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The world is full of magic things, patiently

waiting for our senses to grow sharper.

— W. B. Yeats

Change depends on the questions we ask.

Always providing we are willing to ask them.

And at a certain point, I set out to find those questions.

— Eavan Boland
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ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia; it will affect one in four adults

worldwide in their lifetime. AF has serious consequences, including drastically increased risk

of stroke. Catheter ablation surgery is an established treatment option for persistent AF, that

is, an advanced form of AF that does not terminate spontaneously. However, while estimates

vary widely by study, health care center, and exact ablation strategy, a common figure for

post-ablation AF recurrence for patients with persistent AF is 50%. There is therefore great

interest in developing pre-ablation screening to select persistent AF patients most likely to

benefit from undergoing the surgery.

The clinical diagnosis of AF requires recording an electrocardiogram (ECG). This signal pro-

vides a wealth of information about the function of a patient’s heart. Many studies have

investigated the ECG for calculating digital biomarkers related to ablation outcomes. These

studies have resulted in the development of signal processing algorithms that aim to quantify

AF disease complexity from a patient’s recorded ECG in an electrophysiologically interpretable

way. In this thesis, we propose, test, and evaluate digital predictive biomarkers obtained

through signal processing of ECG recorded pre-ablation for noninvasive selection of patients

most likely to benefit long term from ablation. We additionally track the progression of the

biomarkers throughout ablation to see whether they evolve differently according to procedural

ablation outcome.

We used standard 12-lead ECG recorded in a persistent AF patient cohort before and during

catheter ablation. We applied two distinct analysis approaches. In the first, fibrillatory wave

extraction was applied to the ECG recorded on several precordial leads to allow for direct

analysis of the atrial component. We then calculated spatiotemporal biomarkers correlated

with AF complexity over the course of catheter ablation surgery. In the second approach, RR-

interval sequences were extracted from ECG lead II, and heart rate variability (HRV) analysis

was performed, to quantify the relationship between HRV and procedural and clinical ablation

outcomes. In both approaches, we found that higher levels of AF organization measured pre-

ablation using the ECG biomarkers were associated with AF termination by catheter ablation

and long-term maintenance of sinus rhythm thereafter.

We then recorded body surface potential mapping (BSPM) ECG including 252 leads dis-

tributed across the torso. Atrial fibrillatory wave extraction was again applied to allow for a

spatiotemporal analysis of all BSPM leads. We propose two novel BSPM biomarkers inspired

by spatiotemporal signal processing methods that quantify regularity in space and time of the

high-dimensional ECG and analyze their association with clinical ablation outcomes. It was

found that increasing regularity in the high dimensional BSPM signal was associated with AF
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Abstract

termination and long-term maintenance of sinus rhythm. These biomarkers were also shown

to be performant for predicting ablation outcome.

The results of this thesis demonstrate that ECG biomarkers were predictive of catheter ablation

outcomes for the persistent AF populations tested. The use of such biomarkers could help

guide treatment planning for both doctors and patients and would aid in the creation of an

informed and transparent treatment pathway tailored to each patient’s individual needs.

Keywords: atrial fibrillation, atrial fibrillation recurrence, risk stratification, digital predic-

tive biomarkers, catheter ablation, electrocardiogram, heart rate variability, instantaneous

frequency, principal component analysis
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RÉSUMÉ

La fibrillation auriculaire (FA) est l’arythmie cardiaque la plus fréquente au monde : un adulte

sur quatre sera touché au cours de sa vie. La FA engendre des conséquences graves. Elle

multiplie notamment le risque de subir un accident vasculaire cérébral. L’ablation par cathé-

ter est une intervention chirurgicale bien établie pour traiter la FA persistante, c’est-à-dire

une forme de FA avancée qui ne se termine pas spontanément. Toutefois, chez les patients

en FA persistante, le taux de récidive après l’ablation est de l’ordre de 50%. Il convient de

noter que les chiffres exacts varient en fonction de l’étude, la clinique et la stratégie précise

d’ablation appliquée. Il y a par conséquent un grand intérêt à développer une méthode de tri

avant ablation permettant de sélectionner les patients en FA persistante pour qui la chirurgie

pourrait être la plus bénéfique.

Le diagnostic clinique de la FA nécessite l’enregistrement d’un électrocardiogramme (ECG).

Ce signal fournit une mine d’informations sur le fonctionnement du cœur du patient. De

nombreuses études ont analysé l’ECG pour calculer des biomarqueurs numériques liés aux

résultats de l’ablation. Ces études ont abouti au développement d’algorithmes de traitements

des signaux permettant de quantifier la complexité de la FA d’une manière qui peut être inter-

prétée sur le plan électrophysiologique, à partir des signaux ECG enregistrés avant l’ablation.

Dans cette thèse, nous proposons, testons, et évaluons des biomarqueurs prédictifs numé-

riques basés sur le traitement des signaux ECG enregistrés avant l’ablation pour la sélection

non-invasive des patients pour qui l’ablation pourrait être la plus bénéfique à long terme.

Nous suivons également la progression des biomarqueurs tout au long de l’ablation pour

déterminer s’ils évoluent différemment en fonction de l’issue procédurale de l’ablation.

Nous avons travaillé à partir de l’ECG standard à 12 dérivations enregistré sur une cohorte

de patients en FA persistante, avant et pendant l’ablation par cathéter. Nous avons appliqué

deux approches d’analyse distinctes. Dans la première, l’extraction des ondes de fibrillation a

été effectuée sur l’ECG enregistré sur plusieurs dérivations précordiales, pour permettre une

analyse directe de la composante atriale. Nous avons ensuite calculé des biomarqueurs spa-

tiotemporels corrélés à la complexité de la FA au cours de la chirurgie d’ablation par cathéter.

Dans la deuxième approche, des séquences d’intervalle RR ont été extraites de la dérivation II

de l’ECG. Une analyse de la variabilité de la fréquence cardiaque (VFC) a ensuite été réalisée

afin de quantifier la relation entre la VFC et les résultats procéduraux et cliniques de l’ablation.

Dans les deux approches, nous avons trouvé que des niveaux plus élevés d’organisation de la

FA mesurés avant l’ablation à l’aide des biomarqueurs ECG étaient liés à l’élimination de la FA

par ablation par cathéter, et au maintien à long terme du rythme sinusal par la suite.

Nous avons ensuite enregistré un ECG à haute dimension (BSPM, body surface potential
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mapping, cartographie des potentiels de surface du corps), avec 252 dérivations réparties sur

le torse. L’extraction des ondes de fibrillation a de nouveau été réalisée pour analyser spatio-

temporellement toutes les dérivations BSPM. Nous proposons deux nouveaux biomarqueurs

BSPM inspirés des méthodes de traitement des signaux spatiotemporelles afin de quantifier

la régularité spatiale et temporelle de l’ECG à haute dimension. Nous analysons ensuite leur

lien aux résultats cliniques de l’ablation. Nous avons trouvé qu’une grande régularité dans

les signaux était liée à l’élimination de la FA et au maintien à long terme du rythme sinusal.

Ces biomarqueurs se sont également avérés performants pour prédire le résultat clinique de

l’ablation.

Les résultats de cette thèse démontrent que les biomarqueurs ECG proposés étaient capables

de prédire le résultat de l’ablation par cathéter, pour la population de patients atteints de la FA

persistante analysée. L’utilisation de ces biomarqueurs pourrait guider la planification des

traitements, tant pour les médecins que pour les patients et contribuer à la création des plans

de traitement transparents et adaptés aux besoins individuels de chaque patient.

Mots-clés : fibrillation auriculaire, récidive de la fibrillation auriculaire, stratification du risque,

biomarqueurs prédictifs numériques, ablation par cathéter, électrocardiogramme, variabilité

de la fréquence cardiaque, fréquence instantanée, analyse en composantes principales
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1 INTRODUCTION

1.1 MOTIVATION

Atrial fibrillation (AF) is a cardiac arrhythmia that occurs when groups of cells outside the

sinoatrial node spontaneously discharge electrical impulses in a chaotic fashion. AF is in-

credibly common, particularly in older populations and in certain parts of the world. Current

estimates project that 1 in 3 people of European descent, 1 in 5 people of African descent, and

1 in 7 people of Asian descent will develop AF in their lifetime. The irregular heart rhythm

caused by AF has serious health, social, and economic consequences, increasing drastically

the risk of stroke, reducing quality of life, and costing health care systems billions of dollars

worldwide. Yet despite decades of research, the molecular mechanisms underlying the genesis,

progression, and maintenance of AF remain poorly understood. Treatment for AF is there-

fore naturally subpar, focusing on controlling heart rate or rhythm rather than tackling the

molecular mechanisms behind the arrhythmia. The exact type of treatment administered to a

patient depends on their disease stage and refractoriness to other kinds of treatment, though

ongoing research and guidelines for what therapy to apply and at what stage are constantly

evolving. The last few decades have resulted in improvements for the management of AF, but

no definitive cure exists, and patient response to treatment remains unpredictable. It is widely

hoped that a better understanding of the causes and mechanisms of AF would allow for the

design of better treatment tools, both via pharmacological and non-pharmacological means.

In the meantime, there is a need to provide tools that would help both doctors and patients

choose patient-tailored treatment plans from the myriad of options available. This would

result in better patient outcomes, as well as add transparency for patients about the types of

health outcomes they could reasonably expect from their treatment. The work presented in

this thesis addresses these concerns.

AF Management

Options for AF treatment include medication, electrocardioversion, and catheter ablation

surgery. Medication is often effective for treating AF, particularly for younger patients and

those with paroxysmal AF, meaning AF episodes which are sporadic and resolve on their

own before progressing to a more advanced form (Hindricks et al., 2021). However, for older

patients, who have had AF for a long time, i.e. who suffer from persistent AF, medication

often fails to restore a normal heart rate or rhythm, or satisfactory quality of life. Persistent

AF is formally defined as AF which lasts for at least 7 days and does not resolve on its own, in

1



1 Introduction

contrast to paroxysmal AF.

A breakthrough in AF treatment came with the development of a surgical procedure called

catheter ablation, developed by Haissaguerre et al. (1998). Catheter ablation is a rhythm

control strategy that is usually prescribed when both medication and electrocardioversion

have failed to restore sinus rhythm. In this procedure, surgeons attempt to block electrical

conduction from arrhythmogenic groups of cells located in the pulmonary veins to the left

atrium, blocking arrhythmia-causing electrical impulses from reaching the heart. These

procedures have been shown to be very effective in restoring a normal heart rhythm in patients

who have paroxysmal AF. However, scarred tissue in the pulmonary veins can heal, rendering

conduction again possible, and in persistent AF, changes in the electrical and mechanical

structure of the atria themselves may contribute to arrhythmia progression. Electrically

isolating the pulmonary veins is therefore not sufficient to terminate persistent AF. Estimates

vary widely by study, health care center, and exact ablation strategy, but a common figure for

post-ablation AF recurrence in persistent AF patients is 50%.

Therefore, predictive analysis that could provide an indication of the likelihood of success

for persistent AF patients undergoing catheter ablation would help both doctors and patients

choose whether to include this costly procedure as part of their treatment pathway. This

would contribute to the ongoing effort to personalize patient treatment and include patients

in the decision-making process. Such predictive analysis relies on finding patient-specific

information thought to be related to likelihood of AF recurrence following catheter ablation.

Work has been done in this area, with predictive analysis including both clinical biomarkers,

as well as electrocardiographic biomarkers.

The electrocardiogram (ECG) non-invasively measures the electrical activity of the heart

using electrodes placed on a patient’s limbs and thorax, where they are capable of recording

fluctuations in electrical currents generated by the waves of cardiac electrical activation. The

ECG is by far the most widely used and analyzed electrical signal of physiological origin. It

is also the most widely used non-invasive clinical tool to diagnose and characterize AF. The

disordered electrical pathways responsible for the initiation and perpetuation of AF result in

distinctive electrical patterns that can be seen on the ECG. Various studies have investigated

whether these patterns could be used not only for diagnosis of AF, as is currently the case, but

also for characterization of AF dynamics and severity of AF, which have been shown to be linked

to AF catheter ablation outcomes. These studies have resulted in the development of signal

processing algorithms relying on spatial, temporal, spectral, and non-linear methods that

aim to quantify AF disease complexity, structure, and organization from a patient’s recorded

ECG signal in an electrophysiologically interpretable way. Therefore, the ECG can be used as a

digital biomarker to provide objective information regarding AF disease state (Kornej et al.,

2020), in addition to clinical biomarkers.

To summarize, AF is a cardiac arrhythmia of growing concern for which no cure exists and

for which current treatments are subpar for some patients. ECG is a ubiquitous and low-cost

2
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tool that has shown promise for non-invasively characterizing AF, however, its potential is

underdeveloped, as its current use in clinical practice for AF is limited to its diagnosis. Further

investigation into the potential applications of ECG analysis to guide treatment planning for

both doctors and patients would be helpful for an informed and transparent decision-making

processing, tailored to each patient’s individual needs.

1.2 OBJECTIVES

The main questions explored in this thesis are as follows:

Are ECG biomarkers known to be associated with AF disease complexity associated with

both procedural and clinical AF outcomes following catheter ablation, when measured

pre-ablation?

Can these ECG biomarkers also be used to predict, on the level of individual patients, AF

termination by catheter ablation and long-term maintenance of sinus rhythm thereafter?

What advantage, if any, can be offered using high-dimension body-surface potential

map ECG relative to the two questions above?

The main chapters of this thesis answer these questions using two kinds of ECG, standard

12-lead ECG, and high dimensional body-surface potential map (BSPM) ECG. Direct analysis

of the atrial component of the ECG, and indirect analysis of the atrial response via analysis of

the ventricular response were both performed.

1.3 ORGANIZATION

In Chapters 2 and 3, we provide an introduction to cardiac anatomy and physiology, electro-

cardiography, and the epidemiology and management of AF. These concepts are important

for understanding the origin of the ECG in AF. The thesis continues with its main chapters as

follows:

Chapter 4 begins by describing the patient cohort, resulting database, and pre-processing

methods used for the 12-lead ECG analysis performed in this thesis. The chapter continues

with the calculation of spatiotemporal ECG biomarkers known to be associated with AF disease

complexity before and over the course of catheter ablation, and statistically analyzes whether

significant changes in their values occur between different ablation steps. The ECG biomarkers

measured prior to ablation are compared between patient groups and found to be associated

with AF termination by ablation but not with long-term maintenance of sinus rhythm. The

results of this chapter demonstrate that ECG biomarkers associated with AF complexity change

in value over the course of ablation, therefore showing their potential value as tools to track

the progress of ongoing ablation.
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1 Introduction

Chapter 5 continues with the analysis of the 12-lead ECG. However, a different approach

is taken, in which the ventricular response is analyzed as a proxy for the atrial response.

The chapter proposes the use of several heart rate variability (HRV) metrics thought to be

correlated with atrial fibrillatory rate, an indicator of AF organization, as well as HRV analysis

using recurrence quantification analysis (RQA), thought to be useful for dynamical analysis of

physiological time series like the ventricular response in AF. The HRV metrics are calculated

prior to and at the end of ablation, to analyze not only whether their pre-ablation values are

associated with AF outcome, but also whether changes in the ventricular response can be

measured at the end of ablation. The results of this chapter show the promise of HRV metrics

to be included as ECG biomarkers indicative of ablation outcomes for persistent AF patients.

Chapter 6 begins with a discussion of the analysis of BSPM signals in the context of AF. The

chapter then presents the patient cohort, resulting database, and pre-processing of BSPM

signals. The chapter continues with the development of two novel ECG biomarkers for BSPM

data, drawing inspiration from signal-processing methods used for both the 12-lead ECG and

BSPM. The novel BSPM biomarkers are tested and evaluated for their association with and

predictive power of ablation outcomes and compared with other biomarkers suggested in the

literature. The results of this chapter show that BSPM biomarkers can be used for AF outcome

prediction, but do not clearly answer whether they provide an advantage over 12-lead ECG

biomarkers.

Finally, the thesis concludes with Chapter 7, which provides a summary of the main findings

and contributions of this work, as well as a reflection of its place within the context of current

research in the field.

1.4 CONTRIBUTIONS

This thesis is composed of the following papers and articles:

Chapter 4 McCann, A., Vesin, J.-M., Pruvot, E., Roten, L., Sticherling, C., and Luca, A. (2021b).

ECG-based indices to characterize persistent atrial fibrillation before and during stepwise

catheter ablation. Frontiers in physiology, 12:654053.

Chapter 5 McCann, A., Luca, A., Pruvot, E., Roten, L., Sticherling, C., and Vesin, J.-M. (2021a).

Ventricular response regularity in atrial fibrillation and its relationship to successful catheter

ablation. In 2020 28th European Signal Processing Conference (EUSIPCO), pages 910–914. IEEE.

McCann, A., Luca, A., Pruvot, E., Roten, L., Sticherling, C., and Vesin, J.-M. (2023). Heart

rate variability analysis in atrial fibrillation for assessing response to catheter ablation. Physio-

logical measurement. In submission.

Chapter 6 McCann, A., Luca, A., Pascale, P., Pruvot, E., and Vesin, J.-M. (2022). Novel

spatiotemporal processing tools for body-surface potential map signals for the prediction of
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catheter ablation outcome in persistent atrial fibrillation. Frontiers in physiology, 13:1001060.

During my doctoral studies, I also co-authored the following papers, which do not appear

in this document:

Luca, A., Pittet, A., Buttu, A., McCann, A., Vesin, J.-M., Pascale, P., Le Bloa, M., Herrera, C.,

Park, C.-I., Rollin, A., et al. (2020). Severe and uniform bi-atrial remodeling measured by

dominant frequency analysis in persistent atrial fibrillation unresponsive to ablation. Journal

of interventional cardiac electrophysiology, 59(2):431–440.

Luca, A., Baskaralingam, A., McCann, A., Vesin, J., Pascale, P., Le Bloa, M., Herrera, C., Roten,

L., Kuhne, M., Spies, F., et al. (2022). Amplitude of fibrillatory wave correlates with long-

term maintenance of sinus rhythm after ablation in persistent atrial fibrillation. Europace,

24(Supplement_1):euac053–063.

Pithon, A., McCann, A., Buttu, A., Vesin, J.-M., Pascale, P., Le Bloa, M., Herrera, C., Park, C.-I.,

Roten, L., Kühne, M., et al. (2021). Dynamics of intraprocedural dominant frequency identifies

ablation outcome in persistent atrial fibrillation. Frontiers in physiology, 12:731917.
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2 CARDIAC PHYSIOLOGY AND ELECTRO-

CARDIOGRAPHY

The purpose of this chapter is to give an overview of cardiac anatomy and physiology (Sec. 2.1),

including normal heart anatomy and function, and the electrocardiogram (ECG) (Sec. 2.2).

These concepts will be necessary to understand the overview of AF given in Chapter 3, as well

as to appreciate the ECG signal analysis techniques presented in this thesis.

2.1 CARDIAC ANATOMY AND PHYSIOLOGY

2.1.1 OVERVIEW

The heart is a muscular organ that contracts, or beats, to pump blood through blood vessels of

the circulatory system, delivering blood and nutrients to and removing metabolic waste from

the body’s tissues, organs, and cells. A representation of the human heart and its structures is

shown in Fig 2.1. The heart is made up of four chambers: the upper right and left atria, and

the lower right and left ventricles. The atria are smaller than the ventricles. All four chambers

contract according to carefully timed electrical impulses, with each atrial contraction pumping

blood to the ventricles, and with each ventricular contraction pumping blood to the lungs

or rest of the body (right and left ventricular contraction, respectively). The right side of the

heart pumps oxygen-deficient blood, while the left side of the heart pumps oxygen-rich blood.

A healthy heart beats (pumps blood) with a rhythm determined by a group of pacemaker

cells that make up a structure called the sinoatrial node (SA node), located in the right atrium

(Fig. 2.4). These cells create electrical impulses called action potentials which are conducted

to the entire heart, causing it to contract via electromechanical coupling1. The resulting heart

rhythm is called sinus rhythm, since it is determined by the sinoatrial node. The rate at which

the pacemaker cells generate electrical impulses is controlled by the brain and nervous system,

therefore the heart can respond to the body’s metabolic needs by slowing the heart rate at rest,

and accelerating the heart rate during times of exercise or stress. The heart’s pacemaker cells

and the electrical impulses they generate will be discussed in more detail in Sec. 2.1.3, but first,

an overview of how blood flows through the heart during each heart beat will be discussed in

the next section.

1Electromechanical coupling in the heart refers to the fact that electrical impulses in most types of cardiac cells
cause the cell to mechanically contract
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2 Cardiac Physiology and Electrocardiography

(a) (b)

Figure 2.1: Heart anatomy. (a) Anterior cross-sectional view of heart. (b) Anterior view of
heart. Figure adapted from the Cleveland Clinic.

2.1.2 CARDIAC CYCLE

In this section, the flow of blood throughout the heart during a single beat will be presented.

Please refer to Fig. 2.1 for the anatomical structures mentioned. Oxygen-deficient blood from

the lower part of the body enters the right atrium through the inferior vena cava, while blood

from the upper part of the body enters the right atrium through the superior vena cava. Once

filled with blood, the right atrium contracts, its high pressure pushes open the tricuspid valve,

and blood flows to the right ventricle. Once filled with blood, the right ventricle contracts (via

the same, but delayed electrical impulse that caused the atrium to contract). The high pressure

in the contracted ventricle pushes open the pulmonary valve and pumps the oxygen-deficient

blood to the lungs, which remove carbon dioxide and replenish the oxygen level in the blood.

The oxygen-rich blood from the lungs then enters the left atrium through the four pulmonary

veins.2 The left atrium contracts, and its resulting high pressure pushes open the mitral valve

and pumps blood into the left ventricle. Finally, the left ventricle contracts, pushing open the

aortic valve and pumping blood through the aorta, which branches into smaller arteries to

deliver blood to all the body’s organs and tissues .

It is important to note that the two atria contract at the same time, and the two ventricles

contract at the same time. Therefore, while the right atrium is filling with oxygen-deficient

blood from the body, the left atrium is filling with oxygen-rich blood from the lungs, and while

the right ventricle is pumping oxygen-deficient blood to the lungs, the left ventricle is pumping

oxygen-rich blood to the the body. Each atrial and ventricular contraction is controlled by the

2Ectopic pacemaker cells in the pulmonary veins are thought to play an extremely important role in the initiation
of atrial fibrillation. These important cells will be discussed further in Chapter 3.
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2.1 Cardiac Anatomy and Physiology

same electrical impulse (beat) created in the sinus node, with the electrical activation and

resulting contraction occurring first and simultaneously in the atria, and then after a delay

simultaneously in both ventricles.

An important concept which has not yet been discussed is the mechanisms that cause

the various chambers of the heart to contract in the coordinated manner discussed above.

The contractions of the heart are assured by its electrical conduction system, which will be

presented in Sec. 2.1.4. To understand the electrical conduction system as a whole, its building

blocks - cardiac action potentials and cardiac cell types - will be discussed in the next section.

2.1.3 ELECTRICITY IN THE HEART

As briefly mentioned, electrical signaling pathways are responsible for coordinating the rapid

and sequential activation and contraction of the heart’s chambers. To understand the details

of these pathways, a brief introduction to the origin and conduction of electrical phenomena

in the body, and more specifically the heart, will be given below.

Cells in the body are enclosed by a special double-phospholipid membrane about 5 nm thick

(Fig. 2.2), separating the intracellular fluid from the extracellular fluid. Both the intra- and

extracellular fluids are conducting media, made up of electrolytes. A voltage exists across the

cell membrane (transmembrane voltage) because different concentrations of various types

of ions (mostly Na+, K+, and Ca2+) accumulate inside and outside cells. The cell membrane

therefore acts as a capacitor, across which a potential difference, called a resting membrane

potential of about -90 mV, measured as the intracellular potential minus the extracellular

potential when the cell is at rest, exists. Nerve and muscle cells (skeletal, heart, and smooth)

are electrically excitable in the sense that they can selectively change their membrane con-

ductivities to Na+, K+, and Ca2+, thereby altering the ion concentrations on either side of the

membrane, and causing the transmembrane voltage to deviate from the resting membrane

potential. Depolarization refers to an increase in the transmembrane voltage (more positive

voltage), while hyperpolarization refers to a decrease in the transmembrane voltage (more neg-

ative voltage). Changes in transmembrane voltage are caused by electrical or chemical stimuli

that modify the properties of ion channels and ion pumps embedded in the cell membrane

(Fig. 2.2). Ion pumps guarantee proper ion concentration gradients across the cell membrane.

They require energy to function, since they pump ions against their electrical gradient. Ion

channels selectively allow the passive diffusion of ions down their electrical gradient but can

be opened or closed in response to stimuli. Both ion pumps and ion channels are protein

macromolecules.

If a nerve or muscle cell, in response to an electrical or chemical stimulus depolarizes

up to a voltage called the threshold potential of about -60 mV, this causes a very rapid and

irreversible increase in the transmembrane voltage (depolarization), which overshoots to

positive values before returning to the resting membrane potential (repolarization). When

the transmembrane voltage is plotted versus time, this phenomenon resembles an electrical
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2 Cardiac Physiology and Electrocardiography

Figure 2.2: The excitable cell membrane. Phospholipid double layer with examples of protein
macromolecules: opened K+ channel, closed K+ channel, and active Na+-K+ pump. Figure
adapted from Werner (2014).

impulse that is called an action potential, a generalized example of which is shown in Fig. 2.3.

Cells which can generate action potentials are said to be electrically excitable. The impulse

width of the action potential is about 1 ms for nerve cells, 5 ms for skeletal muscle cells, and 250

ms for heart muscle cells. The transient depolarization and repolarization are triggered either

by external mechanisms, such as motor nerve stimulation of skeletal muscle, or cell-to-cell

depolarization in the heart, or by intracellular, spontaneous mechanisms, such as occurs in

cardiac pacemaker cells. Conserved propagation of action potentials from cell to cell is what

constitutes the transmission of electrical signals in the body. The mechanisms which drive the

rapid changes in transmembrane voltage that occur during cardiac action potentials will be

discussed in the next section.

Cardiac action potentials

Action potentials occur in all cardiac cells, but take one of two forms depending on which type

of cardiac cell generates them. Cardiac pacemaker cells display automaticity, depolarizing

and discharging an action potential spontaneously without external stimuli. All other cardiac

muscle cells must receive a triggering electrical impulse, such as the action potential from a

neighboring cell, to generate an action potential. The form of each type of action potential,

and the associated underlying ionic mechanisms, are shown in Fig. 2.4.

Cardiac pacemaker cells that make up the SA node and other secondary pacemakers in

the heart have no true resting potential. Instead, immediately following repolarization, Na+

current begins leaking into the pacemakers cells and increasing their transmembrane voltage.

This inward current is referred to as Phase 4 and is shown in green in Fig. 2.4a. Once the

threshold potential is achieved, voltage-gated Ca2+ channels open, and the inward Ca2+ current

triggers complete depolarization of the cell. Finally, K+ channels open, this time resulting in

an outward K+ current, resulting in the cell’s repolarization. The cycle then repeats itself and
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2.1 Cardiac Anatomy and Physiology

Figure 2.3: Action potential generation. Figure adapted from Werner (2014).

Na+ again begins leaking into the cell, explaining the automaticity of pacemaker cells.

All other cells making up the atrial and ventricular myocardium (contractile muscle cells)

display a different form of action potential. These cells remain at a true resting potential of

around -90 mV, referred to as Phase 4 and shown in red in Fig. 2.4b. They must be stimulated

via an incoming impulse from a neighboring cell to reach the threshold potential. Once the

threshold potential is reached, fast Na+ channels open causing a rapid inward current that

depolarizes the cell (Phase 0), reaching a maximum membrane voltage of about 20 mV. The

opening of K+ channels causes a brief outward current, generating a brief early repolarization

(Phase 1). Following the early repolarization, a plateau phase is caused by the opening of

Ca2+ channels (Phase 2) at about the same time as the opening of the K+ channels, resulting

in a steady inward current that maintains a positive transmembrane voltage for a relatively

long duration, allowing the majority of the myocardium to contract simultaneously. Finally,

repolarization (Phase 3) occurs when Ca2+ channels close and K+ channels open, resulting in

an outward current. The cell returns to its resting phase (Phase 4) until it is triggered by a new

incoming stimulus.

For most of the action potential, myocardial cells are absolutely refractory to stimulation,

meaning that even if another stimulus were to arrive, the cell could not generate a new action

potential (Fig. 2.5). A relative refractory period follows the absolutely refractory period, during

which time a strong stimulus may trigger a new action potential. The relative refractory period

has clinical implications which will be discussed in a later part of the chapter.
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(a) (b)

(c)

Figure 2.4: Cardiac action potentials. (a) The action potential of the pacemaker cells of the
SA node is shown in the first panel and includes no true rest phase due to the spontaneous
leakage of Na+ current into the cell. (b) The action potential of contractile myocardial cells
is shown in the second panel, and includes a plateau phase (Phase 2) due to incoming Ca2+

currents and a true rest phase (Phase 4). (c) Depiction of SA node in the heart and outward
propagation of action potential. Figure adapted from Verma et al. (2015).

Cardiac cell types and architecture

Apart from the pacemaker and non-pacemaker cell distinction in the heart, there is another

important distinction between two types of cells in the heart. Conduction cells, as part of

the heart’s specialized electrical conduction system (discussed in the next section) have fast

conduction velocity and exist only to propagate the action potential to the contractile my-

ocardium, via fiber networks that extend into the myocardium. These cells do not contribute

to contraction of the heart. Contractile myocardial cells make up the vast majority of cardiac

cells. These muscle cells are capable of transmitting the action potential, but at a much lower

speed than conduction cells. However, importantly, these cells contract in response to the

action potential, thus contributing to the entire heart’s coordinated contraction. Depolariza-

tion activates these myocardial cells such that cellular processes are induced that cause the

cell to contract. This direct link between the spread of an electrical impulse and a mechanical

event in the form of cell contraction is called electromechanical coupling. It is during the

plateau phase of the contractile myocardium cells (Phase 2 in Fig. 2.4b) that the cells contract.

Because this phase is long, and the electrical impulse is efficiently transmitted to nearly all
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2.1 Cardiac Anatomy and Physiology

Figure 2.5: Excitable cell refractory period. Absolute and relative refractory periods during
the cardiac action potential. Figure adapted from ECG & Echo Learning (2022).

parts of the heart simultaneously, and the cells contract almost simultaneously, contributing

to the heart’s efficient pumping mechanism. The long duration of the cardiac action potential

and refractory period ensure that one action potential can produce only a single contraction

followed by relaxation, in accordance with the heart’s function of pumping blood to the body

using synchronized pulses.

Cardiac cells are long and display a branch-like morphology (Fig. 2.4)c. They are connected

along their long axis via intercalated disks, which are composed of cell membrane proteins.

Some of these proteins form channels between the cells called gap junctions (yellow squares

in Fig. 2.4c) through which electrically charged ions can flow, thus connecting adjacent cells

electrically. This is how action potentials are propagated from one cell to the next. The cell

architecture allows the network of cells to function as one unit. In Fig. 2.4c, the way in which

conduction cells can be interconnected with contractile cells is shown. The next section will

elaborate the specialized parts of the heart’s electrical conduction system that contribute to the

rapid conduction of electrical activation throughout the heart.

2.1.4 ELECTRICAL CONDUCTION SYSTEM

As discussed in Sec. 2.1.2, the atria and ventricles work together, alternately contracting and

relaxing to create the pressure changes that pump blood through the heart and to the body.

The atria and ventricles must be activated rapidly and sequentially for this to work properly.

Rapid activation is important in order to activate as much of the myocardium simultaneously

as possible. The heart pumps blood most efficiently when all myocardium cells of either

the atria or ventricles contract at the same time. Sequential activation is necessary so that

the atria contract before the ventricles and can fill them with the correct volume of blood

before ventricular contraction. This rapid and sequential activation is coordinated by the

heart’s electrical conduction system, shown in Fig. 2.6a. This system is composed of special
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(a) (b)
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Figure 2.6: Electrical conduction system of the heart. (a) Parts of the electrical conduction
system of the heart. (b) The form, duration, and timing of action potentials associated with
each type of cardiac conduction and contractile cell. Figure adapted from ECG & Echo
Learning (2022).

myocardial cells, called conduction cells, which have no contractile function and act only to

spread action potentials to the contractile myocardium cells in the atria and ventricles, as

discussed in Sec. 2.1.3. The parts of the electrical conduction system shown in Fig. 2.6a, and

their role in coordinating the cardiac cycle, will be briefly enumerated below, following the

natural order of the spread of action potentials within the heart. Also shown in Fig. 2.6b are

the forms and relative duration and timing of the action potentials generated by the different

types of conduction cells and contractile cells within the heart.

The sinoatrial node

The sinoatrial node (SA node) is a small oval structure located near the entrance of the superior

vena cava in the right atrium. The SA node is made up of specialized cells that display

automaticity, that is, they can depolarize and discharge an action potential spontaneously as

discussed in Sec. 2.1.3. The SA node is referred to as the heart’s primary or natural pacemaker,

with an intrinsic rate discharging about 70 beats per minute3. The intrinsic rate of spontaneous

3Note, the heart also contains secondary (latent) pacemakers in parts of the atrial myocardium, myocardium near
the AV node, and the His-Purkinje network. However, these pacemakers have a lower intrinsic rate than the SA
node, thus the SA node dominates by depolarizing before secondary pacemakers and resetting them before they
can discharge their own action potential. Additionally, parts of the heart can display ectopic automaticity and
become abnormal pacemakers, which plays a role in the initiation of atrial fibrillation. This will be discussed in
detail in Chapter 3
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(a) (c)

endocardium
epicardium

(b)

Figure 2.7: Ventricular wall activation. (a) Ventricular activation spreads from the endo-
cardium, in contact with the heart’s conduction system, to the epicardium (red arrows).
Repolarization spreads in the opposite direction, from the epicardium to the endocardium
(green arrows). (b) The resulting electrocardiogram traced during ventricular activation (red)
and repolarization (green). (c) Repolarization occurs in the opposite direction to activation
since the duration of the action potential, traced as a dashed black line, is shorter in epicardial
cells, so repolarization begins there and spreads back to the endocardium, whose longer
duration action potential is traced in red. Figure adapted from Klabunde (2019).

depolarization in the SA node can be modified by the autonomic nervous system4, increasing

the rate via sympathetic stimulation dominates during physical exercise and at times of stress,

or decreasing the rate during rest.

Impulse transmission

The cells of the conduction system do not have contractile function and serve only to spread

the depolarization rapidly and sequentially to contractile myocardium cells. However, the

conduction cells are only in direct contact with part of the contractile myocardium. Therefore,

the contractile cells which are not in direct contact with conduction cells receive the traveling

impulse via myocardium cell-to-cell transmission, which is significantly slower than trans-

mission through conduction fibers (about 0.5 m/s). This effect can be seen in the activation

and contraction of the ventricular wall muscle. The specialized conduction fibers extend into

the endocardium of the ventricular walls but not beyond a third of the wall thickness. There-

fore, activation and contraction start in the endocardium and spread via slower myocardium

cell-to-cell transmission to the epicardium (Fig. 2.7).

Atrial impulse transmission

While the atria do not contain the specialized and distinct conduction structures found within

the ventricles, there is some evidence that distinct conduction fiber bundles exist, and a

structure called the Bachmann’s bundle conducts the impulse from the right to left atrium.

4The autonomic nervous system is a component of the peripheral nervous system that regulates involuntary
physiologic processes including heart rate, blood pressure, respiration, digestion, and sexual arousal. It contains
three anatomically distinct divisions: sympathetic, parasympathetic, and enteric.
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Otherwise, the atria rely on myocardial cell-to-cell transmission to spread the impulse (0.5

m/s).

Atrioventricular node

Conduction of the depolarization wave from the atria to the ventricles is mostly blocked by a

fibrous barrier of nonexcitable cells, and is only possible via a structure called the atrioven-

tricular node (AV node). Conduction across the specialized fibers of the AV node is about 10

times slower (0.05 m/s) than conduction in the atrial myocardium, owing to properties of

specialized AV node fibers. These fibers have a smaller diameter, and their depolarization is

largely governed by slower Ca2+ channels, as opposed to the fast Na+ channels. Additionally,

the AV node has a low density of gap junctions.5 The transmission delay, about 100 ms, allows

the atria to complete their contraction and fill the ventricles completely with blood before

ventricular contraction begins.

The His bundle, bundle branches, and Purkinje fibers

The AV node is connected to the His bundle, which itself splits into the left and right bundle

branches that line the ventricular septum. Both the His bundle and bundle branches have fast

impulse conduction velocity (2 m/s). The bundles branch into smaller bundles and ultimately

to the Purkinje fibers. These fibers transmit the impulse very quickly (4 m/s) and extend

into the ventricular myocardium where they deliver the depolarizing impulse to contractile

myocardium cells. Therefore, activation starts in the endocardium and spreads toward the

epicardium as shown in Fig. 2.7. The fast impulse transmission allows the ventricular my-

ocardium to be activated and then contract simultaneously, contributing to efficient pumping.

The parts of the heart’s electrical conduction system and contractile myocardial cells are

summarized in Table 2.1.

2.2 ELECTROCARDIOGRAPHY

Electrocardiography is the process of recording the heart’s electrical activity. The excitatory

and conductive processes which produce waves of depolarization and repolarization within

the heart (the heart’s electrical activity) may be analyzed using electrical signals, recorded

either with electrodes placed directly in the heart (intracardiac electrogram), or with electrodes

placed on the body surface. The potential difference between two electrodes placed on the

body surface generates a trace of heart activity in the form of voltage versus time called the

electrocardiogram (ECG). For example, Fig 2.8b shows the ECG trace associated with lead

II, which is the difference in potential recorded by an electrode placed on the left leg and

right arm. These two electrodes are indicated by black arrows in Fig 2.8a. The study of ECG

5The slow conduction has extremely important physiological implications. In atrial fibrillation, the AV node
protects the ventricles from the extremely high atrial rate.
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Table 2.1: Conduction of electrical impulses in the heart.

Structure Function

Sinoatrial Node Heart’s natural pacemaker. Spontaneous action potential
generation produces a wave of depolarization which spreads
to the atria.

Atrial muscle Wave of depolarization quickly spreads to both atria via con-
tractile cell-to-cell transmission (0.5 m/s), producing coordi-
nated atrial contraction.

Atrioventricular node Normal pathway for depolarization wave to spread from atria
to ventricles. Slows wave propagation (0.05 m/s), introducing
a delay and allowing atria to contract and fill ventricles with
blood before they can contract.

His bundle Speeds up conduction to ventricular muscle (2 m/s).

Bundle branches, Purkinje
fibers

Continue fast spread of depolarization wave to septum (bun-
dle branches - 2 m/s) and to ventricular wall endocardium
(Purkinje fibers - 4 m/s)

Ventricular muscle Wave of depolarization spreads from endocardium to epi-
cardium via contractile cell-to-cell transmission (0.5 m/s),
producing coordinated ventricular contraction.

biomarkers for treatment planning in AF is the backbone of this thesis, therefore, the ECG will

be discussed in detail below. While intracardiac electrogram analysis was performed during

this thesis, it did not lead to any significant contributions; therefore, it will not be discussed.

2.2.1 ELECTROCARDIOGRAM

It is possible to place electrodes on the body surface and measure cardiac potentials because

the body acts as a volume conductor of the electrical currents generated by the heart. Time-

dependent changes in potential differences recorded between electrodes at two points on the

body surface are essentially determined by the spread of electrical excitation within the heart

and the resulting changes in the electric field in surrounding body tissue.

The recorded trace of how the voltage changes with time between two recording electrodes

placed at different positions on the body surface is called the electrocardiogram (ECG). The

ECG represents a global view of the underlying electrical activity in the heart. The form of

the ECG depends on the relative positions of the electrodes and which electrode is taken as

the reference electrode. Usually, several electrodes are used, and different pairs of electrodes

are taken to record different views of the heart. Each trace that is generated by taking the

difference of these pairs of electrodes is called a lead. For example, lead II of the 12-lead ECG

(to be discussed in more detail at the end of this chapter) is formed by taking the potential
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Figure 2.8: Electrocardiogram. (a) Red dots indicate standardized electrode positions to
record the 12-lead ECG. Note one “ground” electrode is also placed on the right leg and is
not shown. The left leg and right arm electrodes used to form lead II are indicated by black
arrows. The left leg electrode should in reality be placed at the hip bone just below the navel.
(b) The resulting lead II waveform, corresponding to one normal heartbeat. Figure inspired
by Macfarlane et al. (2010) and Yoo (2014).

difference between recordings from electrodes placed at the left leg and the right arm:

II = VLL −VRA (2.1)

where VLL is the potential recorded by the electrode (positive, or exploring electrode) placed

on the left leg, and VRA is the potential recorded by the electrode (negative, or reference

electrode) placed on the right arm (indicated by black arrows in Fig. 2.8a). The trace shown in

Fig. 2.8b demonstrates a typical lead II ECG recording associated with one heartbeat. Different

electrode configurations used for recording the ECG will be discussed at the end of the chapter.

The objective of the remainder of this section is to (1) first describe the details behind why

recording the ECG is possible; (2) describe the link between the electrical processes occurring

within the heart, and the resulting waveforms recorded by the ECG; (3) describe various

electrode configurations used for recording ECG.

Origin of the electrocardiogram

Recording electrical cardiac activity using electrodes placed on the body surface is possible

because the waves of depolarization and repolarization passing through the atria and ventri-

cles cause electric currents to flow outside the myocardium. Since the heart is surrounding by

conducting body tissues and fluids, despite the torso-air boundary at the body surface, the

changing electric fields set up by electric cardiac sources are still perceptible at electrodes

placed on the body surface, and therefore electric potential differences can be recorded be-

tween electrodes. It is important to note that at any given point in time, there are many
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2.2 Electrocardiography

separate waves of depolarization or repolarization traveling in different directions relative

to the fixed positions of the body surface electrodes. The instantaneous amplitude of the

measured potential on each electrode depends on its orientation relative to the instantaneous

direction and magnitude of the sum of all the underlying individual depolarization waves.

This sum is called the mean electrical vector. Therefore, the amplitude and direction of the

potential difference recorded between two electrodes depends heavily on the alignment of the

two electrodes relative to both the heart and to each other.

To understand how the electric fields are created, consider what happens in the extracellular

space during the fundamental unit of cardiac activation: the propagation of an action poten-

tial across a single cardiac muscle cell placed in a homogeneous conducting medium, with

recording electrodes at each of its ends (Fig. 2.9). Before depolarization, the transmembrane

voltage along the length of the cardiac fiber is at the resting transmembrane potential of about

-90 mV, therefore, no currents flow along the surface of the cell and no potential difference

exists between the two electrodes (Fig. 2.9a). If an electrical stimulus enters the cell at its

left side (Fig. 2.9b), it effectively discharges the transmembrane capacitance and depolarizes

the membrane above the threshold level, leading to a complete depolarization. However,

because cardiac cells are long, the different ends of the stretched muscle fiber (the partially

depolarized region where the excitation wave is passing and Na+ currents are entering and the

fully polarized region still ahead of the advancing action potential) will be at different electric

potentials. At the left electrode, the outside of the cell appears to have a negative potential

with respect to the inside of the cell, while at the right side of the cell, the outside of the cell

has a positive potential with respect to the inside of the cell. Therefore, a potential difference

exists between the positive and negative electrodes. This results in a large intracellular axial

current that carries the impulse propagation. These processes occur within the membrane

because of its ability to change conductivities in an ion-selective manner, resulting in relatively

positive potentials in the extracellular space near the current source (left side of the cell) and

relatively negative potentials near the current sink (right side of the cell). Similarly, during

repolarization (Fig. 2.9c), the left hand side of the cell returns first to the resting membrane

potential while the right hand side is still depolarized. Therefore, positive charges collect at

the outer surface of the cell near the negative electrode, and negative charges collect near the

positive electrode, resulting in a negative voltage between the two electrodes.

The relationship between a passing depolarization or repolarization wave can be summa-

rized as follows. A wave of net depolarization travelling toward a positive electrode results in a

positive deflection in the ECG trace, while a wave travelling away from a positive electrode

results in a negative deflection. A wave of net repolarization travelling toward a positive

electrode results in a negative deflection, while a wave of repolarization travelling toward a

negative electrode results in a positive deflection. Finally, a depolarization or repolarization

wave travelling perpendicular to the line formed by connecting two electrodes results in no

net deflection. Since the myocardium has a large number of fibers each with different lengths,

thicknesses, spatial directions, and excitatory states, the mean electrical vector associated

with a depolarization or repolarization wave is found by summing the contributions of the
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Figure 2.9: Single cell conduction. (a) Cell at rest, no potential difference between two
electrodes. (b) Entering electrical stimulus results in depolarization first at left hand side of
cell, while the right hand side is still polarized, which causes the flow of an intracellar action
potential current Ii and creates a positive potential difference between the two electrodes.
(c) The left hand side of the cell repolarizes first while the right hand side is still depolarized,
resulting in a negative potential difference between the two electrodes.

individual cells.

The normal surface electrocardiogram

Extending the propagation of an action potential in a single cell with two recording electrodes

at each end to the recording of the changing excitatory state of the heart using two electrodes

placed on the body surface, the recorded trace, with its series of deflections, corresponds to

the sequential activation of different parts of the myocardium. Figure 2.10b demonstrates the

typical deflections seen during one cardiac cycle on lead II of the 12-lead ECG, along with

the underlying mean electrical vectors associated with activation of the different parts of the

atrial and ventricular myocardium. As mentioned, lead II takes the left leg as the positive

electrode, and the right arm as the negative electrode (Eq. 2.1). Therefore, the electrodes

are approximately positioned in relation to the heart as shown in Fig. 2.10a. Conduction

begins at the heart’s dominant pacemaker, the SA node and spreads to the atrial myocardium

towards the AV node (purple arrow in Fig. 2.10). The coordinated electrical activation of the

atrial myocardium produces the P wave on lead II of the ECG. The P wave is followed by

an isoelectric line during which time the AV node and other components of the electrical

conduction system are activated, however, the associated electric field changes cannot be

seen on ECG due to their small amplitude. This is followed by activation of the ventricular

myocardium, first from the left septum wall to the right septum wall (blue arrow in Fig. 2.10a),

resulting in the negative Q deflection, however, the activation of the large left ventricular wall,

with the depolarization wave travelling from endocardium to epicardium (orange arrow in

Fig. 2.10a), results in a large positive deflection called the R wave, which returns to the negative

S wave as the upper parts of the ventricular walls are activated. The relatively long segment

between the S deflection and the T wave is the time in which the ventricles mechanically

contract. Finally, the T wave is the result of ventricular repolarization. The T wave on lead

II is also positive, because the repolarization wave starts first in the epicardium and travels

to the endocardium, shown as the green arrow in Fig. 2.10a. This means the repolarization

wave travels away from the positive electrode and toward the negative electrode, resulting
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Figure 2.10: Cardiac activation and ECG waveforms. (a) Spread of depolarization (purple,
blue, and orange arrows) and repolarization (green) waves in the heart. (b) Corresponding
deflections on ECG. The P wave corresponds to atrial myocardium activation, while the QRS
complex results from ventricular myocardium activation. The T wave results from ventricular
repolarization. Atrial repolarization is masked on ECG by the much larger QRS complex.

in a positive deflection on lead II. Note that the signal associated with atrial repolarization is

masked by the QRS complex of the much larger ventricles. The series of deflections presented

in Fig. 2.10b therefore represent the underlying cardiac activity as seen by lead II of the ECG

for one cardiac cycle.

2.2.2 LEAD SYSTEMS

As already mentioned, an ECG electrode is a conductive pad that is attached to the skin to

record electric potential resulting from underlying cardiac activity. An ECG lead is a trace

showing electrical activity of the heart and is obtained as the difference between the potential

recorded at two or more electrodes. An ECG machine, or electrocardiograph, compares,

amplifies, and filters the potentials recorded by the electrodes, and presents the result as

electric potential differences (leads) between the electrodes, generating a trace of voltage

versus time either on a screen or recording paper (Fig. 2.11).

Several standardized configurations of recording electrodes for ECG exist. By far the most

common in clinical practice is the standard 12-lead ECG, recorded using 10 electrodes. In

ambulatory situations, a Holter monitor, which uses two or three electrodes, may be used. Fi-

nally, high density body surface potential mapping systems use tens or hundreds of electrodes

covering the entire torso. These lead systems will be elaborated below.

12-lead ECG

As mentioned, the standard 12-lead ECG is extremely common in clinical practice for analyzing

heart health and diagnosing cardiac illnesses like atrial fibrillation, which will be discussed
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2 Cardiac Physiology and Electrocardiography

Figure 2.11: Recording ECG. To record an ECG, electrodes are placed on the chest to record
the heart’s electrical signals. The signals are shown on a screen or recording paper as waves
formed by leads, or potential differences between different pairs of electrodes. Figure adapted
from the Mayo Clinic.

in more detail in Sec. 3.4. The 12 leads are obtained using 10 electrodes (whose positions

are shown in Fig. 2.8a) and consist of limb leads and chest or precordial leads. Three leads,

the limb leads, are simply found by comparing electric potentials recorded by two electrodes

placed on either the left arm, VLA, right arm, VRA, or left leg, VLL:

I = VLA −VRA

II = VLL −VRA

III = VLL −VLA

The remaining leads compare an exploring (positive) electrode with a reference (negative)

electrode that is actually a combination of two or three electrodes. These include the aug-

mented limb leads, defined as the potential difference between one limb electrode and the

mean of the two remaining limb electrodes:
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2.2 Electrocardiography

Figure 2.12: The limb leads. The limb leads are used primarily to detect electrical activity
in the frontal plane. Each lead “views” the heart from the angle of its exploring (positive)
electrode. Shown in the right panel is the coordinate system giving the angle from which each
lead observes the heart. Figure adapted from ECG & Echo Learning (2022).

aVR = VRA − (VLA +VLL)/2

aVL = VLA − (VRA +VLL)/2

aVF = VLL − (VLA +VRA)/2

The letter a stands for augmented, V for voltage, R for right arm, L for left arm, and F for

foot. The limb leads, shown schematically in Fig. 2.12, have both the exploring and reference

electrode placed in the frontal plane, therefore they are useful for detecting mean electrical

vectors travelling in this plane. For example, lead I takes its exploring electrode to be on the left

arm and its reference electrode to be on the right arm, therefore, a mean depolarization vector

moving from right to left should yield a positive deflection in lead I, and lead I defines 0° in

the frontal plane in the coordinate system presented in the right panel of Fig. 2.12, meaning

lead I “views” the heart from an angle of 0°, or it “views the lateral wall of the left ventricle.”

Similar principles can be applied for lead II and lead III. For the augmented limb leads, take for

example lead aVF, which has its exploring electrode on the left leg and its reference electrode is

the average of the two arm electrodes, yielding a reference directly above the left leg electrode.

A mean depolarization vector moving downwards should yield a positive wave in lead aVF.

Therefore, lead aVF views the heart’s electrical activity from an angle of 90°, or it “views the

inferior wall of the left ventricle.”

The six chest, or precordial leads, are obtained by comparing the potential recorded at six
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2 Cardiac Physiology and Electrocardiography

Figure 2.13: The chest (precordial) leads. The chest leads are used primarily to detect electrical
activity in the horizontal plane between WCT and the six exploring electrodes placed on the
chest anterior wall. WCT = Wilson’s central terminal. Figure adapted from ECG & Echo
Learning (2022).

exploring electrodes placed on the chest near the heart to a reference “electrode” which is

taken as the average of the three limb electrodes, called Wilson’s central terminal (WCT):

WCT = VLA +VRA +VLL

3

Wilson’s central terminal is an artificially constructed reference that is assumed to be

a steady and near zero amplitude during the cardiac cycle. This terminal is a theoretical

reference point located approximately in the center of the thorax, or in the center of Einthoven’s

triangle. WCT serves as the reference point for each of the six electrodes which are placed

on the anterior part of the chest wall (Fig. 2.13), and the chest leads, V1 −V6, are derived by

comparing the potentials recorded by the six chest electrodes to the averaged WCT potential.

Each chest lead provides unique information that cannot be derived mathematically from

the other leads. The chest leads primarily observe vectors moving in the horizontal plane,

since both the exploring and reference electrode are positioned in that plane. Leads V1 and V2

reflect the activity of the ventricular septum and occasionally right ventricular wall, leads V3

and V4 reflect the activity of the left ventricular anterior wall, and V5 and V6 reflect the activity

of the left ventricular lateral wall.

The 12 leads are presented according to their anatomical angles in Fig. 2.14 (Cabrera format).

Note that lead -aVR is shown rather than aVR. Lead aVR may be flipped to instead view -aVR to

fill the gap between leads I and II in the coordinate system, and improve diagnostics of certain

conditions (Menown and Adgey, 2000). Note that none of the leads in the 12-lead ECG are

adequate to observe vectors of the right ventricle.
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2.2 Electrocardiography

Figure 2.14: Presentation of the 12-lead ECG. Traces of all 12 lead shown according to their
anatomical positions (Cabrera format) and lead aVR inverted to -aVR. Figure adapted from ECG
& Echo Learning (2022).

Body-surface potential mapping

While the 12-lead ECG is by far the most widely used ECG technique in clinical practice, it has

been suggested that its electrode placement may not be optimal for diagnosing acute coronary

syndromes like acute cardiac ischemia and myocardial infarction, since the coverage of the

standard chest leads over the thorax is limited (Aetna Inc., 2022). It has been suggested that the

use of additional electrodes covering the entire torso, called body surface potential mapping

(BSPM), could be advantageous for diagnosing and analyzing various cardiac diseases.

While extremely useful, the 12-lead ECG provides only a low resolution projection of cardiac

activity on the body surface. Electrocardiogram systems using tens or hundreds of electrodes

covering the entire torso in the form of a vest or grid have been developed, and are often

called body surface potential mapping (BSPM) systems. These systems use 64, 128, 252, or

more electrodes to record and measure electrical cardiac activity over a much larger portion

of the torso than the traditional 12 lead ECG, to provide a comprehensive 3-D picture of the

effects of electrical currents from the heart on the body surface. The use of BSPM is not
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2 Cardiac Physiology and Electrocardiography

Figure 2.15: Holter monitor. A Holter monitor uses electrodes and a recording device to track
the heart’s rhythm for 24 up to 72 hours. Figure adapted from Mayo Clinic (2022).

mentioned in official guidelines for management of patients with heart disease, myocardial

infarction (Heidenreich et al., 2022), or atrial fibrillation (Hindricks et al., 2021), due to a

lack of a sufficient amount of evidence to justify its being used instead of 12-lead ECG. The

applications for which BSPM has been tested, with a particular focus on its potential role in

atrial fibrillation analysis, will be discussed in more detail in Chapter 7.

Ambulatory ECG

While the 12-lead ECG is preferred, it is not always practical in ambulatory6 or long-term

monitoring situations. In these situations, an ambulatory ECG is used, which can monitor

electrical cardiac activity while a person is performing their normal activities.

For example, a Holter monitor, shown in Fig. 2.15 is a type of ambulatory electrocardiog-

raphy device that monitors ECG heart activity, and is used for observing occasional cardiac

arrhythmias that occur transiently. As with the standard 12-lead ECG, the Holter monitor

records electrical signals from the heart using between three and eight electrodes attached

to the chest. The electrodes are connected to a small device, attached to the patient’s belt

6Ambulatory means in a situation where a person can move around as normal, going about their daily activities.
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2.2 Electrocardiography

or hung around the neck, which keeps a log of the heart’s electrical activity throughout the

recording period.

Compared to all other electrograms which can be recorded from the body, ECG is the most

ubiquitous and elaborated physiological and clinical technique, and has delivered reliable

conclusions for cardiac processes and for clinical diagnosis of heart diseases.
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3 ATRIAL FIBRILLATION

Atrial fibrillation (AF) is the most common cardiac arrhythmia1 in Western countries (Hin-

dricks et al., 2021). Despite decades of research aiming to better understand its pathophysiol-

ogy and develop suitable treatments, its incidence rises steadily each year, causing irregular

heart rate, palpitations, dizziness, shortness of breath, and tiredness, as well as being asso-

ciated with increased mortality. AF costs healthcare systems worldwide millions of dollars,

and money has been used to fund AF research for decades, not to mention the human cost

associated with decreased quality of life caused by the condition. The most commonly cited

figure for health care expenditures related to AF in the United States is $6.65 billion, however,

estimates range up to $26 billion (Coyne et al., 2006; Kim et al., 2011). Estimates in Europe

for direct costs associated with AF are as follows: €3.016 billion in France, €3.564 billion in

Germany, €3.019 billion in Italy, and £1.435-£2.548 billion in the UK (Burdett and Lip, 2022;

Velleca et al., 2019). Estimating the true financial burden associated with AF is difficult be-

cause different studies estimate either direct costs (those associated with in-patient treatment,

out-patient treatment, and prescription drugs) or direct plus indirect costs, which are those

associated with work productivity loss or support provided by caregivers.

The aim of this chapter is to give an overview of AF, starting with how it is defined (Sec. 3.1),

and its epidemiology2 (Sec. 3.1). Then, in Sec. 3.3 and Sec. 3.4, symptoms of AF, and how

AF is diagnosed, will be covered. In Sec. 3.5, the mechanisms underlying the initiation and

progression of AF will be discussed. Finally, the chapter will end with an overview of current

practices for managing AF (Sec. 3.6).

3.1 DEFINITION

Atrial fibrillation (AF) is a cardiac arrhythmia in which the upper chambers of the heart (atria)

beat rapidly and irregularly in a seemingly chaotic fashion, and importantly, out of sync with

the lower chambers of the heart (ventricles). This is in contrast to a normal heartbeat3, in

which the atria and ventricles are synchronised, contracting in a predictable fashion one after

the other. AF is most easily understood by comparison with a normally beating heart, as shown

in Fig. 3.1. In a healthy heart, the heart rate is controlled physiologically via the heart’s natural

1A heart arrhythmia is an irregular heartbeat, which occurs when the electrical signaling in the heart does not
work properly.

2Epidemiology is the branch of medicine that studies the frequency, distribution, and causative factors of infectious
diseases and other health-related conditions or behaviors in a population.

3For an overview of normal cardiac anatomy and function, please see Chapter 2.
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Figure 3.1: Sinus rhythm vs AF. A depiction of a heart in (a) sinus rhythm, (b) atrial fibrillation.
AV, atrioventricular. Figure from Mayo Clinic (2023).

pacemaker, the sinoatrial node (Fig. 3.1a). This healthy heart rhythm is therefore called sinus

rhythm, and maintains a rate of about 60 beats per minute at rest, and up to 180-200 beats per

minute during intense exercise. The sinoatrial node is controlled by the body’s autonomous

nervous system, allowing the heart to respond to metabolic needs. However, during AF, cells in

the atria pulse much faster, at rates of 400-600 impulses per minute. Not all of these impulses

reach the ventricles due to the natural low-pass filtering action of the atrioventricular node

(Fig. 3.1b). However, the ventricles still beat more rapidly than during sinus rhythm. Therefore,

the resulting heartbeat is not controlled physiologically by the sinoatrial node, but rather by

the interaction between the rapid atrial rate and the filtering atrioventricular node. Without

drug therapy, the resulting effective heart rate during AF is around 150 beats per minute. AF

was first recorded following the invention of the ECG in the early 20th century.

AF is often classified into four categories (Table 3.1), depending on its duration and how it

responds to treatment (Brundel et al., 2022). Note the treatments for AF will be discussed in

more detail in Sec. 3.5.

3.2 EPIDEMIOLOGY

The prevalence 4 of AF varies widely by age, with older age being the single most important

risk factor for developing AF (Schnabel et al., 2015). AF is very uncommon in young people,

but its prevalence increases from 0.5% for those aged 50-59 to 10% for those aged 80 years

and older (Yiin et al., 2014) in the United States and Europe (Zoni-Berisso et al., 2014). The

prevalence of AF in the worldwide adult population has been estimated to be between 2%

and 4% (Benjamin et al., 2019), with a 2.3-fold rise expected in prevalence due to an aging

4In epidemiology, prevalence is the proportion of a particular population affected by a medical condition at a given
time.
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Table 3.1: Types of AF and clinical presentation of each.

AF type Clinical presentation

Paroxysmal Lasts less than one week, usually terminates spontaneously,
though treatment may be used.

Persistent Lasts longer than one week, does not terminate sponta-
neously. Pharmaceutical and/or surgical treatment are used
for rate or rhythm-control.

Long-standing persistent Lasts longer than one year, cardioversion and pharmaceuti-
cals unsuccessful for restoring sinus rhythm.

Permanent Attempts to restore or maintain sinus rhythm are abandoned.
Medications may be used to control heart rate and lower
stroke risk.

population and higher detection rates.

AF occurs more frequently in men than women at a ratio of 1.2:1, however, more women

have AF than men since they live longer (Zoni-Berisso et al., 2014). The prevalence of AF also

differs by ethnicity, with the risk of developing AF highest among people of white European

descent and in countries with high socioeconomic status. The lifetime risk of developing

AF at an index age of 55 has been estimated at one in three for individuals of European

ancestry (Staerk et al., 2018), one in five for individuals of African ancestry (Mou et al., 2018),

and one in seven for individuals of Asian ancestry (Chao et al., 2018). However, the disease

burden is higher in many Asian countries with a disproportionately older population, with a

2.3-fold higher prevalence estimated in China than in the United States for the year 2050 (Tse

et al., 2013; Zhang et al., 2021).

Risk factors for AF can be divided into two categories, non-modifiable and modifiable 3.2.

Non-modifiable risk factors for AF include older age (>65 years), male sex, ethnicity, and

genetics, as over 100 genes are thought to be linked to AF (Nielsen et al., 2018a; Roselli et al.,

2018). Modifiable or manageable risk factors include diseases such as hypertension, obesity,

diabetes, heart disease, chronic kidney disease, sleep apnea, and thyroid problems (Chatterjee

et al., 2017; Kornej et al., 2020; Zhang et al., 2021), as well as lifestyle factors such as physical

inactivity and excess alcohol, tobacco, and fat consumption (Chung et al., 2020; Brundel et al.,

2022). Therefore, the predicted increase in AF prevalence is due to a recognition of an aging

population, as well as a worldwide shift towards lifestyle practices that are believed to be risk

factors for AF.

The consequences of AF, both from a health and financial perspective, are serious and

are summarized in Table. 3.2. While not itself lethal, AF is associated with both increased

morbidity (ill health), increased mortality (likelihood of death), and decreased quality of life.

The most serious consequence of AF is increased risk of stroke, which has been estimated to be
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Figure 3.2: Atrial fibrillation risk factors. Risk factors for AF can be divided into two categories,
modifiable, shown in red, and non-modifiable, shown in pink.

five times as high in patients with AF (Zoni-Berisso et al., 2014) as in those without risk factors,

though the risk varies widely depending on presence of comorbidities (Hindricks et al., 2021).

The increased stroke risk is due to the ineffective mechanical contraction of the fibrillating

atria, which promotes blood stagnation. The stagnant blood promotes formation of clots,

which can cause stroke if traveling to an artery in the cerebral circulation. Increased risk of

stroke is the biggest contributor to increased mortality in AF patients. Therefore, prevention

of stroke is of primary importance when managing AF, and this will be discussed further in

Sec. 3.6. Overall, AF is associated with a 1.5-fold increased risk of all-cause death in men, and

2-fold increased risk in women (Benjamin et al., 1998), with the excess mortality related to

stroke or comorbidities such as heart failure. Other serious complications associated with AF

include heart failure, cognitive impairment, and sudden cardiac arrest, and hospitalization, as

well as socioeconomic problems caused by AF symptoms (Sec. 3.3) like permanent disability,
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Table 3.2: Consequences of AF. A summary of the implications of AF on morbidity, mortality,
and quality of life. Adapted from Hindricks et al. (2021).

AF-related outcome Frequency in AF Mechanism

Death 1.5-3.5 fold increase Excess mortality related to heart fail-
ure, comorbidities, stroke.

Stroke 20-30% of all ischaemic strokes,
10% of cryptogenic strokes

Stagnation of blood in heart and sub-
sequent clot formation

Heart failure 20-30% of all AF patients Excess ventricular rate, irregular ven-
tricular contractions

Cognitive decline Hazard ratio 1.4 / 1.6 Brain white matter lesions, inflamma-
tion, micro-embolism

Depression > 15-20% of AF patients Decreased quality of life, drug side ef-
fects

Decreased quality of
life

> 60% of all patients AF burden, comorbidities, medica-
tion

Hospitalization > 10-40% annual hospitalization
rate

AF management related to heart fail-
ure, AF symptoms, treatment compli-
cations

cognitive impairment, and absence from work (Kornej et al., 2020). The association between

AF and cognitive impairment (dementia) is not fully understood (Kalantarian et al., 2013), but

growing evidence supports the hypothesis that AF is an independent risk factor for cognitive

decline and dementia in general and for Alzheimer’s disease in particular (Dietzel et al., 2018).

Patients with AF are more likely to develop anxiety disorders (Serpytis et al., 2018) and report

slightly higher burden of depressive symptoms (Schnabel et al., 2013).

AF severity and consequence is more serious in women, who have greater symptom severity,

increased anxiety related to their condition, increased risk of AF-associated stroke in the

presence of other stroke risk factors, and increased stroke severity (Lang et al., 2017; Nielsen

et al., 2018b). Additionally, quality of life in women with AF is lower (Blum et al., 2017). Women

are currently underrepresented in clinical trials for AF research.

Owing to its high prevalence and association with other serious diseases, decreased qual-

ity of life, and increased risk of death, AF is considered the most common serious cardiac

arrhythmia in Western countries, and its steep rise in prevalence constitutes a public health

issue.

3.3 SYMPTOMS

Symptoms of AF vary widely between individuals. Some patients are asymptomatic, and

their AF is only discovered from screening or while receiving care for another condition.
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3 Atrial fibrillation

Figure 3.3: Fibrillation waves on ECG. ECG recordings with fibrillation waves (f-waves) (above),
and normal sinus rhythm (below). The purple arrow indicates the P wave on the normal ECG
recording, notably absent on the AF recording. Figure from Wikipedia.

However, for other patients, symptoms can be severe and drastically decrease quality of life.

These symptoms include heart palpitations, chest pain, disordered sleep, dizziness, fatigue,

lightheadedness, exercise intolerance, difficulty breathing, and weakness. When symptoms

of AF are severe, they can lead to permanent disability, absence from work, depression, and

anxiety.

3.4 DIAGNOSIS

An electrocardiogram5 (ECG) rhythm documentation (either 12-lead, ambulatory, or Holter)

showing the absence of repeatable P-waves and irregular RR intervals is required to diagnose AF.

The convention is that episodes lasting at least 30 s are considered diagnostic for AF (Steinberg

et al., 2018). An example of an ECG trace recording AF is shown in Fig. 3.3. Since AF often occurs

in patients with other cardiovascular risk factors or comorbidities that could be undiagnosed,

patients diagnosed with AF should also receive a comprehensive assessment to check for

comorbidities and AF-related symptoms (Kirchhof et al., 2016). All patients should receive

a 12-lead ECG to assess ventricular rate and check for conduction defects (Hindricks et al.,

2021). Following diagnosis, careful management of AF and related risks is required, which will

be discussed in Sec. 3.6.

3.5 CAUSES AND MECHANISMS OF AF

Atrial fibrillation is caused by atrial remodeling, which is a loosely defined term used to

describe changes in atrial structure and function (Nattel et al., 2008). The structural and

molecular modifications (remodeling) in atrial tissue lead to disordered electrical conduction

in the atria thought to be responsible for causing AF. The types of disordered electrical con-

5For an overview of electrocardiography, please refer to Chapter 2.
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Figure 3.4: Relationship between AF mechanisms. A schematic representing the interplay
between atrial remodeling, AF substrate, ectopic foci, and reentry as they contribute to the
initiation and progression of AF. Figure inspired by Nattel et al. (2008).

duction are (1) ectopic foci6,7 activity, and (2) reentry.8 Ectopic foci, most often found in the

pulmonary veins, are thought to play a large role in initiating AF. Both triggering activity from

the ectopic foci and reentry are believed to be important for maintaining and progressing AF

after its initial onset. In order for both the triggering and reentry activity to occur, a vulnerable

“AF substrate” must exist. The relationships between remodeling, AF substrate, ectopic foci,

and reentry are demonstrated in Fig. 3.4. The concept of an AF substrate, the role of ectopic

foci in initiating AF, and the role of reentry in maintaining AF, will be discussed in the following

subsections. Consideration will be given to the macroscopic modifications that occur, as well

as a brief introduction to the associated underlying molecular mechanisms, for which current

research is limited.

Concept of an AF substrate

In order for the mechanisms thought to initiate and sustain AF (triggered ectopic focal ac-

tivity and reentry activity) to occur, changes in structural and electrical aspects of the atrial

tissue must occur since these mechanisms could not be sustained in the tissue of a healthy

heart. The atrial remodeling is collectively referred to as the substrate, AF substrate, or atrial

6Ectopic in medicine means occurring in an abnormal place or position. For example, an ectopic pregnancy, which
occurs outside the uterus.

7Ectopic foci are abnormal pacemaker sites within heart structures, but outside of the sinoatrial node, that display
automaticity, generating impulses outside of physiological control.

8Reentry occurs when a propagating impulse fails to die out after normal activation of the heart.
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(a) ectopic foci (b) mul�ple wavelets (c) rotors

Figure 3.5: AF initiation and perpetuation. Rendering of left and right atria showing mech-
anisms of AF initiation and maintenance. (a) Ectopic foci located in the pulmonary veins
rapidly discharge, propagating into the left atrium, which can directly initiate AF or provide
the premature atrial beat for reentry. (b) Micro and macro-reentrant circuits around anatomic
structures or scar tissue, driving AF. (c) Functional reentry gives rise to fixed or moving spiral
rotor, which drives AF. Figure inspired by Verma et al. (2015) and Calkins et al. (2018)

substrate. Debate exists about the exact types of remodeling constituting the substrate, but

include hypertrophy and fibrosis. Hypertrophy refers to enlarging of atrial myocytes, which

could predispose to triggering ectopic activity, while fibrosis refers to the deposition of extra

collagen in the tissues surrounding and protecting the heart and could predispose to reentry by

interfering with local atrial conduction by disturbing the continuous cable-like arrangement

of cardiomyocytes9.

AF initiation: the role of ectopic foci

In a study by Haissaguerre et al. (1998), it was shown that groups of excitable cells displaying

automaticity, called ectopic foci and located most often in the pulmonary veins, were respon-

sible for the vast majority of premature atrial beats, also called ectopic beats, that initiated

episodes of atrial fibrillation. Radio-frequency ablation of the ectopic foci resulted in reduced

numbers of premature atrial (ectopic) beats and AF episodes, demonstrating the role of the

ectopic foci in initiating AF. This remains the prevailing hypothesis by which AF is initiated.

Ectopic foci, or pacemaker sites within the pulmonary veins displaying abnormal automaticity

outside the sinoatrial node (and thus outside physiological control), produce premature atrial

beats which are conducted from the ectopic foci to the left atrium (Fig. 3.5a). These premature

atrial beats can directly induce AF paroxysms10, or can further contribute to AF progression by

propagating reentrant waves in a vulnerable atrial substrate, which will be discussed further

in the following section.

The mechanisms which drive the formation of ectopic foci in the pulmonary veins are

debated, however, it has been suggested that the pulmonary veins have unique electric prop-

erties and a complex fiber architecture that could promote reentry and ectopic activity to

9A cardiomyocyte is a contractile, excitable heart muscle cell.
10Paroxysms are sudden recurrences or attacks of a disease.
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initiate AF (Hocini et al., 2002). Through electrophysiological indices and image analyses,

clinical studies have shown abnormalities in the pulmonary veins of patients with paroxysmal

AF, including smaller electrogram voltages, slowed conduction, shorter effective refractory

periods (Teh et al., 2011), and when electrically stimulated, greater vulnerability to AF induc-

tion, indicating the presence of an AF substrate (Nattel and Dobrev, 2016). The spontaneous

depolarization of the ectopic foci is thought to be caused by changes in calcium ion (Ca2+)

handling, that cause spontaneous cardiomyocyte depolarization via early or delayed afterde-

polarization(Staerk et al., 2017). Genetics are thought to play a role as well, since gene-variants

associated with AF have been shown to be linked to ion channel mutations promoting the

irregular current patterns associated with ectopic activity in paroxysmal AF (Hong et al., 2005;

Lübkemeier et al., 2013).

AF maintenance and progression: the role of reentrant circuits

Atrial fibrillation is maintained by reentrant circuits propagating in an abnormal atrial sub-

strate. In cardiology, reentry occurs when a propagating impulse fails to die out after normal

activation of the heart, and persists to re-excite the heart after the end of the normal refractory

period. This phenomenon occurs when a premature beat, such as a beat conducted from

pulmonary vein ectopic foci to the left atrium, reenters conducting heart tissue that is no

longer refractory from the previous sinoatrial node beat. If a vulnerable atrial substrate ex-

ists (for example, heterogeneous tissue conduction properties), the premature beat creates

a self-sustaining circuit that excites the surrounding heart tissue, and that is refractory to

normal heartbeats originating from the sinoatrial node. The concept of reentry is illustrated

in Fig. 3.6. Fig. 3.6a shows conduction of a normal sinus beat in a schematic circuit with two

splitting and reconnecting branches of conducting heart tissue that have different conductive

properties. The beat is successfully propagated to surrounding heart tissue by the branch of

the circuit with high conduction velocity. The beat ceases to exist within the circuit when the

two propagating impulses cancel each other in the side of the circuit with slower conduction

velocity. Fig. 3.6b shows the initiation of reentry. A premature atrial beat originating from

ectopic foci encounters refractory tissue when propagating in one direction but is able to

conduct in faster-recovering tissue in the other direction. For reentry maintenance (Fig. 3.6c),

the ectopic beat must traverse the circuit slowly enough for all points to regain excitability,

therefore, the impulse conduction time around the circuit has to be greater than the longest

refractory period of the heart tissue in the circuit. Reentry is thus favored by short refractory

periods, slow conduction, and the availability of long pathways (circumference of circuit). The

impulse continues traveling around the circuit and exciting surrounding heart tissue, and

blocking conduction of normal sinus beats. In reentry, the excitation of the heart tissue is not

governed by physiological control (parasympathetic and sympathetic system), but rather by

the frequency with which the impulse travels around the circuit. Reentry is a mechanism of

not only AF, but also other arrhythmias.

Structural, architectural, and electrophysiological atrial abnormalities promote AF mainte-
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(a) normal situa�on (b) reentry ini�a�on (c) reentry maintenance

Figure 3.6: Single-loop reentry circuit formation. (a) Sinus beat propagation through con-
ducting tissue. (b) An ectopic (premature) beat blocks in still-refractory cardiac tissue but
propagates through tissue that has already recovered. (c) Maintenance of reentry. Figure
inspired by Milaire et al. (2017)

nance and progression by stabilizing reentry circuits. There are two dominant hypotheses for

the types of reentry circuits that promote AF, including micro- and macro- reentrant circuits

leading to multiple independent wavelets (Moe, 1959)(Fig. 3.5b), or reentrant rotors (Pandit

and Jalife, 2013) (Fig. 3.4c). While the multiple independent wavelets hypothesis was believed

for many years to be the dominant reentrant mechanism at play in AF, more recent studies

have lent support to the rotor hypothesis (Pappone et al., 2000; Miller et al., 2014). Finally, a

third hypothesis known as the double layer hypothesis suggests that electrical dissociation of

the epicardial and endocardial layers may facilitate reentry (Allessie et al., 2010).

As reentry circuits stabilize, they become the dominant factor sustaining AF, and the role

of ectopic foci becomes less important. This is demonstrated in Fig. 3.7, in which the factors

affecting AF initiation and maintenance as it progresses from paroxysmal to persistent are

shown. Paroxysmal AF is associated with ectopic triggers that are usually located in the

pulmonary veins (Fig. 3.7a), while persistent AF is usually characterized by some degree

of atrial remodeling including fibrosis and electrophysiological changes in atrial myocytes

(Fig. 3.7b), and ectopic foci are still present. As AF progresses further, the atrial remodeling

is more extensive promotes reentry, while ectopic foci play a less important role (Fig. 3.7c).

Atrial substrate caused by remodeling associated with the arrhythmia, or by effects of existing

heart disease and other risk factors, is known to present an obstacle to successful treatment,

partially explaining why advanced forms of AF, in which the substrate has had time to progress,

are particularly difficult to treat (Blum et al., 2019).

Underlying factors and mechanisms promoting the creation of an “AF substrate” conducive

to reentry include fibrosis, which can lead to heterogeneous conduction properties and

conduction block in heart tissue (Everett IV and Olgin, 2007). For example, in heart failure,

fibrosis combined with alterations in cardiomyocyte function result in both a slowing of

conduction velocity and shortening of the refractory period, factors known to promote reentry.
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(a)

(b)

(c)

Figure 3.7: Types and triggers of AF. Left atrial anatomy shown on left, with clinical profiles
of AF related to the underlying atrial substrate at the muscle-bundle level shown at right. (a)
Paroxysmal AF. (b) Persistent AF. (c) Long-standing persistent AF. Figure from Michaud and
Stevenson (2021).

Another example could be a person with congenital abnormalities that lead to a gain in K+

channel function, also shortening the refractory period. While not the only substrate type

thought to promote reentry, the degree of fibrosis in human atria has been correlated with the

presence and persistence of AF (Platonov et al., 2011).

The underlying mechanisms causing the remodeling, and the resulting changes in atrial

structure and function, vary in individual patients depending on the presence or lack thereof

of comorbidities, as well as lifestyle, congenital, and genetic factors (Hindricks et al., 2021),

since AF rarely occurs in individuals without any concomitant condition or underlying co-

morbidity. In the vast majority of cases, an underlying pathology coexists (Goette et al., 2016).

The extent of individual variation in both remodeling and symptom manifestation makes

achieving a complete understanding of the mechanisms causing atrial remodeling difficult.

Additionally, debate exists about the exact types of changes in structure and function that take

place during atrial remodeling and how they contribute to the initiation and maintenance

of AF. Recently, more attention has been paid to understanding the molecular mechanisms

underlying both the structural defects and the disordered conduction that cause AF initiation

and perpetuation (Nattel et al., 2020). A fundamental understanding of the molecular basis of

both the structural and electrical modifications that occur in AF could potentially open the

door to new targeted treatment modalities, and explain why treatment outcomes differ so

widely in AF patients.
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3.6 DISEASE MANAGEMENT

As of now, no cure exists for AF. As discussed in Sec. 3.5, the molecular pathways underlying the

disordered cardiac electrical conduction that drives AF are not completely understood. The

resulting lack of treatment specifically targeting these pathways, and the lack of personalized

diagnostic tools to determine disease severity in individuals, has resulted in sub-par treat-

ments (Andrade et al., 2014; Heijman et al., 2016) to which patients often respond differently

and unpredictably.

In the absence of a cure for AF, the main treatment goals are: (1) reducing stroke risk associ-

ated with AF (see Sec. 3.2), (2) controlling the heart rate (rate-control), (3) regaining a normal

heart rhythm (rhythm-control), and more recently, (4) lifestyle and risk factor management.

These treatment aims are intended to prevent AF progression, reduce AF burden, and increase

quality of life for affected patients. A combination of both medications (pharmacology) and

surgical procedures are used, with the exact treatment strategy depending on each patient’s

circumstances, physician knowledge, and the availability of resources, as optimum treatment

of AF requires a well-functioning healthcare system and significant financial resources. The

treatment aims for AF are summarized by the better care ABC pathway (Lip, 2017), which is a

holistic treatment strategy that has been shown to be associated with better AF outcomes (Proi-

etti et al., 2018; Pastori et al., 2019; Yoon et al., 2019) and is recommended for use in the most

recent guidelines (Hindricks et al., 2021; Chao et al., 2022). The core principles of the ABC

treatment pathway will therefore be enumerated below, giving an overview of the various

treatment strategies that exist for AF.

‘A’ Avoid stroke/Anticoagulation therapy

As discussed in Sec. 3.2, AF is associated with a five-fold increased risk of stroke. Therefore,

stroke prevention is one of the cornerstones of AF management. However, individual risk

varies widely (Pisters et al., 2012) and should first be assessed using one of the various stroke

epidemiologic risk scoring mechanisms that have been developed, such as the CHA2DS2VASc

score (Lip et al., 2010). This score assesses risk factors such as existing congestive heart failure,

hypertension, older age, diabetes, previous stroke, and female sex. Then, unless a patient is

at low risk for a stroke, he or she should be offered stroke prevention therapy in the form of

oral anticoagulation drugs (blood thinners) that prevent blood clots from forming, such as

warfarin or non-vitamin K antagonists (Hohnloser et al., 2019), which have less food and drug

interactions and don’t require frequent blood testing when compared to warfarin. However,

due to the use of oral anticoagulation, special attention should be paid to the increased risk of

bleeding.
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‘B’ Better symptom control

There are two approaches to symptom control in AF, one is rate-control, which aims to control

the ventricular response rate but allows AF to persist, and the other is rhythm-control, which

aims to restore sinus rhythm.

Rate-control is often sufficient to improve AF-related symptoms, despite allowing AF to

persist (up Investigation of Rhythm Management , AFFIRM; Hindricks et al., 2021). There

are several approaches to rate-control, including pharmacological and non-pharmacological

strategies. Pharmacological strategies include the use of beta-blockers (Kotecha et al., 2014),

calcium channel blockers (Nikolaidou and Channer, 2009), and rarely amiodarone. When

drug-based therapy fails, a non-pharmacological strategy consisting of ablation of the atrioven-

tricular node and pacemaker implantation can be used and has a low complication rate and

low long-term mortality risk, at least for older patients (Lim et al., 2007). The rate-control strat-

egy is recommended for patients with few AF symptoms and infrequent AF episodes (Antman

et al., 2022).

Rhythm-control attempts to restore and maintain sinus rhythm and prevent recurrences

of AF, using pharmacological and non-pharmacological strategies, or a combination of the

two. Pharmacological rhythm-control is attempted using antiarrhythmic drugs, which target

ion channels but are not directed at the molecular causes of AF. These drugs can have adverse

affects (Andrade et al., 2014), and there is a small chance that they could destabilize the heart

rhythm. If destabilization occurs in the ventricles, it could cause ventricular tachycardia and

lead to death (Antman et al., 2022). Therefore, careful consideration needs to be given to which

anti-arrhythmic drugs should be administered to individual patients. A non-pharmacological

alternative to anti-arrhythmic drugs is catheter ablation, which is a minimally invasive surgical

procedure. The core of this procedure is called pulmonary vein isolation (PVI), which attempts

a complete electrical isolation of the pulmonary veins by applying linear lesions around

their openings (Pappone et al., 2000; Jaïs et al., 2008) (Fig. 3.8). The reasoning behind this

procedure is that AF, particularly in the early stages, usually originates with ectopic foci in

the pulmonary veins. Therefore, in the pulmonary vein isolation procedure, the surgeon

locates the four pulmonary veins and ablates the tissue at their openings into the left atrium

using an ablation catheter in a circumferential fashion (Fig. 3.8a,b). The ablation is performed

using an ablative catheter which delivers either heat (radiofrequency ablation) or freezing

cold (cryoablation) to create a circle of burned tissue at the base of each vein. The procedure

therefore electrically isolates the left atrium and therefore the AV node from the ectopic foci

present in the pulmonary veins. However, it is known that not all AF is caused by pulmonary

vein ectopic foci (particularly in the more advanced stages), therefore, more involved ablation

strategies have been attempted, including applying linear lesions in the atria, or targeted

ablation of complex fractionated atrial electrograms11(CFAEs), low-voltage areas, or rotational

11Complex-fractionated electrograms are defined as intra-atrial electrograms with a cycle-length “less than 120
ms, or that were fractionated or displayed continuous electrical activity” (Oral et al., 2007). They are thought to
indicate high-frequency electrical sources in the atria, and are targeted for ablation using the stepwise approach.
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Figure 3.8: Pulmonary vein isolation. In pulmonary vein isolation, a catheter applies lesions
around the openings of the pulmonary veins, depicted as red ovals in the figure. The ablative
catheter delivers either heat (radiofrequency ablation) or freezing cold (cryoablation) to create
the lesions. Figure adapted from Verma et al. (2015).

activity. This approach, first extensively used by Nademanee et al. (2004) and referred to as

stepwise ablation, was hallmarked by several studies as improving outcomes for terminating

persistent AF over PVI-only procedures (Haïssaguerre et al., 2004, 2005; Hocini et al., 2010;

Rostock et al., 2011). However, later studies have called into question the effectiveness of

these strategies (Tamborero et al., 2009; Verma et al., 2015), noting that such procedures are

considerably more involved than pulmonary vein isolation alone.

When successful, catheter ablation treatment is considered more effective for improving

quality of life and reducing risk of AF recurrence than long-term antiarrhythmic drug ther-

apy (Wilber et al., 2010; Packer et al., 2013; Piccini and Fauchier, 2016; Nielsen et al., 2017) in

patients in whom drugs have already failed, but these drugs can still be used after ablation

to reduce the risk of AF recurrence (Duytschaever et al., 2018). Despite the promising nature

of catheter ablation, AF recurrence can still occur following the procedure, most likely due

to electrical reconnection of the pulmonary veins to the left atrium due to tissue healing. Its

success rate depends highly on AF stage, providing the best results for younger patients with

paroxysmal AF. The success rate is much lower in older patients and those with persistent

AF (Antman et al., 2022), most likely due to enlarged left atrium size and the presence of

fibrosis, making creation of effective lesions at the connecting pulmonary veins difficult.

Usually, anti-arrhythmic drugs are attempted before catheter ablation. However, ongoing

debate exists regarding the merits of each strategy. Two recent studies, the EARLY-AF and STOP

AF First trials, conducted across 18 centers in Canada and 24 centers across the United States,

respectively, investigated the effectiveness of cryoablation versus anti-arrhythmic drugs as
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initial therapy for paroxysmal AF (Andrade et al., 2021; Wazni et al., 2021). Both studies found

that cryoablation resulted in lower rates of atrial fibrillation recurrence than anti-arrhythmic

drugs, however, further studies would be required before recommending catheter ablation

as initial therapy for most patients. The treatment modalities used for AF are therefore still

evolving, and new technologies for ablation, as well as drugs targeting molecular pathways,

may improve long-term AF outcomes in the future.

‘C’ Cardiovascular risk factors and concomitant disease management

As discussed in Sec. 3.4, many modifiable risk factors and manageable comorbidities, including

obesity, alcohol and tobacco use, physical inactivity, sleep apnea, diabetes, and hypertension,

increase the risk of developing AF (Fig. 3.2). Identifying and managing both risk factors and

comorbidities can help reduce AF burden and symptom severity, as well as being much less in-

vasive and expensive than traditional AF treatments. While this aspect of AF management has

been under-recognized and understudied, several recent clinical studies have demonstrated

benefits of risk factor reduction for the management of AF. Several studies have reported that

lifestyle changes targeting weight loss, physical activity, and risk factor modification were

associated with decreased AF burden (Pathak et al., 2014, 2015a,b; Middeldorp et al., 2018). Ad-

ditionally, a recent study demonstrated that patients with persistent AF who received targeted

intervention for hypertension, prevention of coronary and vascular events, and practicing a

healthy lifestyle had higher rates of sinus rhythm one year after catheter ablation compared to

patients who did not receive such intervention (75% vs. 63%, p=0.042)(Rienstra et al., 2018).

This could indicate that risk factor reduction is particularly important for those with persistent

AF, which is traditionally significantly harder to treat than paroxysmal AF.

The most recent Asian Pacific (Chao et al., 2022), Australian/New Zealand(Brieger et al.,

2018), Canadian (Andrade et al., 2020), and European (Hindricks et al., 2021) guidelines

recommend risk factor reduction to be included as part of AF management. Additionally,

while not a formal guideline, the American Heart Association recently issued a scientific

statement (Chung et al., 2020) advocating further study of the associations between risk factor

management and improved outcomes for AF patients at all stages of AF.
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ING METHODS FOR 12-LEAD ECG
Analysis of the surface ECG in the context of AF is based on the assumption that the abnormal

electrical activity of the atria produces characteristic patterns on the recorded surface ECG.

This is indeed the case, as reflected by the presence of f-waves on ECG recorded during AF,

shown in Fig. 3.3. The presence of f-waves on ECG is required to diagnose AF, as discussed in

Chapter 3. This begs the question of whether f-waves recorded on surface ECG bear additional

information that permits not only AF diagnosis, but also characterization of AF dynamics and

severity of AF, which have both been shown to be linked to AF recurrence following catheter

ablation treatment.

Many studies have investigated this research question, resulting in the development of sig-

nal processing algorithms relying on spatial, temporal, spectral, and non-linear methods that

aim to find patterns in ECG signals that can be linked to underlying physiological phenomena

which are known to be indicative of AF disease complexity, organization, and structural remod-

eling (Lankveld et al., 2014). These studies generally simultaneously record (1) intracardiac

electrograms from directly inside the heart, and (2) surface ECG from patients in persistent

AF, or during paroxysmal AF episodes. They then attempt to show a relationship between an

index calculated using the intracardiac electrograms already known to be related to AF organi-

zation,1 and a similar index calculated on the surface ECG. As one example, it was shown that

a high degree of AF organization usually implies a slower atrial activation rate than complex

activation patterns, as measured using intracardiac electrograms (Konings et al., 1994), and

that this measure could serve as an index of the degree of AF organization (Capucci et al.,

1995), and could correlate to the length of the refractory period in AF (Kim et al., 1996).2 It was

then shown that the repetition rate of f-waves in ECG lead V1, converted to atrial cycle length,

was reflective of the rate of atrial activation recorded on intracardiac electrograms (Holm

et al., 1998). Therefore, one could say that atrial cycle length computed on ECG lead V1 is a

noninvasive ECG biomarker that provides objective information related to AF organization

and refractory period in AF.

These and similar studies have resulted in interesting though often conflicting ideas re-

garding the type of f-wave measures or indices that can reliably quantify the organization or

1AF organization refers to the idea that activation patterns in AF can either possess a high degree of organization,
i.e., the same conduction routes in the atria are frequently activated, or a low degree of organization, i.e., different
conduction routes in the atria are activated.

2Short refractory periods in AF are known to contribute to the development of AF-perpetuating reentry circuits.
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complexity of the underlying AF. However, the general consensus is that quantifiable metrics

from surface recorded f-waves on ECG are reliable reflections of underlying AF processes. De-

spite this, the use of surface ECG in clinical practice remains limited to its diagnosis (Lankveld

et al., 2014).

As mentioned, the surface ECG has been shown to be related to AF organization, and AF

organization has been shown to be related to likelihood of AF recurrence following catheter

ablation treatment. Several studies have therefore gone a step further than the analyses

described above and attempted to study the relationship between surface ECG measures

of AF organization and AF recurrence following catheter ablation, since the success rate of

catheter ablation for treating persistent AF is subpar. While estimates vary depending on the

exact ablation procedure and follow-up protocol, long-term success rates range from 25%

to 80%(Rostock et al., 2011; Tilz et al., 2012; Scherr et al., 2015; Schreiber et al., 2015). For

example, (Matsuo et al., 2009) examined the ability of pre-procedural clinical variables to

predict both procedural and clinical outcomes of catheter ablation in patients with persistent

AF, finding that among AF duration, echocardiographic parameters, presence of structural

heart disease, and AF cycle length measured on ECG, only AF cycle length was an independent

predictor of procedural AF termination. Surface ECG AF cycle length and AF duration were

both predictive of long-term maintenance of sinus rhythm following ablation, i.e., clinical

outcome. Longer AF cycle length was predictive of procedural termination of AF and long-

term maintenance of sinus rhythm following ablation. Rostock et al. (2011) also found that

longer pre-procedural AF cycle length was the strongest predictor for single-procedure catheter

ablation success for terminating AF. Fibrillation-wave amplitude has been shown to be another

ECG-derived AF complexity parameter (Lankveld et al., 2016), achieving the best independent

predictive performance for both catheter ablation AF termination and long-term maintenance

of sinus rhythm following the ablation procedure, when compared with other ECG or clinical

only parameters. Numerous other studies have found longer baseline AF cycle length, and

large fibrillation wave amplitude, to be predictive of procedural AF termination and long-

term maintenance of sinus rhythm (Heist et al., 2012; Szilágyi et al., 2018). Greater f-wave

amplitude has been shown to be correlated with younger age and shorter AF history, while

smaller f-wave amplitude was shown to be associated with AF recurrence during the follow-up

period post-ablation (Nault et al., 2009).

Higher dominant frequency (DF) and lower organization index (OI) have been associated

with recurrence of AF (Buttu et al., 2013), however, their predictive performance has not been

shown to be reliable enough to be adopted as a clinical tool for choosing patients most likely

to benefit from catheter ablation treatment. These ECG-derived AF complexity parameters,

or electrocardiographic biomarkers, are time-invariant and thus reflect only average tenden-

cies. The work presented in this chapter aimed to analyze the temporal evolution of these

parameters before and throughout catheter ablation procedures, to better understand their

role in predicting AF recurrence following catheter ablation. The remainder of the chapter is

organized as follows: Section 4.1 presents the time-variant methods used to analyze the ECG

signals. The results are presented in Section 4.2 and discussed in Section 4.3.
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4.1 METHODS

4.1.1 STUDY POPULATION

The study population consisted of 40 patients (38 M/2 F, 61 ± 8 years) who were referred

for a first catheter ablation after displaying resistance to pharmacological and electrical

cardioversion interventions. The patients were suffering from AF for 6 ± 4 years, sustained for

19 ± 11 months before ablation. All patients discontinued antiarrhythmic drugs for at least five

half-lives prior to the catheter ablation procedure, except for amiodarone and beta-blockers.

Oral anti-coagulation was prescribed for at least one month prior to the ablation procedure.

The clinical characteristics of the patients recorded prior to the procedure are summarized in

Table 4.1.

Table 4.1: Stepwise patient population clinical characteristics.

Characteristic n = 40

Sex (M/F) 38/2

Age, mean ± std, years 61 ± 8

Hypertension, n 27

Coronary artery disease, n 0

Valvular Disease, n 6

Diabetes, n 6

Left ventricular ejection fraction, mean ± std, % 49 ± 11

Sustained AF duration, mean ± std, months 19 ± 11

std, standard deviation

4.1.2 ABLATION PROCEDURE AND SIGNAL ACQUISITION

Stepwise radiofrequency catheter ablation3 was performed as described in Buttu et al. (2013),

under general anesthesia by the same cardiologist for all patients at Lausanne University

Hospital. Briefly, the procedure consisted of pulmonary vein isolation (PVI), followed by

ablation of complex fractionated atrial electrograms (CFAE), followed by linear ablation within

the left atrium. The endpoint of the ablation was termination of AF into either sinus rhythm

or atrial tachycardia at any step of the ablation procedure. If this endpoint was not reached,

electrical cardioversion was performed in an attempt to restore sinus rhythm. Patients were

then monitored throughout a follow-up period, with clinical visits scheduled at 3, 6, 12, and

18 months, then 2, 3, and 4 years after the initial ablation procedure to monitor arrhythmia

recurrence, defined as atrial tachycardia, atrial flutter, or AF observed during the follow-up

period and lasting more than 30 s (Calkins et al., 2018). Not all patients continued with the

3For a review of the different types of catheter ablation procedures, see Section 3.6.
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clinical follow-up for the full duration; the mean duration was 32 ± 14 months.

12-lead ECG was continuously recorded at a sampling frequency of 2 kHz (Axiom Sensis XP,

Siemens) before, during, and immediately after catheter ablation in all patients for later offline

analysis. Chest lead V6 was moved from its normal position and instead placed on the back

of the patient, as this has been shown to improve recording quality of anterior to posterior

activation activity of the atria (Petrutiu et al., 2009).

Based on the observed procedural and clinical outcomes, the study population was divided

into the following three groups: (1) left-terminated, non-recurring (LTN, n=8), patients in

whom catheter ablation successfully terminated AF into either sinus rhythm or atrial tachycar-

dia at any stage of the procedure, and remained free of arrhythmia throughout the follow-up

period; (2) left-terminated, recurring (LTR, n=20), patients in whom catheter ablation success-

fully terminated AF, but who experienced an arrhythmia recurrence in the follow-up period

post-ablation; (3) not left-terminated (NLT, n=12), patients in whom the stepwise catheter

ablation procedure failed to terminate AF. In the LTR and NLT groups, the arrhythmia recur-

rences were classified according to their form as either (1) atrial tachycardia/atrial flutter

(AT/AFL) or (2) AF. The study protocol was approved by the Lausanne University Hospital

Human Research Ethics Committee, and all patients provided written informed consent.

4.1.3 ECG SIGNAL PREPROCESSING

ECG signals were visually inspected before preprocessing, and signals containing excessive

noise or artifacts were removed from the analysis. Recordings were then processed to remove

base drift and high frequency noise by applying a 5th order bandpass filter (1-20 Hz) to the

signals.

Fibrillatory-wave extraction

The aim of this study was to apply spatiotemporal techniques to continuous ECG signals to

reveal information regarding atrial dynamics throughout catheter ablation. This required

creating continuous signals of atrial origin. However, analysis of the component of the ECG

signal of atrial origin is complicated by the fact that the atrial fibrillatory waves present in AF,

called f-waves and shown in Fig. 3.3, are of much smaller amplitude than QRST complexes.

Therefore, it is necessary to apply signal processing techniques to reduce and ideally eliminate

the QRST complexes to obtain a signal of purely atrial origin. These techniques, referred to as

atrial activity extraction, f-wave extraction, or ventricular activity cancellation, are described

briefly below and in detail in Appendix A. The term f-wave extraction will be used here.

It is possible to algorithmically detect the deflections, or fiducial points of the QRST complex,

and to analyze only the portions of the ECG which are known to be of atrial origin, the TQ

segments. However, TQ segments, especially in AF, are short, often less than half a second.

Therefore, if temporal or spectral analysis is desired, it is preferable to have a longer duration,
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Figure 4.1: f-wave extraction. Top row: recorded ECG signal with f-waves characteristic of AF.
Middle row: f-waves extracted using average beat subtraction. Bottom row: f-waves extracted
using signal and noise dependent weighted averaging.

continuous signal available for analysis. Several algorithms have thus been developed for

f-wave extraction, to allow for more robust and accurate temporal and spectral analyses on

longer-duration signals of atrial origin. An example of an ECG signal containing f-waves before

and after f-wave extraction (using two different algorithms) is shown in Fig. 4.1.

Most f-wave extraction algorithms rely on some form of beat averaging to remove the QRST

complex. The idea is to compute an average QRST complex, obtained from an ensemble

of beats with similar morphology, and subtract the resulting average from each beat of the

original ECG. The algorithms used to obtain the atrial activity signals shown in Fig. 4.1b, c

are both variants of this basic idea. Other algorithms use variants of principal components

analysis (PCA), independent components analysis (ICA), or blind-source separation to extract

an “atrial source,” assumed to be separable from the “ventricular source.”

The single-beat method, described in (Lemay et al., 2007), in which QRS and T-waves are

separately processed, was used to extract atrial activity on all 12-lead ECG recordings. This

algorithm is a variant of the beat averaging method and is described in detail in Appendix A.

Following application of the single-beat method, the 12-lead ECG signals were downsam-

pled to 50 Hz, since the frequency content of interest in atrial signals is generally below 10

Hz (Holm et al., 1998). Once downsampled ECG signals devoid of ventricular activity were

obtained, time and frequency domain ECG parameters quantifying organization and evolution

were calculated, as will be described in the next section.
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4.1.4 INSTANTANEOUS FREQUENCY ESTIMATION

This study aimed to examine the temporal evolution of AF organization indices in a way that

would be clinically applicable. Therefore, several factors were considered when choosing

appropriate analysis methods, including the non-stationary and multi-variate nature of ECG

signals recorded in AF, as well as the feasibility of a real-time implementation. Various time-

frequency approaches exist for estimating instantaneous frequency of non-stationary signals.

The Wigner distribution (Cohen, 1995) was for example used in (Stridh and Sornmo, 2001) to

estimate temporal frequency trends in ECG leads V1, V2, and V3. However, time-frequency

distributions must obey the time-bandwidth product theorem, or uncertainty principle.4

Time-frequency distributions are also not designed for multivariate applications, and so do

not inherently leverage the redundancy and spatial variability exhibited by signals recorded

on ECG leads. Finally, computing a signal’s time-frequency distribution is extremely computa-

tionally intensive, which would preclude a real-time implementation.

Another class of methods for tracking the instantaneous frequency of a non-stationary

signal includes adaptive filtering algorithms (Haykin, 2002). These algorithms consist of

(1) a bandpass or notch filter whose center frequency varies in time to match the signal’s

instantaneous frequency, and (2) a feedback mechanism to adapt the center frequency of the

filter. A schematic of such a system is shown in Fig. 4.2. We chose to use adaptive filtering

methods for the study presented in this chapter to overcome the difficulties mentioned in the

paragraph above. Adaptive frequency tracking will be presented in the next section, and the

concept of instantaneous frequency is presented in more detail in Appendix B.

Adaptive frequency tracking

The adaptive filtering algorithm used here is an extension of a harmonic frequency tracking

algorithm originally proposed by Liao (2005) and later extended (Uldry et al., 2009; Van Zaen

et al., 2010; Van Zaen, 2012). The adaptive frequency tracking algorithm’s variations for single

signal, multi-signal, and harmonic instantaneous frequency tracking will be described below.

Single frequency tracking

To demonstrate the concept of adaptive filtering for instantaneous frequency estimation,

consider an input signal x[n] of the form:

x[n] = s[n]+ v[n] = A0 sin(ω0n +φ0)+ v[n] (4.1)

where A0, ω0, and φ0 are the instantaneous amplitude, frequency, and phase, respectively, of

the signal’s sinusoidal component, and v[n] is an additive white noise. The single frequency

4The uncertainty principle states in no uncertain terms that a narrow waveform has a wide spectrum, and a
wide waveform has a narrow spectrum, and both the time waveform and frequency spectrum cannot be made
arbitrarily small simultaneously (Skolnik, 1980).
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adap�ve algorithm

x[n]

α[n]

y[n]

bandpass filter with 
center frequency

ω[n]

Figure 4.2: Adaptive filter. Schematic of an adaptive-frequency tracking filter, composed
of (1) a time-varying band-pass filter, and (2) an adaptive mechanism to update the center
frequency of the filter.

tracking algorithm has two parts as shown in Fig. 4.2, (1) a time-varying band-pass filter that

extracts the sinusoidal component s[n] present in the input signal x[n], and (2) an adaptive

mechanism that extracts the instantaneous frequency of s[n], which is taken as the central

frequency update of the time-varying band-pass filter. The output signal, y[n], is obtained by

filtering the input signal x[n] with a bandpass filter whose transfer function is given by:

H(z,n) = 1−β
2

1− z−2

1−α[n](1+β)z−1 +βz−2 (4.2)

The bandpass filter described by Eq. 4.2 has a time-varying center frequency,ω[n], determined

by the time-varying parameter α[n] = cos(ω[n]), and a fixed-bandwidth, determined by the

parameter β, (0 ≪β< 1). The filter’s frequency response is shown in Fig. 4.3, for three values

of β and for a fixed central frequency of ω0 = 0.5π. The filter has unit gain and zero phase shift

at ω0.

Then, to understand the cost function through which ω[n] is updated, consider that any

sinusoid of the form s[n] = A0 sin(ω0n +φ0), as in Eq. 4.1 satisfies the real discrete oscillator

equation, given below:

s[n] = 2cos(ω0)s[n −1]− s[n −2]

= 2α0s[n −1]− s[n −2]
(4.3)

From Eq. 4.3, it is therefore possible to recover the frequency ω0 of a pure sinusoid with only
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Figure 4.3: Adaptive filter frequency response. Frequency response of the adaptive band-pass
filter described by Eq. 4.2, and whose cost function maximizes oscillatory behavior (Eq. 4.5),
for three values of β and a fixed central frequency, ω0 = 0.5π.

three samples:

α0 = s[n]+ s[n −2]

2s[n −1]

ω0 = arccosα0

(4.4)

Therefore, if the goal is to maximize the “oscillatory” behavior of the output signal of the

adaptive filter, the adaptive parameter of the cost function should minimize the difference

between the current sample and its estimate given by the real discrete oscillator equation. For

the output signal y[n], the cost function is therefore given by:

J = E {(y[n]−2α[n +1]y[n −1]+ y[n −2])2} (4.5)

The solution of δJ
δα[n+1] = 0 is given by

α[n +1] = E {y[n −1](y[n]+ y[n −2])}

2E {y2[n −1]}
(4.6)

Since the expectations in the numerator and denominator of Eq. 4.6 cannot be computed,

they are replaced by exponentially weighted averages of their real-time values, respectively
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Q[n] and P [n], given by

Q[n] = δQ[n −1]+ (1−δ)y[n −1](y[n]+ y[n −2])

P [n] = δP [n −1]+ (1−δ)y2[n −1]
(4.7)

where δ, (0 ≪ δ< 1) is a forgetting factor that controls the convergence rate. The estimate of

the new value of the adaptive parameter α is given by:

α[n +1] = Q[n]

2P [n]
(4.8)

and the corresponding estimate of the instantaneous frequency is given by:

ω[n +1] = arccosα[n +1]

f [n +1] = ω[n +1]

2π

(4.9)

Multi-signal frequency tracking

In the section above, an adaptive filtering method for extracting the instantaneous frequency

of one signal was demonstrated. In this section, an extension for extracting the common

oscillatory frequency of M signals will be presented.

To extract the common frequency of M correlated signals, individual bandpass filters of the

form described in the previous section are used, and individual updates are computed as in

the single-signal case. A central frequency is then calculated using a weighted sum of each of

the individual update terms. The weights applied to each individual update are computed

based on the minimization of the variance of the linear combination of the individual updates

of the central frequency, as in (Prudat and Vesin, 2009). The idea is to weight most heavily the

signals in which the oscillation accounts for the most variance. For each individual update

given by αm[n +1] = Qm [n]
2Pm [n] , and associated weights Wm[n], 0 ≤Wm[n] ≤ 1, the central update

αc[n +1] is given by:

αc[n +1] =
M∑

m=1
Wm[n]αm[n +1] (4.10)

In this work, both the single frequency tracker, and the multi-signal frequency tracker were

tested, using ECG lead V1 for the single frequency estimate, and ECG chest leads V1-V6b as

the input signals for the multi-signal frequency tracker. It was found that the variance in

the instantaneous frequency estimate was significantly lower for the multi-signal frequency

tracker than for the single frequency tracker, as shown in Fig. 4.4. The multi-signal frequency

tracker was therefore used in this study to extract the common instantaneous frequency

estimate of the signals recorded on ECG leads V1-V6b.
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Figure 4.4: Multiple frequency tracker advantage. Illustrative example of multiple signal vs
single adaptive frequency tracker for IF estimation. Top panel: Atrial ECG signal (lead V1)
with ventricular activity removed, on which the single frequency tracker was applied. Bottom
panel: Multiple signal instantaneous frequency estimate in blue, single frequency tracker IF
estimate. The variance of the single frequency tracker estimate is greater.

4.1.5 CALCULATION OF ECG-BASED ORGANIZATION INDICES

Following the f-wave extraction as outlined in Sec. 4.1.3, AF organization was quantified

using frequency and time domain parameters. Frequency domain parameters included the

instantaneous frequency (IF) and the adaptive organization index (AOI). The IF of the AF

oscillations common to the signals recorded on all ECG chest leads (V1-V6b) was extracted

using the multi-signal frequency tracking extension outlined in Sec. 4.1.4. The AOI was

defined as the ratio between the power of the extracted fundamental and harmonic frequency

components, and the total power of the input signal. The AOI is thus bounded between zero

and one, with a value close to one indicating that most of the signal power is concentrated

in the fundamental and first harmonic frequency components. The AOI was computed

individually for the signals recorded on ECG leads V1-V6b. The algorithm bandwidth parameter

β and forgetting factor δ were both set to 0.95, giving a filter convergence time of less than one

second, at a sampling frequency of 50 Hz.
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Time domain indices of AF organization were calculated separately for the atrial signals

extracted from ECG leads V1-V6b, including sample entropy (sampEn) (Alcaraz et al., 2010) and

f-wave amplitude (FWA) (Meo et al., 2012). Sample entropy was calculated on the extracted

atrial signals, using m = 2 samples within a tolerance of r = 0.2 applied to the signal standard

deviation. The FWA was found by halving the difference of the upper and lower envelopes of

the atrial signals obtained using local maxima and minima.

The IF and AOI signals were then divided into 10-s segments, and one mean value was

recorded for each segment. For the time-domain measures (sampEn and FWA), the extracted

atrial signals were divided into 10-s segments, and one sampEn and one mean FWA value

were recorded for each segment. Therefore, one mean multi-lead IF estimate, six mean AOI,

six sampEn, and six mean FWA values (one for each lead) were recorded for each 10-s signal

segment, for each patient.

Finally, each epoch (and the associated calculated value of ECG-organization indices) was

assigned one of the following three labels based on its temporal placement: (1) pre-PVI, if

the epoch signal was recorded at baseline, prior to the start of ablation, (2) dur-PVI if signal

segment was recorded during the PVI step of the ablation procedure, (3) post-PVI if the signal

segment was recorded during the CFAE or linear ablation steps.

4.1.6 PATIENT GROUP COMPARISON AT EACH ABLATION STEP

We compared the values of the four ECG organization indices (IF, AOI, sampEn, FWA) at

each ablation step (pre-PVI, dur-PVI, and post-PVI) described at the end of Sec 4.1.5 between

the three patient groups (LTN, LTR, and NLT) outlined in Sec 4.1.2, to evaluate whether AF

organization changes during catheter ablation were indicative of ablation outcome.

High DF and low OI values, as measured from surface ECG, have been shown to predict

likelihood of arrhythmia recurrence following catheter ablation (Szilágyi et al., 2018). It was

demonstrated that using adaptive versions of DF and OI, that account for the non-stationarity

of ECG signals, increased predictive performance (Buttu et al., 2016). This finding provided

the motivation to evaluate the evolution of the IF, AOI, sampEn, and FWA values across the

three ablation procedure steps outlined at the end of Sec 4.1.5, and for the patient groups

outlined in Sec 4.1.2. We calculated the values of these four ECG organization indices on all

10-s ECG signal segments, and then averaged the values calculated on all segments for each

patient belonging to the same ablation step, to calculate one mean value for each patient at

each procedure step (pre-PVI, dur-PVI, and post-PVI).

To investigate the finer-grained temporal evolution of the IF and the AOI throughout step-

wise catheter ablation, we calculated the multi-lead IF estimate, and the AOI on lead V1 only,

as this lead has been shown to be strongly correlated with right atrial activity (Petrutiu et al.,

2006), for all 10-s signal segments in the dur-PVI and post-PVI ablation steps. For each pa-

tient, we then calculated the mean IF and mean AOI of each 10-s segment, to create a time
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sequence of the mean IF and mean AOI values found for each 10-s signal segment. To test

for the presence of a possible transition in the mean of the sequences, we used a statistical

approach based on the principle of minimum description length (MDL) (Rissanen, 1978).

We compared the MDL values obtained when two different models were used to model the

sequence: (1) a model with two parameters (one mean and one variance), and (2) a model

with three parameters (two local means, and one variance). To estimate the second model,

all sample indices, except the first and the last, were tested as candidates for the index of

the transition, with the two means computed using respectively the samples preceding and

following the candidate index. The index which resulted in the smallest residual variance was

then retained as the transition index. The MDL was computed as below:

MDL = N log σ̂2 +k log N (4.11)

with N the number of 10-s signal segments, σ̂2 the variance estimate, and k the number of

parameters, i.e., k = 2 for the first model, and k = 3 for the second model. The MDL values

obtained for the first and second models were compared, and if the MDL for the first model

was smaller than that of the second, no mean transition was considered to have taken place. If

the MDL for the second model was smaller than that of the first, a significant transition was

considered to be present at the retained index. We quantified the significant transitions as

follows:

absolute change = y −x

relative change = 2(y −x)

(y +x)

(4.12)

where y was the mean value of the signal segment IF and AOI values after the retained index,

and x was the mean value before the retained index. An example of the test applied to two

sequences, one found to have a transition and one without, is shown in Fig. 4.5.

Following the analysis of the temporal evolution of the IF and AOI parameters throughout

stepwise catheter ablation, we examined the temporal evolution in the post-PVI procedure

step only, to see whether different patterns could be found not only between the different

patient groups, but also between the different types of atrial arrhythmia recurrence observed

during the clinical follow-up period. For each available patient, we created temporal se-

quences of mean IF, AOI, sampEn, and FWA values of each 10-s signal segment, as was done

for the IF and AOI above, but in this case only using signal segments labeled post-PVI. We

applied the MDL statistical test described in Eq. 4.11, and placed the sequences separately

into one of the following three categories, according to the type of transition reported by the

MDL test: (i) Type 1. AF organization increases. For IF sequences, this is indicated by negative

transitions, since decreasing frequency indicates an increase in AF cycle length, which indi-

cates a more organized arrhythmia. For sampEn, this is also indicated by negative transitions,

since lower sampEn values indicate less complexity and more regularity in time. For AOI and

FWA sequences, this is indicated by positive transitions. (ii) Type 2. AF organization decreases.

For IF sequences, this is indicated by positive transitions since increasing frequency indicates
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Figure 4.5: Minimum description length. Illustrative example of MDL test. Top panel: Se-
quence of random values in which the MDL test found no transition. Bottom panel: Sequence
of random values, plus step function, in which the MDL test found a transition at the step
index, with x the mean value before the transition, and y the mean value after the transition.

shorter AF cycle length. For sampEn, this is also indicated by positive transitions. For AOI

and FWA sequences, this is indicated by negative transitions. (iii) Type 3. No changes in AF

organization, indicated by no transitions in the sequences. The absolute and relative changes

described in the previous section were also calculated for all sequences falling into the Type 1

and Type 2 categories.

4.1.7 STATISTICAL ANALYSIS

All numerical values are expressed as median and interquartile range (IQR). ECG-based orga-

nization index values described in Sec. 4.1.5 were compared across the three patient groups for

all chest leads using the Kruskal-Wallis test. Amplitudes of post-PVI relative percent changes

across the three patient groups (LTN, LTR, and NLT) as well as by type of recurrence (AT/AFL or

AF) were also compared using the Kruskal-Wallis test. Statistical comparisons for categorical
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variables measured using patient counts were performed using Fisher’s exact test. Statistical

significance was considered for p < 0.05.

4.2 RESULTS

4.2.1 STUDY POPULATION

A total of 40 patients with persistent AF were included in this study. Clinical characteristics

for all patients are summarized in Table 4.1. The procedural endpoint was achieved in 28

patients (70%). AF was not terminated in the remaining 12 patients (NLT group), all of whom

experienced an arrhythmia recurrence during follow-up. For patients in whom the procedural

endpoint was reached, 8 (20%) remained in sinus rhythm (LTN group) throughout the follow-

up period following a single procedure. Arrhythmia recurrence was observed in the remaining

20 patients (LTR group). In the LTR and NLT groups, recurrence occurred as AF (n = 7) and

atrial tachycardia or atrial flutter (n = 25) on average 7 ± 10 months after the index procedure.

Note that the sustained AF duration of the NLT group (median [IQR]: 22 [14; 39] months) was

significantly longer than that of the LTN and LTR groups (20 [10; 24] and 13 [12; 24] months,

respectively). The cumulative ablation time was also significantly different for each group,

being the longest for the NLT group (76 [61; 81] min.), followed by the LTR group (55 [50; 60]

min.). The mean follow-up duration for the study population was 32 ± 14 months, and at the

end of the follow-up period, 34 (85%) patients were in sinus rhythm without (28/32, 82%) and

with amiodarone (6/34, 18%), with a mean number of 2 ± 1 ablation procedures per patient.

4.2.2 ECG ORGANIZATION INDICES BEFORE AND DURING ABLATION

Figure 4.6 shows IF values for all patients at pre-PVI, dur-PI, and post-PVI, and grouped as LTN,

LTR, or NLT, to analyze both differences between patient groups and within the same patient

group at different procedure steps. Figure 4.7 reports the same information for the AOI values

calculated on leads V1, V3, V4, and V6b. The values calculated on leads V2 and V5 did not show

statistical significance. Median IF values observed in the LTN and LTR patient groups were

significantly smaller (p < 0.01) than those observed in the NLT patient group at pre-PVI and

dur-PVI. Significant differences at all steps were observed between the LTN and NLT patient

groups only on lead V1. Other leads displayed varying significant differences between different

combinations of groups and ablation steps. Significant differences between the LTN and NLT

and the LTR and NLT groups in the same procedure step were observed only on V6b, post-PVI.

No significant differences were observed between the IF and AOI calculated at the pre-PVI,

dur-PVI, and post-PVI ablation steps within a single patient group (LTN, LTR, or NLT). No

significant differences could be observed between patient groups, nor within the same group

between procedure steps for the sampEn and FWA indices. Together, these results suggest that

patients in whom catheter ablation did not successfully terminate AF displayed significantly

lower levels of AF organization both prior to and throughout the ablation procedure. In the
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Figure 4.6: Instantaneous frequency by group and step. IF at (a) pre-PVI, (b) dur-PVI, and (c)
post-PVI, for all patient groups. Significant differences between groups at each ablation step
are indicated: **p < 0.01.

following sections, the AOI, sampEn, and FWA indices will be reported only for lead V1, as this

was the lead which displayed the most consistent significant differences between groups.

4.2.3 TEMPORAL IF AND AOI EVOLUTION THROUGHOUT STEPWISE CATHETER ABLATION

Several examples showing transitions, or lack thereof, in the means of segment sequences

reported by the MDL test are shown in Fig. 4.8. Using the MDL statistical test, a transition

in the mean of the sequence of the combined dur-PVI and post-PVI segment IF values was

observed in 33 out of 40 patients. A transition was observed in 7/8 LTN patients, of which 2

in dur-PVI segments, and 5 in post-PVI segments. A transition was observed in 16/20 LTR

patients, of which 6 dur-PVI and 10 post-PVI. Finally, a transition was observed in 10/12 NLT

patients, of which only 1 dur-PVI and 9 post-PVI. These results suggest that stepwise catheter

ablation led to changes in AF dynamics in most patients; however, no significant association

was found between the timing of the change (dur-PVI or post-PVI) and the different patient

groups.

4.2.4 TEMPORAL EVOLUTION OF AF ORGANIZATION POST-PVI

Atrial f-waves were not consistently observed in the post-PVI ECG signals of three patients.

Since this precluded reliable f-wave extraction for a sufficient number of 10-s signal segments,

the data from these patients were excluded from this part of the analysis. Additionally, two

LTN patients reached the procedural endpoint dur-PVI; therefore, post-PVI analysis was not

feasible. Figure 4.9 shows examples of the three types of AF organization outlined in Sec. 4.1.6

for IF and AOI (Type 1: increasing organization; Type 2: decreasing organization; Type 3: no

change in organization). Tables 4.2 and 4.3 show relative percent changes in respectively IF
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and AOI, and sampEn and FWA, post-PVI, according to ablation outcome. Ablation within

the left atrium (CFAE and linear ablation) led to increases in AF organization in most patients

[Type 1: decrease in IF, 24/35 (68%); increase in AOI, 25/35 (71%); decrease in sampEn, 21/35

(60%)]. Increases in FWA were observed in 16/35 (46%) of patients. However, no association

between Type 1 transitions and ablation outcomes was found. No significant differences were

observed in the relative percent changes in the IF, AOI, sampEn, and FWA epoch sequences

between the LTN, LTR, and NLT patient groups.

Table 4.2: Relative changes in IF and AOI post-PVI, according to ablation outcomes, expressed
as median with [25th; 75th] percentiles. Patient counts and percentages of total count are
indicated for each type of transition.

LTN (n=6) LTR (n=18) NLT (n=11)

IF AOI IF AOI IF AOI

Rel. change % -2 [-4; 16] 15 [11; 18] -6 [-7; 0] 14 [0; 30] -2 [-5; -1] 10 [2; 13]

Type 1 3 (50%) 5 (83%) 13 (72%) 12 (67%) 8 (73%) 8 (73%)

Type 2 2 (33%) 1 (17%) 3 (17%) 3 (17%) 1 (9.1%) 1 (9.1%)

Type 3 1 (17%) 0 2 (11%) 3 (17%) 2 (18%) 2 (18%)

Table 4.3: Relative changes in sampEn and FWA post-PVI, according to ablation outcomes,
expressed as median with [25th; 75th] percentiles. Patient counts and percentages of total
count are indicated for each type of transition.

LTN (n=6) LTR (n=18) NLT (n=11)

sampEn FWA sampEn FWA sampEn FWA

Rel. change % -3.8 [-4.7; 0] -0.21 [-16; 13] -4.3 [-7.5; 0] 0 [-2.5; 14] -2.1 [-3; 0] 3.7 [0; 5.7]

Type 1 4 (67%) 3 (50%) 11 (61%) 7 (39%) 6 (55%) 6 (55%)

Type 2 1 (17%) 3 (50%) 0 5 (28%) 0 (0%) 2 (18%)

Type 3 1 (17%) 0 7 (39%) 6 (33%) 5 (45%) 3 (27%)
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Table 4.4 shows the distribution of the three categories of temporal evolution in the IF and

AOI sequences, according to the form of recurrence observed during the follow-up period

after a single ablation procedure. Increases in AF organization during ablation, as indicated

by a decrease in IF and/or increase in AOI, were more frequent in patients whose arrhythmia

recurred as atrial tachycardia or atrial flutter, than in patients whose arrhythmia recurred as AF

[atrial tachycardia/atrial flutter vs AF, Type 1: decrease in IF, 19/23 (83%) vs. 2/6 (33%); increase

in AOI, 18/23 (78%) vs 2/6 (33%); p < 0.05]. Median relative percent changes in IF and AOI

showed significantly greater amplitudes in atrial tachycardia/atrial flutter recurrences than

in AF recurrences (IF: -5 [-7; -2]% vs. 0 [-2; 0]%; AOI: 13 [5; 29]% vs 0 [-6; 8]%; p < 0.05). This

suggests that if changes in AF organization occurred post-PVI, then recurrence occurred as an

organized arrhythmia, such as atrial flutter or atrial tachycardia. However, little or no post-PVI

changes in AF organization were associated with recurrence as a disorganized arrhythmia, i.e.,

AF. No results of statistical significance could be found between patient groups, nor between

types of arrhythmia recurrences, for the sampEn and FWA variables.

Table 4.4: Relative changes in IF and AOI post-PVI, according to form of recurrence, expressed
as median with [25th; 75th] percentiles. Patient counts and percentages of total count are
indicated for each type of transition.
aAT/AFL vs AF (p < 0.05).
bType 1 transition associated with recurrence (p < 0.05).

AT/AFL (n = 23) AF (n = 6)

IF AOI IF AOI

Rel. change % -5 [-7; -2]a 13 [5; 29]a 0 [-2; 0]a 0 [-6; 8]a

Type 1 19 (83%)b 18 (78%) 2 (33%) 2 (33%)

Type 2 3 (13%) 2 (9%) 1 (17%) 2 (33%)

Type 3 1 (4%) 3 (13%) 3 (50%) 2 (33%)

4.3 DISCUSSION

The exploratory study presented in this chapter contains several findings, including: (i) pa-

tients in whom ablation failed to terminate AF and to restore long-term sinus rhythm displayed

the lowest AF organization level as indicated by the highest IF and lowest AOI values, (ii) IF and

AOI mean value transitions were more likely to occur post-PVI than dur-PVI, and (iii) AF reor-

ganization during post-PVI was associated with organized arrhythmia recurrence as AT/AFL,

while lack of AF reorganization was associated with disorganized arrhythmia recurrence as AF.

It has been suggested previously that high baseline DF and low OI values measured from the

surface ECG are likely to predict arrhythmia recurrence after catheter ablation (Murase et al.,

2020; Okumura et al., 2012; Szilágyi et al., 2018). In this study, an analysis of the median trends

at each of the pre-PVI, dur-PVI, and post-PVI ablation steps confirmed higher IF and lower AOI
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values in NLT patients at pre-PVI, for whom the stepwise catheter ablation procedure failed to

terminate persistent AF. This analysis also revealed that the higher IF and lower AOI values

persisted across the dur-PVI and post-PVI steps. However, we found that for any individual

patient group (LTN, LTR, or NLT), the median IF and AOI values did not change significantly

between the pre-PVI, dur-PVI, and post-PVI steps.

The temporal evolution of surface ECG and intracardiac EGM measures throughout catheter

ablation has been previously studied. In (Forclaz et al., 2011), AF cycle length was observed to

increase between progressive steps of post-PVI ablation in persistent AF patients, regardless of

whether the stepwise catheter ablation procedure successfully terminated their AF. However,

an increase in a temporal regularity index similar to the OI was found only in patients with AF

termination. In addition, patients with the largest increases in the temporal regularity index

more commonly experienced long-term freedom from arrhythmia during a follow-up period.

A progressive increase in AF cycle length was observed at subsequent ablation steps in Calò

et al. (2006), and a gradual increase in AF cycle length between ablation steps was associated

with AF termination by ablation in O’Neill et al. (2006). Lankveld et al. (2016) investigated tem-

poral changes in the values of DF estimated from 10-s ECG recordings obtained after each step

performed in stepwise catheter ablation, for patients with persistent AF. An overall decrease in

DF was found after each ablation step, with the highest values observed pre-ablation, decreas-

ing following PVI, and further decreasing following left atrial ablation. The exact changes in

the DF depended on whether left and/or right-sided ablation were performed. These findings

are suggestive of a progressive increase in AF organization throughout ablation; however they

do not reveal, at the level of surface ECG, which ablation steps may contribute most to this

increase. Our study investigated this by extending the analysis to include many ECG epochs

for each of the pre-PVI, dur-PVI, and post-PVI ablation steps, rather than only one segment

after each procedure step as in Lankveld et al. (2016). In the present study, when the temporal

evolution of AF complexity parameters dur-PVI and post-PVI was estimated statistically using

a test for mean value transition based on the principle of MDL, IF and AOI mean transitions

were observed in a large majority of patient epoch sequences. It was also observed that most of

these transitions occurred in the post-PVI step. When mean value transitions were estimated

on sequences composed of only post-PVI epoch means, most of them could be categorized

as increasing AF organization, i.e., negative transitions in the IF sequences, indicative of a

lengthening in the AF cycle length, and positive transitions in the AOI sequences. This suggests

that it was CFAE and left atrial ablation, rather than PVI, that was associated with increasing

AF organization, and therefore that AF substrate was more likely located in the left atrium,

and not the pulmonary veins. The study performed in (Haïssaguerre et al., 2005) found that

the largest increments in the gradual prolongation of the AF cycle length were observed after

ablation of the pulmonary vein-left atrium junction, inferior left atrium/coronary sinus in-

terface, and left atrial appendage. Our study suggests that this effect may be observed at the

surface ECG level. The differences in the amplitudes of the transitions were not significantly

linked to the LTN, LTR, and NLT patient groups. However, it was found that increases in AF

organization post-PVI occurred more often in LTR and NLT patients who had a recurrence of
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atrial tachycardia or atrial flutter, both organized arrhythmias. In contrast, when no changes

in AF organization were observed post-PVI, disorganized arrhythmia recurrence as AF was

more common. These findings suggest that ECG-based AF organization indices could help to

assess the risk of later recurrence in the form of atrial tachycardia or atrial flutter or AF after a

single stepwise catheter procedure.

The potential applications of analyzing the temporal evolution of ECG parameters through-

out catheter ablation are manifold, including further insight into the interaction of catheter

ablation with local substrate and the efficacy of an ongoing ablation. The small population

size in this study may limit its predictive power. In addition, because this was a single-center

study in which a single operator performed all ablation procedures, results may not extend

to other centers. Importantly however, the study included consecutive patients undergoing

radio-frequency ablation procedures for treatment of persistent AF; therefore, no selection

bias was introduced. Also limiting our study was the recording of ECG signals only while

patients were under general anesthesia, as this may have affected atrial activity dynamics.

However, patient response to stepwise ablation was assessed using relative mean transitions

in temporal ECG-based organization indices throughout ablation, reducing bias that could

have been introduced by varying patient responses to general anesthesia. Importantly, our

study was intended to identify (before and during ablation) ECG-based biomarkers to char-

acterize the relationship of the AF substrate to procedural and clinical outcomes. Our study

is however missing a comparative analysis of suitable measures designed for intracardiac

electrograms that would strengthen our results. A final limitation was the definition of the

clinical endpoint as a successful ablation after a single procedure, which might minimize

the success rate of stepwise catheter ablation after multiple procedures (Scherr et al., 2015),

especially for persistent AF patients. Since most recurrences occurred as atrial tachycardia

or atrial flutter, using single-procedure ablation success as a clinical endpoint was aimed at

lowering the bias due to repeat ablation procedures. The high recurrence as atrial tachycardia

or atrial flutter may be a consequence of the extensive ablation in the index procedure, which

included PVI, defragmentation, and lines. Any remaining gaps in these lesions may favor the

emergence of atrial tachycardia or atrial flutter. Importantly, recurrence occurring as atrial

tachycardia or atrial flutter may be an expression of both the ablation extent and the level of

bi-atrial remodeling (Yang et al., 2017).

This study suggests that non-invasive ECG measures may be used pre-PVI to show the lowest

levels of AF organization in NLT patients who do not respond well to stepwise catheter ablation.

These measures are not however suitable for predicting which patients will experience an

arrhythmia recurrence following a single ablation procedure.

Additionally, investigation of the temporal evolution of ECG-based indices during stepwise

catheter ablation bears merit for consideration as a clinical tool to assess the progression of

ongoing ablation procedures. Ablation following PVI within the left atrium (CFAEs and linear

ablation) could be associated with increasing AF organization, particularly in those patients

who may experience an arrhythmia recurrence as atrial tachycardia or atrial flutter rather
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than AF. Patterns of temporal evolution in adaptive ECG measures could not be shown to

distinguish persistent AF patients who did or did not experience an arrhythmia recurrence.
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Figure 4.7: Adaptive organization index by group and ablation step. AOI calculated on
leads V1, V3, V4, V6b at (a) pre-PVI, (b) dur-PVI, (c) post-PVI for all patient groups. Significant
differences between groups at each ablation step are displayed: *p < 0.05, **p < 0.01. Leads V2

and V5 not shown, as results were not significant on these leads.
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Figure 4.8: Instantaneous frequency ablation intra-step transitions. Sequences of the aver-
age 10-s ECG segment values of IF for three patients. (a) shows a negative transitions, with a
relative change of -0.08%. (b) shows a positive transition, with a relative change of 0.13%. (c)
shows a sequence where no transition in the mean value was observed.
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in the second row. (b) Examples of Type 2, decreasing AF organization, indicated by a positive
transition in the mean IF signal segment values, and a negative transition in the AOI segment
sequence. (c) Examples of Type 3, no change in AF organization, indicated by no transitions in
either sequence.
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5 HEART RATE VARIABILITY ANALYSIS

IN ATRIAL FIBRILLATION FOR ASSESS-

ING RESPONSE TO CATHETER ABLA-

TION

In healthy individuals, the heart rate (rate of ventricular activation) is a function of both the

intrinsic rate of the sinus node and the influence of the autonomic nervous system.1 The heart

rate thus varies to respond to the body’s physiological needs, slowing down at times of rest,

and speeding up during times of physical exertion. Even when the body’s physiological needs

are stationary, the amount of time elapsed between successive heartbeats fluctuates slightly,

and this fluctuation is referred to as heart rate variability (HRV). Heart rate variability can be

quantified using RR-interval sequences, which show the times elapsed between successive

R-waves of QRS complexes recorded on surface ECG. An example of an RR-interval sequence

associated with a signal recorded during sinus rhythm is shown in Fig. 5.1a. Quantifying HRV

(via RR-interval sequences), may be used to indicate various physiological measures of well-

being, from sleep quality and level of fitness to diabetes and anxiety, with the complete absence

of HRV indicating disease (Shaffer et al., 2014). In individuals with AF, ventricular activation,

and thus the heart rate, is influenced largely by the ectopic activation of the atria (Cohen et al.,

1983), rather than the intrinsic rate of activation of the sinus node.2 An RR-interval sequence

associated with an ECG signal recorded during atrial fibrillation is shown in Fig. 5.1b. It can

be seen that the RR-interval sequence in AF looks much more random than the sequence in

sinus rhythm.

The HRV in AF, quantified using RR-interval sequences, has been shown to be related

to atrial fibrillatory rate (Corino et al., 2013). Importantly atrial fibrillatory rate has itself

been associated with clinical outcomes and physiological characteristics in patients with

AF, i.e., probability of spontaneous AF termination (Nilsson et al., 2006), AF termination

by CA (Haïssaguerre et al., 2004), better response to antiarrhythmic drugs (Langberg et al.,

1998) and to electrocardioversion (Holmqvist et al., 2006). However, determining the atrial

fibrillatory rate noninvasively requires extraction of the atrial component from the ECG,

which inevitably remains contaminated with artifacts from the ventricular response, and its

1For a review of the relationship between sinoatrial node activation, autonomic nervous system, and heart rate,
see Chapter 2.

2For a review of the origin of ventricular activation in AF, see Chapter 3.
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(a) sinus rhythm (b) atrial fibrilla�on

Figure 5.1: RR-intervals. Shown in the top row are ECG signals recorded on lead II, with
annotated R peaks (*), and the resulting interpolated RR-interval sequences are shown in the
bottom row, for (a) sinus rhythm, and (b) atrial fibrillation.

exact morphology depends widely on the chosen extraction algorithm (Langley et al., 2006;

Sörnmo et al., 2018). Direct analysis of the ventricular response via RR-interval sequence

analysis has the potential to be much more robust and consistent from a signal processing

perspective, since RR-interval sequences can be easily and reliably extracted from even noisy

ECGs. However, very few studies have quantified HRV in AF among different patient groups

to investigate their relationship to response to catheter ablation treatment.3 Measuring HRV

in AF does not however come without challenges, since RR-interval sequences recorded in

AF often resemble white noise (Horan and Kistler, 1961) and therefore cannot be analyzed

using traditional time and frequency domain methods like correlation, moving averages, or

spectral analysis, i.e., methods that were explored in Chapter 4 for direct analysis of the atrial

component of recorded ECG signals.

In the largest study to investigate the relationship between HRV and atrial fibrillatory rate,

several HRV metrics, including the percentage of successive RR-intervals which differ by more

than 20 or 50 ms (pNN20, pNN50), the standard deviation of normal RR-intervals in a se-

quence (SDNN), the root-mean-square of successive RR-interval differences (RMSSD), and

approximate entropy were shown to be related to atrial fibrillatory rate, with the degree of

correlation depending on whether patients were treated with anti-arrhythmic drugs (Corino

et al., 2013). These results suggest that despite the random nature of the RR-interval sequences

in AF, HRV metrics may be able to capture underlying trends in the atrial fibrillatory rate.

Additionally, several cardiovascular physiology studies have shown success using nonlinear

3See Chapter 3 for an overview of catheter ablation and its role in treating AF.
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dynamical analysis, and especially recurrence quantification analysis (RQA) for RR-interval

sequences (Zbilut et al., 2002). While RQA was initially developed for analyzing dynamical

systems demonstrating chaos, because it imposes no rigid constraints on data set size, station-

arity, or statistical distribution, the technique may be suitable for physiological time series

such as RR-intervals (Webber Jr and Zbilut, 1994) extracted from ECG recorded in AF, to reveal

dynamical behaviors that are not obvious in the original time series, and not detectable by

standard linear (time-domain and spectral) techniques.

This chapter presents a study in which a variety of HRV metrics, including the time-domain

and entropy measures from Corino et al. (2013), and RQA, were computed for a persistent

AF population, before and at the end of ablation, to (1) investigate whether changes in the

ventricular response could be quantified before and at the end of catheter ablation proce-

dures among patients grouped by CA outcome; (2) investigate whether HRV measured before

ablation was associated with ablation outcome, and if so, to what extent it was predictive

of procedural and clinical success, i.e., AF termination and long-term maintenance of sinus

rhythm. This chapter therefore falls within the framework of providing noninvasive tools

designed to characterize which patients are most likely to have successful catheter ablation

procedures. An introduction to recurrence in dynamical systems will be given in Sec. 5.1. In

Sec. 5.2, the preprocessing methods and HRV analysis will be presented. The results will be

presented in Sec. 5.3, and their implications will be discussed in Sec. 5.4.

5.1 RECURRENCE IN A DYNAMICAL SYSTEM

Recurrence quantification analysis (RQA) is a method of nonlinear data analysis proposed to

investigate dynamical systems. It is used to quantify the number and duration of recurrences

of a phase space trajectory of a dynamical system. Recurrences of system trajectories in phase

space can provide important clues about the systems from which they are derived. Recurrent

plots (RP) provide a visual representation of recurrences, from which RQA can be performed

to quantify the degree to which recurrences are present in the system. A brief introduction to

this method of analysis, which does not make any assumptions about the linearity nor the

stationarity of the data, will be given below.

5.1.1 DYNAMICAL SYSTEMS, PHASE SPACES AND THEIR TRAJECTORIES

The RR-interval sequence can be seen as an observable time series measurement resulting

from a dynamical system, or a system whose state or phase evolves over time (Marwan et al.,

2007). A phase space trajectory is a set of states compatible with starting from one particular

initial condition. It is located in the full phase space, which represents the set of states

compatible with starting from any initial condition. In a phase space, every degree of freedom,

or dimension, represents an axis of a multidimensional space. Every possible state of the

system (or allowed combination of values of the system’s parameters) constitutes a point in

the multi-dimensional phase space. Starting from a particular initial condition, the system’s
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evolving state over time traces a path, called a phase space trajectory through the multi-

dimensional space. The phase space may be low dimensional, for example the trajectory

in a one-dimensional system is called a phase line, and the trajectory in a two dimensional

system is called a phase plane. An example of a two dimensional system would be the position

and velocity of a pendulum. An example of a higher dimensional phase space would be one

describing the motion of many molecules in a gas, with a separate dimension required for

each particle’s x, y, and z positions and momenta.

A dynamical system is given by (1) a phase space; (2) a continuous or discrete time; (3) a

time-evolution law. For a d-dimensional system, the state of the system at a particular time t

can be specified by d parameters, which form the vector x(t ):

x(t ) = [x1(t ), x2(t ), ..., xd (t )]T (5.1)

in the d-dimensional phase space of the system. For example, in the case of a harmonic

oscillator, the phase space would be two dimensions, consisting of the parameters position

and velocity. The collection of vectors x(t ) for t = 1, ..., N defines a phase space trajectory.

However, in experimental settings, it is rare for all parameters of the state vectors to be

known or measurable. Instead, only a time-discrete measurement of one observable variable,

such as the RR-interval sequence, is known, yielding a scalar and discrete time series:

ui = u(i∆t ), i = 1, ..., N (5.2)

and ∆t is the sampling rate of the measurement. In this case, a phase space of an appro-

priate dimension must be reconstructed. The most commonly used method is time-delay

embedding (Takens, 1981):

xm
i = {ui , ...,ui+(m−1)τ}N

i=1 (5.3)

where m is the embedding dimension and τ is the time delay, which must be chosen ap-

propriately. The reconstructed phase space trajectory composed of vectors {xi }N
i=1 may be

considered to represent the same dynamical system as the original, but unavailable trajectory,

and therefore can be used to analyzed recurrences of a dynamical system represented by a

univariate time series. For the remainder of the discussion, a fixed embedding dimension m

and delay τ are assumed, therefore, these parameters will be dropped from definitions for

simplicity.

5.1.2 RECURRENCE PLOT

The recurrence plot (RP) is a tool that measures recurrences of a trajectory xi ∈ R in phase

space. Suppose we have a trajectory of the embedded vectors {xi }N
i=1 of a system in its phase

space. The components of the vectors of the trajectory could be the position and velocity of a

pendulum, or quantities such as temperature, air pressure, and humidity, among others, for

the atmosphere. The behavior of the dynamical system is described by a series of state vectors
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which make up a trajectory in an abstract mathematical space, with N discrete time steps.

The corresponding recurrence plot, represented by the matrix Ri , j , is given by the relation

between the state vectors xi and x j of the trajectory at time steps i and j , for i , j = 1, ..., N :

Ri , j (ϵ) =Θ(ϵ−||xi −x j ||) (5.4)

where N is the number of measured time steps, ϵ is a threshold distance,Θ(·) is the Heaviside

function, and || · || is a norm (L1,L2,L∞). An equivalent representation is the following:

Ri , j (ϵ) =
1 if xi ≈ x j

0 if xi ̸≈ x j

i , j = 1, ..., N (5.5)

where xi ≈ x j means equality according to the chosen norm up to an error ϵ. Some minimum

error value ϵ is necessary because real dynamical systems do not recur exactly to a formerly

visited state, but only approximately. The matrix Ri , j compares state vectors of the system at

times i and j , revealing when similar states of the underlying system occur. Looking at these

patterns of recurrence allows studying dynamical systems and their trajectories.

The recurrence plot is obtained by plotting the recurrence matrix (Eq. 5.4 and Eq. 5.5), using

different colors to correspond to its binary entries, usually using black dots at the coordinates

(i , j ) if Ri , j = 1, and a white dot if Ri , j = 0. The axes of the recurrence plot are time axes, and

their directionality is rightwards and upwards, by convention. Since Ri ,i = 1|Ni=1 by definition,

the recurrence plot always has an upward right black diagonal line, called the line of identity.

Additionally, the recurrence plot is symmetric with respect to the main diagonal, Ri , j = R j ,i .

Finally, the threshold parameter ϵ must be chosen appropriately. If it is too small, almost

no points would be considered to recur, and nothing could be learned from the recurrence

structure of the underlying system. If ϵ is chosen too large, too many points are included.

Several guidelines for selecting an appropriate ϵ value have been proposed, specifically that it

should be a few percent, but not exceed 10% of the phase space diameter (Zbilut and Webber Jr,

1992), often estimated as the standard deviation of the time series to be embedded.

Recurrence plots are used to visualize trajectories in phase space, which is especially

advantageous for high dimensional systems. They can be used to gain insight regarding the

time evolution of the phase space trajectories, since typical patterns in a recurrence plot can

often be linked back to specific behavior of the system. Several large scale patterns (typology)

can be observed in recurrence plots; some of the most common ones are demonstrated in

Fig 5.2. Homogeneous recurrence plots (Fig. 5.2a) are associated with stationary random

time series, displaying few and scattered recurrences, compared to the time spanned by the

recurrence plot. Periodic (Fig. 5.2b) and quasi-periodic recurrence plots have diagonal lines off

the main diagonal, representing an underlying periodic dynamic, as the trajectory revisits the

same part of the phase space repeatedly. Drift (Fig. 5.2c) occurs in a system with slowly varying

parameters, i.e. non-stationary systems. Very little recurrence is visible far from the line of

identity. Disrupted (Fig. 5.2d) or abrupt changes in the dynamics of a system can cause white
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(a) homogeneous (b) periodic (c) dri� (d) disrupted

Figure 5.2: Recurrence plot patterns. (a) homogeneous (uniformly distributed white noise).
(b) periodic (super-positioned harmonic oscillations). (c) drift (logistic map corrupted with
linearly increasing term. (d) disrupted (Brownian motion). Figure adapted from Marwan et al.
(2007).

areas or bands in the recurrence plot. Additionally, smaller scale structures, including single

dots, and the formation of diagonal, vertical and horizontal, and bowed lines give indications

about recurrence behaviour of dynamical systems. Single, isolated recurrence points occur if

states are rare, or if they persist for only a short amount of time. Diagonal lines occur when a

segment of the trajectory runs almost in parallel to another segment for l consecutive time

units (periodicity). Vertical (or horizontal) lines indicate consecutive time steps when the state

does not change very much, since consecutive states remain close to some initial state, i.e.,

{xi ≈ x j , xi ≈ x j+1,...,xi ≈ x j+v−1}.

5.1.3 RECURRENCE QUANTIFICATION ANALYSIS

Recurrence in a dynamical system refers to points at which the phase space trajectory of

the dynamical system visits the same small region of the phase space. While the large-scale

and small-scale structures of recurrence plots can often be seen visually, several measures

have been proposed to quantify recurrence plot patterns like recurrence point density, and

presence of diagonal and vertical lines. Such measures can be used to more precisely quantify

the degree to which constructed recurrence plots exhibit homogeneous, periodic, drift, or

disrupted properties. These measures, collectively called recurrence quantification analysis

(RQA), can also be used to detect transitions in the dynamics of the system, for example

chaos-order (Trulla et al., 1996), or even chaos-chaos transitions (Marwan et al., 2002). Several

common RQA metrics will be described below. Note that these metrics depend on the param-

eters used to construct the recurrence plot. However, in their definitions, it is assumed that

the recurrence plot was calculated using a fixed threshold ϵ, and fixed time delay embedding

parameters m and τ.

The simplest RQA metric is the recurrence rate, or percent recurrence, called REC in this

study. It is simply a measure of the density of points which are considered recurrence points
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in the recurrence plot, but does not give any clues as to the structure of the recurrence points:

REC = 1

N 2

N∑
i , j=1

Ri , j (5.6)

In the limit N →∞, REC corresponds to the probability that a state recurs to its ϵ-neighborhood

in phase space. Several other RQA measures are based on a histogram, P(l ) of diagonal line

lengths l in the recurrence plot:

P(l ) =
N∑

i , j=1
((1−Ri−1, j−1)(1−Ri+1, j+1))

l−1∏
k=0

Ri+k, j+k (5.7)

Dynamic processes with uncorrelated, or weakly correlated, stochastic or chaotic behavior

result in only single isolated recurrence points, whereas deterministic systems displaying

periodicity result in longer diagonals in the recurrence plot. Therefore, a measure called

determinism (DET) quantifies the ratio of recurrence points that form diagonal lines of at least

length lmin to all recurrence points:

DET =
∑N

l=lmin
lP(l )∑N

l=1 lP(l )
(5.8)

The threshold lmin in Eq. 5.8 excludes diagonal lines which are formed by the tangential

motion of the phase space trajectory (since for lmin = 1, DET = 1). Diagonally adjacent points

for which Ri , j = 1 form line segments; therefore, a diagonal line segment is distinct from

individual recurrence points, indicating that the phase space trajectory recurs to the same

state at least lmin consecutive times, i.e., the state of the trajectory at times i , i +1 is repeated at

times j , j +1. The determinism measure, as suggested by its name, indicates how predictable

the system is. The length of the diagonal lines in the recurrence plot is related to how long

states of the trajectory remain similar, therefore the reciprocal of the maximal diagonal line

length Lmax (excluding the line of identity), called the divergence (DIV), is also a measure

recurrence in the system:

DIV = 1

Lmax
(5.9)

5.2 METHODS

The study population, stepwise ablation procedure, and ECG acquisition and basic prepro-

cessing steps for the analyses presented in this chapter were as described in Sec. 4.1. For this

study, patients were split into four groups, based on observed procedural and clinical ablation

outcomes. For the procedural outcomes, the groups were as follows: (1) left-terminated (LT,

n = 28), patients in whom AF terminated within the left atrium into sinus rhythm or atrial

tachycardia during the ablation; (2) not terminated (NT, n = 12), patients in whom stepwise

catheter ablation failed to terminate AF. For the clinical outcomes following ablation, the
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groups were as follows: (1) sinus rhythm (SR, n = 8), patients who remained in sinus rhythm

for the duration of the follow-up period; (2) arrhythmia recurrence (AR, n = 32), patients who

experienced an arrhythmia recurrence during the follow-up period.

In the remainder of this section, the methods used for RR-interval sequence extraction and

subsequent analysis will be described. Additionally, the statistical methods used to compare

RR-interval sequences between patient groups, between BL and endABL steps within the same

patient group will be presented.

5.2.1 RR-INTERVAL SEQUENCE EXTRACTION

To analyze (1) the degree to which HRV was associated with refractoriness to catheter ablation

treatment, and (2) whether changes in HRV from BL to endABL could be observed using

traditional and/or recurrence analysis methods, RR-interval sequences were required. The

sequences were extracted from ECG signals recorded prior to and throughout the catheter

ablation procedures. Two five-minute ECG signals were kept for each patient, one recorded

at baseline (BL - prior to ablation), and one at the end of the ablation (endABL), recorded

just prior to either AF termination (for LT patients) or cardioversion (for NT patients). Each

five-minute ECG signal was divided into five segments of a length one-minute, to increase the

number of data points on which to calculate HRV metrics. To extract the RR-intervals, R-peaks

were detected from the ECG segments recorded on lead II, since this lead views the wave of

electrical activation travelling from the right shoulder to the left leg,4 giving the best view of

ventricular activation.

An R-peak detection algorithm was applied to the one-minute BL and endABL signal

segments recorded on ECG lead II. The algorithm, called “Relative Energy,” was developed

for impulse-like event detection in biomedical signals (Yazdani et al., 2017). The algorithm

compares the mean energies in a narrow time interval and in a wide time interval centered

on the same part of the signal. When an impulse like “event,” such as an R-peak of a QRS

complex, occurs, the mean energy of the signal in the narrow time interval is greater than the

mean energy in the wide time interval, allowing the detection of R-peaks in the signal. This

method was chosen for its demonstrated performance in detecting R-peaks in ECG signals

recorded during AF.

The Relative Energy algorithm was applied to the 10 one-minute ECG signal segments (BL

and endABL) available for each patient. Therefore, 10 corresponding RR-interval sequences

were extracted for each of the 40 patients, providing 400 RR-interval sequences in total, 200 at

BL and 200 at endABL. Since the RR-interval sequence is not regularly sampled, resampling

was performed at a sampling rate of 4 Hz. Once the BL and endABL RR-interval sequences

were extracted, HRV analysis was performed, which will be discussed below.

4See Chapter 2 for an overview of ECG leads.
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5.2.2 HRV ANALYSIS

Time-domain HRV analysis

Time-domain metrics of HRV were calculated on each of the BL and endABL RR-interval

sequences, including: pNN20 (percentage of successive RR-intervals that differ by more

than 20 ms), pNN50 (percentage of successive RR-intervals that differ by more than 50 ms),

SDNN (standard deviation of RR-intervals), RMSSD (root mean-square of successive RR-

interval differences). These metrics are standard for HRV quantification (Shaffer and Ginsberg,

2017), and were shown to be related to atrial fibrillatory rate in AF patients not treated with

antiarrhythmic drugs (Corino et al., 2013).

Recurrence HRV analysis

While not as common for HRV analysis, nonlinear recurrence quantification analysis (RQA) has

been suggested as more suitable for analyzing RR-sequences in AF, since it does not make any

assumptions regarding sequence stationarity or number of available samples. This analysis

involved (1) reconstruction of a system phase space, (2) recurrence plot construction, (3) RQA.

To reconstruct the phase space for a sequence of RR-intervals, embedded vectors were cre-

ated as in Eq. 5.3. The i th embedded vector therefore is a sequence xi = {RRi ,RRi+τ, ...,RRi+(m−1)τ},

for embedding dimension m and sample delay, τ.

To create the recurrence plot, each of its points Ri , j was filled with a black or white dot

according to Eq. 5.4, using embedded vectors xi and xi . The L2 norm was chosen for this

work, and the embedding parameters were set as follows: m = 2, τ = 1, and ϵ = 0.1, in line

with suggestions that the threshold be set at a small percentage of the maximum phase

space diameter, here estimated separately as the standard deviation of each RR-interval

sequence (Marwan et al., 2007; Zbilut and Webber Jr, 1992). Therefore, measurements on time

series with different amplitudes could be compared. Recurrence plots were then calculated

for the embedded vectors from each BL and endABL RR-interval sequence, for a total of 400

recurrence plots.

Finally, RQA was performed for each constructed recurrence plot by calculating the REC,

DET, and DIV metrics described by Eq. 5.6, Eq. 5.8, and Eq. 5.9 respectively, with lmin = 2.

Entropy-based HRV analysis

Approximate entropy (ApEn) was found by Corino et al. (2013) to be related to atrial fibrillatory

rate in AF patients, regardless of whether or not patients were taking antiarrhythmic drugs.

However, ApEn is known to depend on data sequence length, and since the RR-interval

sequences used in this study were shorter than those used in Corino et al. (2013), sample

entropy (sampEn) was preferred. sampEn was introduced as an alternative to ApEn for
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estimating the regularity of physiological time series when only noisy or short time series

are available (Richman and Moorman, 2000), and it was shown to be less dependent on

time sequence length than ApEn. Lower sampEn values indicate less complexity and more

regularity in time series. For an RR-interval sequence which contains repeating patterns, the

sampEn value should be lower.

For a given embedding dimension m, tolerance r , and number of data points N , sampEn(m,

r , N ) is the negative natural logarithm of the conditional probability that two sequences

similar for m points, within a tolerance determined by r , remain similar at the next point.

For embedded vectors xm
i and xm

j as defined in Eq. 5.3, let B m
i (r ) be (N −m −1)−1 times the

number of vectors xm( j ) similar within r to xm(i ), j = 1...N − 1, j ̸= i to exclude counting

self-similarity. Then

B m(r ) =
∑N−m

i=1 B m
i (r )

N −m
(5.10)

is the probability that two embedded vectors will be similar for m points. Similarly, let Am
i (r ) be

(N−m−1)−1 times the number of vectors xm+1( j ) similar within r of xm+1(i ), j = 1...N−1, j ̸= i

to exclude self matches. Then

Am(r ) =
∑N−m

i=1 Am
i (r )

N −m
(5.11)

is the probability that two embedded vectors will be similar for m +1 points. Then sampEn is

defined as:

sampEn =− ln
Am(r )

B m(r )
(5.12)

and note that for known r and m, given B the total number of similar vectors of length m and

A the total number of similar vectors of length m +1, A
B = Am (r )

Am (r ) and sampEn(m,r, N ) =− ln A
B .

Therefore, A < B and sampEn(m,r, N ) ≥ 0. Smaller values of sampEn indicate more self-

similarity in the data sequence, or less noise. The sampEn metric was calculated using

embedded vectors created from each of the BL and endABL RR-interval sequences, with

m = 2, and r was calculated using the same ϵ= 0.1 multiplier of the standard deviation of the

RR-interval sequence as was used for RQA.

5.2.3 STATISTICAL ANALYSIS

The purpose of this section is to describe how the HRV metrics described in Sec. 5.2.2 were

compared: (1) within the same patient group (LT, NT, SR, or AR), between BL and endABL, and

(2) for different patient groups, at either BL or endABL (LT vs NT, or SR vs AR). The purpose

was to compare the relationship between the metrics and catheter ablation procedural and

clinical outcomes.

Calculated values of continuous parameters are expressed as mean ± standard deviation.

Statistical inter-group, or inter-step (BL vs endABL) differences were calculated as mean p-

values across 3-folds, with 20% of the parameter values left out of each fold. One-way analysis

of variance (ANOVA) was calculated on the data included in each fold to test for differences
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in the group or ablation step means. Statistical tests were performed on multiple folds of the

data to reduce the likelihood of chance group differences due to a small data set; statistical

significance was considered for p-values less than 0.05. To quantify the association between

CA outcome and the HRV metrics, we checked for statistical differences between these metrics

calculated on BL and endABL RR-interval sequences associated with (1) LT vs NT groups for

procedural outcome, and (2) SR vs AR groups for single-procedure clinical outcome.

For metrics displaying statistically significant differences between patient groups at BL,

univariate logistic regression classifiers were used to test their predictive power for procedural

and clinical ablation outcome. We used 3-fold cross validation (CV), with an 80/20 train-test

split for each fold, and group-wise CV used to ensure that metrics calculated from RR-interval

sequences of the same patient were assigned only to either the train or test set for each fold.

Classifiers were trained on the train data of each fold, and then used to perform predictions

on the test data of each fold. The resulting receiver operating curves (ROC) were analyzed

to obtain area under the curve (AUC) to compare the predictive power of each HRV metric.

We reported the AUC as mean ± standard deviation over all CV folds, and the sensitivity and

specificity were reported for the optimal classification threshold determined through using

the mean ROC curve. The sensitivity and specificity were the fraction of true positive and true

negative cases correctly identified, where NT/AR were considered positive cases, and LT/SR

were considered negative cases, respectively.

5.3 RESULTS

5.3.1 CHANGE IN HRV METRICS FROM BL TO ENDABL

Table 5.1 shows HRV metric values calculated from sequences extracted at BL and endABL for

patients grouped by single-procedure ablation outcome (LT vs NT). The same information is

shown in Table 5.2 for patients grouped by clinical outcome (SR vs AR). Statistically significant

differences in mean value from BL to endABL are indicated for each patient group, with the

p-values calculated across three-folds of the data, as described in Sec. 5.2.3. A graphical

representation of the HRV metric values is demonstrated in Fig. 5.3 for patients grouped by

single procedure outcomes and Fig. 5.4 grouped by clinical outcomes following ablation. It

can be seen that mean values of metrics which quantify regularity (REC and DET) were greater

at endABL than at BL, while metrics which quantify variability (DIV, sampEn, pNN20, pNN50,

SDNN, and RMSSD) were less at endABL than at BL, for all patient groups. The difference

was statistically significant for all metrics for the LT patient group, and for all metrics except

sampEn for the SR patient group. For the NT patient group, the difference was statistically

significant for sampEn, pNN20, pNN50, SDNN, and RMSSD, while for the AR patient group,

the difference was statistically significant for all metrics except DET.

Shown in Fig. 5.5 is an illustrative example of changes in the RR-interval sequence recur-

rence plot dynamics associated with an LT patient at BL and endABL. Note the increased REC
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Table 5.1: HRV metrics by ablation step, for procedural outcomes. HRV metrics grouped by
ablation step, i.e. baseline (BL), before ablation, and end of ablation (endABL), expressed as
mean ± standard deviation. p-values indicate statistical significance between the mean values
at the BL and endABL steps, calculated for both the LT and NT patient groups.

LT NT

BL endABL p-value BL endABL p-value

REC 0.009±0.005 0.0218±0.04 0.0007 0.007±0.005 0.008±0.004 0.522

DET 0.166±0.11 0.26±0.19 0.0001 0.123±0.12 0.141±0.1 0.29

DIV 0.56±0.24 0.41±0.21 0.0001 0.66±0.28 0.56±0.24 0.11

sampEn 4.13±2.6 2.98±2.21 0.016 5.45±2.77 4.24±2.6 0.072

pNN20 0.44±0.06 0.387±0.06 0.0001 0.465±0.04 0.435±0.04 0.003

pNN50 0.379±0.07 0.294±0.08 0.0001 0.416±0.04 0.361±0.05 0.001

SDNN 171±47 114±51 0.0001 213±51 127±30 0.001

RMSSD 242±73 155±70 0.0001 305±75 175±42 0.001

Table 5.2: HRV metrics by ablation step, for clinical outcomes. HRV metrics grouped by
ablation step, i.e. baseline (BL), before ablation, and end of ablation (endABL), expressed as
mean ± standard deviation. p-values indicate statistical significance between the mean values
at the BL and endABL steps, calculated for both the SR and AR patient groups.

SR AR

BL endABL p-value BL endABL p-value

REC 0.008±0.003 0.045±0.07 0.03 0.009±0.005 0.011±0.008 0.022

DET 0.14±0.11 0.36±0.27 0.0007 0.16±0.12 0.19±0.12 0.051

DIV 0.59±0.23 0.17±0.12 0.0009 0.59±0.26 0.49±0.23 0.0025

sampEn 4.4±2.6 2.7±2.5 0.064 4.56±2.7 3.52±2.35 0.0017

pNN20 0.44±0.06 0.37±0.06 0.0005 0.45±0.05 0.4±0.06 0.0001

pNN50 0.376±0.07 0.29±0.07 0.0004 0.39±0.06 0.32±0.08 0.0001

SDNN 162±33 116±53 0.0003 189±54 119±44 0.0001

RMSSD 227±52 162±80 0.0003 270±82 161±59 0.0001
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Figure 5.3: Change in HRV metrics from BL to endABL, by procedural outcome.. HRV metrics
at baseline (BL - before ablation) and at the end of ablation (endABL) are shown, grouped
according to single-procedure ablation outcome (LT=left terminated, NT=not terminated).
Significant differences in mean value at BL and endABL are indicated with asterisks, *p<0.05,
**p<0.01.

and DET, as well as increased structure, observed in the endABL recurrence plot (Fig. 5.5b)

compared to the BL recurrence plot (Fig. 5.5a). Fig. 5.6 shows the same information for an

NT patient, for whom the increased regularity observed in the LT patient was absent; no

differences were discernible in the recurrence plot dynamics for the NT patient.

5.3.2 ASSOCIATION BETWEEN HRV METRICS AND ABLATION OUTCOME

Table 5.3 shows HRV metrics calculated separately for LT and NT procedural outcomes grouped

by ablation step, at baseline (BL) and at end of ablation (endABL). The p-values indicate

significant differences in mean LT vs NT values, at either BL or endABL. The same information

is shown in Table 5.4 for clinical outcomes (SR vs AR). A graphical representation of the

differences in HRV metric values between the LT and NT patient groups, at both the BL and

endABL steps is demonstrated in Fig. 5.7. The same information is shown in Fig. 5.8 for

differences between the SR and AR patient groups. It can be seen that mean values of metrics

which quantify regularity (REC and DET) were greater for the LT and SR patient groups than

for the NT and AR patient groups, while metrics which quantify variability (DIV, sampEn,

pNN20, pNN50, SDNN, and RMSSD) were less for the LT and SR patient groups than for the

NT and AR patient groups. The difference between the LT and NT patient groups at BL was

significant only for the pNN20, pNN50, SDNN, and RMSSD metrics, while at endABL, the
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Figure 5.4: Change in HRV metrics from BL to endABL, by clinical outcome.. HRV metrics
from BL (BL - before ablation) and at the end of ablation (endABL) are shown, grouped
according to clinical outcome during the follow-up period after catheter ablation (SR=sinus
rhythm, AR=arrhythmia recurrence). Significant differences in mean value at BL and endABL
are indicated with asterisks, *p<0.05, **p<0.01.

difference showed statistical significance for all metrics. The difference between the SR and AR

patient groups at BL was statistically significant only for the SDNN and RMSSD metrics, while

at endABL only the REC, DET, and DIV metrics had statistically significant different values in

the means between the patient groups.

5.3.3 PREDICTIVE POWER OF HRV METRICS FOR ABLATION OUTCOME

A summary of the ROC analysis for the pNN20, pNN50, SDNN, and RMSSD metrics, which

displayed statistically significantly different values in the mean between the LT and NT patient

groups at BL, for predicting procedural catheter ablation outcome is shown in Table 5.5. A

summary of the ROC analysis for the SDNN and RMSSD metrics, which displayed statically

significantly different values in the mean between the SR and AR patient groups at BL, for

predicting clinical ablation outcome throughout the follow up period described in Sec. 5.1.2, is

shown in Table 5.6. The sensitivity and specificity values are shown for RR-interval sequence-

wise classification. The ROC curves associated with procedural outcome prediction are shown

in Fig. 5.9, while those for clinical outcome prediction are shown in Fig. 5.10. It can be seen that

for prediction of arrhythmia termination by catheter ablation, SDNN and RMSSD perform

the best, with the least variation across cross-validation folds (AUC: 0.93±0.06, 0.91±0.04

respectively). These two variables do not quite perform as well for prediction of arrhythmia

recurrence, or equivalently sinus rhythm maintenance during the follow-up period (AUC:
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Figure 5.5: RR-interval recurrence plot dynamics at BL and endABL for an LT patient.
(a) Top panel: RR-intervals extracted from a 5-minute baseline (pre-ablation) ECG segment.
Bottom panel: Recurrence plot constructed using embedded vectors from baseline RR-interval
sequence. (b) Top panel: RR-intervals extracted from a 5-minute ECG segment recorded at
the end of ablation, just before spontaneous AF termination. Lower panel: Corresponding
recurrence plot, constructed using embedded vectors from endABL RR-interval sequence.
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Figure 5.6: RR-interval recurrence plot dynamics at BL and endABL for an NT patient.
(a) Top panel: RR-intervals extracted from a 5-minute baseline (pre-ablation) ECG segment.
Bottom panel: Recurrence plot constructed using embedded vectors from baseline RR-interval
sequence. (b) Top panel: RR-intervals extracted from a 5-minute ECG segment recorded at the
end of ablation, just before electrocardioversion. Lower panel: Corresponding recurrence plot,
constructed using embedded vectors from endABL RR-interval sequence.
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Table 5.3: HRV metrics by ablation procedural outcome. HRV metrics grouped by procedural
outcome of catheter ablation, expressed as mean ± standard deviation. p-values indicate
statistical significance between the mean values of the LT and NT patient groups for each
metric, calculated both at baseline (BL) and end of ablation (endABL).

BL endABL

LT NT p-value LT NT p-value

REC 0.009±0.005 0.007±0.005 0.139 0.0218±0.04 0.008±0.004 0.02

DET 0.166±0.11 0.123±0.12 0.176 0.26±0.19 0.141±0.1 0.0001

DIV 0.56±0.24 0.66±0.28 0.138 0.41±0.21 0.56±0.24 0.0001

sampEn 4.13±2.6 5.45±2.77 0.054 2.98±2.21 4.24±2.6 0.001

pNN20 0.44±0.06 0.465±0.04 0.029 0.387±0.06 0.435±0.04 0.0001

pNN50 0.379±0.07 0.416±0.04 0.006 0.294±0.08 0.361±0.05 0.0001

SDNN 171±47 213±51 0.0001 114±51 127±30 0.022

RMSSD 242±73 305±75 0.0001 155±70 175±42 0.017

Table 5.4: HRV metrics by ablation clinical outcome. HRV metrics grouped by clinical out-
come following catheter ablation, expressed as mean ± standard deviation. p-values indicate
statistical significance between the mean values of the SR and AR patient groups for each
metric, calculated both at baseline (BL) and end of ablation (endABL).

BL endABL

SR AR p-value SR AR p-value

REC 0.008±0.003 0.009±0.005 0.375 0.045±0.07 0.011±0.008 0.0001

DET 0.14±0.11 0.16±0.12 0.339 0.36±0.27 0.19±0.12 0.0001

DIV 0.59±0.23 0.59±0.26 0.397 0.17±0.12 0.49±0.23 0.0001

sampEn 4.4±2.6 4.56±2.7 0.338 2.7±2.5 3.52±2.35 0.114

pNN20 0.44±0.06 0.45±0.05 0.241 0.37±0.06 0.4±0.06 0.017

pNN50 0.376±0.07 0.39±0.06 0.226 0.29±0.07 0.32±0.08 0.105

SDNN 162±33 189±54 0.032 116±53 119±44 0.358

RMSSD 227±52 270±82 0.028 162±80 161±59 0.24
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Figure 5.7: RR-interval metrics at BL and endABL by procedural outcome of catheter abla-
tion. Mean values of all HRV metrics are shown at BL and endABL, for LT vs NT patient groups.
(LT=left terminated, NT=not terminated), *p<0.05, **p<0.01.
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Figure 5.8: RR-interval metrics at BL and endABL by procedural outcome of catheter abla-
tion. Mean values of all HRV metrics are shown at BL and endABL, for SR vs AR patient groups.
(SR=sinus rhythm, AR=arrhythmia recurrence at follow-up), *p<0.05, **p<0.01.
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0.78±0.17, 0.77±0.17, respectively).

Table 5.5: Predictive power of HRV metrics for ablation procedural outcome. Area under the
curve (AUC) values expressed as mean ± standard deviation for metrics showing statistically
significant different mean values between LT and NT patient groups at baseline (BL). Sensi-
tivity and specificity indicate the rate of detection of arrhythmia persistence and arrhythmia
termination at the end of ablation, respectively.

AUC (mean ± std) Sensitivity (%) Specificity (%)

pNN20 0.69±0.15 82.7 53.5

pNN50 0.71±0.18 92 46.5

SDNN 0.93±0.06 88 79.8

RMSSD 0.91±0.04 90.7 79.8

Table 5.6: Predictive power of HRV metrics for ablation clinical outcome. Area under the
curve (AUC) values expressed as mean ± standard deviation for metrics showing statistically
significant different mean values between SR and AR patient groups at baseline. Sensitivity
and specificity indicate the rate of detection of arrhythmia recurrence and sinus rhythm
maintenance throughout the follow-up period, respectively.

AUC (mean ± std) Sensitivity (%) Specificity (%)

SDNN 0.78±0.17 69.4 99

RMSSD 0.77±0.17 69 99

5.4 DISCUSSION

Atrial fibrillatory activity is known to influence the irregular ventricular response seen in

AF (Cohen et al., 1983; Corino et al., 2013), and several studies have suggested that quantifiable

measures of the ventricular response can be linked with AF complexity and disease progression.

In this chapter, the usefulness of quantifying the ventricular response in persistent AF for

determining patient response to catheter ablation treatment was investigated. Specifically,

RR-interval sequences were extracted from ECG signals recorded prior to and at the end

of catheter ablation, just before either AF termination or electrocardioversion. A variety of

metrics quantifying HRV were then computed, to investigate whether time-domain, entropy,

and recurrence measures introduced for the analysis of dynamical time-series would reveal

differences in the ventricular response of patients whose arrhythmia was terminated by

catheter ablation and those in whom it was not, both prior to and at the end of ablation. We

also investigated whether HRV as measured by these metrics prior to ablation was associated

with procedural and clinical catheter ablation outcomes. Finally, the predictive power of HRV

metrics shown to be significantly associated with catheter ablation outcomes was tested. We
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Figure 5.9: ROC analysis for predicting arrhythmia termination by catheter ablation. Uni-
variate predictive performance of (a) pNN20, (b) pNN50, (c) SDNN, and (d) RMSSD for clas-
sification of left terminated arrhythmia (LT) at the end of ablation, or not terminated (NT),
using the HRV metric values calculated at baseline (BL), prior to ablation.

found promising results for prediction of both procedural and clinical ablation outcomes,

with the time-domain SDNN metric performing best. To our knowledge, this is the first time

changes in HRV of persistent AF patients following catheter ablation procedures have been

reported, as well as quantification of the ventricular response for predicting catheter ablation

outcome.

5.4.1 CHANGE IN HRV BEFORE AND AT THE END OF ABLATION

It has been suggested that despite the irregular and apparently random nature of RR-intervals

in AF, some structure can be quantified. For example, in a study by Rawles and Rowland (1986),

it was shown that while most (70%) RR-interval sequences of patients in AF were estimated

to be random using autocorrelation-based approaches, some sequences did demonstrate

significant correlation between consecutive RR-intervals (30%). This suggests that patients in

AF can have patterns of detectable regularity in their ventricular response. Therefore, in this

study the aim was to investigate whether changes in HRV could be measured between prior to

ablation (at baseline - BL) and at the end of ablation (endABL). Importantly, these differences
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Figure 5.10: ROC analysis for predicting clinical outcome following catheter ablation. Per-
formance of (a) SDNN and (b) RMSSD for univariate prediction of sinus rhythm maintenance
throughout the follow-up period following catheter ablation, with metric values calculated
using RR-sequences recorded at baseline (BL), prior to ablation.

were investigated separately for LT/SR patients and NT/AR patients, to see whether changes

in HRV at the start and end of ablation could be associated with likelihood of arrhythmia

termination by catheter ablation.

The results presented in Sec 5.3.1 demonstrated that while all HRV metrics measured in-

creased between BL and endABL among LT patients, only time-domain HRV metrics (pNN20,

pNN50, SDNN, RMSSD) showed significant differences between BL and endABL for NT pa-

tients. This indicates more repeatability in the RR-interval sequence recorded at endABL

compared to that at BL, and thus a more regular ventricular response in LT patients just prior

to AF termination. This suggests that sinus rhythm restoration by catheter ablation is more

likely in patients who, as a group, showed increasing regularity in their RR-interval sequences,

but only when measured using the recurrence metrics presented in Sec. 5.1.3, as well as the

sampEn metric. The changes in the time-domain metrics (pNN20, pNN50, SDNN, RMSSD)

would therefore appear to be due more to general effects of ablation on the ventricular re-

sponse, since they occurred in all patients, regardless of ablation outcome. The increasing

REC and DET values observed in the LT group between BL and endABL were suggestive of

increasing organization and regularity in the ventricular response, while the decreasing DIV

and sampEn indicated a potential reduction in the complexity of the atrial fibrillatory activity

on the ventricular response just prior to AF termination, since the decreased value was not

significantly present in NT patients. The exact electrophysiological mechanisms responsible

for the presence or lack of increasing organization, and why it arose only in LT patients, could

not however be explained without access to simultaneously recorded intracardiac electrogram

data.

Less information could be gleaned about changes in HRV between BL and endABL for SR

and AR patients, as in both patient groups, nearly all the HRV metrics displayed significantly

greater values at endABL than BL. This could be because many of the patients in the AR group
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had increased organization in their atrial fibrillatory activity and thus ventricular response

leading up to arrhythmia termination. It was only later, during the follow-up period, that many

of them experienced a recurrence in their ablation, suggesting that the change alone from

BL to endABL was not indicative of likelihood of sinus rhythm maintenance or arrhythmia

recurrence during the follow-up period.

5.4.2 ASSOCIATION BETWEEN HRV AND ABLATION OUTCOME

It has been shown that RR-interval regularity was linked with sinus rhythm restoration in

patients with AF who underwent cardioversion (Van Den Berg et al., 2004). Specifically, clus-

tering was applied to RR-intervals, and in patients in whom clear clusters were found, sinus

rhythm restoration was achieved in 94% of cases, while in patients for whom no clustering

of RR-intervals could be found, only 71% of patients experienced sinus rhythm restoration.

Therefore, this study also investigated whether more regularity would be quantifiable in LT

patients compared to NT patients (and SR patients compared to AR patients) at BL, to inves-

tigate the ability of HRV metrics to predict AF termination by catheter ablation (procedural

outcomes), and long-term maintenance of sinus rhythm following catheter ablation (clinical

outcomes).

The results presented in Sec 5.3.2 demonstrated that time-domain measures of HRV (pNN20,

pNN50, SDNN, and RMSSD) displayed significantly lower mean values at BL among the LT

patient group than NT patient group. Only pNN20 and pNN50 displayed significantly lower

mean values at BL for the SR patient group than AR patient group. These results suggest

that increased regularity in the ventricular response prior to ablation was associated with

both greater likelihood of AF termination by catheter ablation, and greater likelihood of

sinus rhythm maintenance throughout the follow-up period. The recurrence metrics and

sampEn did not display significant differences between the two patient groups at baseline,

suggesting that they were more useful with regard to their association to change in atrial

activity organization over the course of the catheter ablation procedure, as discussed in 5.4.1

above. These results appear contrary to those reported by (Akyürek et al., 2003), in which

SDNN, RMSSD, and pNN50 were all found to be be significantly lower in patients with AF

recurrence than in those with sinus rhythm maintenance following cardioversion. However,

in their study, RR-interval sequences were quantified after cardioversion for patients in sinus

rhythm. Therefore, their results could be reflective of the role of the autonomic nervous

system in recurrence after cardioversion. In the study reported in this chapter, the ventricular

response in AF was quantified, therefore, the role of the autonomic nervous system was not

investigated.

5.4.3 HRV PREDICTIVE POWER FOR ABLATION OUTCOME

For HRV metrics which had significant differences in mean value between LT and NT, and

SR and AR patient groups at BL, we tested their classification performance for predicting AF
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termination by catheter ablation, and sinus rhythm maintenance during the follow-up period,

respectively. This step was important to test not only the association between these metrics

and CA outcome, but also their potential clinical impact as noninvasive electrocardiographic

biomarkers of suitability for catheter ablation.

Specifically, classification performance was tested using univariate logistic regression classi-

fiers for pNN20, pNN50, SDNN, and RMSSD for predicting AF termination by catheter ablation,

and SDNN and RMSSD for predicting sinus rhythm maintenance during the follow up period.

These metrics were chosen since they displayed significant differences between the LT and

NT, and SR and AR patient groups, respectively, at BL. Importantly, group-wise CV was used

for the HRV metrics computed on RR-interval sequences extracted from the same patient,

which were included only in either the train or test set for each fold. The mean and standard

deviation of the AUC across folds were also reported for each metric’s classifier to indicate the

outcome prediction model variance. These steps were important considering the small size of

our data set.

For procedural outcome prediction, all metrics tested displayed good univariate predictive

performance (AUC - pNN20: 0.69±0.15, pNN50: 0.71±0.18, SDNN: 0.93±0.06, and RMSSD:

0.91±0.04). SDNN and RMSSD in particular had high AUCs with low variance across data folds.

The finding that SDNN and RMSSD both displayed high AUC values with low variability across

cross-validation folds was indicative of the potential of these measures to act as noninvasive

electrocardiographic biomarkers for likelihood of successful catheter ablation procedures to

terminate AF in persistent AF patients.

For clinical outcome prediction, both metrics tested also displayed good univariate pre-

dictive performance (AUC - SDNN: 0.78±0.17, RMSSD: 0.77±0.17), though not as good as

the best performance for procedural outcome prediction. The finding that these metrics

also displayed relatively high AUC values and low variability for predicting long-term sinus

rhythm maintenance throughout the follow-up period was suggestive of the suitability of

these metrics to predict not only successful procedural outcomes of catheter ablation, but

also sinus rhythm maintenance thereafter. To our knowledge, this is the first study to test

predictive performance of HRV metrics for AF termination by procedural catheter ablation

and long-term maintenance of sinus rhythm thereafter.

Comparison with other surface ECG predictive biomarkers for CA outcome prediction

Many studies have extracted surface ECG based indices thought to be associated with AF

complexity in an attempt to associate them with procedural and clinical outcomes following

CA. These indices most often rely on extraction of the atrial component of the surface ECG,

through either extraction of f-waves in TQ segments, or ventricular activity (QRST complex)

cancellation. For example, Meo et al. (2012) proposed a an f-wave amplitude based metric that

computed a “global” atrial amplitude using weighted contributions from each independent

lead of the 12-lead ECG calculated using principle component analysis (PCA). The proposed
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metric achieved good predictive power, with AUC ranging from 0.65-0.95 depending on the

number of leads included on their database of 28 persistent AF patients using leave-one-

out CV. Matsuo et al. (2009) evaluated the ability of pre-procedural clinical and surface ECG

variables to predict procedural and clinical outcomes of CA in patients with persistent AF, and

found that surface ECG AF cycle length was the only independent predictor of procedural AF

termination, with an AUC of 0.88. Additionally, AF cycle length and AF duration were both

found to be independent predictors of clinical ablation outcome with high AUCs. However, AF

cycle length was manually computed, from 10 unambiguous fibrillatory waves. This process

is time intensive, and unambiguous fibrillatory waves can be difficult to obtain, especially

for persistent AF patients, and if only short recordings are available. Lankveld et al. (2016)

computed a variety of surface ECG parameters thought to be associated with AF complexity

and found that f-wave amplitude had the best predictive performance for procedural and

clinical outcomes (AUC: 0.76±0.15, 0.69±0.13, respectively), with comparable scores on their

validation set. However, their f-wave amplitude computation required QRST cancellation.

Di Marco et al. (2014) calculated recurrence plot indices, including REC and DET, on the atrial

component of surface ECG recorded in both paroxysmal and nonparoxysmal AF, and found

that higher REC was associated with a decreased risk of AF recurrence at follow-up. Their

study additionally reported that DET was a significant predictor of 6-month post-ablation

outcome (AUC=0.67). Similarly, a drawback of this study was the need to use TQ segments to

obtain the atrial waveform, which is often very difficult in persistent AF patients who have

high heart rates. While these studies all showed promising results and have been useful for

testing noninvasive surface ECG indices for their association with AF outcomes, their clinical

implementation would necessitate time-consuming calculations. The HRV metrics tested

in this study are much simpler to calculate, and much easier for future studies to reproduce.

Comparing our results with these studies serves only to underline the ability of the HRV

metrics tested in this study to reproduce similar results on an in-house data set for predicting

CA outcome using a metric computed on surface ECG prior to CA procedures. Clearly, the

respective databases and metrics cannot be directly compared.

Comparison with clinical scoring systems for CA outcome prediction

Several clinical scoring systems have been proposed and tested for predicting CA outcome.

These scoring systems use clinical parameters thought to be associated with AF complexity

such as patient age, type of AF (e.g., paroxysmal, persistent), sex, as well as physiological

parameters quantifying left atrium enlargement to compute a score. Examples include AP-

PLE (Kornej et al., 2015), MB-LATER (Mujović et al., 2017), and ATLAS (Mesquita et al., 2018).

These studies have obtained high AUCs, 0.634, 0.782, and 0.75, respectively. However, some of

the clinical parameters require knowledge of the full patient clinical history, and obtaining

left-atrium parameters may require pre-procedural imaging and sophistical electrophysiologi-

cal mapping software, making the clinical implementation of these scores less practical, as CT

imaging prior to PVI is performed routinely in 59% of electrophysiology centers (Calkins et al.,

2018).
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Finding definitive measures to select patients with high likelihoods of successful catheter

ablation outcomes remains elusive. However, the results presented in this chapter demon-

strate that changes in HRV metrics indicative of increasing organization in the ventricular

response are associated with better catheter ablation procedural outcomes. This work has

also demonstrated the feasibility of quantifying the ventricular response using HRV analysis

for investigating suitability for catheter ablation procedures. HRV analysis is easier to per-

form in a consistent manner than direct analysis of the atrial component of ECG signals, and

should therefore be considered for the noninvasive quantification of atrial fibrillation disease

complexity.

Since AF ablation and follow-up strategies, as well as patient cohorts differ considerably

among electrophysiology centers, future studies are needed to prospectively validate and

compare CA outcome prediction scores in independent external cohorts in order to determine

their relative predictive ability for post-CA recurrence, and establish their applicability in

everyday clinical practice.
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6 SPATIOTEMPORAL SIGNAL PROCESS-

ING METHODS FOR BSPM

6.1 INTRODUCTION

In contrast to the many studies that have analyzed the 12-lead electrocardiogram (ECG) for the

study of atrial fibrillation (AF), relatively few have developed AF analysis tools for body-surface

potential map (BSPM) signals. Despite the development of these 12-lead ECG based indices,

to our knowledge, the use of ECG for AF in clinical practice is still limited to its diagnosis

(Lankveld et al., 2014). The traditional 12-lead ECG was designed to capture mainly ventricular

activity (VA), therefore, BSPM signals could harbor additional information from the atrial

activity (AA) relevant for AF analysis.

Various studies have performed analyses of BSPM data for the study of AF. For example,

(Bonizzi et al., 2010) applied principal component analysis (PCA) to BSPM data and proposed

two novel parameters derived from the resulting PCA mixing matrices to quantify complexity

and stationarity in BSPM recordings, finding a significant inverse correlation between the two.

It was additionally found that these parameters formed clusters for organized vs. disorganized

AF, but no further clinical application was proposed by the authors. The study in (Di Marco

et al., 2012) proposed four parameters to quantify spatial organization, variability, spectral

concentration, and spectral variability of BSPM signals. They found that greater spatial

organization was associated with reduced variability of spatial organization over time, and

that lower spectral variability was associated with increased spectral concentration. However,

the clinical impact of the parameters was not assessed. Later, (Meo et al., 2018) proposed

the non-dipolar component index (NDI), which was calculated as the residual variance not

accounted for by the first three principal components (PCs) of concatenated TQ segments of

BSPM signals. It was found that the NDI correlated with AF complexity and AF termination at

the end of catheter ablation (CA) procedures. However, correlation with clinical CA outcome

was not reported, and the NDI leaves unexploited the temporal variability of BSPM signals

found to be indicative of AF organization in (Bonizzi et al., 2010; Di Marco et al., 2012). These

parameters do however show promise for capturing information from BSPM signals relevant

for the computational analysis of AF signals. Additionally, they are all linked in that they use

PCA in the computation of their indices. However, insufficient attention has been paid to the

temporal aspect of the data, with most of the parameters using concatenated TQ segments.

While this method has merit as it eliminates the possibility of interfering VA, it precludes a

temporal analysis, and we aim to address this with our novel indices.
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Despite the above research, the use of BSPM for persistent AF treatment remains limited in

clinical practice, and there are not many tools available for its efficient analysis. Apart from

its use in electrocardiographic imaging (ECGI), the clinical advantage of BSPM over 12-lead

ECG signal analysis for AF remains unclear. In this study, we draw on the above research to

propose two novel indices also employing PCA: error ratio, normalized root-mean square

error (ERNRMSE) and error ratio, mean absolute error (ERABSE), which exploit spatiotemporal

information in BSPM recordings. The indices make use of the full set of BSPM electrodes

by measuring how well only a subset of electrodes can represent AA on all BSPM electrodes

compared to the optimal PCA-representation. The indices also encapsulate the temporal

variability of the AA using long-duration BSPM recordings. We hypothesized that when subsets

can represent AA nearly as well as the optimal PCA-representation, the AF is more organized

and stable with time, and thus more likely to respond well to CA treatment. When the optimal

PCA representation is much better than the electrode subset representation, we hypothesized

that this could be indicative of a disorganized AF that is more variable over time, manifested as

greater spatial variability in the recorded AA on the BSPM vest. In this way, we aim to provide

additional tools which efficiently utilize the large amount of data incurred when working with

BSPM recordings and show their clinical relevance for persistent AF disease quantification

through correlation with and prediction of single-procedure CA outcome. We first discuss

the study population and BSPM signal acquisition and pre-processing. An overview of the

novel indices and BSPM vest electrode subset selection required for their calculation is then

given. The statistical cross-validation protocol used to evaluate their clinical relevance is then

presented. Finally, the results, implications, and limitations of the study are discussed.

6.2 METHODS

6.2.1 STUDY POPULATION

We studied a total of 13 patients admitted for CA of drug-refractory persistent AF. Their

baseline characteristics are reported in Table 6.1. The CA endpoint was complete pulmonary

vein isolation (PVI). Electrical cardioversion was performed on patients still in AF after PVI

completion to restore sinus rhythm (SR). Patients were then monitored throughout a follow

up period and divided into two groups: (1) SR and arrhythmia recurrence (AR), according to

whether they experienced an AR within 6 months, but at least 2 months after undergoing CA.

The study protocol was approved by the Lausanne University Hospital Human Research Ethics

Committee, and all patients provided written informed consent.

6.2.2 BSPM SIGNAL ACQUISITION AND PREPROCESSING

BSPMs were recorded with a 252-lead vest (CardioInsight™ , Medtronic, MN, USA) at a sam-

pling frequency of 1 kHz in persistent AF patients the day before undergoing CA at Lausanne

University Hospital in Switzerland. A schematic of the vest is shown in Fig. 6.1. Mean signal
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Table 6.1: Study population baseline characteristics.

Characteristic n = 13

Sex (M/F) 8/5

Age, mean ± std, years 63 ± 8

Hypertension, n 6

Coronary artery disease, n 2

Heart Failure, n 3

Valvular Disease, n 3

Diabetes, n 2

Left ventricular ejection fraction, mean ± std, % 51 ± 13

Sustained AF duration, mean ± std, months 11 ± 13

std, standard deviation

recording duration was 17 ± 4 minutes. Electrode contact and signal quality varied consider-

ably over the course of the recording duration. Recordings were therefore visually inspected,

and one-minute segments with good signal quality were extracted from the long duration

recordings for further analysis. Remaining leads with poor signal quality were removed (up

to 30 leads), and signals from high quality leads were used to estimate BSPM signals at the

removed locations using interpolation. Recordings were then processed for removing baseline

drift and high frequency noise (bandpass filter 1-30 Hz). R-peaks were detected and QRST

delineation was performed in each lead using an open source ECG delineation toolbox (Pilia

et al., 2021). In order to evaluate BSPM signals free of ventricular interference and enable

a temporal analysis, the spatiotemporal method for QRST cancellation was applied (Stridh

and Sornmo, 2001), described in detail in Appendix A. This method, which operates on a

single-beat, multi-lead basis, was chosen due to its exploitation of multiple leads and its tested

performance (Langley et al., 2006). Clustering was applied to QRST complexes across all leads,

so that the complexes used in each ensemble average had similar shapes. The extracted one-

minute atrial activity BSPM segments (AA-BSPM) devoid of VA were then further normalized to

have zero mean and unit variance, and low-pass filtered by a 10th order Butterworth filter with

a cutoff frequency of 30 Hz to eliminate signal discontinuities introduced by spatiotemporal

VA cancellation. An example of a BSPM signal before and after AA extraction is shown in

Fig. 6.2. The power spectral densities (PSD) of all AA-BSPM segments were computed using

a Welch periodogram (2-second Hamming window with a 4096 Fast Fourier transform per

window and 50% window overlap) to determine the body surface distribution of the atrial DF.

The DF was defined as the highest peak in the power spectrum.
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(a) BSPM vest - front (b) BSPM vest - back

Figure 6.1: BSPM vest. CardioInsight™ BSPM vest with 252 unipolar electrodes. The reference
electrode is not shown. (A) Anterior part of vest with 126 electrodes. (B) Posterior part of vest
with 126 electrodes.

6.2.3 AA-BSPM RECONSTRUCTION USING A SUBSET OF BSPM ELECTRODES

The purpose of this section is to describe how only a subset of vest electrode signals may

be used to reconstruct the signals on all vest electrodes, as this is an important concept in

the development of the novel indices ERNRMSE and ERABSE (elaborated in Sec. 6.2.5). Each

AA-BSPM segment may be represented by a matrix X ∈ Rm×n , with m consecutive samples

in the rows, and n synchronously recorded signals in the columns, one from each BSPM vest

electrode. Given an arbitrary subset of signals recorded on k vest electrodes, S ∈Rm×k , k < n,

the minimum least-squares transformation of the subset matrix S to approximate the full

BSPM signal matrix X is given by:

argmin
A

||X −S A||2F (6.1)

whose known solution is A = S+X , where (·)+ and || · ||F denote the Moore-Penrose pseudoin-

verse and the Frobenius norm of a matrix, respectively. Then, to represent the full BSPM signal

matrix X as accurately as possible, one should aim to find a subset S of vest electrode signals

such that the AA-BSPM segment X is best represented by S, most commonly in terms of the

Frobenius norm:

argmin
S

||X −SS+X ||2F (6.2)

Finding the subset S is thought to be an NP-hard problem, with
(n

k

)
solutions, (Altschuler

et al., 2016; Civril, 2014). Therefore, finding the optimal solution would involve searching

the
(n

k

)
solutions, which for n and k of reasonable size is not feasible. The goal for electrode

subset selection is then to find good, but not necessarily optimal subsets, and this will be

discussed in the next section. An upper limit on the performance of a subset of k electrode
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Figure 6.2: Atrial activity extraction on BSPM In black, the original recorded signal on vest
lead 56, which corresponds to lead V1 of the standard 12-lead ECG configuration. In red, the
signal after spatiotemporal QRST cancellation.

signals for reconstructing the signals on all n electrodes is given by reconstruction using the

first k principal components (PCs), since the explicit goal of PCA is to minimize the Frobenius

reconstruction criterion. The PCs may be obtained efficiently by singular value decomposition

(SVD) of X , X =UΣV T . The first k PCs are the columns of the matrix UkΣk , where Uk contains

the first k columns of U , and Σk contains the k ×k upper-left portion of Σ. The corresponding

rank-k reconstruction of X is given by:

Xk =UkΣkV T
k (6.3)

where Vk contains the first k columns of V . Then the minimum approximation error ||X −Q||2F
which can be attained by an arbitrary rank-k matrix is achieved when Q = Xk . Note that each

PC is a linear combination of the signals on all n electrodes of X . Therefore, the rank-k PCA

solution Xk is distinct from reconstruction using a subset S of k vest electrode signals and

serves only as an upper bound to compare how well a given S captures the information on all

BSPM electrodes.
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6.2.4 ELECTRODE SUBSET SELECTION AND COMPARISON

The purpose of this section is to describe the different subsets of vest electrodes we used

for the calculation of the novel indices ERNRMSE and ERABSE, which will be elaborated in the

next section. We also describe the characterization of the vest electrode subsets in terms

of their capacity to accurately represent AA-BSPM signal information on all vest electrodes

and compare this to the optimal PCA representation, as this is an important concept for the

understanding of the novel indices.

(1) Sequential This algorithm was first proposed by (Lux et al., 1978) and later used by

(Guillem et al., 2008, 2009) for selecting electrode subsets from a wider array of body vest

electrodes. As its name suggests, this sequential approach greedily chooses electrodes one after

the other, at each step picking the column containing the electrode signal which minimizes

the reconstruction error, i.e., Eq. 6.2. This algorithm is in no way guaranteed to be optimal,

since at each step it only considers that one additional electrode must be selected, rather

than considering the entire subset. However, it can be relatively efficient (Altschuler et al.,

2016; Farahat et al., 2011) and in general has had good performance for electrode selection.

Therefore, it was chosen for use in this study. We call SEQk the subset of k vest electrodes

(columns) chosen sequentially from the BSPM signal matrix X , for k = 8 : 30 electrodes. The

lower limit of k = 8 electrodes was chosen to equal the number of independent leads used in

the standard ECG, and the upper limit of k = 30 electrodes was chosen as a result of suggestions

that roughly 30 electrodes are necessary to accurately represent AA in AF (Guillem et al., 2009).

(2) Standard ECG A subset of BSPM vest electrodes closest to the positions of the six

precordial leads plus two limb leads used in the standard 12-lead ECG was extracted. We refer

to this subset, which contains 8 electrodes, as ECG8.

(3) Augmented ECG Additionally, there have been suggestions that posterior electrodes

may be desirable to better capture left atrial activity in AF. Therefore, a subset of vest electrodes

closest to the augmented ECG suggested in (Petrutiu et al., 2009) consisting of the eight

electrodes in the ECG8 subset plus 3 posterior electrodes, V8, V9, and V10 in the same horizontal

plane as V6, was tested. We refer to this subset, which contains 11 electrodes, as ECG11.

Subsets were compared regarding how well they could represent the full BSPM signal matrix

as follows. SEQ8:30, ECG8, ECG11, and PCA8:30 subset reconstructions were calculated for

five-second windows of each AA-BSPM segment. Given X̂ the reconstruction (Eq. 6.2) and X

the full BSPM signal matrix for a window, two error measures were calculated and averaged

over all windows in a segment. The first was the normalized root-mean square reconstruction

error (NRMSE), given by:

NRMSE = ∥X − X̂ ∥F

∥X ∥F
(6.4)

The second was the mean absolute difference (ABSE) across all electrodes between the atrial

DF on each vest electrode signal of X and X̂ , where the DF was obtained as described at the
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end of the previous section:

ABSE = 1

L

l=L∑
l=1

∣∣DF(X (:, l ))−DF(X̂ (:, l ))
∣∣ (6.5)

where L = 252 vest electrodes in our case. The above measures were calculated on five-second

windows of the one-minute AA-BSPM segments extracted from each patient and then averaged

over all windows, for X̂ found for the ECG8, ECG11, and SEQ8:30 subsets determined for each

window. Finally, for comparison, the above measures were calculated for X̂ = Xk , the rank-k

PCA reconstruction as described in Eq. 6.3 for k = 8 : 30.

6.2.5 NOVEL SPATIOTEMPORAL INDICES ERNRMSE , ERABSE

The purpose of this section is to combine the concepts discussed in Secs. 6.2.3 and 6.2.4 to

introduce the novel indices ERNRMSE and ERABSE. These indices quantify the capacity of a

subset of BSPM vest electrodes to accurately represent the AA, and the atrial DF, respectively,

on all BSPM electrodes over time, compared to the optimal PCA representation of the same

rank as the electrode subset.

For the calculation of the indices, the one-minute AA-BSPM segments were divided into

windows of five-seconds as in Sec. 6.2.4. The SEQ8 and SEQ11 subsets were obtained for the

first window, and reconstructions were obtained on subsequent windows using these subsets

and the corresponding matrices A from Eq. 6.1 determined for the first window. Concretely,

for the first five-second window, the solution to Eq. 6.1 is A1 = S1
k X 1, where X 1 is the full BSPM

signal matrix for the first window, and S1
k contains the signals on a subset of k vest electrodes.

The reconstruction for the i th window X i is given by X̂ i = Si
k A1, where Si

k contains the signals

of X i on the SEQ8,11 subset electrodes determined for the first five-second window X 1, or the

ECG8/ECG11 subset electrodes. In addition, the optimal rank-k (k = 8,11) PCA reconstruction

for each window, X i
k , was determined as previously described, using the first k PCs, which

we refer to as PCAk. Then, the first index, ERNRMSE, is given by the ratio of the reconstruction

error obtained using SEQ8, SEQ11, ECG8, or ECG11, and the optimal same-rank reconstruction

obtained with PCA8 or PCA11:

ERNRMSE,i =
∥X i − X̂ i∥F

∥X i −X i
k∥F

(6.6)

The second index, ERABSE, is given by the ratio of the mean-absolute error between the atrial

DFs extracted on each electrode of the subset vs PCA reconstructions:

ERABSE,i =
∑l=L

l=1

∣∣DF
(
X i (:, l )

)−DF
(
X̂ i (:, l )

)∣∣∑l=L
l=1

∣∣DF
(
X i (:, l )

)−DF
(
X i

k (:, l )
)∣∣ (6.7)

The above indices were calculated on each five-second window following the first window

of the one-minute AA-BSPM segments, then averaged across all windows, for one value per

one-minute AA-BSPM segment. We chose to calculate these indices for the SEQ8 and SEQ11
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subsets to allow a direct comparison with the standard and augmented ECG subsets, ECG8

and ECG11.

We hypothesized more organized, easier to treat forms of AF should have lower error ratios

(ER), indicating stability in the AF dynamics between windows. This is because for lower ERs,

the subset of electrodes chosen for the first window and A1 permit a reconstruction of the i th

window that is closer to the optimal PCA reconstruction of the same rank. As a comparison to

another BSPM index utilizing PCA for AF analysis, we calculated the NDI proposed by (Meo

et al., 2018), which was found to be useful for quantifying AF complexity, choosing patients

eligible for AF ablation and assessing therapy impact. The NDI was calculated as the residual

variance not accounted for by the first three PCs of each AA-BSPM window. Note also that this

index uses only PCA and therefore is not dependent on any particular subset of electrodes.

6.2.6 PERFORMANCE METRICS AND STATISTICAL ANALYSIS

The purpose of this section is to describe how the different electrode subsets introduced in

Sec. 6.2.4 were compared in terms of their capacity to accurately represent AA-BSPM signal

information on all vest electrodes compared to the optimal PCA representation. We also

describe the methods used to quantify the relationship between the indices ERNRMSE, ERABSE

and NDI, and single-procedure CA success rate.

Calculated values of continuous parameters are expressed as mean ± standard deviation.

The statistical distributions of all parameters were checked using a Lilliefors test. Statistical

inter-group differences were calculated as mean p-values across 3-folds, with 20% of the

parameter values left out of each fold. One-way analysis of variance (ANOVA) was used for

normally distributed data, or Wilcoxon’s rank sum test was used for non-normally distributed

data. Statistical tests were performed across folds to reduce the likelihood of chance group

differences due to a small data set, and statistical significance was considered for p-values less

than 0.05. For comparing the different electrode subsets in terms of their capacity to accurately

represent AA-BSPM segments, we checked for statistical differences of the NRMSE and ABSE

parameters calculated using the different electrode subsets (SEQk , ECG8, ECG11), or using

the corresponding number of PCs (PCAk ). For comparing the relationships between single-

procedure CA outcome and ERNRMSE, ERABSE, and NDI, we checked for statistical differences

between these indices calculated for AA-BSPM segments associated with AR and SR outcome

groups.

For indices ERNRMSE, ERABSE, and NDI displaying statistically significant differences be-

tween groups, univariate logistic regression classifiers were used to test their predictive power

for single-procedure CA outcome. We used group-wise 3-fold cross-validation (CV) to ensure

that indices calculated from different AA-BSPM segments of the same patient were only as-

signed to either the train or test set (80/20) for each fold. The resulting receiver operating

curves (ROC) were analyzed to obtain area under the curve (AUC) to compare the predictive

power of each index. We reported the AUC for AA-BSPM segment-wise classification as mean
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± standard deviation over all CV folds, and the sensitivity and specificity were reported for

the optimal classification threshold value determined through ROC analysis. The sensitivity

and specificity were the fraction of true positive and true negative cases correctly identified,

respectively, where AR was considered a positive case, and SR was considered a negative case.

6.3 RESULTS

6.3.1 STUDY POPULATION

At the time of this study, clinical outcome information was available for 11 patients, 6 of whom

experienced an AR (55%) (3.4 ± 0.9 months post-CA). Therefore, only BSPM data from 11

patients were available for the part of the study associating the novel indices to CA outcome.

Patients experiencing an AR were offered repeat procedures, however, in this study, only

signals recorded prior to the first procedure and associated clinical outcomes were analyzed.

Seven high quality one-minute AA-BSPM segments were extracted from the long duration

BSPM recordings of each patient. Therefore, 91 one-minute AA-BSPM segments were available

for the analysis with results described in Sec. 6.3.2, and 77 AA-BSPM segments for the results

described in Secs. 6.3.3, 6.3.4, with each segment associated with an SR or AR outcome.

6.3.2 AA-BSPM RECONSTRUCTION WITH BSPM ELECTRODE SUBSETS

A representation of the spatial distributions of the SEQ8, SEQ11, ECG8, and ECG11 subsets

used for AA-BSPM reconstruction is shown in Fig. 6.3. For each subset type, the color of each

electrode represents its occurrence in all the subsets used to calculate NRMSE and ABSE, that

is, in what ratio of the tested subsets the electrode was included. It can be seen in Fig. 6.3a,

b, that for SEQ subsets, both anterior and posterior electrodes were included in the subsets,

with certain torso regions (upper and lower) being less represented in the subsets, while the

mid-section regions were in general more represented. For the ECG subsets, the same subset

of electrodes was applied to each five-second window of AA-BSPM data, as seen in Figs. 6.3c,

d.

The similarity between reconstructed and original BSPM signals is shown in Fig. 6.4. A

five-second window of a signal recorded on vest lead 57, close to the position of precordial

lead V1, as well as its optimal least-squares reconstructions using the ECG8 and SEQ8 subsets

associated with the window and its PCA8 reconstruction are demonstrated in Fig. 6.4a. It can be

seen that morphological characteristics of the signal were mostly captured in the reconstructed

signals. However, the amplitude of the recorded signal was not perfectly reconstructed. The

power spectral densities of the original and reconstructed signals are shown in Fig. 6.4b. It

can be seen that the DF was correctly captured on this electrode. The NRMSE and ABSE as a

function of number of electrodes included in the subsets are shown in Figs. 6.4c, d, taken as a

mean across all patients, with error bars representing the 95% confidence interval. In addition,

the PCAk reconstruction obtained for k PCs equaling the number of electrodes is shown. As
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Figure 6.3: Subset electrode occurrence. Occurrence of each electrode in the (a) SEQ8, (b)
SEQ11, (c) ECG8, and (d) ECG11 subsets. The color of each electrode indicates its occurrence in
all of the subsets used to calculate reconstruction performance measures, where, for example,
1 indicates the electrode was present in every subset tested, and 0.1 indicates the electrode
was present in 10% of subsets.

expected, reconstructions using ECG8 and ECG11 subsets had higher NRMSE and ABSE values

than reconstructions using SEQ8 and SEQ11, and this difference was statistically significant

(p < 0.01). In addition, it can be seen that PCAk reconstruction consistently performed better

than SEQk reconstruction, and this difference was also statistically significant for k = 8 : 30,

(p < 0.01).

6.3.3 BSPM AF SPATIOTEMPORAL INDICES AND CA OUTCOME

For the analysis of ERNRMSE and ERABSE, only the indices calculated using SEQ8, SEQ11, PCA8,

and PCA11 were used, to allow for comparison with ECG8 and ECG11. Shown in Fig. 6.5 are the

(a) ERNRMSE, (b) ERABSE, and (c) NDI values according to CA outcome. The associated mean

± standard deviation values of the indices are shown in Table 6.2. There was a statistically

significant difference in the NDI value between the SR and AR groups, with NDI greater in the
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Figure 6.4: Atrial activity reconstruction. (a) A five-second window of the original recorded
(in grey) and reconstructed signals, for vest electrode 57, close to V1. Reconstruction with the
ECG8 subset (green), SEQ8 subset (blue), and PCA8 (orange). (b) The corresponding power
spectral densities (PSD) of the original recorded and reconstructed signals. (c) Normalized root-
mean square reconstruction error (NRMSE), and (d) mean absolute error (ABSE), as a function
of number of principal components or vest electrodes used in subset for reconstruction.
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(a) (b) (c)

*
** ** * *

*

*

Figure 6.5: BSPM indices by ablation outcome. BSPM analysis indices, grouped according
to clinical outcome. (a) Error ratio NRMSE to PCA (ERNRMSE); (b) Error ratio ABSE to PCA
(ERABSE); (c) Non-dipolar component index (NDI). Significant differences between AR and SR
outcome means are indicated by asterisks. (*p < 0.05, **p < 0.01.)

SR group. Greater ERNRMSE values were associated with AR following single-procedure CA,

while lower ERNRMSE values were associated with SR, for all electrode subsets tested. Finally,

for ERABSE, greater values were again observed for AR than SR, with statistical significance

only for the ECG8 and SEQ11 subsets.

Table 6.2: ERNRMSE, ERABSE, and NDI values by vest electrode subset. ERNRMSE, ERABSE, and
NDI values by vest electrode subset (not applicable for NDI) and single procedure CA outcome,
expressed as mean ± standard deviation. p-values were computed as means across three folds
of data, in which a p-value for the statistical significance between index values by outcome
was computed using 80% of the AA-BSPM segments in each fold.

ERNRMSE ERABSE

SR AR p-value SR AR p-value

SEQ8 1.349±0.034 1.385± 0.053 0.01 1.352±0.078 1.38±0.096 0.294

ECG8 1.499±0.091 1.589±0.102 0.008 1.607±0.171 1.796±0.253 0.045

SEQ11 1.464±0.041 1.515±0.075 0.002 1.448±0.093 1.497±0.159 0.033

ECG11 1.605±0.082 1.667±0.100 0.037 1.7±0.15 1.76±0.351 0.107

NDI

SR AR p-value

0.517±0.07 0.484±0.041 0.018

6.3.4 PREDICTIVE POWER OF SPATIOTEMPORAL INDICES FOR OUTCOME CLASSIFICATION

A summary of the ROC analysis of the NDI, ERNRMSE, and ERABSE parameters for prediction

of CA outcome is shown in Table 6.3. Note that sensitivity and specificity values are shown

for segment-wise classification. It can be seen that ERNRMSE displayed the most consistent

performance across folds and electrode subsets, with AUC = 0.77±0.08, sensitivity = 76.2%,
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and specificity = 84.8% for ERNRMSE calculated with the SEQ11 electrode subset. Despite

the associations between NDI and ERABSE and CA outcome, the predictive performances

of these indices were not as consistent as for ERNRMSE. The ROC curves associated with

ERNRMSE calculated for each subset are shown in Fig. 6.6. The ROC curves associated with NDI

and ERABSE are not shown due to their lower performance; refer to Table 6.3 for the results

associated with these indices.

Table 6.3: Predictive power of BSPM indices for CA outcome. Predictive power of BSPM
indices for CA outcome for each of the tested subsets. Sensitivity and specificity indicate the
rate of detection of arrhythmia recurrence and sinus rhythm 6 months post single-procedure
CA, respectively. AUC, area under the curve

AUC (mean±std) Sensitivity (%) Specificity (&)

ERNRMSE

SEQ8 0.72±0.09 61.9 84.8

ECG8 0.81±0.26 64.3 98.9

SEQ11 0.77±0.08 76.2 84.8

ECG11 0.69±0.28 57.1 84.8

ERABSE

ECG8 0.76±0.23 57.1 98.9

SEQ11 0.52±0.29 28.6 98.9

NDI

0.37±0.45 33 98.9

To further test the efficacy of ERNRMSE, we repeated the statistical comparison and predictive

performance analysis for SEQ subsets with 8 to 30 electrodes, to see whether performance

changed for different numbers of electrodes included in the SEQ subset. The results are shown

in Figs. 6.7 and 6.8. It can be seen in Fig. 6.7a that the ERNRMSE was greater in the AR group

than SR group when calculated with all SEQ8:30 subsets. However, this difference was only

statistically significant for ERNRMSE calculated with SEQ8:24 subsets, as shown in Fig. 6.7b, with

the p-values from significance testing transformed as −log10(p)
max(−log10(p)) to allow for a graphical

representation. In Fig. 6.8 are shown AUC values associated with the ROC analysis of the

ERNRMSE calculated with SEQ8:30 subsets. It can be seen that the AUC increased, and variance

of the AUC decreased, for up to 15 electrodes included in the SEQ subset. For more than 15

electrodes, the AUC generally decreased, and variance of the AUC increased.

6.4 DISCUSSION

In this study, we developed two novel, fully spatiotemporal indices for the efficient processing

of long-duration BSPM signals collected from patients with persistent AF. The use of spa-
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(a) (b)

(c) (d)

Figure 6.6: ERNRMSE ROC analysis. ROC analysis for ERNRMSE for predicting CA outcome
calculated with (a) SEQ8; (b) ECG8; (c) SEQ11; and (d) ECG11 vest electrode subsets. The
optimal tradeoff between true positive rate and false positive rate is indicated by a black dot.
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(a) (b)

Figure 6.7: Statistical significance by number of subset electrodes. (a) Representation of p
values associated with statistical comparison of ERNRMSE mean values for AR and SR patient
groups. The p = 0.05 and p = 0.01 significance levels are indicated by dashed lines; (b)
ERNRMSE values grouped according to clinical outcome, calculated with SEQ8:30 subsets.

tiotemporal ventricular activity cancellation rather than short, nonconsecutive TQ segments

allowed the incorporation of a temporal component in the analysis. By combining PCA and

the temporal component, a true spatiotemporal characterization was achieved. To the best

of our knowledge, this is the first study to propose indices exploiting temporal irregularity in

long-duration BSPM recordings for persistent AF analysis, with a view to predicting AR follow-

ing single procedure CA. The selection of which electrodes to use for the calculation of the

novel indices can be automatically performed using the sequential subset selection method,

or can be adapted for different subsets of electrodes, such as the standard or augmented ECG

lead configurations. Finally, in our study, we have investigated the relationship between the

proposed novel indices and their correlation with and predictive power for CA outcome. We

found that a mean AUC of up to 0.8 may be achieved for predicting arrhythmia recurrence in

persistent AF patients who underwent single-procedure CA for the novel index ERNRMSE.

6.4.1 ELECTRODE SUBSET CAPACITY TO REPRESENT AA-BSPM

PCA-based indices have been used extensively in ECG signal processing (Castells et al., 2007),

with applications including extraction of atrial fibrillatory waves, quantification of AF spatial

complexity and organization, and efficient analysis of BSPM data. In this study, we have

included a framework for understanding how PCA-based reconstruction of AA-BSPM signals

compares to reconstruction using a subset of vest electrode signals. The use of vest electrode

reconstruction was based on previous studies, which have demonstrated that the full BSPM

signal matrix may be projected onto a smaller matrix containing only a subset of BSPM vest

electrode signals (Lux et al., 1978; Guillem et al., 2008, 2009; Feng et al., 2019). The resulting

reconstruction error between the original and projected matrices has been shown to depend

on the number of electrodes included in the subset, as well as the type of BSPM signals. For

example, Guillem et al. (2009) found that with the same number of electrodes, reconstruction

error was lower for ventricular than atrial activity. In our study, as the number of electrodes
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Figure 6.8: ERNRMSE predictive performance. Mean and standard deviation of the area under
the ROC curve (AUC) computed using three cross-validation folds, for ERNRMSE performance
for predicting CA outcome when calculated with SEQ8:30 electrodes.

included in the ECG or SEQ subsets increased, the NRMSE and ABSE both decreased, in line

with results from Guillem et al. (2009). We also showed for the first time in our study the same

trend for optimal PCA reconstruction. It can be noted that for all numbers of electrodes tested,

there was a greater overlap between the ABSE values than NRMSE values between the different

subset types. This could be because the reconstruction method used optimized for NRMSE,

and not ABSE.

Regarding the comparison of different BSPM electrode subsets, it was found that SEQ

subsets more accurately represented BSPM signal data than standard and augmented ECG

subsets in both signal domains, manifested through lower NRMSE and ABSE values for both

k = 8 and k = 11 electrodes included in the vest subset. This reinforces the idea that standard

ECG electrode configurations are not optimal in terms of accurately representing the full

BSPM signal matrix. Since results from previous works have suggested that the addition of

posterior electrodes may be useful to better reflect left atrial activity in AF (Ihara et al., 2007;

Petrutiu et al., 2009; Buttu et al., 2013; Guillem et al., 2013), we did include the augmented

ECG11 subset. Interestingly, it was found that the decrease in reconstruction error between the

ECG8 and ECG11 subsets was greater than the decrease in error between the SEQ8 and SEQ11

subsets, lending support to the argument that the addition of carefully positioned posterior

electrodes may indeed be beneficial for representing AA-BSPM data. Additionally, it was found

that PCA-based reconstruction performed better than electrode subset based reconstruction,

in both the temporal and frequency domains. This is to be expected, since PCA explicitly

optimizes for the reconstruction criterion. However, this remains an important result since
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to our knowledge, the gap between electrode subset and PCA reconstruction had not been

previously investigated.

6.4.2 STATISTICAL COMPARISON OF NOVEL INDICES

The finding in our study that ERNRMSE, ERABSE, and NDI all showed statistically significant

differences between AA-BSPM segments associated with AR or SR outcomes demonstrates

that each of these indices shows some potential to be used as computational tools for AF

disease management. Since calculation of ERNRMSE and ERABSE required selection of a subset

of vest electrodes, these indices were calculated for standard and augmented ECG subsets

(ECG8 and ECG11, respectively), as well as for sequentially chosen subsets (SEQ8 and SEQ11),

which differed between AA-BSPM segments, to test the robustness of the indices with respect

to both which and how many electrodes were included in the subsets.

Many previous studies have investigated capturing AF information using surface recorded

ECG signals, however, most often using a single or limited number of leads. This prevents

the exploitation of the spatial diversity of multi-lead ECGs and is dependent on the available

electrode signal containing information representative of the underlying AF. Since electrode

placement cannot be exact, and patient anatomy varies widely, this is not always guaran-

teed. Further, it has already been shown that inclusion of multiple leads is beneficial, leading

to greater correlation between calculated 12-lead ECG indices and AF complexity and out-

comes (Meo et al., 2013; Zarzoso et al., 2016). The idea in this study was therefore to add to

the limited number of BSPM indices for AF analysis, integrating both temporal and spatial

information.

Bonizzi et al. (2010) showed that reconstruction error using the PCA rank-3 approximation

of TQ segments of BSPM signals recorded during AF was capable of separating AA signals into

clusters based on levels of AF organization, with greater reconstruction error corresponding to

higher AF complexity and lower stationarity. Later, Di Marco et al. (2012), using PCA-based

indices, found that higher spatial organization, indicating easier to treat forms of AF, was

correlated with more temporally stable atrial activation patterns. We hypothesized that lower

ERNRMSE values would therefore be observed among SR patients, indicating more stability

in the AF dynamics between BSPM windows, and this was indeed the case. The finding that

ERNRMSE displayed greater values in AR AA-BSPM segments than SR segments for all four

electrode subsets lends support to its use as a robust index for predicting single-procedure

AF outcome. Further, Di Marco et al. (2012) also found that greater temporal variability was

associated with lower spectral concentration. Therefore, we hypothesized again that lower

ERABSE values would be observed for SR patients. While the ERABSE calculated for AR patients

was greater than that for SR patients, this difference was only statistically significant for two

of the electrode subsets tested, potentially making it less robust than ERNRMSE. This lower

robustness could relate to the finding discussed above that there was a greater overlap in ABSE

values calculated for subset vs. PCA reconstruction.
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The NDI was unexpectedly found to be greater for SR segments than AR segments, meaning

that the remaining variance unexplained by the first three PCs of the BSPM signal data was

on average greater for SR segments than AR segments. This is contrary to the results of Meo

et al. (2018), who found smaller NDI values in concatenated TQ segments of BSPM data

collected from patients with successful procedural CA outcome. Several key differences in

our study could explain the contradictory results, including our use of longer duration AA-

BSPM segments rather than concatenated TQ segments. Additionally, the study by Meo et al.

(2018) compared NDI values calculated for procedural outcomes, while in this study we used

single-procedure clinical outcomes. Future studies testing the NDI may shed light on this

discrepancy.

6.4.3 ASSESSMENT OF CLINICAL IMPACT OF NOVEL INDICES

The clinical impact of the indices tested in this study depends not only on their association with

CA outcomes but also their ability to predict CA outcomes. Therefore, we tested classification

performance of univariate logistic regression classifiers for ERNRMSE, ERABSE, and NDI. The

use of group-wise CV was important to ensure AA-BSPM segments extracted from the same

patient were included only in either the train or test set of each fold. Reporting both mean

and standard deviation values of the AUC for each classifier also gave an indication of the

CA outcome prediction model variance for different folds of the data. These were important

features of our methodology considering the small-size of our data set.

Importantly, only ERNRMSE displayed consistent results in predictive power across tested

vest electrode subsets. The AUCs for this index calculated with each subset (SEQ8: 0.72±0.09,

ECG8: 0.81±0.26, SEQ11: 0.77±0.08, ECG11: 0.69±0.28) were as good or better than the AUC as-

sociated with NDI (0.69), found by Meo et al. (2018), and the model variance was not reported

in their study. Additionally, the study by Meo et al. (2018) also tested prediction performance

for NDI combined with clinical parameters, achieving an AUC of 0.7. Our results were also

as good or better than those described by Lankveld et al. (2016), in which predictive perfor-

mance varied from AUC=0.76±0.15 for 12-lead ECG derived complexity parameters alone to

AUC=0.79±0.13 for ECG plus clinical parameters. Additionally, the results were in line with

those obtained by Zeemering et al. (2018), for which an AUC of 0.66, 95% confidence inter-

val [0.64-0.67] was obtained for the best ECG parameter studied (dominant atrial frequency

in lead II). The study also reported better performance when several ECG parameters were

combined (AUC 0.78 [0.76-0.79]), and best performance for combining ECG plus clinical pa-

rameters (AUC=0.81 [0.79-0.82]). It is important to note that the variance across CV folds was

less for ERNRMSE calculated with SEQ subsets compared to ECG subsets, and in general lower

than model variances reported in other studies. This result was also found to be true in our

additional analysis calculating ERNRMSE with SEQ8:30 electrodes, finding high predictive per-

formance for nearly all numbers of electrodes included in the subset. That ERNRMSE showed

the best results and lowest variance when calculated with SEQ electrode subsets could indicate

that when working with BSPM signals, an informed patient or segment specific selection of
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subset electrodes may be useful, for example using the sequential algorithm. This is logical

given the nonstationary nature of BSPM recordings in AF. This was further supported by the

lack of a clear pattern of specific electrodes included in the SEQ subsets as seen in Fig. 6.3;

rather, certain regions of the vest contain electrodes picked by the sequential algorithm more

often than other regions. The finding that specificity was generally higher than sensitivity

across all indices tested could indicate that this index would be more useful for selecting which

patients would be most likely to benefit from CA, as opposed to selecting those least likely

to benefit. Note that specificity was also higher than sensitivity for the NDI in the original

study (Meo et al., 2018). The other two indices appear less robust to predict CA outcome, with

low AUC and sensitivity values for NDI. For ERABSE, the results appear more promising, but

still displaying relatively low sensitivity and more variable AUC values across CV folds than

ERNRMSE.

These results all point towards the potential value of ERNRMSE as a clinically useful tool that

could be used to analyze BSPM data in persistent AF. If confirmed by future studies, the use

of ERNRMSE could be important in assisting in prediction of successful CA outcomes, which

would be useful for improving informed decision-making regarding treatment for persistent

AF. This would be particularly important given the low success rate of CA for treating persistent

AF. Finally, the added clinical value of using BSPM data in AF remains unclear, as evidenced by

its being largely limited to research use (Salinet et al., 2021). However, if indices calculated

using BSPM data, such as ERNRMSE, could be shown to be consistently associated with and

good predictors of CA outcomes, this could confirm the validity of using BSPM data for AF

analysis.

6.4.4 LIMITATIONS

The study population, at 13 patients, and 11 patients with clinical outcome data, was small;

however, the effort in obtaining BSPM recordings is considerable, due to the high number

of electrodes which must be used. The use of group-wise CV on segments of data extracted

from each patient did however permit a robust analysis using this data set. In addition,

the randomized inclusion criteria enhances our conclusions on BSPM AF characterization,

though this may not be representative of the general characteristics of a wider population.

Given the variation in experimental set up and parameters used, comparing with parameters

from previous studies was challenging, and a more systematic study would be required for

integration of the contributions of this work into clinical practice. Further, the small size

of the population precluded the analysis of correlation with clinical indices, or whether the

proposed indices could be combined with clinical indices for predicting CA outcome, as it

has been shown previously in several studies that combining ECG-based indices with clinical

parameters yields the best clinical performance (Lankveld et al., 2016; Zeemering et al., 2018;

Meo et al., 2018). Additionally, the follow-up duration was relatively limited, and again due to

the small study size, the impact of anti-arrhythmic medications could not be assessed since

these were used by most patients. Finally, while we have shown the usefulness of the proposed
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indices for predicting CA outcome, we were unable to examine these indices for quantifying

AF complexity due to a lack of available simultaneous intracardiac recordings.
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7 CONCLUSION

Atrial fibrillation treatment is subpar, especially for persistent AF patients whose quality of life

suffers the most. Decades of research have resulted in a better understanding of AF, but the

exact molecular mechanisms behind its genesis and progression remain unknown. Numerous

ECG and clinical biomarkers have been proposed through either direct or indirect correlation

with AF disease organization, complexity, disease dynamics and progression. Many of these

biomarkers have been tested for their association with AF outcome, and their performance as

independent predictors of AF termination by CA, and long-term maintenance of sinus rhythm

thereafter, has also been assessed. Using these results, several studies have built pre-ablation

predictive models consisting of several ECG biomarkers, several clinical biomarkers, or a

combination of both.

In this thesis, we collected ECG data in two persistent AF patient cohorts. In one cohort,

12-lead ECG was recorded, while in the other, BSPM ECG consisting of 252 leads was recorded.

Using this data, we calculated ECG biomarkers before and during catheter ablation, to evaluate

their utility as tools which could be used by clinicians to track progress while performing

ablation. We tested and validated ECG biomarkers correlated with AF disease complexity

for their association with and predictive power for AF termination by catheter ablation, and

long-term maintenance of sinus rhythm thereafter, showing in particular that HRV metrics

show promise as predictive ECG biomarkers for catheter ablation outcomes. Inspired by

signal processing techniques which exploit the spatial diversity of multi-lead ECG, we also

proposed two novel BSPM ECG biomarkers for the prediction of sinus rhythm maintenance

after catheter ablation. The work described in the main chapters of this thesis is summarized

below.

7.1 MAIN FINDINGS

In Chapter 4, we showed that two spatiotemporal electrocardiographic biomarkers, instan-

taneous frequency (IF) and adaptive organization index (AOI) measured noninvasively pre-

ablation indicated lower levels of AF organization in patients whose arrhythmia was not

terminated by ablation (NLT patients). These biomarkers were not however found to be asso-

ciated with AF recurrence in the follow-up period post-ablation. In other words, they were not

found to differ significantly between LTN and LTR patients. Additionally, we found that the

value of the biomarkers evolved over the course of CA, indicative of increased AF organization,

especially in patients with AF termination and long-term maintenance of sinus rhythm. These

results indicate that the IF and AOI measures could be used by clinicians to track ablation
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progress.

In Chapter 5, we showed that commonly used HRV metrics have the potential to be used

as ECG biomarkers for predicting AF outcomes. Changes in HRV metrics from pre-ablation

to the end of ablation indicative of increasing organization in the ventricular response were

associated with AF termination by CA; this was especially the case for recurrence measures.

In addition, we showed that lower HRV measured pre-ablation was not only associated with,

but also predictive of AF termination and long-term maintenance of sinus rhythm, finding

that SDNN performed especially well on our patient population. HRV analysis is much

easier to perform in a consistent manner than direct analysis of the atrial component of ECG

signals. Therefore, we believe it should be seriously considered in combination with clinical

biomarkers for the noninvasive quantification of AF refractoriness to CA.

Finally, in Chapter 6, drawing inspiration from biomarkers quantifying spatial and temporal

variability in the 12-lead ECG signal, we developed two novel ECG biomarkers, ERNRMSE and

ERABSE for the efficient processing of BSPM data recorded in AF. We tested these biomarkers

for their association with and predictive power for post-ablation AF recurrence. We compared

the performance of these biomarkers to another recently proposed BSPM biomarker, finding

superior performance in our novel biomarkers when tested on our patient population.

7.2 CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

ECG biomarkers associated with AF complexity evolve over the course of catheter ab-

lation, indicative of increased AF organization, especially in patients with arrhythmia

termination and long-term maintenance of sinus rhythm.

ECG biomarkers associated with AF complexity indicate higher levels of AF organization

pre-ablation in patients who, as a group, have their AF terminated by ablation and have

long-term sinus rhythm thereafter.

ECG biomarkers based on HRV analysis showed greater HRV, and lower heart rate

regularity, in patients who did not have their AF terminated.

The proposal of two novel BSPM biomarkers, which were shown to be associated with

and predictive of post-ablation AF recurrence.

7.3 GENERAL DISCUSSION AND PERSPECTIVES

Guidelines and research for AF treatment are constantly evolving. Forward looking approaches

to AF treatment focus on adapting to the needs and physiological presentation of each patient.

A recent publication (Noubiap et al., 2021) summarizing data on the association between
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key AF biomarkers and incident AF and adverse clinical events, i.e., stroke, in AF patients

highlighted the importance of genetic and molecular biomarkers in managing AF. The authors

described that these biomarkers are indicative of inflammation and oxidative stress, which

are thought to be key factors for AF incidence, progression, and response to treatment. The

authors suggest that these biomarkers could be used to improve early identification of AF type

(paroxysmal vs persistent), to aid in clinical AF risk stratification, and to predict outcomes

of rhythm-control therapies like catheter ablation. Specific clinical use cases described by

the authors include biomarkers guiding patient selection for extended ECG recordings and

implantation of a cardiac monitor for high risk patients.

Another review from 2013 describing treatment in 2033 (Gillis et al., 2013) noted that the

approach to AF management is general and focuses on stroke risk assessment and prevention,

arrhythmia management, and treating underlying causes. The authors of this study argued

that resulting AF management is based largely on intermittent snapshots of the presentation

of each patient’s arrhythmia, and that such an approach discounts the fact that AF is often

asymptomatic. They mention that a combination of ECG, clinical, and genomic biomarkers

would be required to take AF treatment from its current trial and error approach to a targeted,

individualized strategy. Additionally, to quote one of the largest studies to compare rate and

rhythm control strategies for AF from 2002, “AF is the most common sustained cardiac arrhyth-

mia, yet the optimal strategy for its management remains uncertain” (AFFIRM Investigators,

2002). Twenty years later, an AF review paper (Brundel et al., 2022) reads, “AF is the most

common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of

the condition and develop improved treatments. Identifying the underlying causative mecha-

nisms of in individual patients is difficult and the efficacy of current therapies is suboptimal.”

Therefore, while great strides have been made in understanding the molecular mechanisms

behind AF, the complicated nature of the disease, and the degree of inter-patient variability

observed impede the development of targeted and effective therapeutic strategies.

To our knowledge, biomarkers, ECG, clinical, genomic or otherwise, are still not used

for AF risk stratification and guiding AF treatment. It stands to be observed that for AF

biomarkers to be used in clinical practice, future studies to compare the most promising

proposed biomarkers in independent and external patient cohorts are needed. Only then

could their true predictive performance for AF termination by catheter ablation and sinus

rhythm maintenance thereafter be objectively validated. It is our hope that such studies will

be undertaken, and that biomarkers, or combinations of them, that are the most performant

for guiding individualized AF therapy will become common in clinical settings.
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A ATRIAL ACTIVITY EXTRACTION

Surface ECG signals are a reflection of the global activity of the heart, so they include both

ventricular and atrial components (see Chapter 2). However, the ventricles are much larger

than the atria, so the amplitude of the ventricular component is much greater than that of the

atrial component. Additionally, the heart rate is often very high in AF, meaning that intervals

in which only atrial activity is present, that is, the TQ intervals between consecutive QRST

complexes are very short. These two factors combine to make pure analysis of the atrial

component of the ECG in AF a difficult problem, as the frequency content of the atrial and

ventricular components overlap, so linear filtering is not an option for removing the ventricular

component.

Many algorithms have been developed for extracting the atrial component. Atrial activity

extraction, f-wave extraction, and ventricular activity cancellation are common terms assigned

to these algorithms. Here, we will use the term f-wave extraction to emphasize that we aim to

extract f-waves, which are characteristic of AF, in the presence of ventricular activity.

There are several factors to consider when designing and choosing an algorithm for f-wave

extraction (Sörnmo et al., 2018). For example, the number of leads used to record the ECG

signals, the level of noise and artifacts present in the signal, the length of the ECG recordings,

and the relative presence of ventricular premature beats (VPB), whether the algorithm needs

to work in real-time or with limited computational power, are all factors that should be

considered when choosing an algorithm. As a result, numerous f-wave extraction algorithms

have been developed, each having its own strengths and limitations.

Most f-wave extraction algorithms rely on some form of beat averaging to remove the QRST

complex. The idea is to compute an average QRST complex, obtained from an ensemble

of beats with similar morphology, and subtract the resulting average from each beat of the

original ECG. Other algorithms use nonlinear Kalman or adaptive filtering techniques, and

still others use variants of principal components analysis (PCA), independent components

analysis (ICA), or blind-source separation to extract an “atrial source,” assumed to be separable

from the “ventricular source.” The performance of each algorithm depends on the specific

application and operating conditions under which it was tested; however, a study (Langley

et al., 2006) which compared the performance of three algorithms (spatiotemporal QRST

cancellation, PCA, ICA) did not find significant differences between the three, noting only that

the PCA and ICA algorithms did occasionally extract f-waves with a notable residual from the

ventricular activity.
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The purpose of this appendix is to describe in detail the two f-wave extraction methods

used in this thesis, (1) single-beat (SB), for the standard 12-lead ECG signals analyzed in

Chapters 4 and 5 of this thesis, (2) spatiotemporal QRST cancellation (STC), for the BSPM

signals analyzed in Chapter 6. Because the single-beat algorithm is an extension of the

spatiotemporal algorithm, we will start with describing the spatiotemporal algorithm.

A.1 SPATIOTEMPORAL QRST CANCELLATION TECHNIQUE

The purpose of this section is to describe the f-wave extraction algorithm proposed by Stridh

and Sornmo (2001), and applied to the BSPM ECG signals analyzed in Chapter 6 of this thesis.

The authors refer to this algorithm as spatiotemporal QRST cancellation, which extends

the average beat subtraction (ABS) (Slocum et al., 1992) method by introducing multi-lead

information.

The ABS approach exploits the fact that ventricular and atrial activity are uncoupled in AF,

therefore, an average of all the beats in the recorded ECG signal is subtracted from the ECG to

extract a residual f-wave signal. However, the average beat is not an accurate representation

of each individual beat due to changes in consecutive QRST morphology caused by slight

temporal variations in the electrical axis of the heart, notably because of respiration. These axis

variations can lead to QRST related artifacts in the extracted f-wave signal. Therefore, Stridh

and Sornmo (2001) created the spatiotemporal QRST cancellation technique which uses multi-

lead information and alignment of the template with each individual beat to achieve superior

f-wave extraction performance.

A.1.1 METHODS

Observation model

One cardiac cycle in the ECG can be represented by a matrix Y ∈RN×L , where N is the number

of samples making up the cardiac cycle recorded on L ECG leads:

Y = [
y1 · · ·yL

]
(A.1)

where each column contains the samples of the l th lead. The beat of each cardia cycle may

be modeled as the sum of atrial activity (YA), ventricular activity (YV), and additive noise (W′).

The ventricular activity may be represented by an averaged beat X ∈R(N+2∆)×L , and a spatial

alignment matrix S ∈RL×L is defined. The matrix S introduces the following properties in the

f-wave extraction process: (1) the possibility to share information between leads to allow for

electrical axis variations, (2) the possibility to scale to allow for variations in tissue conductivity

and heart position which could affect amplitude differently in different leads.

The matrix S is defined as the product of two matrices, S = DQ, where D is a diagonal

amplitude scaling matrix with positive diagonal elements dl and M rotation matrix. In addition,
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a time-shift matrix Jτ is introduced to correct for temporal misalignment between the observed

and average template beat:

Jτ =
[
0N×(∆+τ)IN×N 0N×(∆−τ)

]
(A.2)

The purpose of this matrix is to select the N samples of the average template beat that best fit

the observed beat Y, with the maximum temporal alignment shift given by ∆. The resulting

model of the ventricular activity is therefore:

YV = JτXS (A.3)

Then the goal is to estimate the parameters of Q, D and τ and subtract YV from Y. The

amount of noise W′ in the signal affects how well the quantity JτXS fits YV, therefore, an

intermediate estimate ỸA is used that is subtracted from the observed signal before estimating

the cancellation parameters:

Z− JτXS = W′+YA − ỸA =W (A.4)

where Z = Y− ỸA. This is referred to as AF reduction.

QRST cancellation parameter estimation

The estimation of the QRST cancellation parameters is performed by solving the following

minimization problem:

ϵ2
min = min

D,Q,τ
∥Z− JτXDQ∥2

F (A.5)

Minimizing with respect to Q and D independently cannot be performed, therefore finding a

closed form solution is not trivial. Therefore, an iterative approach is used, where the error ϵ2

is minimized with respect to Q by maximizing the last term, assuming D is known.

ϵ2 = tr
(
ZZT)+ tr

(
JτXDDTXTJT

τ

)−2tr
(
DTXTJT

τZQT)
(A.6)

The maximization can be done using SVD, which decomposes a matrix T into two orthonormal

matrices U and V and a diagonal matrix Σ containing the singular values along the diagonal:

T = UΣVT. By setting T = DTXTJτZ, the last term in the equation above can be expressed as

2tr(TQT ), which is maximized when Q̂ =UV T . After estimating Q, Eq. A.6 may be written as

ϵ2 = tr
[(

ZQ−1 − JτXD
)

QQT (
ZQ−1 − JτXD

)T
]

(A.7)

which can be simplified using Z ′ = ZQ−1:

ϵ2 = tr
[(

Z′− JτXD
)(

Z′− JτXD
)T

]
(A.8)

which when expanded yields:

ϵ2 = tr
(
Z′Z′T)+ tr

(
DDTXTJT

τJτX
)−2tr

(
DTXTJT

τZ′) (A.9)
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Equation A.9 can be minimized by setting its derivative with respect to the diagonal entries of

D equal to zero, since D is a diagonal matrix. The diagonal entries in D may be estimated by:

d̂l =
(
[JτX]T

l

)−1 (
[JτX]T

l

[
Z′]

l

)
, i = 1, . . . ,L (A.10)

for a given Q. An improved estimate of Q is then obtained using the updated scale factor

estimates d̂l . The matrix D is initialized to the identity matrix, since a solution close to

Q = D = I is desirable. The rotation matrix at update k is estimated using Dk−1, and since

∥Z− JτXDk−1Qk∥F ≤ ∥Z− JτXDk−1Qk−1∥F (A.11)

the error is necessarily less than or equal to that of the previous step. Once Qk is known, Dk

may be calculated, and

∥Z− JτXDkQk∥F ≤ ∥Z− JτXDk−1Qk∥F (A.12)

The above iteration is repeated until the difference in error between two successive iterations

is sufficiently small. Finally, minimization with respect to τ is solved by a grid search of τ in

the interval [−∆,∆], with estimates of Q and D required for all values of τ tested.

A.2 SINGLE-BEAT METHOD

The single-beat method, described in (Lemay et al., 2007), is an extension of the spatiotemporal

QRST cancellation algorithm described in the section above, in which not only each cardiac

cycle, but also ventricular depolarization (QRS complexes) and repolarization (T and U waves)

are treated separately. The motivation for using two templates is that T wave duration changes

with heart rate, while QRS duration does not. Additionally, using two templates, separate

amplitude scaling and rotation scaling matrices can be applied in the two intervals. This

purpose of this section is to describe the single-beat algorithm for f-wave extraction.

Using the single beat method, the average template beat X is partitioned into two submatri-

ces:

X = [X1X2] (A.13)

where X1 and X2 contain the ensemble averaged samples of the QRS and the JQ interval,

respectively. The two intervals are processed differently with respect to how the two templates

are fitted to the observed signal. While spatiotemporal optimization using the scaling, rotation,

and time-alignment techniques are performed for the QRS interval, only time alignment is

performed in the JQ interval because the SNR is often quite low.

Analysis of the component of the ECG signal of atrial origin is complicated by the fact that

the atrial fibrillatory waves present in AF, called f-waves, are of much smaller amplitude than

QRST complexes. It is possible to algorithmically detect the deflections, or fiducial points of

the QRST complex, and to analyze only the portions of the ECG, the TQ segments, which are

known to be of atrial origin. However, if temporal or spectral analysis are desired, then it is
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preferable to have a longer duration continuous signal, as the TQ segments, especially in AF, are

short, often less than half a second. Therefore, several algorithms for atrial activity extraction,

also called f-wave extraction or ventricular activity cancellation, have been developed, to allow

for more robust and accurate temporal and spectral analysis on a longer-duration signal. The

purpose of this appendix is to describe in detail the two atrial activity extraction methods used

in this thesis, which are related to one another.

However, analysis of the component of the ECG signal of atrial origin is complicated by

the fact that the atrial fibrillatory waves present in AF, called f-waves and shown in Fig. 3.3,

are of much smaller amplitude than QRST complexes. Therefore, it is necessary to apply

signal processing techniques to reduce and ideally eliminate the QRST complexes to obtain a

signal of purely atrial origin. These techniques, referred to as atrial activity extraction, f-wave

extraction, or ventricular activity cancellation, are described below.

It is possible to algorithmically detect the deflections, or fiducial points of the QRST complex,

and to analyze only the portions of the ECG which are known to be of atrial origin, the TQ

segments. However, TQ segments, especially in AF, are short, often less than half a second.

Therefore, if temporal or spectral analysis is desired, it is preferable to have a longer duration,

continuous signal available for analysis. Several algorithms have thus been developed for

atrial activity extraction, to allow for more robust and accurate temporal and spectral analyses

on longer-duration signals of atrial origin.
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B THE CONCEPT OF INSTANTANEOUS

FREQUENCY

A signal’s frequency describes the number of cycles per unit time; f = 1
T , where T is the period

of time required to complete one cycle. For non-stationary signals, this frequency can change

with time, therefore it is natural to consider how to describe a signal’s instantaneous frequency.

To do so, instantaneous frequency must be defined in some way, and the exact interpretation

and definition of what instanteous frequency means are not without controversy.

For complex-valued frequency modulated signals, the concept of instantaneous frequency

is rather straightforward. Given a frequency modulated signal of constant amplitude s(t) =
A cosφ(t ), the instantaneous angular frequency is given by the instantaneous rate of change

of the phase angle, ωi (t ) = dφ(t )
d t . Therefore, the instantaneous frequency is given by:

fi = 1

2π

dφ(t )

d t
(B.1)

However, when only a real signal is available, the above definition is not applicable. How-

ever, Gabor (1946) introduced the concept of an analytic signal, which allows the creation of a

complex-valued signal from a real one. For a real-valued signal x(t), the analytical signal is

given by:

xa(t ) = x(t )+ j H{x(t )} = x(t )+ j xh(t ) = a(t )e jφ(t ) (B.2)

where H· denotes the Hilbert transform and xh(t) is the Hilbert transformed signal. The

instantaneous amplitude and phase are given by a(t) and φ(t). The Hilbert transform is

defined as:

xh(t ) = H{x(t )} = 1

π
p.v.

∫ ∞

−∞
x(τ)

t −τdτ (B.3)

where p.v. denotes the Cauchy principal value of the integral. The Hilbert transform is therefore

nonlocal as is requires knowledge over the whole time domain of x(t ). The Hilbert transform

may also be viewed as a convolution of x(t) with the function 1
πt , so maybe expressed as

follows:

Xh( f ) = F

{
1

πt

}
·X ( f ) (B.4)

and using the Fourier transform pair

1

t
F←→− jπsgn( f ) (B.5)
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Xh( f ) may be expressed as

Xh( f ) =


j X ( f ) for f < 0

0 for f = 0

− j X ( f ) for f > 0

(B.6)

The imaginary part of the analytic signal can then be viewed as the original signal with a phase

delay of − pi
2 . The analytic signal of a harmonic oscillation x(t) = A0 cos(ω0t) is therefore

xa(t ) = A0 cosω0t + j A0 sinω0t .
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