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Abstract— Counting the number of times a patient coughs
per day is an essential biomarker in determining treatment
efficacy for novel antitussive therapies and personalizing patient
care. Automatic cough counting tools must provide accurate
information, while running on a lightweight, portable device
that protects the patient’s privacy. Several devices and algo-
rithms have been developed for cough counting, but many use
only error-prone audio signals, rely on offline processing that
compromises data privacy, or utilize processing and memory-
intensive neural networks that require more hardware resources
than can fit on a wearable device. Therefore, there is a
need for wearable devices that employ multimodal sensors to
perform accurate, privacy-preserving, automatic cough count-
ing algorithms directly on the device in an edge Artificial
Intelligence (edge-AI) fashion. To advance this research field,
we contribute the first publicly accessible cough counting
dataset of multimodal biosignals. The database contains nearly
4 hours of biosignal data, with both acoustic and kinematic
modalities, covering 4,300 annotated cough events from 15
subjects. Furthermore, a variety of non-cough sounds and
motion scenarios mimicking daily life activities are also present,
which the research community can use to accelerate machine
learning (ML) algorithm development. A technical validation
of the dataset reveals that it represents a wide variety of signal-
to-noise ratios, which can be expected in a real-life use case,
as well as consistency across experimental trials. Finally, to
demonstrate the usability of the dataset, we train a simple cough
vs non-cough signal classifier that obtains a 91% sensitivity,
92% specificity, and 80% precision on unseen test subject data.
Such edge-friendly AI algorithms have the potential to provide
continuous ambulatory monitoring of the numerous chronic
cough patients.

I. INTRODUCTION

Chronic cough is a common condition that globally affects
7.9% of the general adult population [1]. It can signifi-
cantly detriment individuals’ quality of life by impairing
sleep quality, contributing to anxiety, and increasing medical
expenditures [2]. The number of times people cough per
day is an indicator of the severity of conditions with symp-
tomatic cough, and it is the primary effectiveness metric for
many antitussive therapy trials [3]. However, objective cough
counts remain difficult to measure due to the significant
time and effort required to manually detect and annotate
coughs [2], and subjective cough questionnaires show only
a moderate correlation to actual cough counts [4]. Given the
global burden of the condition, there is a need for objective,
widespread cough quantification tools to monitor patients’
symptoms and assess treatment efficacy [3].
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One of the most widely adopted automatic cough counting
tools in clinical studies is the Leicester Cough Monitor [3],
[5]. The device consists of a microphone-enhanced necklace
that records audio data for up to 24 hours, saves it to a central
hardware unit, and then the data is downloaded and processed
by an offline computer-based algorithm [5]. This state-of-
the-art tool has many issues, including cough precision, data
privacy, and portability. This system, as well as newer cough
detection systems based solely on audio signals [6], [7],
may exhibit false positives due to bystanters’ coughs. Fur-
thermore, processing biosignal data offline poses significant
privacy risks, especially when communicating sensitive audio
data to computers or servers. Finally, hardware capable of
recording 24 hours of high-bandwidth audio data requires
significant computational resources, thus resulting in a bulky
and conspicuous design.

State-of-the-art cough detection models improve precision
by leveraging sensor fusion, and many of these use tri-axial
accelerometers [8], [9], [10]. In particular, Fan et al. observed
that adding accelerometer signals to their audio-based cough
detection model reduced the false positive rate by a factor
of eight [8]. Furthermore, Drugman et al. analyzed the
efficacy of different sensors for cough counting and observed
that while audio signals produced the highest accuracy,
accelerometers helped distinguish cough from speech events
[10]. Otoshi et al. combined a chest-mounted accelerometer
with a neck-worn strain sensor to obtain a 92% sensitivity
and 96% specificity in cough detection [9].

To address the issues of patient data privacy and porta-
bility, edge Artificial Intelligence (edge-AI) is a novel tech-
nological paradigm that has the potential to satisfy all of
these design constraints. Instead of streaming raw physi-
ological data through power-hungry wireless links, edge-
AI systems perform heavy data processing directly on the
wearable device [11]. This can conserve the battery life and
communication latency [12], while also preserving privacy
by keeping most data localized to the device [11].

To our knowledge, no cough detection models have been
optimized specifically for edge-AI implementation, taking
into account the energy and memory constraints of edge
devices. While multimodal cough counting devices and al-
gorithms have shown promising preliminary results, most
rely on artificial neural networks [8], [9], which impose a
significant memory and processing overhead. For example,
to perform cough detection from audio signals, a state-of-
the-art convolutional neural network (CNN) includes more
than 17,000 parameters and 10 million operations per classi-
fication [13]. This network exceeds the memory capacity of
most processors running on wearable devices, which usually



TABLE I: Recorded biosignals

Sensing Modality Recorded Signals Sampling Rate

Acoustic Body-facing microphone,
Outward-facing microphone 16 kHz

Kinematic Accelerometer X, Y, Z,
Gyroscope Yaw, Pitch, Roll 0.1 kHz

contain hundreds of KiB of Flash and RAM [14]. In order for
cough counting wearable devices to achieve clinical-grade
accuracy, preserve patient privacy, and ensure wearability,
the constraints of embedded sensors and edge computing
need to be integrated in the definition of suitable wearable
architectures and corresponding algorithms.

The first step of developing multimodal edge-AI cough
counting algorithms is access to an extensive, finely labeled
dataset. Unfortunately, none of the datasets collected in
previous cough detection studies are publicly available [5],
[8], [9], [10], [13]. In this work, we contribute such a
dataset to the research community, complete with an open-
sourced code repository to aid in data pre-processing and
data segmentation for rapid model prototyping [15], [16]. We
designed an experiment in which subjects performed cough
and non-cough events in everyday, noisy environments while
wearing a device incorporating audio and kinematic signals.
Finally, we demonstrate how this dataset can be used to
develop multimodal edge-AI cough classifiers.

II. MATERIAL AND METHODS

A. Acquisition system

A novel lightweight, battery-powered, chest-mounted
wearable device was designed to collect the biosignals
included in this dataset. The sensor data was acquired
and synchronized using a STM32G4 series MCU (32-bit
ARM Cortex-M4, 170 MHz), and subsequently saved to an
on-board Flash memory (GigaDevices GD5F1GQ4-family
SPI NAND Flash). This hardware was placed inside a
custom frame made of biocompatible material (polylactic
acid/thermoplastic polyurethane) and coated in certified skin-
safe silicone (Dragon Skin™).

An overview of the biosignal information recorded by the
device is presented in Table I. In addition to the accelerom-
eters used in previous studies [8], [9], [10], we employ
a 9-axis inertial measurement unit (IMU) that contains an
accelerometer, gyroscope, and magnetometer. The audio and
IMU signals were selected due to their proven effectiveness
in cough classification compared to other sensors [10]. The
acoustic information of the cough is recorded by two digital
microphones (SPH0645LM4H-B, Knowles, Itasca, USA),
each sampled at 16 kHz with 24-bit PCM encoding. One
microphone faced toward the subject’s body, and the other
one faced away from the body, as shown in Fig. 1. The goal
of this setup was to evaluate the effects of microphone orien-
tation on signal quality; the body-facing microphone captures
less background noise than the outward-facing microphone,
but may contain more noise from the device rubbing against
the body. This hypothesis is investigated in Section III-B.

Fig. 1: Placement and orientation of each sensor embedded
in the wearable device.

To monitor the chest vibrations due to coughing and
other activities, one 9-axis IMU (BNO080, Hillcrest Labs,
Rockville, USA) is used. The on-board tri-axial magnetome-
ter provides the absolute orientation of the module, which
is fused with the other IMU sensors to assess the chest
acceleration in the x, y, and z directions, as well as rotation
along these axes as the gyroscope yaw, pitch, and roll. The
orientation of these signals when the device was placed on
the subject’s chest is illustrated in Fig. 1. The IMU signals
were each sampled at 100 Hz and encoded with 16 bits.
In all experiments, the device was placed at the midline of
the chest, just below the subject’s pectorals. Three different
chest locations were investigated in a pilot study, and this
one produced the audio signals with the highest SNR.

All of the signals recorded throughout the experiment are
shown in Fig. 2, which depicts multiple cough episodes.
For visualization purposes, each signal is normalized to its
maximum value, and the accelerometer z signal is negated
such that a chest acceleration into the body (i.e. in the
negative z direction) appears as a peak in the signal. No
additional preprocessing was performed on the signals. We
can observe strong accelerations in the z-direction during
coughing, as well as roll and yaw rotations potentially due
to the subject’s reflex of rotating their body to cough into
their elbow.

B. Experimental setup

In order to assess the accuracy of automatic cough
quantification algorithms in everyday environments, an ex-
periment was designed to elicit typical sounds in various
noisy conditions. Similarly to the experiment performed in
[10], we aimed to produce cough and non-cough sounds in
the presence of both audio and kinematic noise conditions
to develop robust multimodal cough detection algorithms.
Recordings were collected from 20 healthy subjects (10
male, 10 female; age 26.5 ± 6.5 years; body mass index
(BMI) 22.6 ± 4.5 kilograms per square meter). Institutional
review board approval was obtained (HREC No.: 085-2022)
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Fig. 2: All of the signals measured by the device during 11
cough episodes over 8 seconds.

TABLE II: Experimental conditions

Sound Acoustic noise Kinematic noise
Cough,
Laugh,
Throat clearing,
Deep breathing

None,
Traffic,
Music,
Bystander cough

Sitting,
Walking

and all participants signed an informed consent prior to data
acquisition.

The experiment consisted of every possible combination
of the sounds and noise scenarios shown in Table II, thus
producing 32 recordings per session. Each subject performed
either two or three trials on separate days to assess repeata-
bility. The subjects wore their everyday clothing throughout
the trials, and they were given the choice whether to wear
shoes or not. This induced real-life variability due to different
individuals’ clothing choices. The device was placed below
the shirt and tightened to each subject’s comfort level. The
recordings each lasted approximately 10 seconds, during
which the subject was asked to produce either a cough sound
or one of three sounds that could produce similar audio or
chest motion artefacts as a cough: laughing, throat clearing,
and deep breathing.

Kinematic noise was introduced by the subject performing
tasks while walking, which produces motion artefacts in the
IMU signals, as well as audio noise of footsteps in some
cases. Acoustic noise was introduced by the experimenter

playing loud music or traffic noises during the recording. The
music consisted of one of four songs, and the traffic was a
minutes-long recording of city traffic sounds. These record-
ings were started at random times across the experiments
to induce variability in the noise amplitude and content. A
useful final noise scenario is that of bystanders’ coughing, in
which the subject performed a sound in the presence of one
other subject’s recorded coughs. By having the bystander
be another subject in the training dataset, we prevent the
model from learning to exclude only one person’s specific
cough sounds. Such a condition can test the ability of cough
detection algorithms to count only the coughs produced by
the subject. All of the experiments were performed in the
same room over the course of two months.

C. Data annotation

In this work, we performed an extensive, fine-grained
annotation of the cough recordings that marks the start and
endpoints of each individual cough sound. This was done in a
semi-automated manner by a trained observer. The first step
of the annotation was extracting relevant fiducial points of the
outward-facing microphone and accelerometer z-direction
signals, such as peaks and valleys, and then manually se-
lecting the beginning and end of each cough. The fiducial
points extracted from the audio signal were the starts, ends,
and peaks of each cough burst, which were computed using a
modified version of the COUGHVID segmentation algorithm
[17]. This algorithm performs hysteresis thresholding on the
signal power to delineate areas of rapid signal amplitude
increase and decrease.

The audio thresholding alone cannot accurately delineate
coughs, as it may pick up high-amplitude noises as well
as bystander coughs. This is why we also analyzed the
peaks and valleys of the accelerometer z signal to determine
whether each sound burst was accompanied by a chest accel-
eration. Peaks and valleys were defined as local minima and
maxima of the second derivative of the signal, respectively.
Once all of the fiducial points were extracted, the starts
and stops of each cough were manually selected among the
extracted points based on which points corresponded most
closely to each observed cough sound. As an illustrative
example, let us consider the recording in Fig. 3, which
shows two bystander coughs followed by four of the subject’s
coughs, then one more bystander cough.

We can see from the fiducial points that the audio sig-
nal thresholding mistakenly identifies the bystander coughs,
while the IMU signal exhibits a peak at every true cough
but does not adequately mark the onset of the cough. In
this example recording, the final annotation is selected as
the regions between audio burst starts and IMU valleys
containing an IMU peak in-between. However, the fiducial
points selected to mark the start and end of each cough varied
from one subject to the next and required significant manual
effort to properly annotate. Therefore, a more sophisticated
cough detection methodology employing ML is necessary to
accurately determine the number of coughs in a given set of
biosignals.
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Fig. 3: Example cough recording annotation procedure.

All of the code used to extract the fiducial points has been
made available at our public Git repository [16]. Overall, the
public dataset contains 227 minutes of biosignals and nearly
4,300 annotated coughs.

III. DATA RECORDS

A. Dataset usage

The data of 15 of the 20 subjects has been published to
our Zenodo repository [15]. The remaining five subjects are
reserved for a private testing set, as described in Section III-
C. The files are arranged in a hierarchical structure as shown
in Fig. 4. For each experimental condition in Table II, there
are three to four corresponding files: .wav audio files for the
body-facing and outward-facing microphones, a .csv file for
the IMU data, and in the case of cough recordings, a .json file

Subject ID
Trial 1

Sit
No noise

Cough
body-facing-mic.wav
outward-facing-mic.wav
imu.csv
ground-truth.json

Laugh
Deep breathing
Throat clearing

Traffic
Music
Bystander cough

Walk
biodata.json
...

Fig. 4: Directory structure of the data files for each subject.

containing the cough location annotations. The raw audio is
saved in 32-bit signed integer format, which corresponds to
the sampled 24-bit PCM format shifted 8 bits to the left. The
annotations file should be loaded as a dictionary object, with
the cough start times being under the key start times and
cough end times under end times. The gender and BMI
of each subject are recorded in the biodata.json file.

In order to facilitate Machine Learning (ML) model devel-
opment, several functions have been provided on our public
Git repository [16] to transform the raw data into segmented
model inputs. The functions read the biosignal files in each
experimental segment and generate short cough and non-
cough signal segments with which to train models. This seg-
mentation procedure enables edge-AI model development, as
such algorithms must perform inference on short data buffers
to economize the limited memory resources of the device.

The positive samples are generated by locating each
ground-truth cough sound in the cough recording and se-
lecting a window of data around it. The window length is a
hyperparameter of the model training and can be selected by
the user of the dataset. As a data augmentation procedure,
the window is randomly shifted around the cough to account
for coughs at different locations within each window. In
the case that the window length is less than the cough
length, then the window is randomly shifted within the
cough duration. For the non-cough recordings, a user-defined
number of randomly-selected segments, equal in length to
the cough segments, is extracted. A function is provided to
automatically generate the data segments for each subject,
taking an equal number of segments of each produced sound.

B. Technical validation

To ensure that this dataset provides biosignals in a variety
of everyday environments, we analyze the signal-to-noise
ratio (SNR) of the cough audio recordings of different phases

https://github.com/esl-epfl/edge-ai-cough-count/
https://zenodo.org/record/7562332#.Y87MenbMKUm
https://github.com/esl-epfl/edge-ai-cough-count/
https://github.com/esl-epfl/edge-ai-cough-count/


of the experiment. In doing so, we analyze the amount of
audio noise present across the experimental segments to
ensure that they represent a wide range of real-life scenarios.
Moreover, we assess the differences in audio quality between
the body-facing and outward-facing microphones.

Fig. 5: A comparison of the outer-facing microphone SNR
across different audio noise conditions of the experiment.

Fig. 5 depicts the SNR across different phases of the
experiment for all recordings in the public dataset. The SNR
was computed by comparing the signal power, in units of dB,
of the cough indices of a given recording to that of the rest of
the signal. We can see from the figure that the various noise
scenarios successfully induce audio noise by significantly
reducing the SNR, especially in the case of the traffic and
music conditions. Furthermore, the large standard deviation
in each condition indicates that a variety of different noise
levels are present within the database, thus enabling models
to perform generalization.

Next, the SNR of all cough recordings in each trial was
computed to assess the repeatability of the experiment and
standardization of the experimental conditions across trials.
This analysis revealed no significant difference in SNR
across trials. An unpaired, two-tailed t-test of the SNR values
in each trial produced p = 0.2 between trials 1 and 2,
p = 0.65 between trials 1 and 3, and p = 0.41 between trials
2 and 3. Finally, we analyzed the SNR difference between
all recordings of the body-facing and outward-facing micro-
phones. A paired, two-tailed t-test revealed that the SNR
of the outward-facing microphone was significantly higher
than that of the body-facing microphone (p = 3 × 10−16),
with the difference being more pronounced during walking
(p = 2.6 × 10−10) than sitting (p = 1.9 × 10−7). This
confirms the hypothesis that the body-facing microphone
contains more noise than the outward-facing one due to
friction against the skin.

C. Testing procedure

In order to evaluate the success of ML algorithms for
cough detection, 5 subjects in the dataset have been withheld
from publication. The cough samples in these recordings
have been annotated in the same way as those of the public

TABLE III: Cough classifier features

Signals Feature
Count

Feature
Type Feature List

Inner/
Outer
Facing
Mic

65
Freq.
Domain

MFCC,
Power Spectral Denisity,
Dominant Frequency,
Spectral Centroid / Rolloff /
Spread / Skewness / Kurtosis /
Decrease / Slope / Flatness /
Standard Deviation

Time
Domain

Energy Envelope Peak Detection,
Zero-Crossing Rate,
Crest Factor,
RMS Power

Accel x,y,z,
Accel norm,
Gyro y, p, r,
Gyro norm

5 Time
Domain

Line Length,
Zero-Crossing Rate,
Kurtosis,
Crest Factor,
RMS Power

training data. These 5 subjects were randomly selected from
the dataset in a gender-stratified fashion, such that 3 males
and 2 females were in the test set to keep the gender balance
in both datasets as equal as possible. The evaluation of
models on the private test set is available to the entire scien-
tific community. Any researcher that demonstrates promising
results on the public dataset using cross-validation may apply
for an independent evaluation by contacting the research
team of this work.

IV. EDGE-AI ALGORITHM DEVELOPMENT

To demonstrate the utility of our dataset in developing
multimodal, edge-AI cough detection algorithms, we have
trained several cough-vs-non-cough segment classification
ML models based on state-of-the-art audio and IMU signal
features. The dataset was prepared by segmenting the cough
and non-cough signals into windows of 0.4 seconds using the
code described in Section III-A. Such a short window length
economizes the memory of resource-constrained wearable
devices on which such an edge-AI algorithm would run.
The dataset was augmented by randomly shifting the coughs
within the windows twice. No filtering was performed on
the signals, but the mean of each IMU signal segment was
subtracted to center it at zero.

In order to extract useful information from the biosignals,
the features listed in Table III were extracted from each
segment. For each microphone signal, 65 audio features used
in previous audio-based cough detection methods were com-
puted [17]. For the IMU signals, five time-domain features
were employed, most of which were previously used on
cough detection algorithms [18], as well as the line length
feature used in seizure classification [19]. These features
were extracted on all individual IMU signals, as well as the
L2 vector norms of the three accelerometer and gyroscope
signals, resulting in 40 total IMU features. The majority
of these features can be executed on wearable devices in
a battery-preserving manner using a biomedical edge-AI
hardware accelerator [20].

A model selection and optimization technique similar to
that of [21] was applied, performing cross-validation (CV)



at every step of the procedure to assess the generalization
capabilities of the model and investigate the variations in
performance across folds. Once the features of each seg-
ment were computed, a 5-fold Leave-n-Subjects-Out CV
procedure was performed to evaluate the performance of
six classification algorithms: Logistic Regression, Gaussian
Naive Bayes, Linear Discriminant Analysis, Decision Tree,
Random Forest, and eXtreme Gradient Boosting. At each CV
fold, standard normal scaling was performed on the features,
and the SMOTE technique was applied to account for the
class imbalance between cough and non-cough samples [22].
The ML model with the highest average Area Under the ROC
Curve (AUC) across the cross-validation folds was selected.
Next, Recursive Feature Elimination with CV (RFECV) was
performed to remove features that did not contribute to the
classification outcome. Finally, the selected model with the
optimal feature list underwent hyperparameter optimization
and its final CV AUC was reported.

To assess the efficacy of using multimodal cough detection
signals, three different models are trained and evaluated in
terms of CV AUC: One that uses only the outer microphone
audio signal features, one using only IMU signal features,
and one combining both microphone and IMU features.
In each model, the eXtreme Gradient Boosting classifier
performed best. The average and standard deviation AUC
scores across the five CV folds are depicted in Fig. 6. We
can see that the combined model performs the best, with a
CV AUC of 0.96 ± 0.01. The model trained with only outer
mic features exhibits a CV AUC of 0.92 ± 0.01, and the
model trained with only IMU features has the lowest CV
AUC of 0.90 ± 0.02.

Fig. 6: Comparison of the cross-validation AUC values and
standard deviations of the three trained models

Finally, the most successful model was tested on the
private test set and achieved a final AUC score of 0.97.
The ROC curve of the classifier is shown in Fig. 7. The
maximal average F-1 score of this ROC curve is 0.914,
corresponding to a sensitivity of 91%, a specificity of 92%,
and a precision of 80%. A SHAP analysis [23] of the
classifier revealed that the top 5 features determining the
model outcome were the gyroscope yaw line length, body-
facing microphone MFCC standard deviation of the first
component, gyroscope roll line length, gyroscope yaw RMS,

and body-facing microphone spectral kurtosis. This analysis
shows that the model uses information from both types of
sensors to enhance its classification outcome.

Fig. 7: ROC curve of the classifier using multimodal features.

V. DISCUSSION AND CONCLUSIONS

In this work, we have presented the first publicly available,
multimodal cough counting dataset to assist the research
community in developing, testing, and deploying cough
detection ML models. We provide fine-grained annotations
of the start and stop of each individual cough, which enable
the development of both cough detection and segmentation
algorithms. An experiment was conducted in line with state-
of-the-art cough detection algorithm studies [10], providing
training and testing data for coughs that occur in the presence
of audio and kinematic noise scenarios. An analysis of the
SNR of the audio signals confirms the presence of varying
noise levels, thereby mimicking a real-world environment.
Furthermore, our data segmentation code is open-sourced
to streamline edge-AI cough detection model development,
encourage seamless merging with existing datasets, or to
perform semi-supervised learning on unlabeled audio and
IMU data. The data can be downloaded at our Zenodo
repository and processed using the code on our Git repository
[15], [16].

While nearly 4 hours and 4,300 cough sounds are provided
to the public, five testing subjects’ biosignals have been
withheld from publication and serve as a benchmark testing
dataset. These samples may provide a fair comparison of
different algorithms that count coughs based on audio and
IMU biosignals. However, users of the dataset should note
the limited age range of the subjects in this study and
may choose to include more data from increasingly diverse
participants.

Finally, we demonstrated the utility of this dataset by
providing a sample ML model development pipeline. We
trained three different classifiers using state-of-the-art fea-
tures from combinations of sensors to justify the need for
sensor fusion in noisy scenarios. The most successful model
combined information from both the audio and IMU sensors
to achieve final sensitivity and specificity values of 91% and

https://zenodo.org/record/7562332#.Y87MenbMKUm
https://zenodo.org/record/7562332#.Y87MenbMKUm
https://github.com/esl-epfl/edge-ai-cough-count


92%, respectively. Although the model trained with only
IMU features performed the worst, the fact that its mean
AUC was only 2% below that of the outer microphone
model is striking given that the sampling rate of the IMU
is 160x less than that of the microphone. Such information
can allow edge-AI algorithm designers to perform energy-
saving optimizations, such as only sampling the microphone
signal when necessary.

Although the classifier performs well in distinguishing
cough segments from non-cough segments, these results are
only preliminary. Further testing must be done to ensure that
in a continuous recording scenario, every cough is detected
and can be counted separately from neighboring coughs. Fur-
thermore, a more detailed analysis of the classifier window
length must be performed to analyze the trade-offs between
cough counting accuracy and memory consumption on a
wearable edge-AI platform.
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