
Towards Stable and Efficient Adversarial Training
against l1 Bounded Adversarial Attacks

Yulun Jiang * 1 Chen Liu * 2 Zhichao Huang 3 Mathieu Salzmann 1 Sabine Süsstrunk 1

Abstract

We address the problem of stably and efficiently
training a deep neural network robust to adver-
sarial perturbations bounded by an l1 norm. We
demonstrate that achieving robustness against l1-
bounded perturbations is more challenging than
in the l2 or l∞ cases, because adversarial training
against l1-bounded perturbations is more likely
to suffer from catastrophic overfitting and yield
training instabilities. Our analysis links these
issues to the coordinate descent strategy used
in existing methods. We address this by intro-
ducing Fast-EG-l1, an efficient adversarial train-
ing algorithm based on Euclidean geometry and
free of coordinate descent. Fast-EG-l1 comes
with no additional memory costs and no extra
hyper-parameters to tune. Our experimental re-
sults on various datasets demonstrate that Fast-
EG-l1 yields the best and most stable robustness
against l1-bounded adversarial attacks among the
methods of comparable computational complex-
ity. Code and the checkpoints are available at
https://github.com/IVRL/FastAdvL1.

1. Introduction
Comprehensive evaluations (Athalye et al., 2018; Croce
& Hein, 2020b; 2021) have shown that adversarial train-
ing (Madry et al., 2018) and its variants (Alayrac et al.,
2019; Zhang et al., 2019b; Carmon et al., 2019; Wu et al.,
2020; Rebuffi et al., 2021) are the most effective approaches
to counteract the vulnerability of deep neural networks to
adversarial perturbations (Szegedy et al., 2014; Goodfellow
et al., 2014; Moosavi-Dezfooli et al., 2017). At the heart of

*Equal contribution 1School of Computer and Communica-
tion Sciences, EPFL, Lausanne, Switzerland 2Department of
Computer Science, City University of Hong Kong, Hong Kong,
China 3ByteDance. Correspondence to: Yulun Jiang <yu-
lun.jiang@epfl.ch>, Chen Liu <cliu644@cityu.edu.hk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

adversarial training lies the idea of generating adversarial
examples by perturbing the training inputs and using these
examples to update the model parameters.

While effective, adversarial training is typically not effi-
cient. For example, the pioneering work (Madry et al.,
2018) generates adversarial examples by projected gradient
descent (PGD), which requires several forward and back-
ward passes, thus significantly increasing the computational
cost. Several works (Shafahi et al., 2019; Zhang et al.,
2019a; Wong et al., 2020; Chen et al., 2022) have aimed
to improve the efficiency of adversarial training by using
weaker but computationally-cheaper adversarial examples,
such as the ones generated by one-step attacks. However,
such efficient adversarial training methods tend to suffer
from catastrophic overfitting: The models overfit to the
weaker attacks used during training and lose true robustness,
resulting in trivial performance under stronger attacks.

Note that the above-mentioned works focus on the sce-
nario where the perturbations applied to the model input
are bounded by either an l2 or an l∞ adversarial budget.
While such budgets have been well studied and bench-
marked (Croce et al., 2021), robustness against l1-bounded
adversarial attacks remains comparatively underexplored.

In this work, we show that true robustness and efficiency
can jointly be achieved under l1 adversarial budgets. To the
best of our knowledge, our work constitutes the first method
designed for efficient adversarial training given l1 bounded
attacks. It is a challenging task because achieving the opti-
mal robust accuracy under an l1 adversarial budget (Croce
& Hein, 2021) is computationally even more expensive than
under the l2 and l∞ ones (Gowal et al., 2020). Furthermore,
we evidence that adversarial training against l1 bounded
perturbations is less stable. Specifically, our empirical ob-
servations indicate that catastrophic overfitting occurs more
frequently under l1 adversarial budgets than in the l2 and l∞
cases, and that, in contrast with the l2 and l∞ cases, it occurs
even when using multi-step attacks for adversarial training.
In addition, we demonstrate that directly applying the exist-
ing efficient adversarial training methods to l1 adversarial
budgets yields poor performance because of instability.

To address these drawbacks, we first investigate why catas-

1

https://github.com/IVRL/FastAdvL1

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

trophic overfitting is more likely to occur under l1 adver-
sarial budgets. Our analysis links this to the coordinate
descent strategy used in existing methods for l1 robustness:
coordinate descent incurs a strong bias toward generating
sparse perturbations, which leaves the models vulnerable to
dense ones. Therefore, we propose gradient descent based
on Euclidean geometry to generate adversarial examples
to mitigate catastrophic overfitting. That is to say, we use
a gradient descent method similar to the l2 case to search
for stronger attacks within the l1 adversarial budget. The
step size of this gradient descent method is calculated to
ensure one update in our method can cover possible updates
in methods based on the coordinate descent. Furthermore,
to better explore the low dimensional faces of the l1 ball, we
use the multi-ϵ trick, which entails a much larger adversarial
budget for training. We show that our method, which uses
one-step attacks and is called Fast-EG-l1, enables stable
and efficient adversarial training against l1 bounded attacks.
Compared with existing efficient adversarial training meth-
ods, which were developed for l2 or l∞ adversarial budgets,
Fast-EG-l1 yields better robust models against l1 bounded
attacks with fewer hyper-parameters, negligible overhead in
both computation and memory consumption, and without
exhibiting catastrophic overfitting.

To the best of our knowledge, our work is the first one to
systematically study efficient adversarial training methods in
the context of l1 adversarial budgets. Our work encompasses
the following contributions:

• We demonstrate that catastrophic overfitting occurs
more frequently in the context of l1 adversarial bud-
gets. Our analysis connects this problem to the coor-
dinate descent strategy used in existing methods. Due
to its bias towards sparse perturbations, coordinate de-
scent cannot generate strong perturbations for training
without carefully tuning hyper-parameters.

• We propose Fast-EG-l1, an efficient adversarial train-
ing method based on Euclidean geometry and thus free
of coordinate descent. Compared with existing meth-
ods, Fast-EG-l1 has fewer hyper-parameters, negligible
overhead in both computation and memory.

• Our extensive analyses on diverse datasets demonstrate
that Fast-EG-l1 yields the best robustness against l1-
bounded attacks among the methods with similar com-
putational complexity. Moreover, Fast-EG-l1 is stable
and does not suffer from catastrophic overfitting.

2. Background and Related Works
A deep neural network can be represented by a function
f : Θ × RM → RC , which maps an M -dimensional in-
put x to a C-dimensional output y and is parameterized

by θ ∈ Θ. Given a training set {(xi, yi)}Ni=1 and a loss
function l, normal training, i.e., training without attacks,
aims to find the optimal θ to minimize the empirical risk
1
N

∑N
i=1 l(f(θ,xi), yi). Since we do not change the label

of the instances in this work, we drop yi in the formulation
for notation simplicity. Furthermore, we use L to denote
the composition function of l and f : L = l ◦ f . Then, the
empirical risk is 1

N

∑N
i=1 L(θ,xi).

In robust learning, we use the adversarial budget to define
the set of all allowable perturbations. We consider an lp

adversarial budget, parameterized by its size ϵ: S(p)ϵ :=
{∆ | ∥∆∥p ≤ ϵ}. Therefore, robust learning solves the
min-max optimization problem:

min
θ

1

N

N∑
i=1

max
∆∈S(p)

ϵ

L(θ,xi +∆) . (1)

2.1. Training on Different Adversarial Budgets

The deep neural network f is high-dimensional and non-
convex, and Weng et al. (2018) have proven that solving
problem (1) is at least NP-complete. Despite these chal-
lenges, adversarial training (Madry et al., 2018) stands out
as a reliable and popular method to obtain robust deep neural
networks (Athalye et al., 2018; Croce & Hein, 2020b).

As the name indicates, adversarial training learns the model
parameters using adversarial examples generated on the fly.
This requires an attack algorithm to generate adversarial
examples during training. Almost all existing powerful at-
tack algorithms (Madry et al., 2018; Croce & Hein, 2020a;b;
2021) are based on gradient descent or ascent. Specifically,
they consider the first-order Taylor expansion of the loss
function in (1) and then maximize the linear approximation:

max
∆∈S(p)

ϵ

L(θ,xi +∆) ≃ L(θ,xi) + max
∆∈S(p)

ϵ

⟨∆, g⟩

where g = ▽∆L(θ,xi +∆)|∆=0 .
(2)

The maximum operator on the right-hand side of (2) is
applied over an inner product, so one can easily obtain
the optimal ∆. Let g represent the gradient of the input.
For an l∞ adversarial budget (p = ∞), the optimal ∆ is
ϵ · sign(g); for an l2 adversarial budget (p = 2), the op-
timal ∆ is ϵ · g/∥g∥2 (Maini et al., 2020). Equation (2)
considers the Taylor expansion for the entire adversarial
budget, which might be too large to obtain an accurate ap-
proximation for the nonlinear function L. Alternatively,
previous works update ∆ in multiple iterations and con-
sider the Taylor expansion within a small lp ball of radius
α, either fixed (Madry et al., 2018) or adaptive (Croce &
Hein, 2020b), and centered at the current ∆. After each
iteration, ∆ is projected to the adversarial budget S(p)ϵ . This
scheme is referred to as Projected Gradient Descent (PGD).

2

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Appendix A.1 provides the pseudo-code and more details
for adversarial training using PGD.

For an l1 adversarial budget, the theoretical optimal ∆ is a
one-hot vector whose j-th element is ϵ or −ϵ. Here, j =
argmaxi|gi|, and the sign of the perturbation is the same
as the sign of gj . That is, one can use coordinate descent
to update the adversarial perturbation ∆. However, the
input space I is typically bounded, e.g., image pixel values
should be between 0 and 1. Therefore, one-hot coordinate
descent not only converges slowly but also perturbs the
inputs outside their valid range. As a result, instead of using
one-hot coordinate descent, Tramer & Boneh (2019); Maini
et al. (2020) consider coordinate descent with K-hot values,
with K a hyper-parameter larger than 1. Specifically, ∆
is a vector with K non-zero elements, corresponding to
the K elements of the gradient g with the largest absolute
values. The signs of these non-zero elements in ∆ are the
same as the corresponding signs of the entries in g. To
ensure ∥∆∥1 ≤ ϵ, the absolute values of these non-zero
elements are all ϵ/K. Similar to the l2 and l∞ cases, we
can use Taylor expansion in a small ball and run the K-hot
coordinate descent for multiple iterations with a step size α.
The resulting ∆ after each iteration is projected to the set
of allowable perturbations based on the adversarial budget
S(1)ϵ . This algorithm is referred to as SLIDE (Tramer &
Boneh, 2019). We will extensively analyze its performance
and compare it with our method, so its pseudo-code is given
in Algorithm 1 below. We present training on one instance
in the pseudo-codes of this paper for notation simplicity, we
use mini-batch training in practice.

Algorithm 1 Adversarial Training with SLIDE
1: Input: Step size α, number of updated coordinates K,

iteration number Niter, adversarial budget S(1)ϵ , model
parameters θ.

2: for (x, y) in the training set do
3: Uniformly sample ∆ from S(1)ϵ

4: for Iteration in 1, 2, ..., Niter do
5: Calculate the gradient g ← ▽∆L(θ,x+∆)
6: T ← {i|gi in the top K largest elements of |g|}

7: Construct the update di ←

{
α/K, if i ∈ T
0, otherwise

8: Update ∆← ΠS(1)
ϵ

(∆ + d)
9: end for

10: Calculate the loss L(θ,x+∆) and update θ
11: end for
12: Output: Updated model parameters θ

When optimizing ∆ for multiple iterations, the choice of
the step size α in each iteration is crucial. For l1 adversarial
budgets, the choice of K is also critical. Croce & Hein
(2020b) and Croce & Hein (2021) adaptively adjust these

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 R
ob

us
t A

cc
ur

ac
y

Multi-step Single-step
AutoPGD
SLIDE

FGSM-RS
Fast-EG-l1

Figure 1. Learning curves of robust accuracy evaluated by 20-step
AutoPGD on the CIFAR10 test set. We include both multi-step
(10-step AutoPGD, 10-step SLIDE) and single-step (FGSM-RS,
our proposed Fast-EG-l1) adversarial training methods. SLIDE
and FGSM-RS suffer from catastrophic overfitting, whereas our
method Fast-EG-l1 achieves competitive performance with that of
the computationally much more expensive 10-step AutoPGD.

hyper-parameters based on the loss values in the previous
iterations and significantly improve the performance for
l∞, l2 and l1 adversarial budgets. However, these methods
use more iterations than their counterparts with constant
step size, which makes them computationally expensive for
adversarial training. Therefore, we need efficient methods
to make model robust against various attacks.

2.2. Efficient Adversarial Training

Despite being effective, adversarial training converges more
slowly (Liu et al., 2020) and has a significant computational
overhead caused by generating adversarial perturbations.
On the CIFAR10 dataset, compared with normal training,
adversarial training in Madry et al. (2018) needs 7 addi-
tional forward-backward passes in one mini-batch update.
Several methods (Shafahi et al., 2019; Zhang et al., 2019a;
Wong et al., 2020; Zheng et al., 2020; Sriramanan et al.,
2021; de Jorge et al., 2022) propose to use weaker but faster
one-step attacks to improve the efficiency of adversarial
training. However, they may suffer from catastrophic over-
fitting even with careful tuning of hyper-parameters. When
catastrophic overfitting happens, the model’s robust accu-
racy on weaker training adversarial examples quickly and
significantly increases. However, the robust accuracy on
adversarial examples generated by stronger attacks quickly
and significantly decreases to 0. That is, the model overfits
the weaker adversarial examples used for training instead of
achieving true robustness. Catastrophic overfitting is shown
to arise from distorted loss landscape in the input space
(Kang & Moosavi-Dezfooli, 2021).

3

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Compared with the l2 and l∞ cases, the efficiency issue
is even more apparent with l1 adversarial budgets. On the
CIFAR10 dataset, Croce & Hein (2021) uses at least 10
additional forward-backward passes to obtain competitive
robustness against l1-bounded attacks. By contrast, the ad-
versarial training method introduced in Madry et al. (2018)
uses 7 additional such passes against l∞-bounded attacks.
Added to that, as we show in the next section, catastrophic
overfitting occurs more often with l1 adversarial budgets, in-
cluding when training against multi-iteration attacks. There-
fore, stably and efficiently obtaining robust models against
l1-bounded attacks remains an important challenge.

Although efficient algorithms originally designed for l2 or
l∞ adversarial budgets are also applicable to l1 adversarial
budgets, in the next sections, we show that applying them
to the l1 case yields sub-optimal performance or even catas-
trophic overfitting. Therefore, we propose a new method
called Fast-EG-l1 to improve robustness. The learning
curves in Figure 1 demonstrate the effectiveness of our
method. To the best of our knowledge, this is the first effi-
cient adversarial training method designed specifically for
l1 adversarial budgets.

3. Catastrophic Overfitting in the Context of l1
Adversarial Budget

In this section, we study the catastrophic overfitting phe-
nomenon in the context of an l1 adversarial budget. We
use the CIFAR10 dataset (Krizhevsky et al., 2009) and set
ϵ = 12, which follows the settings in (Tramer & Boneh,
2019; Croce & Hein, 2021). Following (Wong et al., 2020),
we use an 18-layer pre-activation residual network (Preac-
tResNet18) (He et al., 2016a) and train the model for 40
epochs. We use SGD with a momentum factor of 0.9. The
learning rate is initialized to 0.05, and is divided by a factor
of 10 after the 30th and the 35th epochs.

3.1. Adversarial Training against Multi-step Attacks

We start our investigation with a typical multi-step adver-
sarial training method: SLIDE in Algorithm 1 (Tramer &
Boneh, 2019). We use Niter = 10 iterations to generate
adversarial examples. Besides Niter, SLIDE has two key
hyper-parameters: the step size α and the number of co-
ordinates updated per iteration K. Table 1 provides the
results of training models under various settings of α and K.
For reference, the current state-of-the-art method, training
against AutoPGD (Croce & Hein, 2021), using the same
number of epochs has a robust accuracy of 55.77%.

SLIDE can be considered an l1 variant of PGD adversarial
training. Compared with the l2 and l∞ cases, the obser-
vations in Table 1 indicate that it is more challenging to
achieve robustness against l1 adversarial budgets. In the l2

α\K 20 30 50 100 150 200
1.5 30.95 40.47 51.64 46.94 44.57 39.33
3.0 28.60 34.54 40.54 52.77 47.11 43.00
4.5 32.87 35.94 40.21 53.47 48.47 43.51
6.0 27.70 30.62 35.98 44.37 48.76 45.73

Table 1. Robust accuracy (in %) of the best checkpoint obtained
with 10-step SLIDE under different settings of α and K. A
gray background indicates that catastrophic overfitting occurs

in the corresponding setting, with the robust accuracy of the final
checkpoint being close to zero.

and l∞ cases, adversarial training against multi-step PGD
does not suffer from catastrophic overfitting, while we see
catastrophic overfitting occurring in the l1 case even when
using 10 steps to generate adversarial examples. Specifi-
cally, catastrophic overfitting occurs more frequently with
small values of K. Furthermore, when catastrophic overfit-
ting does not happen, the robust accuracy is very sensitive
to the choice of K and α, which makes it difficult for practi-
tioners to find the optimal hyper-parameters. To conclude,
it is more challenging to achieve robustness in the l1 case.

3.2. Existing Efficient Adversarial Training Methods

To the best of our knowledge, no existing works specifically
address efficient adversarial training against l1 adversarial
attacks. In this section, we evaluate a few existing efficient
adversarial training methods that were originally designed
or evaluated against l2 or l∞ attacks. Our experiments
demonstrate that directly applying them to the l1 case does
not yield satisfactory performance.

30 50 75 100 150 200 250 300
Values of K

FreeAT

FGSM-RS

AdaAT

Grad-Align

N-FGSM

ATTA (= 3)

ATTA (= 8)

9.8 19.2 27.0 28.3 28.9 30.2 32.2 30.2

12.4 21.8 30.2 34.0 35.3 36.3 32.0 27.4

21.9 26.2 29.3 27.1 31.8 30.2 24.4 20.5

8.1 24.4 31.1 34.9 33.9 36.4 33.2 27.8

10.3 18.0 30.6 39.2 44.2 39.3 37.8 33.7

12.9 43.2 43.0 40.5 35.7 34.7 31.3 29.7

19.0 22.2 25.4 46.6 42.6 41.4 39.5 37.7

Figure 2. Robust accuracy (in %) of the best checkpoint of existing
fast adversarial training methods with different K values. Values
of α are already finetuned.

Specifically, we evaluate free adversarial training
(FreeAT) (Shafahi et al., 2019), fast adversarial training
(FGSM-RS) (Wong et al., 2020), adaptive single-step
adversarial training (AdaAT) (Kim et al., 2021), gradient
align (Grad-Align) (Andriushchenko & Flammarion, 2020),
the noisy fast gradient sign method (N-FGSM) (de Jorge

4

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

et al., 2022) and adversarial training with transferable
attacks (ATTA) (Zheng et al., 2020) with different values of
K. We optimize other hyper-parameters of these methods
and defer the setting details to the Appendix C.1. The
results are summarized in Figure 2 and clearly show that all
these methods suffer from catastrophic overfitting with a
small K. When using a bigger K, catastrophic overfitting
disappears and the performance improves. However, the
robust accuracy in this case remains unsatisfactory and
lower than that of SLIDE in Table 1.

For all methods in Figure 2, adversarial examples were gen-
erated by one-step attacks for updating parameters. ATTA
strengthens the adversarial attacks used for training without
introducing any computational overhead. It stores the adver-
sarial perturbations for each training instance and uses them
as perturbation initialization in the next epoch. Despite bet-
ter stability and no computational overhead compared with
FGSM-RS, ATTA has a considerable memory overhead,
since it needs to store the initial perturbations for all training
instances. This memory overhead prevents ATTA from scal-
ing to large datasets, such as ImageNet (Deng et al., 2009).
In Figure 2, we provide the results of ATTA using a small
step size α = 3 and a large step size α = 8. We provide
more analyses and results in Appendix C.2.

3.3. Analysis of Catastrophic Overfitting

The observations in Section 3.1 and Section 3.2 evidence the
stability issues of existing training methods on l1 adversarial
budgets. That is, it is more challenging to design efficient
and stable algorithms to obtain such robustness. Unlike the
l2 and l∞ cases, existing methods use coordinate descent
to train robust models in the l1 scenario, which introduces
an additional hyper-parameter K. With the other hyper-
parameters, such as the step size α, fixed, the results in both
Table 1 and Figure 2 indicate that catastrophic overfitting
occurs more frequently when K is small.

From an optimization perspective, the number of possible
perturbation updates in one iteration of K-hot coordinate

descent is Ndir = 2K
(
M
K

)
, where

(
M
K

)
is the number of

K-combination among M objects. Since the input dimen-
sion M is much larger than K, i.e., M ≫ K, Ndir increases
with K. Therefore, there are a limited number of possible
update directions when K is small. This is problematic
for coordinate descent: in addition to slower convergence
in the general case, it may even fail to find a local mini-
mum when optimizing a non-smooth function (Spall, 2012).
We demonstrate this issue using a 2-D contour example in
Figure 3. Since many neural networks use non-smooth ac-
tivation functions, such as ReLU (Krizhevsky et al., 2012)
and leaky ReLU (Radford et al., 2015), it would be difficult
for coordinate descent to find a good adversarial example.

We defer a more comprehensive analysis to Appendix B.1.

In addition to the convergence issue demonstrated in Fig-
ure 3, the coordinate descent we use to generate adversarial
examples within the l1 adversarial budget has a strong bias
toward generating sparse perturbations. As a result, the
model may overfit to these sparse perturbations and lose
robustness against dense ones within the l1 adversarial bud-
get. We can demonstrate this using SLIDE in Algorithm 1.
After running K-hot coordinate descent for Niter iterations,
we obtain the accumulated perturbation of at most KNiter

non-zero elements. In addition, the upper bound KNiter

can be reached only when the K-hot coordinates in each of
the Niter iterations never overlap. In practice, the gradients
of the loss ▽∆L in different iterations are correlated, so
the actual number of non-zero elements of the accumulated
perturbation is smaller than the theoretical upper bound
KNiter. Furthermore, the following lemma indicates that
the projection after each iteration makes the perturbation ∆
sparser. The proof is deferred to Appendix B.2.

Lemma 3.1. ∀∆ori, ϵ, if ∆prj = argmin∆∥∆ − ∆ori∥2
s.t. ∥∆∥1 ≤ ϵ, then we have ∥∆prj∥0 ≤ ∥∆ori∥0.

Although we can initialize ∆ by uniform sampling from
the adversarial budget to make it originally dense, such a
trick turns out in practice to yield very limited improvement
in terms of performance and stability. This is because we
usually perturb ∆ outside the adversarial budget after coor-
dinate descent, and then the projection operator makes ∆
sparse. In addition, a smaller K means a larger effective
step size α/K. The following lemma indicates that, with a
larger effective step size, the post-projection perturbation
becomes sparser. The proof is deferred to Appendix B.3.

Lemma 3.2. ∀∆ ∈ Sϵ := {∆|∥∆∥1 ≤ ϵ}, ∀α1 ≥
α2 > 0, if v satisfying ∆ + α2v /∈ Sϵ, then we have
∥ΠSϵ (∆ + α1v) ∥0 ≤ ∥ΠSϵ (∆ + α2v) ∥0

Therefore, catastrophic overfitting is more likely to occur
with a small K, which is consistent with the results in Ta-
ble 1 and Figure 2.

We further empirically verify the findings above. We apply
AutoAttack (AA) (Croce & Hein, 2021) to the models just
before and just after catastrophic overfitting when training
with SLIDE. Figure 4 plots the distribution of the l0 norm,
which is the number of non-zero elements and indicates the
sparsity, of the perturbations generated by AA. Figure 6 in
Appendix C.2 provides a visualization of the perturbations.
We can clearly see that the adversarial examples generated
by AA to fool the model after catastrophic overfitting have a
much larger l0 norm than the ones before catastrophic over-
fitting. This observation is consistent with our analysis. The
adversarial perturbations generated by SLIDE are sparse,
and when the model overfits to these perturbations, it loses
robustness against relatively dense ones.

5

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

3 2 1 0 1 2 3
3

2

1

0

1

2

3

2
4

6

6

8

8 10

10

Figure 3. Example showing coordinate descent
trapped in suboptimal regions with non-smooth
functions. We plot the contours of the function
2× |x− y|+ |x+ y|. At the point (−2,−2),
both coordinate descent directions, marked by
red arrows, increase the function value.

0 200 400 600 800
l0 norm of the Perturbation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rc

en
ta

ge

Before CO
After CO

0 25 50 75 100 125 150 175 200
l0 Norm Constraint

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ro
bu

st
 A

cc
ur

ac
y

Before CO
After CO

Figure 4. Left: Distributions of the l0 norm of the perturbations generated by AutoAt-
tack (AA) before and after catastrophic overfitting (CO). Right: Robust accuracy of
the checkpoints before and after CO evaluated by varying values of l0 norm constraint
τ in the adversarial budget Tϵ,τ := {∆|∥∆∥1 ≤ ϵ, ∥∆∥0 ≤ τ} (ϵ is fixed). The model
loses its robustness against less sparse attacks after CO.

To evaluate the robustness of the model against pertur-
bations of different sparsity levels within the adversarial
budget S(1)ϵ , we define the set of perturbations Tϵ,τ :=
{∆|∥∆∥1 ≤ ϵ, ∥∆∥0 ≤ τ} and calculate the robust ac-
curacy of the model on Tϵ,τ before and after catastrophic
overfitting. Perturbations in Tϵ,τ are not only bounded by
their l1 norm but also by their l0 norm. Although some
methods generate perturbations with small l0 norms, they
have unbounded adversarial budgets (Modas et al., 2019) or
have prohibitively expensive complexity (Su et al., 2019).
To tackle this issue, we run AutoPGD using the adversarial
budget S(1)ϵ and project the perturbation in each iteration
to Tϵ,τ to estimate the robust accuracy on Tϵ,τ . We provide
more detail in Appendix A.2, including pseudo-code in Al-
gorithm 5. With ϵ fixed, Figure 4 demonstrates the robust
accuracy on Tϵ,τ with varying τ . Our results indicate that
the model is still robust to sparse perturbations, i.e., a small
τ , even after catastrophic overfitting. For models after when
catastrophic overfitting happens, the robustness becomes
lower and lower when we include more and more dense
attacks within the adversarial budget. This indicates that the
model loses its robustness against less sparse perturbations
in this phase. By contrast, the robust accuracy of the model
before when catastrophic overfitting happens first decreases
with the increase in τ but later becomes stable. This indi-
cates that dense attacks do not help much when catastrophic
overfitting does not happen; the most powerful perturbations
for the models in this case are still sparse.

4. Efficient Adversarial Training based on
Euclidean Geometry

In Section 3, we analyzed why catastrophic overfitting oc-
curs more frequently with an l1 adversarial budget and con-
nected this problem to the use of coordinate descent. There-

fore, we propose to stabilize adversarial training, especially
efficient adversarial training, by using adversarial examples
generated with another strategy.

Using an optimization method other than coordinate descent
can be thought of as optimizing the inner maximization
problem in a geometry other than the one based on the l1
norm. We note that the perturbation update rule of SLIDE
will degrade to the one based on l∞ geometry when K is
as large as M . However, Table 1 and Figure 2 indicate
that SLIDE yields stable but sub-optimal performance with
a very large K. In contrast to coordinate descent, attacks
based on the l∞ norm have a strong bias to dense perturba-
tions, since they update ∆ by the same magnitude in each
dimension. Failing to generate sparse perturbations is also
problematic, because Figure 4 indicates that strong pertur-
bations are mostly sparse when catastrophic overfitting does
not occur.

As a result, we choose Euclidean geometry, the geometry we
use in the perturbation update rule for l2 adversarial budgets.
Note that, while we modify the descent direction used to
optimize the adversarial perturbations, we still search for the
optimal perturbations in the l1 adversarial budget. Therefore,
the projection operator after the perturbation update in each
iteration remains the same. The pseudo-code of our method
is provided in Algorithm 2, and we refer to it as Fast-EG-
l1. Fast-EG-l1 uses one-step attacks based on Euclidean
geometry to efficiently generate adversarial perturbations
within the l1 adversarial budget for training. Compared with
SLIDE, Fast-EG-l1 does not use coordinate descent and thus
does not require the extra hyper-parameter K. Compared
with ATTA, Fast-EG-l1 randomly initializes the perturbation
and thus does not yield extra memory consumption, which
enables it to scale to larger datasets.

It should be pointed out that Fast-EG-l1 is different from

6

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Algorithm 2 Our proposed method Fast-EG-l1
1: Input: Step size α, adversarial budget used for training
S(1)ϵtrain , model parameters θ.

2: for (x, y) in the training set do
3: Uniformly sample ∆ from S(1)ϵtrain .
4: Calculate the gradient g ← ▽∆L(θ,x+∆).
5: Update ∆← ΠS(1)

ϵtrain

(∆ + αg/∥g∥2).
6: Calculate the loss L(θ,x+∆) and update θ.
7: end for
8: Output: Trained model parameters θ.

fast adversarial training (Wong et al., 2020) for l2 adversar-
ial budgets. Despite a similar update rule for perturbations,
Fast-EG-l1 projects the perturbation back to an l1 adversar-
ial budget as in (Croce & Hein, 2021). More importantly,
the motivations of Fast-EG-l1 are rather different from fast
adversarial training (Wong et al., 2020). Fast adversarial
training is derived from maximizing the first-order Taylor
expansion of the loss objective function as demonstrated in
Section 2, and we would get SLIDE under the same motiva-
tion. However, as Section 3 indicates, SLIDE is more likely
to suffer from catastrophic overfitting and fails to robustify
models against non-sparse attacks. Therefore, Fast-EG-l1
is proposed to update adversarial perturbations by dense
vectors to mitigate catastrophic overfitting.

4.1. Step Size Calculation

One practical challenge here relates to choosing an appro-
priate step size α in Algorithm 2, since we use a different
geometry from the adversarial budget. When using the same
geometry as the adversarial budget, we can set α propor-
tionally to ϵ, such as α = 1.25ϵ in Wong et al. (2020) and
α = 0.25ϵ in Madry et al. (2018). By contrast, in Fast-EG-
l1, we consider the step size α such that the l2 ball of radius
α centered on the clean input covers all allowable adversar-
ial examples defined by the adversarial budget S(1)ϵ and the
input space I. The following lemma formally demonstrates
that α =

√
ϵ is sufficiently large to satisfy this requirement

under the condition that the input is bounded in [0, 1]. The
proof is deferred to Appendix B.3.

Lemma 4.1. Given the input x, let Sx′ denote the set of
allowable adversarial examples: {x′|∥x′ − x∥1 ≤ ϵ, 0 ≤
x′ ≤ 1}, and Sball denote the l2 ball of radius

√
ϵ centered

on x: {x′|∥x′ − x∥2 ≤
√
ϵ}. Then, we have Sx′ ⊆ Sball.

Therefore, we use α =
√
ϵ as the default step size.

4.2. Multi-ϵ Strategy

Besides adjusting the value of the step size α, we also uti-
lize the multi-ϵ strategy (Croce & Hein, 2021), because the
optimal adversarial perturbation can be on the low dimen-

sional faces of the l1 adversarial budget, i.e., the “corners”
of the l1 ball. We noticed that perturbation updates based
on Euclidean geometry struggle at finding such perturba-
tions. Therefore, we use a larger adversarial budget during
training, such as 2× the value of ϵ used for testing, to better
explore the “corners” of the test adversarial budget. Dif-
ferent from Croce & Hein (2021) which uses multi-ϵ for
attacks and gradually decreases the value of ϵ during the
iteration, we use multi-ϵ for training and keep the size of ad-
versarial budget fixed during training. For notation, we use
ϵtrain to denote the size of the training adversarial budget.

5. Experiments
In this section, we demonstrate the effectiveness of our pro-
posed method: Fast-EG-l1. We conduct comprehensive
experiments on popular benchmarks, including CIFAR10,
CIFAR100 (Krizhevsky et al., 2009) and ImageNet100 (Rus-
sakovsky et al., 2015). All these datasets consist of RGB
images, whose resolution is 32× 32 for CIFAR10 and CI-
FAR100, and 224 × 224 for ImageNet100. The size of
the l1 adversarial budgets, i.e., ϵ, is set to 12, 6 and 72
for CIFAR10, CIFAR100, and ImageNet100, respectively.
For CIFAR10 and CIFAR100, we use PreactResNet18 (He
et al., 2016b) and train all the models for 40 epochs. For
ImageNet100, we use ResNet34 and train all the models
for 25 epochs. We evaluate the robustness of all models by
AutoAttack (Croce & Hein, 2021), which is an ensemble of
four different adversarial attacks and considered as the cur-
rent state-of-the-art evaluation metric. We use one NVIDIA
A100 GPU for the experiments on CIFAR10 and CIFAR100;
and 2 NVIDIA A100 GPUs for the experiments on Ima-
geNet100. More details are available in Appendix C.1.

5.1. Comparison with Existing Methods

We first compare our approach with the existing one-step
adversarial training methods. The baselines include fast
adversarial training (FGSM-RS) (Wong et al., 2020), adver-
sarial training with transferable attacks (ATTA) (Zheng et al.,
2020), adaptive one-step adversarial training (AdaAT) (Kim
et al., 2021), fast adversarial training with gradient align-
ment (Grad-Align) (Andriushchenko & Flammarion, 2020),
noise FGSM (N-FGSM) (de Jorge et al., 2022) and nuclear
norm adversarial training (NuAT) (Sriramanan et al., 2021).
Note that Grad-Align and NuAT are regularization methods
that based on gradient alignment regularization and nuclear
norm regularization, repspectively. Our algorithm, Fast-EG-
l1, uses the default values ϵtrain = 2ϵ and α =

√
ϵ in all

settings. All baseline algorithms use coordinate descent to
generate adversarial examples, so in addition to the step size
α, they have an additional hyper-parameter K to tune. As
shown in Section 3, the choice of hyper-parameters plays a
crucial role in training for baselines. Therefore, we finetune

7

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Method CIFAR10 (ϵ = 12) CIFAR100 (ϵ = 6) ImageNet100 (ϵ = 72)
AA (%) Time (h) AA (%) Time (h) AA (%) Time (h)

AutoPGD 55.77 2.58 42.18 2.58 - -
FGSM-RS 36.29 0.76 33.23 0.71 36.64 22.12

ATTA 46.57 0.67 33.74 0.68 - -
AdaAT 31.84 0.88 28.64 0.84 28.62 26.96

Grad-Align 36.38 1.52 33.19 1.52 - -
N-FGSM 44.21 0.65 35.79 0.66 30.28 23.53

NuAT 48.35 1.01 36.46 1.05 45.82 29.18
Fast-EG-l1 50.27 0.67 38.03 0.67 46.74 22.11

Table 2. Robust accuracy (in %) evaluated by AutoAttack (AA) and training time in hours when we run different methods on CIFAR10,
CIFAR100, and ImageNet100. Hyper-parameters of baselines are finetuned. The results of AutoPGD, ATTA and Grad-Align on
ImageNet100 are not reported because of prohibitively-high computational or memory overhead.

hyper-parameters and report the highest accuracy achieved
for each method. In addition, we include training against
10-step AutoPGD as a reference, since it achieves the best
robustness against l1 perturbations (Croce & Hein, 2021).

Our results are summarized in Table 2, where we report
the robust accuracy evaluated by AutoAttack (AA) and the
total training time. It is worth noting that training with
AutoPGD is computationally expensive, as it involves 11
forward and backward passes per mini-batch update, while
our proposed Fast-EG-l1 in Algorithm 2 requires only 2
such passes. Moreover, the memory overhead of ATTA
and Grad-Align on ImageNet100 is too large for 2 NVIDIA
A100 GPUs. Therefore, we do not report the results of
AutoPGD, ATTA and Grad-Align on ImageNet100 due to
their prohibitively-high computational or memory overhead.

Robust accuracy. As observed in Table 2, our proposed
algorithm Fast-EG-l1 achieves the highest performance
among the efficient adversarial training methods on all
datasets. Moreover, as demonstrated in Table 1 and Figure 2
in Section 3, the performance of the baselines is sensitive to
the choice of α and K, so it is not easy to quickly identify
the optimal hyper-parameters. Furthermore, the optimal
hyper-parameters of one method vary significantly for dif-
ferent datasets, especially in the presence of different input
dimensions. This complicates the hyper-parameter selec-
tion process for these methods. By contrast, our proposed
Fast-EG-l1 is free of coordinate descent and does not have
the hyper-parameter K. Based on Lemma 4.1, we simply
set α =

√
ϵ for all datasets and achieve better performance

than the well-tuned baselines.

Computational and memory costs. Fast-EG-l1 is among
the fastest methods in Table 2, since it does not require
calculating any regularization terms like Grad-Align and
NuAT. Unlike ATTA, which stores the perturbation of each
training input, and Grad-Align, which relies on second-order
gradients, Fast-EG-l1 has negligible memory overhead and
is thus applicable to large datasets, such as ImageNet100,

on a moderate number of GPUs.

Clean accuracy. We report the results of clean accuracy
of each method in Table 6 at Appendix C.2. Fast-EG-l1
achieves comparable clean accuracy with efficient adver-
sarial training baselines of competitive robust accuracy
(ATTA and NuAT). Compared to AutoPGD, Fast-EG-l1
pays around 3% cost on clean accuracy but is 4 times faster.
Moreover, as noted in Table 4, one could also tune the value
of ϵtrain in Fast-EG-l1 for better trades-off between clean
and robust accuracy.

Regularization. Fast-EG-l1 is orthogonal to any regular-
ization schemes, such as Grad-Align and NuAT in Table 2.
Therefore, one can, for example, incorporate the nuclear reg-
ularization term of NuAT into Fast-EG-l1 to further improve
the performance. In Table 3 we demonstrate the results of
incorporating nuclear norm regularization into Fast-EG-l1,
where λ denotes the weight factor of nuclear norm regular-
ization and other settings are kept the same as in Table 2.
The results in Table 3 indicate that a small regularization
weight is helpful to further improve the robustness of our
method; while a large weight might hurt the performance.
With a proper choice of the weight factor, our method yields
51.37%, 39.75%, 48.82% robust accuracy on CIFAR10, CI-
FAR100 and ImageNet100, respectively. Nevertheless, it’s
also worth noting that in this case, the method needs 70%
additional training time on top of Fast-EG-l1, which makes
the total training time similar to that of NuAT.

Dataset \ λ 0 0.1 0.5 1 3
CIFAR10 50.27 51.08 51.23 51.37 49.43

CIFAR100 38.03 39.75 38.69 38.06 31.29
ImageNet100 46.74 48.82 48.70 - -

Table 3. Robust accuracy (in %) when incorporating nuclear norm
regularization into our proposed Fast-EG-l1. λ denotes the weight
factor of the regularization term, so λ = 0 represents the results
of Fast-EG-l1 without regularization. Other hyper-parameters are
kept the same as Table 2.

8

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

3 6 9 12 15 18 21 24
Adversarial Budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ro
bu

st
 A

cc
ur

ac
y

AutoPGD
FGSM-RS
Fast-EG-l1, =
Fast-EG-l1, = 0.75
Fast-EG-l1, = 0.5
Fast-EG-l1, = 1.25

Figure 5. Robust accuracy evaluated by AutoAttack when using
different values of α and ϵ on CIFAR10. We plot the results of
AutoPGD and FGSM-RS for reference.

5.2. Ablation Studies

We focus on the CIFAR10 dataset for our ablation studies.

Different values of ϵ. We varied the value of ϵ from 3 to
24 while keeping α =

√
ϵ. Note that, ϵ is the size of the tar-

geted adversarial budget, which is also used for testing and
thus different from ϵtrain in Section 4.2 The results on CI-
FAR10 are provided in Figure 5, showing a smooth decrease
in robust accuracy with an increasing ϵ. This indicates that
our method and proposed hyper-parameter settings can be
applied to a larger ϵ without leading to catastrophic overfit-
ting. Results of varing ϵ on ImageNet100 are available at
Table 8 in Appendix C.2.

Different step sizes α. In addition to the default step size
α =
√
ϵ, we also run Fast-EG-l1 using different step sizes

α. Specifically, we set α to be 0.5
√
ϵ, 0.75

√
ϵ and 1.25

√
ϵ.

For each value of α, we also vary the value of ϵ from 3 to
24 and plot the robust accuracy in Figure 5. We also plot
the robust accuracy when training against FGSM-RS and
10-step AutoPGD (Croce & Hein, 2021) for reference. The
results evidence that the performance for different step sizes
α is comparable. That is, the performance of Fast-EG-l1
is not very sensitive to the choice of step size as long as
the step size is close to

√
ϵ, which is the theoretical result

suggested by Lemma 3.2. For all choices of step size, Fast-
EG-l1 yields better performance than FGSM-RS, which
needs careful hyper-parameter tuning to avoid catastrophic
overfitting. It also narrows down the performance gap be-
tween the efficient one-step methods and computationally
expensive multi-step methods such as 10-step AutoPGD.

With and without multi-ϵ Strategy. Finally, we compare
the performance of Fast-EG-l1 with and without the multi-ϵ
trick. Specifically, we keep the size of targeted adversarial
budget ϵ = 12 and set ϵtrain to be ϵ, 1.5ϵ, 2ϵ, 2.5ϵ and 3ϵ. In

addition, the step size α is always
√
ϵ based on Lemma 3.2

regardless of ϵtrain. The clean and robust accuracy of Fast-
EG-l1 under these settings are provided in Table 4. We
can see that ϵtrain controls the trade-off between clean and
robust accuracy. All the settings where ϵtrain > ϵ have com-
parable and competitive performance on robust accuracy,
while a large value of ϵtrain might hurt the performance on
clean accuracy. Nevetheless, using the same ratio ϵtrain/ϵ
works well across different datasets. That is to say, although
ϵtrain = 2ϵ works the best on CIFAR10, we do not fine-
tune ϵtrain and simply use ϵtrain = 2ϵ for all other datasets
in Table 2. The competitive performance of Fast-EG-l1 in
Table 2 on various datasets indicates that practitioners do
not need to worry about the selection of hyper-parameters
such as ϵtrain when using Fast-EG-l1.

ϵtrain ϵ 1.5ϵ 2ϵ 2.5ϵ 3ϵ
Clean (%) 69.70 78.35 76.14 72.77 70.05
Robust (%) 38.15 48.85 50.27 49.63 48.10

Table 4. Clean and robust accuracy (in %) of Fast-EG-l1 with dif-
ferent sizes of the training adversarial budget ϵtrain on CIFAR10.
The value of ϵ, which is the size of the adversarial budget for
evaluation, is 12.

It is worth noting that the multi-ϵ strategy is also applicable
to baselines in Table 2. In this regard, we report their results
with multi-ϵ strategy in Table 7 of Appendix C.2. Still, our
proposed Fast-EG-l1 obtains the better robust accuracy than
these baselines.

6. Conclusion
In this work, we have studied the design of stable and ef-
ficient adversarial training algorithms against input pertur-
bations bounded by l1 norms. We have demonstrated that
achieving robustness against l1-bounded perturbations is
more difficult than against l2- and l∞-bounded ones be-
cause of more frequent catastrophic overfitting. In addition,
we have shown that the cause of such more frequent catas-
trophic overfitting could be traced to the use of coordinate
descent, as commonly done in existing methods. Based on
this finding, we have designed Fast-EG-l1, which uses gra-
dient descent based on Euclidean geometry and thus without
coordinate descent. Compared with existing methods on l1
adversarial budgets, Fast-EG-l1 has fewer hyper-parameters
and does not yield additional memory consumption. Our
extensive experiments on several datasets have shown that
Fast-EG-l1 yields better robust accuracy than existing effi-
cient adversarial training methods. In future work, we will
investigate how to further narrow down the gap between the
one-step and multi-step adversarial training methods in the
case of l1-bounded perturbations.

9

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

References
Alayrac, J.-B., Uesato, J., Huang, P.-S., Fawzi, A., Stanforth,

R., and Kohli, P. Are labels required for improving ad-
versarial robustness? In Advances in Neural Information
Processing Systems, pp. 12192–12202, 2019.

Andriushchenko, M. and Flammarion, N. Understand-
ing and improving fast adversarial training. Advances
in Neural Information Processing Systems, 33:16048–
16059, 2020.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated
gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. In International
conference on machine learning, pp. 274–283. PMLR,
2018.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
and Liang, P. S. Unlabeled data improves adversarial ro-
bustness. In Advances in Neural Information Processing
Systems, pp. 11190–11201, 2019.

Chen, J., Cheng, Y., Gan, Z., Gu, Q., and Liu, J. Efficient
robust training via backward smoothing. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pp. 6222–6230, 2022.

Croce, F. and Hein, M. Minimally distorted adver-
sarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning, pp.
2196–2205. PMLR, 2020a.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free at-
tacks. In International Conference on Machine Learning,
2020b.

Croce, F. and Hein, M. Mind the box: l 1-APGD
for sparse adversarial attacks on image classifiers.
In International Conference on Machine Learning, pp.
2201–2211. PMLR, 2021.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E.,
Flammarion, N., Chiang, M., Mittal, P., and Hein, M. Ro-
bustBench: a standardized adversarial robustness bench-
mark. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track,
2021. URL https://openreview.net/forum?
id=SSKZPJCt7B.

de Jorge, P., Bibi, A., Volpi, R., Sanyal, A., Torr, P., Ro-
gez, G., and Dokania, P. K. Make some noise: Reli-
able and efficient single-step adversarial training. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=NENo__bExYu.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. ImageNet: A large-scale hierarchical im-
age database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, 2009. doi:
10.1109/CVPR.2009.5206848.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2014.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P.
Uncovering the limits of adversarial training against
norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European conference on
computer vision, pp. 630–645. Springer, 2016b.

Kang, P. and Moosavi-Dezfooli, S.-M. Understanding catas-
trophic overfitting in adversarial training. arXiv preprint
arXiv:2105.02942, 2021.

Kim, H., Lee, W., and Lee, J. Understanding catas-
trophic overfitting in single-step adversarial training.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 8119–8127, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet
classification with deep convolutional neural networks.
In Pereira, F., Burges, C., Bottou, L., and Weinberger,
K. (eds.), Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

Liu, C., Salzmann, M., Lin, T., Tomioka, R., and Süsstrunk,
S. On the loss landscape of adversarial training: Identify-
ing challenges and how to overcome them. Advances in
Neural Information Processing Systems, 33, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant
to adversarial attacks. In International Conference
on Learning Representations, 2018. URL https://
openreview.net/forum?id=rJzIBfZAb.

Maini, P., Wong, E., and Kolter, Z. Adversarial robust-
ness against the union of multiple perturbation models.
In International Conference on Machine Learning, pp.
6640–6650. PMLR, 2020.

10

https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=NENo__bExYu
https://openreview.net/forum?id=NENo__bExYu
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Modas, A., Moosavi-Dezfooli, S.-M., and Frossard, P.
SparseFool: a few pixels make a big difference. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9087–9096, 2019.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and
Frossard, P. Universal adversarial perturbations. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1765–1773, 2017.

Radford, A., Metz, L., and Chintala, S. Unsupervised
representation learning with deep convolutional gener-
ative adversarial networks. In International Conference
on Learning Representations, 2015.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F.,
Wiles, O., and Mann, T. Data augmentation can im-
prove robustness. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=kgVJBBThdSZ.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. ImageNet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Shafahi, A., Najibi, M., Ghiasi, M. A., Xu, Z., Dickerson,
J., Studer, C., Davis, L. S., Taylor, G., and Goldstein,
T. Adversarial training for free! Advances in Neural
Information Processing Systems, 32, 2019.

Spall, J. C. Cyclic seesaw process for optimization
and identification. Journal of optimization theory and
applications, 154(1):187–208, 2012.

Sriramanan, G., Addepalli, S., Baburaj, A., et al. Towards
efficient and effective adversarial training. Advances
in Neural Information Processing Systems, 34:11821–
11833, 2021.

Su, J., Vergas, D. V., and Sakurai, K. One pixel attack
for fooling deep neural networks. IEEE Transactions on
Evolutionary Computation, 23(5):828–841, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference
on Learning Representations, 2014. URL http://
arxiv.org/abs/1312.6199.

Tramer, F. and Boneh, D. Adversarial training and ro-
bustness for multiple perturbations. Advances in Neural
Information Processing Systems, 32, 2019.

Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Daniel, L., Boning, D., and Dhillon, I. Towards fast

computation of certified robustness for relu networks.
In International Conference on Machine Learning, pp.
5276–5285. PMLR, 2018.

Wong, E., Rice, L., and Kolter, J. Z. Fast is bet-
ter than free: Revisiting adversarial training. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BJx040EFvH.

Wu, D., Xia, S.-T., and Wang, Y. Adversarial weight pertur-
bation helps robust generalization. Advances in Neural
Information Processing Systems, 33, 2020.

Zhang, D., Zhang, T., Lu, Y., Zhu, Z., and Dong, B. You only
propagate once: Accelerating adversarial training via
maximal principle. In Advances in Neural Information
Processing Systems, pp. 227–238, 2019a.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International Conference on
Machine Learning, pp. 7472–7482, 2019b.

Zheng, H., Zhang, Z., Gu, J., Lee, H., and Prakash, A.
Efficient adversarial training with transferable adversarial
examples. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1181–
1190, 2020.

11

https://openreview.net/forum?id=kgVJBBThdSZ
https://openreview.net/forum?id=kgVJBBThdSZ
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

A. Algorithm Details
A.1. Training on Different Adversarial Budgets

Algorithm 3 and Algorithm 4 demonstrate the pseudo-code of adversarial training against PGD in the l2 and l∞ cases,
respectively. They are first introduced in Madry et al. (2018), Wong et al. (2020) proposed the accelerated version (FGSM-
RS) by setting Niter = 1. Here, we use uniform sampling to randomly initialize the perturbations, because we empirically
find uniform sampling helps to generate more diverse perturbations and thus yields better results.

Algorithm 3 PGD adversarial training in l2 cases.
1: Input: step size α, iteration number Niter, adversarial

budget S(2)ϵ , model parameters θ.
2: for (x, y) in the training set do
3: Uniformly sample ∆ from S(2)ϵ

4: for iteration in 1, 2, ..., Niter do
5: Calculate the gradient g ← ▽∆L(θ,x+∆).
6: Update ∆← ΠS(2)

ϵ
(∆ + αg/∥g∥2)

7: end for
8: Calculate loss L(θ,x+∆) and update θ.
9: end for

10: Output: Updated model parameters θ.

Algorithm 4 PGD adversarial training in l∞ cases.
1: Input: step size α, iteration number Niter, adversarial

budget S(∞)
ϵ , model parameters θ.

2: for (x, y) in the training set do
3: Uniformly sample ∆ from S(∞)

ϵ

4: for iteration in 1, 2, ..., Niter do
5: Calculate the gradient g ← ▽∆L(θ,x+∆).
6: Update ∆← ΠS(∞)

ϵ
(∆ + α · sign(g))

7: end for
8: Calculate loss L(θ,x+∆) and update θ.
9: end for

10: Output: Updated model parameters θ.

A.2. Evaluating Robustness Against Sparse Perturbations Within the l1 Adversarial Budgets

In Section 3.3, we generate sparse ad-
versarial perturbations within the l1
adversarial budget. In this regard, the
adversarial budget becomes Tϵ,τ =
{∆|∥∆∥1 ≤ ϵ, ∥∆∥0 ≤ τ}. Since
efficiently generating l0 bounded ad-
versarial perturbations is challenging,
we instead run the AutoPGD (Croce
& Hein, 2021) algorithm to generate
perturbations within the l1 ball and
project the perturbation in each iter-
ation to Tϵ,τ to estimate the robust
accuracy on Tϵ,τ . The algorithm can
be represented by the pseudo-code in
Algorithm 5.

Algorithm 5 Evaluation against the Adversarial Budget Tϵ,τ .
1: Input: iteration number Niter, adversarial budget Tϵ,τ , model parameters θ.
2: for (x, y) in the training set do
3: Uniformly sample ∆ from S(1)ϵ

4: for itersation in 1, 2, ..., Niter do
5: Calculate the gradient g ← ▽∆L(θ,x+∆).
6: Update ∆ based on the step size α and K calculated by AutoPGD.
7: Projection ∆′ ← ΠTϵ,τ

∆
8: if x+∆′ has the incorrect output then
9: Output: x can be successfully attacked.

10: Break;
11: end if
12: end for
13: Output: x cannot be successfully attacked.
14: end for

B. Theoretical Discussions & Proofs
B.1. Suboptimality of SLIDE for Non-smooth Functions

In Section 3.3 we’ve discussed the suboptimality of SLIDE due to the limited number of possible update directions of
K-hot coordinate descent. Here we make a more general claim: there broadly exists non-smooth functions where coordinate
descent can fail, depending on the initial points of the optimization. In the context of SLIDE with the number of updated
coordinates K, we consider a loss objective function f : RM → R and use T =

{
v ∈ {0, 1}M |∥v∥0 ≤ K

}
to represent all

possible “unit” coordinate updates in SLIDE. In addition, we useM(x) =
{
v ∈ RM |∃a > 0, s.t.f(x+ av) < f(x)

}
to

represent the directions from the input x which can decrease the function’s value.

When f is a non-smooth function, then ∃x ∈ RM such that x is not a local minima of f andM(x)∩T = ∅. One example
is demonstrated in Figure 3. In this case, the coordinate descent algorithm in SLIDE gets stuck at the sub-optimal point x.

12

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Furthermore, the size of the set T : |T | decreases with the decrease of K, which indicatesM(x) ∩ T = ∅ is more likely to
happen when K ≪M . This explains why coordinate descent in SLIDE tends to perform poorly with small K in Table 1.

When f is a smooth function, getting stuck at the sub-optimal point will not happen. We can prove this by contradiction.
We assume that x is not a local minimum andM(x) ∩ T = ∅. Let v be any one-hot unit vector, it is clear that v ∈ T and
−v ∈ T since K ≥ 1. IfM(x) ∩ T = ∅, then we have v /∈M(x) and −v /∈M(x). Based on the definition ofM and
the smoothness of the function f , we can get ⟨▽xf(x),v⟩ = 0. Furthermore, since v can be any one-hot unit vector, we
can conclude ▽xf(x) = 0. That is to say, x is a local minimum in every axis, so it is a local minimum of the function f .
This contradicts the original assumption, so the coordinate descent will converge to a local minimum for a smooth function
if its step size is properly chosen.

In the proof for the smooth function, we utilize the gradient of the input ▽xf(x). However, the gradient ▽xf(x) might
not exist for non-smooth functions. As indicated in the example of Figure 3, coordinate descent might get stuck in a
non-differentiable point of a non-smooth function.

As explained above, coordinate descent may get stuck at sub-optimal points for neural networks with non-smooth activations
like ReLU. In general and empirically, coordinate descent converges slowly since we do not use line search to optimize
the step size. This problem will become worse in the context of efficient adversarial training, where there is only a limited
budget for computation.

B.2. Proof of Lemma 3.1

We prove this lemma by contradiction. We have ∆prj = argmin∆∥∆−∆ori∥2 s.t. ∥∆∥1 ≤ ϵ and we assume ∥∆prj∥0 >
∥∆ori∥0, then we can construct ∆′

prj based on ∆prj by:

[
∆′

prj

]
i
=

{
0, if [∆ori]i = 0;

[∆prj]i , otherwise.
(3)

Since ∥∆prj∥0 > ∥∆ori∥0, we have ∃i such that [∆ori]i = 0 and [∆prj]i ̸= 0. As a result, we have ∥∆′
prj −∆ori∥2 <

∥∆prj−∆ori∥2 and ∥∆′
prj∥1 ≤ ϵ. The existence of ∆′

prj contradicts with the optimality of ∆prj . Therefore, the assumption
∥∆prj∥0 > ∥∆ori∥0 does not hold, which means ∥∆prj∥0 ≤ ∥∆ori∥0.

B.3. Proof of Lemma 3.2

Since ∆ ∈ Sϵ and ∆+ α1v /∈ Sϵ, we have ∃0 ≤ α0 < α1 such that ∆0 := ∆ + α0v is on the surface of Sϵ, which means
∥∆0∥1 = ϵ. For notation simplicity, we define ∆1 := ∆ + α1v and ∆2 := ∆ + α2v. Based on the symmetry of the set Sϵ,
we assume ∀i, [∆0]i ≥ 0 without the loss of generality.

Consider the projection operator ΠSϵ , ∀w ∈ RM , w′ := ΠSϵw is defined as the following:

w′
i = sign(w)max (|wi| − Λ(w), 0) =

wi − Λ(w), if wi > Λ(w)

0, if wi ∈ [−Λ(w),Λ(w)]

wi + Λ(w), if wi < −Λ(w)

(4)

where Λ(w) is set such that
∑M

i=1 max (|wi| − Λ(w), 0) = ϵ. Based on Equation 4, we have that ∥ΠSϵ
w∥0 is M minus

the size of the set {wi| − Λ(w) ≤ wi ≤ Λ(w)}.

∆0 is on the surface of the set Sϵ, so ∥∆0∥1 = ϵ and Λ(∆0) = 0. In addition, we have ∥∆1∥1 = ϵ+ (α1 − α0)
∑M

i=1 vi

and ∥∆2∥1 = ϵ+ (α2 − α0)
∑M

i=1 vi. Because both ∆1 and ∆2 are outside Sϵ, we have
∑M

i=1 vi > 0.

Now, we define the function f(α) := ∆0+αv. Based on the definition of Λ and
∑M

i=1, we have Λ(f(α)) ≥ α · 1
M

∑M
i=1 vi.

In addition, the subgradient ∂Λ(f(α))
∂α ≥ 1

M

∑M
i=1 vi, and the equality can be achieved only when ∀i, vi = 1. That is to say,

with α increasing, Λ(f(α)) increases at a faster or equal rate than the average absolute value of the elements of f(α) for any
value of α. Based on Equation (4) and that M −∥ΠSϵ

f(α)∥0 is the size of the set {[f(α)]i || [f(α)]i | ≤ Λ(f(α))}, we have
that ∥ΠSϵf(α)∥0 decreases or remains the same when α increases. Since α1 ≥ α2, we have ∥ΠSϵf(α1)∥0 ≤ ∥ΠSϵf(α2)∥0,
the proof concludes.

13

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

B.4. Proof of Lemma 4.1

To prove Lemma 4.1, we only need to prove that ∀x′ ∈ Sx′ , then ∥x′ − x∥2 ≤
√
ϵ. In this regard, we bound the value of

∥x′ − x∥22 =
∑M

i=1 |x′
i − xi|2. We let j = argmaxi|x′

i − xi| and then we have the following:

∥x′ − x∥22 = |x′
1 − x1|2 + |x′

2 − x2|2 + ...+ |x′
M − xM |2

≤ |x′
i − xi| (|x′

1 − x1|+ |x′
2 − x2|+ ...+ |x′

M − xM |)
≤ |x′

i − xi|∥x′ − x∥1
≤ 1× ϵ = ϵ

(5)

The last inequality is based on the fact that 0 ≤ x′ ≤ 1 and 0 ≤ x ≤ 1. Inequality (5) indicates ∥x′−x∥2 ≤
√
ϵ, ∀x′ ∈ Sx′ ,

then x′ ∈ Sball. Therefore, Sx′ ⊆ Sball.

In addition, we point out that the upper bound of Inequality (5) can be achieved. For example, when ϵ is an integer, we let
x′
1 = x′

2 = ... = x′
ϵ = 1, x′

ϵ+1 = ... = x′
M = 0 and x1 = x2 = ... = xM = 0.

C. Experimental Details
C.1. Experimental Settings

General settings. We use PreactResNet18 with softplus activation for experiments in CIFAR10 and CIFAR100, and use
ResNet34 for experiments in ImageNet100. All the models are trained with an SGD optimizer, with the momentum factor
being 0.9 and the weight decay factor being 5× 10−4. As noted in Wong et al. (2020), weight decay regularization is not
performed on parameters of Batch-Normalization layers. The training batch size is 128 for CIFAR10 and CIFAR100, and
256 for ImageNet100. For CIFAR10 and CIFAR100, we train all models for 40 epochs. The learning rate is initialized to
0.05 and is divided by a factor of 10 at the 30th epoch and the 35th epoch. For ImageNet100, the models are trained for
25 epochs. The learning rate is initialized to 0.05 and is divided by a factor of 10 at the 15th epoch and 20th epoch. We
split 4% of the samples in the training set for validation. During the validation phase, we randomly select 1000 instances in
the validation set and evaluate the robust accuracy by 20-step AutoPGD to select the best checkpoint during training. We
found that early stopping based on the validation set is important for the baseline methods that suffer from catastrophic
overfitting. Our proposed Fast-EG-l1, with α =

√
ϵ and ϵtrain = 2ϵ, does not suffer from catastrophic overfitting and thus

usually achieves the best checkpoint at the end of training. In this case, the validation phase is not necessary. The time spent
in the validation phase is not counted in Table 2. The final robust accuracy of each model is evaluated by l1-AutoAttack on
the whole test set.

Hyper-parameters for baselines in Table 2. The performance of baselines is sensitive to the choice of hyper-parameters.
The hyper-parameters include the step size α and the number of updated coordinates K. We thus conduct experiments on a
range of settings and report the best performance among all the choices. For CIFAR10, we conduct experiments of each
method for K ∈ {30, 50, 75, 100, 150, 200, 250, 300} and α ∈ {3, 6, 8, 10}. For CIFAR100, we conduct experiments of
each method for K ∈ {50, 100, 150, 200} and α ∈ {2, 3, 4.5, 6}. As a result, in CIFAR10, we find the optimal choice of K
is 200 for FGSM-RS, Grad-Align and NuAT, 150 for AdaAT and N-FGSM, and 100 for ATTA. The optimal choice of step
size α is 8 for ATTA. In CIFAR100, the optimal choice of K is 100 for FGSM-RS, ATTA, AdaAT, Grad-Align, N-FGSM,
and 200 for NuAT. The optimal choice of step size is 6 for ATTA. For ImageNet100, we set K = 1800 for all the baselines.

C.2. More Experimental Results

Grid-search of hyper-parameters in ATTA. We conduct grid search on hyper-parameters α and K for ATTA. The results
of ATTA for CIFAR10 and CIFAR100 datasets are demonstrated in Table 5. Similar to the grid search results shown in
Table 1, the robust accuracy of ATTA against l1 bounded perturbations is very sensitive to the choice of hyper-parameters.
For each step size α, a small of K will lead to catastrophic overfitting, while a large value of K results in suboptimal
performance. The best choice of hyper-parameter K for each step size is just the smallest value that does not result in
catastrophic overfitting.

Clean accuracy. In Table 6 we report the clean accuracy corresponding to each method in Table 2. We found FGSM-RS,
AdaAT, Grad-Align and N-FGSM have a good performance on clean accuracy, due to their less effective attack strategy in
training (hence these methods fail to achieve comparable robustness). In contrast, Fast-EG-l1 achieves comparable or better
clean accuracy with efficient adversarial training baselines of competitive robust accuracy (ATTA and NuAT). Compared to

14

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

α\K 30 50 75 100 150 200 250 300
3 12.90 43.19 42.95 40.47 35.67 34.73 31.33 29.74
6 21.74 22.35 45.26 42.38 40.46 38.36 36.2 25.86
8 19.00 22.25 25.40 46.57 42.60 41.42 39.47 37.72

10 16.07 20.95 24.32 28.62 45.03 43.30 41.77 39.89

α\K 50 100 150 200
2 32.09 29.11 26.71 24.38
3 11.34 30.81 28.65 37.06

4.5 12.75 33.02 30.73 27.06
6 15.14 33.74 31.97 29.64

Table 5. Robust accuracy (in %) of the best checkpoint of ATTA under different settings of α and K for CIFAR10 (left table) and
CIFAR100 (right table). A gray background indicates that catastrophic overfitting occurs in this setting, with the robust accuracy of the
final checkpoint close to zero.

AutoPGD, Fast-EG-l1 pays around 3% cost on clean accuracy but is 4 times faster. Moreover, as noted in Table 4, one could
also tune the value of ϵtrain in Fast-EG-l1, for better trade-off between clean and robust accuracy.

Dataset APGD FGSM-RS ATTA AdaAT Grad-Align N-FGSM NuAT Fast-EG-l1
CIFAR10 80.36 84.58 76.66 87.64 85.07 83.21 77.96 76.14

CIFAR100 63.34 65.91 59.14 68.00 65.25 64.54 51.15 59.43
ImageNet100 - 71.94 - 73.78 - 68.72 57.64 67.60

Table 6. Clean accuracy (in %) corresponding to each method in Table 2 on CIFAR10, CIFAR100 and ImageNet100.

Multi-ϵ strategy on other baselines. As shown in Section 5.2, multi-ϵ is an effective trick for efficient adversarial training
against l1 bounded attack. To further test its effectiveness, we applied this trick on other baseline algorithms and report the
result of robust accuracy in Table 7. The results indicate that multi-ϵ strategy remains helpful to improve the performance of
other baseline algorithms. Most methods have better robust accuracy under the case of ϵtrain = 2ϵ. Still, our proposed
Fast-EG-l1 obtains the best robust accuracy on both CIFAR10 and CIFAR100.

Dataset ϵtrain FGSM-RS ATTA AdaAT Grad-Align N-FGSM NuAT Fast-EG-l1

CIFAR10 ϵ 36.29 46.51 31.84 36.38 44.21 48.35 38.15
2ϵ 33.77 34.21 35.41 39.76 44.96 49.05 50.27

CIFAR100 ϵ 33.23 33.74 28.64 33.19 35.79 36.46 32.15
2ϵ 34.67 13.48 28.97 34.27 36.01 37.33 38.03

Table 7. Robust accuracy (in %) of other baseline algorithms with and without multi-ϵ trick on CIFAR10 and CIFAR100.

Visualization of adversarial examples before and after catastrophic overfitting. In Section 3.3 we did a careful study on
the phenomenon of catastrophic overfitting for adversarial training against l1 bounded perturbations. We find model overfits
to sparse attacks and lose robustness against dense attacks when catastrophic overfitting happens, thus the perturbations
generated by AA to fool the model have a much larger l0 norm after catastrophic overfitting, as shown in Figure 4. Here we
demonstrate some adversarial examples generated by AA before and after catastrophic for CIFAR10 in Figure 6. It’s clear
that the perturbations after catastrophic overfitting are much denser for each image.

Results of different values of ϵ on ImageNet100. We report the result of FGSM-RS and Fast-EG-l1 on ImageNet100
with different values of ϵ in Table 8. Since the resolution of images in ImageNet100 is 224× 224, it allows a much larger
perturbation size in l1 norm compared with CIFAR10 and CIFAR100. Consistent with the ablation study on CIFAR10, our
algorithm Fast-EG-l1 has consistently better robust accuracy than the baseline FGSM-RS for different values of ϵ.

Method\ϵ 12 24 48 72 96
FGSM-RS 62.06 54.84 44.18 36.64 31.96
Fast-EG-l1 67.62 59.00 52.46 46.74 39.50

Table 8. Robust accuracy (in %) evaluated by AutoAttack of models trained by FGSM-RS and Fast-EG-l1 under different values of ϵ on
ImageNet100. Fast-EG-l1 consistently achieves better performance.

15

Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks

Clean
 Example

Adversaries
 before CO

|| ||0 = 67

Adversaries
 after CO

|| ||0 = 499

|| ||0 = 39

|| ||0 = 361

|| ||0 = 48

|| ||0 = 451

|| ||0 = 36

|| ||0 = 588

|| ||0 = 40

|| ||0 = 538

|| ||0 = 34

|| ||0 = 257

|| ||0 = 36

|| ||0 = 249

|| ||0 = 24

|| ||0 = 552

|| ||0 = 22

|| ||0 = 372

|| ||0 = 93

|| ||0 = 204

|| ||0 = 27

|| ||0 = 280

|| ||0 = 35

|| ||0 = 227

Clean
 Example

Adversaries
 before CO

|| ||0 = 25

Adversaries
 after CO

|| ||0 = 303

|| ||0 = 16

|| ||0 = 212

|| ||0 = 51

|| ||0 = 822

|| ||0 = 45

|| ||0 = 417

|| ||0 = 100

|| ||0 = 614

|| ||0 = 42

|| ||0 = 331

|| ||0 = 51

|| ||0 = 357

|| ||0 = 36

|| ||0 = 271

|| ||0 = 19

|| ||0 = 357

|| ||0 = 50

|| ||0 = 350

|| ||0 = 25

|| ||0 = 565

|| ||0 = 81

|| ||0 = 461

Clean
 Example

Adversaries
 before CO

|| ||0 = 43

Adversaries
 after CO

|| ||0 = 320

|| ||0 = 31

|| ||0 = 463

|| ||0 = 37

|| ||0 = 207

|| ||0 = 23

|| ||0 = 312

|| ||0 = 19

|| ||0 = 385

|| ||0 = 34

|| ||0 = 373

|| ||0 = 29

|| ||0 = 427

|| ||0 = 30

|| ||0 = 417

|| ||0 = 46

|| ||0 = 411

|| ||0 = 28

|| ||0 = 333

|| ||0 = 28

|| ||0 = 425

|| ||0 = 37

|| ||0 = 680

Clean
 Example

Adversaries
 before CO

|| ||0 = 45

Adversaries
 after CO

|| ||0 = 250

|| ||0 = 35

|| ||0 = 208

|| ||0 = 49

|| ||0 = 387

|| ||0 = 40

|| ||0 = 255

|| ||0 = 38

|| ||0 = 415

|| ||0 = 52

|| ||0 = 505

|| ||0 = 36

|| ||0 = 305

|| ||0 = 51

|| ||0 = 302

|| ||0 = 42

|| ||0 = 189

|| ||0 = 27

|| ||0 = 311

|| ||0 = 30

|| ||0 = 269

|| ||0 = 24

|| ||0 = 319

Clean
 Example

Adversaries
 before CO

|| ||0 = 34

Adversaries
 after CO

|| ||0 = 241

|| ||0 = 139

|| ||0 = 384

|| ||0 = 38

|| ||0 = 533

|| ||0 = 37

|| ||0 = 494

|| ||0 = 33

|| ||0 = 284

|| ||0 = 25

|| ||0 = 614

|| ||0 = 41

|| ||0 = 265

|| ||0 = 59

|| ||0 = 272

|| ||0 = 36

|| ||0 = 259

|| ||0 = 27

|| ||0 = 405

|| ||0 = 39

|| ||0 = 182

|| ||0 = 35

|| ||0 = 502

Figure 6. Visualization of adversarial examples before and after catastrophic overfitting (CO) in CIFAR10. The title of each subfigure
indicates l0 norm of the adversarial perturbation. The value of perturbation is enlarged 3× for better visualization.

16

