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Abstract
Today’s continued increase in demand for processing power, despite the slowdown of Moore’s

law, has led to an increase in processor count, which has resulted in energy consumption and

distribution problems. To address this, there is a growing trend toward creating more complex

heterogeneous systems where multicore, many-core, GPU, FPGA, and DSPs are combined

in a single system. This poses challenges in terms of how to take advantage of such systems

and how to efficiently program, evaluate, and profile applications where sub-components

run on different hardware. Dataflow programming languages like RVC-CAL have proven

to be an appropriate methodology for achieving such a complex goal due to their intrinsic

portability and the ability to easily decompose a network of actors on different processing

units, matching the heterogeneous hardware. Previous research has shown the efficacy of

this methodology for systems combining multicore, many-core, CPU, FPGAs, and others. It

has also been shown that the performance of programs executed on heterogeneous parallel

platforms largely depends on the design choices regarding how to partition the computation

on the various processing units. In other words, it depends on the parameters that define

the partitioning, mapping, scheduling, and allocation of data exchanges among the various

processing elements of the platform executing the program. The advantage of programs

written in languages using the dataflow model of computation is that executing the program

with different configurations and parameter settings does not require rewriting the application

software for each configuration but only requires launching a new generation of the execution

code corresponding to the parameters, using automatic generation tools. Another competitive

advantage of dataflow software methodologies is that they are well-suited to support designs

on heterogeneous parallel systems as they are inherently free of memory access contention

issues and naturally expose the available intrinsic parallelism. However, it is still an open

research question whether dataflow programming languages such as RVC-CAL can fit with

massively parallel SIMD architecture such as GPUs. Recent GPU architectures make available

numbers of parallel processing units that exceed by orders of magnitude the ones offered

by CPU architectures. While programs written using dataflow programming languages are

well-suited for programming parallel heterogeneous systems, they may not offer sufficient

parallel degrees to efficiently exploit the resources available on today’s GPUs. Furthermore, the

dynamic nature of the RVC-CAL model may conflict with the very rigid SIMD pipeline. The ob-

jective of this thesis is to develop a full suite of tools using the dataflow programming language

RVC-CAL to provide an automated design flow for programming, analyzing, and optimizing

application programs running on CPU/GPU heterogeneous systems. The main contribu-
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Abstract

tions of this thesis are the development of a high-level compiler infrastructure that targets

CPU/GPU heterogeneous processing platforms and supports the full specification of the RVC-

CAL dataflow programming language, facilities for generating instrumented applications for

profiling purposes, and a set of design space exploration pipelines to automatically optimize

the resulting application by suggesting performant partition and mapping configurations.

Key words: dynamic dataflow, source-to-source compiler, RVC-CAL, heterogeneous CPU-

GPU systems, SIMD, parallel computing, profiling, performance estimation, design space

exploration.

iv



Résumé
L’augmentation continue de la demande en puissance de calcul, et ce malgré le ralentissement

de la loi de Moore, a conduit à une augmentation du nombre de processeurs, ce qui a entraîné

des problèmes de consommation et de distribution d’énergie. Pour remédier à cela, il y a une

tendance croissante à la création de systèmes hétérogènes plus complexes où les processeurs

multicore, many-core, GPU, FPGA et DSP sont combinés dans un seul système. Cela pose

des défis en termes d’utilisation de ces systèmes, de programmation efficace, d’évaluation et

de profilage des applications dans lesquelles les sous-composants s’exécutent sur différents

matériels. Les langages de programmation de flux de données tels que RVC-CAL se sont avérés

être une méthodologie appropriée pour atteindre un tel objectif en raison de leur portabilité

intrinsèque et de leur capacité à décomposer facilement un réseau d’acteurs sur différentes

unités de traitement, correspondant aux systemes hétérogènes. Des recherches antérieures

ont montré l’efficacité de cette méthodologie pour des systèmes combinant des processeurs

multicore, many-core, FPGA et autres. Il a également été démontré que les performances des

programmes exécutés sur des plates-formes parallèles hétérogènes dépendent largement des

choix de conception concernant la manière de partitionner le traitement sur les différentes

unités de calculs. En d’autres termes, cela dépend des paramètres qui définissent le parti-

tionnement, l’assignement, l’ordonnancement et l’allocation des échanges de données entre

les différents éléments de traitement de la plate-forme exécutant le programme. L’avantage

des programmes écrits dans des langages utilisant le modèle de calcul en flux de données est

que l’exécution du programme avec différentes configurations et paramètres ne nécessite pas

de réécrire le logiciel pour chaque configuration, mais nécessite simplement de lancer une

nouvelle génération du code d’exécution correspondant aux paramètres, en utilisant des outils

de génération automatique. Un autre avantage concurrentiel des méthodologies de logiciels

de flux de données est qu’elles conviennent bien à la prise en charge de conceptions sur des

systèmes parallèles hétérogènes car elles sont exemptes de problèmes de contention d’accès

mémoire et exposent naturellement le parallélisme intrinsèque disponible. Cependant, il s’agit

encore d’une question de recherche ouverte de savoir si les langages de programmation de

flux de données tels que RVC-CAL peuvent s’adapter aux architectures SIMD massivement

parallèles constituent les GPU. En effet, les architectures GPU récentes mettent à disposition

des nombres d’unités de traitement parallèles qui dépassent de plusieurs ordres de grandeur

ceux offertes par les architectures CPU. Bien que les programmes écrits à l’aide de langages

de programmation de flux de données soient bien adaptés à la programmation de systèmes

hétérogènes parallèles, ils peuvent ne pas offrir suffisamment de degrés de parallélisme pour
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Résumé

exploiter efficacement les ressources disponibles sur les GPU actuels. De plus, la nature

dynamique du modèle RVC-CAL peut entrer en conflit avec la rigidité du pipeline SIMD.

L’objectif de cette thèse est de développer une suite complète d’outils utilisant le langage de

programmation de flux de données RVC-CAL pour fournir un processus de développement

automatisé pour la programmation, l’analyse et l’optimisation de programmes s’exécutant

sur des systèmes hétérogènes CPU/GPU. Les principales contributions de cette thèse sont le

développement d’une infrastructure de compilateur de haut niveau qui cible les plates-formes

de traitement hétérogènes CPU/GPU et prend en charge la spécification complète du langage

de programmation de flux de données RVC-CAL, des fonctionnalités pour générer des applica-

tions instrumentées à des fins de profilage, et un ensemble d’options pour l’exploration de

l’espace de design pour optimiser automatiquement l’application résultante en suggérant des

configurations de partitionnement et de d’assignement performantes.

Mots clefs : flux de données dynamique, compilateur de source à source, RVC-CAL, systèmes

hétérogènes CPU-GPU, SIMD, calcul parallèle, profilage, estimation de performance, explora-

tion de l’espace de conception.
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1 Introduction

This thesis presents research aimed at developing a comprehensive high-level compiler design

flow that is based entirely on the dataflow model of computation. The tool flow encompasses

capabilities and optimizations specifically designed for CPU/GPU heterogeneous processing

systems. Despite advancements in silicon technology, individual sequential processors are

not advancing fast enough to keep up with the demand for processing power. The traditional

approach of scaling up and scaling out by increasing the number of cores per chip and the total

number of chips in a data center is no longer sufficient. Instead, the trend is towards more

complex parallel heterogeneous architectures where sub-elements are specialized to perform

specific processing tasks more efficiently, whether it be in terms of latency, throughput, or

energy consumption. One of the biggest challenges in effectively utilizing these platforms is

that traditional sequential specification formalism and software, developed for sequential

processor architectures, are not well suited for programming these parallel platforms. Further-

more, these specifications are not appropriate for unified specifications targeting any type

of hardware component, such as conventional processors and SIMD parallel architectures.

With the precise number, nature, and configuration of possible sub-systems varying greatly

when targeting a full heterogeneous system, the portability of applications across different

platforms is becoming increasingly important, but is not adequately addressed by traditional

sequential behavioral descriptions and methodologies.

1.1 Programming Heterogeneous Systems

The increasing demand for computing power can partially be addressed by the use of heteroge-

neous systems. However, to fully tap into their potential, design flows must be able to support

these heterogeneous architectures. The challenge lies in the fact that each sub-architecture

has typically been developed for specific use cases, and comes with its own software stack,

programming language, frameworks, and development methodology. As a result, engineers

often specialize in developing for just one or a few platforms. This makes it extremely chal-

lenging to create a coherent development strategy that integrates all these architectures to

work together towards a common goal.
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Another critical challenge in the field of heterogeneous computing is to effectively choose

the most appropriate sub-architecture to compose a system, given a behavioral description

of the algorithm. This decision has a direct impact on the performance of the system, and

thus, it is of utmost importance to make a well-informed choice. In addition to choosing

the right sub-architecture, it is also crucial to determine which processing units will exe-

cute the different sub-parts of the overall application software. This decision must be made

carefully, taking into account the characteristics of the processing units, such as their pro-

cessing power, memory, and energy consumption, and the requirements of the sub-parts of

the application software. Moreover, it involves the use of optimization techniques and tools

to make informed decisions, taking into account the specific requirements of each application.

Portability is another crucial aspect in programming heterogeneous systems as the hardware

available for the same application can vary greatly based on factors such as resource avail-

ability, client needs, power consumption, and costs. This means that developers may need to

write multiple versions of an application to ensure that all potential platform configurations

are utilized efficiently and effectively. This can result in significant modifications or rewriting

of the code for each case, making portability important in saving time, effort, and resources.

Additionally, portability helps ensure that code is consistent and reliable across different

systems, and remains relevant and usable in the future as improvements in hardware can

result in significant changes to the overall architecture, requiring redesigns.

Finally, each architectural sub-element is a parallel processing unit, and some hardware

architectures are even inherently parallel in nature. This presents the challenge of extracting

the parallelism opportunities from the behavioral description of the target application in

order to effectively and efficiently utilize all the processing elements available and improve

the overall performances. This is particularly important in CPU/GPU heterogeneous systems,

where the number of parallel resources is enormous.

1.2 Problem Statement and Motivation

The challenges in programing heterogeneous CPU/GPU processing platform presented in the

previous section can be formalized as the problems of Abstraction, Concurrency, Modularity,

Analyzability and Portability. This thesis as the purpose to demonstrate that the RVC-CAL

dataflow programming language is a good candidate for building tools solving these issues.

The RVC-CAL programming language is a high-level programming language that provides

software architects with the necessary mechanisms to represent algorithms in terms of parallel

constructs directly extracted from the data. Additionally, the language’s modular and hierar-
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chical structure facilitates the decomposition and analysis of complex systems. The language

also provides formal semantics that enable static analysis and verification of programs.

The RVC-CAL methodology addresses the following categories in the following ways:

• Abstraction: The RVC-CAL programming language provides a high level of abstraction

for designing and implementing concurrent signal processing applications. It allows

users to express their algorithms using a dataflow programming model, abstracting

away low-level details such as memory allocation and synchronization.

• Concurrency: The RVC-CAL programming language supports concurrency through the

use of actors that are independent and parallel computing nodes that communicate

with each other through channels without the need for synchronization.

• Modularity: The RVC-CAL programming language provides modularity at its core as

programs are created through hierarchical composition of actors, which allows for the

creation of complex systems from simpler sub-components. These actors can be reused

across different projects and systems, improving code reuse and reducing development

time.

• Analyzability: RVC-CAL achieves the ability to reason about the correctness and be-

havior of a program by providing a formal semantics that defines the behavior of the

language constructs. This semantics enables formal verification tools to be used to

verify the correctness of RVC-CAL programs. Additionally, RVC-CAL supports static type

checking, which helps to detect type errors at compile time, and provides runtime mon-

itoring, debugging facilities and design space exploration frameworks for performance

tuning.

• Portability: RVC-CAL programs are described in a platform-independent manner, mak-

ing them easily portable across diverse hardware and software platforms. This portability

is achieved through the use of a compiler backend that automatically generates low-level

implementations optimized for specific targeted architectures.

Thesis problem statement: The dataflow programming model of computation possesses the

essential characteristics required for CPU/GPU heterogeneous computing as it offers abstraction,

concurrency, modularity, analyzability and portability.

To support the problem statement of this thesis, the following contributions are presented:

• Abstraction: This thesis ensures that the details of the CPU or GPU platform are fully

abstracted away so that the same actor can run on both platforms without any changes

to the code.

• Concurrency: In addition to supporting multicore processing, this thesis enhances the

concurrency of the system by fully supporting the SIMD nature of GPU architecture.
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Furthermore, the potential for concurrent processing tasks is increased by developing

SIMD and inter-action parallel execution methodologies within the actors.

• Modularity: The methodology resulting from this thesis fully support the composition

of actors targeted to the CPU or GPU architecture. It strictly maintains the modular

model even for actor with internal parallelization.

• Analyzability: The performance estimation and design space exploration methodolo-

gies are extended to support GPU systems.

• Portability: This thesis enhances portability by including the GPU platform as one of

the available sub-elements for composing a heterogeneous system.

1.3 Challenges of Dataflow Synthesis on GPUs

Compared to CPU architecture, synthesizing code for GPUs presents a variety of significant

challenges.

In this thesis, several challenges related to the synthesis of code for RVC-CAL actors on GPU

platforms are set to be resolved. First and foremost, the goal is to provide full support for the

dynamic dataflow model of computation in order to enhance expressiveness and enable easier

representation of complex applications. This task is not trivial, as GPUs possess more rigid

architectures and programming interfaces, introducing limitations that must be overcome.

One notable example of such a limitation is the handling of memory, which needs to be

managed efficiently.

Secondly, for performance reasons, the goal is to surpass the traditional OpenCL model of

computation, where the CPU schedules tasks and waits for the results. This can be achieved

by enabling GPU actors to fully execute on the GPU platform, including both scheduling and

action execution. By doing so, we can eliminate the need to transfer data back and forth for

making scheduling decisions, which frees up the CPU to execute other actors that do not

benefit from GPU execution.

It is crucial to execute multiple actors in parallel, as a single actor running on a GPU is insuffi-

cient to efficiently utilize the GPU resources. The execution of both CPU and GPU actors must

be overlapped while reducing or minimizing the use of expensive synchronization mecha-

nisms. Additionally, achieving an overlap between GPU processing and memory transfers from

CPU to GPU, as well as from GPU to CPU, is essential to maintain continuous computation of

the dataflow graph and achieve competitive performance.

Another significant challenge is to research and develop techniques that maximize resource

utilization, as the dataflow model may not inherently provide a level of parallelism that

matches the available hardware resources.

Ultimately, this study aims to propose a methodology for effectively implementing the First-
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In-First-Out (FIFO) mechanism, which ensures consistency and enhances performance in the

dataflow model of computation.

1.4 Research Contributions

The principal contributions and their corresponding publications in the thesis can be summa-

rized as follows:

• Development of a high-level synthesis compiler infrastructure that targets CPU/GPU

heterogeneous processing platforms and supports the full specification of the RVC-

CAL dataflow programming language. The compiler infrastructure is based on the

open-source ORCC compiler and the Exelixi backend, with the addition of a new CUDA

backend [9, 10].

• Implementation of a set of compiler optimizations within the newly designed Exelixi

CUDA backend to enhance the performance and functionality of the generated low-level

implementations. The features include:

1. Improvement of performances by minimizing data transfer between actors by

using through the utilization of composite data structures [11].

2. Utilization of Single Instruction Multiple Data (SIMD) parallelization techniques

to speed up the runtime of dataflow actions, resulting in improved overall execu-

tion performance. This is accomplished through parallel execution of multiple

instances of the same action using CUDA [12].

3. Utilization of the dynamic programming feature provided by the CUDA API to

implement inter-action parallel execution techniques to speed up the runtime of

dataflow actions, leading to improved overall execution performance [13].

4. Introduction of a methodology for generating dynamic RVC-CAL networks. With

this technique a single executable binary is created that allows for the specification

of the partitioning and mapping at runtime during the application’s startup process

[14].

5. Development of a dynamic SIMD parallelization optimization that involves gen-

erating multiple SIMD parallel executions of the same action. The number of

threads used could change dynamically throughout the runtime of the application,

with the objective of maximizing performance and maximizing utilization of GPU

resources [15].

• Improvement over the Exelixi CUDA backend for generating instrumented code for

clock-accurate profiling and outputting the corresponding performance metrics, that

can be utilized in the TURNUS post-processor to estimate the overall application execu-

tion time accurately [16, 14].
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• Development around the design space exploration tool TURNUS to adapt the method-

ology to the CPU/GPU model of this thesis [17].

1.5 Thesis Organization

This thesis dissertation is divided into seven chapters that are organized as follows:

Chapter 2 portraits the state of the art and background regarding heterogeneous CPU/GPU

platforms. An introduction to different available heterogeneous platforms is depicted. More-

over, a description of the literature regarding the different frameworks and development

available for programming CPU/GPU heterogeneous platforms is depicted, for both generic

and more specifically dataflow frameworks. Finally, the existing design space exploration tools

relevant in this context are shown.

Chapter 3 provides the background regarding dataflow programming necessary for the under-

standing of the presented thesis. First of all, the dataflow model of computation is defined,

and the specific RVC-CAL dataflow programming language used in this thesis is presented.

Finally, the two frameworks that this work extends are depicted, namely the ORCC dataflow

compiling suite and the TURNUS design space exploration framework.

Chapter 4 is one of the core chapters presenting the developed work. It presents in depth

the tool flow and model created to allow dataflow models to properly execute on CPU/GPU

heterogeneous processing platforms. Additionally, a list of generation features and optimiza-

tions built on top of the model is presented. This includes SIMD parallel execution, inter-actor

parallel execution, dynamic heterogeneous actors, and dynamic SIMD parallelization.

Chapter 5 is the second core chapter, dedicated to improving design space exploration tools

applied to CPU/GPU heterogeneous processing platforms. In the first part, the methodology

for obtaining clock-accurate profiling metrics is presented. Secondly, three important method-

ologies for automated performance estimation are presented. Finally, the aforementioned

methodologies are used in a Tabu-Search algorithm to perform computer-assisted design

space exploration with the purpose of automatically finding actor partitions and mapping

configurations that would yield promising performances.

Chapter 6 presents the experimental results performed using the combination of the innova-

tive components developed in this thesis work. The goal is to demonstrate how a developer

can benefit from the tools created or extended in this work to increase their productivity

regarding CPU/GPU co-development.
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Chapter 7 concludes the manuscript, summarizes the achievements of this work, highlights

possible future developments, and illustrates the open problems that would benefit from

further research.
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2 State of the Art and Background

2.1 Introduction

The growing needs of today’s applications is still driving the search for higher computational

capacity of processing platforms. As moore’s law is getting more difficult to satisfy in terms of

new process node technology and as the increase in logic gates switching frequency is getting

smaller over time, the processing power needs is not being met. This facts pushes the roll-out

of heterogeneous processing platforms. Indeed, exploiting deeper levels of domain-specific

hardware specialization is considered as a solution to the fact that the straightforward multi-

plication of similar and off-the-shelf processing elements is not sufficient anymore to deliver

the necessary increase in processing power. More recently, industries are shifting to increas-

ingly complex heterogeneous hardware for custom usage (i.e, Microsoft ARM [18], NVIDIA

Grace [19], Apple silicon [20]). They are clear attempts to answering these increased process-

ing needs, however, they introduce new challenges and the need to cope with unresolved

problems in how to efficiently program them.

The development of heterogeneous system to help with providing more efficiency and pro-

cessing capabilities as a field of research can be broken down in three different parts:

• Complex architectures: Processing architecture is getting more complex in all scales.

Whether it is in embedded system, general computing or data centers, heterogeneous

processing elements are use to improve power consumption and raw performances.

Such architecture can be compose with a lot of different processing element such as

FPGA, CPU, GPU, tensor accelerator or other type of hardware accelerator.

• Software platforms: As the complexity of these architecture increase, heterogeneous

system are getting more difficult to program, analyze and optimize. This fact brings

the necessity for higher level of abstraction using advanced software framework to help

leveraging this specialized processing capabilities.

• Design exploration tools: The pic performance could only be achieved if the processing
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problems at hand are decomposed into suitable sub-tasks that are then assign to the

proper processing element of the heterogeneous hardware. The space of design grow

extremely quickly with the complexity of the task and the complexity of the heteroge-

neous hardware. This leads to the need for suitable framework helping with such task

decomposition and assignment.

CPU

CPU CPU

CPUCPU

CPU

PEPE

PEPE

Scale-Up

Scale-Out

Heterogeneous 
scalability

Figure 2.1: Illustration of the computational scalability trends in both industry and academia,
showcasing scale-up, scale-out, and heterogeneous approaches.

The rest of this chapter presents a summary of the state-of-the art related to heterogeneous

system related to the context of this thesis that partially solves the stated problems. In the

following, the different heterogeneous system architectures that are used to solve the per-

formance gap are presented. In addition, the programing languages, software stacks and

development framework developed in the intent of leveraging these complex architecture

are depicted. This chapter concludes on the work done toward tool providing automated

guidance in the adequate distribution of tasks to the different subsystem of heterogeneous

architecture.
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2.2 Heterogeneous Platforms

2.2.1 Systems Overview

The industry is developing many different and more complex heterogeneous system. These

processing system are composed of different well known processing elements. These elements

can encompass but are not limited to CPU core, FPGA, GPU, DSP, tensor accelerator, NoC,

Modem, Fixed-function unit, or other type of hardware accelerators. With there popularization,

these processing system are used in all product category an can be divided in three application

types such as Embedded system, general purpose computing and data center. The following

subsection is going to show a few example of such system for illustration.

2.2.1.1 Embedded System

In this category the heterogeneous aspect is there to either get really low power consumption

or to get powerful embedded system with the idea that power consumption is a major point

of design. Bellow are two example of such architecture. Figure 2.2 shows the architecture of

NVIDIA Jetson Nano, a powerful embedded system specialize for AI application that embed

in part, a quad core ARM CPU and a 128 CUDA tensor cores GPU. On the other end of the

spectrum, Figure 2.3 shows the architecture of the Qualcomm QCA4020, a very low power

embedded system for Internet-of-Things device with low power Arm Cortex-M4F CPU with

maximum 128 MHz, security accelerators for encryption and co-processor for communica-

tions.

Figure 2.2: Comprehensive high-level overview of the Jetson Nano architecture [1]
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Figure 2.3: Comprehensive high-level overview of the Qualcomm QCA4020 architecture [2]

2.2.1.2 General Computing System

In this category the heterogeneous aspect is there to either get a good power consumption

to performance ratio for portable device running out of battery or to get processing power

that would not otherwise be possible in these form-factor. Figure 2.4, shows the architecture

of the Apple M1 Max architecture that contains many different processing elements such

as high-performance and high efficiency CPU cores, GPU cores, Neural engine and media

engine.

Figure 2.4: Comprehensive high-level overview of the Apple M1 Max architecture [3]
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2.2.1.3 Data Center

In this category the heterogeneous aspect is there is two fold. On once side it provides the

possibility to keep increasing the overall processing power of the data center without increasing

the overall power consumption. On the other side it reduce the fraction of the energy spend in

power dissipation cooling these device leaving more energy budget for processing. Figure 2.5,

shows the architecture of the Microsoft Catapult dual socket server blade that also encompass

a on-board FPGAm while Figure 2.6 shows the architecture of the new NVIDIA Grace Hopper

Superchip with up to 72 Arm CPU core and a GPU with 18432 FP32 CUDA Cores and 576

Tensor cores.

Figure 2.5: Comprehensive high-level overview of the Microsoft Catapult architecture [4]

2.2.2 GPU Systems

In this thesis we focus on specific heterogeneous combination, CPU/GPU co-processing

platforms. A Graphics Processor Unit (GPU) is primarily known for its usage in applications

that massively rely on graphics processing such a video game or 3D modeling. Today, GPGPU’s

(General Purpose GPU) are the choice of platform to accelerate parallel workloads in modern

High Performance Computing (HPC) architecture.

Figure 2.7, shows how the architecture of CPUs and GPUs differs. CPUs are optimize to be

as quick as possible as finishing tasks, while keeping the ability to quickly switch between

operations. They are low latency optimized. They usually contains a small amount of cores

that each have their own control units, L1 data, and instruction cache. On the other hand,

13
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Figure 2.6: Comprehensive high-level overview of the NVIDIA Grace Hopper architecture [5]

GPUs are optimized for throughput allowing to push as many as possible tasks through their

internals at once. They are usually composed of magnitudes more number of cores that are

divided in groups each sharing the same instruction and data level one cache. Relatively to

the number of cores they contains less caches than a CPU, as the memory latency is less of a

priority as long as enough bandwidth is available to keep the core busy with processing tasks.

Figure 2.7: Comprehensive high-level overview of a GPU architecture [6]
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2.2.3 NVIDIA Architecture

In the practical part of this thesis we focus on NVIDIA architecture as we are using the CUDA

APIs. In this section we present a little bit the architecture and more importantly introduce

the vocabulary that will be used in this work. Figure 2.8 Show an high-level overview of the

architecture of an NVIDIA GPU. NVIDIA GPUs develop an architecture that we call SIMD

for Single Instruction Multiple Data or interchangeably we can find in the literature, SIMT

for Single Instruction Multiple Thread. This means that a collection of cores will be used to

execute the exact same task in parallel using different data as input. These core are called

CUDA cores. CUDA cores are organized as groups called Streaming Multiprocessors (SM).

Depending of the micro-architecture (generation model) the number of CUDA cores per SM

varies and depending of individual model inside a generation, the number of SM per GPU

varies. Each SM contains in addition, warps scheduler (responsible of scheduling instructions

to groups or up to 32 cores), L1 data cache / shared memory and a register file. The onboard

GPU DRAM is called Global Memory.

Figure 2.8: Comprehensive high-level overview of the NVIDIA GPU architecture [7]
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2.3 Software Development Framework

2.3.1 Development Framework for CPU/GPU Programming

There exist a plethora of cross-platform CPU/GPU development framework this section will

introduce some of the major one use in the literature. The one that as been selected for this

work is the NVIDIA CUDA framework and is described in more details in Section 4.2.2.

OpenCL: (Open Computing Language) is a royalty-free open standard for parallel program-

ming across heterogeneous platforms. OpenCL works with CPU, GPU, DSP, FPGA and other

processors or hardware accelerators. It is based on C/C++ language, with third-party wrappers

also available for Python, Java, R, GO, JavaScript, and many others [21].

SYCL: is a royalty-free, higher-level, single-source embedded domain-specific programming

model that improve programming productivity for various heterogeneous processors. It allows

developers to support various CPUs, GPUs, and field-programmable gate arrays (FPGAs). SYCL

achieves this by using single-source code written in standard ISO C++, that does not require

C++ extensions and rely on pure runtime rather than a particular compiler [22].

DPC++: (data parallel C++) is a programming language based on C++ that is designed for

parallel computing. It allows developers to write code that can be run on a variety of hardware

platforms, including CPUs, GPUs, and other specialized devices. DPC++ includes a number

of features and libraries that make it easy to write efficient parallel code, such as support for

parallel algorithms, thread-safe memory management, and data-parallel execution models. It

is intended for use in high-performance computing applications such as machine learning,

scientific simulations, and image processing. It is an open source project of Intel to introduce

SYCL for LLVM and oneAPI. C++17 and parts of C++20 with SYCL 2020 are base of this Compiler

framework (part of oneAPI) [23].

OpenACC: is a user-driven directive-based parallel programming standard designed to sim-

plify the process of programming heterogeneous CPU/GPU systems and architectures with

less effort than required with a low-level model. Developers can annotate C, C++, and Fortran

source code to accelerate certain areas and the goal is to provide a model for accelerator

programming that is portable across operating systems and various types of host CPUs and

accelerators. OpenACC is intended for scientists and engineers interested in porting their

codes to a wide variety of heterogeneous high-performance computing (HPC) hardware plat-

forms [24].

OpenMP: (Open Multi-Processing) is a set of compiler directives, library routines, and envi-

ronment variables that enable shared memory parallelism in C, C++, and Fortran programs.

It is a portable, scalable model that provides a simple and flexible interface for developing

parallel applications on platforms that range from embedded systems to supercomputers.
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The main advantage of OpenMP is that it is relatively easy to use, particularly for developers

who are already familiar with the language in which they are programming. It also has a large

user community and is supported by a wide range of compilers and tools. However, OpenMP

may not be the best choice for all types of parallel applications, as it is primarily designed

for shared memory systems and may not perform well on distributed memory systems, even

thought latest versions does offer support for SIMD architecture [25].

Halide: is a programming language designed for writing high-performance image and array

processing code on modern machines. It is particularly well-suited for tasks that can be

parallelized, such as applying the same operation to every element of an image or array. Halide

is implemented as a domain-specific language (DSL) C++ library and includes a compiler that

can generate optimized code for a variety of platforms, including CPUs, GPUs, and specialized

processors such as DSPs. One of the key features is th separation between the algorithm and

its execution schedule, which enables the programmer to easily experiment with different

scheduling approaches without having to modify the algorithm itself [26].

HIP: is a programming language and runtime system that allows developers to write code

that can run on both AMD and NVIDIA graphics processing units (GPUs). It is designed to

be a portable and high-performance alternative to the CUDA programming model, which

is specific to NVIDIA GPUs. HIP is implemented as a C++ library and includes a compiler

that can translate HIP code into the native programming languages of AMD and NVIDIA

GPUs, such as OpenCL and CUDA, respectively. This allows developers to write code that can

be compiled and run on either type of GPU without having to rewrite it for each platform.

HIP is intended to make it easier for developers to take advantage of the parallel processing

capabilities of GPUs without being tied to a specific vendor or platform [27].

2.3.2 Dataflow Development Framework for CPU/GPU Programming

In the context of programming CPU/GPU heterogeneous systems using the CAL programming

language, several approaches can be found in the literature. The works reported in [28] and

[29] offer two different approaches to using OpenCL to program GPU platforms from RVC-CAL

application programs. In the first work, OpenCL is generated from the ORCC intermediate

representation (IR), whereas in the second work, the distributed application layer IR called

DAL [30] is used for the final synthesis.

Both works first classify each actor of the dataflow program according to its more restricted

MoC in terms of dynamic degree, and map only SDF MoC actors [31] to be executed on the

GPU platform. Dynamic actors (DPN) are mapped to the available CPU cores.

The authors of [32] propose to generate SYCL from RVC-CAL dataflow programs. SYCL is a

cross-platform abstraction layer based on C++ that enables code for heterogeneous processors

to be written in a single-source with the advantages of OpenCL. Their approach consists of
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using the Single Instruction Multiple Data (SIMD) nature of GPUs to run in parallel multiple

consecutive firings of the same action when there is available data for firing it. In their work,

they describe the conditions under which such optimization is possible.

The principal differences of the solution described in this work from other dataflow-to-GPU

methodologies that have appeared in the literature are that the GPU execution is not limited to

actions, but also the action selection computation is fully executed on the GPU. Furthermore,

the mapping of actors on GPUs applies to any type of actor, including DPN, compare to the

proposed solutions that only support actors with SDF MoC. Such an approach enables any

sub-network partition of a dataflow application program to be mapped and executed on a

GPU platform, regardless of the dynamic behavior of its actors.

Besides approaches specifically targeting CAL compilation, other research article using the

dataflow methodology to program CPU-GPU processing platform can be found.

The article [33] discusses the XKaapi runtime system for programming heterogeneous high-

performance computing (HPC) platforms with multicore CPUs and accelerators, such as GPUs.

XKaapi supports a data-flow task model and a locality-aware work stealing scheduler that

enables multi-implementation on CPU or GPU and multi-level parallelism with different

grain sizes. The authors report performance results on dense linear algebra kernels, matrix

product, and Cholesky factorization, on a heterogeneous architecture composed of two hexa-

core CPUs and eight NVIDIA Fermi GPUs. The results show that dynamic scheduling and

fine-grained parallelism achieve performance results as good as static strategies, and in most

cases outperform them. The multi-level parallelism on multiple CPUs and GPUs enabled by

XKaapi led to a highly efficient Cholesky factorization. The authors report that this is the best

performance in double precision measured on a heterogeneous architecture with up to eight

GPUs. ath that time future works was planned to include new experimental evaluations on

other linear algebra problems, such as LU and QR factorizations with accelerators such as the

future Intel Xeon Phi or the Kepler GT110 GPU.

The article [34] describes a high-level programming framework to efficiently execute appli-

cations specified as synchronous dataflow graphs (SDF) on heterogeneous systems using

OpenCL. The framework automatically embeds actors into OpenCL kernels and instantiates

data channels to improve memory access latencies and end-to-end performance. The frame-

work exploits multilevel parallelism offered by heterogeneous systems by using pipeline and

task parallelism to distribute the application to different compute devices and data-parallelism

to process independent actor firings or output tokens concurrently. The proposed framework

enables application designers to efficiently exploit the parallelism of heterogeneous systems

without writing low-level architecture dependent code. The viability of the approach is demon-

strated by running synthetic and real-world applications achieving speed-ups of up to 41x

compared to execution on a single core. In the future, the goal is for the proposed design flow

will be applied to other OpenCL-capable platforms.
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The article [35] introduces DIF-GPU, an automated, dataflow-based design framework for

application mapping and software synthesis on heterogeneous CPU-GPU platforms. DIF-GPU

is designed to overcome the complex design issues of developing optimized implementations

for CPU-GPU platforms, including task scheduling, interprocessor communication, memory

management, and different forms of parallelism. DIF-GPU is based on novel extensions to the

dataflow interchange format (DIF) package, which deeply incorporates efficient vectorization

and scheduling techniques for synchronous dataflow specifications and provides software

synthesis capabilities. The article shows that DIF-GPU outperforms conventional CPU-GPU

mappings and enhances application performance through optimized management of inter-

processor communication for given scheduling and vectorization configurations. Additionally,

DIF-GPU can explore complex design spaces in the mapping of applications onto CPU-GPU

platforms.

This article [36] describes a mapping of a high-level data-flow programming model, Con-

current Collections (CnC), onto heterogeneous platforms to achieve high performance and

low energy consumption while maintaining the ease of use of data-flow programming. The

authors designed a software flow to convert CnC programs to the Habanero-C language,

extended the Habanero-C runtime system to support work-stealing across heterogeneous

computing devices, and introduced task affinity for these components. They demonstrated the

effectiveness of their proposed approach by mapping a pipeline of medical image-processing

algorithms onto a prototype heterogeneous platform, showing up to 17.72× speedup and an

estimated usage of 0.52× of the power used by CPUs alone when using accelerators and CPUs.

The authors also discussed future research opportunities, including the use of tag functions

for static analysis, the use of ranges for data-parallel computations, and the exploration of

affinity value assignment at runtime.

TensorFlow [37], a machine learning system that operates at a large scale and in heterogeneous

environments. It uses dataflow graphs to represent computation, shared state, and operations

that mutate that state, which allows the nodes of the dataflow graph to be mapped across

many machines in a cluster, and within a machine across multiple computational devices,

including CPU, GPU, and ASICs called Tensor Processing Units (TPUs). TensorFlow offers a

set of uniform abstractions that allow users to harness large-scale heterogeneous systems for

production tasks and experimenting with new approaches. TensorFlow has become widely

used for machine learning research as the TensorFlow programming model facilitates experi-

mentation and it as been demonstrated that the resulting implementations are performant

and scalable. TensorFlow is always in progress and as the goal to bridge the gap in auto-

matic optimization, system level development, and providing a system that transparently and

efficiently uses available distributed resources in the context of machine learning.
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2.4 Design Space Exploration

Design space exploration is an essential aspect of the dataflow methodology. Simply having a

high-performing low-level implementation generation tool is not sufficient to obtain efficient

application software. This is because many parameters can be tuned independently of the

implementation, such as actor partitioning and mapping, buffer dimension, action scheduling,

actor fusion or composition, and more. Over the years, researchers have developed ways to

automatically evaluate and generate configuration parameters. This section, presents some of

the existing methodologies.

There exist a plethora of design space exploration tools such as CAL Design Suite [38, 39],

COMPA [40], Daedalus [41, 42, 43], MAPS [44, 45, 46, 47], Mescal [48, 49] , Metropolis [50],

PeaCE [51], Preesm [52, 53], Ptolemy [54, 55] , SDF3 [56], Sesame [57], Space Codesign [58, 59],

SPADE [60, 61], SynDEx [62], SystemCoDesigner [63, 64, 65]. However, in the best of the writer’s

knowledge such tools in the context of design space exploration for dataflow mythology tar-

geting heterogeneous CPU/GPU co-processing platform is not really developed. The work

that approach this field the most is presented in [66] that discusses the use of heterogeneous

system architectures and the OpenCL paradigm for optimizing the performance per Watt in

embedded and mobile markets. The paper proposes a runtime controller integrated into the

Linux Operating System for optimizing the power efficiency of OpenCL applications. The con-

troller autonomously adapts by acting on the mapping and the dynamic voltage and frequency

scaling (DVFS) of processing units to optimize the performance/power consumption trade-off.

The paper presents experimental results that demonstrate the efficiency of the controller to

quickly converge to the optimal solution with less than 10% of error. The conclusion suggests

future work in adopting further actuation knobs for resource usage and improving the policy

and controller to support the concurrent execution of several applications. Overall, the paper

proposes a promising solution for optimizing power efficiency in OpenCL applications.

2.5 Conclusion

In this chapter, the state-of-the-art in heterogeneous systems has been presented, encompass-

ing both hardware and software perspectives.

First and foremost, an overview of the three main categories of hardware targeted by het-

erogeneous platforms is provided. These include embedded systems, general computing

platforms, and data centers. This presentation aims to demonstrate the widespread nature of

this heterogeneous trend and underscores the importance of having efficient and user-friendly

methods for programming these systems.

Next, a more detailed examination of heterogeneous GPU architecture systems was conducted,

as they are the focus of this thesis. A description of the various architecture families developed

by NVIDIA was provided, as their products are utilized to present the results of this research.

20



2.5 Conclusion

Subsequently, the existing literature on software systems capable of programming CPU/GPU

co-processing platforms was presented, with a focus on two main areas. First, a list of pop-

ular general development frameworks was provided, followed by a discussion of works that

specifically employ the dataflow methodology.

Lastly, the current state-of-the-art in design space exploration for dataflow methodology was

presented.
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3 Dataflow Programming

3.1 Introduction

The increasing demand for high computational power in processing platforms is driven by the

growing needs of modern application programs. The limitations of Moore’s Law in creating

smaller circuit components and the challenges posed by rising logic gate frequencies have

led to the growing adoption of heterogeneous processing platforms. In order to effectively

leverage the available computational power of these platforms, advanced levels of domain-

specific hardware specialization need to be explored as opposed to simply scaling up existing

processing elements. This is why heterogeneous system are increasing in popularity from

embedded system, personal computing to data center as demonstrated in Section 2.2.

Models of computation (MoC) are a crucial aspect of heterogeneous system-level design.

MoCs are the semantics of the interactions between modules and are used to specify the

principles of a design. They are independent of the implementation technology and include

classes such as Synchronous Languages, Discrete Event, Finite State Machine, Imperative, and

Dataflow.

The Dataflow MoC is depicted as a directed graph, with nodes, known as actors, representing

computational units and edges symbolizing channels of communication where tokens are

transmitted. Dataflow models are predominantly used to characterize data-driven systems,

such as signal-processing applications. Employing the Dataflow MoC in specific application

domains often results in more accurate behavioral descriptions, compared to using imper-

ative MoCs, as the Dataflow MoC aligns closer to the original intention of the algorithms.

Dataflow programming has been demonstrated to be an effective method for managing large

and parallel applications, addressing portability concerns across different platforms, and

exploring parallelism opportunities. In fact, dataflow languages are designed to expose the

parallelism inherent in the process of executing tasks on data, which enables rapid evaluation

of various settings such as mapping software kernels to hardware processing elements without
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incurring the costly redesigns required in traditional imperative software programming. These

redesigns often require manual rewriting and can consume significant amounts of developer

time. Dataflow-based computing models have been effectively utilized in a plethora of in-

dustries, including but not limited to digital codec implementation, high-frequency financial

applications, and genomic analysis. Due to their expressiveness, mathematical rigor in the

models, and independence from a specific architecture.

RVC-CAL is a promising solution for heterogeneous system-level design. It is a dataflow pro-

gramming language that leverages the Dataflow MoC and has the specificity of expressing

applications as network processes. RVC-CAL provides essential properties for heterogeneous

platform design, including parallel scalability, modularity, finite state machine scheduling,

portability, and adaptability. The MoC used in the dataflow networks expressed using the

RVC-CAL language is inspired from the Dataflow Process Network (DPN) model. This language

has the potential to change the way we approach programming parallel platforms, making it

more efficient and less tedious.

This chapter provides the background necessary to fully understand the Dataflow MoC and

the unique features of the RVC-CAL programming language. Additionally, the tools used to

generate implementations and optimize programs from the Dataflow representation used in

this work will be presented.

3.2 Dataflow Model of Computation

This Section describes the necessary foundation for explaining the Model of Computation

(MoC) on which the CAL dataflow programming language is based on. Indeed, CAL combines

Kahn Process Network and Dataflow Process Network MoC and extends it with the Actor

Transition System.

3.2.1 Kahn Process Networks

The Kahn Process Network (KPN) [67] is a model where network of processes communicate

exclusively through unidirectional and unbounded First-In-First-Out (FIFO) buffers. Each

buffer holds a potentially infinite sequence of tokens. In the notation formally defined in [68]

each token sequence is represented as X = [x1, x2, x3, . . .], where xi is a token picked from a

defined set. Tokens are atomic data elements that are produced and consumed only once.

Writing to the FIFO buffers is immediate and non-blocking. On the other hand, reading from

the buffers is blocking, meaning that if a process tries to read a token from an empty buffer, it

will wait (stalls) until there are sufficient tokens to fulfill the request. Hence, it is not possible

to check if a buffer has any tokens.
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3.2.1.1 Kahn Process

Let Sp represent the set of p-tuples of sequences, described as X = X1, X2, . . . , Xp ∈ Sp . A Kahn

process can then be depicted as a mapping from a set of input sequences to a set of output

sequences, given by:

F : Sp → Sq (3.1)

Compared to other MoC that operates on state semantics, KPN process F functions on an

event semantic. Furthermore, the only constraint is that F must be a continuous mapping

function.

3.2.1.2 Monotonicity and Continuity

The sequence X is considered to come before the sequence Y (denoted as X ⊑ Y ) in a prefix

ordering of sequences when X is a prefix of, or equal to, Y . For instance, if X = [x1, x2] and

Y = [x1, x2, x3], then X ⊑ Y and X is often referred to as approximating Y as it holds partial

information about Y . The empty sequence, symbolized with ⊥, is considered a prefix of any

other sequence.

A sequence of increasing chains χ= X0, X1, . . . is defined as X1 ⊑ X2 ⊑ . . .. This increasing chain

of sequences has one or more upper bounds Y such that Xi ⊑ Y for all Xi ∈χ. The Least Upper

Bound (LUB) of the chain, denoted ⊔χ, is an upper bound that satisfies ⊔χ⊑ Y for any other

upper bound Y . Remark that the LUB may be an infinite sequence.

The functional process F , as defined in Equation (3.1), maps an increasing chain of sets of

sequences χ to another set of sequences that may or may not form an increasing chain. The

least upper bound (LUB) of χ, denoted as ⊔χ, is then mapped by F . A process F is referred

to as Scott-continuous [69] if, for any increasing chain of sequences χ, the LUB of the chain

⊔F (χ) exists and satisfies:

F (⊔χ) =⊔F (χ) (3.2)

Networks composed of Scott-continuous processes have a property known as monotonicity,

which can be considered as a type of causality that doesn’t involve time. This mean that future

input as only inference on future output. A process F is considered monotonic if:

X ⊑ Y =⇒ F (X ) ⊑ F (Y ) (3.3)

where X and Y are sequences.

A continuous process is guaranteed to be monotonic, but a monotonic process is not neces-

sarily continuous. The property of monotonicity allows for incremental computation [70],

meaning that given partial information about the input sequences, it is possible to compute a

portion of the output sequences. A monotonic process does not require its inputs to be com-

plete before producing outputs and will not wait indefinitely for inputs. Networks composed

of monotonic processes are known to be determinate.
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3.2.2 Dataflow Process Network

Dataflow Process Networks (DPN) [68] are a specific type of KPN, where the processing units

are referred to as actors. Like KPNs, DPNs only allow for communication between actors

through unidirectional and potentially unbounded buffers that can transfer infinite sequences

of tokens. In DPNs, writes to buffers are non-blocking, but reads from buffers are non-blocking

as well, meaning that an actor can test the presence of input tokens before attempting to

read them. If there are insufficient input tokens, the read operation returns immediately,

and the actor is not forced to wait or be suspended. This characteristic of DPNs may lead to

non-determinism, even though the actors themselves are deterministic.

3.2.2.1 Actor with Firings

DPN networks are a subclass of KPN where processes are represented by repeated firings

of actors [71]. An actor firing refers to an indivisible unit of computation. These firings can

be modeled as functions and their activation is guided by certain firing rules. The sequence

of firings constitutes a continuous Kahn process, which is mathematically defined as the

lest-fixed-point of a functional mapping. This formally establishes DPN as a special case of

KPN [72].

An actor is described as a tuple ( f ,R), with m inputs and n outputs, where:

• f : Sm → Sn is known as the firing function.

• R ⊆ Sm represents a set of finite sequences, referred to as the firing rules.

• The output of f (ri ) must be finite for every ri ∈ R.

• No two unique ri ,r j ∈ R can be joined, meaning they don’t have a least upper bound.

The Kahn process F outlined in Equation (3.1) for the actor f ,R can be interpreted as the

least-fixed-point of the functional φ : (Sm → Sn) → (Sn → Sm) defined as follows:

(φ(F ))(s) =
 f (r )⊕F (s′) if there exists r ∈ R and s′ such that s = r ⊕ s′ and s ⊑ s′

⊥ otherwise
(3.4)

where ⊕ is the concatenation operator and (Sm → Sn) denotes the set of mappings from Sm

to Sn . It can be demonstrated that φ is both monotonic and continuous. The firing function

f doesn’t have to be continuous, nor does it have to be monotonic, but it must be a finite

function for each of the specified firing rules [72].
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3.2.3 Actor Transition System and Composition

In Actor Transition Systems (ATS) [73], actors are described using Labeled Transition Systems

(LTS). ATS extends the concept of firings in actors by incorporating the ideas of atomic step,

internal state, and priority. In this framework, a step mark the transitions between one state

to the next. Actors manage and modify their internal variables, which are not token sequences

but individual internal values that cannot be shared among actors. The introduction of

priorities gives actors the ability to detect and respond to the lack of tokens, but this can lead

to increased difficulty in analysis and potentially bring unintended non-determinism into a

dataflow application.

An actor can be described as a labeled transition system LTS (σ0,τ,≻) with, a non-empty

state space Σ, the universe of tokens that can be exchanged between actors u, and a finite,

partially-ordered sequence of n tokens over u, represented as U n where:

• σ0 ∈Σ, the initial state of the actor.

• τ⊂Σ×U n ×U m ×Σ, the transition relation.

• ≻⊂ τ×τ, the strict partial order over τ.

A transition is the tuple (σ, s, s′,σ′) ∈ τ, where σ ∈ Σ represents the starting state, s ∈ Sn the

input, σ′ ∈Σ the ending state, and s′ ∈U m the output of the transition. The relation ≻ on τ,

also called priority defines a partial order relation which is non-reflexive, anti-symmetric, and

transitive. The transition (σ, s, s′,σ′) can also be written as σ
s→s′−−−→σ′. In an ATS, same as for

every LTS, each transition can be labeled and called action λ in such a way that:

λ :σ
s→s′−−−→σ′ (3.5)

In essence, the process of transitioning from one state to another is referred to as taking a

step. This step can be identified by labeling it as an action, and its execution defined as a

firing. During firing, tokens may be consumed and produced, and any changes in the internal

variables may occur.

3.2.3.1 Enabled Transition and Step of an Actor

The priority relation ensures that a transition can only occur if there are no other transitions

that can be made. This concept outlines the criteria for a valid step by an actor, which involves

satisfying two conditions:

• Availability of the necessary input tokens.
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• No transition with higher priority is available.

An n-to-m actor (σ0,τ,≻) has a transition σ
s→s′−−−→σ′ considered enabled when the following

conditions are met:

v ⊑ s

̸ ∃σ r→r ′
−−−→σ′′ ∈ τ : r ⊑ v ∧σ

s→s′−−−→σ′ ≻σ
r→r ′
−−−→σ′′ (3.6)

By definition, given a state σ ∈Σ and an input tuple v ∈ Sn , a step from this state and input is

depicted as any enabled transition σ
s→s′−−−→σ′.

3.2.3.2 Actors Composition

The sets of input ports, P i n
τ , and output ports, P out

τ , for a transition relation τ are defined as

the ports involved in either consuming input or producing output:

P i n
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ(p) ̸=⊥}

P out
τ = {p ∈ P | ∃σ s→s′−−−→σ′ ∈ τ : σ′(p) ̸=⊥}

(3.7)

In this, the set P contains names of both input and output ports. It is assumed that an input

port named p and an output port with the same name have no relationship. To express intri-

cate functionality, actors are combined into a dataflow network. For instance, the illustration

in Figure 3.1 shows a dataflow network consisting of five actors that are interconnected by

five buffers. The architecture of a network can be depicted by a partial function which maps

each input port in its domain to its corresponding output port. It is worth mentioning that

this assumption implies the absence of fan-in connections and permits open (unconnected)

input and output ports.

3.3 CAL Actor Language

The Cal Actor Language (CAL) [74] is a domain-specific language that provides abstractions for

using actors in a dataflow programming paradigm. Figure 3.1 shows a graphical representation

of a CAL program and what it consists of. A dataflow program consists of a hierarchical graph

called a network, which connects processing nodes through directed edges. Each node is

an abstract processing element called an actor, and each edge represents a communication

channel called a FIFO buffer (First In First Out), which connects the output and input ports of

actors and allows them to exchange data packets called tokens. Different dataflow models of

computation (MoCs) are reported in the literature, but they all have the common characteristic

that actors base their computations on the consumed tokens and their internal state. Actors
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are independent computing elements that can communicate only through the buffers, which

enables interesting properties such as composability of network elements and the ability to

partition a dataflow network into sub-network elements that can be mapped and executed on

independent but interconnected processing elements.

The computation is done through the execution of special functions called actions, which

are considered atomic kernels of execution that cannot be stopped. Each action can be

associated with a guard statement, a boolean function that must be satisfied for the action to

be executed. The CAL Actor language follows the ATS model, resulting in a class of dataflow

MoC that provides high expressiveness where the consumption and production of data tokens

can depend on the values of input data tokens and the internal state of the actor, which can

include state variables and a finite-state machine (FSM). The FSM drives the selection and

ordering of action firings, and only an action associated with the current state can be fired,

resulting in a state transition.

CAL’s expressiveness is well-suited for designing complex and intuitive dynamic algorithms,

but it also leads to more difficult analysis and optimization problems when generating efficient

implementations of the network.

Figure 3.1: Representation of a CAL application network comprising five actors and five FIFO
buffers, along with a detailed view of actor internals featuring finite state machine, actions
and internal variables.
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3.3.1 Formal Definition

A CAL program named network and define as N is the composition of actors represented as a

tuple (K ,A,B) where:

• K is a finite set of actor classes and is represented as K = {κ1,κ2, ...,κnK }.

• A is a finite set of actors and is denoted as A = {a1, a2, ..., anA }.

• B is a finite set of queues and is represented as B = {b1,b2, ...,bnB }.

An actor class κ in a CAL program refers to the program code template and behavior imple-

mentation of an actor (i.e. the source code). Multiple actors can be instantiated from the same

class, but each actor is distinct with its own internal state that cannot be shared.

An actor in a CAL program is represented as a tuple (κ,P i n ,P out ,Λ,V ,F SM) where:

• κ is the actor class.

• P i n is the finite set of input ports and is denoted as P i n = {p i n1, p i n2, ..., p i nnI }.

• P out is the finite set of output ports and is represented as P out = {pout 1, pout 2, ..., pout nO}.

• Λ is the finite set of actions and is denoted asΛ= {λ1,λ2, ...,λnΛ}.

• V is the finite set of internal variables and is represented as V = {v1, v2, ...υnV }.

• FSM is the internal finite state machine.

A queue in a CAL program is defined as a tuple (as , ps , at , pt ) where:

• as ∈ A is the source actor (i.e. the one that produces the tokens)

• ps ∈ P out
as

is the output port of the source actor

• at ∈ A is the target actor (i.e. the one that consumes the tokens from the queue)

• pt ∈ P i n
at

is the input port of the target actor

3.3.2 Execution Model

In this work the following model for the selection of the action to be fired is considered.

Figure 3.2 illustrates the 9 steps involved in executing an action, which are:
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• Test States: Test is the FSM is in the appropriate state.

• Test Priority: Test that no action with higher priority can be fired.

• Test Input: Test that there are enough tokens available in the input buffers.

• Test Output: Test that there is enough free space in the output buffer to write the

resulting data.

• Execute Guard: Execute the action’s guard.

• Test guards: Test if the guard is satisfied

• Read Input: Read all data from the input buffer necessary for the execution of the action

• Execute Action: Execute the action’s code.

• Write Output: Write the resulting data computed during action execution to the output

buffers.

I

O

G

Execute 
Guard

Read 
Input

Write 
Output

P

S

Execute 
Action

Figure 3.2: Visual representation of the actor’s execution model considered in this thesis.
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3.3.3 Syntax and Semantic

3.3.3.1 Lexical Tokens

Lexical tokens, also known as lexemes, are groups of indivisible characters with a collective

meaning. They serve as building blocks for structuring algorithms and using the functionalities

provided by a programming languages. The CAL lexical tokens can be categorized as follows:

• Keywords: special type of identifier designated by a programming language for specific

purposes. They cannot be used as user-defined identifiers in any other context. Some

reserved keywords are whi le, i f , el se f al se, tr ue, beg i n, acti on, and actor .

• Operators: depict mathematical, algebraic or logical operations. Operators are written

as special characters such as !, &, ^, %, =, <, >, ?, ∗, /, +, −, | and ∼.

• Delimiters: are used to indicate the start or the end of a syntactical element in the CAL

code. The following delimiters are defined: [, ], (, ), { and }.

• Comments: comments constituting of a single-line can be represented by starting with

// while comment ranging multiple-lines start with /∗ and end with ∗/.

3.3.3.2 Actors

Actors are the building blocks of a dataflow program and serve as processing elements. The

CAL syntax to declare an actor is shown in Listing 3.1. There are three important parts to note.

First, actors can have parameters (i.e. the name of type String), which can be defined during

instantiation and help to specify a specific instantiation of an actor when it is used multiple

times within the same network. Second, actors have a fixed communication interface defined

by a list of input and output ports, represented here by I as an input port and O as an output

port, both of type int, separated by the ==> symbol. Finally, actors can encapsulate state in

the form of internal values, variables, arrays, etc., which can be initialized during instantiation,

such as in the example the counter variable of type int, which is initialized to the value zero.

Listing 3.1: Example of the actor’s syntax

1 actor MyActor ( String name) int I ==> int O :
2

3 int counter := 0;
4

5 [...]
6

7 end
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3.3.3.3 Actions

The action is an atomic execution step that takes the form of a function. The actor in List-

ing 3.2 contains a single action labeled myaction that demonstrates how the consumption and

production of tokens are specified. The input pattern, which is before the ==>, describes the

number of tokens read from input ports and the name of the variable that references these

tokens for the rest of the action code. In this example, a single token is read from the input I

and is referred to as v. The output pattern, which is after the ==> defines the number of tokens

produced and written to the output FIFO buffers each time the action is executed. In this

example, a single token is written to the O port, and its value is twice the value of v.

Listing 3.2: Example of the action’s syntax

1 actor MyActor ( String name) int I ==> int O :
2

3 int counter := 0;
4

5 myaction : action I : [ v ] ==> O : [ 2 * v ] end
6

7 end

3.3.3.4 Guards

A guard is an additional firing condition that can be specified for each action and that is

evaluated before an action is considered for firing. Listing 3.3 shows that myaction has a guard

that states that it can only be fired if the counter variable is less than 10. It is important to

note that the guard expressions can be based on the values read from the inputs. In fact, the

FIFO buffer implementations connecting actors need to be able to provide pick functionality,

meaning that input values can be tested without being consumed. As a side note, compared

to the previous example where only input and output patterns were used, this action contains

a body where the counter variable is incremented.

Listing 3.3: Example of the guard’s syntax

1 actor MyActor ( String name) int I ==> int O :
2

3 int counter := 0;
4

5 myaction : action I : [ v ] ==> O : [ 2 * v ]
6 guard counter < 10
7 counter := counter + 1;
8 end
9

10 end
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3.3.3.5 FSM

The Finite State Machine (FSM) is an additional construct that an actor can contain to organize

and control the firing order of actions.

Listing 3.4 shows an example of an FSM that contains two states: stateOne and stateTwo, and

two functions: one and two. Line 7 indicates that the FSM is initialized to the stateOne state.

The next two lines specify that when the FSM is in the stateOne state, only the action one can

fire and when it does, the FSM transitions to the stateTwo state. Similarly, when the FSM is

in the stateTwo state, only the action two can fire, causing the FSM to transition back to the

stateOne state.

Listing 3.4: Example of the FSM’s syntax

1 actor MyActor ( String name) int I ==> int O :
2

3 one: action I : [ v ] ==> O : [ v ] end
4

5 two: action I : [ v ] ==> O : [ v ] end
6

7 schedule fsm stateOne :
8 stateOne (one) --> stateTwo
9 stateOne (two) --> stateOne

10 end
11 end

3.3.3.6 Priorities

Priorities, as the name implies, allow for specifying the firing priority between actions and

play a role in the action selection algorithm. If all scheduling rules permit two actions to fire at

the same time, the priority will determine which one will be executed first, instead of allowing

an arbitrary, implementation-specific, order to take place. Listing 3.5 shows an example with

two actions: one and two. The action one has priority over the action two as indicated by the

symbol > in the listing.
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Listing 3.5: Example of the priority’s syntax

1 actor MyActor ( String name) int I ==> int O :
2

3 one: action I : [ v ] ==> O : [ v ] end
4

5 two: action I : [ v ] ==> O : [ v ] end
6

7 priority
8 one > two
9 end

10 end

3.3.4 Complete Example of a Program

Figure 3.3 depicts the graphical representation of the top-level network of a CAL dataflow

program. This network can be programmed using the XML Dataflow Format (XDF) based on

the eXtensible Markup Language (XML), as demonstrated in Listing 3.6. This example will be

used in subsequent chapters to illustrate the various features and optimizations discussed in

this thesis. The network consists of five instances of actors (Prod, CopyTokensA, CopyTokensB,

PingPong, and Merger). Note that CopyTokensA and CopyTokensB are two instances of the

same actor (CopyTokens), as shown in Listing 3.8. The CAL implementation of the Producer

actor is presented in Listing 3.7. It consists of a single action that produces one token per

firing, which is incremented each time. A guard prevents the action from firing more than six

times.

In Listing 3.9, the schedule statement acts as a finite-state machine (FSM), and the transi-

tion from one state to another is accomplished by the firing of an action, as discussed in

Section 3.3.2, the FSM acts has an extra parameter for selecting the next action to fire, and in

this case it makes the two actions to fire alternatively.

Finally, the Merger actor, shown in Listing 3.10, reads a token from each of its two input

ports and prints them along with the firing number (counter). It is important to note that the

output port of the Prod instance is connected to the input ports of two different instances

(CopyTokensA and PingPong), so the corresponding FIFO implementation must be able to

handle this. If sufficient hardware resources are available to execute all actors in parallel and

only considering actual dependencies, Figure 3.4 depicts the execution of the program by

showing when the different actions will fire.
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Figure 3.3: An example of a dataflow network with five actors (i.e. Prod, CopyTokenA, CopyTo-
kenB, PingPong and Merger).

Listing 3.6: Description of the dataflow network using the XML Dataflow Format (XDF)

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <XDF name=" Example ">
3 <Instance id="Prod">
4 <Class name="cal. Producer "/>
5 </ Instance >
6 <Instance id=" CopyTokenA ">
7 <Class name="cal. CopyTokens "/>
8 <Parameter name="name">
9 <Expr kind=" Literal " literal -kind=" String " value="first"/>

10 </ Parameter >
11 </ Instance >
12 <Instance id=" CopyTokenB ">
13 <Class name="cal. CopyTokens "/>
14 <Parameter name="name">
15 <Expr kind=" Literal " literal -kind=" String " value=" second "/>
16 </ Parameter >
17 </ Instance >
18 <Instance id=" PingPong ">
19 <Class name="cal. PingPong "/>
20 </ Instance >
21 <Instance id=" Merger ">
22 <Class name="cal. Merger "/>
23 </ Instance >
24 <Connection dst=" CopyTokenA " dst -port="I" src="Prod" src -port="O"/>
25 <Connection dst=" CopyTokenB " dst -port="I" src=" CopyTokenA " src -port="

O"/>
26 <Connection dst=" PingPong " dst -port="I" src="Prod" src -port="O"/>
27 <Connection dst=" Merger " dst -port="I1" src=" CopyTokenB " src -port="O"/

>
28 <Connection dst=" Merger " dst -port="I2" src=" PingPong " src -port="O"/>
29 </XDF >

36



3.3 CAL Actor Language

Listing 3.7: CAL implementation of the Producer actor.

1 actor Producer () ==> int O:
2

3 uint counter := 0;
4

5 p: action ==> O:[ counter ]
6 guard
7 counter < 6
8 do
9 counter := counter + 1;

10 end
11

12 end

Listing 3.8: CAL implementation of the CopyTokens actor.

1 actor CopyTokens ( String name) int I ==> int O:
2

3 c: action I:[ val] ==> O:[ val] end
4

5 end

Listing 3.9: CAL implementation of the PingPong actor.

1 actor PingPong () int I ==> int O:
2

3 pp1: action I:[ val] ==> O:[ val]
4 do
5 println (" PingPong [pp1 ]:" + val);
6 end
7

8 pp2: action I:[ val] ==> O:[- val]
9 do

10 println (" PingPong [pp2 ]:" + val);
11 end
12

13 schedule fsm a_pp1:
14 a_pp1(pp1) --> a_pp2;
15 a_pp2(pp2) --> a_pp1;
16 end
17

18 end
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Listing 3.10: CAL implementation of the Merger actor.

1 actor Merger () int I1 , int I2 ==> :
2

3 uint counter := 0;
4

5 m: action I1:[ v1 ], I2:[ v2 ] ==>
6 do
7 println (" Merger ("+ counter +"):"+ v1 +";"+ v2);
8 counter := counter + 1;
9 end

10

11 end

CPU
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PingPong

Merger

CopyTokenA

Prod

Action: p Action: p Action: p Action: p Action: p Action: p

Action: m Action: m Action: m Action: m Action: m Action: m

Action: c Action: c Action: c Action: c Action: c Action: c

Action: pp1 Action: pp2 Action: pp1 Action: pp2 Action: pp1 Action: pp2

Action: c Action: c Action: c Action: c Action: c Action: c

Time

Figure 3.4: Execution of the CAL example with all actors running in separate threads on a CPU.

3.4 Open RVC-CAL Compiler

In the present work, the RVC-CAL dataflow language, a subset of the CAL language standard-

ized by the MPEG committee (referenced in [75, 76, 77, 78]), is used to express the algorithm of

the application program. This subset limits the types of data, operators, and features that can

be utilized when describing a CAL actor. Within the MPEG community, RVC-CAL is utilized

as a reference software language for specifying MPEG video-coding technology through a

library of components (actors) that are configured and instantiated into networks to produce

standard MPEG video decoders (e.g. MPEG4-SP, AVC, HEVC).

Several open-source compilers have been developed for the RVC-CAL programming language,

including Caltopia [79], Tycho [80], Cal2Many [81, 82], DAL [83], or Streamblock [84]. In this

thesis, ORCC [85, 86], the Open RVC-CAL Compiler, is a source-to-source compiler framework

that provides the tools for designing, simulating, and generating code for different software
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runtime or hardware architectures is used. It take the form of a fully featured Integrated

Development Environment (IDE) built as an Eclipse IDE [87] project. Figure 3.5 shows how the

tool flow is setup. The compiler processes the RVC-CAL description along with configuration

files (XDF, XCF, and BXDF) to drive the implementation. After various stages of processing in

the compiler pipeline (presented in the next subsection), the backend generates platform-

specific source code (referred to as "Program Code" in the diagram). This code is then compiled

using a platform-specific compiler to produce the final binary that will run on the hardware

platform.

The advantage of using a source-to-source compiler instead of directly generating a binary

is that it simplifies the process of supporting many different hardware architectures and

automatically benefits from improvements made by vendor-specific or open-source compilers.

Additionally, this methodology is highly efficient for working with heterogeneous systems, as

the different parts can be compiled by compilers designated for each element’s architecture

while maintaining a single location for the application program’s design.

In addition to the RVC-CAL and network description (XDF) discussed in Section 3.3, the

compiler requires additional configuration files. The BXDF file specifies the fixed size of all

FIFO buffers in the network. The XCF file provides the partition and mapping of the network.

A partition is a group of sets of actors, where each actor in the network belongs to exactly one

set and follows the same scheduling strategy. For example, a non-preemptive set is scheduled

in such a way that each actor is executed sequentially and runs until no action can be taken

due to conditions on their input data. The mapping is the assignment of these sets to a specific

computational hardware resource, such as CPU cores. Examples of parameter files that are

compatible with the example in Figure 3.3 can be seen in Listing 3.12 for the BXDF file and

Listing 3.11 for the XCF file.

Listing 3.11: Example of an XCF file specifying the partitioning and mapping configuration for

a dataflow program.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <Configuration network =" Example ">
3 <Partitioning >
4 <Partition id="1" scheduling =" NON_PREEMPTIVE ">
5 <Instance id="Prod"/>
6 <Instance id=" CopyTokenA "/>
7 <Instance id=" CopyTokenB "/>
8 <Instance id=" PingPong "/>
9 <Instance id=" Merger "/>

10 </ Partition >
11 </ Partitioning >
12 </ Configuration >

39



Chapter 3. Dataflow Programming

Listing 3.12: Example of a BXDF file specifying the sizes of all FIFO buffer connections in a

dataflow program.

1 <?xml version ="1.0" ?>
2 <bxdf network =" Example " default -size="1024">
3 <connection source =" CopyTokenA " source -port="O"
4 target =" CopyTokenB " target -port="I"
5 size="1024"/>
6

7 <connection source =" CopyTokenB " source -port="O"
8 target =" Merger " target -port="I1"
9 size="1024"/>

10

11 <connection source =" PingPong " source -port="O"
12 target =" Merger " target -port="I2"
13 size="1024"/>
14

15 <connection source ="Prod" source -port="O"
16 target =" CopyTokenA " target -port="I"
17 size="1024"/>
18

19 <connection source ="Prod" source -port="O"
20 target =" PingPong " target -port="I"
21 size="1024"/>
22 </bxdf >

The ORCC’s compiler pipeline is composed of the following parts:

• Front-end: this stage is responsible for parsing the RVC-CAL code and creating the

Abstract Syntax Tree (AST). This stage is implemented using Xtext [88], a textual model-

ing framework designed for developing programming languages and Domain Specific

Languages (DSL), to automatically create a parser, linker, and editor from the grammar

description. The AST is then converted into an Intermediate Representation (IR), which

enables further code manipulation and optimization. This stage also performs semantic

validation, type inference, and expression evaluation.

• Core: this part contains the IR definitions and provides the machinery for the devel-

opment of optimization stages. It uses the Eclipse Modeling Framework (EMF) [89] to

automatically generate functions for manipulating the data structures and to provide

runtime support for the model. The Core also provides automatic serialization of the IR,

enabling incremental optimization.

• Interpreter: this stage provides the necessary code so that the IR can be directly in-

terpreted and emulated. The simulation is type-accurate and grants the possibility to

verify the correct functionality and behavior of the RVC-CAL program before any final

implementation is performed.
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Figure 3.5: Overview of the code generation process within the ORCC compiler framework.

• Back-end: this is the final stage of the compiler infrastructure and is responsible for

converting the generic IR into the target environment. It starts with IR optimizations that

are specific to the target platform, and then generates the final output of the compiler.

ORCC has multiple back-ends, including a new one developed in this thesis. Each back-

end is used for different purposes, although typical ORCC back-ends generate code in

general-purpose programming languages such as C/C++, Java, Python, etc., targeting

specific hardware platforms. The code generation is done using Xtend [88], a flexible

and user-friendly template-based code generation framework. The generated code

then needs to be compiled or interpreted by a platform-specific compiler to produce

an executable program. This thesis focuses mainly on this stage to integrate GPUs as a

target hardware platform.

3.5 Design Space Exploration Framework

Dataflow programs can be freely partitioned and mapped, resulting in correct executions

without the need for software rewriting. However, this creates challenges in terms of finding

the most efficient configurations for partitioning, mapping, and scheduling. The number of

possible design points is so large that it would be too time-consuming or even impossible for
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a developer to find the best configuration through trial and error. This requires automatic

and systematic methods for identifying and evaluating good design point configurations.

TURNUS [90, 91] is a design space exploration framework that has been developed for this

purpose. It is based on a high-level abstract model of computation, which includes the

dataflow network structure and the actor execution model, and is enhanced with profiling

measures of each atomic execution obtained on a specific heterogeneous processing platform.

The execution model analysis can then explore the configuration design space and find

efficient configurations without having to actually execute each one on the hardware platform.

Figure 3.6 illustrates the flow of the design space exploration tool when working with TURNUS

to optimize dataflow programs in the ORCC framework. The RVC-CAL representation of the

application program, along with the different configuration files (network, partition, buffer

sizes), is first fed into the compiler. An optimization loop is initiated, which continues until the

user is satisfied with the performance achieved. The optimization objectives can vary, such as

critical path reduction, minimizing overall execution time, maximizing resource utilization,

and so on. In the particular context of this thesis, the loop runs for a fixed amount of time

predetermined by the user at the start of the process. The loop begins with the compiler

generating a platform-specific source code implementation for the targeted architecture,

which includes performance evaluation code. This code is then compiled or synthesized into

an executable using platform-specific compilers. Once executed, the performance metric is

extracted from the platform and the Execution Trace Graph (ETG) is labeled. The performance

estimation of the application can then be evaluated using different configurations without the

need to recompile and execute each time. The system analyzes the ETG to perform various

evaluations, such as the critical path evaluation or buffer dimensions, and proposes new

configurations to be tested on the platform.

In this section, the four elements that make up the TURNUS design space exploration method-

ology are introduced. Firstly, the ETG is defined, then its combined use with the performance

metric extracted from the concrete implementation is discussed. Next, the post-processing

method for the performance estimation of the application is described. Finally, the last part

demonstrates how all these elements are combined to perform the design space exploration.

3.5.1 Execution Trace Graph

The ETG (Execution Time Graph) is a graph-structured representation of the execution of a

dataflow program. Each node in the ETG represents a single action firing, and each directed

arc represents an execution constraint between two different action firings. These constraints

can be caused by internal variables, finite state machines, guards, ports, or tokens. Table 3.2

illustrates the different types of dependencies and how they are represented in the ETG.

To provide an example, Figure 3.7 shows a graphical representation of the ETG obtained when

executing the RVC-CAL program described in Figure 3.3 with the guard on the counter of the

Prod actor set to 2. In this example, the firing set S contains ten action firings S = S0,S2, . . . ,S9,
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Figure 3.6: Overview of the parameter optimization process within the TURNUS design space
exploration framework.

which are summarized in Table 3.1. The table includes the actor, actor-class, and action

responsible for each firing. The dependency set D contains twenty-one dependencies D =
e0,e2, . . . ,e20, which are summarized in Table 3.3.

3.5.2 Performance Metrics

Once the ETG is generated, the next step is to create a Timed execution trace graph (TETG)

where each firing and each dependency is labelled with a corresponding time value called

weight. These weights are measured on the target hardware platform through the software

instrumentation of the code generated by the ORCC compiler. We denote 3 types of depen-

dencies:

• Execution: time of the execution of the action firing. It consist only of the computation
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Figure 3.7: Execution trace graph obtained after the execution of the RVC-CAL program
described in Figure 3.3 if the guard of the counter of the Prod actor was set to 2. The firing set
S is summarized in Table 3.1, and the dependencies set D is summarized in Table 3.3.

Firing Actor Actor-class Action
S0

Prod Producer p
S1
S2

CopyTokenA
CopyTokens c

S3
S4

CopyTokenB
S5
S6

PingPong PingPong
pp1

S7 pp2
S8

Merger Merger m
S9

Table 3.1: Firing of the RVC-CAL program described in Figure 3.3 if the counter of the Prod
actor was set to 2.

of the body of the action and of the computation of the potential output pattern.

• Communication: time of transmission of the data tokens. It consist of the reading of

the token from the input buffers and the writing of results token in the output buffers.

• Scheduling: time of the action selection process inside an actor. To be noted that it

doesn’t include the context switching between different actors of a same partition.

Listings 3.13, 3.15, and 3.14 are examples of the execution, communication, and scheduling

weights, respectively, extracted from the execution of the instrumented code generated by
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Name Direction Parameters Additional attributes

Dv internal variable

read/read
write/write
read/write
write/read

variable id
initial value
final value

D f finite state machine

Dg guard
enable
disable

guard id
appearance order

Dp port
read/read

write/write
port id

D t tokens
output port id

number of tokens
token values

Table 3.2: Dependencies kinds, directions, parameters and additional attributes.

the ORCC compiler of the RVC-CAL example shown in Figure 3.3. In Listings 3.13, an entry

is presented for each action of each actor, including the name of the action, the average,

minimum, maximum, and variance of the number of clock cycles needed for its execution.

In Listings 3.15, each FIFO is labeled with the name of the source and destination actors and

ports, and for each one, the latency in clock cycles to read and write from and to the FIFO is

displayed. Finally, Listings 3.14 show the scheduling weights, including the average, minimum,

maximum, and variance of the number of clock cycles needed for the scheduling of each

action. Each entry represents the time spent between the end of the execution of the "source"

action (the last action executed) and the beginning of the execution of the "target" action

(the next action to be executed). Additionally, and for all type of weights, each actor entry

shows the clock frequency of the hardware platform executing that actor. This information is

important for heterogeneous platforms, as explained in Section 5.2.1.

3.5.3 Performance Estimation

In order to make decisions about the performance of specific design points, an automated way

to evaluate the performance of an application program is necessary. To meet this requirement,

TURNUS has an estimation performance tool named the ETG post-processor. It uses two

inputs: the platform-independent model of the program execution provided by the TETG and

the model of the target architecture. The post-processor is based on a Discrete Event System

Specification formalism, as described in [92].

Discrete Event System Specification (DEVS) is a formalism for modeling systems with discrete

event dynamic behavior. In DEVS, a system is represented as a set of atomic models that are

connected to each other and described by their state transition, output, and time advance

functions. Communication between the atomic models occurs through signals that are re-

ceived or sent via port values, which define the types of objects accepted or produced as input

or output, respectively.
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(Si , S j ) Source Target Kind Direction Parameter Attribute

e0 S0 S1 Variable Write/Write variable=counter
before=1
after=2

e1 S0 S1 Port Write/Write port=O

e2 S0 S2 Tokens -
count=1
source-port=O
target-port=I

value=1

e3 S2 S3 Port Read/Read port=I
e4 S2 S3 Port Write/Write port=O

e5 S1 S3 Tokens -
count=1
source-port=O
target-port=I

value=2

e6 S2 S4 Tokens -
count=1
source-port=O
target-port=I

value=1

e7 S4 S5 Port Read/Read port=I
e8 S4 S5 Port Write/Write port=O

e9 S3 S5 Tokens -
count=1
source-port=O
target-port=I

value=2

e10 S0 S6 Tokens -
count=1
source-port=O
target-port=I

value=1

e11 S6 S7 FSM -
e12 S6 S7 Port Read/Read port=I
e13 S6 S7 Port Write/Write port=O

e14 S1 S7 Tokens -
count=1
source-port=O
target-port=I

value=2

e15 S4 S8 Tokens -
count=1
source-port=O
target-port=I1

value=1

e16 S6 S8 Tokens -
count=1
source-port=O
target-port=I2

value=1

e17 S8 S9 Port Read/Read port=I1
e18 S8 S9 Port Read/Read port=I2

e19 S5 S9 Tokens -
count=1
source-port=O
target-port=I1

value=2

e20 S7 S9 Tokens -
count=1
source-port=O
target-port=I2

value=-2

Table 3.3: Dependencies set S of the execution trace graph depicted in Figure 3.7.
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There are four building blocks that can be used to model a dataflow program in DEVS: an actor,

a buffer, an actor partition, and a buffer partition. An atomic actor models a dataflow actor that

processes all of its firings contained in the ETG. The DEVS time advance function corresponds

to the action weights assigned to each firing, obtained through profiling, and defines the next

update time (state transition) of an actor model. Executing each firing requires transitioning

through several states of an actor.

Listing 3.13: Example of an EXDF file specifying the execution weights extracted from a

dataflow program.

1 <network name=" Example ">
2 <actor id=" CopyTokenA " frequency =" 1800000 ">
3 <action id="c" clockcycles =" 2.000000 " clockcycles -min=" 2.000000 "

clockcycles -max=" 2.000000 " clockcycles -var=" 0.000000 "/>
4 </actor >
5 <actor id=" CopyTokenB " frequency =" 1800000 ">
6 <action id="c" clockcycles =" 2.000000 " clockcycles -min=" 2.000000 "

clockcycles -max=" 2.000000 " clockcycles -var=" 0.000000 "/>
7 </actor >
8 <actor id=" Merger " frequency =" 1800000 ">
9 <action id="m" clockcycles =" 2.000000 " clockcycles -min=" 2.000000 "

clockcycles -max=" 2.000000 " clockcycles -var=" 0.000000 "/>
10 </actor >
11 <actor id=" PingPong " frequency =" 1800000 ">
12 <action id="pp1" clockcycles =" 184200.000000 " clockcycles -min="

184200.000000 " clockcycles -max=" 184200.000000 " clockcycles -var=
" 0.000000 "/>

13 <action id="pp2" clockcycles =" 86695.000000 " clockcycles -min="
86695.000000 " clockcycles -max=" 86695.000000 " clockcycles -var="
0.000000 "/>

14 </actor >
15 <actor id="Prod" frequency =" 1800000 ">
16 <action id="p" clockcycles =" 49413.000000 " clockcycles -min="

219.000000 " clockcycles -max=" 98607.000000 " clockcycles -var="
4840099272.000000 "/>

17 </actor >
18 </ network >

3.5.4 Design Space Exploration

The design space exploration can now be done using the elements described in the previous

three sections. Using TURNUS’ performance estimation tool, one can perform critical path

detection, hotspot analysis, buffer size dimensioning, and partitioning to help the developer

achieve their performance target. In the context of design space exploration, this thesis focuses

on partitioning, specifically for adding GPUs as a target platform in a heterogeneous system.

The goal is to identify which actors in a workflow would benefit from being executed on GPU
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hardware. That is why Section 5.3 presents how the Tabu search meta-algorithm can be used

for this purpose.

Listing 3.14: Example of an SXDF file specifying the scheduling weights extracted from a

dataflow program.

1 <network name=" Example ">
2 <actor id=" CopyTokenA " frequency =" 1800000 ">
3 <scheduling source ="" target ="c" clockcycles =" 735796.000000 "

clockcycles -min=" 735796.000000 " clockcycles -max=" 735796.000000 "
clockcycles -var=" 0.000000 "/>

4 <scheduling source ="c" target ="c" clockcycles =" 69141.000000 "
clockcycles -min=" 69141.000000 " clockcycles -max=" 69141.000000 "
clockcycles -var=" 0.000000 "/>

5 </actor >
6 <actor id=" CopyTokenB " frequency =" 1800000 ">
7 <scheduling source ="" target ="c" clockcycles =" 1208113.000000 "

clockcycles -min=" 1208113.000000 " clockcycles -max="
1208113.000000 " clockcycles -var=" 0.000000 "/>

8 <scheduling source ="c" target ="c" clockcycles =" 14045.000000 "
clockcycles -min=" 14045.000000 " clockcycles -max=" 14045.000000 "
clockcycles -var=" 0.000000 "/>

9 </actor >
10 <actor id=" Merger " frequency =" 1800000 ">
11 <scheduling source ="" target ="m" clockcycles =" 1621003.000000 "

clockcycles -min=" 1621003.000000 " clockcycles -max="
1621003.000000 " clockcycles -var=" 0.000000 "/>

12 <scheduling source ="m" target ="m" clockcycles =" 91602.000000 "
clockcycles -min=" 91602.000000 " clockcycles -max=" 91602.000000 "
clockcycles -var=" 0.000000 "/>

13 </actor >
14 <actor id=" PingPong " frequency =" 1800000 ">
15 <scheduling source ="" target ="pp1" clockcycles =" 717588.000000 "

clockcycles -min=" 717588.000000 " clockcycles -max=" 717588.000000 "
clockcycles -var=" 0.000000 "/>

16 <scheduling source ="pp1" target ="pp2" clockcycles =" 14744.000000 "
clockcycles -min=" 14744.000000 " clockcycles -max=" 14744.000000 "
clockcycles -var=" 0.000000 "/>

17 </actor >
18 <actor id="Prod" frequency =" 1800000 ">
19 <scheduling source ="" target ="p" clockcycles =" 535952.000000 "

clockcycles -min=" 535952.000000 " clockcycles -max=" 535952.000000 "
clockcycles -var=" 0.000000 "/>

20 <scheduling source ="p" target ="p" clockcycles =" 250024.000000 "
clockcycles -min=" 250024.000000 " clockcycles -max=" 250024.000000 "

clockcycles -var=" 0.000000 "/>
21 </actor >
22 </ network >
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Listing 3.15: Example of an CXDF file specifying the communication weights extracted from a

dataflow program.

1 <communication network =" Example ">
2 <buffer source -actor="Prod" source -port="O" target -actor=" CopyTokenA "

target -port="I">
3 <memory level="RAM">
4 <read type="hit" percentage =" 1.000000 " latency =" 128622.000000

" frequency =" 1800000 "/>
5 <write type="hit" percentage =" 1.000000 " latency =" 42703.500000

" frequency =" 1800000 "/>
6 </ memory >
7 </ buffer >
8 <buffer source -actor=" CopyTokenA " source -port="O" target -actor="

CopyTokenB " target -port="I">
9 <memory level="RAM">

10 <read type="hit" percentage =" 1.000000 " latency =" 73841.500000 "
frequency =" 1800000 "/>

11 <write type="hit" percentage =" 1.000000 " latency =" 58644.000000
" frequency =" 1800000 "/>

12 </ memory >
13 </ buffer >
14 <buffer source -actor=" CopyTokenB " source -port="O" target -actor="

Merger " target -port="I1">
15 <memory level="RAM">
16 <read type="hit" percentage =" 1.000000 " latency =" 44639.500000 "

frequency =" 1800000 "/>
17 <write type="hit" percentage =" 1.000000 " latency =" 39526.500000

" frequency =" 1800000 "/>
18 </ memory >
19 </ buffer >
20 <buffer source -actor=" PingPong " source -port="O" target -actor=" Merger "

target -port="I2">
21 <memory level="RAM">
22 <read type="hit" percentage =" 1.000000 " latency =" 44184.000000 "

frequency =" 1800000 "/>
23 <write type="hit" percentage =" 1.000000 " latency =" 52786.500000

" frequency =" 1800000 "/>
24 </ memory >
25 </ buffer >
26 <buffer source -actor="Prod" source -port="O" target -actor=" PingPong "

target -port="I">
27 <memory level="RAM">
28 <read type="hit" percentage =" 1.000000 " latency =" 67035.500000 "

frequency =" 1800000 "/>
29 <write type="hit" percentage =" 1.000000 " latency =" 42703.500000

" frequency =" 1800000 "/>
30 </ memory >
31 </ buffer >
32 </ communication >
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3.6 Conclusion

This section has provided an overview of dataflow parallel programming concepts. The

dataflow computational model was defined and its background explored. CAL, a behavioral

language, was subsequently introduced and exemplified with various code snippets. Key con-

cepts such as actors, actions, guards, priorities, and finite state machines were demonstrated.

This chapter has introduced two powerful frameworks that were utilized in this work to achieve

the desired results. The first framework, known as the OpenRVC-CAL Compiler, is a compiler

framework that was used and extended to synthesize a low-level implementation targeting

the hardware architecture from the CAL dataflow programming language representation. The

second framework, called TURNUS, is a design space exploration framework that played

a important role in this work by enabling automatic parameter tuning and performance

optimization.
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4 High-Level Synthesis of RVC-CAL
Dataflow Programs on GPU

4.1 Introduction

This chapter focuses on the high-level synthesis of RVC-CAL dataflow programs in the context

of a CPU/GPU co-processing platform. The first section provides a description of the tool

flow that has been developed and the CUDA technology used in this work. Some of the

development presented in the follow-up sections have been published in various venues.

For example, the CPU/GPU co-processing model [9] has been published, as well as various

optimizations such as inter-actions parallel executions [13], and dynamic SIMD parallel

executions [12, 15]. These optimizations will be further developed in subsequent sections.

4.2 CUDA Generation Tool Flow

In this section, the synthesis pipeline of the tool developed in this thesis will be presented first.

Afterwards, the CUDA programming model used in the synthesis process will be described.

4.2.1 CUDA Design Pipelines

Figure 4.1 is a specific representation of the more general Figure 3.5 for this thesis project. It

illustrates how the ORCC compiler uses the Exelixi CUDA backend, developed in this thesis,

to generate C++ and CUDA code from the RVC-CAL representation. The XCF file informs the

compiler which type of actors should be generated. Actors assigned to a numbered partition

are generated as CPU actors in C++, while actors assigned to the "PG" partition (Partition GPU)

are generated as GPU actors using C++/CUDA. All the necessary connections and partitions

are generated accordingly, as explained in further detail in subsequent sections.

Figure 4.2 shows the files generated during the synthesis phase. The lib folder contains all the

static files required for the project runtime, including definitions of data structures and classes,

and helper functions. These files are identical regardless of the project being synthesized and

the compiled binary can be shared between different projects. The src folder contains code
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specific to the dataflow program being generated. Each CPU or GPU actor gets a source and

header file, while Network.cu is the main file that instantiates all actors, connects them with

the appropriate FIFO buffer, and launches them in the appropriate partitions. The Network.xcf

is the configuration file that describes the partition and mapping configuration used for the

synthesis of this project.

CAL

Exelixi CUDA Backend

ORCC

NVCC

BIN

C++

XDF XCF

CUDA

BXDF

Figure 4.1: Overview of the code generation process within the ORCC compiler framework
combined with the Exelixi CUDA backend.

4.2.2 CUDA Programming Model

NVIDIA introduced CUDA (Compute Unified Device Architecture), a general-purpose parallel

programming model and application programming interface (API) that leverages the paral-

lel computing capability of NVIDIA GPUs to solve complex computational problems more

efficiently than on a CPU.

CUDA offers a low-level API as well as a higher-level API, providing developers with a fine-

grained control over the GPU hardware while also offering a productive level of abstraction.

It comes with a software environment that enables developers to use C/C++ or FORTRAN as

a high-level programming language to jointly develop CPU and GPU processing, as well as
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Project
bin
lib

include
src
Makefile

src
include

cpu-actors*.h
gpu-actors*.h

src
cpu-actors*.cu
gpu-actors*.cu
Network.cu
Network.xcf

Makefile
Makefile

Figure 4.2: Structures of the folders and files generated by the Exelixi CUDA backend.

communication and synchronization between the two.

The challenge in programming GPUs lies in developing application software that transparently

scales its parallelism to take advantage of the growing number of processor cores. To address

this challenge, CUDA provides abstraction layers based on threads, thread groups, shared

memory, and barriers for synchronization. It is important to note that threads are executed in

warps, which are collections of 32 threads, and blocks of threads can contain multiple warps.

This decomposition preserves the expressiveness of the language by allowing threads to

collaborate when computing subtasks and enables automatic scalability. In fact, each block of

threads can be scheduled on any of the available multiprocessors within a GPU, in any order,

concurrently or sequentially. As a result, a single compiled CUDA program can execute on any

number of multiprocessors, as illustrated in Figure 4.3. Only the runtime system needs to be

aware of the exact hardware layout.

CUDA threads may access data from multiple memory spaces during their execution, as

illustrated in Figure 4.4. Each thread has access to its own private local memory. All threads in

a thread block have access to a shared memory that is visible to all threads in the block and

has the same lifetime as the block. All threads also have access to the same global memory.

The CUDA programming model enables heterogeneous computing, where both the CPU and

GPU work together to perform tasks. A CUDA program is composed of both CPU code and

GPU code. The CPU code prepares and launches functions, called kernels, to be executed on
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Figure 4.3: Illustration of the automatic scalability allowed by the CUDA programming
model [8].

Figure 4.4: Illustration of the memory hierarchy used in CUDA compatible hardware [8].
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the GPU.

As demonstrated in Figure 4.5, the CUDA programming model is based on the assumption

that CUDA threads run on a physically separate device, such as a GPU, which operates as

a co-processor to the host running the C++ program. This scenario is commonly seen, for

instance, when the CUDA kernels are executed on a GPU while the rest of the C++ program is

executed on a CPU. This setup allows for efficient and effective utilization of the computational

resources available in the system.

The CUDA programming model also assumes that the host and device have separate memory

spaces in DRAM, referred to as host memory and device memory, respectively. The program

manages the memory spaces accessible to kernels via calls to the CUDA runtime system,

which includes allocating and deallocating device memory and transferring data between

host and device memory. This is described in detail in the CUDA Programming Interface.

Figure 4.5: Illustration of how a typical CUDA codes is organized with sequential CPU section
and parallel GPU code [8].
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4.3 Model for CPU/GPU Co-Processing

This section describes the methodology for automatically generating C++/CUDA code for

executing DPN dataflow software on heterogeneous CPU/GPU co-processing platforms. The

focus is on the partitioning of processing tasks between the CPU and GPU, the independent

processing of each actor, and the data communication between them.

4.3.1 CUDA Code Generation

As explained in the previous section, this work utilizes the CUDA application programming

interface to run DPN actor networks on NVIDIA GPUs. However, the methodology and

approach are general and can be extended to other GPU interfaces and platforms as long as

they provide similar control and appropriate APIs. By utilizing CUDA, the researchers can take

full advantage of the fine-grained control over the diverse range of NVIDIA hardware, including

various generations and families of GPUs. The CUDA notation for multiple computing contexts

is extensively used, including dynamic parallelism, and the concurrency between memory

transfers and computation.

As previously presented, a typical CUDA application program consists of both host (CPU) and

device (GPU) code in a single-source program, differentiated using pre-processor directives.

The device code is written in the form of kernels, which are special functions that can be

invoked from the host code and executed on the device. These kernels will be used to represent

GPU actors in our model.

The approach taken in this work is to execute both the action selection and the actions

themselves on the GPU for selected dataflow actors in the dataflow network that can benefit

from GPU execution. This allows the necessary data to fire an action to be readily available

in the device memory, resulting in a reduction of data transfers between the host and device

memory.

By fully porting an actor’s execution to the GPU, as opposed to the traditional approach found

in the literature that uses GPUs as co-processing units, this approach eliminates the need

for allocating a separate CPU core for each actor to schedule and launch kernels for GPU

co-processing.

Actors of the dataflow network can be either fully executed on the host (CPU) or on the device

(GPU). To implement this porting of dataflow network nodes, three different FIFO communi-

cation mechanisms are required: one for communication between actors mapped on the CPU,

one for communication between actors mapped on the GPU, and one for communication be-

tween an actor mapped on the CPU and one mapped on the GPU. A different implementation

is required for each type of communication mechanism.

These three FIFO communication implementations enable both independent and parallel

computation between the host and the co-processing device and full parallel execution of
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actors on the co-processing device. (More details are provided in Section 4.3.4).

As previously noted, the RVC-CAL programming language, models an actor as an atomic

kernel of execution that consumes tokens from the input buffer and produces tokens in the

output buffer. As such, actors are not inherently designed for internal parallelization. However,

the performance of an actor’s execution can be improved by parallelizing its computation.

Performance improvements can be achieved by launching multiple instances of the same

action in parallel on different data, as long as the order of tokens within the communication

channels between actors is preserved and the internal state dependencies of each actor are

respected. This will be discussed in further detail in Section 4.4.1.

Before generating the execution code for an RVC-CAL application program, designers must

provide a partitioning configuration. This involves assigning each actor or sub-network to

either the CPU side, with a specific sub-partition (for multicore systems), or the GPU side.

This assignment enables the compiler to generate the actor code intended for execution on

the CPU using the CPP backend, and to generate the GPU platform code using the newly

developed Exelixi CUDA backend.

The code generated for the main function is responsible for creating actor instances, creating

partition using pthread to be executed on the CPU, instantiating GPU actors and launching

their corresponding main kernels in separate streams (as detailed in Section 4.3.2), and

instantiating and connecting the appropriate FIFO implementations between actors’ ports.

In Listing 4.1, the code generated by the backend for the GPU-mapped Producer actor is

presented. The __Global__ directive declares kernel functions. The action_selection function

is the principal kernel of the code, launched from the main. It is responsible for determining

the next action to be executed, by checking for available data, available FIFO output space,

and by evaluating constraints expressed by the guard, represented by the isSchedulable_action

function. As depicted, the actions are also kernel functions, launched from the action_selection.

This is made possible thanks to the dynamic programming feature provided by the CUDA API,

which allows to select the number of SIMD threads available for the execution of each action,

based on the executed code (refer to Section 4.4.1).

As an optimization, in the general case, if the number of SIMD threads used to execute the

parent kernel (action_selection) matches the optimal number of threads for a specific action,

the kernel call and the cudaDeviceSynchronize() call (line 11 and 12 in Listing 4.1) can be

replaced by a simple function call. This eliminates the overhead introduced by the CUDA

runtime that is not necessary in this case.
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Figure 4.6: Program partitioning over CPU and GPU. Four types of FIFOs are used (1-CPU
FIFO, 2-Legacy-HostFifo, 3-HostFifo, 4-Device FIFO.

Listing 4.1: Striped down example of the CUDA implementation of the action selection of the

Producer actor

1 __device__ bool Prod :: isSchedulable_p () {...}
2 __global__ void ProdNS ::p(Prod* prod) {...}
3

4 __global__ void ProdNS :: action_selection (Prod* prod) {
5 prod -> status_O_ = prod ->port_O ->rooms ();
6 bool res = true;
7 while (res) {
8 res = false;
9 if(prod -> isSchedulable_p ()) {

10 if(prod -> status_O_ >= 1 ) {
11 ProdNS ::p<<<1, 1, 0>>>( prod);
12 cudaDeviceSynchronize ();
13 res = true;
14 }
15 }
16 __syncthreads ();
17 }
18 }
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4.3.2 Independent GPU Actors

To optimize GPU resource utilization, multiple independent compute contexts are employed

to run different actors concurrently with multiple CUDA streams. Figure 4.7 illustrates a

possible execution of the dataflow program depicted in Figure 3.3, where each actor runs on

its own isolated CUDA stream and If four tokens are generated by the producer actor. The

number of parallel actions that can be executed depends on the availability of GPU device

resources, such as CUDA cores, memory, and registers. As shown in green in Figure 4.7,

multiple memory transfers can occur simultaneously by utilizing the copy engines of the GPU

device. However, the number of copy engines may vary based on the hardware generation and

model. Additionally, the number of available copy engines can impact the overlap between

memory transfer and compute time, potentially affecting the performance of the dataflow

program.

In Figure 4.7, the first firing of the action p by the prod actor can be seen in slot 1 (in red).

The generated token of p is then made available to the PingPong actor in slot 2. As shown in

Figure 4.6, the token must then be transferred to the CPU, where it is processed by the action c

of the CopyTokenA actor in slot 3. In slot 3, it can also be observed that there is simultaneous

CPU and GPU computation as well as a transfer of memory from GPU to CPU.

CPU

GPU

CopyStream

CopyStream

MergerStream

PingPongStream

ProdStream

CpyTokenAThread

CpyTokenBThread

Action: p Action: p Action: p Action: p

Action: pp1 Action: pp2 Action: pp1 Action: pp2

GPU->CPU GPU->CPU GPU->CPU GPU->CPU

Action: m Action: m Action: m Action: m

Action: c Action: c Action: c Action: c

Action: c Action: c Action: c Action: c

CPU->GPU CPU->GPU CPU->GPU CPU->GPU

3

2

1

Time

Figure 4.7: Example of the execution of the dataflow program depicted in Figure 3.3. In this
example, four tokens are generated by the producer actor, and actors are mapped over both
a CPU and a GPU, using multiple CUDA streams to showcase multiple independent actor
executions.

4.3.3 GPU Partitions

In most of the literature, the GPU is typically viewed as a secondary processing platform that

only executes tasks that are scheduled by the CPU, rather than as a standalone platform. This

leads to an excessive use of CPU processing resources just for scheduling purposes.

The objective of this section is to demonstrate how each GPU-mapped actor can execute

autonomously. Using the formalism presented in [9], each GPU actors behave as it is it’s own
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partition. Each actor is responsible for monitoring its own termination status as determined by

the application software, and thus the GPU partitions can be considered fully independent for

the duration of the application. To achieve this goal, after all the instantiation and initialization

phases are completed, the main program thread waits for all CPU and GPU partitions to stop

before terminating the application. This is achieved through each partition (whether CPU or

GPU) keeping track of its actors’ progress. If, after a set amount of time, no progress has been

made by any actors (i.e., no actions have been fired), the partition terminates.

The implementation of the new GPU partition design is described in more detail below. The

low-level scheduling generated by the RVC-CAL backend, referred to as action_Selection, has

been implemented as a long-running kernel. Figure 4.2 provides a simplified illustration of this

implementation. As can be seen from line 25, the status array is updated every time an action

is triggered. This array is accessible to all other GPU actors and is used to inform them that

one of the actors has completed further processing. The checkStatus function in line 30 checks

the status of the other actors. If no actors have produced any results after a predetermined

period of time (waitPeriod), the actors terminate. Finally, the software application terminates

after all CPU-side and GPU-side actors have completed execution.

4.3.4 Data Communications

To support CPU/GPU co-processing execution, three types of FIFOs are required, named:

Fifo, CudaFifo, and HostFifo. These are depicted in Figure 4.6. The first type, depicted in red

and inherited from the original Exelixi C++ backend, is used for communication between

CPU actors. The second type, depicted in purple, is used for communication between GPU

actors and has an implementation similar to the CPU FIFO, with the exception of using device

memory instead of CPU memory. The third type, depicted in blue, is used for communication

between the CPU and GPU and requires at least one writer or reader to be on the CPU side

and one on the GPU side.

A HostFifo is a cross-platform FIFO buffer that has been designed to take advantage of recent

CUDA APIs and the accompanying hardware capabilities. To achieve this, pinned memory is

allocated on the CPU RAM, which prevents the operating system from swapping this allocation

to disk or moving it to a different physical address space. This type of allocation gives GPU

actors direct access to the memory and enables them to access it efficiently.

The addresses of the pinned memory are registered in the GPU’s virtual address space and

the corresponding pointers are obtained. This results in different pointers being used for

memory access from the CPU side and the GPU side. The advantage of this implementation is

that it eliminates the need for any synchronization or software API calls, as memory accesses

are performed automatically in hardware. This efficient implementation does not affect the

dataflow model of computation or the use of FIFOs.

However, this third type of FIFO implementation is only compatible with hardware with a
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computing capability of 6.x or higher, which supports fine-grained memory pinning. For

hardware with compute capabilities below 6.x, a Legacy-HostFifo is provided. It consists of two

identical CudaFifo buffers, one allocated on the CPU side and the other on the GPU side, along

with additional functions (hostFifoSyncWrite and hostFifoSyncRead) that need to be called

from the CPU to synchronize them. Since these FIFOs accept a single writer and multiple

readers, it is necessary to keep track of which reader/writer is on which side to identify the most

up-to-date data and determine the direction of the explicit memory transfers. However, the

continuous use of CUDA software APIs to synchronize the two FIFOs introduces a significant

runtime overhead compared to the hardware-optimized HostFifo implementation.

The subsequent sub-sections present the results of the evaluation of two application programs

aimed at evaluating the performance gains achieved by replacing the inter-partition com-

munication (CPU/GPU and GPU/GPU) implementations with the new HostFifo approach,

compared to the previous Legacy-HostFifo.

The platforms used to conduct the experiments in the following sections have the following

specifications:

• System 1: Intel Skylake I5-6600 CPU with 16 GB of DDR4 RAM, paired with a GeForce

GTX 1660 SUPER NVIDIA GPU with 6 GB of memory.

• System 2: AMD Threadripper 3990X CPU with 256 GB of DDR4 RAM, paired with a

GeForce RTX 3080 Ti NVIDIA GPU with 12 GB of memory.

Both systems run CUDA version 11.6.2 for the GPU software library.

4.3.4.1 RVC-CAL FIR Filter

Figure 4.8 shows the dataflow network of a simple FIR filter application program, consisting of

13 actors. The source code for this network is publicly available on the web repository, which

can be accessed at the following URL [93].

Figure 4.8: RVC-CAL FIR filter dataflow network: actors and communication FIFO buffers.

Figure 4.9 displays the performance speedup achieved by the new HostFifo implementation

compared to the previous Legacy-HostFifo implementation. In order to assess the performance
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of CPU/GPU data throughput, a complex dataflow network of actors, each performing simple

internal processing, was chosen as a validation test. Thus, the performance of a FIR application

was evaluated by comparing the results of six randomly selected mappings (refer to Table 4.3)

of the actors to either the CPU or GPU platform on the two hardware systems. The results are

compared to the performance of the previous inter-platform communication mechanism and

the same mapping/partition. It can be observed that the improvement in processing speed

ranges from 1.70 to 8.91 times.
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Figure 4.9: Speedup results for the RVC-CAL FIR filter. On the x-axis the different mapping
configurations and on the y-axis the speedup value with the application implemented using
the new FIFO inter-partition methodology.

4.3.4.2 RVC-CAL JPEG Decoder

Figure 4.10 presents the top-level network of the JPEG decoder application program, consisting

of 6 actors. This widely known application can also be found in the open-source orc-apps

repository [93].

As with the results reported in previous sections, Figure 4.11 shows the speedup obtained

by the new HostFifo implementation for six randomly selected configurations of the JPEG

decoder. In this experiment, the performance of six arbitrary partitions (refer to Table 4.6) of
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New Fifo Old Fifo
Speedup

Min Mean Max Var Min Mean Max Var
m1 1.36 1.37 1.38 1.00E-4 3.56 3.60 3.63 1.23E-3 2.63
m2 1.31 1.34 1.35 4.33E-4 3.40 3.42 3.45 8.33E-4 2.56
m3 1.37 1.38 1.41 5.33E-4 4.90 4.91 4.92 1.33E-4 3.55
m4 5.73 5.76 5.80 1.43E-3 51.03 51.27 51.65 1.09E-1 8.91
m5 5.99 6.16 6.26 2.26E-2 51.23 51.30 51.37 4.90E-3 8.32
m6 5.79 5.80 5.82 3.00E-4 28.55 28.63 28.71 6.43E-3 4.94

Table 4.1: Statistics of the results depicted in Figure 4.9a using 10 executions.

New Fifo Old Fifo
Speedup

Min Mean Max Var Min Mean Max Var
m1 1.25 1.26 1.27 1.33E-4 2.11 2.13 2.17 1.03E-3 1.70
m2 1.25 1.28 1.31 9.33E-4 2.65 2.67 2.68 3.00E-4 2.09
m3 1.30 1.31 1.32 1.00E-4 3.48 3.52 3.56 1.63E-3 2.68
m4 4.98 5.04 5.17 1.20E-2 30.10 30.24 30.42 2.72E-2 6.00
m5 5.23 5.26 5.31 1.73E-3 30.00 30.20 30.51 7.52E-2 5.74
m6 5.15 5.19 5.26 3.70E-3 17.16 17.31 17.53 3.72E-2 3.34

Table 4.2: Statistics of the results depicted in Figure 4.9b using 10 executions.

CPU GPU

m1 Source, Sink
delay_1, delay_2, delay3, mul_1,

mul_2, mul_3, mul_4, add_1,
add_2, add_3, rshift

m2
Source, Sink, delay_1, mul_1,
mul_2, add_1, add_2, rshift

delay_2, delay3, mul_3, mul_4, add_2

m3 Source, Sink, mul_1, add_3, rshift
delay_1, delay_2, delay3, mul_2,

mul_3, mul_4, add_1, add_2

m4
Source, Sink, delay_1, delay_3,

mul_1, mul_3, add_1, add_3
delay_2, mul_2, mul_4, add_2, rshift

m5
Source, Sink, delay_1, delay_3,

mul_1, mul_3, add_1, add_2
delay_2, mul_2, mul_4, add_3, rshift

m6
Source, Sink, delay_1, delay_2,

delay_3, mul_1, mul_2, mul_3, mul_4
add_1, add_2, add_3, rshift

Table 4.3: The different mappings settings of the FIR implementation that are used in the
results.

the actors to the GPU or CPU platform on the two different systems is presented and compared

with the results of the previous GPU/CPU data communication buffer implementation. The

speedup improvement of the overall application program execution ranges from 2.94 to 15.01

times, as observed in this test.
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Figure 4.10: Network for the RVC-CAL implementation of a JPEG decoder.
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Figure 4.11: Speedup results for the RVC-CAL JPEG decoder. On the x-axis the different
mapping configurations and on the y-axis the speedup value with the application implemented
using the new FIFO inter-partition methodology.

4.4 Generation Features

This section presents various optimization techniques that can be enabled independently

within the Exelixi CUDA backend to improve performance or provide additional functionality

in the automatically generated code. The choice of optimization technique to be applied

depends on the specific context and requirements.
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New Fifo Old Fifo
Speedup

Min Mean Max Var Min Mean Max Var
m1 2.07 2.07 2.07 1.33E-04 14.98 15.08 15.15 7.11E-2 7.31
m2 1.88 1.89 1.89 5.33E-04 10.47 10.58 10.65 8.14E-2 5.64
m3 5.03 5.10 5.23 1.14E-01 73.04 73.70 74.51 5.00 14.26
m4 5.57 5.59 5.62 5.63E-03 82.61 82.72 82.81 9.31E-2 14.73
m5 9.57 9.60 9.62 6.70E-03 143.39 143.96 144.43 2.50 15.01
m6 7.70 7.72 7.75 7.23E-03 62.96 63.36 63.64 1.14 8.21

Table 4.4: Statistics of the results depicted in Figure 4.11a using 10 executions.

New Fifo Old Fifo
Speedup

Min Mean Max Var Min Mean Max Var
m1 1.72 1.72 1.72 4.30E-5 5.44 5.67 5.90 4.84E-1 3.29
m2 1.31 1.31 1.32 2.52E-4 3.81 3.86 3.94 4.42E-2 2.94
m3 4.56 4.57 4.57 2.44E-4 24.93 24.95 24.99 8.83E-3 5.46
m4 5.12 5.13 5.14 7.46E-4 27.59 28.35 29.35 7.41 5.52
m5 8.44 8.45 8.46 5.37E-4 58.56 59.51 61.25 2.03E+1 7.04
m6 6.93 6.94 6.95 6.13E-4 23.62 24.87 25.52 1.06E+1 3.58

Table 4.5: Statistics of the results depicted in Figure 4.11b using 10 executions.

CPU GPU
m1 src, parser, huffman, dequant, idct2d, display dequant
m2 src, parser, huffman, dequant, display idct2d
m3 src, parser, dequant, idct2d, display huffman
m4 src, parser, dequant, display huffman, idct2d
m5 src, huffman, idct2d, display parser, dequant
m6 src, display parser, huffman, dequant, idct2d

Table 4.6: The different mappings settings of the JPEG decoder implementation that are used
in the results.

4.4.1 SIMD Parallel Execution

This section details the utilization of Single Instruction Multiple Data (SIMD) paralleliza-

tion techniques to speed up the runtime of dataflow actions, thereby enhancing the overall

execution performance.

4.4.1.1 Design Methodology

Efficient generation of low-level SIMD-style code is essential for fully leveraging the capabili-

ties of modern GPUs. Without this, only a single thread out of the 32 possible will be utilized

on a NVIDIA GPU, as each CUDA core is a SIMD architecture with 32 threads, leading to
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substantial waste of resources. To achieve this goal, it is necessary to understand the limita-

tions of the computation model used for programming the platform. In the case of RVC-CAL,

actors consume one or more tokens from input buffers, perform the computation defined by

the action, modify their internal state, and then produce one or more tokens in the output

buffers. This intrinsic behavior of actors makes the implementation not automatically suitable

for SIMD-style parallelization. However, it is possible to improve the performance of actor

execution by preserving the order of tokens within the actor communication channels and

respecting the state dependencies of the model of execution in the actor.

In contrast to the methodology described in the previous section, where the action_selection

and the actions was executed by a single CUDA thread, this work proposes a new approach.

The dynamic parallelism necessary for executing the action_selection function is achieved

through the use of a second, dedicated kernel for the actions. This approach enables SIMD

parallel execution of multiple instances of the same action simultaneously.

As an illustration of the approach presented in this section, a summary of the implementation

is provided in Listing 4.2. This improved implementation of the action_selection is shown and,

as can be observed from line 23, in this particular example, 512 threads are used to execute

this kernel, resulting in 512 instances of the action being executed in parallel.

Another important aspect to consider is that the handling of read and write addresses in FIFOs

is performed within the action_selection function, rather than in the action implementation

itself. This allows the action_selection to be called only once and in a sequential manner. In

line 21, the read address is obtained by providing the number of tokens to be used at each

call. For example, in the illustration, this number is 64 tokens multiplied by 512, the number

of parallel instances. Proper sizing is critical to avoid data races and ensure that memory is

aligned, allowing a specific amount of data to be accessed at consecutive addresses.

Within a network, it is possible to have both sequential and parallelized actors coexisting

while maintaining the sequential semantics of the FIFO buffers. This can be achieved by

implementing a mapping of token IDs and thread IDs within an action to properly index the

read and/or write addresses.
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Listing 4.2: Simplified implementation of a CUDA action selection function for an actor of the

idct design illustrated in Figure 4.12

1 void action_selection (Idct* actor ,
2 unsigned int* status ,
3 unsigned int index ,
4 unsigned int size) {
5 unsigned int sTime = clock64 ();
6 bool endExecution = false;
7 do {
8 status [index] = 0;
9 bool r1 = true;

10 while (r1) {
11 r1 = false;
12 actor -> size_IN = actor ->Prt_IN ->count (0);
13 actor -> size_OUT = actor ->Prt_OUT ->rooms ();
14 bool r2 = true;
15 while (r2) {
16 r2 = false;
17 if(actor -> size_IN >= 512*64 &&
18 actor -> isSchedulableAction ()) {
19 if(actor -> size_OUT >= 512*64) {
20 Ports prts;
21 prts.IN =actor ->Prt_IN -> read_address (0 ,512*64);
22 prts.OUT =actor ->Prt_OUT -> write_address ();
23 idctNS :: action <<< 1, 512 >>>(actor ,prts);
24 r1 = r2 = true;
25 status [index ] = 1;
26 }
27 }
28 }
29 }
30 if ( checkStatus (status , size) == NULL) {
31 endExecution = ( clock64 () - sTime) > waitPeriod ;
32 } else {
33 sTime = clock64 ();
34 }
35 } while (! endExecution );
36 }

Two application programs have been selected for evaluating the newly introduced methodol-

ogy. When a new technology is used to generate executable code from a high-level dataflow

program, two factors need to be taken into account. Firstly, it is important to verify that the

generated executable code is semantically correct and equivalent to the source code in the

dataflow representation. Secondly, it is essential to measure the performance improvement

achieved in comparison to the original alternative.
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4.4.1.2 IDCT Application

The results of the parallelization achieved by applying the new approach described in this

section to a computationally intensive actor are presented here. To isolate the transformation

and evaluate its potential, a test application consisting of a network of three actors was used.

Two actors, the Source and Sink, provide the necessary input and output data flow, while the

central actor idct implements a compliant Inverse Discrete Cosine Transform algorithm (refer

to Fig.4.12 for a visualization of the dataflow network). To evaluate the performance of the pro-

posed approach, two partitioning configurations were tested. The first configuration utilized

only CPU processing, with one thread assigned to each actor and a total of three threads. The

second configuration utilized GPU processing, with the CUDA kernel of the idct actor’s action

executed on a grid of 2 blocks, each with 512 threads. Both configurations used buffers of the

same size. The results showed that the GPU configuration processed the data in less than half

the time of the CPU-only configuration. These results are detailed in Table 4.7. These results

demonstrate that the proposed methodology can provide a significant performance boost

over implementations relying solely on multicore CPU processing, provided that sufficient

data throughput can be achieved.

Figure 4.12: Illustration of the test RVC-CAL IDCT dataflow network.

CPU GPU
Speedup

Min Mean Max Var Min Mean Max Var
System 1 9.23 9.31 9.42 2.90E-3 4.36 4.60 4.77 1.40E-2 2.02
System 2 8.50 12.57 17.97 1.39E+1 5.72 5.73 5.74 3.22E-5 2.18

Table 4.7: Speedup results with statistics for the the RVC-CAL IDCT application using 10
executions.

4.4.1.3 RVC-CAL JPEG Decoder

In this second experiment, the same JPEG decoder as in Section 4.3.4.2 is utilized. The par-

allelized idct2d actor, as described in the tests in the previous section, is integrated into the

dataflow network implementing the full JPEG decoding algorithm. This experiment serves to

validate the semantic correctness of the generated code for a generic dataflow program. The

application is sufficiently complex and has not been explicitly designed and optimized for

exploring efficient GPU parallelization. The experimental results in terms of performance are

presented in Table 4.8, which compares the performance of the sequential GPU implementa-

tion of the idct2d actor, consistent with the methodology previously developed and reported,
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with the improved implementation in which the idct2d actor is executed in parallel on the

GPU platform. In both cases, all other actors are executed on the CPU partition. The results

show that the parallel GPU implementation outperforms the sequential implementation by a

speedup of 9.67 or 18.3, depending on the hardware system.

Frame rate [image/sec]
SpeedupSequential GPU Parallel GPU

Min Mean Max Var Min Mean Max Var
System 1 0.24 0.24 0.24 7.63E-8 2.28 2.28 2.28 4.06E-7 9.44
System 2 0.28 0.29 0.29 2.38E-7 5.16 5.19 5.24 8.17E-4 18.20

Table 4.8: Frame rate and speedup results for the RVC-CAL JPEG decoder.

4.4.2 Inter-Actions Parallel Execution

This section presents an extension of the high-level dataflow compiler backend Exelixi CUDA

which utilizes a CUDA feature called Dynamic programming to offer inter-actions parallel

execution, thereby improving performance.

4.4.2.1 Design Methodology

As a reminder, is this methodology when an actor is mapped to the GPU, both the action

selection and the execution of the action take place on the GPU, which optimizes data accesses.

This also frees up CPU partitions to allocate a CPU core solely for scheduling actions, allowing

it to be awailable for executing other actors. A further advantage is that it enables actors with

a fully dynamic dataflow model of computation to run on the GPU. This approach results in

multiple actors running in parallel on both CPUs and GPUs.

If the dataflow model of computation is strictly adhered to, parallelization occurs solely at

the actor level. However, the number of potential parallel executions offered by explicit actor

parallelism may not always align with the hardware capabilities of modern GPUs, depending

on the application and the coding style of the developers. To increase resource utilization and

improve overall performance, inter-actor parallelization at the granularity of actions can be

implemented. However, this approach must maintain the same guarantees offered by the

dataflow Model of Computation.

Figure 4.13 illustrates the execution of the example described in Section 3.2 if all actors are

mapped to the GPU, utilizing the SIMD Parallel Execution developed in the previous section.

In this scenario, each actor has a dedicated cudaStream (CUDA’s software execution queue),

executing actions sequentially. If multiple instances of the same action need to be executed

in sequence, they can be executed in parallel, as demonstrated by the action c in actors

CpyTokenA and CpyTokenB, where two actions are executed at a time. On the other hand, this

technique is not effective in parallelizing actions pp1 and pp2 in the PingPong actor, as they
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are different actions,despite the absence of any dependencies between them.

GPU
Prod

Action: p Action: p Action: p

CpyTokenA

Action: c

Action: c

Action: c

Action: c

Action: c

Action: c

CpyTokenB

Action: c

Action: c

Action: c

Action: c

Action: c

Action: c

Action: pp1

PingPong

Merger

Action: m Action: m Action: mAction: m Action: m Action: m

Action: pp2Action: pp1 Action: pp2Action: pp1Action: pp2Action: pp1

Time

Figure 4.13: Example of the execution of the dataflow program depicted in Figure 3.3 with all
actors mapped to the GPU and utilizing the SIMD Parallel Execution feature.

Figure 4.14 depicts the execution of the same example, utilizing both SIMD optimization and

the newly introduced inter-action parallelization. With this approach, actions pp1 and pp2

in the PingPong actor, as well as action m in the Merger actor, can be parallelized. This is

due to the fact that consecutive actions can be launched in parallel as long as there are no

dependencies on state variables, with dependencies on input and output data being handled

by the FIFO buffer, as explained in Section 4.4.2.3. A small delay is observed between the

launch of actions pp1 and pp2, reflecting the fact that the action selection is executed in

parallel, preparing for the next action without waiting for the previous one to complete. This is

made possible by each action, including the action selection, running in separate CudaStream.

This approach differs from the SIMD approach used for action c, which involves a single CUDA

kernel launch but executed with two threads in parallel. As shown in the figure, higher GPU

resource utilization is achieved due to increased parallel opportunities, resulting in a shorter

overall execution time.

4.4.2.2 Implementation of the Inter-Actions Parallel Execution

As mentioned in the previous section, inter-actions parallel execution is implemented through

the use of the CudaStream feature and the dynamic programming API. This is a feature pro-

vided by the CUDA API, which is supported by NVIDIA hardware and allows a GPU kernels to

dynamically launch other GPU kernels on NVIDIA boards. In our approach, we utilize device-

side compute streams (CudaStreams) to manage dependencies between kernel launches

(actions). The combination of these two features is handled by the Actors’ scheduler (ac-

tion_selection).

The parallelization process is illustrated in Figure 4.15. The main program launches CPU

partitions (groups of actors) on CPU threads, while GPU actors are executed on CudaStreams.
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GPU
Prod

Action: p Action: p Action: p

CpyTokenA
Action: c
Action: c

Action: c
Action: c

Action: c
Action: c

CpyTokenB
Action: c
Action: c

Action: c
Action: c

Action: c
Action: c

PingPong

Merger

Action: pp2

Action: pp1

Action: pp2

Action: pp1

Action: pp2

Action: pp1

Action: m

Action: m

Action: m

Action: m

Action: m

Action: m

Time

Figure 4.14: Example of the execution of the dataflow program depicted in Figure 3.3 with
all actors mapped to the GPU and utilizing both the SIMD Parallel Execution feature and the
inter-action parallelization optimization.

For GPU-based actors and actions that can be executed in parallel, separate CudaStreams are

employed to run them.

Main

CPU
Actor

CPU
Actor

actionGPU
Actor action

actionGPU
Actor action

…

…

CudaStream

Figure 4.15: Parallel schema showcasing the parallel execution of two GPU actors and four
actions by using separated cudaStream.

Listing 4.3 presents a simplified version of the scheduler for the Merger actor, where Merger::m

is its only action. The action_selection is the main CUDA kernel of the actor, and the main loop

is responsible for executing guards (isSchedulable), checking the inputs and outputs buffers

for data and space, and if all conditions are met, launching a new action. The dynamic action
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launch is performed in line 34 of the code, which is characterized by the "<<<" and ">>>"

symbols.

In this code example, cs is an array of compute streams and sid is the identifier of the stream

where this action execution will be queued. The call to parallel_read_address in lines 30 and 32

is used to obtain the pre-fetched reading pointers, as explained in Section 4.4.2.3. Finally, the

advance function is launched on the same stream, which ensures that it will only be executed

once the action is complete. The function is responsible for signaling the different parallel

FIFOs that it has completed reading the requested data and that the memory can be freed.

4.4.2.3 Efficient Parallel FIFO

An important aspect in maintaining the consistency of the dataflow MoC is to ensure that

actions execute as if they were executed sequentially. To achieve this, a modified version of the

FIFO is used, which allows for parallel reads and parallel writes to the data while preserving the

order-preserving property that is necessary for consistency. Figure 4.16 depicts a schematic

representation of the parallel reading process in the aforementioned FIFO. The FIFO in the

figure contains eleven tokens and is currently being read by four actions in parallel.

When an action needs to read, it specifies the number of tokens it requires for processing and

receives a pre-fetched reading pointer (pr1 through pr4) in return. This pre-fetched pointer is

then incremented by the size of the requested read for the next read. The size is saved in the

size array, and the done array reserves a spot. We can see that the second read (in green) has

completed processing, and the corresponding done flag has been raised. gr is the global read

pointer and represents the sequential reading status, which is advanced through the FIFO as

consecutive reads are marked done, freeing up space in the FIFO. The writing process works in

a similar way.

4.4.2.4 IDCT Application

In this section, we evaluate the performance improvement of the inter-actions parallel ex-

ecution optimization using the IDCT RVC-CAL program described in Section 4.4.1.2. The

platform-specific code was generated by the Exelixi CUDA backend and executed on the

hardware platform referred to as System 1 in the previous section.

Table 4.9 shows the performance results as the number of parallel actions increases. Both the

total execution time and the speedup relative to the case with only one parallel action are

reported. The case with a single stream serves as the baseline before optimization.

72



4.4 Generation Features

Listing 4.3: Stripped-down example of the CUDA implementation of the action selection of

the Producer actor

1 _device_ bool Merger :: isSchedulable_m () {}
2 _global_ void MergerNS ::m( Merger * merger ,Ports ports) {}
3 _global_ void MergerNS :: m_advance (Ports ports) {}
4

5 _global_ void MergerNS ::
6 action_selection ( Merger * merger ,
7 EStatus * status ,
8 size_t actorIdx ,
9 size_t actorSize ) {

10 const size_t nb_stream (4);
11 size_t sid (0);
12 cudaStream_t cs[ nb_stream ];
13 for ( size_t i(0); i < nb_stream ; ++i) {
14 cudaStreamCreateWithFlags (&cs[i],
15 cudaStreamNonBlocking );
16 }
17

18 status_I1 = merger ->I1 -> parallel_count (0);
19 status_I2 = merger ->I2 -> parallel_count (0);
20 port_I1_slots = merger ->I1 -> parallel_rd_slots (0);
21 port_I2_slots = merger ->I2 -> parallel_rd_slots (0);
22

23 bool res = true;
24 while (res) {
25 res = false;
26 if( status_I1 >= 1 && port_I1_slots >= 1 &&
27 status_I2 >= 1 && port_I2_slots >= 1 &&
28 merger -> isSchedulable_m ()) {
29 Ports ports;
30 merger ->I1 -> parallel_read_address (
31 ports.I1 , ports.I1_done , 0, 1);
32 merger ->I2 -> parallel_read_address (
33 ports.I2 , ports.I2_done , 0, 1);
34 MergerNS ::m<<<1, 1, 0, cs[sid]>>>(merger , ports);
35 MergerNS :: m_advance <<<1, 1, 0, cs[sid]>>>( ports);
36 --port_I1_slots ;
37 --port_I2_slots ;
38 status_I1 -= 1*1*1;
39 status_I2 -= 1*1*1;
40 res = true;
41 stream_id = ( stream_id +1) & (nb_stream -1);
42 }
43 }
44 }

The results show a graceful scaling of speedup with up to four parallel actions, offering signifi-

cant performance improvement opportunities. The execution time with two and four parallel
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Figure 4.16: Illustration of the parallel reading process implementation in the FIFO buffer,
with the writing process functioning similarly.

actions was 1.95 and 3.39 times faster than the baseline, respectively.

It should be noted that the lack of further improvement beyond four parallel actions is due to

an undocumented software limitation in the current version of the CUDA API, which may be

removed in future releases.

1 stream 2 streams 4 streams 8 streams 16 streams
Execution
time (sec)

30.99 15.93 9.15 9.15 9.15

Speedup 1 1.95 3.39 3.39 3.39

Table 4.9: Performance results of the IDCT application example, showcasing the impact of
increasing the number of inter-action parallel executions from one to sixteen using multiple
CUDA streams.

4.4.3 Dynamic Heterogeneous Actors

In this section, we introduce a methodology for generating dynamic RVC-CAL networks.

Rather than undergoing the entire four-step compilation flow (depicted below) each time a

new configuration needs to be evaluated, a single executable binary is created that allows for

the specification of the partitioning and mapping at runtime during the application’s startup

process. This allows for testing of new configurations by simply changing the input XML file

and re-running the program, eliminating the need for repeated recompilation.

1. Change the Exelixi CUDA backend parameters configurations files.

2. Generates code
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3. Compile

4. Execute

The methodology utilizes the newly developed Exelixi CUDA backend option, which generates

a shadow CPU version of each actor assigned to the parallel GPU partition. This shadow

version is not connected by default in the network, and the proper version of the actor will be

selected based on the input configuration file.

Figure 4.17 illustrates the methodology. In this example, the application program consists of

four actors (A, B , C , D) connected in a back-to-back configuration by three FIFO buffers.

Figure 4.17a illustrates the former static methodology, in which the actors A and D are as-

signed to the CPU, and actors B and C are assigned to the GPU. In this scenario, the Exelixi

CUDA backend generates the appropriate code to match the configuration requested by the

developer.

Figure 4.17b displays the alternative dynamic methodology. In this scenario, actors B and C are

assigned to the GPU, and the Exelixi CUDA backend automatically generates corresponding

shadow actors B∗ and C∗, which are targeted towards the CPU. During the runtime setup

process, the appropriate versions of the actors’ network are dynamically instantiated. The

code handling the FIFO buffers (e.g. for reading, writing, and updates notification) has been

modified such that the same FIFO instance can be utilized by actors running on either the

CPU or GPU.

It should be noted that the current implementation restricts the dynamic setup to occur only

once throughout the execution and cannot be altered during execution, particularly if the

actor contains internal state variables. This limitation stems from the fact that the internal

state of the actor is not mirrored in the current implementation. However, future releases of

the tool may remove this limitation through new developments.

It should also be noted that in the two examples, the FIFOs connecting actors B and C are not

identical (as indicated by the color difference). The FIFO in the static example is a specific

GPU-to-GPU buffer that provides better performance. However, due to the dynamic nature of

the second example, such specialization of the FIFO buffer is not possible and all buffers must

be of type HostFifo to allow for dynamic switching between the actor and its shadow variant.

Since in the current development stage of the Exelixi CUDA backend, it is not possible to mod-

ify the mapping configuration during program execution. Therefore, as shown in Figure 4.17c,

a third option is presented. Rather than connecting all actors and shadow actors using a

universal HostFifo, only the necessary instances of the actor are created, and the appropriate

specialized FIFO is utilized for communication.
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A B C D

(a) Static example

A

B

B* C*

C

D

(b) Dynamic example with HostFifo

A

B

B* C*

C

D

(c) Dynamic example with specialized FIFO

Figure 4.17: Illustration comparing the dynamic and static implementations of a dataflow
network.

4.4.4 Dynamic SIMD Parallelization

This section describes a methodology developed to generate applications with dynamic SIMD

parallelization, meaning that the number of parallel threads used to execute an action can be

adjusted at runtime.

The dynamic SIMD parallelization optimization is based on generating multiple SIMD parallel

executions of the same action, where the number of threads used dynamically changes over

the runtime of the application, with the goal of maximizing performance and GPU resource

utilization.

To achieve this goal, during the code generation phase, each action with a parallel flag is

assigned a pair of integers {bl , th}, where bl represents the number of CUDA thread blocks

and th represents the number of threads per block. Careful parametrization is required

with this dynamic pair of variables, including the CUDA kernel launch parameters, the pre-
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allocation of FIFO buffer token slots for the corresponding input or output ports, and the tests

for available space for writing and available tokens to be read. Finally, the dynamic change

must be synchronized with the end of the main inner loop to prevent size mismatches.

It should be noted that the maximum number of threads that can access a FIFO in parallel is

related to the size of the FIFO’s threshold and the number of tokens consumed or produced

per firing of the action. In fact, for a FIFO buffer of size "size", a memory of size "si ze +
thr eshol d"" is allocated. This is done because efficient execution performance requires

SIMD threads to access consecutive memory locations. Thus, the threshold should be at least

N bthr ead ∗N btokens , where N bthr ead is the maximum number of SIMD threads that an action

can be executed with and N btokens is the number of tokens produced or consumed by the

action to/from this FIFO buffer. In the static SIMD mode, this concern is not relevant because

the Exelixi CUDA backend generates the proper size based on the flag set by the developer.

However, in the Dynamic SIMD case, the threshold needs to be large enough to allow for

effective parallelization opportunities.

An example of the internal representation of a FIFO buffer with a size of twelve tokens (t1−t12)

is shown in Figure 4.18. In this example, an action consumes three tokens per firing and is

executed with four SIMD threads (th1− th4) in parallel. As a result, the FIFO buffer requires a

minimum thr eshol d size of 3∗4 = 12.

th4th1 th2 th3

t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12t1 . . .

FIFO size Threshold

Figure 4.18: Representation of the SIMD parallel read/write of a FIFO buffer.

4.5 Conclusion

In this chapter, a complete end-to-end high-level synthesis of RVC-CAL dynamic dataflow

programs on GPU architecture was presented, including both the designed model and its

implementation. Three important components were presented.

The first part explains how the overall tool-flow design pipeline works, including the required

inputs and several intermediate steps that lead to the final binary implementation. An in-

termediate step in this process is the generation of CUDA code, for which the programming

model has been presented. This definition is crucial for the overall goal of this thesis because

it determines the limitations and possibilities for designing a dataflow methodology mapping

on GPU hardware.
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In a second part, the actual model that has been developed for representing data flow in

CPU/GPU co-processing hardware is discussed, with consideration given to the challenges

outlined in Section 1.3. This includes the representation of actors, partitioning and mapping

of actors, scheduling of actions, and data communication. The concepts, principles, and

performance of these implementations have been successfully demonstrated using real-world

standard applications.

In the final section, a list of generational features is presented that can be activated depending

on the context to enhance the core execution model. The list begins with the SIMD parallel

execution, which improves overall resource utilization by creating CUDA kernels that execute

multiple consecutive action instances across multiple CUDA cores and on different input

data read from the FIFO buffers. Next, inter-action parallel execution enables the actor

scheduler to launch several distinct actions in parallel, provided there are no internal data

dependencies. This approach is performed while still maintaining the consistency of the

sequential semantics of the communication channels connecting actors. Lastly, dynamic

heterogeneous actors and SIMD parallelization introduce a level of dynamism in the network

configuration, which provides several benefits. These include ease of development and

debugging, substantial support for design space exploration (as discussed in the subsequent

chapter), and the potential for future work to enable automatic runtime reconfiguration to

meet performance targets depending on input data sizes.
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5 Automatic Design Space Exploration
on GPU

5.1 Introduction

This chapter focuses on the work carried out in this thesis, which concerns the automatic

design space exploration of RVC-CAL dataflow programs in the context of CPU/GPU co-

processing platforms.

The first part of the chapter describes the tool flow and methodologies developed for clock-

accurate profiling and performance metric generation. These metrics are utilized in the

TURNUS post-processor to estimate the overall application execution time.

The second section details the utilization of metrics and performance evaluation strategies to

devise a design space exploration methodology utilizing the Tabu search meta-algorithm.

Several of the results presented in the chapter have been published in various venues, includ-

ing the clock-accurate profiling and performance estimation [10, 16, 14], and the Tabu search

DSE [17] (currently under review).

5.2 Performance Estimation

This section explains the improvement over the Exelixi CUDA backend [94] for generating in-

strumented code for clock-accurate profiling and outputting the corresponding performance

metrics. It also outlines how these measures can be utilized in the TURNUS post-processor to

estimate the overall application execution time accurately.

5.2.1 Clock-Accurate Profiling

To achieve automated clock-accurate profiling, a new setting was introduced in the Exelixi

CUDA backend. This improvement involved changes to the behavior of parallel GPU par-

titions and the inner scheduler of the GPU actors. To eliminate any interference with the
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measurements, such as hardware resource access conflicts and memory transfers, the actors

are executed sequentially, and a sequential partition is created to schedule at most one GPU

actor and one CPU actor in parallel. The scheduling type is changed from fully parallel to

non-preemptive, meaning that an actor executes actions until inputs, outputs, and predicates

allow it, and then releases control back to the partition’s scheduler.

The second improvement involved the implementation of a new profiling method. To obtain

clock-accurate metrics, the ability to read platform counters that increment at a constant and

known frequency is necessary. For actors running on the CPU, the RDTSC Intel register, as in

[95], is used. For actors running on the GPU, a different approach is needed. The platform

used for the results in this thesis is NVIDIA hardware, which provided equivalent functionality

for profiling CUDA’s streaming multiprocessors. Listing 5.1 shows the SASS assembly code

used to access a performance register with a steady clock-cycle increase rate. These calls could

be placed on opposite sides of the code section to be profiled.

In contrast to the software solution for homogeneous hardware presented in previous works,

it cannot be assumed that the data transmission time for a typical action will be comparable

regardless of the chosen partition (CPU or GPU) transmitting the data. In fact, cross-platform

transmission (i.e., GPU to CPU) is far more resource-intensive. To account for these differences,

the organization of the action software was revised to distinguish data transmission from

action computation. Figure 5.1 shows that, in the revised approach, each input necessary

for the action computation is read in a sequential manner before the action body, and the

tokens produced as a result of the computation are written to the outputs in a similar manner.

This allows for accurate differentiation and measurement of communication and execution

weights.

The metrics from both the GPU and CPU sides are collected in the profiling class, which

is responsible for computing the data statistics (mean, variance, min, max, and Gaussian

filtering) and writing the results to three XML files: weight.cxdf, weight.exdf, and weight.sxdf.

These files contain the measurements of the communication, action body computation, and

scheduling metrics, respectively.
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Listing 5.1: Simplified example of the utilization of NVIDIA’s assembly language (i.e. SASS )

was required for reading the GPU’s stable autoincrementing register.

1 // -- PROFILE: START
2 asm volatile ("mov.u64 %0, %%clock64;" : "=l" ( __clock_1 ) : : "memory" ) ;

3

4 // section of code that needs profiling ....
5

6 // -- PROFILE: STOP
7 asm volatile ("mov.u64 %0, %%clock64;" : "=l" ( __clock_2 ) : : "memory" ) ;

8 actor_a −> p r o f i l i n g −>addFiring (ACTOR_ID : : actor_a ,

9 ACTION_ID : : action_a ,

10 ( __clock_2 − __clock_1 ) ) ;

void action ( )  {

}

Read Inputs

Write Outputs

Action body

Read 1

Read n
…

Write 1

Write m
…

Figure 5.1: Illustration of the breakdown of an action’s generated code: inputs are read sequen-
tially, followed by the action body executing the processing, and concluding with the writing
of outputs.

5.2.2 Static Heterogeneous Estimation

This section outlines the methodology for obtaining the profiling metrics generated from the

method described in the previous section. The first challenge to address is how to handle the

mismatch in frequency between the GPU and CPU clock rates. To overcome this, the clock

rate of the hardware used for each measurement was added to the xml file. This information

is used as an input to the TURNUS post-processor to normalize all measurements. To obtain

the CPU clock cycle rate, the RDTSC register is sampled after a fixed interval and the resulting

value is used to calculate the clock cycle rate. The GPU frequency is disclosed directly by

NVIDIA via the CUDA API.

Another challenge to be addressed is the frequency variability. Despite the various terms used
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such as dynamic clocking, boost, step speed, or turbo boost, various systems that cause clock

rate volatility have been developed for each hardware. To ensure more accurate performance

estimation, these technologies were disabled during the sampling process.

The static profiling method involves selecting and configuring the network for the application

software during profiling. To ensure the generation of instrumented software, it is necessary

to identify the design settings that needed to be provided to the Exelixi CUDA backend.

To fully explore the different combinations of FIFO buffers and actor platform assignments,

four unique configurations are devised to estimate the runtime for any given configuration,

regardless of the software program’s complexity or the number of design options. These four

design points are depicted in Figure 5.2.

Examples one and two involve actors assigned solely to either the CPU or GPU, respectively.

These combinations allow us to measure the computation time of the action body and the

scheduling time on each type of hardware platform. However, considering only these two

design points would not be adequate as it wouldn’t account for the data transmission time

across the two platforms, such as the HostFifo (n°2 in blue) connecting the CPU and GPU.

Instead, only the CPU-to-CPU transmission (Fifo n°1 in red) and GPU-to-GPU transmission

(CudaFifo n°3 in purple) would be profiled.

To address this issue, two additional profiling steps are taken by using a compiler option

specifically developed to ensure the HostFifo (i.e., the cross-platform data transmission FIFO)

is always produced, thus allowing us to obtain the data transmission time for all possible

design points.

The performance of the developed methodology is evaluated using two application software

programs. The aim is to determine the accuracy of the application runtime estimation, en-

abling efficient exploration of the design space. The runtime estimation is based on the

abstract model of execution generated by the RVC-CAL construction within the TURNUS

framework, which is executed using the software implementation and profiling results pro-

duced by the Exelixi CUDA backend. The backend is extended and improved as described in

this section to ensure accurate results.

5.2.2.1 RVC-CAL JPEG Decoder

These experiments use the same JPEG decoder as described in Section 4.3.4.2. The focus of

the first set of results is on the configuration with one partition, but with different input image

definitions, quality factors, and FIFO buffer sizes. The reference design consists of the Display

and Src actors in a single sequential partition assigned to the CPU, while the remaining actors

are assigned to the highly parallel GPU.

For each configuration, an execution trace graph (ETG) is extracted using TURNUS. The

performance weights are obtained by running the profiled binary, compiled from the code
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Figure 5.2: Illustration of the four static configurations required during profiling.

generated by the Exelixi CUDA backend, for each unique set of input stimuli. The TURNUS

ETG post-processor is used to estimate the execution time of the application program. This

estimated time is compared with the actual total time measured.

The results are shown in Figure 5.3 for height-distinct images and two different buffer sizes

(512 and 1024 tokens). The different resolutions and quality factors of the input images used

for the experiments are summarized in Table 5.1. The measures are normalized to a range

of [0,1], and it can be seen that the maximum deviation in the estimation is around 6.00%.

This demonstrates that the performance estimation can be done with sufficient accuracy,

regardless of the FIFO buffer sizes and inputs used.

As for the second set of results, they use the same temporal stimulus and mapping configura-

tions while comparing the estimated total time to the measured one. Unlike the first set of

results, the same image is used as the input and thus, a single ETG is extracted. As previously

explained, only four different configurations are sufficient for generating the weights, and

each TURNUS estimation is executed with the appropriate combination of these weight files.

Figure 5.4 shows the comprehensive results, with the 16 possible partitions. The partitions

represent an arbitrary assignment of each actor to either the highly parallel GPU side or the

CPU sequential side. The results are normalized to a range of [0,1] and it can be seen that the

maximum deviation of estimation is about 26.5From the graph, it can be observed that the

mappings with the least precise estimated results are the partitions that result in the slowest

runtime (top-right), which would not be the desired partitions for the design exploration

process. This may be due to the fact that the number of FIFO buffers at the boundary between
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the GPU and CPU is higher compared to other mapping configurations. The modeling for this

type of FIFO buffer is optimistic and does not take into account factors such as memory bus

access conflict and congestion, leading to less precise results.

Significantly, the results demonstrate that the performance trends, either improvement or

deterioration, can be easily identified using the estimated time, without the need for mea-

suring new weights or extracting new ETGs. This capability to detect performance trends is

the minimum requirement for TURNUS to effectively explore the design space and identify

optimal configurations. The purpose of the qualitative evaluation is to ensure that mapping

configurations can be ranked and the best ones can be selected automatically, without the

need for a time-consuming and resource-intensive evaluation on the hardware platform,

which involves synthesizing, generating, compiling, and measuring each design point on the

actual heterogeneous hardware by hand.

Resolution 4096x2240 2048x1536 4096x2240 2048x1536
QF 90 90 50 50

Resolution 1920×1080 1280×720 640×480 512x512
QF 55 65 80 75

Table 5.1: The different resolutions and quality factors of the input images used for the JPEG
Decoder results.
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Figure 5.3: Normalized comparison between the estimated and measured total runtime of
the JPEG application with height inputs and two FIFO buffer configurations (512 and 1024
tokens). The identity line in orange corresponds to the 1:1 line for visual reference.
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Figure 5.4: Normalized comparison between the estimated and measured total runtime of the
JPEG application with all 16 possible partitions and two FIFO buffer configurations (512 and
1024 tokens). The identity line in orange corresponds to the 1:1 line for visual reference.

Figure 5.5: Graphical representation for the Smith-Waterman aligner application in RVC-CAL.

5.2.2.2 RVC-CAL Smith-Waterman Aligner

Figure 5.5 shows the graphical representation of the network of the Smith-Waterman (S-

W) aligner software application presented in [96]. The S-W aligner performs a local align-

ment of two sequences, such as protein, RNA, or DNA sequences. The first sequence, A =
{a1, a2, . . . , an}, is typically referred to as the reference and the second sequence, B = {b1,b2, . . . ,bm},

as the query or read. The S-W aligner consists of two processing steps: computation of a cost

matrix and backtracking from the highest value in the matrix. The backtrack path compute

the alignment (in terms of matches, mismatches, insertions, and deletions) between the query

and the reference input sequences. The RVC-CAL implementation used in this article consists

of eleven interconnected actors, including four PE actors that are responsible for computing

the matrix scores and an Aligner actor that performs the backtracking path. Except for the

Source actor, which is responsible for reading the input files and must run on the CPU, all

other actors can be mapped to either the GPU or CPU partitions.
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Like in the case of the JPEG decoder software program, two sets of experiments are conducted

for the Smith-Waterman (S-W) aligner software. The first set of experiments examines a

single partition configuration with different input sets and FIFO buffer sizes. The input sets

are named lm_ln , where lm is the length of the query sequence and ln is the length of the

reference sequence. All sequences are generated from human DNA data. In this experiment,

the reference design consists of the Source actor mapped to the single sequential partition

assigned to the CPU side, and the other actors assigned to the highly parallel GPU side. A

similar approach is used for the results presented in Figure 5.6, where four different inputs

(150_250, 150_200, 100_250, and 100_200) and two buffer sizes (1024 and 256 tokens) are tested.

The measures are normalized to a range of [0,1] and it can be observed that the maximum

deviation of estimation is about 15.6%. This result indicates that the performance can be

estimated with sufficient accuracy, regardless of the FIFO buffer size or input used.

The second set of results in Figure 5.7 focuses on the exhaustive testing of all 1024 possible

mapping configurations for different buffer sizes. This emphasizes the importance of evaluat-

ing the impact of different mappings on performance. The partitions represent the arbitrary

selection of assigning each actor to either the highly parallel GPU side or the sequential CPU

side. The measures are normalized to a range of [0,1], and it is observed that the maximum

divergence of estimation is about 22.7%.

It can be noted that the mappings with the highest deviation in estimation correspond to

the slowest runtimes and would not be desirable for the design exploration process. This is

likely due to a higher number of FIFO buffers at the boundary between the GPU and CPU

compared to other mapping configurations, as previously reported in the investigation of the

JPEG decoder. However, the results show that the tendencies of performance deterioration or

improvement can still be clearly identified by using the estimated runtime obtained through

the TURNUS framework.

5.2.3 SIMD Parallel Estimation

The GPU actor methodology has been extended with the use of SIMD parallelization for action

execution, as described in Section 4.4.1. To generate the performance weight accurately in

these cases, the following modifications were made. Listing 5.2 shows the SASS assembly code

used to access the performance counter for clock measurement during SIMD parallel action

execution. The first factor to consider is adding an if-statement based on the thread index

(thIdx) to ensure that only one thread reports the elapsed time for the entire thread batch,

avoiding race contention for the shared profiling weight collection. The second factor is to

provide the number of threads in terms of th and bl , which correspond to the number of

CUDA thread blocks and the number of threads per block, respectively.
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(a) FIFO buffer sizes of 256 tokens
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Figure 5.6: Normalized comparison between the estimated and measured total runtime of the
Smith-Waterman aligner application with four inputs and two FIFO buffer configurations (256
and 1024 tokens). The identity line in orange corresponds to the 1:1 line for visual reference.
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Figure 5.7: Normalized comparison between the estimated and measured total runtime of
the Smith-Waterman aligner application with all 1024 possible partitions and two FIFO buffer
configurations (256 and 1024 tokens). The identity line in orange corresponds to the 1:1 line
for visual reference.
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Listing 5.2: Simplified example of the utilization of NVIDIA’s assembly language (i.e. SASS)

was required for reading the GPU’s stable autoincrementing register in parallel mode.

1 // -- PROFILE: START
2 if ( thIdx == 0) {

3 asm volatile ("mov.u64 %0, %%clock64;" : "=l" ( __clock_1 ) : : "memory" ) ;

4 }

5

6 // section of code that needs profiling ....
7

8 // -- PROFILE: STOP
9 if ( thIdx == 0) {

10 asm volatile ("mov.u64 %0, %%clock64;" : "=l" ( __clock_2 ) : : "memory" ) ;

11 actor_a −> p r o f i l i n g

12 −>addFiring (ACTOR_ID : : actor_a ,

13 ACTION_ID : : action_a ,

14 ( __clock_2 − __clock_1 ) ,

15 actor_a −>paction_a . th * actor_a −>paction_a . bl ) ;

16 }

5.2.3.1 RVC-CAL IDCT

In this section, the performance evaluation of the IDCT application program is presented.

The program consists of three actors, all of which are mapped to the GPU. The focus of the

evaluation is on the effect of varying the parallelization degree of the actions’ execution, by

using different combinations of thread blocks and threads per block, ranging from 1 block of

32 threads to 16 blocks of 256 threads each.

A single execution time graph (ETG) is generated using the TURNUS framework, and for

each configuration, the profiled executable generated by the CUDA backend is executed with

a different kernel launch configuration. The total estimated execution time is calculated

using the TURNUS ETG post-processor and compared with the actual measured total time.

Figure 5.8 displays the simulation results of the design with 8 different SIMD sizes. The

values are normalized with respect to the first configuration, and it can be observed that the

maximum estimation error is approximately 16%. More notably, the trend of performance

improvement or deterioration can be clearly seen.

5.2.4 Dynamic Methodology Estimation

In this section, the dynamic network methodology is used to estimate the performance of a

specific partition configuration. The performance weights are generated by injecting instru-

mented code into both the regular actors and the complementary shadow actors to measure

the elapsed time for communication, execution, and scheduling. The main advantage of this
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Figure 5.8: Comparison between the measured and estimated normalized total elapsed execu-
tion time with varying numbers of SIMD threads when executing the IDCT application.

method over the previous one is that the action selection of each actor can be executed in

any configuration specified in the input XML files, allowing for the generation of performance

weights in the exact configuration with all the same resource contention and utilization as in

actual execution of the application program.

The parallel profiling process brings new implementation challenges. To avoid memory

contention among actors reporting their measures, each actor creates its own profiling object.

For GPU actors, where actions can be executed in parallel, cuda::atomic variables are used

to prevent data race. Finally, at the end of the profiling, all reported data is merged for

computation and generation of the report files.

This newly developed technique enhances the accuracy of the full design space exploration

methodology. As shown in Figure 5.9, an updated representation of Figure 3.6, TURNUS design

space exploration tool can now provide configuration files to the compiled binary to generate

updated performance weights as shown in Figure 5.10. These updated weights can be used

by the performance estimation tool to complete the optimization cycle. This tighter loop not

only offers a faster exploration of the design space, as the time required for code regeneration,

compilation, and hardware testing is automated, but it also ensures that the generated weights

reflect the actual hardware usage.
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Figure 5.9: Design flow with dynamic networks. Deep blue elements represent the implemen-
tation path of the tool, while light blue the profiling and design space exploration path of the
tool.

XCF

EXDF

CXDF

SXDF

Execution
weights

Communication
weights

Scheduling
weights

Partitions
Mapping

Figure 5.10: Dynamic heterogeneous actor methodology injected with instrumentation code
so as to generate performance weights.
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5.3 Design Space Exploration

Design space exploration tools are an important part of the design process. As previously

mentioned, there are many design points that can be tuned in the process of creating a

concrete implementation from a high-level dataflow representation, such as partitioning,

mapping, and buffer dimensions. To quickly find an efficient set of these parameters that

meet certain performance requirements, automation tools are necessary. This section, will

describe the improvement and adaptation of the work done in [97] to the CPU/GPU model of

this thesis. It will demonstrate how the performance estimation developed in the previous

section makes Tabu search a good candidate as a meta-algorithm for generating efficient

partitions and mappings using both the high-level dataflow representation and the actual

implementation.

5.3.1 Tabu Search

The Tabu Search (TS), introduced by Glover [98], is a meta-heuristic optimization algorithm

that can be applied to solve a wide range of optimization problems. TS involves iteratively

exploring the solution space, making moves to solutions that are deemed "better" than the

current one based on the given evaluation function. In the context of this study, the evaluation

function refers to the minimal overall runtime of the application that needs to be optimized.

The core algorithm incorporates an explicit memory structure, known as the Tabu list, to

prevent revisiting previously explored solutions and promote the exploration of the solution

space, thereby avoiding getting stuck in local optima. This list, known as the Tabu list, can be

adjusted in size and content to balance between exploration and exploitation in the search,

and to ensure good overall performance in terms of quality of results, speed, robustness,

simplicity and flexibility. It can be applied to problems with continuous or discrete variables,

multiple objectives and is often used when the search space is large or the optimization

problem is difficult to solve with other methods. In order to adapt TS to a specific problem,

the representation of solutions, the neighborhood structure, the Tabu list structure, and the

stopping criterion must be designed.

The TS meta-algorithm is applied in the context of partitioning actors across CPU and GPU

partitions in order to find a solution that is defined as a map of actors and processing units

(sequential CPU partitions or the parallel GPU partition). The number of actors is fixed by

the dataflow application model, and the initial partition provides the upper bounds for the

number of CPU and GPU partitions that can be used in a valid solution. It is not required

that all partitions be used (meaning, no actor is be mapped to them), and allowing empty

partitions as valid solutions allows for the discovery of optimal solutions that may not use all

hardware resources if it results in better performance. It is important to note that not all actors

are necessarily compatible with being run on the GPU, so the initial partition provided to the

TS meta-algorithm should assign actors that can be mapped to either the CPU or GPU to the

GPU partition, and actors that can only run on the CPU to a CPU partition.
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To move from a valid solution to a neighboring one, the following types of moves are possible:

• REINSERT: move an actor from one partition to another.

• SWAP: exchanging the partitions of two actors that are currently assigned to different

partitions. This can be done by moving each actor to the other actor’s partition.

These basic moves can be combined in various ways to create different exploration strategies.

Some examples of these strategies are discussed in Section 5.3.2.

TS can tuned using a couple of parameters a, b, tab , ϵ and T . When an actor, j , is transferred

from one partition, ρ, to another, it is prohibited from returning to ρ for a certain number of

iterations, tab . This number, tab , is a randomly chosen integer from the range [a,b], and in

previous experiments outlined in [97], the values of a and b were set to 5 and 15, respectively.

Smaller values of tab do not allow for escape from local optima, while larger values do not allow

for intensification of the search around promising solutions. There are two other adjustable

parameters in the TS algorithm: ϵ (the proportion of neighboring solutions explored during

each iteration) and T (the time limit). If the time limit T is reached, the search will be

immediately terminated and the best solution found thus far will be returned. With a fixed

T , a small value of ϵ results in more iterations being performed but fewer neighbors being

examined in each iteration, resulting in more diversification. A large value of ϵ, on the other

hand, plays an intensification role (more solutions around the current one are explored).

Finally, a small (large) value of tab strengthens the intensification (diversification) ability of

the search, respectively.

Figure 5.11 shows the generic design flow for using TS for design space exploration in the

context of this work. The optimization process begins with a user-provided initial mapping

and execution trace, and generates a tentative new mapping solution. The initial mapping

and execution trace provided by the user can have a big impact on the efficacy of the solution.

Regarding the execution trace the input stimulus provided to the application during the trace

generation need to be a good representation of the general input space so that the conclusion

drawn would be applicable to the performance of the application in production. Regarding

the initial mapping, since the size of the design space is too big to feasibly be fully explore,

starting from an initially good partition is very important to lead to best possible results using

this methodology. This new suggested solution is then evaluated to determine its performance

and analyzed to provide the meta-algorithm with sufficient information to continue exploring

the design space.

5.3.2 Neighborhood Move Generator

Below is a list of neighborhood move generators used in this work during the Tabu search.

They are mainly implemented using REINSERT moves. They can be used on their own during

a design space exploration loop, or multiple of them can be combined.
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Figure 5.11: Generic design flow when doing design space exploration using Tabu search.

• Balancing (N (B)): move randomly an actor from the partition with the least idle time and

move it to the partition with the most idle time. The partition idle time is defined as the

time frame during which no actor are executing due to constraint such as dependency

or others.

• Idle (N (I )): move consecutively each actor whose idle time is greater than its processing

time to the most idle partition that is different from the current partition of that actor.

The idle time of an actor is defined as the time frame when it could execute according

to the satisfaction of its firing rules, but it has to wait to be scheduled because another

actor in the same partition is currently executing.

• Communication frequency (N (C F )): if an actor has a higher communication frequency

(i.e., more token transfers) with actors in a given partition than with the ones in its

current partition, move the actor to that partition.

• Random (N (R)): choose randomly an actor and move it to a different partition also

randomly chosen.

5.3.3 Design Point Evaluations

Three different DSE optimization loops have been developed and used for comparison in this

work. Each of them uses a different design point evaluation methodology that matches the

one presented in Section 5.2. These are the Static, Dynamic, and Measured methodologies

and are presented in the following subsections.
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5.3.3.1 Static Evaluation

In this version of the TS design space exploration, the static heterogeneous estimation de-

scribed in Section 5.2.2 is used to evaluate the performance of the proposed new mapping

configuration.

Figure 5.12 illustrates this methodology variant. First, the initial mapping is provided, along

with the execution trace and an heterogeneous set of weights (as described in Section 5.2.2)

that have been generated using that initial mapping on the actual hardware platform using the

profiled application generated by the Exelixi CUDA backend. This information is then used to

suggest a new mapping, which is fed to the ’Weights Updater’. The appropriate weights from

the heterogeneous set of weights are selected based on the new mapping, meaning that the

appropriate set of weights will be used depending on whether an actor is being mapped to a

CPU or GPU partition. The same applies for the four sets of communication weights (CPU-

CPU, CPU-GPU, GPU-CPU, GPU-GPU) based on the platform the actor it is communicating

to is assigned. Finally, the updated weights are fed to the performance estimation engine, and

the model analysis is conducted to extract information that helps with the neighboring move

generation, after which the optimization loop can start again.

This methodology does not necessitate continuous access to the hardware platform as only

the four static configurations need to be evaluated beforehand. During the design space

exploration loop, only post-mortem access to the weights and execution trace is needed. This

methodology places no restrictions on the move generators that can be used and any of the

Neighborhood move generators defined in Section 5.3.2 or others can be used. However, it

should be noted that this solution is not the most precise in terms of performance evaluation

and may be relatively slow due to the use of the TURNUS performance estimation engine.

5.3.3.2 Dynamic Evaluation

In this version of the Tabu search design space exploration, the dynamic heterogeneous

estimation described in Section 5.2.4 is used to evaluate the performance of the proposed new

mapping configuration.

Figure 5.13 depicts this methodology variant. First, the initial mapping and the execution trace

is provided by the user to the Tabu search meta-algorithm. In addition, a compiled version

of the application using the profiled dynamic network methodology and generated by the

Exelixi CUDA backend is made available to the optimization loop and is depicted in dark blue

on the schema. During each iteration of the loop, the new mapping configuration is fed to

the dynamic app, which is executed with this new mapping and generates new performance

weights directly on the hardware platform. These new weights are then integrated into the

execution trace and used by the TURNUS performance estimation engine to estimate the

performance and provide insight for the analysis, allowing for the generation of neighboring

moves.
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Figure 5.12: Design flow when doing design space exploration using TS and the static evalua-
tion strategy.

This methodology requires continuous access to the hardware platform, as each new can-

didate mapping configuration needs to be evaluated by executing the profiled application.

This methodology has no restrictions on the move generators that can be used; all the Neigh-

borhood move generators defined in Section 5.3.2 and more can be used. This solution is

relatively precise compared to the static methodology. However, it is the slowest due to the

combination of full execution on the hardware platform with profiling weight generation and

the TURNUS performance estimation engine.

5.3.3.3 Measured Evaluation

In this version of the Tabu search design space exploration, no estimation methodology is used,

instead the performance are directly measure using the actual application on the hardware

platform.

Figure 5.14 depicts this methodology variant. First, the initial mapping and the execution

trace is provided by the user to the TS meta-algorithm. In addition, a compiled version of

the application using the dynamic network methodology and generated by the Exelixi CUDA

backend is made available to the optimization loop and is depicted in dark blue on the schema.

During each iteration of the loop, the new mapping configuration is fed to the dynamic app,

which is executed with this new mapping directly on the hardware platform and the total

execution time is measured. This information is then used directly to generate neighboring

moves.
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Figure 5.13: Design flow when doing design space exploration using TS and the dynamic
evaluation strategy.

This methodology requires continuous access to the hardware platform, as each new candidate

mapping configuration needs to be evaluated by executing the dynamic application. This

solution is the most precise, as the evaluation takes place in a setting that is quasi-identical to

the ’production execution’ and is also the fastest, as no post-mortem analysis is required and

the performance evaluation time is as fast as the final execution time. However, not all the

Neighborhood move generators defined in Section 5.3.2 can be used. In particular, generators

that use insight from the performance estimation engine to suggest a new mapping cannot

be used. This is the case for the Balancing and Idle generators, which use the Idle metrics

provided by the analysis.

5.3.4 Results

A simple program example has been selected to evaluate the methodologies introduced in

this section. The goal is to determine how the different neighborhood move generators and

design point evaluations affect the results obtained when exploring the design space using

Tabu search. This example also illustrates how the method can be applied to optimize any

particular application.

5.3.4.1 IDCT Example

The synthetic application used to demonstrate this technique is derived from the SIMD IDCT

application used in Section 4.4.1.2. Figure 5.15 illustrates the top-level representation of

the dataflow network that comprises a chain of five IDCT actors that compute the inverse

discrete cosine transform on their input. This chain of actors is a representation of an intensive
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Figure 5.14: Design flow when doing design space exploration using TS and the measured
evaluation strategy.

computation that could be found in a real-world application.

All results have been generated allowing the solution to use a single CPU core and the parallel

GPU partition. The initial partition for all DSE runs is set to the sequential CPU partition, with

all actors mapped to it. The value T has been set to 20 minutes as in the related work [97],

meaning the algorithm halt after 20 minutes without discovering a better-performing configu-

ration.

Table 5.2 presents the summary of experimental results obtained using three evaluation

methods (Static, Dynamic, Measured) and four neighboring move generators (Balancing,

Communication Frequency, Idle, Random). Additionally, two composite generators were used:

Joint, which combines moves from the four move generators, and Prob, which selects moves

from one of the four generators with a 25% probability initially, increasing over time if the

generator yields better configurations. The third column in the table displays the number

of configurations evaluated, while the fourth column shows the number of empty iterations,

or the number of iterations where the move generator could not suggest a neighboring con-

figuration from the current one. The "Time to best" column indicates the amount of time,

in minutes, required to find the best-performing configuration among those tested, and the

"Best Performance" column shows the overall time needed, in seconds, to run the program

using the best configuration found by the TS algorithm. Table 5.3, shows the mapping of the

bests/worst partitions between CPU and GPU and there corresponding performances.

The results show that the Measured evaluation methodology was able to find the best time for

mapping all actors to the GPU. The Joint Generator was found to be the most efficient, as it

found the best-performing configuration in under 3 minutes with the lowest number of total

tries (205). In contrast, the Static and Dynamic methodologies were found to be too slow to
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generate meaningful results within the given time limit, with one simulation taking around

18 minutes. This approach would likely require increasing significantly the T value. However,

the insights offered by these two other methods are still valuable as shown in the related work

cited in the previous section. This showed that to improve the results, it would be beneficial to

investigate, in further research, combining the speed of the Measured evaluation methodology

with the insights gained from the Static and Dynamic methods.

It should be noted that the limited information available for the Communication Frequency

move generator is due to the fact that, starting from the initial configuration, it is unable to

generate any neighboring configurations as the mapping is already balanced. However, this

does not mean that this move generator is not useful.

It is also interesting to note that the Measured Joint method outperforms the Measured

Random and Comm Freq methods. The Measured Joint method combines the benefits of

different generators, which leads to a faster and more efficient search for good partitions. The

Random generator is good for exploring the search space and avoiding getting stuck in a local

minimum. On the other hand, other generators may converge faster to a good local partition.

By combining these generators in the Measured Joint method, the algorithm can explore the

search space efficiently and converge quickly to a good partition. Overall, the Measured Joint

method seems to strike a good balance between exploration and exploitation of the search

space, leading to improved performance compared to other methods.

Figure 5.15: Illustration of the test RVC-CAL IDCT dataflow network.
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Evaluation Generator # Iterations # Empty Iterations
Time to Best

[min]
Best Perf

[sec]

Static

Balancing 2 0 x 1.35
Comm Freq 1 x x 1.35

Idle 2 0 x 1.35
Random 2 0 x 1.35

Joint 2 0 x 1.35
Prob 2 0 x 1.35

Dynamic

Balancing 2 0 20 5.6
Comm Freq 1 x x 1.35

Idle 2 0 21 4.86
Random 2 0 39 2.64

Joint 2 0 22 4.66
Prob 2 0 23 4.94

Measured

Comm Freq 1 x x 1.35
Random 212 77 5 1.17

Joint 205 71 3 1.17
Prob 3030426 3030376 5 1.17

Table 5.2: Summary table of results with three evaluation methods (Static, Dynamic, Mea-
sured), and four neighboring move generators.

Partition
Perf [sec]

CPU GPU
Best Measured x All actors 1.17
Best Dynamic/Static All actors x 1.35
Worst All other actors Idct_5 5.6

Table 5.3: Mapping of the bests/worst partitions between CPU and GPU and there correspond-
ing performances.
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5.4 Conclusion

The chapter presented a comprehensive end-to-end automated design space exploration of

RVC-CAL dynamic dataflow programs on GPU architecture. It included both the strategy’s

design and its implementation. The chapter covered three crucial components.

The first section explains how an automated, clock-accurate profiling of the dataflow applica-

tion is carried out on both the CPU and GPU platforms. This profiling generates performance

weights that indicate the number of clock cycles that have elapsed during processing, schedul-

ing, and communication, respectively.

In the second section, the actual automated heterogeneous performance estimation model is

presented. This model enables the automatic evaluation of an application’s overall runtime

with a set of input stimuli and configuration parameters, such as partitioning and mapping

in this case. Additionally, it allows for the automatic evaluation and comparison of two sets

of configurations, which is an important step towards automated design space exploration.

Two methodologies were presented in this section. The first methodology uses a static net-

work, while the second employs dynamic, heterogeneous actors to instantiate the dataflow

network. These methodologies were evaluated to demonstrate their accuracy by comparing

the estimated time with the measured time on different standard applications with varying

input sizes and buffer sizes.

In the final section, the actual design space exploration strategy is presented. It consists of a

loop where, at each iteration, a new set of configuration is suggested by the algorithm. The

performance of the application being optimized when using this new configuration is then

evaluated and compared with the best configuration found so far. This process continues

until a fixed optimization time set by the user is reached. This section presented six strategies

to explore the design space: Balancing, Communication Frequency, Idle Random, Joint,

Probabilistic, and three evaluation methodologies: static, dynamic, and measured. These

different methods were illustrated using a simple application program to demonstrate their

functionality.
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6.1 Introduction

This chapter presents experimental results that serve to further illustrate the methodologies

and tools developed in this thesis. By showcasing how these techniques can be applied

across a range of applications and platforms, readers will gain a deeper understanding of the

versatility and efficacy of the proposed methods. To this end, the experiments were conducted

across three distinct hardware platforms, including a personal computer, a high-performance

workstation, and an embedded platform. By using such a diverse range of hardware, the aim

to demonstrate how the proposed methods can be effectively applied across a variety of use

cases. The overarching goal of these experiments is to provide a comprehensive validation

of the thesis work, bringing together all previous partial results and methodologies to form a

cohesive and conclusive body of research.

6.2 Experimental Setup

The platforms used to conduct the experiments in this chapter have the following specifica-

tions:

• System 1: Intel Skylake I5-6600 CPU with 16 GB of DDR4 RAM, paired with a GeForce

GTX 1660 SUPER NVIDIA GPU with 6 GB of memory.

• System 2: AMD Threadripper 3990X CPU with 256 GB of DDR4 RAM, paired with a

GeForce RTX 3080 Ti NVIDIA GPU with 12 GB of memory.

• System 3: NVIDIA Jetson AGX Xavier embedded platform composed of a Carmel Armv8.2

8-core processor paired with an integrated 512 CUDA core Volta GPU and 32 GB of

LPDDR4x memory.

All systems run CUDA version 12 for the GPU software library.
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6.3 Experimental Applications

This Section presents the design used in the experiments. The application is implemented

using the aforementioned RVC-CAL programing language.

6.3.1 HEVC Decoder

The latest video coding standard, known as HEVC (High Efficiency Video Coding) [99], is cur-

rently the leading technology for widespread application. This new standard boasts improved

compression capabilities, surpassing the previous standard, AVC (Advanced Video Coding)

[100, 101]. However, it comes with a tradeoff, as its complex design requires efficient HEVC

codec implementations to accommodate video products approaching 4K (2160p) resolution.

The MPEG-RVC Framework [75] has standardized the specifications for a dataflow imple-

mentation of HEVC [102]. The implementation comprises 34 actors in its basic form, with

its primary functional units corresponding to the algorithmic blocks of the HEVC standard

decoder. These units include the bit-stream Parser, Motion Vector Prediction, Inter Prediction,

Intra-Prediction, IDCT, Reconstruct Coding Unit, Deblocking Filter, Sample Adaptive Offset

Filter and Decoding Picture Buffer. Figure 6.1 depicts the entire network with all its compo-

nents.

6.4 Model Validation

The aim of this subsection is to demonstrate the validity of the model. For this purpose, the

complex HEVC Decoder RVC-CAL application is being utilized. The decoding speed in images

per second of the HEVC decoder, implemented in RVC-CAL and generated using the dynamic

network feature of the Exelixi CUDA backend developed in this thesis, is shown in Figure 6.2.

The results were obtained using the BQSquare benchmark, with QF22, a resolution of 416x240,

and 60 FPS as input. The graph displays 33 different partitions, where in each partition, a single

actor is mapped to the GPU and the remaining actors are assigned to a single CPU partition.

The purpose of this test is to demonstrate that even with a highly complex standardized

application, all actors can be mapped to the GPU, with the exception of the input (Source) and

output (display) actors. Furthermore, regardless of the model of computation (MoC) that an

actor uses, it can still be executed on the GPU. This test even shows that fully dynamic actors

can run on the GPU and that the FIFOs are automatically generated accordingly.

102



6.4 Model Validation

Figure 6.1: Illustration of the test RVC-CAL HEVC decoder dataflow network.
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Figure 6.2: Performance comparison of the RVC-CAL HEVC decoder implementation across
three hardware platforms for 33 different partitions, with each partition having a single differ-
ent actor executing on the GPU and the remaining actors on the CPU.
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6.5 Conclusion

In this chapter, the results aimed to demonstrate the integration of various optimization tech-

niques through a single, complex application that represents a real-world, high-performance

processing algorithm, thereby providing robust validation of the methodologies introduced.

To achieve this, the HEVC decoder, one of the most complex standardized algorithms, was

executed on three distinct platforms, encompassing all processing hardware families, in-

cluding embedded systems, personal computing, and data centers. The outcomes displayed

diverse partitioning configurations and effectively illustrated the key attributes of abstraction,

concurrency, analyzability, modularity, and portability, as defined in the problem statement

section.

104



7 Conclusions and Future Work

7.1 Conclusion

The field of heterogeneous computing is continually evolving, and it is crucial to optimize the

performance of software and adapt the methodology to offer better utilization of the new hard-

ware resources. The contributions presented in this thesis address this need by developing a

high-level synthesis compiler infrastructure that targets CPU/GPU heterogeneous processing

platforms and supports the full specification of the RVC-CAL dataflow programming language.

The compiler infrastructure, based on the open-source ORCC compiler and the Exelixi CUDA

backend, is an essential step towards optimizing software for heterogeneous computing plat-

forms. It suggests a novel model for representing parallel dataflow computation on modern

GPU co-processing platforms.

One of the significant contributions of this thesis is the implementation of a set of compiler

optimizations within the newly designed Exelixi CUDA backend to enhance the performance

and functionality of the generated low-level implementations. The first optimization utilizing

Single Instruction Multiple Data (SIMD) parallelization techniques to speed up the runtime of

dataflow actions, resulting in improved overall execution performance. This is accomplished

through parallel execution of multiple instances of the same action using CUDA. The Second

optimization utilizes the dynamic programming feature provided by the CUDA API to imple-

ment inter-action parallel execution techniques, enabling the parallel execution of different

action inside the same actor if they do not have any internal state dependency. This techniques

allows to speed up the runtime of dataflow actions, leading to improved overall execution

performance. The third contribution is the introduction of a methodology for generating

dynamic RVC-CAL networks. This technique allows for the specification of the partitioning

and mapping at runtime during the application’s startup process, resulting in better utilization

of resources and improved performance. Finally, a dynamic SIMD parallelization optimization

has been developed that involves generating multiple SIMD parallel executions of the same

action. The number of threads used could change dynamically throughout the runtime of the
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application, with the objective of maximizing performance and maximizing utilization of GPU

resources.

Another significant contribution of this thesis is the improvement over the Exelixi CUDA

backend for generating instrumented code for clock-accurate profiling and outputting the cor-

responding performance metrics, that can be used in the TURNUS post-processor to estimate

the overall application execution time, accurately. The accuracy of the estimated execution

time enables the development of automatic optimization tools.

Finally, the adaptation of the design space exploration tool TURNUS to the CPU/GPU model

of this thesis is a significant contribution. The design space exploration tool is a powerful tool

for exploring the vast design space of heterogeneous computing platforms. The tool enables

the optimization of RVC-CAL dataflow software targeting CPU/GPU heterogeneous processing

platform by automatically suggesting good performing partition and mapping configuration

for better utilization of resources and improved performance.

These developed methodology have been demonstrated and evaluated through the presen-

tation of well known RVC-CAL software implementations allowing to better reflect how a

designer or software developer would benefit from the proposed methodologies.

The developed methodologies have been demonstrated and evaluated through the presen-

tation of well-known RVC-CAL software implementations, enabling a better reflection of

how a designer or software developer can benefit from the proposed methodologies. These

implementations serve as concrete examples of how the developed methodologies can be

applied and their efficacy in improving the performance and functionality of the RVC-CAL

software when targeting CPU/GPU processing platform. The evaluation of the developed

methodologies through these software implementations provides a comprehensive under-

standing of the impact of the proposed model and optimizations, such as the dynamic network

generation, SIMD parallelization, inter-action parallelization techniques etc... Furthermore,

they show what kind of benefit is to be gained from a model that can be easily ported on

different platform that also provide automated way of tuning the low-level implementation

to the available hardware resources. This assessment enables a thorough investigation of

the benefits of the developed methodologies, ensuring that they are reliable and effective for

practical use.

7.2 Future Work

The proposed design flow has demonstrated its efficiency for programming CPU/GPU het-

erogeneous systems and providing methodologies for profiling and optimizing performance.

106



7.2 Future Work

However, there are still open research and engineering questions that need to be addressed in

the future. This section will provide an overview of the suggested research directions, which

can be decomposed into the two main axes of this thesis. The first axis focuses on the develop-

ment of the model and code generation. This includes new developments on both the ORCC

and Exelixi CUDA backend sides, such as providing new features, optimizations, analysis

methods, and performance improvements. The second axis focuses on the evaluation and

tuning of the configuration of the parameters that drive the implementation of the high-level

representation of RVC-CAL applications. This leads to new suggestions for development for

the TURNUS design space exploration framework. Overall, while the proposed design flow

has shown its effectiveness, there is still room for improvement and further research in order

to address open questions and enhance performance.

7.2.1 High-Level Synthesis of RVC-CAL Dataflow Programs

This section presents ideas and research directions for improving the high-level synthesis of

RVC-CAL dataflow programs for heterogeneous CPU/GPU systems.

7.2.1.1 Dataflow Compiler Extensions

The first proposed enhancement is to implement automatic detection of actors that can take

advantage of parallel execution of actions, using the compiler’s intermediate representation.

Currently, actors must be manually identified by the developer through the use of annota-

tions. To achieve this improvement, a dependency analysis that examines state variables and

scheduling is required.

The current model presented in this thesis represents the GPU hardware as a single, fully

parallel partition, where each actor assigned to it is designed to run in full parallel mode. To

achieve this, each actor is represented as its own long-running kernel. It would be beneficial

to explore the possibility of representing the GPU hardware as a set of parallel sequential

partitions, similar to multicore CPUs, where each partition runs in parallel but the actors

inside each partition run in sequence. This approach could potentially allow for a higher

number of smaller actors to be mapped to the GPU without them all competing for parallel

resources at the same time. However, the major challenge in this approach is that, unlike

CPUs, there is no direct control over the mapping between partitions and hardware resources

(cores) in GPUs through GPU APIs. This creates the need for a methodology to evaluate the

optimal number of parallel partitions for a specific GPU architecture. The DSE tools extended

in the research could be used to solve this issue.

The experiments and models in this thesis focus on CPU/GPU heterogeneous systems. Pre-

vious studies have demonstrated that the methodology and tools developed are capable of
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supporting other computing platforms, such as FPGAs or many-core processors. Further

research should aim to combine these techniques to enable dataflow applications to execute

on any combination of these hardware processing platforms. While this is technically feasible,

in practice, the user interface of the framework must be updated to facilitate cross-backend

actor partitioning and mapping. Additionally, data communication between the different

hardware platforms must be optimized.

Only a single GPU and multicore CPU were used to evaluate the design model in this thesis,

despite the absence of any technological restrictions against supporting multiple GPUs in

the same system. Future developments should assess the performance of cross-GPU data

communication by utilizing the current FIFO implementation, and evaluate the need for

adding a dedicated GPU-to-GPU implementation. The user interface of the framework and

configuration files should be updated to allow for assigning actors to different GPUs. Finally,

the Exelixi CUDA backend should implement proper hardware detection and assignment of

actors to the correct GPU in the runtime library generated by the Exelixi CUDA backend by

utilizing available CUDA APIs.

7.2.1.2 Features for Performance Improvement

In its current state, the software developer annotates actions that can benefit from paral-

lelization on a GPU and provides a single set of parameters, including the number of CUDA

blocks and threads per block, for each eligible action. To improve the software, the option for

multiple sets of these parameters could be added, allowing for a configuration that better fits

the hardware platform or a particular point of the execution to be used.

One of the major drawbacks of heterogeneous systems is the large amount of data that must

be transferred between platforms constantly. To optimize performance, data movement op-

timization is a crucial design consideration. One way that further research could enhance

performance is by providing data prefetching between platforms.

Several novel techniques have been developed in this work to enhance parallelism, including

SIMD and inter-action parallelization. Another promising approach to leveraging the massive

number of threads available on GPUs is the use of "repeat" or "for comprehension" constructs.

These constructs allow for the efficient expression of repetitive loops that can be parallelized,

provided that the inner code does not contain any dependencies. To achieve this, the com-

piler’s intermediate representation must be analyzed, and the necessary transformations must

be implemented in the Exelixi CUDA backend.
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7.2.1.3 Auto-Tuning Programs

In CPU/GPU heterogeneous systems, performance can vary greatly even between systems

from the same generation and vendor. Thanks to advancements in GPU APIs, an interesting

research direction would be to develop self-optimizing compiled implementations from

the high-level RVC-CAL representation. This would involve performing live analysis and

profiling during application execution to dynamically modify parameters, such as increasing

or decreasing SIMD parallelization, changing the level of intra-action parallelization, or even

moving actors between partitions or hardware platforms. Several components required to

achieve this goal have been developed. This including the dynamic heterogeneous actor

methodology, which allows binaries to contain both CPU and GPU versions of an actor and

decides which one to execute at runtime. The dynamic SIMD parallelization capability that

allows for the dynamic configuration of the number of parallel SIMD threads used during

action execution while maintaining the computational model intact. Additionally, dynamic

heterogeneous actors can be generated with instrumented code, allowing for profiling metrics

to be extracted. To fully realize the goal presented, a runtime controller needs to be created

that will analyze current performance metrics and make configuration changes using the

dynamic capabilities to try to improve the overall performance of the application on the

specific platform it is running on.

7.2.1.4 Profiled Application Generation

In the proposed profiling methodology outlined in this thesis, the issue of the volatile frequency

of the processing platforms was addressed by manually disabling it. However, a potential

avenue for further research would be to enhance the profiling process while maintaining

the dynamic frequency changes, as this more accurately represents the platform’s usage in

a production environment. This could be achieved by periodically sampling the frequency

while the application is executing and using these samples for normalization, or by comparing

the results of two measurements, one with the dynamic frequency enabled and one with it

disabled, to estimate the degree of inaccuracies.

7.2.2 Design space exploration

There is much scope for further research in the context of design space exploration for

CPU/GPU heterogeneous systems. This thesis has only addressed the partitioning and map-

ping aspect, and there is potential for research on scheduling, critical path detection, actor

fusion, and more. Two suggestions related to the proposed work are as follows: Firstly, an

interface could be created for the TURNUS Tabu-Search methodology, allowing for the ma-

nipulation of the number of SIMD parallelizations. This would help in finding the most

performing parameters in terms of CUDA blocks and CUDA threads per block. Secondly, it is

worth exploring the idea of mixing evaluation methodologies (static, dynamic, and measured)

into a single tool flow. By leveraging their differences, a similar approach to the PROB and
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JOINT methodology that mixes the neighborhood move generator could be utilized.
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