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To date, the vast majority of architected materials have leveraged two physical principles to control wave
behavior, namely, Bragg interference and local resonances. Here, we describe a third path: structures that
accommodate a finite number of delocalized zero-energy modes, leading to anomalous dispersion cones
that nucleate from extreme spatial dispersion at 0 Hz. We explain how to design such zero-energy modes in
the context of elasticity and show that many of the landmark wave properties of metamaterials can also be
induced at an extremely subwavelength scale by the associated anomalous cones, without suffering from
the same bandwidth limitations. We then validate our theory through a combination of simulations and
experiments. Finally, we present an inverse design method to produce anomalous cones at desired locations
in k space.
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In traditional metamaterials, local resonances introduce a
flat band that hybridizes with the background dispersion,
thereby opening a polariton band gap [1]. When two such
gaps overlap [Figs. 1(a) and 1(b)], one having negative
effective density [2] and the other negative bulk modulus
[3], a “doubly negative” range arises, in which waves
propagate with opposite phase and group velocities [4–6].
This property is associated with spatial dispersion [7,8] and
provides a mechanical realization of negative refraction
[9,10]. While metamaterials were initially electromagnetic
[11,12], they have since flourished in acoustics [13–15],
thermal physics [16], and mechanics [17–21], merging with
auxetic materials [22,23]. Long-range interactions have
recently been shown to extend the capabilities of meta-
materials, either through radiative coupling [24] or with
explicit beyond-next-neighbor connectors [25–27]. Such
couplings induce local minima in the dispersion branches,
called rotons [28,29].
We propose a distinct path that relies neither on local

resonances nor on long-range coupling, while inducing
hallmark properties of metamaterials over large-frequency
bands. Our inspiration comes from “interlaced wire media”
[30,31], which consist of sets of space-spanning, fully
connected meshes of metallic wires that interlace without
direct contact, thereby allowing for differences in static
electric potential between their large disconnected compo-
nents. This interlacing pattern induces anomalous
dispersion cones at symmetric points of the Brillouin zone
[30]; consequently, interlaced wire media exhibit unusual
electromagnetic wave properties down to the static regime,
such as broadband negative refraction.
Here, we identify the abstract ingredients underlying the

physical properties of such wave media, which we propose
to call nonlocally resonant metamaterials. Indeed, they rely
on delocalized eigenmodes at zero frequency, or nonlocal

resonances, to parallel the traditional terminology. This
paradigm allows us to expand their scope to the elastic
realm, providing an inverse-design procedure and exper-
imental validation.
In elasticity, a delocalized zero-frequency mode consists

of a locally rigid deformation (or “mechanism”) that spans
the whole medium. More precisely, we require this reso-
nance to have a well-defined wave vector kR, isolated in k
space. Indeed, if the immediate neighborhood of kR also
hosted zero-energy modes, we could construct zero-fre-
quency wave packets, thereby making the resonance local.
In contrast, an isolated kR guarantees sample-spanning
spatial extension in the form of a Bloch wave. Crucially, the
continuity of the spectrum ensures that an anomalous cone
nucleates from kR, as in Fig. 1(c). Here, “anomalous”
refers to dispersion cones not associated with the trans-
lation symmetries that underlie standard elastic waves. A
trailblazing geometry that fits these stringent requirements
is the counterrotating squares structure, introduced to
model displacive phase transitions in minerals [32,33].
Similar mechanisms were also described in a topological
study of the deformed square lattice [34]. Here, we provide
a general paradigm to understand and inversely design
extremely nonlocal elastic resonances. We theoretically and
experimentally explore the wave physics of nonlocally
resonant elastic metamaterials.
We begin by picturing the metamaterial of Fig. 1(d) as a

collection of oscillating masses (blue diamonds) connected
by springs (dark bars). In zero-frequency oscillations, only
rigid motions are possible; not a single spring can be
stretched. Rigid translations of the entire structure fulfill
this criterion; such zero-frequency modes correspond to in-
plane transverse and longitudinal elastic waves in the limit
of infinite wavelength, which confines them to the Γ point.
For sufficiently high connectivity, these are the only
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zero-energy modes. Removing a sufficient number of rigid
springs makes it possible for localized rigid motion to occur,
typically leading to Guest-Hutchinsonmodes [35,36], which
have 1D extension both in real space and k space [37]. Such
modes cannot create anomalous dispersion cones, which are
pinned to isolated points in k space. Instead, we seek a
geometry hosting a finite number of mechanisms, and
therefore a finite number of anomalous cones. In addition,
inverse design necessitates a geometry complex enough to be
tailorable. We thus need to go beyond the counterrotating
squares geometry and turn to oligomodalmetamaterials [38].
Indeed, oligomodal geometries are defined through their
property of hosting a finite number of zero-energymodes that
does not scale with system size. We must add another
requirement, namely, that such modes be of the Bloch-wave
form, with well-defined kR. The metamaterial of Fig. 1(d)
qualifies, as we now demonstrate.
To do so, we use a convenient description of mechanisms

in terms of directed graphs [38]. Concrete examples are
detailed in the Supplemental Material [37]. In this method,
one starts by drawing a graph with a vertex in every empty

polygon enclosed by rigid springs (also known as a
“linkage”). A second type of vertex is drawn on every point
mass; we will refer to these as “hinges.”We then draw edges
connecting every linkage vertex to the surrounding hinges.
To describe nontrivial rigid motions, arrows are drawn on
each edge to depict relative rotation of the two neighboring
rigid springs, with the number of arrows being proportional
to the angular deformation. From a mechanical structure
[Fig. 2(a)], we obtain a directed graph encoding angular

FIG. 2. (a) A zero-energy deformation mode of the structure of
Fig. 1(d). (b) Corresponding graph overlaid on the undeformed
geometry. (c) Dispersion relation along symmetry lines of the
Brillouin zone, with solid lines corresponding to a spring-mass
model and dots to a finite-element simulation with the inset
geometry. Solid lines are colored according to the transversality
of corresponding eigenmodes. (d) Finite-element simulation of a
monochromatic Gaussian beam negatively refracted at the inter-
face between an isotropic material (left) and this nonlocally
resonant metamaterial (right).

FIG. 1. (a) Dispersion of a locally resonant metamaterial, with
the ranges of negative bulk modulus and density highlighted in
orange and yellow, respectively. The domain in which they
overlap (brown region) hosts a band with negative group velocity.
(b) 1D spring-mass chain giving rise to the dispersion in (a), with
the mechanisms responsible for effective negative compressibil-
ity and density colored accordingly. (c) On the other hand, the
dispersion of a nonlocally resonant metamaterial features a
domain exhibiting an anomalous cone (blue area). This cone
is due to the presence of a delocalized mode with finite wave
number kR at 0 Hz. (d) A geometry that hosts such nonlocal
elastic resonances down to 0 Hz.
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deformations [Fig. 2(b)]. Such deformations only entail local
rotations and occur without stretching, consistent with their
zero-frequency character.
Kinematics impose constraints on the allowed arrow

configurations. First, all vertices are subject to arrow
conservation, meaning that incoming and outgoing arrows
must exactly balance each other; this reflects the fact
that the sum of angles is invariant. Second, the vertices
associated with linkages are subject to additional con-
straints encoding their mechanical degrees of freedom; for
instance, vertices surrounded by three rigid springs are
statically determined and can be erased along with their
edges. Vertices of degree 4 possess 1 degree of freedom,
meaning that fixing the arrow count on one edge deter-
mines the other three. In general, vertices of degree n have
n − 3 degrees of freedom. The precise arrow-drawing rule
is obtained by linearizing the trigonometric relations
between the angles of the linkage [38] or from symmetry
considerations in simple cases. In general, this leads to
vertices with unequal arrow weights, possibly noninteger.
Therefore, the problem of finding nontrivial modes at zero
frequency becomes combinatorial [39,40]; one needs to
find all linearly independent arrow configurations that
respect the aforementioned rules.
The directed graph of Fig. 2(b) was obtained by applying

the combinatorial rules [Fig. 1(d)]; there, the unit-cell graph
has been simplified to a vertex of degree 6. This equivalent
vertex has 1 degree of freedom, which is drawn as
alternating incoming and outgoing arrows. The combina-
torial game goes like this: we draw an arrow on an arbitrary
edge, say in the top-left cell of Fig. 2(b). This fixes five
other edges through the kinematic vertex rule, but the
remainder of the graph is not yet fully determined. We
therefore need to choose the direction of another arrow in a
neighboring cell, keeping arrow conservation in mind. In
particular, this fixes the third arrow at any vertex shared by
two neighboring unit cells and therefore determines the
arrow distribution on that unit cell as well. The arrows then
propagate over the whole graph coherently, yielding
Fig. 2(b). Under the corresponding deformation mode,
the structure of Fig. 1(d) is deformed into the one of
Fig. 2(a). Since we had to fix two arrows, we see that the
lattice has 2 mechanical degrees of freedom that act system-
wide, i.e., two nonlocal resonances. We therefore expect the
spectrum to host two anomalous cones at the wave vectors
associated with these zero-energy modes. Consider their
spatial periodicity, easily observed on the graph of
Fig. 2(b); the deformation pattern repeats only after three
cells in the horizontal direction. Since we can select the
second mode as a mirror image of the first, our graph theory
predicts anomalous cones that nucleate at zero frequency
from the K and K0 points of the Brillouin zone.
To verify this, we let the springs stretch again, allowing

for oscillations at nonzero frequencies. Collecting the
displacements of all point masses in a vector u, we can

describe such oscillations through the differential equation
∂
2
tu ¼ Du, where the dynamical matrix D encodes the
effect of springs [36]. Connecting masses on opposite
boundaries of the unit cell with phase-shifted springs to
implement Floquet-Bloch boundary conditions, we com-
pute a phononic band structure for a spring-mass model
with the geometry of Fig. 1(d), with blue diamonds
replaced by equivalent triangulated spring frames [37].
We see in Fig. 2(c) that an additional cone then emerges
from the K point.
Let us discuss the impact of anomalous cones on waves.

First, they induce domains of negative group velocity that
extend from 0 Hz over a large bandwidth. Wave packets
prepared on these domains are negatively refracted at
interfaces with isotropic elastic media. As for wavelengths
closer to Γ, they are positively refracted and split in
longitudinal and transverse components. This phenomenon
may be leveraged to filter wavelengths. To suppress
positive refraction, one can pin the unit cell, thereby
removing the cones near Γ [37]. At higher frequencies, a
second feature stands out: the anomalous cone hybridizes
with another one. For instance, in Fig. 2(c), it connects with
transverse elastic waves. Interestingly, this hybridization
creates a partial band gap in which only longitudinal waves
are allowed. Other interesting band gaps arise by pretwisting
the metamaterial; for instance, selecting Fig. 2(a) as the rest
position can induce complete band gaps [37]. We identified
gaps with relative bandwidth up to ðΔω=ωÞ ¼ 56%. Such
graph-preserving pretwists also impact the speed of
anomalous waves [37]. These examples show that a given
graph model only fixes the location of the cones, defining a
large family of nonlocally resonant metamaterials.
To validate these theoretical insights, we performed full-

wave finite-element simulations. There, we use a realistic
hinge design that favors bending over stretching [37,38] by
combining a soft and a rigid material. Armed with these
hinges, we reproduce the spring-mass band structure in
Fig. 2(c) using a finite-element (COMSOL) eigenvalue study
with Floquet-Bloch boundary conditions. The bimaterial
unit-cell geometry is represented in the inset of Fig. 2(c)
and [37]. The theoretical and numerical low-energy phonon
branches are in close agreement, with the exception of a
mass gap appearing at the K point. Such a gap is expected
to arise as a result of the nonideal hinges; its size is
determined by the finite hinge stiffness. Above 1500 Hz,
the predictions of the finite-element method and theory
start diverging; this reflects the fact that, while both models
share the same underlying mechanism, the internal struc-
ture of their rigid elements differs greatly. Once such
elements start to deform, the spectra diverge. Our
spring-mass model captures the dynamics below this
threshold. This illustrates the fact that several geometries
can instantiate the same abstract mechanism, while their
higher-frequency spectra generically differ. For further
examples, see the Supplemental Material [37].
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Next, we explicitly demonstrate that the phase and group
velocities around the anomalous cone are opposite, in a
numerical experiment directly probing the refraction of a
monochromatic Gaussian beam at the interface between an
isotropic medium and our nonlocally resonant metamate-
rial. The metamaterial domain consists of a hexagonal tiling
of 29 × 42 ¼ 1218 unit cells of the type depicted in the
inset of Fig. 2(c). The result, presented in Fig. 2(d), clearly
evidences the negative refraction of the beam, consistent
with the strong nonlocality exhibited by the architected
material [7,8]. Simultaneous positive refraction is sup-
pressed because the incoming beam contains little energy
near Γ. In the Supplemental Material [37], we report
additional simulations over a wide-frequency range, find-
ing a relative bandwidth of ðΔω=ωcÞ ¼ 48%. Therefore,
anomalous cones can have drastic consequences on wave
propagation and be considered as a fundamental route to
create metamaterials with broadband spatially dispersive
effects.
Turning to experiments, we 3D printed a dual-material

structure [Fig. 3(a) and [37] ] approximating the lattice of
Figs. 1(b) and 1(d). The white sections were printed with
polyactic acid (PLA), whereas the orange sections forming
the hinges were printed using a much more flexible
thermopolyurethane (TPU) [37]. We then excited elastic
waves with pseudorandom noise in a range of 10–1250 Hz
in our 61-cell hexagonal sample using a shaker and
measured the internal rotation of each unit cell through
laser vibrometry. The vibrometer was placed at a 26° angle
from the sample plane in order to favor in-plane velocity.
Taking three measurement points per cell [green points in
Fig. 3(e)] allowed us to construct a measure of internal
rotation, namely,Ω ≔ 2v2 − v1 − v3, where v1 and v3 were
measured on the disconnected central triangles of the cell
and v2 in the center [37]. Figures 3(b)–3(d) depict spatial
Fourier transforms of the results, superimposed with
frequency contours obtained through the spring-mass
model. Despite its simplified microarchitecture, this model
agrees with the experimental data. Figure 3(b) clearly
indicates a concentration of energy at the K and K0 points
at 106 Hz. As for Fig. 3(c), it shows how the anomalous
cones open up with increasing frequency, progressively
deforming into triangular contours. By 806 Hz, the cones
have merged and the resulting elliptic contours are still in
agreement with the model [Fig. 3(d)]; they converge to
the M point at 888 Hz. This confirms the possibility of
realizing nonlocally resonant elastic metamaterials, with a
large bandwidth: here, the anomalous branch extends from
106 to 888 Hz.
The examples considered so far exhibited anomalous

cones at highly symmetric points, and our method to find
them remained heuristic. We want to go further and see
whether inverse design is possible: how do we design a
geometry exhibiting an anomalous cone at a specified
location in k space?

Consider a combinatorially designed unit cell, for in-
stance, the one of Fig. 4(a); it has an anomalous cone at theM
point [37]. We want to move this anomalous cone to an
arbitrary location in the two-dimensional k space. Therefore,
we start by tuning two geometric parameters in the unit cell
[the angles between the central links in Fig. 4(c)]. This
generically frustrates the mechanism, by lifting symmetry-
induced redundancies in the link constraints [37], thereby
opening up a mass gap in the anomalous cone. To avoid this,
we remove four constraints from the unit cell (three central
bars and a triangle), as shown in Fig. 4(c).
We then invert the problem of determining the location

of the anomalous cone: first, we enforce Floquet-Bloch
boundary conditions by writing an arrow-conservation
equation for every hinge connecting the unit cell to its
neighbors. These equations can be collected in a matrix
[37] whose kernel contains arrow configurations compat-
ible with the target wave vector. Second, we compute the
arrow rules for arbitrary values of the geometric parame-
ters, which yields a nonlinear system of equations relating
the arrow weights to the unit-cell geometry [37]. Finally,

FIG. 3. Experimental validation. (a) 3D-printed sample, with
fixed points denoted by red circles and excitation points by blue
triangles. (b)–(d) Spatial Fourier transform of jΩj2 at 106, 529
and 806 Hz, respectively. Solid yellow lines represent the
isofrequency contours (first band) predicted by the spring-mass
model. Green dashed lines mark the limits of the Brillouin zone,
and symmetry points are labeled. (e) Geometry of the 3D-printed
unit cell, with PLA regions in brown and TPU regions in orange.
Measurement points are indicated in green. (f) Close-up of the
hinge geometry and cross section of the unit cell.
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we combine the boundary conditions and the geometric
equations to obtain the desired unit-cell parameters. See the
Supplemental Material [37] for explicit details of these
computations.
Concretely, for L · ðkx; kyÞ ¼ ð3π=4; π=2Þ, the kernel of

the arrow-conservation matrix contains a configuration
approximated in Fig. 4(d) (the exact arrow weights are not
integers). We then insert these weights in the geometric
parameters equations [37], which we invert to obtain the
desired metamaterial geometry [Fig. 4(c)]. This completes
the process;we canverify that the corresponding spring-mass
model exhibits an anomalous cone centered at L · ðkx; kyÞ ¼
ð3π=4; π=2Þ in Fig. 4(e). Time-reversal symmetry implies
that another cone lies at L · ðkx; kyÞ ¼ −ð3π=4; π=2Þ.
Nonlocally resonant metamaterials, which unify the

present elastic metamaterials and interlaced wire media, also
shed new light on another type of metamaterial: roton
metamaterials [24–29,41]. Although based on a different
physical mechanism, namely, long-range interactions, roton
metamaterials also achieve wide domains of negative group
velocity by leveraging a type of nonlocality. We have
identified two ways in which nonlocal resonances can open
amass gap and acquire rotonlike dispersion, namely, through
kinematic frustration or hinge design. Conversely, we sur-
mise that electromagnetic rotons could be designed by
perturbation of ideal interlaced wire media, either geometric
or material in nature.
In conclusion, we introduced the notion of nonlocally

resonant metamaterials, wherein anomalous dispersion
cones originate from arbitrary points in k space, associated
with sample-spanning resonances. We showed that such
cones lead to band gaps, slow sound, and negative indices
over a large bandwidth. We experimentally observed deep-
subwavelength spatial dispersion in a 3D-printed non-
locally resonant elastic metamaterial. Finally, a directed-
graph theory allowed us to inversely design anomalous
cones.
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