pressure profile could only be approximated
by a single step; adding more interfaces, as in the classical stellarator study, was not
possible due to SPEC robustness issues (see section 3.3). The shape of the pressure
profile has however a strong impact on the equilibrium and on the bootstrap current. It
is thus important to revisit the study in the QA geometry once SPEC robustness issues
are resolved. Furthermore, the configuration studied here features a particularly small
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rotational transform in vacuum, ι- = 0.1, meaning that the ideal equilibrium β-limit is
quickly reached, and no chaotic equilibrium β-limit was observed. Other configurations
with larger rotational transform should be investigated using the same methodology.
This remark also extends to other kind of QS stellarators, for example QH stellarators,
where the self-consistent bootstrap current can be evaluated using the same method as
presented in this chapter. It is also important to note that the coupling between SPEC,
the booz_xform code, and the computation of the self-consistent bootstrap current with
the Redl et al. (2021) formula were not rigorously verified. Further studies should first
verify the correct implementation of this coupling, for example by benchmarking the
calculated bootstrap current with the results of other codes, such as the SFINCS code
(Landreman et al., 2014).

To improve the equilibrium β-limit of stellarators, optimization of different parameters
can be performed. For example, Landreman et al. (2021b) recently performed optimization
for good magnetic surfaces at the same time as QS in vacuum. In the next chapter, we will
discuss how good magnetic surfaces can be recovered in finite β, finite current equilibria
by modifying either the plasma boundary, the coils, or by injecting a toroidal current in
the plasma. Applying the same recipe to a sequence of equilibria with increasing β, we
will discuss the possibility of optimizing a stellarator configuration for larger equilibrium
β-limit.
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6 Optimization for nested
magnetic surfaces

.

In toroidal geometries, 3D MHD equilibria are, in general, a mix of nested magnetic
surfaces, magnetic islands and magnetic field line chaos (Helander, 2014; Hanson and Cary,
1984; Cary and Hanson, 1986) — see the discussion in section 1.5. In the plasma core,
the latter two topologies are usually detrimental to confinement, i.e. the radial transport
of particles and energy is much greater than in regions of nested magnetic surfaces. In
addition to other desirable properties, a common target of stellarator optimization is
thus to increase the volume occupied by magnetic surfaces (Hudson et al., 2002). Note
that this is not necessarily the case at the edge of the plasma; for example, magnetic
islands can be desirable at the plasma edge to direct particle and energy fluxes towards
divertor plates — instances of these so-called island divertors have been used on W7-AS
(Hirsch et al., 2008), and are currently used on W7-X (Pedersen et al., 2018). An ergodic
edge region consisting mostly of magnetic field line chaos has also been conceived — an
example being the LHD stellarator (Ohyabu et al., 1994).

In addition, most physics codes developed by the stellarator community are based
on the assumption of nested magnetic surfaces — for example neoclassical codes such
as SFINCS (Landreman et al., 2014), and DKES (Hirshman et al., 1986b; van Rij and
Hirshman, 1989), or gyrokinetic turbulence codes such as GENE(3D) (Maurer et al., 2020),
and XGC (Chang and Ku, 2008; Chang et al., 2009; Nührenberg, 1999), or MHD stability
codes such as CAS3D (Schwab, 1993; Nührenberg, 1996, 1999), and TERPSICHORE
(Anderson et al., 1990). These codes thus require, for example, a VMEC equilibrium as
input. In a recent publication, Landreman et al. (2021b) showed that by optimizing the
plasma boundary geometry, SPEC can be used in combination with VMEC to obtain
self-consistent vacuum configurations where both codes are in agreement, ensuring good
magnetic surfaces in the region of interest. This allows then to trust any auxiliary codes
that assume nested magnetic surfaces in this configuration, and to safely optimize for
other metrics.
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In this chapter, we extend the work by Landreman et al. (2021b) by showing that
finite-β SPEC equilibria with non-zero net toroidal currents can also be optimized to
reduce the volume occupied by magnetic islands and field line chaos in a reasonable
amount of time. Additionally, we explore the use of parameter spaces other than the
plasma boundary geometry that could be of interest. Indeed, by using new capabilities
of the SPEC code, we show that the volume of magnetic surfaces in a stellarator can be
maximized by optimizing the injected toroidal current profile, or the coil configuration

— two experimentally relevant "knobs" (Geiger et al., 2015). For example, ECCD, or
coil currents, are used in W7-X to control the rotational transform at the plasma edge
(Geiger et al., 2010). For the optimization, we follow Landreman et al. (2021b) and use
the SIMSOPT framework (Landreman et al., 2021a), which in particular can construct
an objective function based on Greene’s residues (Greene, 1979) of some selected rational
surfaces (see section 4.1).

This chapter is adapted from the following publication: A. Baillod et. al., Stellarator
optimization for nested magnetic surfaces at finite β and toroidal current, Physics of
Plasmas 29, 042505 (2022), published under the license CC BY 4.0.

6.1 Method

We consider the optimization of a finite-β, finite current equilibrium in a classical
stellarator geometry (rotating ellipse) calculated with SPEC (see chapter 3), which
presents regions of magnetic islands and magnetic field line chaos. This model of a
classical stellarator was chosen for simplicity, as few Fourier modes are required to
described the equilibrium. However, the optimization procedure presented here does not
depend on the specific choice of geometry. A strongly shaped stellarator, such as W7-X,
could also in principle be optimized with the presented approach.

We construct a free-boundary equilibrium, similar to but different from those studied
in chapter 5.2, which will be the initial state for the optimizations presented in this
chapter. We choose the computational boundary ΓCB to be a rotating ellipse (see Figure
5.3),

RCB(θ, ϕ) = RCB00 +RCB10 cos θ +RCB11 cos(θ −Nfpϕ), (6.1)
ZCB(θ, ϕ) = ZCB10 sin θ + ZCB11 sin(θ −Nfpϕ), (6.2)

where RCB00 = 10m, RCB10 = −Z10 = 1m, RCB11 = Z11 = 0.25m, and with Nfp = 5. We
impose a pressure profile linear in toroidal flux ψt, that we approximate with seven
steps, i.e. we consider Nvol = 7 plasma volumes, and one vacuum region surrounding
the plasma. We scale the pressure profile such that β = 1.5%. We assume no externally
induced currents by setting the total toroidal current flowing in each volume to zero,
{Ivϕ,l}l={1,...,Nvol} = 0, and we assume that the plasma generates a bootstrap-like toroidal
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6.1 Method

current proportional to the pressure jump at the interface Isϕ,l ∝ [[p]]l (see Figure 6.4),
which sums up to a net toroidal current enclosed by the plasma of 29.5kA. Finally, we
suppose the existence of coils, with a total current of 17.1MA, such that B · n = 0 on
ΓCB, with B = Bc + Bp and Bp is the magnetic field produced by the plasma currents
in the initial equilibrium. The condition B · n = 0 is only valid for the specified ΓCB,
β and profiles. Note that the existence of a feasible coil system that generates such a
field is not covered in this chapter — only their normal projection on the computational
boundary is specified here. Other codes, such as the FOCUS code (Zhu et al., 2018), can
be used to obtain such coils.

We will refer to this equilibrium as the initial free-boundary equilibrium; its associated
magnetic topology is shown via its Poincaré section and rotational transform, plotted on
the top panel of Figure 6.1 and on Figure 6.2, respectively. The discontinuities observed
in the rotational transform profile are due to SPEC’s stepped-pressure equilibrium model

— since the magnetic field is generally discontinuous across the interfaces, and so is the
rotational transform.

Free-boundary equilibria can be emulated by a fixed-boundary calculation by setting
the toroidal current and the pressure in the last volume to zero, Ivϕ,Nvol

= 0 and pNvol
= 0.

This corresponds to an equilibrium where a perfectly conducting wall Γw, parameterized
by Rw(θ, ϕ) and Zw(θ, ϕ), is located at the last interface, l = Nvol, and the plasma
boundary ΓPB is the interface l = Nvol − 1, which is allowed to move. The exact
same equilibrium as the initial free-boundary equilibrium can thus be generated with
fixed-boundary conditions if we set Γw = ΓCB, given by Eqs.(6.1)-(6.2). The difference
is, however, that for any value of β and choice of profiles {Ivϕ,l}, {Isϕ,l}, the condition
B · n = 0 remains valid (perfectly conducting wall). In addition, the toroidal flux in the
vacuum region, ∆ψt,V , has to be carefully chosen to be the same as in the free-boundary
calculation. We will refer to this equilibrium as the perfectly conducting wall equilibrium.
Note that the free-boundary equilibrium has effectively no conducting wall (no wall
limit).

We now consider different degrees of freedom depending on the type of initial equilib-
rium. For the free-boundary equilibrium, we write the contribution from the coils to the
normal magnetic field on the computational boundary as a double Fourier series,

Bc · n =
Mpol∑
m=0

Ntor∑
n=−Ntor

Vmn sin(mθ − nNfpϕ). (6.3)

We choose then a selected set of the Fourier harmonics Vmn as parameter space, which
emulate an optimization of the coil geometry and coil currents, as would be done in
a single-step stellarator optimization (Hudson et al., 2002; Henneberg et al., 2021b).
Indeed, assuming that a coil system exists that generates any considered Vmn, optimizing
the coils would be equivalent to optimizing the Vmn harmonics.
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Chapter 6. Optimization for nested magnetic surfaces

For the perfectly conducting wall equilibrium, we consider two different parameter
spaces. The first is the current flowing in the plasma volumes, {Ivϕ,l}l={1,...,Nvol}, which is
the externally induced net toroidal plasma current (see section 2.3.1). This parameter
space is relevant for example for scenario design, where one could desire to heal magnetic
islands and chaos for a given plasma geometry and coil system. The second parameter
space is the geometry of the wall expressed as Fourier series,

Rw(θ, ϕ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

Rwmn cos(mθ − nNfpϕ) (6.4)

Zw(θ, ϕ) =
Mpol∑
m=0

Ntor∑
n=−Ntor

Zwmn sin(mθ − nNfpϕ). (6.5)

The degrees of freedom are then a selected set of Fourier harmonics {Rwmn, Zwmn}.

The objective functions for each optimization are based on Greene’s residues (Greene,
1979), described in section 4.1. We remind here that the Greene’s residue R is a quantity
that can be computed for any periodic orbit, with R = 0 when the island width is zero,
0 < R < 1 for an O-point, and R > 1 or R < 0 for an X-point. The objective function is

f(x) =
∑
i

R2
i (x), (6.6)

where Ri is the residue for a field line on the ith targeted island chain, and x are the
considered degrees of freedom. The downside of this approach is that each resonant field
line has to be selected by hand before starting the optimization. If a new resonance
becomes excited during the optimization, it will not be included in the objective function.
From the initial equilibrium, i.e. the top panel of Figure 6.1, we can identify a set of
resonant rational surfaces and their associated residue, listed in Table 6.1. We use the
SIMSOPT python framework to drive the optimization, which is based on the default
scipy.optimize (Virtanen et al., 2020) python algorithm for non-linear least squares
optimization.

6.2 Quasi-free-boundary optimization

We start by optimizing the initial free-boundary equilibrium. Residues with indices
1-3 in Table 6.1 are used to build the objective function according to Eq.(6.6). These
residues correspond to the islands and subsequent chaos present in the vacuum region,
just outside the plasma edge. This choice is somewhat arbitrary and is mainly due to the
fact that this particular equilibrium presents most of the chaos in that region. Indeed,
the core confinement of particles and heat may not be directly affected by the topology of
field lines in the vacuum region, but it is in general important to control the presence of
magnetic islands or field line chaos in this region for the stellarator heat exhaust system.
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6.2 Quasi-free-boundary optimization

Index i Volume l Toroidal
mode nNfp

Poloidal
mode m ι- Initial Ri

1 8 5 9 0.55 0.08
2 8 5 8 0.63 −0.22
3 8 5 7 0.71 0.30
4 5 5 6 0.83 0.26
5 5 5 5 1.00 −0.77
6 4 5 5 1.00 0.05
7 3 5 6 0.83 −0.34
8 3 5 5 1.00 0.82
9 3 5 4 1.25 −0.32

Table 6.1: Identified resonant surfaces and their rotational transform ι- from the initial
equilibrium.

The parameter space is a selected set of Fourier modes {Vmn}, (m,n) = {(6, n)},
with n = {−3, . . . , 3}. In principle, more residues listed in Table 6.1 could be targeted if
more {Vmn} modes were used as degrees of freedom. This is however computationally
expensive and was not done for this proof-of-principle calculation. Here, the optimizer
required ∼ 103 CPU-hours, and performed 165 free-boundary SPEC calculations.

The Poincaré section of the optimized equilibrium is plotted on the middle panel of
Figure 6.1. As expected, ΓCB is no longer a magnetic surface since Bc has been changed
relative to the unoptimized equilibrium shown on the top panel of Figure 6.1. The
difference between the magnetic field generated by the coils pre- and post-optimization
is of the order of 1% of the total magnetic field, i.e. δB/B ∼ 1%. We observe that
the targeted island chains are no longer visible. The rotational transform profile of the
optimized equilibrium is plotted on Figure 6.2. We observe that the rotational transform
profile after optimization is of the same order as before the optimization — it still crosses
the same rationals, but these rationals do not generate noticeable islands anymore!
This optimization clearly demonstrates that the parameter space {Vmn} is suitable for
stellarator optimization.

New resonances however appeared close to the computational boundary ΓCB, in
particular one with mode number (m,n) = (10, 5). The residue associated with this
resonance was not included in the objective function, which explains why the optimizer
was able to converge to this state. One approach to reduce the size of the (m,n) = (10, 5)
island chain is to add the square of its associated residue to the objective function, and
continue the optimization from the previous optimized state. The optimizer is then
able to reduce the (m,n) = (10, 5) island size — see the bottom panel of Figure 6.1.
This "stepped" optimization process, in which the objective function has to be modified
multiple times, is avoidable if a global diagnostic to measure the extent of magnetic
islands and chaos is used instead of a local diagnostic such as the Greene’s residues. For
example, one could consider using the volume of chaos introduced in section 4.1, the
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Chapter 6. Optimization for nested magnetic surfaces

fraction of effective parallel diffusion introduced in section 4.3, or the volume of effective
parallel diffusion discussed by Paul et al. (2022). These measures, constructed with a
Heaviside function, are however not smooth, and would require the implementation of
alternative optimization algorithms (Mongeau, 2009).

6.3 Perfectly conducting wall optimization

We now look at two different optimizations of the perfectly conducting wall equilibrium.
In the first one, we only target the residues in the vacuum region, i.e. residues with
indices 1-3 of Table 6.1, and the parameter space is the profile of current flowing in the
plasma volumes {Ivϕ,l}l={1,...,7}. When more residues listed in Table 6.1 are included in
the objective function, the optimizer is not able to lower the objective function sufficiently
to observe an effect on the island width. This might be because not enough degrees of
freedom were provided. Increasing the number of volumes Nvol in SPEC, consequently
increasing the number of degrees of freedom {Ivϕ,l}l={1,...,Nvol}, is however not a guaranteed
solution, since it adds additional topological constraints on the magnetic field and some
island chains might remain undetected. The optimization of the injected current profile
{Ivϕ,l}l={1,...,7} could however be combined with other parameters, for example the coil
optimization with degrees of freedom {Vmn}, to target more residues. Note that this
optimization could also be achieved in the initial free-boundary equilibrium, but the
perfectly conducting wall equilibrium was considered here for simplicity.

In the second optimization, all residues listed in Table 6.1 are included in the objective
function and the geometry of the perfectly conducting wall Γw is optimized. The selected
degrees of freedom are the modes Rwmn and Zwmn with (m,n) = (1, 1), (1, 2), (2, 1). Low
order Fourier modes are chosen for their capacity to penetrate deeper in the plasma
(Helander, 2014). In principle, higher order Fourier modes could be used, however the
required deviation from the initial state might need to be large to minimize the objective
function and thus the optimum state difficult to find for the optimizer. Note that the
poloidal angle defined by the Fourier representation of the perfectly conducting wall Γw
is generally not a straight-field line angle. Which Fourier mode Rwmn and Zwmn affects the
targeted rationals is thus a non-trivial question — in general, the residue associated to
the n/m rational might not be affected by the modes {Rwmn, Zwmn}!

Figure 6.3 shows the result of the optimization of {Ivϕ,l}l={1,...,7} (middle panel) and
the optimization of Γw (bottom panel). Comparing both Poincaré plots with the initial
equilibrium (top), we observe that the targeted residues have indeed been minimized -
the islands are now much smaller, and are no longer visible in some cases. The rotational
transform profiles are plotted on Figure 6.2 and the total enclosed toroidal current on
Figure 6.4. Again, the rotational transform profiles are of the same order as for the
unoptimized case. Regarding the optimized current profile, the total injected current is
∆Iϕ = −5.2kA, less than 20% of the initial total enclosed toroidal current. Interestingly,
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6.3 Perfectly conducting wall optimization

Figure 6.1: Poincare section of the initial and optimized equilibria. Top: Initial free-
boundary equilibrium. Middle: first optimization of {Vmn}, targeting residues with index
1-3 in table 6.1. Bottom: second optimization of {Vmn}, where the residue associated to
the resonance (m,n) = (10, 5) is included in the target function. In blue: inner interfaces.
In red: plasma boundary. In bold black: computational boundary. Orange arrows: Bc · n
on the computational boundary

.
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Figure 6.2: Rotational transform as a function of the square-root of the normalized
toroidal flux. Left: Full profile. Right: zoom on vacuum region. Black, dashed line:
position of the plasma boundary. Black, full line: vacuum profile. The toroidal flux ψt in
volume l is defined via interpolation between ψt,l−1 and ψt,l.

the optimizer found an equilibrium close to the initial state, and did not converge to
the obvious global minimum, where a large toroidal current would be injected in the
volumes to lift the rotational transform profile in order to push all the targeted rationals
out of the plasma. Similarly, for the optimization of Γw, a trivial solution would be the
axisymmetric solution, with Rwmn = Zwmn = 0 for n ̸= 0. Again, since a local optimizer is
being used, the optimum found is a local optimum close to the initial state, and not the
global optimum.

6.4 Convergence and computation time

The normalized value of the objective function as a function of the number of iterations
is plotted for each optimization in Figure 6.5. The optimization of Γw (orange crosses)
cannot be compared with the other two, since it uses a different objective function. We
see that the optimization of {Ivϕ,l}l={1,...,7} (blue circles) saturates at a larger value than
the optimization of {Vmn} (green squares), despite optimizing the same objective function
(the same residues were selected). Intuitively, this can be understood by noticing that the
number Fourier harmonics of the magnetic field that are affected by the plasma current is
smaller than those that can be affected by the {Vmn}. In that sense, the space of possible
perturbations of the magnetic field for influencing the islands is more constrained in the
{Ivϕ,l}l={1,...,7} optimization.
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6.4 Convergence and computation time

Figure 6.3: Poincaré section of the initial and optimized equilibria. Top: Initial perfectly
conducting wall equilibrium. In purple: perfectly conducting wall. In red: plasma
boundary. In blue: inner plasma interfaces. Middle: optimization of {Ivϕ,l}l={1,...,7}.
Bottom: optimization of Γw. In purple (dashed): optimized Γw.
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Figure 6.4: Total enclosed toroidal current as a function of the square-root of the
normalized toroidal flux. In red: initial equilibrium and in blue: {Ivϕ,l}l={1,...,7} optimized
equilibrium. Other optimized equilibria have the same toroidal current profile as the
initial equilibrium, and are thus not plotted.
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Figure 6.5: Logarithmic plot of the normalized objective function as a function of
the number of SPEC calculations. Orange crosses: optimization of Γw. Blue circles:
optimization of {Ivϕ,l}l={1,...,7}. Green squares: optimization of {Vmn}.
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6.5 Optimization of the equilibrium β-limit

The optimization was run in parallel on 2k + 1 cores of Intel Broadwell processors
at 2.6GHz, where k is the number of degrees of freedom of the optimization. Each core
computed a different SPEC equilibrium when evaluating the finite difference estimate
of the objective function gradient. The {Vmn} optimization required 165 equilibrium
calculations, the {Ivϕ,l}l={1,...,7} optimization 187 and the Γw optimization 309. The total
CPU time for execution was respectively ∼ 41 days, ∼ 10 days and ∼ 21 days for a total
wall-clock time of respectively ∼ 65h, ∼ 17h and ∼ 39h. As expected, the optimizations
of the perfectly conducting wall equilibrium were faster, as fixed-boundary calculations
are faster than free-boundary ones.

Note that the presented optimizations did not take advantage of the full parallelization
of SPEC — only a single core computed each SPEC equilibrium, while SIMSOPT allows
the user to use M ≤ Nvol CPUs on N ≤ 2k + 1 SPEC instances, which would speedup
the computation greatly. Nevertheless, our calculations show that the total time required
to perform a SPEC optimization is small enough to be considered in more advanced
stellarator optimizations.

6.5 Optimization of the equilibrium β-limit

In the previous sections, we showed that it is possible to reduce the number of islands
and amount of chaos in a given finite-β equilibrium. We propose here to optimize a
sequence of equilibria at different values of β to increase a stellarator equilibrium β-limit.
In this section, we define the equilibrium β-limit using the volume of chaos defined in
section 4.2, and we consider that the equilibrium β-limit has been crossed if Vchaos > 0.
We study the case of a rotating ellipse with bootstrap current, described in section 5.2,
with Ĉ = 1.37. Without any external driven currents, Ivϕ,l = 0 ∀l, the equilibrium β-limit
is βlimchaos = 1.12% (see the blue curve on Figure 6.6b).

We select a sequence of equilibria, namely at β = 1.09%, 1.16%, 1.22%, 1.32%, and
optimize the net toroidal current in each volume, Ivϕ,l, to minimize a target function
constructed with the Greene’s residues of the largest islands in each equilibrium. To
improve the convergence of the optimizer, the optimal volume current profile found for
one equilibrium is used as an initial guess for the optimization of the next equilibrium
in the sequence. The initial and optimized equilibria Poincaré sections are plotted on
Figure 6.7. While some islands are still present in some optimized equilibria, their width
has been sufficiently reduced to remove chaotic field lines from the equilibrium. Further
optimization, to further reduce the islands width, could be achieved by considering
additional degrees of freedom, for example a set of {Vmn} harmonics. The optimized
net toroidal current profiles are shown in Figure 6.6a, and the volume of chaos of the
optimized equilibria are shown with red stars in Figure 6.6b. The optimized sequence of
equilibria has Vchaos = 0 up till β = 1.24%, effectively increasing the equilibrium β-limit
from the unoptimized sequence of equilibria by ∼ 12%.
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(a) optimized current profiles (b) Volume of chaos

Figure 6.6: Optimization of a sequence of rotating ellipses equilibria for good magnetic
surfaces. Left: net toroidal current profile. Right: Volume of chaos as a function of β.

Previous studies already showed the possibility of eliminating islands in high pressure
equilibria — see for example the work by Hudson et al. (2002), where the volume
occupied by magnetic surfaces, as evaluated by the PIES code, was increased in the
W7-AS stellarator. In this section, we showed that similar results could be obtained
using the SPEC code, in a fast and simple way. Indeed, as discussed in section 6.4, a
single free-boundary optimization takes ∼ 3 days to run, though this computation time
could probably be an order of magnitude smaller if the full parallelization of the SPEC
code was taken advantage of. While our calculations were done in a classical stellarator
geometry, the procedure can easily be applied to more complex geometries such as the
W7-AS configuration, provided that SPEC numerical issues are mitigated (see chapter
3.3). Of course, more complex geometries would require to increase the Fourier resolution
in SPEC (see section 3.1.3), which would require more computational power.

6.6 Summary

In this chapter, we showed the first fixed- and free-boundary, multi-volume, finite β
SPEC equilibrium optimizations of a classical stellarator using the SIMSOPT framework.
The objective function was constructed from the Greene’s residues of selected rational
surfaces. Different parameter spaces were considered: either the boundary of a perfectly
conducting wall surrounding the plasma, or the enclosed toroidal current profile, or the
vacuum field produced by the coils were optimized. Furthermore, we presented how the
same approach could be used to optimize the equilibrium β-limit of a stellarator. We
considered a sequence of equilibria at different β, and showed that the critical β at which
field line chaos emerges could be increased by optimizing the net toroidal current profile
in the plasma.
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(a) β = 1.09%, initial (b) β = 1.09%, optimized

(c) β = 1.16%, initial (d) β = 1.16%, optimized

(e) β = 1.22%, initial (f) β = 1.22%, optimized

(g) β = 1.32%, initial (h) β = 1.32%, optimized

Figure 6.7: Poincaré section of the optimized sequence of equilibria. Left: unoptimized
equilibria, right: optimized equilibria.

161



Chapter 6. Optimization for nested magnetic surfaces

In all optimizations, it was possible to reduce the objective function significantly,
which in turn translated to a reduction of the targeted magnetic island width. In the case
of the current profile optimization, the volume occupied by magnetic islands and chaotic
field lines was considerably reduced in the vacuum region surrounding the plasma. While
not important for plasma confinement, the control of the magnetic field topology in the
vacuum region is of paramount importance for divertor design and operation. In the case
of the perfectly conducting wall optimization, the volume occupied by magnetic surfaces
was increased both in the vacuum region and in the plasma volume. In the case of the
optimization of the vacuum field produced by the coils, the islands present in the initial
unoptimized equilibrium were reduced in size, but additional rationals and island chains
emerged, since their associated residues were not included in the objective function.

Different measures of the magnetic field integrability are currently being considered
to overcome the shortcomings of Greene’s residues. Indeed, as observed in the coil
optimization, Greene’s residue is a local measure, which requires input from the user —
any rational surface emerging during the optimization remains undetected. Ideally, a
global measure is thus required. The volume occupied by chaotic field lines, the fraction
of effective parallel diffusion, or the volume of effective parallel diffusion, all introduced
in chapter 4, are potential candidates.

In the work by Landreman et al. (2021b), it was shown that SPEC could be coupled
to VMEC in order to achieve an optimization in a vacuum, where both QS and nested
magnetic surfaces could be obtained. The obvious next step is then to perform a combined
SPEC-VMEC finite-β optimization for good magnetic surfaces as well as other metrics,
such as QS. This will require significant deviation from a classical stellarator geometry,
as opposed to what was presented in this chapter, and the computational cost of the
optimization will be greater due to the increased complexity of the problem. While
this task does not require extensive development of the optimization tool SIMSOPT, a
number of convergence issues in SPEC arising in strongly shaped geometries have to be
solved (see section 3.3).
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7 Conclusion and outlooks

In this thesis, significant advances were made in the computation of 3-dimensional (3D)
magnetohydrodynamic (MHD) equilibria, and the understanding of the non-linear relation
between pressure and magnetic field line topologies. For the first time, large parameter
scans of stellarator equilibria were performed, allowing a deeper understanding of the
equilibrium β-limit in a stellarator. In addition, analytical models for the equilibrium
β-limits were proposed, and were shown to capture the main parameter dependencies
exposed by the numerical scans. First-of-its-kind optimization of the equilibrium β-limit
in a stellarator was presented, where it was clearly shown that slight adjustments in the
net toroidal current profile, e.g. by means of electron cyclotron current drive (ECCD)
injection, can be enough to recover good magnetic surfaces at finite β, and therefore
increase the equilibrium β-limit of the configuration. Similarly, we showed that a small
modification in the vacuum magnetic field, typically produced by external coils, can also
heal a configuration with islands and chaos.

In chapter 2, the ideal MHD model was presented. In particular, the potential
emergence of diverging Pfirsch-Schlüter currents when considering 3D MHD equilib-
ria with magnetic surfaces was discussed. The multi-region relaxed magnetohydrody-
namic (MRxMHD) equilibrium model, which provides weak solutions to the ideal MHD
equilibrium equations, was presented. An MRxMHD equilibrium is characterized by a
finite number of nested toroidal volumes with constant pressure, separated by magnetic
surfaces that support pressure discontinuities. Between the interfaces, magnetic field
lines can form magnetic islands and magnetic field line chaos in a finite volume, allowing
MRxMHD equilibria to describe magnetic equilibria with pressure gradient, magnetic
islands, and magnetic field line chaos. The different kinds of currents in this model
were introduced, namely the volume currents, which represent all externally driven
currents, and the surface currents, which represent all pressure-induced currents, such as
diamagnetic, Pfirsch-Schlüter, and bootstrap currents.
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Chapter 3 then introduced the stepped-pressure equilibrium code (SPEC) code, which
solves the MRxMHD equilibrium equations in stellarators geometries. In particular, the
details of how the net toroidal current profile can be constrained in SPEC were described,
including a rigorous verification of its implementation. In an attempt to solve SPEC
robustness issues in strongly shaped stellarator geometries, the implementation of an
alternative representation of the volume interfaces, called the Henneberg representation,
was described. While encouraging, the results seem to indicate that the numerical
fragility of SPEC remains even when there is no angle freedom in the interface geometry.
Indeed, SPEC could not find the solution to the MRxMHD equilibrium equations in
some simple geometries when using the Henneberg representation. Unfortunately, this
was the opposite of what was expected and hoped for.

In chapter 4, different metrics to characterize the degree of degradation of magnetic
surfaces in a given MHD equilibrium were described. First, the Greene’s residue, which is
a local measurement of the field line orbit, was discussed. The volume of chaos was then
introduced as a first attempt to define a global measure of the existence of good magnetic
surfaces. This metric measures the amount of plasma occupied by chaotic magnetic field
lines by calculating the fractal dimension of the field lines. Finally, in order to augment
the metric to include the effect of the breaking of surfaces on heat transport, the fraction
of effective parallel diffusion was defined. This metric is non-zero if there is at least
one island in the plasma such that its effect on the radial heat transport dominates the
turbulent transport.

Equipped with these metrics, chapter 5 presented the calculation of the equilibrium
β-limit in a classical stellarator, and a quasi-axisymmetric (QA) configuration with self-
consistent bootstrap current, and showed its dependency on the bootstrap current strength
by evaluating free-boundary SPEC equilibria for a large range of pressures. Two types of
equilibrium β-limit were identified depending on the strength of the bootstrap current:
for configurations with low bootstrap current, an ideal equilibrium β-limit was found,
above which a separatrix formed at the plasma edge and ι-a → 0, while for configurations
with high bootstrap current, a chaotic equilibrium β-limit was identified, above which
chaotic field lines emerged. In particular, it was shown that in a classical stellarator,
a small but non-zero bootstrap current could be beneficial in increasing the stellarator
equilibrium β-limit. An analytical model, based on the high beta stellarator (HBS)
expansion, was proposed and showed good agreement with the numerical results. In the
case of the QA configuration, the additional shaping of the plasma was shown to impact
negatively the equilibrium β-limit, as compared to a classical stellarator.

Chapter 6 looked into the possibility to optimize the equilibrium β-limit of stellarators.
Using the SIMSOPT code, it was shown that good magnetic surfaces could be retrieved
by either (i) modifying the coils, or (ii) injecting an externally driven current such as
ECCD, or (iii) changing the plasma shape. A sequence of classical stellarator equilibria
were then optimized, ultimately increasing the configuration equilibrium β-limit.
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7.1 Outlook

The studies presented in this thesis were limited by the robustness issues of SPEC.
Currently, it is difficult to compute strongly shaped, multi-volume SPEC equilibria,
thereby preventing, for example, equilibrium β-limit studies in Wendelstein 7-X (W7-X)
with realistic pressure profiles. The SPEC code needs to be improved to allow these
more advanced studies. There are numerous ideas that could potentially improve SPEC
robustness; unfortunately these could not be tested in the time frame of this thesis. Such
ideas were discussed in the conclusion of chapter 3.

If SPEC numerical robustness is improved, its model could be benchmarked against
3D resistive MHD codes, such as M3D-C1 (Park et al., 1999; Reiman et al., 2015), or
JOREK (Huysmans and Czarny, 2007; Czarny and Huysmans, 2008; Hoelzl et al., 2021).
Validation of SPEC model against experimental data would also become possible. The
study of the equilibrium β-limit could be one research direction for such validation.
One could for example attempt to evaluate the equilibrium β-limit in the Wendelstein
7-AS (W7-AS) stellarator, and validate the obtained results with PIES calculations
(Reiman et al., 2007). Similar studies could then be performed in W7-X geometry,
potentially finding configurations with larger equilibrium β-limit that could be validated
by experimental data. Furthermore, understanding further the equilibrium β-limit and
its dependencies on design parameters could provide valuable information for experiments
and for stellarator optimization and design. With SPEC robustness issues solved, it
would become possible to fully exploit SPEC for stellarator optimization. In a similar
spirit to what has been done by Landreman et al. (2021b), both SPEC and VMEC
could be combined in optimization loops in order perform multi-objective stellarator
optimization. Of particular interest would be to study the competition between different
targets, for example the quality of good magnetic surfaces and quasi-symmetry (QS) at
finite β. Furthermore, a topic that has not been addressed in this thesis is the robustness
of magnetic field line topologies to perturbations in the plasma parameters. This could
be studied using the SPEC code, and the stochastic optimization algorithm implemented
in the SIMSOPT python framework (Giuliani et al., 2022; Wechsung et al., 2022).

On a broader picture, stellarators are today developing extremely fast. Stellarator
optimization tools can now leverage the full power of the most advanced supercomputers
in the world to find configurations that are getting better every day. It might be only a
matter of years before a realistic configuration where a fusion triple product that satisfies
the Lawson criterion is found. While there are still numerous engineering challenges, such
as manufacturing high-temperature superconductors, designing plasma-facing components
that support the extreme heat fluxes, and dealing with the intense neutron flux generated
by the fusion reaction, the stellarator concept is closer than ever to a nuclear fusion
power plant. It is not unimaginable that, in the future, a stellarator power plant will
deliver electricity produced by nuclear fusion reactions on the grid.
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A Appendices

A.1 Boozer coordinates

In this appendix, we follow Helander (2014) to derive a transformation from general
toroidal coordinates (p, θ, ϕ), where p is the pressure, and (θ, ϕ) are general poloidal
and toroidal angles, to boozer coordinates (ψt, θb, ϕb), where ψt is the toroidal flux and
(θb, ϕb) are the poloidal and toroidal Boozer angles. We start by considering the force
balance equation of ideal MHD, Eq.(2.10), which implies that B · ∇p = 0. Assuming that
the pressure is monotically decreasing from the plasma core to the edge, the magnetic
field can be written as

B = B1(p, θ, ϕ)∇p× ∇θ +B2(p, θ, ϕ)∇ϕ× ∇p. (A.1)

We derive

∇ · [B1∇p× ∇θ] = ∂B1
∂ϕ

∇ϕ · (∇p× ∇θ) (A.2)

∇ · [B2∇ϕ× ∇p] = ∂B2
∂ϕ

∇ϕ · (∇p× ∇θ), (A.3)

which, according to the equation ∇ · B = 0, imply(
∂B1
∂ϕ

+ ∂B2
∂θ

)
∇p · (∇θ × ∇ϕ) = 0. (A.4)

As we assume our coordinates to not be degenerate, i.e. the inverse jacobian never
cancels, ∇p · (∇θ× ∇ϕ) = 1/√g ̸= 0, we deduce ∂B1/∂ϕ+ ∂B2/∂θ = 0. Integrating over
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a poloidal loop, and using the 2π periodicity of B over θ, we get that

∂

∂ϕ

∫ 2π

0
B1dθ = 0 ∀{p, ϕ} (A.5)

Thus
∫ 2π

0
B1dθ = g(p) (A.6)

and B1 = ∂f

∂θ
+ g(p)

2π . (A.7)

with f = f(p, θ, ϕ) and g = g(p) two functions. Similarly, we get for B2,

B2 = −∂f

∂ϕ
+ h(p)

2π , (A.8)

with h = h(p) another function. Defining ψ′
t(p) = g(p)/2π, ψ′

p(p) = h(p)/2π and
λ = f(p, θ, ϕ)/ψ′

t(p), we get

B =
(

1 + ∂λ

∂θ

)
ψ′
t(p)∇p× ∇θ +

(
ψ′
p(p) − ψ′

t(p)
∂λ

∂ϕ

)
∇ϕ× ∇p. (A.9)

We define now the straight field line coordinates (ψt, θs, ϕ), with

θs = θ + λ. (A.10)

With these coordinates, the magnetic field can be written as

B = ∇ψt × ∇θs + ∇ϕ× ∇ψp. (A.11)

It can be easily verified that the functions ψt(p) and ψp(p) are the toroidal and poloidal
fluxes respectively. Note that while here we assumed that the pressure, p, could be used
as a radial coordinate, the equation (A.11) is completely general, as it has been shown
in section 1.5. The straight field line coordinates have the property that magnetic field
lines are straight when plotted in the (θs, ϕ) plane — indeed, the rotational transform is

ι- = B · ∇θs
B · ∇ϕ

= (∇ϕ× ∇ψp) · ∇θs
(∇ψt × ∇θs) · ∇ϕ

= dψp
dψt

, (A.12)

which is independent of the poloidal and toroidal angles, i.e. the field lines are straight
in the (θs, ϕ) plane (see Figure 2.1).

Equation (A.11) is the covariant representation of the magnetic field in straight field
line coordinates. Starting from the charge conservation equation ∇·J = 0 and ∇×B = J,
one can derive a contravariant representation. First, we notice that the force balance
equation (2.10) implies that J · ∇p = 0. Using the same reasoning as for the magnetic
field, we can write

J = J1∇ψt × ∇θs + J2∇ϕ× ∇ψt. (A.13)
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Charge conservation implies

J1(ψt, θs, ϕ) = I ′(ψt) − ∂K

∂θs
(A.14)

J2(ψt, θs, ϕ) = −G′(ψt) + ∂K

∂ϕ
, (A.15)

with I = I(ψt) and G = G(ψt) two functions that depend only on the toroidal flux and
K = K(ψt, θs, ϕ) another function that depends on the position. Now, we notice that
the curl of I∇θs +G∇ϕ+K∇ψt gives

∇×(I∇θs+G∇ϕ+K∇ψt) =
(
I ′ − ∂K

∂θs

)
∇ψt×∇θs+

(
−G′ + ∂K

∂ϕ

)
∇ψt×∇ϕ. (A.16)

We can thus identify

B = I∇θs +G∇ϕ+K∇ψt + ∇H, (A.17)

where H = H(ψt, θs, ϕ) is an integration constant. Equation (A.17) is the contravariant
representation of the magnetic field in straight field line coordinates. Note that I can
easily be identified as the total toroidal current enclosed by the magnetic surface labelled
by ψt and G as the total poloidal current flowing around the magnetic surface labelled
by ψt.

In the straight field line coordinates derived above, the toroidal angle ϕ is still
completely general — a straight field line poloidal angle θs exist for any choice of toroidal
angle ϕ. There is however a specific choice of toroidal angle ϕb, called the Boozer angle, for
which H = 0. To derive it, we define a function ω = ω(ψt, θs, ϕ) and the transformation

θb = θs − ι-ω (A.18)
ϕb = ϕ− ω. (A.19)

Note that

B = ∇ψt × ∇θs + ∇ϕ× ∇ψp (A.20)
= ∇ψt × ∇(θb + ι-ω) + ∇(ϕb + ω) × ∇ψp (A.21)

= ∇ψt × ∇θb + ∇ϕb × ∇ψp + dψp
dψt

∇ψt × ∇ω − ∇ψp × ∇ω︸ ︷︷ ︸
=0

(A.22)

= ∇ψt × ∇θb + ∇ϕb × ∇ψp, (A.23)
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i.e. the angles (θb, ϕb) are also straight field line angles. Similarly,

B = I∇(θb + ι-ω) +G∇(ϕb + ω) +K∇ψt + ∇H (A.24)

= I∇θb +G∇ϕb +
[
K − ω

(
ι- dI
dψt

+ dG

dψt

)]
∇ψt + ∇ [H + (Iι- +G)ω] (A.25)

= I∇θb +G∇ϕb +Kb∇ψt + ∇Hb, (A.26)

where

Kb = K − ω

(
ι- dI
dψt

+ dG

dψt

)
(A.27)

Hb = H + (ι-I +G)ω. (A.28)

Thus, choosing the function ω to be

ω = − H

ι-I +G
, (A.29)

we get the Boozer coordinates, where Hb = 0. The coordinate jacobian, √
gb, can be

obtained by evaluating B2; taking the product between the covariant (Eq.(A.23)) and
contravariant (Eq.(A.26)) representations of B, we obtain

B2 = (∇ψt × ∇θb + ∇ϕb × ∇ψp) · (I∇θb +G∇ϕb +Kb∇ψt) (A.30)

= G
√
gb

+ ι-I
√
gb
, (A.31)

which leads to
√
gb = G+ ι-I

B2 . (A.32)
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A.2 Toroidal coordinates

We derive in this appendix the metric and jacobian analytical relations in toroidal
coordinates (s, θ, ϕ). The position vector is given by

x = R(s, θ, ϕ)eR + Z(s, θ, ϕ)eZ , (A.33)

with eR, eϕ, and eZ the usual unitary basis vector in cylindrical geometry (see Figure 3.1).
The covariant basis vectors are given by eα = ∂x/∂α,

es = RseR + ZseZ (A.34)
eθ = RθeR + ZθeZ (A.35)
eϕ = RϕeR +Reϕ + ZϕeZ , (A.36)

where the subscripts denote partial derivatives. The jacobian is then obtained by taking
the triple product between the covariant basis vectors,

√
g = es · (eθ × eϕ) (A.37)

= es · (−RRθeR + (RθZϕ −RϕZθ)eϕ +RRθeZ) (A.38)
= R(RθZs −RsZθ). (A.39)

The contravariant basis is obtained by taking the cross-product of the covariant basis
and normalizing by the jacobian,

∇s = 1
√
g

eθ × eϕ (A.40)

= −RRθeR + (RθZϕ −RϕZθ)eϕ +RRθeZ√
g

, (A.41)

and similarly

∇θ = RZseR + (RsZϕ −RϕZs)eϕ −RRseZ√
g

(A.42)

∇ϕ = 1
√
g

(RθZs −RsZθ)eϕ = eϕ
R
. (A.43)

Finally, the metric elements gij are

g =

 R2
s + Z2

s RsRθ + ZsZθ RsRϕ + ZsZϕ
RsRθ + ZsZθ R2

θ + Z2
θ RθRϕ + ZθZϕ

RsRϕ + ZsZϕ RθRϕ + ZθZϕ R2
ϕ +R2 + Z2

ϕ

 . (A.44)
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A.3 SPEC spectral condensation

The standard representation given in Eqs.(3.6)-(3.7) to represent an interface Il depends
on the choice of poloidal angle θ. In SPEC, a so-called spectral condensation (Hirshman
et al., 1986a) is implemented to select the poloidal angle (Hudson et al., 2012a). The
idea is to minimize the number of Fourier harmonics required to represent a surface, i.e.
minimize

Ml = 1
2

Mpol∑
m=0

Ntor∑
n=−Ntor

mλ((Rlmn)2 + (Z lmn)2), (A.45)

by only considering variations tangential to the surface, δR = Rθδu and δZ = Zθδu,
where the Xi designates a derivative of X with respect to i, δu is arbitrary, and λ is
a user input. In SPEC, an additional target is included in the minimization, called
the spectral length — its role is to ensure smooth transition between the angles used to
represent two neighboring interfaces (S. R. Hudson, SPECtacular meeting, April 2021).
It is expressed for volume Vl as

Ll =
∮ ∮ Ns∑

i=1

√
[Rl(θ, ϕ) −Rl−1(θ, ϕ)]2 + [Zl(θ, ϕ) − Zl−1(θ, ϕ)]2dθdϕ, (A.46)

where Ns is the number of radial grid points si. The target to minimize on each interface Il
is then a linear combination of the spectral width and spectral length, Eqs.(A.45)-(A.46),

W sc
l =

Nvol−1∑
l=1

αlMl + βlLl (A.47)

where (αl, βl) are user supplied weights. Variations of W sc
l with respect to the interface

geometry, where only tangential variations are allowed, δR = Rθδu and δZ = Zθδu, can
be written under the form

δW sc
l =

∮ ∮
Yl(θ, ϕ)δudθdϕ, (A.48)

meaning that the minimum of W sc
l is found for

Yl =
Mpol∑
m=0

Ntor∑
n=−Ntor

Ylmn sin(mθ − nNfpϕ) = 0. (A.49)
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A.4 Derivation of the Beltrami linear system

Consider the Beltrami equation (2.74). It is a linear relation between the vector potential
Fourier-Chebyshev harmonics Aikmn (see section 3.1). We derive in this appendix how
the Beltrami equation can be casted, in each SPEC volume, into a linear system

(G − µD) a = C. (A.50)

We work with SPEC’s coordinates (s, θ, ϕ). First, we define the vector potential gauge
such that

As = 0 (A.51)
Aθ(−1, θ, ϕ) = 0 (A.52)
Aϕ(−1, 0, ϕ) = 0. (A.53)

Second, we enforce the boundary conditions at the volume’s boundary, B · ∇s = 0 at
s = −1. We find that √

gBs = ∂θAϕ − ∂ϕAθ = 0, which, using Eq.(A.52)-(A.53), reduces
to

Aϕ(−1, θ, ϕ) = 0. (A.54)

At s = 1, if the outer boundary if a magnetic surface, we have also B · ∇s = 0, which
reduces to

∂θAϕ − ∂ϕAθ = 0. (A.55)

As derived in section 2.4.3, the Beltrami equation (2.74) minimizes the energy functional
F , defined in equation (2.120). Additional constraints to the Taylor state can be included
by using the Lagrange multiplier method. Here, we construct an energy functional whose
minimum corresponds to a Taylor state, where B · ∇s = 0 on the volume’s boundary,
where the vector potential gauge, Eq.(A.51)-(A.52), is satisfied and where the toroidal
and poloidal fluxes are ∆ψt,l and ∆ψp,l respectively. We thus write
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Fl =
∫

Vl

(
p

γ − 1 + B2

2µ0

)
dv The MHD energy functional

(A.56)

− µl
µ0

(K −Kl) The helicity constraint

(A.57)

+ bl

∫
S[ϕ=const]

B · dS − ∆ψt,l The toroidal flux constraint

(A.58)

+ cl

∫
S[θ=const]

B · dS − ∆ψp,l The poloidal flux constraint

(A.59)

+
Mpol∑
m=0

Ntor∑
n=−Ntor

dlmn

Lrad∑
k=0

AlθkmnTkm(−1) Vector potential gauge

(A.60)

+
Mpol∑
m=0

Ntor∑
n=−Ntor

elmn

Lrad∑
k=0

AlϕkmnTkm(−1) Internal boundary condition

(A.61)

+
Mpol∑
m=0

Ntor∑
n=−Ntor

flmn

Lrad∑
k=0

(−mAlθkmn − nAlϕkmn)Tkm(1), External boundary condition

(A.62)

where we assumed stellarator symmetry, and the {bl, cl, dlmn, elmn, flmn} are Lagrange
multipliers. We now pack all the Fourier harmonics of the vector potential, {Alikmn}, and
the Lagrange multipliers, {bl, cl, dlmn, elmn, flmn}, in a single array of unknowns a. Note
that here µl is known, as it is assumed to be an input to the Beltrami solver. We now
seek to minimize Fl under variations of a, i.e. find the unknowns a such that ∂Fl/∂a = 0.
Remark that Eqs.(A.56)-(A.62) have at most a quadratic dependence on the unknown a.
The equations ∂Fl/∂a = 0 can thus be written as a linear system. For example, we take
the derivative of Fl with respect to Alθkmn. We first use Eq.(3.12)-(3.14), and write the
derivatives of the contravariant magnetic field,

√
g

∂B
∂Alθkmn

= −nTkm(s) sin(mθ − nNfpϕ)es + T ′
km(s) cos(mθ − nNfpϕ)eϕ. (A.63)
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The derivative of the MHD energy functional thus becomes

∂

∂Alθkmn

∫
Vl

(
p

γ − 1 + B2

2µ0

)
dv =∫

Vl

B
µ0

√
g

·
(
−nTkm(s) sin(mθ − nNfpϕ)es + T ′

km(s) cos(mθ − nNfpϕ)eϕ
)
dv. (A.64)

Similarly, the derivative of the helicity constraint, Eq.(A.57), can be written as

µl
µ0

∂

∂Alθkmn
(K −Kl) = µl

µ0

∂

∂Alθkmn

∫
Vl

A · Bdv

= µl
µ0

∫
Vl

[
Tkm(s)∇θ · B +AϕT

′
km(s)

]
cos(mθ − nNfpϕ). (A.65)

The derivative of the toroidal and poloidal flux constraints, Eqs.(A.58)-(A.59), can easily
be obtained by considering Eqs.(3.15)-(3.16),

bl
∂

∂Alθkmn

∫
S[ϕ=const]

B · dS − ∆ψt,l = 2πbl
∂

∂Alθkmn
Alθk00[Tk0(1) − Tk0(−1)] (A.66)

= 2πbl[Tk0(1) − Tk0(−1)]δm0δn0 (A.67)

cl
∂

∂Alθkmn

∫
S[θ=const]

B · dS − ∆ψp,l = −2πcl
∂

∂Alθkmn
Alϕk00[Tk0(1) − Tk0(−1)] (A.68)

= 0. (A.69)

The derivatives of Eqs.(A.60)-(A.62) with respect to Alθkmn provide

∂

∂Alθkmn

Mpol∑
m=0

Ntor∑
n=−Ntor

dlmn

Lrad∑
k=0

AlθkmnTkm(−1) = dlmnTkm(−1) (A.70)

∂

∂Alθkmn

Mpol∑
m=0

Ntor∑
n=−Ntor

elmn

Lrad∑
k=0

AlϕkmnTkm(−1) = 0 (A.71)

∂

∂Alθkmn

Mpol∑
m=0

Ntor∑
n=−Ntor

flmn

Lrad∑
k=0

(−mAlθkmn − nAlϕkmn)Tkm(1) = −mflmnTkm(1).

(A.72)
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Collecting the derivative of each term, we finally obtain

∂Fl
∂Alθkmn

=
∫

Vl

B
µ0

√
g

·
(
−nTkm(s) sin(mθ − nNfpϕ)es + T ′

km(s) cos(mθ − nNfpϕ)eϕ
)

(A.73)

+ µl
µ0

∫
Vl

[
Tkm(s)∇θ · B +AϕT

′
km(s)

]
cos(mθ − nNfpϕ) (A.74)

+ 2πbl[Tk0(1) − Tk0(−1)]δm0δn0 (A.75)
+ dlmnTkm(−1) −mflmnTkm(1) = 0, (A.76)

which provides a first set of equations. Note that the products B · ei can be written
easily expressed as a linear combination of the Alikmn harmonics. For example, we find

Bl · es = ggg√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

−(mAlϕkmn + nAlθkmn)Tkm(s) sin(mθ − nNfpϕ) (A.77)

+ gsθ√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

−AlϕkmnT ′
km(s) cos(mθ − nNfpϕ) (A.78)

+ gsϕ√
g

Lrad∑
k=0

Mpol∑
m=0

Ntor∑
n=−Ntor

AlθkmnT
′
km(s) cos(mθ − nNfpϕ), (A.79)

where the metric elements gij are derived in appendix A.2. Similarly, the deriva-
tives of Fl with respect to Alϕkmn, and with respect to the Lagrange multipliers
{al, bl, clmn, dlmn, elmn} can be derived. The linear system (A.50) is then constructed by
writing

∂Fl
∂a = 0. (A.80)
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A.5 Linear relation between surface currents and poloidal
fluxes

In this appendix we show the linear relation between the surface currents (2.77) and the
poloidal fluxes in an MRxMHD equilibrium. We rewrite here Eq.(2.77) for convenience,

µ0I
s
l,ϕ = 2π

[[
B̃θ
]]
l
. (A.81)

We use general coordinates notation, with ui ≡ {s, θ, ϕ}, {∇s,∇θ,∇ϕ} the contravariant
basis, and ei ≡ {es, eθ, eϕ} the covariant basis. This derivation is local to a volume and
we drop the subscript l everywhere for simplicity.

We first show that the surface currents depend linearly on the vector potential degrees
of freedom a. The contravariant components of the magnetic field are obtained from
∇ × A = B,

Bk = ϵijk
√
g

∂Aj
∂ui

, (A.82)

where ϵijk is the Levi-Civita tensor, √
g is the jacobian, and the Einstein summation

convention has been used. The covariant component of the magnetic field can then easily
be expressed by Bθ = gkθB

k. The m = n = 0 Fourier mode of Bθ is then

B̃θ = 1
S

∫ 2π

0

∫ 2π

0
gkθϵ

ijk ∂Aj
∂ui

dS, (A.83)

with S the total area of the flux surface, which depends only on geometrical quantities.
Derivatives of Aj are

∂Aj
∂s

=
Mpol∑
m=0

Ntor∑
n=−Ntor

Lrad∑
k=0

AjkmnT
′
k(s) cos(mθ − nNpϕ) (A.84)

∂Aj
∂θ

=
Mpol∑
m=0

Ntor∑
n=−Ntor

Lrad∑
k=0

−mAjkmnTk(s) sin(mθ − nNpϕ) (A.85)

∂Aj
∂ϕ

=
Mpol∑
m=0

Ntor∑
n=−Ntor

Lrad∑
k=0

nNpAjkmnTk(s) sin(mθ − nNpϕ), (A.86)

where the prime denotes the derivative with respect to the main argument. Equations
(A.83) and (A.84)-(A.86) combined show the linear dependence of B̃θ on a. Finally, the
Beltrami equation (3.18) provides a linear relation between a and {∆ψp,∆ψt, µ}, as
shown in appendix A.4. All relations being linear, this shows that the surface currents
depend linearly on the poloidal and toroidal magnetic fluxes.
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A.6 Free-boundary SPEC equilibrium computation with
prescribed toroidal current profile

In this appendix, the main differences between a fixed- and free-boundary calculation with
the new developed current constraint are outlined. The linear system (3.28) has to be
rewritten by extending the arrays ψ and I with two new pairs of scalars: the poloidal and
toroidal flux enclosed by the vacuum region, (∆ψp,V ,∆ψt,V ), and the net toroidal current
at the plasma boundary and the total current flowing through the torus hole, (IsNvol

, Icoil),
namely ψ ≡ (∆ψp,2, . . . ,∆ψp,Nvol

,∆ψp,V ,∆ψt,V )t and I ≡ (Is1 , . . . , IsNvol
, Icoil)t. Then,

MFr(ψ −ψ) = I − I, (A.87)

with the matrix MFr,

MFr = 2π
µ0



∂B̃−
θ,2

∂∆ψp,2
0 · · · · · · · · · 0

−
∂B̃+

θ,2
∂∆ψp,2

∂B̃−
θ,3

∂∆ψp,3
0 · · · · · · 0

... . . . . . . . . . . . . 0

0 0 −
∂B̃+

θ,Nvol−1
∂∆ψp,Nvol−1

∂B̃−
θ,Nvol

∂∆ψp,Nvol

0 0

... · · · 0 −
∂B̃+

θ,Nvol

∂∆ψp,Nvol

∂B̃−
θ,V

∂∆ψp,V
∂B̃−

θ,V

∆∂ψt,V

0 · · · · · · 0
∂B̃−

ϕ,V

∂∆ψp,V
∂B̃−

ϕ,V

∂∆ψt,V



,

(A.88)
with B̃−

ϕ,V the m = n = 0 Fourier mode of the covariant toroidal magnetic field on
the plasma boundary outer side. Regarding Eq.(3.32), no changes are needed in the
plasma volumes. In the vacuum region, however, the toroidal flux is not an input and an
additional term is needed,

AV,i = AV,i − ∂AV,i
∂∆ψp,V

(∆ψp,V − ∆ψp,V ) − ∂AV,i
∂∆ψt,V

(∆ψt,V − ∆ψt,V ), (A.89)

where the subscript V denotes the vacuum region.

Regarding the force gradient, the derivative of the toroidal flux with respect to the
geometry is non-zero in the vacuum region. This means that

dB̃θ,V
dxi

=
∂B̃−

θ,V

∂xi
+

∂B̃−
θ,V

∂∆ψt,V
d∆ψt,V
dxi

+
∂B̃−

θ,V

∂∆ψp,V
d∆ψp,V
dxi

, (A.90)
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An additional equation is required for d∆ψt,V
dxi

, and is provided by

dIcoil
dxi

= 2π
µ0

(
∂B̃+

V,ϕ

∂xi
+

∂B̃+
V,ϕ

∂∆ψp,V
∂∆ψp,V
∂xi

+
∂B̃+

V,ϕ

∂∆ψt,V
∂∆ψt,V
∂xi

)
= 0, (A.91)

leading to

MFr · d

dxi
ψ = 2π

µ0



∂B̃+
θ,1

∂xi
−
∂B̃−

θ,2
∂xi...

∂B̃+
θ,Nvol

∂xi
−
∂B̃−

θ,V

∂xi

−
∂B̃−

ϕ,V

∂xi


(A.92)
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Appendix A. Appendices

A.7 Analytical derivation of SPEC force gradient in an
axisymmetric cylinder

The solution to the Beltrami equation (2.74) in the lth volume of an axisymmetric cylinder
is (see section 2.2.2)

Bl = [cl,1rJ1(µlr) + cl,2rY1(µlr)] ∇θ + [cl,1J0(µlr) + cl,2Y0(µlr)] ∇ϕ, (A.93)

where the usual (r, θ, ϕ) cylindrical coordinate system has been used, Ji and Yi are the
Bessel functions of the ith order of the first and second kind, respectively, and cl,1, cl,2
are integration constants. Here ∇θ and ∇ϕ are the contravariant basis vectors.

In addition, since Bθ must vanish at the origin, we have that c1,2 = 0. Indeed, the
asymptotic expansion of Y1(x) close to x = 0 gives (Abramowitz and Stegun, 1965)

lim
r→0

c1,2rY1(µ1r) ∼ lim
r→0

−c1,2r
2
πr

= −2c1,2
π

, (A.94)

which is only zero if c1,2 = 0.

We consider now the case of a screw pinch with three inner volumes, Nvol = 3. The
assumed constrained profiles are the toroidal flux {∆ψt,l}l=1,2,3, the volume current
{Ivl,ϕ}l=1,2,3 and the surface current {Isl,ϕ}l=1,2. The constraint on the toroidal flux is

∆ψt,l =
∫∫

Sl,ϕ

B · ∇ϕ√
gdrdθ (A.95)

=
∫ Rl

Rl−1
dr

∫ 2π

0
dθ [cl,1J0(µlr)r + cl,2Y0(µlr)r] (A.96)

≡ 2πcl,1J̄l + 2πcl,2Ȳl, (A.97)

where √
g = r is the jacobian and Sl,ϕ is a constant-ϕ surface in volume l. The Bessel

function integrals have been renamed as J̄l and Ȳl, and Rl is the radius of the lth interface.
The constraints on the currents lead to

µ0I
v
l,ϕ = µl

µ0
∆ψt,l (A.98)

µ0I
s
l,ϕ = 2πRl [cl+1,1J1(µl+1Rl) − cl,1J1(µlRl) + cl+1,2Y1(µl+1Rl) − cl,2Y1(µlRl)] ,

(A.99)
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A.7 Analytical derivation of SPEC force gradient in an axisymmetric cylinder

Solving for {cl,1, cl,2} is equivalent to solving the linear system
J̄1 0 0 0 0
0 J̄2 Ȳ2 0 0
0 0 0 J̄3 Ȳ3

−J111 J121 Y121 0 0
0 −J122 −Y122 J132 Y132




c1,1
c2,1
c2,2
c3,1
c3,2

 =


∆ψt,1/2π
∆ψt,2/2π
∆ψt,3/2π

µ0I
s
ϕ,1/2πR1

µ0I
s
ϕ,2/2πR2

 , (A.100)

with Jijk = Ji(µjRk) and Yijk = Yi(µjRk). Derivatives of the force Fl = [(Bl+1(Rl))2 −
(Bl(Rl))2]/2 can also be expressed analytically, leading to

∂Fl
∂Rj

= 1
2
∂ (Bl+1(Rl))2

∂Rj
− 1

2
∂ (Bl(Rl))2

∂Rj
, (A.101)

with l, j ∈ {1, 2}. Consider, e.g., the derivative of Bl(Rk), k = {l − 1, l},

[Bl(Rk)]2 = [cl,1J1lk + cl,2Y1lk]2 + [cl,1J0lk + cl,2Y0lk]2 (A.102)

Bl
∂Bl
∂Rk

= (cl,1J1lk + cl,2Y1lk)(c′
l,1J1lk + cl,1µlJ

′
1lk + c′

l,2Y1lk + cl,2µlY
′

1lk) (A.103)

+ (cl,1J0lk + cl,2Y0lk)(c′
l,0J0lk + cl,2µlJ

′
0lk + c′

l,2Y0lk + cl,2µlY
′

0lk) (A.104)

where the prime denotes a derivative with respect to the function argument. Finally, all
derivatives must be taken at constant ψt,l, Ivoll and Isϕ,l. In particular, the coefficients
dcl,i
dRk

are obtained from derivatives of Eq.(A.100) with respect to Rk.
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