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A B S T R A C T

Discovering new materials is essential but challenging, time-consuming, and expen-
sive. Inmany cases, simulations can be useful for estimatingmaterial properties. For
many of themost interesting properties, however, simulations are infeasible because
of prohibitive costs or because it is unknown how to set up a suitable simulation. A
promising alternative to reduce the cost of predicting material properties—or to
make estimates possible in the 昀椀rst place—is to learn mappings from materials or
processes to properties from data. While the feasibility of this approach 昀椀nds sup-
port in the observation that chemists learn from experience (intuition), such a data-
intensive approach has unique challenges. First, it relies on suitable data to enable
the research. Second, appropriate tooling is needed to enable a scienti昀椀c research
approach in which research 昀椀ndings can be easily compared and reused. A third chal-
lenge is that crystal structures often must be 昀椀rst converted into suitable inputs for
machine learning models (so-called featurization).

In the 昀椀rst part of this thesis, we present tools that address all these challenges.
Using open-source electronic lab notebooks, we capture data in amachine-actionable
form. We then show how to use tooling from our “ecosystem for reticular chem-
istry”, which provides datasets, data splitters, featurizers, and benchmark utilities,
to build, compare and publish machine learning models. A subsequent chapter then
highlights how such machine-learning models can guide which experiments or simu-
lations to perform next, particularly in the multiobjective setting, which is relevant
for most material design problems.

The second part of this thesis uses tools from this toolbox for data-driven research
to address problems from the atom to the pilot plant scale using a data-driven ap-
proach. On the atom scale, we show that chemically sensible features can be used to
predict oxidation states of metal cations—a property at the heart of chemistry but
not a quantum-mechanical observable. On the pilot plant scale, we address how a
carbon-capture plant’s operation impacts the capture solvent’s emissions. Surpris-
ingly, this has been an open question since the process is so complex that it is not
known how to set up corresponding process simulations. As in the case of the oxida-
tion states, an inductive, data-driven approach is not constrained by this and, there-
fore, could give us insights into how the solvent emissions behave as a function of
the operating conditions.

One underlying theme of the work presented in this thesis is that it is not com-
putational chemists but their experimental colleagues that could bene昀椀t most from
predictions enabled bymachine-learningmodels. One fascinating development that
might help in making machine learning more accessible are so-called foundation
models. The closing chapter shows that suchmodels can be 昀椀ne-tunedwith a few ex-
amples to give competitive performance acrossmany chemistry andmaterial science
tasks.

However, most models are black boxes, and combining them with experienced
chemists’ reasoning and even more background knowledge will likely yield the most
progress. Combined with the progress thus far, this indicates that machine learn-
ing might have a larger impact on chemistry than in many other domains, such as
computer vision.
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Z U S A M M E N FA S S U N G

Die Entdeckung neuer Materialien ist essenziell, aber herausfordernd, und teuer. In
vielen Fällen können Simulationen nützlich sein, um Material-Eigenschaften einzu-
schätzen. Für viele der interessantesten Eigenschaften sind Simulationen jedoch auf-
grund prohibitiver Kosten oderweil es unbekannt ist, wieman eine geeignete Simula-
tion aufsetzt, nicht durchführbar. Eine vielversprechendeAlternative, umdie Kosten
der Vorhersage von Material-Eigenschaften zu reduzieren, oder überhaupt erst Vor-
hersagen zu ermöglichen, ist das datenbasierte Erlernen von Funktionen die Eigen-
schaften vonMaterialien oder Prozessen beschreiben. Obwohl die Durchführbarkeit
dieses Ansatzes durch die Beobachtung gestützt wird, dass Chemiker aus Erfahrung
lernen (Intuition), hat ein solch datenintensiver Ansatz einzigartige Herausforderun-
gen Erstens ist er auf geeigneteDaten angewiesen, umdie Forschung zu ermöglichen.
Zweitens ist geeignete Infrastruktur erforderlich, um einen wissenschaftlichen For-
schungsansatz zu ermöglichen, bei dem Forschungsergebnisse leicht verglichen und
wiederverwendet werden können. Eine besondere dritte Herausforderung besteht
darin, dass Kristallstrukturen oft zuerst in eine für maschinelles Lernen geeignete
Form umgewandelt werden müssen (sogenannte Featurization).

Im ersten Teil dieser Thesis präsentieren wir Werkzeuge, die all diese Herausfor-
derungen angehen. Wir erfassen Daten in einer maschinenlesbaren Form mit Open-
Source elektronischen Laborjournalen. Anschließend verwenden wir Werkzeuge aus
unserem “Ökosystem für retikuläre Chemie”, das Datensätze, Werkzeuge für Daten-
aufteilung, Deskriptoren, und Benchmark-Hilfsfunktionen bereitstellt, um maschi-
nell erlernteModelle zu erstellen. Ein darau昀昀olgendes Kapitel zeigt dann, wie solche
Modelle verwendet werden können, um zu entscheiden, welches Experiment oder Si-
mulation als nächstes durchgeführt werden sollte. Wir zeigen dies insbesondere im
multikriteriellen Fall, welcher für die meisten Materialdesign-Probleme relevant ist.

Der zweite Teil dieser Arbeit verwendet Werkzeuge aus diesem Werkzeugkasten,
um Probleme vom Atom- bis zum Pilotanlagen-Maßstab mit einem datengetriebe-
nen Ansatz anzugehen. Auf atomarer Ebene zeigen wir, dass chemisch sinnvolle De-
skriptoren verwendet werden können, um Oxidationszustände von Metallkationen
vorherzusagen—eine Eigenschaft, die im Herzen der Chemie steht, für welche es
aber keinen quantenmechanischen Operator gibt. Auf Pilotanlagen-Maßstab geht
es darum, wie sich der Betrieb einer Kohlensto昀昀dioxid-Abscheidungsanlage auf die
Emissionen des Absorptionsmittels auswirkt. Überraschenderweise war dies eine of-
fene Frage, da der Prozess so komplex ist, dass nicht bekannt ist, wie entsprechende
Prozesssimulationen aufgesetzt werden können.Wie im Fall derOxidationszustände
wird ein datengetriebener Ansatz durch dies nicht eingeschränkt und konnte uns Ein-
blicke geben, wie sich die Emissionen des Absorptionsmittels in Abhängigkeit von
den Betriebsbedingungen verhalten.

Ein zugrunde liegendes Motiv dieser Thesis ist, dass nicht die theoretischen Che-
miker, sondern ihre experimentellen Kollegen ammeisten von Vorhersagen pro昀椀tie-
ren könnten, die durch maschinelles Lernen ermöglicht werden. Eine faszinierende
Entwicklung, die dazu beitragen könnte, maschinelles Lernen zugänglicher zu ma-
chen, sind sogenannte “foundationmodels”. Im letztenKapitel zeigenwir, dass diese
Modelle mit wenigen Beispielen feinabgestimmt werden können, um eine kompeti-
tive Leistung in vielen chemischen und materialwissenschaftlichen Fragestellungen
zu erbringen.

Die Modelle sind jedoch Black Boxes, und wahrscheinlich kann der größte Fort-
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schritt erzielt werden, wenn sie mit der Intuition erfahrener Chemiker und noch
mehr Hintergrundwissen kombiniert werden. Kombiniert mit dem bisherigen Fort-
schritt, deutet dies darauf hin, dass maschinelles Lernen in der Chemie einen grö-
ßeren Ein昀氀uss haben könnte als in vielen anderen Bereichen, wie zum Beispiel der
Computervision.
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Figure 1: The impression the machine-learning model DALL-E1 has of my Ph.D. time.

Often, there are roadblocks. Sometimes, those are because of a non-converging
DFT simulation or due to a private issue—thank you, Andres, for always being avail-
able for both kinds of problems (until now) and always motivating me to push for-
ward.

After around one year into my Ph.D. I met Luc, who is one of the most fascinating
and clever people I have evermet, for the 昀椀rst time. Luc, thanks for all you taughtme
about software engineering and life—youmake incredibly valuable contributions to
our community.

The Ph.D. has not always been easy. However, I am so unfathomably lucky that
you, Tine, decided to spend your life with such a strange geek. Thank you for re-
minding me of life outside the lab and for all our hikes and endeavors. Over the last
seven (and counting!) years, you made me such a better person and gave me the
best years of my life—I can’t wait for the next steps of our journey. And, you know,
scripta manent!

Vevey, April 25, 2023



C O N T E N T S

Abstract 3
Zusammenfassung 5
Acknowledgments 7
Introduction 11

i Data and infrastructure
1 Making the collective knowledge of chemistry open and machine action-

able 21
2 An ecosystem for digital reticular chemistry 41
3 Bias free multiobjective active learning for materials design and discov-

ery 67

ii Applications
4 Using collective knowledge to assign oxidation states 85
5 Machine learning for industrial processes: Forecasting amine emissions

from a carbon capture plant 99

iii Discussion and outlook
6 Is GPT-3 all you need for low-data discovery in chemistry? 115
7 Conclusion and future research 131

iv Appendix
A Supporting Information for “Making the collective knowledge of chem-

istry open and machine actionable” 137
B Supporting Information for “Anecosystem for digital reticular chemistry” 147
C Supporting Information for “Bias free multiobjective active learning for

materials design and discovery” 169
D Supporting Information for “Using collective knowledge to assign oxida-

tion states ” 199
E Supporting Information for “Machine learning for industrial processes: Fore-

casting amine emissions from a carbon capture plant” 257
F Supporting Information for “Is GPT-3 all you need for low-data discovery

in chemistry?” 283
Curriculum Vitae 386
List of publications 389

9





I N T R O D U C T I O N

M A T E R I A L S D E S I G N A N D D I S C O v E R y

吀栀e need for new materials

The progress of humanity is closely linked to materials. All the gains in quality of
life over the history of our species would not have been imaginable without ever
more complex use and development of materials.2 Societies’ consumption of mate-
rials skyrocketed with the conversion of chemical energy in fossil fuels into other
forms, such as kinetic energy to move steam or Diesel engines. This development
further accelerated with the generation of electricity and led to rapid increases in
quality of life in certain parts of the world, which other parts of the world are yet to
experience.2,3

Figure 2: Global primary energy consumption by source. Replotted from Ritchie et al. 4. Hy-
dropower, wind, solar, modern biofuels, and other renewables are grouped into
“renewables”. Traditional biomass refers to burning fuels such as wood or crop
waste. The energy is given as substituted primary energy, i.e., accounting for in-
e昀케ciencies in the conversion of fossil fuels. Ritchie et al. 4 sourced the data from
Smil 5 and BP’s Statistical Review of World Energy.6

In 2019, the world consumed 176 431TWh of energy (Figure 2).4 This corre-
sponds to having more than 30 billion horses working for us all the time.* Since,
however, themajority of this energy comes from the burning of fossil fuels (Figure 2),
we emitted 33 622Mt of CO2. Over time this made the atmospheric concentration
of CO2 in the atmosphere rise from 278 ppm at the beginning of the industrial rev-
olution to well over 400 ppm.9 This, along with increases in the concentration of
other greenhouse gases, causes our climate to change.10 To tackle climate change,
we need to decarbonize our society. However, progress in decarbonization has been
slow. The analysis of Ritchie et al. 4 shows that from 13.5 % low-carbon sources
(renewable or nuclear) in 1994, we only moved to 15.7 % in 2019—while the con-
sumption of fossil fuels continued to grow. Given the 昀椀ndings of the most recent
climate models, this calls for rapid innovation.

Advances in materials can play a role in many di昀昀erent regards.8 To list just some:

* Or the equivalent of running nearly 60 billion graphics card with a peak power consumption of 350W.
The conversion into horses assumes a sustained power of ∼ 0.912 mechanical horsepower per horse
(even though the peak power can be 15.1 hp).7 Chu et al. 8 estimated an equivalent of 25 billion horses
for the energy consumption in 2012.
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12 I N T R O D u C T I O N

First, novel materials can help us generate electricity from renewable sources, for in-
stance, by using more e昀케cient and durable photovoltaics. Second, novel materials
can help us convert energy more e昀케ciently—for instance, by requiring less energy
to light a screen or a room. Third, most renewable energy is intermittent. Innova-
tions in materials can play a crucial role in developing materials for energy storage.
Forth, novel catalysts or other materials, such as sorbents, can help make the chem-
ical industry more sustainable. However, given the decarbonization trajectory thus
far, we will need novel materials for a 昀椀fth application (which will be the focus of
some parts of this thesis): To capture carbon dioxide.11

Reticular chemistry

For all these applications, we need materials of often tremendous complexity. A
commonly used approach to deal with complexity is to split a problem into di昀昀er-
ent levels of hierarchy.12 Reticular chemistry is an approach to chemistry that allows
doing just that. Therefore, it is of particular interest for systematic studies of ma-
terial design. The commonly used de昀椀nition for reticular chemistry is the linking of
molecular building blocks by strong covalent bonds. This implies a building block prin-
ciple with which organic or metal-organic building blocks can be reticulated into po-
tentially open framework structures—so-called, metal-organic frameworks (MOFs)
and covalent-organic frameworks (COFs). It is, however, good to keep in mind that,
in particular, the MOF label is often used quite inclusively, with some very promi-
nent materials (or members of “MOF” databases) not being composed of molecular
building blocks. The most crucial advantage of reticular chemistry is, however, that
the last two decades have shown how reticular structures can be designed and ma-
nipulated on di昀昀erent length scales (Figure 3). These insights provide us with many
degrees of freedom with which we can systematically design materials, particularly
pore environments, for a given application. For these reasons, reticular materials
will be a common case study in this thesis.

Challenges

The current time frame frommaterial discovery tomarket is 15–20 years.19,20 Given
the urgent need for new materials, this leaves considerable room for improvement.
The time frame is so long because material discovery is challenging. Some of the
challenges are the following.

C O M B I N A T O R I A L L y L A R G E S E A R C H S p A C E Chemists andmaterial scien-
tists are spoiled for choice.21 Some estimate the number of possible materials to
be on the order of a googol (10100, more than the number of atoms in the visible
universe).22 In any case, chemical space is too large to enumerate and test by brute-
force: If we assume a space of 100 trillion materials and “testing” one material (e.g.,
with molecular simulation) would take only 1ms we would still need 3169 years to
test all materials. This shows that brute-force testing of all possible materials is in-
feasible and indicates the need for accelerated approaches. However, foremost, it
highlights a sampling challenge: We need e昀케cient approaches to focus the search on
the relevant parts of the design space as well as approaches that allow us to perform
(surrogate) tests at low cost.

M u L T I O B j E C T I v E S E A R C H The search inmaterial space is further complicated
because we need to consider more than one objective for any real-world applica-
tion. In catalysis, for instance, we often want high selectivity and high activity, or in
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Figure 3: Reticular degrees of freedom across scales. At the most basic level, Reticular
chemists can choose which building blocks they combine. The shape of the build-
ing blocks determines in which net they can self-assemble.13 Very early, it has
shown that this allows for the design of speci昀椀c properties of materials. For in-
stance, using building blocks of the same connectivity, in which length is increased,
one can tune the pore size (so-called isoreticular expansion).14 Somemodi昀椀cations
might be hard to introduce before self-assembly. In this case, reticular chemists
use post-synthetic modi昀椀cation to tune the pore environment without changing
the building blocks.15 To design even more custom pore environments, reticular
chemists can also combine di昀昀erent building blocks (e.g., di昀昀erent linkers with
the same connectivity) to form a so-called multivariate framework. All these tools
enable chemists to tune pore chemistry and shapes for given tasks at various steps
in the synthesis. This illustration is based on a 昀椀gure by Lyu et al. 16. Some insets
are based on illustrations from Deng et al. 17 and Xu et al. 18.
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metallurgy, we might want a strong and ductile material. Very often, the di昀昀erent
objectives are actually competing with each other—for example, we often cannot
increase activity without a drop in selectivity. The best we can do in such a case is to
昀椀nd the so-called Pareto frontier, which is the set of all solutions where we cannot
improve an objective without making another one worse. While one might expect
that this is a trivial extension of single-objective search, it is not. For example, one
might consider converting a multiobjective optimization to a single-objective one
using scalarization

min𝑥∈𝒳
𝑘∑𝑖=1 𝑤𝑖𝑓𝑖(𝑥), (1)

where 𝑤𝑖 is the weight of objective function 𝑓𝑖 for inputs 𝑥 from the input space 𝒳.
The solution one obtains with this approach depends on the choice of the weights𝑤𝑖. However, optimal choices for 𝑤 are often unknown before the material design
process is completed. This highlights the need for approaches to e昀케ciently 昀椀nd the
Pareto frontier without any particular choice of weighting (or other biasing in the
search).

M u L T I S C A L E S E A R C H To 昀椀nd a material that can work in the real world, it
is important to consider not only the atomistic or molecular scale. In many cases,
descriptors (such as binding energies) on the atomistic scale do not correlate at all
with the productivity of a material in an actual industrial process. A clear example of
the importance of focusing onmultiple scales at once is catalysis inMOFs. While the
active site and the reaction mechanism might be very well described at the atomic
scale, there will be no conversion if the reactant cannot di昀昀use to the active site
(shape selectivity23). Hence, a proper description needs also to consider di昀昀usion
pathways.

D A T A - D R I v E N D E S I G N A N D D I S C O v E R y

Like many other 昀椀elds, materials design went through di昀昀erent paradigms.24,25 For
many centuries, the discovery and design of new materials has been dominated by
empirical experiments. This has subsequently been re昀椀ned with empirical laws or
theories that eventually showed such an (emergent) complexity[26] that they needed
to be solved with computers. Thanks to the enormous growth in computational
power and the re昀椀nement of computational approaches, so-called high-throughput
virtual screenings have become indispensable tools in a material chemist’s toolbox.
For instance, it is now routine to screen hundreds of thousands of MOFs for carbon
capture using grand canonical Monte Carlo (GCMC) simulations and classical force
昀椀elds.27 Similarly, researchers in surface catalysis made enormous progress by rou-
tinely computing adsorption energies of thousands of materials using density func-
tional theory (DFT).28

However, many phenomena are too complex to address with theory (alone). This
might be due to system sizes or time scales that are too large to address with high
accuracy (because, as Dirac said, the equations are “too complex to be solved”) or
because we do not even know how to set up suitable simulations.

Interestingly, wehaveobservational data fromother, previous, or related instances
in many such cases. For instance, we might have high-accuracy simulation data for
small system sizes or experimental data for the yield of certain reactions or the sta-
bility of materials. Assuming that there is a relationship between structures and
the properties of interest, we can use machine learning (ML) techniques to learn a
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function 𝑓 (𝑋) → ̂𝑦 that takes some encoding of the structure, 𝑋, and returns an
estimate ̂𝑦 of the property of interest, from data. Commonly, evaluating 𝑓 (𝑋) is
orders of magnitude cheaper than computing or measuring the property of interest𝑦. This is one of the main promises of a data-driven approach: We can learn cheap
high-昀椀delity approximations of an expensive-to-measure property 𝑦.

ML approaches in (material) chemistry have, in many respects, reached a consid-
erable level of maturity. For instance, machine-learned models of potential energy
surfaces (so-called ML force 昀椀elds) have been scaled to describe hundreds of thou-
sands of atoms at the accuracy of DFT with only a little higher cost than classical
force 昀椀elds.29 Protein structure prediction using AlphaFold revolutionized how we
research proteins.30 In addition, tools such as Bayesian optimization are now com-
mon tools for optimizing reaction conditions.31

Challenges

Even though the progress has been impressive, there are still immense challenges
ahead for data-driven (material) chemistry.

D A T A — S I z E , B I A S , u S A B I L I T y First, a data-driven approach can only
be used if enough data is usable—which means data that is well-documented, in
a systematic format, and without too-much missing data, errors, bias,32 or noise.
Much progress has been made in generating, curating, and sharing computational
data. However, for some of the problems for which we cannot even perform simula-
tions, the progress has been much more limited. For instance, it would be of enor-
mous advantage if chemists could predict the optimal conditions for a given reaction.
In theory, there is also a learnable correlation between the conditions and the reac-
tion outcome—we can observe this with graduate students becoming more success-
ful, i.e., experienced, with time. And in theory, we also produce a lot of data: tens
of thousands of chemists are running multiple reactions every day—some of which
work and many of which do not yield the expected outcome. However, this data is
seldom shared, particularly of the “failed” reactions.33 But precisely this data would
be needed to develop tools that can provide chemists with a digital assistant that
has learned from all the reactions performed worldwide. Addressing this requires—
besides science policy and governance changes—better tools that avoid the system-
atic capture and dissemination of data becoming an afterthought. Importantly, this
also involves tools that allow prioritizing what the most important next materials to
investigate are.

T O O L I N G — S T A N D A R D S , C O M p A R A B I L I T y At the heart of the scienti昀椀c
method is the process of “standing of the shoulders of giants”. Science can only
progress if we can compare and reuse each others’ work. Multiple recent studies
highlight that the lack of thorough benchmarks, combined with troubling trends in
research practice, might have led to an illusion of progress for certain applications
of ML. In some cases, this is related to optimizing for metrics that are not relevant
for downstream applications, whereas in other cases, there is data leakage, unreal-
istic performance measures, or no attempt to make the work comparable to prior
attempts. These challenges, too, require, to some extent, e昀昀orts on the community
level. However, they can also be bootstrapped by providing researchers with tools
that facilitate the use of best practices and that make it straightforward to build on
top of prior work.

R E p R E S E N T A T I O N — M u L T I S C A L E , I N v E R T A B I L I T y For use inmachine
learning models, molecules and materials must be converted into a suitable repre-
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sentation. This is challenging because most ML approaches rely on linear algebra
on matrices of 昀椀xed dimensions. Chemical compounds, however, come with vastly
di昀昀erent numbers and types of atoms. In addition, many properties of chemical com-
pounds do not change, or change in a particular way, upon application of symmetry
operations such as translation or rotation. For crystalline materials, one additionally
also needs to consider the periodicity. This has led to the development of a large
variety of featurization approaches, many of which are the same idea expressed in a
di昀昀erent basis set. To ensure progress in the 昀椀eld, it is important to harmonize and
make them comparable. However, it is also important to move beyond the currently
existing descriptors as almost none of them ful昀椀lls all the requirements (invertibil-
ity, permutation invariance, invariance/equivariance with Euclidean symmetry op-
erations, smoothness). In addition, most existing approaches do not consider the
multiscale nature, i.e., allow for a hierarchical representation of materials.

C O N T R I B u T I O N S O F T H I S T H E S I S
This thesis summarizes some of our e昀昀orts toward data-driven material design. The
thesis is split into two parts, where the 昀椀rst outlines tools developed to address
the aforementioned challenges, which then 昀椀nd applications in the second part that
showcases how data-driven approaches can 昀椀nd use from the atom scale up to the
pilot-plant scale.

C H A p T E R 1 Asoutlined above,machine-actionable data—including from“failed”
attempts—is key for data-driven material design. This becomes already very clear
when one attempts to build a MLmodel to predict the color of a MOF based on color
names deposited in the Cambridge Structural Database (CSD); when doing so we re-
alized that the noise in the data and the inappropriate representation is the main
limitation for our modeling e昀昀orts.34 These observations motivated us to improve
the state-of-the-art in data capture in chemistry. A key element for this has been
adapting an electronic lab notebook (ELN) for the challenges in a material science
lab. The chapter outlines the vision we pursued when developing this infrastructure
and gives an overview of our developments. These developments include, among
others, the connectionwith simulation platforms (see [35]), the development of spe-
ci昀椀c analysis tools, and the direct export of machine actionable data to repositories
such as Zenodo (see [34] and [36] for examples). However, such an open-science
infrastructure also has enormous potential for teaching by lowering the barrier to us-
ing computational tools and, in this way providing virtual laboratories (see Jablonka
et al. 37).

Thanks to this infrastructure, multiple groups worldwide can routinely capture
machine-actionable data.

C H A p T E R 2 For data-driven material design, however, data alone is insu昀케cient.
Often, structures need to be encoded into 昀椀xed-size arrays to be acceptable inputs
for commonly used machine-learning algorithms. Additionally, to be of any use,
models must be evaluated in meaningful ways that are comparable with other works.
This is seldom the case in the current practices for ML for MOFs. In particular, we
show how models built based on data compiled from crystallographic databases are
prone to data leakage—but we also provide methods for mitigating this problem.
In fact, we report a complete ecosystem of tools that reticular chemists can use in
every step of the machine learning work昀氀ow. We provide a new reference dataset
and standard interfaces to commonly used ones, over 40 featurization approaches
in a generalized implementation—including several novel ones, consistent model
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evaluation tools, and a leaderboard. Overall, this ecosystem empowers novices and
seasoned practitioners to use digital reticular chemistry best practices.

C H A p T E R 3 Given a predictive ML model, we can use it to guide our search
through chemical space. As outlined above, the search is particularly challenging if
we consider more than one objective and do not know how to weigh the di昀昀erent
objectives. To address this, we have introduced and implemented a multiobjective
active learning approach that can recover the Pareto frontier e昀케ciently without bias-
ing the search. In collaboration with BASF, we applied this algorithm to the design
of surfactants. Using mesoscale simulations, we could show how the active learning
approach can enormously reduce the number of expensive simulations needed to
recover the Pareto frontier—also in the case of missing data.

This provides us with a practical tool for 昀椀nding the Pareto frontier in material
design challenges and beyond.

C H A p T E R 4 Armed with the tooling for building models, chapter 4 reports one
case study in which ML could help solve an important question in material design.
Oxidation states are a key element of chemical reasoning. They are such important
for chemistry that they are even part of the names of chemicals. They are not only
important for conceptualizing chemistry but also have very practical applications, for
example, to initialize DFT simulations. However, oxidation states are not quantum
mechanical observables and conventional approaches tend not to work on complex
materials such asMOFs. Bymining oxidation states from chemical names in the CSD
and combining it with a chemistry-inspired featurization approach (using tools like
the ones discussed in chapter 2), we could build a model that could assign oxida-
tion states with high con昀椀dence. We could use feature importance analysis to reveal
that this model reasons along chemically intuitive lines and highlights previous ap-
proaches’ shortcomings.

This approach provides reticular chemists with a very practical tool for an impor-
tant question (and is now also routinely used in our DFT work昀氀ows).

C H A p T E R 5 Having visited the atomscale in chapter 4 (and already themesoscale
in chapter 3), chapter 5 showcases an example of how ML can be used on the pilot
plant scale.

As discussed above, one of the ways material design can have a large impact is
via carbon capture. The current state-of-the-art for industrial-scale carbon capture
is amine scrubbing. Of course, one would like to avoid emissions of the solvent
whose environmental impacts are not yet comprehensively understood. However,
there is currently little knowledge of how the plant’s operation impacts the amine
emissions, and conventional process simulation approaches cannot be applied as all
the governing mechanisms are not understood. Again, this is a problem of large
complexity, which conventional techniques struggle to address. Using time series
forecasting techniques, we could convert the data measured by our collaborators at
a pilot plant, fed with a slipstream from a coal-昀椀red powerplant, into a model that
can forecast the emissions given the past and current state of the plant. We could
then use thismodel to analyze experimental data and investigate potential operating
conditions.

This work showcases how a data-driven approach can contribute to material sci-
ence across scales: From the atom scale (Chapter 4) up to the plant scale (this chap-
ter).

C H A p T E R 6 The 昀椀nal chapter of this thesis explores a novel approach that can
help close the loop to lab—which we discussed in the 昀椀rst chapter. A large challenge
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with many of the ML tools developed in material science is that they are not easy to
use (by domain experts such as bench chemists, who would often most pro昀椀t from
such tools). Additionally, it is often challenging tomake reasonable predictions with
little data. Interestingly, some of the most exciting results in ML have recently been
obtained with very large models that some call “foundation models”. One interest-
ing property of thesemodels is that they tend to showemergent behavior, that is, the
ability to solve tasks they have not explicitly been trained on. Inspired by this, we
investigated if such models (like its archetype, generative pre-trained transformer
model 3 (GPT-3)) can be 昀椀ne-tuned for common low-data applications in chemistry.
We found that even with elementary text representations, such as the name of a
molecule, we can achieve performance that is competitive with or even outperform-
ing baselines that had been 昀椀ne-tuned for speci昀椀c chemical applications.

This has potentially important applications for chemistry as a good baseline per-
formance for practically relevant applications can be achieved with very little exper-
tise and domain knowledge in machine learning.
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1 M A K I N G T H E C O L L E C T I V E
K N O W L E D G E O F C H E M I S T R Y
O P E N A N D M A C H I N E
A C T I O N A B L E

Díaz’s MOF notebook

Nanocrystalline MIL-53 

at room temperature

72 h at room temperature

Na
2
BDC in H2O added to

Al(NO3)3·9H2O in water

breathing abundant metal

89 ratings

MOF that can be made in one step in water x
About  3’430 results (0.97 seconds) 

show more results

Synthesis Recipes

Díaz’s MOF notebook

Nanocrystalline MIL-53 

at room temperature

4 h at room temperature

Na
2
BDC in H2O added to

Al(NO3)3·9H2O in water

breathing abundant metal

56 ratings

Dan’s MOF blog

MIL-808(Hf) 

for methane storage

12 h  at 100 °C

HfCl4 in water/formic acid 

then BTC ligand

CH4 storage

19 ratings

A B S T R A C T Large amounts of data are generated in chemistry labs—nearly all
instruments record data in a digital form, yet a signi昀椀cant proportion is also cap-
tured non-digitally and reported in ways non-accessible to humans and their compu-
tational agents. Chemical research is still largely centered around paper-based lab
notebooks, and the publication of data is often more an afterthought than an inte-
gral part of the process. Here, we argue that a modular open-science platform for
chemistry would bene昀椀t the entire chemistry community well beyond data-mining
studies. Over the past few years, much progress has been made in developing tech-
nologies such as ELNs that aim to address data-management concerns. This is only
one step towards making chemical data reusable, however. We highlight the impor-
tance of centering open-science initiatives around open, machine-actionable data
and emphasize that most of the required technologies already exist—we only need
to connect, polish, and embrace them.

C I T A T I O N This chapter is a preprint version of our perspective: Jablonka, K. M.
et al. Nat. Chem. 2022, 14, 365–376.

C O N T R I B u T I O N K.M.J wrote the article with editing by and contributions from
B.S. and feedback from L.P. K.M.J also implemented several tools highlighted in the
manuscript, including the pXRD, and isotherm analysis as well as the link to sim-
ulation platforms. K.M.J also contributed to the project as a member of the core
development team of the cheminfo ELN.

21



22 p E R S p E C T I v E O N D A T A I N C H E M I S T R y

1.1 I N T R O D u C T I O N
In the era when scienti昀椀c results were published only on real paper, information com-
pression was paramount. Due to limited page counts, most scienti昀椀c data was never
published. Now, we live in a digital era, and a large fraction of our data is captured
in digital form. Yet, most scienti昀椀c data that is collected is not published,39 and
the part that is being published is often in a form that makes it di昀케cult for other
researchers to build on top of it.

Scientists have also long been concerned about the reproducibility of results.40,41

In the face of this, most funding agencies insist on a commitment of the researchers
to how the scienti昀椀c data ismanaged (for instance, in the formof a datamanagement
plan, i.e., a clear outline of the types of data generated and used during a study,
where and by whom they can be accessed, how and by who they are protected, how
and by whom they can be shared or published), and often require to make all data
publicly available. Having a data management plan is an important 昀椀rst step, but, as
we argue here, it does not guarantee that the data will be shared in an easily 昀椀ndable,
accessible, interoperable, and reusable (FAIR), and ultimately machine-actionable,
form.42

Recent advances in machine learning illustrate very clearly why chemistry would
bene昀椀t from embracing open and reusable data. In chemistry, we have many prob-
lems of irreducible complexity,26 such as the prediction of synthesizability, where
the complexity arises due to the interaction ofmany diverse components (kinetics of
side reactions, impurities, etc.), which are often not fully understood. Due to these
unknowns and complex interactions, these problems seem impossible to address
with the theory we have at the moment. However, to address those, data-intensive
research might be the key. For example, many chemists would like a tool that recom-
mends reaction conditions. One can envision building such a recommender system
that harvests all the knowledge from all reactions that have been performed (includ-
ing the “failed” ones) to recommend conditions for the desired reaction. However,
building this tool will only be possible if all data is automatically collected in an in-
teroperable and reusable form such that machines cannot only read the data but
also autonomously discover relevant data sets and make decisions based on the col-
lective of all data. This requires that machines cannot only parse the data but also
understand it and its context, i.e., data must be machine-actionable.

Our key thesis is that if wewant to advance chemistrywith data-intensive research
and address reproducibility problems, we must change how experimental data is col-
lected and reported. Structured data is not enough; open data is also not enough.
We need both (Thesis 1 in Figure 4) with additional tools, such as semantic web
technologies, that allow chemists and their computational agents to understand the
meaning and intent of the data objects.

To make this feasible, we envision a platform that seamlessly integrates the pro-
cess of data collection, data processing, and data publication with minimal overhead
for the researcher.

1. Data collection A key component of chemistry research is the collection of
chemical data (for example, reaction conditions and characterization data).
Ideally, the raw43–45 (characterization) data are directly captured from the in-
strument, directly converted into a standard structured form,42 in which all
the important metadata are systematically added, and where the 昀椀eld names,
such as “adsorption” or “pressure”, are linked to an open vocabulary (that
de昀椀nes the meaning of the terms and their relation).

One should not rely on individual chemists to manually perform 昀椀le transfer,
annotation, or conversion operations. It is not only time-consuming and error-
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ELN

1

2

3 4

5

Data intensive research 

needs machine-actionable FAIR data.

Nullius in verba. 

ELN should automatically 

make all data 

machine-actionable

Data should not remain

locked in an ELN 

An open science infrastructure 

needs to be modular 

and open source

Continuously inventing 

new standards 

will not make chemistry FAIR.

Existing systems 

should be made interoperable

Figure 4: The 昀椀ve core theses of this perspective. Machine learning has fundamentally
changed the way how data can be used in chemistry, and this, in turn, requires
a change in how we report data. However, raw data is also needed to verify any
conclusions presented in scienti昀椀c principles—as stated with the “Nullius in verba
principle” (take nobody’s word for it)—since the results presented in a paper are
always a compression of the original research record.43 For this, it is not enough
if only a few groups create and share FAIR data; it needs to be embraced by all
chemists. Importantly, this can only happen if there is little or no overhead of
publishing all data in a FAIR, machine-actionable form. For this reason, the most
important function an ELN can provide is to assist chemists in doing so; it is essen-
tial to avoid chemical data becoming an afterthought in the publication process.
Following this logic, developers of ELNs need to work together towards this goal
of machine-actionable open science. We can only expect this to be widely adopted
if ELNs implement a common standard for data representation and exchange, also
with computational tools,35 and allow integration of reusable plugins which can
be used to create a custom data management infrastructure that is interoperable
with other solutions. Clearly, there will not be one perfect solution that works
for all sub昀椀elds of chemistry. However, we can start by reusing the many existing
parts, making them interoperable and open-source the code, and in this way, create
a practical solution that works today. This seems more e昀昀ective than aiming for
large-scale, all-encompassing, and over-complicated solutions. Importantly, devel-
oping new data formats will also not lead us toward the goal of FAIR chemical data.

prone, butmore importantly, ensuring that all data are in a form ready for FAIR
sharing should never become an afterthought but the very 昀椀rst step.

2. Data processing and collaborationOnce we have converted our data to a stan-
dard form, we can apply the same analysis tools to all data types—making
development dramatically more e昀케cient. Research groups that use di昀昀erent
instruments could compare the data directly and use the same analysis tools.
Also, once all data are stored in a structured form, an ELN can make the data
searchable. For example, if an instrument was incorrectly calibrated, the ELN
could allow the users to search for all the spectra that were measured with a
speci昀椀c instrument con昀椀guration at a speci昀椀c time range (or even automati-
cally apply the correct calibration).

3. Data publishing Data that remains locked in an ELN is not useful for the com-
munity. As soon as the researcher is ready to publish a project, they could
choose the relevant samples from the ELN and export them to a repository
fromwhere they can be used bymachines, but also re-imported by other ELNs.

From this viewpoint, the ELN is the central hub for all chemical research, where
analyses can be requested, analyzed, shared, published, and integrated with other
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platforms—and also, a place to take notes. But we want to emphasize that the most
important functionality an ELN can provide is to automatically convert the data into
an open, standardized, and interoperable form (Thesis 2 in Figure 4). Only in this
way can we leverage web technologies that can allow computational tools to au-
tonomously understand data and hence provide more meaningful (search) results
(see Box 1). Note that this di昀昀ers from the functionality most current ELNs o昀昀er.
Please note that the majority of current ELNs only store data digitally as an attach-
ment, but they do not convert it into such a reusable form (Thesis 2 in Figure 4).

Box 1: Machine-actionable data in chemistry

Data structured in standardized ways can make information 昀椀ndable and in-
terpretable by chemists and their machines and thus can enable humans, as
well as their computational agents, to perform actions based on the interpre-
tation of the data.
If we perform web searches, major search engines display meaningful infor-
mation (sometimes even formatted in infoboxes with tables that allow for
easy comparison) and can show related content instead of just a list of hy-
perlinks. For instance, search engines will show, when queried for “old fash-
ioned pancakes”, a compilation of recipes from di昀昀erent sites—similar to
what is shown in our example (see the right panel in the 昀椀gure). This is pos-
sible because the websites embed the information in a standardized form, as
shown here, into the website using in-page markup, typically schema.org
(as in the code snippet on the right-hand side of our example). In summary,
the recipe data is reported in a standard, open format, using linked vocabu-
laries, described with metadata, and accessible under uniform resource iden-
ti昀椀ers (URIs).

old fashioned pancakes x
About  25’300’000 results (0.37 seconds) 

show more results

Recipes

Berend’s kitchen blog

Dutch Old-Fashioned 

Blueberry Pancakes

60 min

168 calories

butter, �our, egg, baking 

powder, sugar, blueberries

Kevin’s Quick Recipes

Best Old-Fashioned 

Pancakes

5 min

222 calories

butter, �our, egg, baking 

powder, sugar, milk, banana

Patiny cooks

Old-Fashioned 

Belgian Pancakes

20 min

256 calories

butter, �our, egg, baking 

powder, sugar, chocolate

{
  "@context": "http://schema.org",
  "name": "Best Old-Fashioned Pancakes",
  "datePublished": "2000-08-01T21:53:33.000Z",
  "recipeIngredient": [
    "1  cup flour",
    "3  teaspoons baking powder",
    "2 tablespoon white sugar",
    "1 cup milk",
    "1 banana",
    "2 egg",
    "2 tablespoons melted butter"
  ],
  "nutrition": {
    "@type": "NutritionInformation",
    "calories": "222 calories"
  },
  "aggregateRating": {
    "@type": "AggregateRating",
    "ratingValue": 3,
    "ratingCount": 179,
    "itemReviewed": "Best Old-Fashioned Pancakes",
    "bestRating": "5",
    "worstRating": "1"
  }
}

Similar markup has been used to encode the COVID-19 announcements,
such as special opening hours or prevention measures, on websites (includ-
ing those from the US federal government46) which search engines could
then highlight.47 Readers can 昀椀nd such markup by using the “inspect” or
“view page source” tools of their browser (which can typically be accessed
with a right-click on the page) and then searching for “schema.org”.
If similar metadata were embedded in, for example, all published spectra
(for example, NMR, IR, Raman, XPS), we could simply use a web search
to 昀椀nd all spectra published for a particular chemical in a particular time
period. With proper semantic annotation, we could, for instance, also
speci昀椀cally query for “vibrational spectroscopy” to receive IR, Raman, and
sum frequency generation spectra. Clearly, one can also envision using such
standardized structured data for synthesis “recipes”. This might facilitate
the comparison of di昀昀erent synthetic conditions and also incorporate the
feedback of other chemists. The bioschemas48 andMaterials Schema e昀昀orts

schema.org
https://bioschemas.org/
https://pages.nist.gov/material-schema/
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attempt to move the life and materials sciences closer to this ideal.

Some concrete steps and questions chemists can ask themselves to check
their data objects for reusability and reliability,49 are the following.• Data should be structured using standard, open conventions: Can oth-

ers (humans andmachines) easily usemy data objects with their tools?
This ensures that others can read the data. In practice, this means that
an open format is always preferred over a proprietary one. Standard
formats (JavaScript object notation (JSON), XML, JCAMP-DX) ensure
that others can use standard tools to read the data objects.• Entries in a data object should use a controlled vocabulary and ideally
reference an ontology: Can others, humans and machines, easily un-
derstand the meaning and format of all 昀椀elds in the data object?
ontologies explain themeaning and relation of the 昀椀elds. For example,
when reporting a band gap, one must ensure that the 昀椀eld “band gap”
can be correctly interpreted (as itmight refer to the optical, fundamen-
tal, or transport gap). A key challenge is that the documentation for
the dataset is often transported “out of band” if the data, e.g., in the
Supporting Information of a paper, instead of directly “in band” with
the data object. JSON-LD50 (see Figure 6) and CSV-LD51 are great
ways of providing the context “in band” with the data.• Data should be annotated with metadata, ideally indicating the prove-
nance of the data: Do others, humans and machines, understand
where the data comes from and the context within which it was pro-
duced?
This information can, for example, be important when issues with the
data arise. For example, metadata might help us 昀椀nd that all reactions
were unsuccessful because a batch of the (commercial) starting mate-
rial was impure or the humidity or temperature in the room was too
high. In chemistry, there is nowidely used standard for recording basic
metadata of ELN entries, even though proposals like the elnItemMan-
ifest, which builds on the Dublin Core scheme, have been made.52• Data should also be uniquely identi昀椀able, and citable, using a stable,
and indexed, URI: Can others, machines, and humans, rely on 昀椀nding
the data in a stable form, and see the history, and do they know the
usage conditions?
If data is aimed to be reused, it should be accompanied by a license
that allows this (for example, a creative commons license such as CC0,
a donation to the public domain, or CC-BY, which also requires attri-
bution of the originator). Using a URL that points to a GitHub reposi-
tory or personal web page is hereby not enough—the problem is that
the content of such URLs can easily change, for example, by deleting
a repository on GitHub (a phenomenon called link rot). For this rea-
son, data should be shared via data repositories where it is assigned
a stable identi昀椀er (such as a DOI) that is guaranteed to point to the
content. Also, repositories will ensure that the metadata and identi-
昀椀er are indexed and can be found. For organic chemistry, a domain-
speci昀椀c repository is the chemotion repository.53 Also, for identi昀椀ers
(for example, for samples and instruments), it is best to use hypertext

https://json-ld.org/
https://www.w3.org/2013/csvw/wiki/CSV-LD
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URIs such that others, humans and machines, can easily look up those
identi昀椀ers.
Additionally, others should be able to 昀椀nd out the history of changes
in the data and if it is still maintained. Most repositories can provide
this functionality as “versions” of the dataset.• Data should be linked to other data: Can others, humans and ma-
chines, easily 昀椀nd related data (e.g., computational data supporting
experimental work)?
Linking data provides context and lets users of the data discover re-
lated datasets. From our recipe example, we can imagine that related
content can give us useful information, for example, direct us to the
recipe the original author was inspired by. In the chemistry context,
we should link, for instance, to computational work supporting ex-
perimental measurement or to crystal structures deposited in another
database.

Over time, an “insane”54 number of di昀昀erent ELNs and laboratory infrastruc-
ture management system (LIMS) have been developed. Many of these di昀昀erent
ELNs have been compared in previous works (for example, by the Harvard Medical
school, the Library of the University of Cambridge, LIMSWiki, or peer-reviewed ar-
ticles55–58). In this perspective, we aim to focus on the ideas and design principles
that we think are essential for creating a successful open-science infrastructure—
for the full lifetime of data from inception, creation, and processing to publication.
Since the infrastructure we propose to embrace is already implemented in parts, we
will review some examples (from Table 1) that we think to o昀昀er some key aspects
of such an infrastructure that supports open science. Similarly, we will highlight ex-
amples where chemical data has already been shared in a reusable form. Taking into
account the many attempts to generate new data schema—describing the abstract
structure of the data—and 昀椀le formats for chemical data, we propose that a more
e昀케cient route to open science would be for the chemistry community to embrace
and connect existing systems instead (Thesis 4 in Figure 4).

1.2 D A T A C A p T u R E , D A T A p R O C E S S I N G , A N D
D A T A p u B L I C A T I O N

To be practical, the data capture step needs to be as close as possible to the way
chemists work while ensuring that the chemical data they generate can be practically
reused by other researchers. We give examples of what “machine-actionable data”
means in Box 1.

In chemistry, most samples in the lab are produced with a chemical reaction. Try-
ing to predict the conditions atwhich a reaction optimally can take place is still one of
the major challenges in chemistry. Machine-learning methods are expected to help
us in this area.69 However, for this to work, we need to report data in a format that
can be used in machine learning and also report “failed” experiments.33,70 One can
easily see the dilemma here; if an experiment—after 99 “failed” attempts—昀椀nally
works, there is little motivation, if any, for a researcher to spend 1 % of their time in
reporting the one successful experiment and the remaining 99 % of the time on the
“failed” ones.
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Table 1: Examples for some LIMS/ELN systems. Note that we only list open source solutions
as we believe that successful solutions must be developed from reusable building
blocks given that the requirements for datamanagement in chemistry are so diverse.

system key feature

Chemotion ELN59 chemistry centered user interface, integration with some databases like
SciFinder, can perform basic sanity checks/quality control, for example, check-
ing peak assignments using simulations60—i.e., small tools that simplify the life
of chemists, tightly integrated with the chemotion repository.53

openBIS61 modularity via plugins, integration of Jupyter notebooks (computational envi-
ronments that allow for literate programming, i.e., the combination of text and
visualization with code, that have become a standard across sciences) for cus-
tom data analysis. Can be used as metadata repository for large 昀椀les that can be
linked and stored in other locations.

cheminfo ELN62 large ecosystem of data analysis and conversion packages centered around one
common data object, modular architecture. FAIR data is the center of all opera-
tions, a chemistry-centered interface.

LabTrove63 the ELN can be a form of a blog which allows for open notebook science (i.e.,
making the full research record openly available on the web)—as popularized
via “Open Source Malaria”64,65—which highlights the social components of re-
search and allows for new forms of collaboration.

eLabFTW66 trusted timestamps that could be used as legal “proof of discovery” to defend a
patent.

Sciformation ELN67 integration of chemical libraries (for instance, to 昀椀ll in basic data such as molar
masses) and support for analytical requests to a central service, de昀椀nition of
work昀氀ows (for instance, for the sequence of steps for sample preparation), audit
trial functionality. The successor of the open eventory.

Kadi4Mat68 Integrates (to some extent) a data repository with an ELN, with 昀氀exible user-
de昀椀nable metadata schema. Allows de昀椀ning work昀氀ows that perform a sequence
of tasks, such as extraction and processing, on the data.

C A p T u R I N G S y N T H E T I C D A T A In chemistry, the number of possible steps
and combinations of steps is nearly in昀椀nite. For example, the order in which the
reagents are added can decide whether a reaction will be successful or not71,72—and
any machine-learning e昀昀orts will fail if such information is not reported correctly.
This is exactly what is missing in many of the existing databases. For example, by
mining the patent literature73 one can obtain awealth of information onwhich chem-
icals can be synthesized.74 However, the actual procedure of the syntheses cannot
be mined systematically: The order of addition, the heating, the stirring, and, of
course, the workup and puri昀椀cation. And the situation is even direr for inorganic
chemistry.75 Similarly, all databases contain no information about the attempts that
did not work and are biased toward certain reaction types.76–78 This lack of reports
on “failed” reactions adds to other factors that lead to certain types of reactions be-
ing more prominent than others—for example, looking into the most used reactions
in medicinal chemistry, Brown found that amide formation was mentioned at least
once in about half of the selected set of manuscripts, published in the Journal of
Medicinal Chemistry in 2014 (ref. [79]).

Ideally, capturing synthesis information is 昀椀nding a balance between the 昀氀exibility
of the sheet of paper, onwhich chemists can record anything they want in any format
they like,80 and imposing a structure that can be easily reused for machine-learning
applications. The 昀氀exibility is key to ensure chemists widely adopt the tool,55,81

while from a data management perspective, a highly structured database (for exam-
ple, 昀椀lled via a long form) would be much easier to use. In high-throughput exper-
imentation settings, the latter might be a natural approach, but for many manually
created, small data sets,39 this might not be a feasible approach as capturing all pos-
sible scenarios would result in such a gigantic form that chemists would need special
training to navigate it.

Among the di昀昀erent ELNs no consensus has been reached about this design point.

https://www.chemotion.net/chemotionsaurus/index.html
https://openbis.ch/
https://cheminfo.github.io/
http://labtrove.org/
https://www.elabftw.net/
http://sciformation.com/sciformation_eln.html
http://www.open-enventory.de/index_de.html
https://kadi4mat.iam-cms.kit.edu/
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Some allow complete 昀氀exibility and have a look-and-feel of a typical note-taking
app. Therefore, one would need natural language processing to make the informa-
tion machine-readable, which unavoidably leads to information loss. On the other
end of the spectrum are those with a lot of structure with designing a new form for
every eventuality, which might be ideal for machine learning but poses a burden for
non-routine chemistry. A possible solution for these challenges, and which is im-
plemented in the chemotion and the cheminfo ELNs, is to stick to the text-based
form chemists are used to but to combine it with templates to structure the text.
This hybrid approach is described in Box 2. In practice, we found that some free text
昀椀elds are always required to give chemists the 昀氀exibility to express their motivation,
thought process, and interpretation. This can be captured via speci昀椀c 昀椀elds, such
as related literature or spectral annotations. For many other parts, the free, poten-
tially unstructured thought process is exactly what one would like to capture (for
example, to annotate when an experiment failed for an unexpected reason, such as
a beam drop at the synchrotron).

Box 2: Capturing the reaction process
a b

A paper notebook (as the one in the left image, a) would typically read

…we added 10mg of chemical A (batch 4, see page 25), 5mg
of chemical B (batch 5 see pg 61 of notebook 6 of Colleague
Y), 5 mg of chemical C (Chem-R-Us) in a 50 %DMF/50 %water
mixture and put the solution in the oven Y for 11 h at 70 °C…

One can envision that this is a simple step in a complex synthesis in which
we are trying to 昀椀nd the optimal conditions for a particular reaction. The
question is now how to convert such chemical data into a format that can
be practically mined and possibly used for machine-learning studies and yet
maintain a level of 昀氀exibility that is essential for chemists.
The idea of such a work昀氀ow is to 昀椀nd a compromise between being able to
easily extract process variables (like the heating time and temperature) while
still providing the chemist with a natural interface of a text and structure
editor such that the structure of the ELN remains similar to what they are
used to from paper-based notebooks (panel b in the 昀椀gure). In this scenario,
research groups—or ideally, consortia of research groups) can de昀椀ne prede-
昀椀ned sentences (with 昀椀llable 昀椀elds) for common operations like heating to
re昀氀ux, 昀椀ltering that can be inserted with a shortcut such that the outcome is

…we added R1 (xR1 g), R2 (xR2 g), R3 (xR3 g), in a Y%R4/(100-
Y)%R5mixture and put the solution in the oven y for t h at T °C
…
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in which all bold elements resolve to some URI. If behind the scenes the
prede昀椀ned sentences map to a well-de昀椀ned set of concepts (in standard
vocabularies), the description also becomes independent of the language it
is written in.

The real advantages of this approach become clear if we look at the di昀昀erent
shortcuts. Each reagent (which can be a previously produced sample or one
from a manufacturer catalog) can be referred to via the hyperlink. Follow-
ing those links, the researcher has direct access to all information about the
provenance of the reactants and, from the order of the links, can extract the
order of the synthesis procedure as it is typically described sequentially. At
the same time, this approach reduces the time needed to record experiments
as most of the usual operations can be inserted with tab completion, and ob-
servations such as “the solution turned blue” can be seamlessly integrated.
In this context, it is important to realize that the ways in which observations
are typically reported in chemistry are inadequate.34 For example, colors are
usually reported as color names (such as “dull blue”) in papers and databases,
which are subject to perceptive spread and whic h, therefore, can limit the
utility of such observations for replication studies or machine learning ap-
proaches. In the case of colors, for example, we recommend recording im-
ages with color calibration cards, from which a numerical color value can be
easily extracted. At the same time, the image also gives information about
the material’s morphology.
Another promising approach is lab automation, as proposed by the company
labforward, that, for example, allows to connect balances, rotary evapora-
tors, or vacuum pumps to an ELN and in this way, capture (automatically)
more data in a structured and objective way.82

D A T A F O R M A T S A N D M E T A D A T A After a sample has been synthesized, it
needs to be characterized. Hereby we want to ensure that researchers all over the
world, as well as their computational agents, can use the data. Data models, which
describe how data is stored in a data format, and metadata (that describe datasets)
are not the typical focus of a chemist. However, a lot of chemical data is currently
stored in a wide variety of proprietary 昀椀les (see Table 7). In the short term, this
might not look like a real problem, but in the long term, this is not sustainable. For
example, one can lose access to all 昀椀les once the software license associated with
a particular piece of equipment expires. Or, collaborators in another institute that
want to use the data do not have access to the same software. And a hodgepodge of
inconsistent formats hampers data mining e昀昀orts.

Requiring all individual researchers to manually convert all their spectra to a stan-
dard format will be a large, potentially insurmountable, and non-scalable burden on
the researchers. Therefore, an essential step in progressing towards such an open
platform is to convert the data to a standardized structured form before it even en-
ters the ELN (Thesis 2 in Figure 4). This is an essential service an ELN must provide
to a user. That is, the ELN will take the data as it is provided by the spectrometer
and convert it into a standardized form. The cheminfo implementation, for exam-
ple, uses JCAMP-DX 昀椀les (Joint Committee on Atomic and Molecular Physical Data
Exchange format, see Figure 5 for an example) as standard representation for most
spectra. This format has been recommended by IUPAC for many spectra together
with recommended vocabulary,83 and is also recommended by the chemotion ELN,
and used in the Open Spectral Database.84

https://www.laboperator.com/
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header: provides core and additional 
metadata as labled data records

private (user defined) labels can be 
added using ##$
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indicates start of data in XYDATA format

 

comments can be inserted using $$

for many spectrum types, such as NMR, 
specific fields (e.g., OBSERVE NUCLEUS) 
were defined by the IUPAC working groups

indicates the end of the file

some core metadata elements (title, 
JCAMP-DX version, data type, origin, owner)
must always be provided

##TITLE=340343 V123413/A1A
##JCAMP-DX=4.24
##DATA TYPE=NMR SPECTRUM
##DATA CLASS=XYDATA
##ORIGIN=agfavnmr
##OWNER=Jon Doe
##SPECTROMETER/DATA SYSTEM=Varian GEMINI 2000 300
$$ Varian Associates, Inc., VNMR Software
$$ VNMR Version 6.1 Revision B, December 4, 1998
$$ Tue Jan 13 15:28:35 WET DST 2004
##.OBSERVE FREQUENCY= 299.9328561
##.OBSERVE NUCLEUS=1H
##.FIELD=7.04   $$ Tesla
##.ACQUISITION TIME=4.9996040    $$ seconds
##.AVERAGES=64           $$ number of transients
##$REFERENCE_POINT=224.207        $$Referencing label
##DELTAX=-0.001027655
##XUNITS=ppm
##YUNITS=ARBITRARY UNITS   $$ mm on paper
##XFACTOR=0.001027655
##YFACTOR=160.199999131
##FIRSTX=16.089531599
##LASTX=-0.746542441
##MAXY=127.420862
##MINY=-47.142647
##NPOINTS=16385.000000000
##FIRSTY=-0.015555
##XYDATA= (X++(Y..Y))
0 -0.000111519  0.000307130  0.000000878  0.000275188  0.000287949 
5 -0.000106869  0.000208266  0.000100644  0.000211087 -0.000004851 
10 -0.000027479 -0.000023142  0.000092236  0.000141324 -0.000004786 
15  0.000216486 -0.000011140  0.000437822  0.000111168  0.000372978 
20 -0.000003241  0.000114166  0.000219968  0.000067024  0.000385761 
25 -0.000325340  0.000099498 -0.000343668 -0.000042190  0.000055055 
30  0.000217357  0.000106220  0.000075300  0.000138421  0.000490292 
##End=

Figure 5: Fragment of an NMR spectrum serialized to a classic standard format. This is an
example of a JCAMP-DX 昀椀le. This format is a widely used International Union of
Pure and Applied Chemistry (IUPAC)-recommended format for spectra that is, for
example, supported by the cheminfo and chemotion ELNs. Also, spectra in many
databases such as the NIST webbook or the Infrared & Raman Users Group (IRUG)
Spectral Database can be downloaded in JCAMP-DX format. A JCAMP-DX 昀椀le can
contain multiple blocks of labeled data records (LDRs). That is, one can store mul-
tiple related spectra (such as repeated measurements) in the same 昀椀le. All data
blocks must contain a CORE header with basic metadata such as OWNER, DATATYPE.
The IUPAC working group also provides a vocabulary of further global labels, such
as for the temperature/pressure/CAS-number. Data can also be compressed us-
ing various compression schemes. Note that the JCAMP-DX format is only one old
standard, and many others have been proposed. The JCAMP-DX format, however,
does allow for the addition of an unlimited number of private labels by using the
##$ pre昀椀x, which allows every system to tailor the format to its own needs. Draw-
backs of this format are, however, that it does not come with native, standardized
support for semantic web features (such as linking to a vocabulary) and, in con-
trast to formats like XML, CSV, or JSON, that it is not natively supported by many
general-purpose tools.

www.webbook.nist.gov
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provides prefix (i.e., shorthand) for and 

reference to vocabularies used in this file

the actual datasets (the free induction decay)

reference to the chemical defined at 

another point in this file

the datapoints (shortened for this figure)

the measurement parameters/methodology

technique (NMR) described using chemical

methods ontology (CHMO)

units defined using the QUDT vocabulary

relative address of the methodology part

(relative to the root address)

{

  "@context": [

    "https://stuchalk.github.io/scidata/contexts/scidata.jsonld",

    {

      "sdo": "https://stuchalk.github.io/scidata/ontology/scidata.owl#",

      "cao": "https://stuchalk.github.io/scidata/ontology/cao.owl#",

      "qudt": "http://qudt.org/vocab/unit/",

      "obo": "http://purl.obolibrary.org/obo/"

    },

    { "@base": "https://mysite/nmr/scidata/" }

  ],

  "@id": "https://mysite/nmr/scidata",

  "@graph": {

    "@id": "https://mysite/nmr/scidata",

    "@type": "sdo:scidataFramework",

    "scidata": {

      "@id": "scidata/",

      "@type": "sdo:scienti�cData",

      "methodology": {

        "@id": "methodology/",

        "@type": "sdo:methodology",

        "evaluation": ["experimental"],

        "aspects": [

          {

            "@id": "measurement/1/",

            "@type": "cao:CAO_000152",

            "technique": "obo:CHMO_0000591",

            "settings": [

              {

                "@id": "setting/1/",

                "quantity": "frequency",

                "property": "Observe Frequency",

                "value": {

                  "@id": "setting/1/value/",

                  "@type": "sdo:value",

                  "number": "300.03180",

                  "unitref": "qudt:MegaHZ"

                }

...

      "dataset": {

        "@id": "dataset/",

        "@type": "sdo:dataset",

        "source": "measurement/1/",

        "scope": "substance/1/",

        "dataseries": [

          {

            "@id": "dataseries/1/",

            "@type": "sdo:independent",

            "label": "Excitation frequency (Hz)",

            "axis": "x-axis",

            "parameter": {

              "@id": "dataseries/1/parameter/",

              "@type": "sdo:parameter",

              "quantity": "frequency",

              "property": "Radiofrequency",

              "valuearray": {

                "@id": "dataseries/1/parameter/valuearray/",

                "@type": "sdo:valuearray",

                "datatype": "decimal",

                "numberarray": [4184, -617.85094858],

                "unitref": "qudt:HZ"

              }

...

provides root address under which this 

resource can be found

the valuearray type describes a list of doubles 

Figure 6: Fragment of an NMR spectrum serialized to a modern standard format. We show
another NMRdataset (taken from the SciData website from theChalk Group at the
University of North Florida) serialized to JSON-LD using the SciData datamodel.84

One important part of the JSON-LD 昀椀le is the @context 昀椀eld. The values in this
昀椀eld link to the vocabularies used for naming things in this data 昀椀le. For instance,
for units, the vocabularies provided by qudt are used, whereas the method is de-
scribed using the chemical methods ontology (from which it is clear that, for in-
stance, NMR spectroscopy is—similar to electron spin resonance spectroscopy—a
magnetic resonance method). Almost all modern programming languages support
reading such JSON 昀椀les. The @type 昀椀eld can describe the format of the data, for
instance, to let a computer know that it can expect a list of doubles. Di昀昀erent parts
of the 昀椀le (such as methodology and the dataset) can be accessed by their own ad-
dress.

https://stuchalk.github.io/scidata/examples/nmr.jsonld
https://stuchalk.github.io/scidata/examples/nmr.jsonld
http://qudt.org/
https://www.ebi.ac.uk/ols/ontologies/pride/terms?iri = http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FCHMO_0000591
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But, in principle, any other format (see Table 9) can be used as long as it is stan-
dardized and openly documented. Indeed, some newer formats have native sup-
port for advanced features such as linking to standardized vocabularies and might
be preferable (see Figure 6 for an example). For example, there have been e昀昀orts
(spearheaded by the pharmaceutical industry) to develop a “Uni昀椀edDataModel” for
compound synthesis and testing, or the “Allotrope Data Format” that tries to collect
the full data life-cycle in one 昀椀le. Some, like the auto protocol or XDL,85 even try to
capture the link between hardware (like reaction vessels) and the synthesis steps in
a way that can be both understood (and executed) by robots and humans.

One can argue that some existing formats and data schema are old-fashioned and
that one should develop new ones. However, anyone proposing a new format should
realize that if a characterization method has 𝑁 formats provided by the instrument
manufacturers and 𝑀 “standard” formats are invented, we need to write and main-
tain 𝑁 × 𝑀 conversion programs and 𝑀2 programs to be able to compare the di昀昀er-
ent “standard” formats. This indicates that updating existing solutions and making
them interoperable can be more productive than creating new ones (Thesis 5 in Fig-
ure 4).

It is important to note that data becomesmuchmore useful and interoperable if it
is linked and described using a controlled, hierarchical vocabulary, i.e., an ontology.
A formal ontology would allow us to infer information from the context encoded
in the vocabulary. For example, we might have Raman and infrared spectra and the
cities of themeasurement stored in our database. The ontologywill not only remove
ambiguities in the cities’ spelling but also tell us which cities to include if we search
for, say, all organic samples with vibrational spectra measured in a particular country.
At the technical level, this is enabled because the ontology will encode that both in-
frared and Raman spectroscopy are forms of vibrational spectroscopy and that cities
are located in countries. That is, it allows us to go from machine-readable to ma-
chine interpretable on a global scale (global because the terms are standardized and
shared via URIs). In practice, however, ontologies (and related semantic web tech-
nologies) remain underused. Themain reasons for that are likely that the diversity of
ontologies might be too high and that existing ones are poorly integrated.86 Clearly,
we cannot expect chemists to manually annotate their data using an ontology. An
ELN needs to do this automatically in the background. However, for this to be prac-
tical, ELN developers need to connect with other initiatives to register, standardize,
link,87 and adopt ontologies.

Let us now assume the ideal and most chemists have settled on a standard data
reporting form (for themost important characterization techniques in a sub-domain,
such as gas adsorption isotherms, X-ray adsorption spectroscopy, cyclic voltamme-
try), and we also accept that open science should never be an afterthought. This
implies that the ELN must take the 昀椀le in whatever form it comes from the instru-
ment, convert it into this standard form, and permanently connect it to the chemical
that was characterized (Figure 7). Such conversion tools (see Table 7 for examples)
can be developed independently of each other and reused in all ELNs. For instance,
the chemotion ELN reuses some of the libraries that we have been developing for
the cheminfo ELN (cheminfo.github.io). Such common conversion tools would
also incentivize adopting a common schema.

p R O v E N A N C E O F D A T A One crucial step in this process is to match the spec-
trum to the correct sample. A URI system (can be printed as barcodes) can help to
avoid mistakes in this step. For instance, in the cheminfo ELN, scanning the barcode
will create the upload information for automatic importation from the computers
to which the spectrometers are connected. From there, the system can take the 昀椀le
from the computer, convert it to the standard form, and store it as an attachment to a

cheminfo.github.io
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instrument 

(e.g., IR spectrometer)

database

ELN frontend

file in folder connected 

to instrument computer

automatic 

importation 

and conversion

acess via

API

instrument 

(e.g., GCMS)

importation via 

drag and drop

conversion

 in browser

Figure 7: Overview of a possible importation procedure of the ELN. If an instrument is cou-
pled to the network, one can upload the analysis result directly into a database by
scanning the barcode on the sample. Alternatively, one can upload 昀椀les via drag
and drop through a web interface (frontend). In both cases, the ELN ensures that
the data are converted to a standard form such that anyone with a web browser
can visualize and further analyze the data. Other parties can access, for example,
using a access token mechanism,35 the data using a representational state transfer
(REST)-application programming interface (API) or the published data on a reposi-
tory. Importantly, all steps can take place from a di昀昀erent location, hence enabling
collaboration. This data infrastructure is implemented in the open-source chem-
info ELN.
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sample that has been created in the ELN (for example, as a product of some reaction).
This automatic importation not only makes it much easier and less error-prone for
the chemist to store the data in the ELN, but it also allows to automatically record a
lot ofmetadata—for example, the importationwork昀氀ow can昀椀ll in information about
the instrument (such as manufacturer, serial number, humidity, the temperature of
the room) that is not always recorded in the output 昀椀les of the measurements (see
Figure 5 and Figure 6 for examples).

D A T A p R O C E S S I N G After the data has been produced and imported into the
ELN, most data need further analysis. Currently, chemists must switch between dif-
ferent, often proprietary, software to analyze their data. Theymight rely on the soft-
ware provided by the instrument manufacturer to perform peak picking or baseline
correction and then use another plotting tool to overlay the data. In an open-science
vision, one would like to ensure that one not only has access to the data but, equally
important, one can also reproduce the subsequent analyses. Likewise, if the chem-
istry community would embrace the view that the ELN has converted the data to a
commonly agreed standard data form, the analysis tools become independent of a
particular instrument or even characterization technique.

If one designs the platform with a common interface, ensures a modular architec-
ture, and ensures a re-usability of the key components, one has the 昀椀rst step towards
an ecosystem in which libraries are developed for speci昀椀c tools that accelerate the
work昀氀ow of chemists (Thesis 4). The modular nature would allow experts in one
technique, for example, NMR spectroscopy develop tools that can then be reused
by other ELNs. An example of this is the NMRium project88 which is a reusable web
component that can, with three lines of code, be plugged into another ELN system.
To make this work, it is important that the components can talk with each other via
standardized protocols.

In an open science vision, the code for these components should be open. One of
the concerns regarding open source software is the danger that a project might “die
out” if one maintainer leaves the project, whereas successful commercial software
might seem to have the promise of continuity. However, there are many successful
examples (such as Linux and Python) in which open-source projects are maintained
by the community yet leave many options for commercial initiatives (for instance,
support contracts and maintenance of a custom installation). Similarly, at univer-
sities, common analytical infrastructure (such as the routine NMR service) is often
supported using institutional funding—a similar model might also be appropriate
for the digital infrastructure. Importantly, open source code has the advantage that
the underlying assumptions and equations for any analysis are documented, and ev-
eryone can verify, replicate, or even improve the analysis. And in contrast to closed
source (commercial) tools, which have been discontinued because of a change in
business interests, the development can be reanimated at any time, as the code is
openly accessible and reusable.

p u B L I C A T I O N O F R E u S A B L E A N D M A C H I N E - A C T I O N A B L E D A T A The
work of a scientist is not completed when all materials are synthesized and charac-
terized. An essential part of the scienti昀椀c process is the dissemination of the results
to make sure that others can build on top of one’s work. Typically, we are used to
thinking of “others” as other scientists in the same 昀椀eld. However, science is in-
creasingly multi-disciplinary; hence non-specialists might also need to understand
the data. Additionally, the move towards open science is a logical consequence of
the notion that if the taxpayer paid for the research, the ownership of the research
data should be the public, which can empower citizen (data) science.89,90 We can get
a glimpse of the power of the re-use of data with the discoveries of Don Swanson, an

https://www.nmrium.org/
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All raw data in standardized 

and structured form on Zenodo

Can be interactively visualized 

re-using the tools from the ELN

Zenodo app can be used to 

select samples to export

a b c

Figure 8: Example of the data 昀氀ow from the ELN to the interactive visualization for the reader
of a paper. Once all the chemicals are selected ofwhich the synthesis and character-
ization data needs to be published, the ELN compiles the data and uploads the data
to a repository (in this case Zenodo91). These data are not only machine-readable,
but the data can be accessed through a browser, and a human reader can also use
the same visualization tools as the authors of the article.34 The implementation
sketched in this 昀椀gure is implemented in the open-source cheminfo ELN.

information scientist without formal training in medicine, who analyzed literature
from the Medline database and found previously undiscovered knowledge like links
between magnesium de昀椀ciency and migraine.90 Nothing fundamental about chem-
istry prohibits us from leveraging such approaches to science.

Usually, however, in contrast to the publication of the article, the publication of all
the scienti昀椀c data on which this article is based is reduced to an afterthought. Most
of us are still educated with the idea that we need to be selective about the data
instead of embracing the idea that all scienti昀椀c data we generate is an integral part of
the science we do: Data is only published to ful昀椀ll the requirements of some journal
policy or data management plan—without the reuse of the data in mind. This likely
explains why many ELNs do not feature an option to export data to a repository.

In the open-science platform we propose, the publication of the scienti昀椀c data is
simply seen as one of the applications that can be applied to the data in the ELN. In
such an application, the users can select the samples they want to publish and create
an entry on a repository containing all the raw data. The application ensures that
data are reported in a form that can be easily reused by other researchers and ma-
chines. For the chemists writing a publication, this means that they can provide a
DOI to supplementary material and augment every 昀椀gure with a link at which read-
ers can interact with the raw data or download it for follow-up studies. Both the
chemotion and cheminfo ELNs implement parts of this functionality. The cheminfo
ELN exports data to the general-purpose Zenodo91 repository, whereas the chemo-
tion ELN can export data to the chemotion repository,53 which focuses on chemical
synthesis and characterization data.

Similarly, an ELNmight also allow importing entries froma repository. Thatmeans
that researchers might import the entire lab notebook used to produce published
results. Importantly, since the characterization data is also provided on the reposi-
tory, the researchers would also have access to the original characterization data and
might overlay them with their new results. To our knowledge, no ELN fully imple-
ments this automatic re-importation procedure.

1.3 D I S C u S S I O N A N D O u T L O O k
The open science platform we propose in this work provides a central hub for all
the synthetic or analytical work of a chemist or materials scientist. Underpinning
this platform are two common principles essential to making it truly open science,
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such that it can bene昀椀t data-intensive research and address reproducibility problems
(Thesis 1). First, FAIR data should be at the core of the platform; all data that enter
the platform need to be converted to an open, structured, and standardized form
with appropriate, linked metadata—this is the core functionality an ELN should pro-
vide (Thesis 2). Second, open science also ensures that other researchers can repro-
duce and build upon the results. Therefore, the platform should be able to export the
data in a form that is machine-readable and -interpretable and can easily be re-used
by other groups (Thesis 3). In addition, in an open science vision, onewould also like
tomake the tools used to analyze the data available to anyone in theworld interested
in reproducing the results or reinterpreting the data. This leads to the notion that
such a platform is ideally developed as modular open source infrastructure where
the community can scrutinize, reuse, and improve the analysis code (Thesis 4).

The possibilities are unlimited if such a platform becomes widely used and sup-
ported by the community. The way we assess scienti昀椀c work and credit scienti昀椀c
outputs has the potential to change. trusted timestamps can provide unique proofs
of discovery, going beyond the compressed and delayed priority claim preprints can
provide,92 and peers can continuously provide feedback about the raw data, the anal-
ysis, and the conclusions. An interesting formofmaking the full research record pub-
lic, and hence open for feedback, has already been proposed in the context of open
notebook science.93 If this information is shared with the community, one can build
a community-driven version of theOrganic Syntheses journal where the veri昀椀cation
of the results is done continuously by the community and not (only) in a lab of one
of the members of the editorial board. Importantly, this version would also contain
information about the attempts that did not work and, in this way, document the
process, and the learnings, that led to the 昀椀nal result. If data is available in digital
form, the peer review process can be supported with automated checks, for example,
to verify the consistency of NMR assignments and highlight potential issues for peer
reviewers.

The most important reason for embracing the approach described in this perspec-
tive is that it can change the way we do chemistry. Before the digital era, many of us
were educated with the idea that if we publish all the data we generate, any normal
human being will get lost in the sheer volume of data. Data-intensive science, how-
ever, fundamentally changed this point of view. With machine learning, we have the
tools to analyze orders of magnitude more data than any normal human can process,
discover correlations in millions of data points, and build predictive models.94 For
example, if we aim to synthesize some compound, a simple query in the collective
ELNdatabasemight show for one synthesis route 100 “failed” reactions and two suc-
cessful ones, while another route shows 90 successful and ten “failed” attempts—
which is a clear indication which synthesis route one should try 昀椀rst. Undoubtedly,
a very experienced chemist might have very good intuitions about what works and
what does not. However, for a new student in the 昀椀eld, this collective knowledge
now becomes accessible. Clearly, we can go beyond this simple search and try to
harvest the collective knowledge generated by all chemists, using machine learning
techniques to capture subtle correlations across the chemical space of millions of
reactions carried out worldwide. In this respect, machine learning is not di昀昀erent
from the experienced chemist; most likely, it can learn even more from “failed” and
partially successful experiments as from the successful ones. But in contrast to the
chemist, it typically needs large amounts of structured data—which we could easily
generate in chemistry.

Another issue that the chemistry community faces with open data is that every-
one agrees that there are bene昀椀ts in making data reusable and in reporting “failed”
experiments, but often there is hesitation from individual researchers to adopt this
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behavior until all members of the community do so. The social sciences give us var-
ious possible solutions to this problem setting.90,95 One approach is some kind of
compulsion. For example, the fact that the submission of DNA sequences is a condi-
tion for publication in the leading scienti昀椀c journals of the 昀椀eld is seen as one of the
reasons for the success of theGenBank database.96 This, in turn, openedmany doors
for bioinformatics research. We alsowitnessed that in small groups that include lead-
ers of the 昀椀eld, agreements like the “Bermuda Principles”, which require that DNA
sequence data are automatically released in publicly accessible databases directly
after the measurement, can be achieved. In chemistry, we have observed similar
dynamics in crystallography, where Crystallographic Information Files (CIFs) must
be deposited with the Cambridge Structural Database, where they are made freely
accessible (and searchable) on publication. This led the European Commission to
conclude that “the requirement from academic journals that authors provide data in
support of their papers has proven to be potentially culture-changing, as has been
the case in crystallography”.86 What we can also learn from crystallography is that
once some standards are adopted, automatic checks (such as checkCIF) can be im-
plemented.
From the Structural Genomics Consortium (SGC) and related initiatives (for exam-
ple, Open Source Malaria,64 COVID Moonshot97) we can learn that openness can
also be enforced on the level of a consortium, for example, by requesting that mem-
bers openly publish the protein structures and not to 昀椀le patents for the research out-
puts. This public-private partnership (PPP) model seems to be successful because
the private sector, which provides the funding and “chemical probes” (potent in-
hibitors of protein function), can guide the research—i.e., prioritize structures that
should be solved—without disclosing the companies R&D priorities since the con-
sortium anonymizes the “wish lists”.98 The utility of such a consortium can best be
seen at the pre-competitive stage (i.e., the early stages of drug discovery), where it
can share risks, enhance collective learning, and avoid duplication in new areas of
(basic) science.99 This is particularly interesting in the case of “chemical probes”,
which are best produced by experienced industrial, medicinal chemists. However,
the industry would enormously pro昀椀t if academia could use those probes to validate
drug targets.100 For this reason, the SGC makes them available as “open access”
reagents—under the conditions that the research outputs are made available in the
public domain. A similar “physical open access” approach is also pursued by the
Molecule Archive of the Compound platform at the Karlsruhe Institute of Technol-
ogy (KIT), which acts as a mediator for compound exchange: Synthetic chemists can
“archive” their compounds (which increases their visibility), which can then be re-
quested for biological screenings.101

Beyond those measures, we must change incentive structures by creating better
ways to credit researchers for curating data. ELNs could help in this regard by storing
the “credit” chainwhendata is imported and automatically append the citationwhen
data sets are prepared for publication.

Beyond that, adapting this data-centric approach to chemistry requires changes in
the university curriculum to raise the awareness of these new developments, as well
as the need for and the promises of data curation. Ideally, open-science solutions
like the infrastructure described here should already be introduced in the undergrad-
uate curriculum. Students can record the results of their labs in ELNs, harvest the
data in machine-learning classes, predict the IR spectrum they just measured in com-
putational chemistry classes,37 and use open notebooks to comment on and improve
each others’ work.

The question that might still be open at this point is how realistic the widespread
adoption of such an open-data platform across the chemistry community is. We ar-
gue that we have all the basic tools and technology in place. For many of the key

https://checkcif.iucr.org/
https://compound-platform.eu/home/
https://compound-platform.eu/home/
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design aspects, we used examples from our own work, which are openly available,
can be tried out by the community, and can be reused in other implementations.
There are also several initiatives (see Table 8) that work on some of the aspects we
emphasized in this perspective. One example is the German NFDI4Chem consor-
tium,102,103 which is embedded in the larger German initiative for the creation of Na-
tional ResearchDataManagement Infrastructures (which also includes NFDI4Cat104

for catalysis research andNFDI4Ing for the engineering sciences), and aims to “FAIR-
ify” the full data lifecycle in chemistry. But we, as a community, also have to realize
that we are in a phase where there is an “insane” number of initiatives, proposed
data schemas, and ELNs. As a community, we face the task of embracing and con-
necting the e昀昀orts. Only if we succeed in making these tools interoperable will we
be able to leverage the full potential of data and the digital age. One promising way
forward will be the formation of data communities,105 where experimentalists and
ELN developers work together to develop a domain-speci昀椀c (for example, porous
materials, batteries) open science infrastructure by combining, extending, and pol-
ishing existing building blocks.

From our perspective, there are a concrete few steps that need to be implemented
to reach this goal

1. The chemistry community should embrace its own existing standards and so-
lutions. We will only be able to make progress as a community if we start
connecting and using existing solutions. The feedback can then be used to
improve the tools. If we as a community never move beyond the stage of
just proposing new formats or implementations—instead of using them in
practice—we will not make any progress. This also requires that the exist-
ing tools are made reusable (i.e., packages are extracted frommonolithic code
bases and augmented with documentation) and shared on platforms such as
GitHub.

2. Journals need tomake deposition of reusable rawdata, where community stan-
dards exist, mandatory. This ismotivated by the success of the Bermuda agree-
ment and the deposition of CIFs and is needed to address the collective ac-
tion problem. Just using ELNs does not solve the problem. We also need to
open our ELNs. Notably, this does not mean that data should be provided
as PDFs but in a standard, machine-actionable form. Where community stan-
dards exist or are emerging, for example, as it is happening in the 昀椀eld of gas
adsorption,106 journals should start embracing those formats by requesting
the deposition in a community repository.105 The same holds for the basic
characterization of organic compounds (NMR, IR, MS), where the chemotion
repository already o昀昀ers tools and curation that are reminiscent of the CSD.
Importantly, disconnected data in di昀昀erent repositories can often only practi-
cally be used if they are linked. Therefore, for instance, the gas adsorption data
on one community repository (such as the NIST/ARPA-E Database of Novel
and Emerging Adsorbent Materials107) needs to be linked, ideally using hyper-
links, to the crystal structure in the CSD.

3. We need to embrace the publication of “failed” experiments. Using a digital
infrastructure, this can be easily done to tell the story of how the 昀椀nal result
was reached. It also requires that we as a community realize that the outcome
of an experiment is not a binary “is this a breakthrough or not” but simply an
observation that is valuable and can be reported. For this to be successful, we
must take care to properly acknowledge such datasets, for example, when we
used them for data mining exercises, or they helped us to avoid some costly
experiments.
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4. ELNs that do not allow exporting all data into an open machine-actionable
form should be avoided. This re昀氀ects the core of Thesis 2: The most impor-
tant service an ELN can provide is removing the hassle of making data FAIR.
This is not only to avoid losing access to the data if a license expires or being
unable to build on previous work as it was in the “old-ELN” format, but it is
also about being able to collaborate and share data with groups independent
of the ELN. ELNs that just store data as provided, and might not even allow
exporting this data, do not bring us closer to the goal of reusable data in chem-
istry.

5. Data intensive research must enter our curricula. “Open science” is gaining
momentum in the chemistry community, and increasing numbers of researchers
are engaging (to various extents). We need to raise awareness of these new de-
velopments already at the undergraduate level, use ELNs for our lab courses,
and teach that open science is just science done right.108,109 For example, at
EPFL, we teach machine learning and the use of ELNs in the same course and
plan to couple the lab courses with data analysis exercises in the ELN. This also
implies that our institutions need to provide faculty with appropriate support,
for instance, via the campus library.110

To conclude, we would like to emphasize that the technology is here not only to
facilitate the process of publishing data in a FAIR format to satisfy the sponsors but
to ensure that the combination of chemical data, FAIR principles and openness gives
scientists the possibility to harvest all data so that all chemists can have access to the
collective knowledge of everybody’s successful, partly successful, and even “failed”
experiments.

Box 3: Example of the online chemical processing of data
A common operation in materials science and inorganic chemistry is char-
acterizing a material with powder x-ray di昀昀raction. One then typically
compares the measured spectrum with some reference, which might be
a predicted pattern, a single crystal structure, an entry from a refer-
ence database, or a pattern from the past, for example, with a pattern
measured by a student that left the group. In the worst case, the lat-
ter is completely lost or only 昀椀ndable as an image in some publications.

In the cheminfo ELN, the same interface can be used to compute an x-ray
di昀昀raction pattern based on any crystal structure in the database, overlay it
with experimental patterns measured in the past in the research group, or
deposited in the Computation-Ready, Experimental (CoRE)-MOF111 or the
crystallographic open database112,113 (see screenshot). A typical question in
this context is whether a structure is a distorted analogue of a known struc-
ture.
When our experimental partners approached us with this question, we could
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extend the toolbox in the ELN to allow the calculation of XRD patterns for
distorted cells of reference crystal structures—we see this collaborationwith
experimentalists as a key to the success of an ELN platform. Similarly, one
can link computational infrastructure to give experimentalists easy access to
“routine” simulations.35

Again, the tools are reusable by other researchers—in the form of the source
code and a web service that exposes a REST-API that can be queried from
other systems, such as other ELNs.
We envision that web services such as this can be an essential part of a plat-
form where the chemical processing of data happens online. Indeed, di昀昀er-
ent web services can be developed and maintained by research groups in
their 昀椀eld of expertise (and in an appropriate programming language) and
reused by the chemistry community on any platform with any programming
language.
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A B S T R A C T The space of all plausible materials for a given application is so large
that it cannot be explored using a brute-force approach. This is particularly the case
for reticular chemistry, which provides materials designers with a practically in昀椀nite
playground on di昀昀erent length scales. One promising approach to guide and ac-
celerate the design of materials is machine learning. While there have been plenty
of examples of the use of machine learning for reticular materials, progress in the
昀椀eld has stagnated. From our perspective, an important reason is that digital chem-
istry is still more an art than a science in which many parts are only accessible to
experienced groups. To address this, we present mofdscribe: a software ecosystem
that accompanies—seasoned as well as novice—digital chemists on all steps from
ideation to model publication. While we optimized the tools for the challenges of
reticular chemistry, most, if not all, can also be used for studies on non-reticular ma-
terials. This ecosystem allows for a more robust, comparable, and productive area
of digital chemistry.

C I T A T I O N This chapter is a preprint version of our In Focus article: Jablonka,
K. M. et al. ACS Cent. Sci. 2023, 10.1021/acscentsci.2c01177.

C O N T R I B u T I O N K.M.J implemented the software library, conducted the exper-
iments, and wrote the manuscript with B.S.
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2.1 I N T R O D u C T I O N
Reticular chemistry, the science of constructing extended crystalline structures from
molecular building blocks, gives scientists a unique playground for material design
and discovery as it gives access to a practically in昀椀nite-dimensional design space
across many length scales: One can architect the pore, functionalize the building
blocks, or even encode chemical sequences across unit cells.115 These possibilities
made reticular chemistry one of the most active 昀椀elds of modern chemistry with
more than 100 000 structures collected in experimental databases.116 Exploring this
entire design space by mere trial-and-error using brute-force computational screen-
ings and iterative experimental testing is impossible. Similar tomany other scienti昀椀c
domains,117–119 this realization gave rise to the notion of digital reticular chemistry,16

and in particular to the use of data-intensive research to aid the discovery and design
of new reticular materials for any given application by learning predictive models
fromdata.94,120 Thus far, machine-learning approaches have—among others—been
used to predict gas adsorption properties,121 colors,34 oxidation states,122 electronic
properties,123,124 heat-capacities,125 or synthesis conditions126 aswell as (water) sta-
bility of MOFs.127–129

This work is motivated by the observation that the full potential of data science
in this 昀椀eld has not yet been achieved. We argue that some critical bottlenecks limit
our progress. Even though all works operate on the same class of materials and of-
ten use related machine-learning approaches, these works are hardly comparable
or replicable and only implementable by experienced groups. This impediment is
present across all stages of the machine-learning work昀氀ow. Researchers use di昀昀er-
ent datasets to train and test their models—as we show, sometimes with signi昀椀cant
data leakage130—preventing direct comparison of modeling approaches. Further
down the modeling pipeline, practitioners often use di昀昀erent implementations of
the same technique to convert structures into feature vectors—or do not attempt
to try di昀昀erent strategies due to implementation challenges. At the end of the mod-
eling process, models need to be validated. However, also there, researchers use
di昀昀erent protocols, and—as we discuss—not always the most meaningful ones. To-
gether with the lack of platforms that compile the results obtained with di昀昀erent
approaches, these bottlenecks make machine learning for reticular chemistry still
more an art than a science.

Formanymachine learning applications, it has been observed that these problems
can be overcome by providing a proper scienti昀椀c ecosystem for the 昀椀eld: providing
the basic building blocks for all the relevant steps in an easily accessible form.131

If such a software ecosystem is in place, users can radically accelerate the pace of
innovation (as they can use interoperable building blocks and reuse others’ work)
while ensuring that their work contributes to the advancement of the 昀椀eld. In this
work, we report a software ecosystem that aims to achieve this goal.

Our ecosystem provides machine learning-ready datasets, along with more than
40 reported and unreported featurization approaches, under a consistent API that
enables rapid experimentation andmakes those tools accessible to non-experts. More-
over, to facilitate consistent and meaningful evaluations of machine learning ap-
proaches, we also provide data splitters, as well as benchmarking tools that allow
submission to a public leaderboard that is automatically updated upon submission.

Using materials design case studies, we illustrate the importance of these best
practices, negligence of which can, in some cases, lead to the selection of models
with much worse generalization performance.

Importantly, while our tools are optimized to address the challenges and opportu-
nities of reticular chemistry, most, if not all, can be applied to other material classes.
This also applies to our case studies, such as the one about the impact of data leak-
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age.

2.2 R E S u L T S A N D D I S C u S S I O N
Machine learning studies typically need to go throughmultiple, often iterative stages,
all supported by our mofdscribe software library.

1. Collecting a dataset. Formachine learning e昀昀orts to be comparable, consistent
datasets, along with measures that mitigate data leakage, are needed.
In mofdscribe, we provide a consistent interface to multiple commonly used
datasets111,116,132–134 as well as a completely new dataset of adsorption proper-
ties, complementing the QMOF database.123,124 Additionally, we implement
measures to mitigate the e昀昀ects of data leakage.

2. Featurizing a material. Most machine learning models only accept inputs of
昀椀xed shape. Therefore, structures (which generally have varying numbers of
atoms) need to be converted into 昀椀xed-sized arrays. However, since some
of these strategies have no reusable open-source implementations or existing
ones are hard to combine, researchers seldom explore di昀昀erent featurization
approaches.
To address this, we implemented more than 40 di昀昀erent such featurization
strategies that have been used in the literature as well as completely new ones.

3. Splitting the datasets. To estimate the generalization performance of a model,
it needs to be evaluated on data it has not seen before (i.e., is independent of
the training data) and, ideally, mimics the distribution of data the model will
be used on.130,135 For this, one typically splits the dataset collected in step À

into multiple parts. However, as we show, the chosen strategy can have an
important impact on model selection and interpretation of the results.
Therefore,mofdscribe implementsmultiple reported andnovel splitting strate-
gies to ensure stringent model evaluation.

4. Evaluating performance. Moreover, to compare and evaluate models, we need
to compute metrics.136 However, as we argue below, practitioners tend to re-
port commonly used metrics instead of ones that are actually relevant to the
application.
We showcase such a more relevant metric and implement it along with others
in the mofdscribe package.

5. Comparing the performancewith the state-of-the-art. For science tomakeprogress,
it is important to be able to compare with and build on top of others’ results.
In the current state of digital reticular chemistry, this is not possible.
To address this, mofdscribe implements benchmarking tools that allow direct
submission to task-speci昀椀c leaderboards. Furthermore, the design of our bench-
marking tool requires users also to share their hyperparameter optimization
strategy.

2.2.1 Structure datasets

Manymachine learning practitioners recognize benchmark sets as drivers of progress.
For instance, researchers in image classi昀椀cation can easily compare the performance
of competing approaches, as they can comparemodel performance on the same tasks
on the same dataset (e.g., ImageNet137).138 Over the last years, similar benchmark
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datasets have been reported for generative models for molecules139 or quantumma-
chine learning.140–144 However, there is currently no widely used reference set for
machine learning onmetal-organic frameworks (even though theQMOFdataset123,124

makes important steps towards this goal). As a 昀椀rst step towards more comparable
machine learning forMOFs, our package implements a consistent interface for collec-
tions of structures (StructureDatasets), along with some corresponding proper-
ties (e.g., gas adsorption or electronic properties) withwhich all datasets can be used
via the same interface. Our package implements reference datasets based on the
QMOF database,123,124 the ARC database,133 the BW database,27,132,145 the ARABG
database,146 as well as on a subset of the CoRE-MOF database.111,134

A challenge with the currently existing datasets is that di昀昀erent properties are
computed for di昀昀erent structures. However, for many learning applications, having
multiple properties for the same structure can be useful. To address this, we used
reproducible computational work昀氀ows147 to compute diverse gas separation prop-
erties (CO2, CH4, H2, N2, O2 isotherms; H2S, H2O, Kr, Xe Henry coe昀케cient as
well as parasitic energy for carbon capture from natural gas and a coal-昀椀red power
plant148,149) for nearly seven thousand materials from the QMOF database (which
contains many nonporous materials) and make them accessible via our mofdscribe
package. To the best of our knowledge, this makes it the 昀椀rst database of some
gas adsorption properties collected alongside many other properties (e.g., bandgap
computed with di昀昀erent functionals) of the same structure. We intend to update
the database in parallel with the QMOF database.

Data leakage

A pitfall for machine learning studies is data leakage, which means information from
the test set is leaked into the training.130 Often this can happen if, for instance, hy-
perparameters are tuned based on metrics computed on the holdout test set. How-
ever, data leakage can be much more subtle. For example, slight variations of the
same structure might occur multiple times in one dataset. Machine learning based
on data extracted from experimental crystallographic databases [such as the CSD150

or the Crystallographic Open Database (COD)151] is particularly prone to this kind
of data leakage as one structure can appear multiple times under di昀昀erent identi-
昀椀ers in the database. This can, for instance, be the case because there are di昀昀erent
re昀椀nements for the same structure or because the measurement was performed at
di昀昀erent temperatures. The presence of duplicates in MOF databases has been re-
ported before152,153 but is seldom considered in machine learning studies. In Case
Study 1, we illustrate that for MOFs data leakage is indeed a severe and perhaps un-
derestimated problem.

To address this problem,mofdscribe implements computationally e昀케cient heuris-
tics that help with the deduplication of datasets. Those heuristics are based on
the computation of hash strings of the periodic structure graph (so-called quotient
graph),154which describes the connectivity of the atoms in the crystal (vertices being
the atompositions and edges being the bonds). Since the structure graphdoes not di-
rectly depend on the exact atomic positions, structures with slightly di昀昀erent atomic
positions (e.g., conformers) will share the same structure graph. While a check for
graph-isomorphism would be the formally exact way to check for duplicated struc-
ture graphs, this can be computationally intensive, or even prohibitive, for large
structure graphs as they are common forMOFs. Therefore, weuseWeisfeiller-Lehman155

hashes of di昀昀erent versions of the structure graphs (Figure 9), corresponding to in-
creasingly tight de昀椀nitions of duplication. We want to emphasize that while this
deduplication strategy is a good default for most applications, it might be too strict
for others as, for instance, open and closed forms of a framework will be counted as
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graph undecorated graph

scaffold undecorated scaffold

Figure 9: Levels of structure graph abstraction. a The (decorated) structure graph considers
all atoms, bonds, and atomic numbers as “coloring” of the graph. Therefore, struc-
tures with slightly di昀昀erent geometries (e.g., experimental vs. DFT-optimized) but
the same connectivity will be considered equivalent. (We recently used this de昀椀ni-
tion to 昀椀nd duplicated structures in the CSD when matching structures with their
isotherms.156) b To 昀椀nd structures with the same connectivity but di昀昀erent color-
ing (e.g., Mg-MOF-74 and Ni-MOF-74), we can use the undecorated graph. c A
harsher measure of structural similarity can be obtained by only considering the
sca昀昀old. Here we form the sca昀昀old by breaking all so-called bridges. Bridges are
edges (i.e., bonds) whose breakage leads to an increase in the number of connected
components. Those are usually coordinated solvents, hydrogen atoms, functional
groups, or other terminal atoms. Note that this de昀椀nition of sca昀昀old di昀昀ers from
the one used for (Bemis-Murcko) sca昀昀old analysis of molecules.157 Therefore, 昀氀u-
orine, chlorine, or amine-functionalized structures would all be treated equally.
d Also here, we can remove the coloring to make, for instance, Ni-MOF-74-NH2

equivalent to Mg-MOF-74-NH2. To simplify the identi昀椀cation of duplicates, we
use the Weisfeiler-Lehmann test to convert graphs into a hash string. While this
test does not guarantee isomorphism, the resulting computational advances dras-
tically outweigh the lack of theoretical guarantees.

duplicates. Hence, this automatic deduplication can be disabled and customized in
mofdscribe.

Case Study 1: The impact of data leakage One can argue that there will be
a few errors in any large data set. However, the presence of duplicates can
cause serious issues formodel evaluation.130 In this case study, we show that
this is a severe problem for reticular chemistry.
Let us start by investigating the number of duplicates in commonly used
databases of experimental and hypothetical MOF structures. In the case of
the experimental databases, it is important to realize that if the same struc-
ture has been re昀椀ned multiple times or measured under di昀昀erent tempera-
tures or with di昀昀erent unbound solvents, it will appear under multiple CSD
reference codes. From a machine learning point of view, however, these ma-
terials are too similar to appear in both train and test sets (as for many ap-
plications such as high-pressure gas storage, the model could then make a
perfect prediction by just remembering the appropriate training data).
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Box Fig. 1| Duplicates across MOF databases. We show the number of
duplicates as inverse cumulative histograms, i.e., the bar heights indicate
how often we 昀椀nd 𝑛 or more times a duplicated graph type. In the columns,
we show increasingly general (i.e., more structures are considered as
duplicates) de昀椀nitions of duplicates. The rows show the counts for
di昀昀erent databases: The all-solvent-removed (ASR-CSD) subset of the
2019 MOF subset of the CSD, the CoRE database, the QMOF database,
and the Boyd-Woo database (BW) of hypothetical MOFs.

Using increasingly general (i.e., more structures are considered as duplicates)
de昀椀nitions of duplicates (Figure 9), we analyze how many matching struc-
tures we 昀椀nd in the all-solvents removed (ASR) subset of the CSDMOF sub-
set (2019), and the CoRE and QMOF databases. The inverse cumulative
histograms below plot how often we 昀椀nd 𝑛 or more identical hashes (e.g., at𝑛 = 10, the count represents the number of structures with 10 or more iden-
tical hashes). The “graph” strategy considers all structures which share the
same connectivity and atom types as identical. The “undecorated graph”
(undec. graph) strategy does not consider the atom types. The “sca昀昀old”
strategy removes all functional groups, solvents, hydrogens, and terminal
atoms from consideration (formally, all subgraphs connected via bridges).
Again, we can also remove the atom types from consideration. As expected,
we see an increase in the larger number of duplicate counts from left to right.
This analysis shows that, for instance, the Co-CPO-74 structure appears 114
times in the ASR CSD MOF subset. This implies that this structure will
likely appear both in the training and test set. Importantly, this is not the
only structure with many duplicates; there are of the order of 100 struc-
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tures inwhich structure graph appearsmore than ten times in theCoREMOF
database—and hence do not contribute to a meaningful measure of the gen-
eralization performance of the model.
Analyzing a database of in-silico assembled MOF structures (BW),27 we 昀椀nd
notably many sca昀昀old duplicates: Among nearly 20 thousand structures, we
only 昀椀nd 1584 unique undecorated sca昀昀olds. Many in-silico MOF assem-
bly approaches enumerate all possible combinations of building blocks, nets,
and functional groups. While this approach can give a lot of detailed insights
into regions of chemical space, it will also give rise tomany very similar struc-
tures that can lead to the violation of the assumption of independence be-
tween training and test set. To illustrate this, we can simulate a thousand
random train/test splits (as commonly done) and measure how often a scaf-
fold occurs both in the training and test set. For practical train/test ratios,
the majority of sca昀昀olds (e.g., 55 % for a train/test ratio of 0.8/0.2) will be
found in both training and test set.
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Box Fig. 2| Likelihood of having the same sca昀昀old in train and test set.
Using the BW dataset implemented in mofdscribe we perform 1000
random train/test split for di昀昀erent train/test ratios and count how often
we 昀椀nd an undecorated sca昀昀old hash in both the training and test set. The
昀椀gure indicates that for commonly used train/test ratios, most sca昀昀olds
will be found in both training and test set.

To showcase the potential impact of such data leakage on model evaluation,
we computed learning curves (forCO2 Henry coe昀케cients in the BWdatabase
as implemented in mofdscribe) for two deduplication levels: No deduplica-
tion and removal of identical undecorated sca昀昀olds. If there was no data
leakage, the learning curves should be similar. However, for the dedupli-
cated datasets, we observe that the initial learning is faster (presumably be-
cause of a higher information density in deduplicated datasets) but much
lower than for the dataset containing undecorated sca昀昀old duplicates. The
increase in performance we observe for the data set with duplicates is most
likely caused by data leakage; the test set contains many structures that are
only marginally di昀昀erent from the training set, and hence if we remove these
duplicates from our training and test, our error worsens signi昀椀cantly. De-
pending on the strictness of the duplicate de昀椀nition (Figure 9), one might
see—with the same train and test set sizes—drastically larger errors. More-
over, it is essential to realize that in our case study, removing duplicates in-
creased the learning (steeper learning curves; in fact, this can sometimes
lead to better models) and led to a more faithful measure of generalization
performance.
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Box Fig. 3| Learning curves with and without duplicated identical sca昀昀olds.
For this experiment, we trained gradient-boosted decision trees using the
default feature set (currently including histograms of persistence diagrams,
AMD, geometric properties, APRDF) implemented in mofdscribe on the
BW database subset used in Moosavi et al. 132 to predict the CO2 Henry
coe昀케cient (which we reuse from Moosavi et al. 132). We used a
train/test/valid split of 0.7/0.2/0.1 and performed the experiment 100
times. The shaded areas indicate 95 % con昀椀dence intervals around the
mean.

2.2.2 Featurizing reticular materials

Before using the datasets to train a model, one typically needs to convert the struc-
tures into 昀椀xed-length feature vectors. This is required becausemost machine learn-
ing algorithms can only operate on 昀椀xed-sized inputs. For instance, we can envision
that wewant to predict the gravimetric gas uptake of aMOF—aproperty that should
be the same regardless of whether we create a supercell, translate, or rotate the unit
cell. That is, we need a function with which the cells of di昀昀erent sizes, or ordering
of atoms, are mapped to the same feature vector. This example already illustrates
that such a conversion of a structure into a feature vector is not unique and is always
connected to certain, often hidden, assumptions. Ideally, those assumptions re昀氀ect
a physical or chemical understanding of the system and act as inductive biases that
help the learning algorithm.158 But any approximation always limits the expressivity
of the model, and many featurization approaches neglect—by design—certain as-
pects of a given system. Additionally, there are always certain design choices (such
as the numbers that are used to encode chemical elements) that are not ideal for all
applications. In mofdscribe we propagate those approximations (such as elemental
encodings or aggregations) to the user and, therefore, allow tuning those parameters
to increase predictive performance.

A key design aspect for featurizers is the length scale they operate on (Figure 10).
Inmofdscribe, wedistinguish featurizers operating on the local, atom-centered neigh-
borhoods, the building units (BU), and the full, global structure. Depending on the
learning tasks, di昀昀erent scales will be more relevant. For instance, for gas separa-
tions, we need to describe the pore’s textural properties (global) and the building
unit’s chemistry (BU/atom-centered). Therefore, it is important that featurizers op-
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Figure 10: Overview of featurizer types implemented in mofdscribe. We distinguish three
scopes onwhich featurizers operate: atom-centered, building unit (BU)-centered,
and global features. Note thatmofdscribe is interoperablewith matminer, where-
fore featurizers implemented in matminer can be used with those implemented
in mofdscribe.159 For a full overview of implemented featurizers, see Table 2

.
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from matminer.featurizers.structure import JarvisCFID
from pymatgen.core import Structure
from rdkit.Chem.Descriptors3D import Asphericity

from mofdscribe.featurizers.topology import PHImage
from mofdscribe.featurizers.pore import PoreSize
from mofdscribe.featurizers.bu import RDKitAdaptor, BUFeaturizer
from mofdscribe.featurizers.chemistry import RACs
from mofdscribe.featurizers.base import MOFMultipleFeaturizer

s = Structure.from_file(<path to cif>)

featurizer = MOFMultipleFeaturizer[
RACs(),
PHImage(),
PoreSize(),
SurfaceArea(probe_radius = "C6H6"),
SurfaceArea(probe_radius = 1.2),
JarvisCFID(),
BUFeaturizer(RDKitAdaptor(Asphericity, ["asphericity"]))

]

features = featurizer.featurize(s)
labels = featurizer.feature_labels()
citations = featurizer.citations()

Listing 1: Complete featurization usage example. The featurizers in mofdscribe can be eas-
ily combined with the ones implemented in matminer. All featurizers also share
the same utility methods, such as citation and feature_labels, and can be
computed formultiple structures using featurize_many. The MOFMultipleFea-
turizer additionally provides the option to compute the primitive cell for each
structure before featurization.

erating on di昀昀erent scales can easily be combined. In mofdscribe, all featurizers can
be used in the sameway and combined as needed, thereby enabling rapid experimen-
tation. Tomake this possible, mofdscribe uses the featurizer design pattern popular-
ized by the matminer package (see Listing 1 inwhichwe compute a feature vector for
a MOF by combining featurizers from all scopes). This design pattern, which bears
similarities to the sklearn API,160 ensures consistency across how di昀昀erent featur-
izers are used and, in this way, enables composability and alsomakes them accessible
to non-experts. By building on top of the matminer building blocks, mofdscribe is
also fully interoperable with the featurizers implemented in the matminer library.
For instance, featurizers such as the matminer’s SiteStatsFingerprint can be
seamlessly used to separately featurize framework and guest molecules using the
HostGuestFeaturizer implemented in mofdscribe.

L O C A L I T y A p p R O x I M A T I O N Themost commonly used assumption inmachine
learning for chemistry and materials is the locality approximation. In practice, this
assumes that a property does not depend on the entire crystal but that themain con-
tributions are from the local environment (which can be justi昀椀ed based on the prin-
ciple of “nearsightness of electronic matter”161). For example, in our model for the
oxidation state of themetal in aMOF,122 the features are computed for themetal and
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racs_featurizer = RACS(
prop_agg = ("avg","product","diff","sum"),
corr_agg = ("avg","sum","range"),
bb_agg = ("avg","sum","range"),

)

Listing 2: Example of using aggregations inmofdscribe. Many featurizers computemore than
one feature vector per structure; for instance, one feature vector per atom. In this
case, the data must be further processed to construct one 昀椀xed-size feature vector
per structure. To ensure that the resulting feature vectors are permutation invari-
ant (that is, do not depend on the arbitrary numbering of atoms in the structure),
one typically uses aggregation functions such as the average, sum, maximum, or
minimum. At every point where aggregations are computed, we allow users to
customize the ones used. Users can simply specify the desired ones as a tuple of
strings; for example, ("median", "range", "geom_av") would aggregate the
features using the median, range, and geometric average.

the atoms of the linkers surrounding the metal. By reducing the learning problem to
local environments, the locality approximation allows a model trained on small frag-
ments to generalize to large structures (which are harder to sample as there are com-
binatorially more of them).162 For reticular materials, this approximation is widely
used as part of the feature set (which is often supplemented with global features,
see below) via revised autocorrelation functions (RACs),132,163 smooth overlap of
atomic positions (SOAP) 昀椀ngerprints,164 local geometry descriptors,122,165 or the av-
erage mean distance descriptor by Widdowson et al.166 For all those atom-centered
descriptors, one can compute 𝑁 descriptors for a structure with 𝑁 atoms. Since dif-
ferent materials will have di昀昀erent numbers of atoms 𝑁 in their unit cells, one typ-
ically needs to perform an aggregation operation, such as computing the arithmetic
mean of all the atom-centered feature vectors, to construct a 昀椀xed-length descriptor
that is permutation invariant. The latter is important since we do not want our de-
scriptors to change when we change the (arbitrary) numbering of atoms (that is only
an artifact of digitally encoding materials). Of course, there is not one ideal choice
for the aggregation operation. One might bene昀椀t from additional expressivity by
using multiple aggregations, for instance, the standard deviation alongside the arith-
metic mean or other Pythagoreanmeans or robust measures (e.g., trimean, mean ab-
solute deviation). Therefore, in our library, the user can—where applicable—simply
provide all aggregation combinations of interest (see Listing 2 for an example), and
mofdscribe will compute them all. As shown in Figure 82, this generalization of es-
tablished descriptors (such as the AMD proposed by Widdowson et al.166) can lead
to large (>20 %) improvements in predictive performance on material property pre-
diction tasks. By exposing all these options, mofdscribemakes these approximations
visible to the users and allows users to tune them for better predictive performance.

Since models do not know the periodic table, the nature of the element types in
a given structure needs to be encoded numerically. As in the case of RACs, this
is often done using element properties such as atomic number or electronegativity.
However, it is well known that some encodings, such as atomic numbers, lose the
clustering of elements according to their periodic properties, which can be an im-
portant inductive bias for a machine-learning model. Therefore, mofdscribe allows
users to 昀氀exibly choose from a wide variety of elemental properties and other encod-
ings such as the (modi昀椀ed) Pettifor scales that have been shown to better capture
similarities of elements across the periodic table.167–169 For instance, Pettifor scales
can be thought of as the “optimal one-dimensional periodic table”:169 similar ele-
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Figure 11: Impact of element encodings on predictive performance. Here, we compare re-
vised autocorrelation functions with di昀昀erent element encodings as input for a
gradient-boosted decision tree. We train the model on CoRE-MOF data reported
by Moosavi et al. 132 to predict the logarithm of the CO2 Henry coe昀케cient. The
top row shows the number of top-100 materials we retrieve in the top-100 pre-
dictions of 20 independent runs. The bottom row shows estimated Hedge’s g
e昀昀ect sizes (a suitable e昀昀ect size metric in the case of little data170 which can be
thought of as a normalized mean di昀昀erence) with respect to the performance of
the RACs using electronegativity (EN) as element encoding. This 昀椀gure also com-
pares the performance of feature sets augmented with scalar geometric properties
(pore diameters, accessible surface area, and void fraction). We 昀椀nd similar very
large e昀昀ects using other metrics.

ments are neighboring in this representation (in the original scale with the goal to
achieve an optimal map of the stability of AB compounds). The impact the choice of
encoding can have is shown in Figure 11, where we 昀椀nd improvements of over 50 %
by using the modi昀椀ed Pettifor scale169 for encoding elements in revised autocorre-
lation functions (in contrast to using the electronegativity). Also here, mofdscribe
exposes these encoding options on all featurizers where they apply. This makes this
approximation visible and allows users to tune the encodings to increase their mod-
els’ predictive performance or interpretability.

B u I L D I N G u N I T C E N T E R E D D E S C R I p T O R S Thede昀椀ning feature of retic-
ular chemistry is the tinker-toy principle, i.e., the construction of extensive crystal
structures from small molecular building blocks. Interestingly, this principle is sel-
dom exploited inmachine learning studies for reticularmaterials such asMOFs. One
possible explanation for this is that it is not trivial to extract the building blocks from
a crystal structure into a form such that they can be used with featurizers that are
conventionally used for molecules (e.g., as the ones implemented in the RDKit pro-
gram171). To facilitate BU-centered featurization we implement an adaptor that can
convert any featurization function that accepts a molecule object from the RDKit
library (that can easily be generated from a SMILES string) into one that can be used
alongwith all othermofdscribe featurizers. Importantly, to allow the decomposition
of MOFs into their building blocks, we also release a library, called moffragmentor,
that analyzes the structure graph to decompose MOF structures into their building
blocks (i.e., metal cluster(s) and linker(s) and possible bound/unbound solvent, algo-
rithm described in the Appendix). In contrast to existing tools such as mofid152 and
mBUD,172 moffragmentormakes them accessible from an object-oriented interface.
If a user provides a MOF structure into a featurizer for molecules (e.g., a conformer
counter), mofdscribe by default fragments the MOF into building blocks and com-
putes the features separately for each building block. The importance of this step is



2.2 R E S u L T S A N D D I S C u S S I O N 53

that once a MOF is decomposed into building blocks, we can also generate descrip-
tors that further characterize these building blocks. For example, descriptors related
to the 昀氀exibility of the linker, such as the number of accessible conformers.173 This
is an example of a descriptor that could not be easily accessed otherwise but might
help digital reticular chemists address questions (e.g., about crystallization) they
could not easily address before. Importantly, all featurizers, e.g., also the SOAP 昀椀n-
gerprint, can be used in this setting to compute more meaningful aggregations (in
contrast to averages over the full structure). In this process, we do not enforce the
use of our moffragmentor library, as users can bypass this step by providing their
own building blocks. For example, users can provide pymatgen174 Molecule ob-
jects that they obtain by deconstructing MOFs with other tools such as mofid152 or
mBUD.172

G L O B A L D E S C R I p T O R S In porous materials, many properties—such as the
pore size and shape or overall composition—are not directly correlated to atomic
environments or their building blocks. Therefore, local descriptors can only implic-
itly, via large cuto昀昀s, or not at all, represent such properties.

For this reason, practitioners often use local feature sets (e.g., RACs) along with
global ones; most commonly with scalars describing the pore geometry (e.g., pore
volumes, surface areas, accessible volumes).175,176However, additional vector-valued
or count-based descriptors177,178 can be used to describe the pore geometry and
might be more expressive than scalar descriptors but are seldom used in machine
learning studies for reticular materials.

Describing the shape and chemistry: persistent homology As an alternative
to the aforementioned pore geometry descriptors, the use of topological data analy-
sis has been proposed to capture the shape of materials.179,180 Topological data anal-
ysis can be used to obtain features that are invariant to a continuous transformation
of the material structure. Persistent homology, a branch of topological data analy-
sis, captures all the topological information underlying a given point cloud, such as
the geometric coordinates of a material. Given a set of points (i.e., atom positions),
we can obtain a so-called 昀椀ltration (e.g., Vietoris-Rips) by continuously increasing
the radius of these points to get a family of nested unions of spheres. Persistent ho-
mology then tracks the appearance and disappearance of topological features (such
as channels and voids) in this 昀椀ltration. The radius at which a feature appears is
the “birth,” while the radius at which a feature disappears is the “death.” The per-
sistence of a topological feature is the di昀昀erence between birth and death, which
acts as a measure of how prominent a given topological feature is. The set of all
birth-death points is called a persistence diagram. As reticular materials have many
channels and voids, persistent homology provides a holistic approach to capturing
these topological features. Persistence diagrams are a multiset of birth-death points
in the extended plane, and each material can have a di昀昀erent number of points in
its persistence diagram. Since most machine learning models operate on points in a
昀椀xed-dimensional Euclidean space, one needs to vectorize these diagrams into 昀椀xed-
size arrays. One can accomplish this, for instance, by computing persistence images,
which can be thought of as smoothed versions of persistence diagrams and have been
used before inmaterials science.181,182 However, a challengewith this representation
is that it is often very high-dimensional. Due to the curse of dimensionality, this can
lead to learning problems (particularly in low-data regimes). Alternatively, we imple-
mented a vectorization method that approximates persistence diagrams using Gaus-
sianmixturemodels.183,184 This allows for low-dimensional representations that can
still provide approximateWasserstein distances (conventionally used tomeasure dis-
tances, i.e., a proxy for the di昀昀erence between persistence diagrams). Additionally,



54 A N E C O S y S T E M F O R D I G I T A L R E T I C u L A R C H E M I S T R y

we also implement a simple vectorization as a 2D histogram.

Topological data analysis captures the geometry of chemical structures and mate-
rials, but these systems also have rich chemical information, as they are composed
of di昀昀erent atoms. Thus, it is important to incorporate this chemical information
into the representation—otherwise, materials with the same connectivity but dif-
ferent elements (for instance, Mg-MOF-74 vs. Ni-MOF-74) would be treated the
same way, and a model would predict the same properties. To account for chemi-
cal information in a highly 昀氀exible way, which therefore can adjust to the amount
of data available, mofdscribe allows decomposing the structures into structures that
contain only certain elements (Figure 12). By default, for instance, mofdscribe will
perform the persistent homology analysis on the full structure, the metal substruc-
ture, the organic substructure, and the halogen substructure. However, users can
customize the substructures that mofdscribe considers and tailor the featurization
to the task at hand. As Figure 13 shows, the inclusion of chemical information con-
sistently increases predictive performance onMOF property prediction tasks (in our
test cases by up to 20 %). We use the same approach to make the average minimum
distance 昀椀ngerprint proposed byWiddowson et al.166 chemistry-aware (and observe
similar improvements on benchmark tasks there). Additionally, we also allow users
to encode chemistry using so-called weighted alpha shapes. In this case, in addition
to the coordinates, the (atomic) radii of di昀昀erent elements are used for persistence
diagram construction to distinguish between di昀昀erent atom types.

MOF tomography Some of the most successful applications of machine learn-
ing have been in computer vision.187 The primary reason for this is that while im-
ages contain a wealth of information, it is hard to extract good features that can
then be fed into a model (e.g., training a linear regressor on a 昀氀at vector of all the
pixel values will not work). Convolutional neural networks (CNNs) and related ar-
chitectures are trainable feature extractors.188 That means, given some data, they
can learn to extract the most predictive features (thereby enabling the use of tech-
niques such as transfer learning). However, it is not obvious how one can convert
structures, which might have a varying number of atoms and which unit cells might
be skewed, into “rectangular” image tensors of 昀椀xed size. Additionally, one also
needs to consider that one would also like to encode the chemistry of a given ma-
terial. In mofdscribe, we implement featurizers that voxelize approximately cubic
supercells of crystal structures into 3D images (which one could then process using
a 3D CNN).189,190 Also for these featurizers, we allow the users to use aggregations
of custom properties (e.g., Pettifor scale, electronegativities, atomic numbers) as
the value for the voxels instead of just binary indication of occupied/unoccupied.
Of course, for example, for low-data applications, our approach can only encode
the geometry as a binary encoding, density, or using a truncated distance function.
These features will, as initial results in the literature indicate,189–191 allow for using
state-of-the-art computer vision models (including self-supervised pre-training and
transfer learning) on reticular materials.

2.2.3 Consistent model evaluation and benchmarking

Having datasets and standard implementations of featurization algorithms is not all
that is needed to make machine learning for reticular materials routine and compa-
rable.192–194 To reach standard practices195 for digital reticular chemistry, we must
also address model validation and comparison.
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Figure 12: Adding chemical resolution to geometric descriptors. Descriptors, such as the
ones derived from topological data analysis, operate on the full structure (top
row) and capture the geometry and connectivity of a material described by its
atomic coordinates. In mofdscribe, we allow users also to incorporate informa-
tion from di昀昀erent atom types (i.e., not treat all atom types the same way). Users
can customize the extent to which they want to lift this many-to-one mapping by
adding channels for di昀昀erent atom types. By default, for instance, the descriptors
from topological data analysis are computed for all atoms, the metallic substruc-
ture, and the organic substructure—all yielding di昀昀erent topological signatures,
as evident from the persistent images.
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Figure 13: Persistent homology vectors with and without chemical information. In this plot,
we use the vectorization of persistent diagrams using Gaussian mixture models
with and without chemical information (here, we consider the C-H-N-O, halo-
gen, and metal substructures). For this analysis, we optimize the full pipeline
(including pre-processing and the model) using automated machine learning.185

The plots visualize e昀昀ect sizes in terms of Hedges’ g. The points indicate the co-
e昀케cient of determination (𝑟2 on a holdout test set, shown on the left axes) of
the models trained to predict the methane deliverable capacity (DC), Henry coef-
昀椀cient (𝐾H), as well as the CO2 Henry coe昀케cient and low pressure (l.p.) uptake.
The blue points are for the model trained with chemistry (c.) information; the
green ones indicate the coe昀케cients of determination of the models trained with-
out chemistry information (n.c.). To quantify the e昀昀ect, we bootstrap theHedges’
g (a suitable e昀昀ect size metric in the case of little data,170 shown on the right axes)
and show it with a kernel density estimate. In all cases, the addition of chemistry
shows very large e昀昀ects.186

Estimating material discovery ability

Many machine learning models are built to be useful for materials discovery. Discov-
ery implies predicting something unknown. However, the common practice of using
a random train/test split does not necessarilymeasure themodel performance in pre-
dicting the unknown. First, a simple random train/test split cannot account for the
fact that many databases contain very similar structures (see Case Study 1). As we
have shown, (hypothetical) databases often containmultiple structures that are only
di昀昀erent in the type or position of one functional group. Dividing such a group of
structures with identical sca昀昀olds across the train and test set will not give a faithful
measure of the generalization ability of themodel as one of themain assumptions of
testing is violated—train and test set are not entirely independent of each other (one
might see the functionalized graphs as children of the same sca昀昀old). Second, for
practical applications, there will almost always be a data shift; that is, the data distri-
bution the model will be used with will be di昀昀erent from the distribution the model
has been trained on. For example, it is well known that structures in hypothetical
databases do not have the same distribution (e.g., lower density, lessmetal diversity)
as structures in experimental databases.132,196 This has already been recognized by
others such as Meredig et al.197 who utilized leave-one-cluster-out cross-validation
to estimate extrapolation performance (or Xiong et al.198 using 𝑘-fold forward cross-
validation). A similar approach, in which one clusters the principal components of
the data into 𝑘 clusters and trains on 𝑘 − 1 clusters and tests on the cluster that was
not used for training, is implemented in mofdscribe. As each cluster has speci昀椀c
properties, this method tests how well the model can extrapolate to new properties.
If we repeat this procedure for every cluster, we can get an overall measure of the
robustness and extrapolation ability.
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Figure 14: Illustration of some splitting approaches implemented in mofdscribe. For the val-
idation of a machine learning model, it needs to be tested on data it has not seen
before. To create sets of such unseen data, datasets are typically split into sub-
sets for training, testing (and validation).94 The conventional approach is to per-
form this split randomly. This, however, might not be a good approximation of
real-world use with dependent/grouped data, distribution shift, or lead to prob-
lems in the case of imbalanced data. Therefore, mofdscribe implements various
splitting strategies that operate on (structural) features or other metadata. For
instance, we extracted the publication date for all structures we could trace back
to the CSD and hence allow performing a time-based split. Alternatively, one can
use structural features to ensure equal distribution of the features in di昀昀erent
splits (strati昀椀cation) or mimic a distribution shift/extrapolation case by forcing
di昀昀erent groups into di昀昀erent folds of a cross-validation scheme. The easiest
example is to use the density; however, one can also cluster (we use 𝑘-means
clustering after principal component analysis (PCA)) on features, e.g., computed
using mofdscribe). Moreover, we also implement a splitting strategy inspired by
the sca昀昀old splits sometimes used formolecules200 for reticular molecules via our
hash strategies (Figure 9). This allows grouping structures with the same connec-
tivity or backbone into the same fold. A di昀昀erent strategy is using Kennard-Stone
sampling,201 to ensure that the training set is maximally diverse.

Additionally, we recognize that one interesting bene昀椀t of working with experi-
mental data is that we know when a given structure was 昀椀rst reported; the data is
time-stamped.199 Inspired by common practice in time-series forecasting, we hence
can ask “could we predict the performance of materials discovered after year 𝑋 if
we only trained on materials discovered before year 𝑋?” In particular, we can mea-
sure how many of the top 𝑘 materials we can recover in the top 𝑛 predictions by the
model. Using mofdscribe, this question can easily be answered.

Importantly, a time-based split is not the only feasible splitting strategy—and, de-
pending on the use case, might not be the best option (or might not be applicable if
no timestamps are available). Therefore, to further ensure that thoroughmodel eval-
uation becomes routine for digital reticular chemistry, mofdscribe also implements,
inspired by the DeepChem library,202 a variety Splitter classes (Figure 14, Listing 3
for a usage example). The Splitter classes either take a dataset that users can de-
昀椀ne based on their structures or a built-in dataset and can produce splits (holdout
or 𝑘-fold cross-validation) following di昀昀erent strategies.

The impact such splitting strategies can have on model selection is shown in Case
Study 2, where one can see that the average generalization performance of models
signi昀椀cantly depends on the splitting strategy. Overall, we 昀椀nd that the optimal
split depends on the task at hand—but typically is not the conventional random
split. Given the redundancy in sca昀昀olds in MOF databases, we urge practitioners to
use grouped cross-validation.

As a utility to quantify the “di昀케culty” of the validation strategy, mofdscribe also
implements a helpermethod that performs adversarial validation.203,204 Adversarial
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from mofdscribe.splitters import HashSplitter, TimeSplitter
from mofdscribe.datsets import CoREDataset

time_splitter = TimeSplitter(CoREDataset())
scaffold_splitter = HashSplitter(CoREDataset())
train, valid, test = time_splitter.get_train_valid_test_splits(

train_frac = 0.8, valid_frac = 0.1, test_frac = 0.1)

folds = time_splitter.k_fold_split(k = 5)

Listing 3: Example of the use of Splitters. The datasets implemented in mofdscribe al-
ready provide the relevant information for the splitters (e.g., times, hashes, densi-
ties). If the splitters are used on other structures, e.g., custom in-silico assembled
MOFs, this information will be computed, if possible on the 昀氀y, or can be provided
by the user. Note that the datasets, by default, are deduplicated based on the
graph hash.

validation is a technique that has been popularized in data science competitions to
measure—with only one number—the di昀昀erence between training and test distri-
bution but also to identify the most relevant features for a potential di昀昀erence. For
this, one simply trains a classi昀椀er to distinguish training from test examples. If the
area under the receiver-operating curve (receiver-operating characteristic (ROC)-
area under the ROC curve (AUC)) is close to 0.5, the classi昀椀er fails to distinguish
the two datasets. However, if it does not (i.e., ROC-AUC close to 1), analyzing the
feature importance can reveal the most relevant features contributing to the di昀昀er-
ence (which one might decide to remove to improve generalization). An application
of this concept is shown in Case Study 2.

Case Study 2: The impact of splitting strategies To investigate the impact
of splitting strategies, we train models on experimental data (for which we
can also perform a time-based split) and then evaluate how well the models
generalize to hypothetical materials.
We trained the gradient-boosted decision tree models using the default fea-
ture set of CoRE dataset in mofdscribe (currently including histograms of
persistence diagrams, average minimum distance (AMD), geometric proper-
ties, atomic-property labeled radial distribution function (APRDF)) to pre-
dict the methane deliverable capacity. For all experiments, we remove dupli-
cates, i.e., materials with identical structure graphs. We then optimize hyper-
parameters of gradient-boosted decision trees using Bayesian optimization
on the validation set and train the model using di昀昀erent splitting strategies,
always keeping the train/validation/test ratios 昀椀xed. The 昀椀gure uses the ran-
dom split as the control group and computes bootstrappedmean e昀昀ect sizes
for the di昀昀erent splitting approaches. All splitting strategies lead to models
with di昀昀erent generalization performances (better in all cases except for the
density-based split) than the random control group.
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Box Fig. 4| Bootstrapped mean di昀昀erence in mean absolute error for
out-of-domain predictions as a function of the splitting strategy. We tuned
gradient-boosted decision tree models using the di昀昀erent feature sets
implemented in mofdscribe (currently including histograms of persistence
diagrams, AMD, geometric properties, APRDF) using di昀昀erent featurizers
on the CoRE MOF dataset to predict the methane deliverable capacity and
evaluate the performance on the ARABG dataset. We ran every experiment
around 20 times and then computed bootstrapped e昀昀ect sizes with respect
to the random split performance.

This impact of the splitting strategy also indicates the need to quantify the
di昀케culty of a given validation split. As one method to do so, mofdscribe im-
plements adversarial validation, which quanti昀椀es how easily amachine learn-
ing model can distinguish the train from the test set.
In the 昀椀gure below, panel a shows the adversarial validation scores for the
datasets considered in Moosavi et al. 132. For the entries on the diagonal,
we considered a random split into two equally sized parts. Scores closer to
one indicate that the datasets are easily distinguishable. In this case, we see
that a model can easily distinguish the datasets—in particular, the experi-
mental ones from the in-silico assembled ones. Therefore, we cannot ex-
pect a model to necessarily generalize in this setting. In panel b, we see that
the feature importance analysis can reveal which features the model used
to distinguish the datasets. Removing those features can help to mitigate
data-drift features or also help to guide the generation of newmaterials that
can mitigate those biases (or remove materials that are dissimilar from the
target distribution, i.e., have a ROC-AUC score greater than 0.5). When we
group the features into scopes, as in Moosavi et al. 132, we 昀椀nd that the dom-
inating di昀昀erences across databases vary. While linker feature contributions
do not play a major role in distinguishing structures from the BW and CoRE
databases, they do play an important role in distinguishing structures from
the CoRE and ARABG databases. BW denotes a database of hypothetical
MOFs assembled by Boyd and Woo 145 and ARABG abbreviates a database
of hypothetical MOFs assembled by Anderson et al. 146
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Box Fig. 5| Adversarial validation across di昀昀erent MOF datasets. For this
experiment, we reuse the datasets as provided by Moosavi et al. 132 (i.e.,
using the same features and labels) and use adversarial validation to
estimate how di昀케cult it is for a model to distinguish the datasets. a The
heatmap shows the area under the receiver-operating characteristic curve
(ROC-AUC). b Highlights the feature scopes (computed using the Gini
impurity decrease estimate) that are most important for the model
distinguishing the datasets.

Benchmarks and Leaderboard

To foster the comparability of models built for digital reticular chemistry, we also
implemented MOFBench classes that users can use to generate a report of the per-
formance of their modeling pipeline on some benchmark tasks (Listing 4). The MOF-
Bench classes ensure that all steps are performed consistently, and that di昀昀erent
modeling strategies become comparable. They de昀椀ne a dataset, a splitting strategy,
and a set of metrics and automatically capture the computational environment. Via
a pull request on GitHub, these results can be easily added to the leaderboard that is
currently part of the mofdscribe documentation (mofdscribe.readthedocs.io).
Users are additionally asked to provide a 昀椀le describing themodeling strategy and 昀椀ll
a model card,130,205 which will also appear in a subsection of the leaderboard (Case
Study 3). We hope thatmofdscribe can help pivot reticular chemistry into the digital
age by giving the community tools to think and work in a data-driven manner.206

Case Study 3: Creating a new model and submitting it to the leaderboard
We implement a full modeling pipeline from featurization to benchmarking
in the following code. Note, however, that there will be additional steps that
tune features and model hyperparameters in practice.

from mofdscribe.featurizers import RACs, PHImage
from mofdscribe.bench import LogkHCO2OODBench
from mofdscribe.featurizers.base import MOFMultipleFeaturizer
from xgboost import XGBRegressor
import pandas as pd

mofdscribe.readthedocs.io


2.2 R E S u L T S A N D D I S C u S S I O N 61

from mofdscribe.bench import logKHBench
# myModel must implement.fit and.predict
# myModel can contain any additional processing steps
bencher = logKHBench(myModel)
# bench() returns a pydantic model that is validated
# upon submission of a pull request
report = bencher.bench().json()

Listing 4: Example of the use of MOFBench. The benchmarking classes only need to be pro-
videdwith amodel object that implements fit and predictmethods. It will then
use a Splitter object from the mofdscribe package to compute cross-validated
metrics on a StructureDataset, which are part of the report. The report also
contains additional meta-information, such as the timings of di昀昀erent steps. It
can be serialized to a JSON 昀椀le that can be submitted to the leaderboard via a pull-
request template in the mofdscribe GitHub repository.

# We precompute all features, alternatively,
# one could also write a cached function
# that accepts Structures
featurizer = MOFMultipleFeaturizer([RACs, PHImage])
# featurize_many loops over all structures
features = featurizer.featurize_many(

LogKHExtrapolationBench().ds.structures)
feature_frame = pd.DataFrame(data = features,

names = featurizer.feature_labels())

# We will implement a simple XGBoost regressor
model = DFModel(XGBRegressor(), feature_frame)

# benchmark results
bencher = LogkHCO2OODBench(model)
report = bencher.bench()

Box Fig. 6| Exemplary screenshot of a leaderboard page.

More examples, including one on an experimental dataset, can be found
in the GitHub repository (https://github.com/kjappelbaum/

https://github.com/kjappelbaum/mofdscribe/tree/main/examples
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mofdscribe/tree/main/examples). The examples can be run on
Google Colab (e.g., https://colab.research.google.com/github/
kjappelbaum/mofdscribe/blob/main/examples/build_model_
using_mofdscribe.ipynb).

2.3 C O N C L u S I O N S
While data-intensive approaches are becomingmore popular in (reticular) chemistry,
they are still far from being routine and standard; there are currently no standard
practices for digital (reticular) chemistry.195 We identi昀椀ed the lack of easy-to-use fea-
turization methods and problems with model validation and comparison as the key
limitations hampering the progress of the 昀椀eld. To address those impediments, we
developed a Python package, mofdscribe, that provides utilities along each step from
ideation to model publication. The mofdscribe package provides increased accessi-
bility to machine learning for reticular chemistry and beyond without compromis-
ing rigor, especially for less experienced users. This will allow for a closer coupling
of data-driven materials design and the synthesis and characterization of (in-silico
generated) materials since it is very easy for non-experts to use mofdscribe to power
machine-learningmodels that could be used, for instance, in an active learning work-
昀氀ow.207 While we intend to add new features to the library and maintain it, we also
hope to embrace a community e昀昀ort in which bugs are 昀椀xed, and the community of
digital chemists and materials scientists adds new features. To facilitate this, we de-
signed our library so that it is easy for researchers to implement new strategies, such
as featurizers, in our library so that other digital chemists can easily reuse their work.
We hope that, together with the open availability ofmachine-actionable data,208 our
developments will systematize and accelerate machine learning for chemistry.

2.4 M E T H O D S

2.4.1 Featurization

The details of the re-implemented featurizers are described in the original publica-
tions and the online documentation.

2.4.2 Benchmarking using automated machine learning

For the learning curves shown in Case Study 1, we trained gradient-boosted decision
trees, as implemented in the XGBoost library, on the default feature set in mofd-
scribe. To mimic currently utilized settings, we ran the experiments 100 times with
a random train/test split of 0.8/0.2.

For the case study analyzing the impact of splitting techniques, we used optimized
gradient-boosted decision tree models, as implemented in the CatBoost209 library,
using optuna210 for a maximum of 100 trials or a timeout of 10 hours using the tree
of Parzen estimators211 sampling strategy. We detail the hyperparameter grid we
considered in Appendix B.6.

For Figure 13, we followed the approach from the automatminer library212 and
used automated machine learning, which automatically optimizes over various mod-
els and model architectures within a certain computational budget. Concretely, we

https://github.com/kjappelbaum/mofdscribe/tree/main/examples
https://github.com/kjappelbaum/mofdscribe/tree/main/examples
https://colab.research.google.com/github/kjappelbaum/mofdscribe/blob/main/examples/build_model_using_mofdscribe.ipynb
https://colab.research.google.com/github/kjappelbaum/mofdscribe/blob/main/examples/build_model_using_mofdscribe.ipynb
https://colab.research.google.com/github/kjappelbaum/mofdscribe/blob/main/examples/build_model_using_mofdscribe.ipynb
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use the TPOT library,213–215 which uses genetic programming for all machine learn-
ing pipeline steps, including feature engineering (for instance, using principal com-
ponent analysis). We used the defaults of 100 generations with a population size of
100 but also limited the search time to 48 h and 昀椀ve-fold cross-validation.

2.4.3 Molecular simulations

All grand-canonicalMonte-Carlo simulations for the reference datasetwere performed
using the RASPA code,216 describing the force-昀椀eld as a rigid framework with the
UFF force昀椀eld217 and a cuto昀昀 of 12Å, whereby we correct for the truncation using
analytical tail-corrections.218 Simulations were orchestrated using the AiiDA com-
putational infrastructure.219,220

D A T A A v A I L A B I L I T y
Data used in this work is available via the mofdscribe package. The new dataset of
predictedproperties derived fromgrand canonicalMonteCarlo simulations reported
with this work is available on the MaterialsCloud221 (10.24435/materialscloud:qt-
cj) and has been integrated with existing data from the QMOF Database via the Ma-
terials Project’s MPContribs interface222,223 (10.17188/mpcontribs/1883597).

C O D E A v A I L A B I L I T y
Themost recent information about the tools is assembledunderhttps://mof.world.
Themofdscribe library is available onGitHub (https://github.com/kjappelbaum/
mofdscribe). Documentation for the package is available on ReadTheDocs (https:
//mofdscribe.readthedocs.io/). The graphhashes are implemented in thestructuregraph-
helperspackage, which is also available onGitHub (https://github.com/kjappelbaum/
structuregraph-helpers). For encoding (and decoding) of elemental proper-
ties, we developed a dedicated library, element-coder, which is also available on
GitHub (https://github.com/kjappelbaum/element-coder). The moffrag-
mentorpackage is also available onGitHub (https://github.com/kjappelbaum/
moffragmentor). The AiiDA simulation work昀氀ows are based on the ones imple-
mented in theaiida-lsmopackage (https://github.com/lsmo-epfl/aiida-lsmo).
The topological data analysis work昀氀ows are based on moleculetda, available on
GitHub (https://github.com/a1k12/moleculetda).

Table 2: Overview of implemented featurizers. An up-to-date list can always be found in the
online documentation.

name description

AccessibleVolume accessible volume, computed using the zeo++ code.175,176

AMD generalization of the average-minimum distance approach
proposed by Widdowson et al. 166

APRDF generalization of the atomic-property labeled radial distri-
bution function proposed in Fernandez et al. 224

Asphericity shortcut for the asphericity descriptor225,226 implemented
in RDKit.171

AtomCenteredPH atom-centered persistent homology. Analogous to the ap-
proach reported by Jiang et al. 227

DiskLikeness molecular descriptors computed based on principlemoment
of inertia, computed using RDKit.171 Descriptor proposed
by Wirth et al. 228 as a measure of ligand shape.

https://doi.org/10.24435/materialscloud:qt-cj
https://doi.org/10.24435/materialscloud:qt-cj
https://doi.org/10.17188/mpcontribs/1883597
https://mof.world
https://github.com/kjappelbaum/mofdscribe
https://github.com/kjappelbaum/mofdscribe
https://mofdscribe.readthedocs.io/
https://mofdscribe.readthedocs.io/
https://github.com/kjappelbaum/structuregraph-helpers
https://github.com/kjappelbaum/structuregraph-helpers
https://github.com/kjappelbaum/element-coder
https://github.com/kjappelbaum/moffragmentor
https://github.com/kjappelbaum/moffragmentor
https://github.com/lsmo-epfl/aiida-lsmo
https://github.com/a1k12/moleculetda
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Eccentricity shortcut for the eccentricity descriptor225,229 implemented
in RDKit.171

EnergyGridHistogram energy gird histograms, computed using RASPA,216 as pro-
posed by Bucior et al. 230

GuestCenteredAPRDF This featurizer builds on the APRDF featurizer, but instead
of using the correlations between all atoms, it only considers
the ones between the guest and all host atoms (within some
cuto昀昀 distance).

Henry Henry coe昀케cient, as computed using RASPA.216
InertialShapeFactor shortcut for the inertial shape factor descriptor225,229 imple-

mented in RDKit.171
LSOP local structure order parameters (LSOP), modi昀椀ed approach

from R. Zimmermann and Jain 165 Here we place a site at the
center of mass and then compute the LSOPs around this site.
In this way, we attempt to capture the shapes of full building
blocks.

NConf20 molecular 昀氀exibility descriptor based on the number of en-
ergetically accessible conformers. Based on implementation
of Wicker and Cooper 173 using RDKit.171,231

NPR1 shortcut for the normalized principal moments ratio 1 (=
I1/I3) descriptor232 in RDKit.171

NPR2 shortcut for the normalized principal moments ratio 2 (=
I2/I3) descriptor232 in RDKit.171

PairwiseDistanceHist histogram of pairwise distances between atoms in a
molecule/structure

PairwiseDistanceStats statistics of pairwise distances between atoms in a
molecule/structure

PartialChargeHistogram histogram of partial charges computed with a charge equili-
bration strategy (EqEq).233

PartialChargeStats statistics of partial charges computed with a charge equili-
bration strategy (EqEq).233

PHHist (2D) histogram of persistence diagrams, computed based
on developments by Krishnapriyan et al., Krishnapriyan et
al. 181,182 using the dionysus and diode codes (latter be-
ing a Python binding to parts of CGAL234).

PHImage vectorization of persistence diagrams as persistence im-
age235 computed based on developments by Krishnapriyan
et al., Krishnapriyan et al. 181,182 using the dionysus and
diode codes (latter being a Python binding to parts of
CGAL234).

PHStats statistics of persistence diagrams, computed based on devel-
opments by Krishnapriyan et al., Krishnapriyan et al. 181,182

using the dionysus and diode codes (latter being a Python
binding to parts of CGAL234).

PHVect vectorization of persistence diagrams using Gaussian mix-
ture models,183,184 computes using the pervect236 library.

PMI1 昀椀rst principle moment of inertia, computed with RDKit.171
PMI2 second principle moment of inertia, computed with RD-

Kit.171
PMI3 third principle moment of inertia, computed with RDKit.171
PoreDiameters pore radii, computed with zeo++176

PoreSizeDistribution histogram of pore sizes, computed with zeo++.176 Has been
used in Pinheiro et al. 177

PriceLowerBound lower bound for the MOF price based on elemental prices (a
surrogate for chemistry and useful as a screening 昀椀lter).

RACS revised autocorrelation functions, as proposed by Janet and
Kulik 163 and applied to MOFs by Moosavi et al. 132

RadiusOfGyration shortcut for the radius of gyration descriptor229 imple-
mented in RDKit.171

RayTracingHistogram histograms of ray lengths passed through the unit cell, com-
puted using zeo++176 Proposed by Jones et al. 178

RodLikeness molecular descriptors computed based on principlemoment
of inertia, computed using RDKit.171 Descriptor proposed
by Wirth et al. 228 as a measure of ligand shape.

BUMatch minimum root-mean-squared-distance between the con-
necting site structure of the building blocks and the “ideal”
one in di昀昀erent nets.
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SphereLikeness molecular descriptors computed based on principlemoment
of inertia, computed using RDKit.171 Descriptor proposed
by Wirth et al. 228 as a measure of ligand shape.

SpherocityIndex shortcut for the spherocity descriptor225 implemented in
RDKit.171

SurfaceArea (probe accessible) surface areas, as computed using
zeo++176

VoxelGrid 3D voxel representations of the structure. Similar to Hung
et al. 189 and Cho and Lin 190





3 B I A S F R E E M U LT I O B J E C T I V E
A C T I V E L E A R N I N G F O R
M AT E R I A L S D E S I G N A N D
D I S C O V E R Y

A B S T R A C T The design rules for materials are clear for applications with a single
objective. For most applications, however, there are oftenmultiple, sometimes com-
peting objectives where there is no single best material, and the design rules change
to 昀椀nding the set of Pareto optimal materials. In this work, we leverage an active
learning algorithm that directly uses the Pareto dominance relation to compute the
set of Pareto optimal materials with desirable accuracy. We apply our algorithm to
de novo polymer design with a prohibitively large search space. Using molecular
simulations, we compute key descriptors for dispersant applications and drastically
reduce the number of materials that need to be evaluated to reconstruct the Pareto
front with a desired con昀椀dence. This work showcases how simulation and machine
learning techniques can be coupled to discover materials within a design space that
would be intractable using conventional screening approaches.

C I T A T I O N This chapter is a preprint version of our article: Jablonka, K. M. et al.
Nat. Commun. 2021, 12.

C O N T R I B u T I O N K.M.J developed and implemented the machine learning ap-
proach and conducted themachine learning experiments. K.M.Jwrote themanuscript
with B.Y. and B.S.
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3.1 I N T R O D u C T I O N

The holy grail of material science is to 昀椀nd the optimal material for a given appli-
cation. Finding the optimal material requires a metric to rank the materials. If we
have a single objective, our aim is clearly de昀椀ned: we evaluate the performance indi-
cator of the materials with respect to this objective, and we can rank our materials.
Developing e昀케cient strategies to 昀椀nd such an optimumwith aminimal number of ex-
periments is an active area of research. In many practical applications, scientists and
engineers are often faced with the challenge of simultaneously optimizing multiple
objectives. Optimizing one objective alone may come at the cost of penalizing oth-
ers.237 For example, in drug discovery, scientists have to balance potency or activity
with toxicities and solubility. In chemical process design, engineers must optimize
yields for several process units yet sacri昀椀ce energy consumption. Likewise, in mate-
rial science, desirable material properties can be interdependent or even inversely
related. For example, one would like a material that is both strong and ductile, and
as these are inversely correlated, it is challenging to synthesize new materials that
satisfy both criteria at the same time.238 In these cases, there is no unique way to
rank the materials.

If one has multiple objectives, a practical solution is to combine the di昀昀erent per-
formance indicators into a new overall performance indicator. But unless such an
overall performance indicator is a unique, well-de昀椀ned function of di昀昀erent perfor-
mance indicators (e.g., costs), the arbitrary combination of performance parameters
obscures the true nature of the optimization problem; there simply is no material
that simultaneously optimizes all target properties. No single optimum is generally
preferred over all the others; hence the most valuable information any search in the
design space can give is the set of all possible materials for which none of the perfor-
mance indicators can be improved without degrading some of the other indicators.
In statistical terms, these materials are called the set of all Pareto-optimal solutions
(i.e., the Pareto front). In this work, we address the question of how to e昀케ciently
search for this set of materials, and with con昀椀dence not to discard a good material.
Such amethodology is particularly important if it is di昀케cult to evaluate an unlimited
number of materials because of limited resources.

Recently, there has been quite some research e昀昀ort to use machine learning to
design and discover new materials.239–243 A naive approach would be to train a ma-
chine learning (surrogate) model to make predictions for all materials in the design
space and then use these predictions to compute the Pareto front. However, from a
practical point of view, such an approach is ine昀케cient, as it is unclear how to choose
a training set that makes the model con昀椀dent in the relevant regions of our design
space. A random, or even diverse set, will probably contain more points than we
need and does not consider that we do not need the same accuracy in all parts of our
design space. The question we, therefore, need to answer is how we can e昀케ciently
train this model to make con昀椀dent predictions in the relevant regions of our design
space. An appealing way to do this is active learning.244 Here, we initialize a model
with a small sample of our design space and then iteratively add labels, i.e., measure-
ments or simulation results, to the training set where the model needs them most.
This allows us to e昀케ciently build a model that can solve the question of what mate-
rials are Pareto optimal and which ones we should discard for further investigation.

It is instructive to compare this approach with Bayesian optimization.245–250 In
such an optimization, onewould like to know the next bestmeasurement by typically
(and implicitly) assuming that the current evaluation will be the 昀椀nal evaluation.251

Then, we can use an acquisition function to propose the next best measurement
based on the predictions of a machine learning model. This best measurement can
then be added to the training set and in this way, one can selectively improve the pre-
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dictions of the model in a potentially promising part of the design space. However,
most, if not all, of these optimization techniques rely on introducing a total order in
the search space with which the materials are ranked in terms of performance. This
biases the search (or introduces other technical di昀케culties, which we discuss in Ap-
pendix C.1). In this context, it is essential to realize that, mathematically speaking,
Pareto dominance only de昀椀nes a partial order in our design space. This means we
can only say if amaterial is Pareto dominating or not, but we cannot directly compare
them; hence, introducing a total order is nothing more than a (subjective) formulae
on how to compare apples and pears.252

Here, we show how to recover without such bias, but with con昀椀dence, a predic-
tion of the Pareto front in the context of polymer discovery. The rational design and
discovery of polymers has been a longstanding challenge in the scienti昀椀c commu-
nity due to their combinatorial chemical and morphological complexity, which also
requires the consideration ofmultiple spatiotemporal scales.253–255 In our approach,
we use machine learning to predict the next best experiments to systematically re-
duce the uncertainty of our prediction of the Pareto front until all polymers within
our design space can be con昀椀dently classi昀椀ed. To reach this goal, we use a modi昀椀ed
implementation of the 𝜖-PAL algorithm introduced by Zuluaga et al.,256,257 which it-
eratively reduces the e昀昀ective design space by discarding those polymers fromwhich
we know, with con昀椀dence from our model predictions (or measurements), that they
are Pareto-dominated by another polymer. To make progress in this search, we eval-
uate the polymerwith the highest dimensionless uncertainty from the set of possible
polymer candidates, which our model predicts to be near or at the Pareto optimal.
The search terminates when all points are classi昀椀ed as Pareto e昀케cient or discarded.
Overall, this method has additional advantages that can be important for materials
design and discovery applications. For example, we show how we can tune the gran-
ularity of the approximation to the Pareto front in every objective and, in this way,
trade o昀昀 e昀케ciency with accuracy. Moreover, conventional active learning methods
often require complete data sets, while in most practical applications, we are often
faced with a situation where we have a lot of data for one property and much less
for another. Our method can deal by construction, with partially missing data in the
objective functions, i.e., missing one property measurement for somematerials, and
also can consider noise in the measurements. Therefore, given its broad applicabil-
ity, we anticipate that the same work昀氀ow will accelerate the design process in the
lab.

3.2 R E S u L T S
The polymers in our study are representative of dispersants typically used in solid
suspension systems to prevent the 昀氀occulation of suspended particles, for example,
to ensure the color strength of pigments in coatings applications.258 Finding the
optimal polymer for a dispersant-based application is a typical example of a multiob-
jective search. One would like to obtain a polymer with optimal adhesion strength
to the surface of the particles that need to be suspended. Once on the surface, the
polymers need to repel the other particles, and 昀椀nally, one needs to ensure that the
viscosity of the solution ensures kinetic stability.259 Interestingly, some of these cri-
teria are in competition with each other. For instance, we can imagine that certain
monomer types will enhance both the binding to the surface and the attraction be-
tween the polymers. In this case, there is no unique solution, and we have to trade
binding with the surface with the repulsion between the polymers. This is a general
observation in many multiobjective problems. We often 昀椀nd natural, completely
unavoidable, competing goals such as the strength-ductility trade-o昀昀.
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Figure 15: Overview of the work昀氀ow. Using classical design of experiments (DoE), we enu-
merate representative samples in the design space of monomer sequences, which
we then explore in the active learning loop with the 𝜖-PAL algorithm. For this al-
gorithm, Gaussian process surrogate models provide us with predicted mean and
standard deviations that enable us to decide which designs we can con昀椀dently dis-
card, classify as Pareto-optimal, and determine which simulation we should run
next to reduce the uncertainty for points near the Pareto front maximally. Mod-
els that are trained over the course of this process can reveal structure-property
relationships and can be inverted using genetic algorithms to explore further the
design space that has not been considered with DoE.

In this work, we mimic the design of our dispersant using a coarse-grained model
(see Figure 15). Our model represents a typical linear copolymer often used as a
dispersant. In this coarse-grained model, we map monomers with di昀昀erent inter-
actions with the surface and the solvent to di昀昀erent beads, which translates to a
design space containing more than 53 million possible sequences of polymer beads
(see Appendix C.2). For a given hypothetical dispersant, we use molecular simula-
tion techniques to evaluate our three (“experimental”) key performance indicators.
Althoughwe conduct the synthesis and experiments in silico, the number of possible
dispersants and the required computational time to evaluate the performance is too
large for a brute-force screening of all 53 million dispersants of our coarse-grained
polymer genome.260 Therefore, also for this in silico example, we are limited by our
resources, and we aim to obtain our set of Pareto optimal materials as e昀케ciently as
possible.

3.2.1 Dispersants design

The model polymers investigated in this work represent dispersants used in solid
suspension systems. That is, each bead in our coarse-grained simulation represents
a monomer in a copolymer (Figure 15). In practice, dispersant performance can be
evaluated based on several fundamental driving forces. First, the adhesion strength
of the polymer onto a suspended particle surface; second, the steric stability of the
polymer, i.e., the ability to help repel suspended particles from one another; 昀椀nally,
the viscosity of the polymer solution, which is associated with the kinetic stability
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Figure 16: Schematic illustration of the polymer performance descriptors we calculate using
coarse-grained simulations. a Δ𝐺ads is the single-molecule free energy of adsorp-
tion onto a model surface. b Δ𝐺rep is the dimer repulsion energy. c 𝑅𝑔 is the
radius of gyration, an indicator of polymer viscosity.

of the system.259,261 To characterize such driving forces, we calculate the following
properties (Figure 16) using coarse-grained dissipative particle dynamics (DPD) sim-
ulations:262 the adsorption free energy (Δ𝐺ads) onto a model surface, quantifying
the adhesive strength to the surface, the dimer free energy barrier (Δ𝐺rep) between
two of the same polymers, as ametric for the repulsion between the polymers, and 昀椀-
nally the radius of gyration (𝑅𝑔), amolecular property commonly associatedwith the
polymer viscosity,263,264 and which can be experimentally determined using small-
angle x-ray scattering.265

The main objective of this study is to identify polymer sequences that optimize
all three of these molecular properties from a sequence design space comprised of 4
possible monomer types, with the number of monomers for each type ranging from
4 to 12.

We initially sample our polymer design space (Figure 17), i.e., the possible ar-
rangements of monomers, by performing a full factorial experimental design on the
monomer types, where eachmonomer type contains a selection of monomer counts.
This ensures we enumerate all possible combinations of available monomer counts
and types (seeMethods). Compared to sampling from the latent space of generative
models such as standard autoencoders or variational autoencoders, this approach
maintains a high level of model interpretability. Monomer sequences are generated
in random order based on these design points. We then explore the space sampled
with the design of experiments using our active learning algorithm to 昀椀nd the Pareto-
optimal polymers. An overview of our work昀氀ow is illustrated in Figure 15.

3.2.2 Pareto active learning

In this work, we are interested in not only e昀케ciently but con昀椀dently identifying an
approximation of the Pareto front. To achieve this, we need two ingredients: 昀椀rst,
a way to discard points or to classify them as Pareto-optimal, and second, a way to
propose the next best sample(s) to evaluate. Our modi昀椀ed version of the 𝜖-PAL
algorithm256,257 addresses these matters by using the uncertainty estimate (𝜎) of
a Gaussian process regression surrogate model to construct hyperrectangles for a
predicted material (Figure 18).

Let us assume we have two objective functions. In Figure 18, we illustrate the
working principle of the 𝜖-PAL algorithm. We start with a set of diverse experiments
for which we measured the objectives. Based on those, we can train an initial model
using features that are simple to compute and are intuitively related to the chemistry
of the polymers (solely based on the monomer sequence) and can make predictions
for all the polymers that are indicated as black points. For each point, we construct
hyperrectangles, shown in Figure 18a, around the mean 𝜇 (which comes either from
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Figure 17: Illustration of the DoE approach. The beads of our coarse-grained model have
di昀昀erent interactions with the solvent. The “[W]” bead corresponds to a polymer
in a good solvent, the “[R]” bead to a polymer in a bad solvent, and the “[Ta]”, and
“[Tr]” beads to polymers in a theta solvent. “[Tr]”, and “[Ta]” di昀昀er from each
other in their interaction with the surface. For each DoE point, which speci昀椀es
the composition of a polymer, we sample 昀椀ve arrangements of monomers. This
results in a design space of 3125 polymers in total. Note that the polymers we
sampled had at minimum 4 units of each monomer.
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Figure 18: Illustration of the working principle of the �-PAL algorithm. a For each point, we
construct hyperrectangles around themean𝜇 (coming fromeither from themodel
predictions or the measurement) with widths proportional to the uncertainty 𝜎
(which is the standard deviation of the posterior of the points we did not sample
yet and the estimated uncertainty of the measurement for the sampled points;
the exact width of the uncertainty hyperrectangles is also a function of the hy-
perparameters and the iteration). b Using the 𝜖-Pareto dominance relation, we
can identify which points can be discarded with con昀椀dence and which are with
high probability Pareto optimal. c After this classi昀椀cation, the design space that
is relevant for the search is smaller, and we can sample the largest hyperrectan-
gle to reduce uncertainty (the orange one in this case). d After performing the
simulations for the sampled material (orange), the model uncertainties decrease,
notably in the neighborhood region of the sampled material.
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the model predictions or the measurement) with a width that is proportional to the
uncertainty𝜎 (the standard deviation of the posterior) for the points we did not sam-
ple so far, and the estimated uncertainty of themeasurement for the sampled points
(the exact width of the uncertainty hyperrectangles is also a function of the hyper-
parameters and the iteration, see appendix for details). The lower and upper limits
of these hyperrectangles are the respective pessimistic and optimistic predicted per-
formance estimates for all the objectives.

From the (𝜖)-Pareto dominance relation, we can identify those points that can
be discarded with con昀椀dence (gray in Figure 18b) and those of which are with high
probability Pareto optimal (colored blue) as shown in Figure 18b. If the pessimistic
estimate for our predicted material is greater than a tolerance (de昀椀ned using the𝜖 hyperparameter) above the optimistic estimate for all other materials, it will be
part of the Pareto front. Our current estimate of the Pareto front is then the (thick)
blue line connecting the blue points. In addition, we can make a simple estimate
of the accuracy of our current prediction of the Pareto front by connecting the bot-
tom left corners of hyperrectangles associatedwith our current estimate of the front,
which gives us the most pessimistic front (lower blue line). The optimistic front is
then obtained by connecting the upper right corners. For the case of multiobjective
maximization using this algorithm, we can discard materials with high certainty if
the optimistic estimate of the material is within some set tolerance (𝜖) below the
pessimistic estimate of any other material. We maintain the orange point as it can-
not be discarded within our set uncertainty, see Figure 18b. Hence, we have a sim-
ple geometric construction that allows us to classify whether a predicted material is
Pareto-optimal or whether we can discard it with certainty.

After this classi昀椀cation, we can with certainty discard all experiments in which the
hyperrectangles are completely below the most pessimistic front. This signi昀椀cantly
reduces our design space. In terms of Bayesian optimization, this can be thought of
as the exploitation step.

Following this classi昀椀cation, the next step is determining the next material to run
experiments on. The next material to characterize should be the one that reduces
our uncertainty in classifying points as Pareto optimal. For this, we assume that
the uncertainties are normalized by the predicted mean such that the area of our
hyperrectangles represents the relative error (i.e., we use the coe昀케cient of variation).
We then simply improve the information gain of ourmodel themost if we reduce the
uncertainty of the largest rectangle among points presumed near or at Pareto front.
In Figure 18c, the biggest area corresponds to the orange point, and adding an extra
point will improve the accuracy of our model in that part of the Pareto front. As a
result, we obtain a more accurate estimate, see Figure 18d. We can continue this
procedure by sampling the next largest hyperrectangle until our prediction of the
Pareto front has reached the desired accuracy. The model is then retrained using all
sampled points, including those that have been discarded.

It is interesting to note that all points we discard are with high probability not part
of the 𝜖-Pareto front. Hence, we do not need to sample points from this region of de-
sign space even though those points may contain the largest uncertainty regions out
of the entire set. Interestingly, by choosing the hyperparameters properly, we can
also obtain theoretical guarantees on the quality of the Pareto front. That is, given a
kernel of a predictive Gaussian process model and proper scaling parameters of the
hyperrectangles, 𝜖 will be the maximum error of our Pareto front with probability 𝛿
(see Appendix C.10).256 Setting a larger tolerance 𝜖 will speed up the classi昀椀cation
of the design space but increase the errors. In practice, it is reasonable to set 𝜖 to be
larger than the error of the experiment/simulation.

Here, we use this algorithm to e昀케ciently choose which simulations to run, al-
though, in principle, one can apply the same algorithm to e昀케ciently choose experiments—
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Figure 19: Representation of polymers in property space. Simulations have been performed
on the entire experimental design to determine the three key performance indi-
cators, the adsorption free energy (Δ𝐺ads), the dimer free energy barrier (Δ𝐺rep),
and the radius of gyration (𝑅𝑔). Each gray point corresponds to the performance
of a unique polymer. Points sampled or classi昀椀ed as 𝜖-Pareto optimal by the 𝜖-PAL
algorithm are marked in magenta and blue, respectively. Pareto optimal points
have also been projected on their respective 2-D planes. The schematic drawings
of the polymers indicate that the Pareto optimal materials in our design space
have vastly di昀昀erent compositions, e.g., showing a large di昀昀erence in the degree
of polymerization. (See Appendix C.8.)

for example, in self-driving laboratories,266 or in other related multiobjective mate-
rials discovery problemswherewewant to recover the Pareto front within some level
of granularity 𝜖.

For this study, we have performed brute-force simulations and obtained property
estimates for all design points generated from our DoE approach to evaluate the
algorithm’s e昀昀ectiveness. This allows us to recover the true Pareto front (in the
space sampledwith DoE) and compare it to our predicted Pareto front obtained after
each active learning cycle. Figure 19 presents the property estimates, Pareto optimal
points, and the sampled points in property space.

A keymetric for evaluating the quality of the Pareto front is the so-called hypervol-
ume indicator. This indicator measures the size of the space enclosed by the Pareto
front and a user-de昀椀ned reference point (in 2D, this would equate to the enclosed
area) and is commonly used to benchmark Bayesian optimization algorithms. In gen-
eral, a better design will always have a larger hypervolume.252 Using this indicator,
we analyze how accurately and rapidly our active learning approach recovers the true
Pareto front. Additionally, we compare our approach with random sampling. Note
that random samplingmight seem like a naive approach; however, it has been shown
to be an e昀케cient searchmethod, for example, for outperforming grid search in many
optimization problems.267 Hence, it is a relevant baseline.

Figure 20a illustrates the working principle and e昀昀ectiveness of the algorithm. It
attempts to classify the polymers in the design space as fast as possible into either an𝜖-accurate Pareto optimal or a discarded polymer. Each iteration corresponds to the
(in silico) synthesis of a new dispersant and subsequent evaluation of the three key
performance indicators, the adsorption free energy (Δ𝐺ads), the dimer free energy
barrier (Δ𝐺rep), and the radius of gyration (𝑅𝑔). The data show that already after 10
iterations, the algorithm con昀椀dently discards many polymers (orange region) and
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a b

Figure 20: Classi昀椀ed points and hypervolume error as a function of the number of itera-
tions. a The 𝜖-PAL algorithm classi昀椀es polymers after each learning iteration
with 𝜖𝑖 = 0.05 for every target and a coregionalized Gaussian process surrogate
model. The Gaussian process model was initialized with 60 samples selected
using a greedy farthest point algorithm within feature space. Note that the 𝑦-
axis is on a log scale. b Hypervolume errors are determined as a function of it-
eration using the 𝜖-PAL algorithm with 𝜖𝑖 =0.01, and 0.1 for every target. A
larger 𝜖𝑖 makes the algorithm much more e昀케cient but degrades the 昀椀nal perfor-
mance For 𝜖𝑖 =0.01, we intentionally leave out a third of the simulation results
for Δ𝐺rep from the entire data set. The method for obtaining improved predic-
tions for missing measurements with coregionalized Gaussian process models is
discussed in more detail in Appendix C.7. Hypervolume error for random search
with mean and standard deviation error bands (bootstrapped with 100 random
runs) is shown for comparison. For the 𝜖-PAL algorithm, we only consider the
points that have been classi昀椀ed as 𝜖-accurate Pareto optimal in the calculation of
the hypervolume (i.e., with small 𝜖 the number of points in this set will be small
in the 昀椀rst iterations, which can lead to larger hypervolume errors). All search
procedures were initialized using the same initial points but varied substantially
after only one iteration step due to the di昀昀erent hyperparameter values for 𝜖.
Note that the 𝑥-axis is on a log scale. Overall, missing data increases the number
of iterations needed to classify all materials in the design space.
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昀椀nds many 𝜖-accurate Pareto optimal polymers (blue region). In Figure 20b, we
compare the algorithm’s performance with random search and use the hypervolume
error—the relative error with respect to the maximum hypervolume of the design
space—to quantify the quality of the estimated Pareto front. We can observe that𝜖-PAL achieves the target error (𝜖 = 0.01) with more than 89 % fewer iterations
compared to the random exploration of the design space (153 with our approach,
1421 with random search).

An extension of our approach is a case where we have missing data. Often in ex-
perimental data sets, data is missing for a more di昀케cult-to-measure property. In
our case, calculating the dimer repulsion energy requires signi昀椀cantly more compu-
tational time than the other properties. Hence, it would be interesting to see how
such an algorithm performs if, say, 30 % of the data is lacking for one of the prop-
erties (i.e., one of the properties is immeasurable for some of these materials). Fig-
ure 20b presents the algorithm’s performance when a third of the dimer repulsion
energies are missing. In this situation, using independent Gaussian processes for
each objective and running a subsequent experiment with a missing datum would
not improve model predictions for that property. The idea is that we capture corre-
lations between our various objectives by means of coregionalized Gaussian process
models.268 These models allow us to predict multiple objectives using a single sur-
rogate Gaussian process model and provide better estimates for missing objectives
if one (or more) of the objectives is missing while all others are present for a given
design point (see Methods).

3.2.3 Chemical insights

Interestingly, we can not only use our surrogate models as part of the design loop
to expedite the discovery process, but we can also obtain some understanding of
structure-property relationships.

We use the SHAP technique to obtain chemical insights into what the models
learned during the discovery process. This method can reveal how the features used
by the model in昀氀uence the predictions and how those features interact with one an-
other.269 In our case, we use SHAP to understand structure-property relationships.
In Figure 21, we list the 昀椀ve features that, according to our machine learning model,
are most important for every target in order of relevance.

Let us 昀椀rst focus on the radius of gyration (Figure 21a). The most important fea-
ture for the prediction of the radius of gyration is the degree of polymerization, fol-
lowed by the number of good solvent segments ([W]), the number of bad solvent
segments ([R]), the number of theta solvent beads ([Tr]), and the relative entropy
of the monomer sequence. From Flory’s scaling relation, we know that the radius of
gyration scales with the chain length𝑁: 𝑅𝑔 ∼ 𝑁𝜈 , where 𝜈 is the Flory exponent.270

We 昀椀nd that our model detects this direct proportionality between chain length and
the radius of gyration. This showcases that our model captures theoretically consis-
tent relationships during the active learning process. More interestingly, we can see
that the SHAP analysis on the last two features already highlights a critical di昀昀er-
ence between the theory and our model: Our model provides us with insights into
what happens when we change the composition (e.g., increase the ratio of [W] or
[R]). For example, if we increase the fraction of good solvent beads ([W]), we have
a higher radius of gyration, while the radius decreases if we increase the number of
bad solvent beads ([R]). Hence, our model closely recovers our intuition and lets us
quantitatively capture these e昀昀ects.

We use the same machine learning model to predict the two other key perfor-
mance parameters, the interaction with the surface and repulsion between the dis-
persants, and also use SHAP to extract the feature importance. Here we see that by
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Figure 21: In昀氀uence of the feature values on the predictions. SHAP summary plots for the
models for our three objectives based on the models obtained after running the𝜖-PAL algorithm in Figure 20. We used all the sampled points from the run of
the 𝜖-PAL algorithm as background data for the SHAP analysis. Red points cor-
respond to a high feature value, whereas blue points correspond to low feature
values. The width of the violin shown on the 𝑥-axis corresponds to the density of
the distribution of SHAP values and indicates how the features impact the model
output. A negative SHAP value means that the speci昀椀c feature value decreases
the predicted value with respect to the baseline prediction. SHAP values were
computed for a coregionalized model with a Matérn-5/2 kernel and 𝜖 = 0.05.

increasing the ratio of [W], we decrease the interaction with the surface but increase
the repulsion between the polymers. Interestingly, we 昀椀nd that for the dimer repul-
sion energy, increasing the relative sequence entropy of the monomers increases
the repulsion between dimers. This implies that if one plans to maximize the re-
pulsion between the polymers, one should increase the disorder of the arrangement
of the monomers, i.e., avoid blocks. Importantly, we also see that the feature rele-
vance varies between targets, highlighting why a multiobjective search—in contrast
to an independent single-objective search—is pertinent when aiming to accelerate
the multiobjective materials discovery process.

3.2.4 Inverse design

To investigatewhether our algorithmmissedpotentially better-performingpolymers
that we did not consider in our experimental design, we inverted the machine learn-
ing models that were trained on-the-昀氀y during the active learning cycle. To do so,
we use elitist genetic algorithms (GAs) to 昀椀nd novel polymer structures that max-
imize the output of our models while biasing the generation of polymers to ones
that are di昀昀erent from the monomer sequences that we considered in the DoE (by
adding explicit novelty terms into the loss function, see Appendix C.11). This ex-
ploits our machine learning model’s ability to capture relevant regularities from the
design space.

Figure 22 shows the property distribution of the best-performing polymers we
found based on the output of the GA compared to our original results. We 昀椀nd
that independent of whether we bias the GA towards exploration or exploitation,
we cannot 昀椀nd polymers that Pareto-dominate the points that we found using our
combination of the DoE and 𝜖-PAL approaches.
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Figure 22: Distribution of properties for the polymers found by inverting the machine learn-
ing models using a GA. To generate new feature vectors, we ran the genetic al-
gorithm with di昀昀erent weights for the novelty part of the loss function—ranging
from no penalty for similar polymers to high (50 times the objective) penalty
for polymers similar to the ones already sampled with our DoE. Additionally, we
run the genetic algorithm for di昀昀erent elitist ratios. For each feature vector, 3
possible polymer bead sequences were generated since a feature vector does not
map to one unique arrangement of monomers. a Distribution of radius of gyra-
tion (𝑅𝑔). b Distribution of adsorption energies Δ𝐺ads. c Distribution of dimer
repulsion energies Δ𝐺rep. d Polymer properties obtained from GA are projected
onto the 昀椀rst two uniform manifold approximation and projection for dimension
reduction (UMAP) components and compared to those obtained from DoE.

3.3 C O N C L u S I O N S

In materials design, one typically has to balance di昀昀erent objectives, and the proper
weighting of these objectives is usually unclear in the early design stages. This in-
sight raises the need for a method to e昀케ciently identify the Pareto optimal points
while not discarding interesting materials. Using key thermodynamic descriptors
derived from molecular simulations for a large polymer design space, we show that
our materials design approach can be used to explore polymer genomes that would
be intractable using conventional screening methods. Our approach 昀椀nds the rele-
vant polymers in a fraction of the evaluations that are needed using traditional ap-
proaches and provides us with predictive models and structure-property relation-
ships on-the-昀氀y while being robust to missing data. This showcases how the cou-
pling between data-driven and conventional materials design approaches, such as
simulations or experiments, can greatly enhance the rate with which we discover or
optimize materials while concurrently giving us insights into structure-property re-
lationships.

The vision behind our approach is that in a multiobjective optimization, the only
rigorous result one can obtain is the set of Pareto optimal materials. Hence, one
should focus on an algorithm that systematically improves the accuracy of the es-
timated Pareto front. Ranking the materials in a multiobjective optimization intro-
duces, by de昀椀nition, a bias, and detailed studies have been made to identify how
such bias can impact the optimization (seeWagner et al. 271 and Appendix C.1. How-
ever, one can make a bias-free ranking of the experiments that improve the accuracy
of the Pareto front the most. This observation can be translated into an 𝜖-PAL ma-
chine learning algorithm, and our case study shows that signi昀椀cant gains in e昀케ciency
can be achieved.

As multiobjective optimization is such a general problem, we expect that this ap-
proach can be adapted to those cases in which e昀케ciency is essential.
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3.4 M E T H O D S

3.4.1 Coarse-grained model

In our model, the polymer bead diameters are assumed to be greater than the Kuhn
length, i.e., polymers follow the ideal chain behavior. There are four di昀昀erent poly-
mer bead types in addition to one solvent and two surface bead types. Each bead
type [W] - “weakly attractive”, [R] - “repulsive”, [Ta] -“theta attractive”, and [Tr]
- “theta repulsive” was created based on their solvent, [S], interaction. Bead types
[Ta] and [Tr] are representative of beads for homopolymers in a theta solvent but
di昀昀er based on their attractive or repulsive interaction with the surface monolayer
bead type [S2]. Bead type [R] is the most adsorptive on our model surface, whereas
bead type [W] is the least attractive. More details on the interaction parameters are
provided in Appendix C.4.

3.4.2 Design of experiments

The 昀椀rst step in the work昀氀ow involves the generation of polymers based on our ex-
perimental design space. To e昀昀ectively sample from this design space, we used a
full factorial experimental design with the number of factors equal to the number of
bead types (4), the number of levels equal to the number of possible bead count vari-
ations (5 possible: 4, 6, 8, 10, 12) and 5 unique monomer sequences for each point.
While this is certainly not representative of the entire sequence design space of our
polymers, we assume that sequence e昀昀ects come secondary tomonomer content for
this work. This assumption is a reasonable approximation, as noted in Appendix C.3.
Overall, we obtained 3125 unique linear polymer molecules represented by their
monomer sequence. The experimental design was created using pyDOE.272

3.4.3 Simulation Protocol

All simulations were set up using Enhanced Monte Carlo (EMC) version 9.4.4273,274

and run with Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
version 2018/03/16.275 Using EMC, monomer sequences for coarse-grained poly-
mers were directly ported into LAMMPS input 昀椀les.

Free energy calculations

Free energy calculations were performed using the LAMMPS plugin in Software Suite
forAdvancedGeneral Ensemble Simulations (SSAGES) version0.82.276 Steeredmolec-
ular dynamics (SMD) simulations277 were 昀椀rst performed to generate initial con昀椀g-
urations for each polymer-surface or polymer-polymer center of mass separation
distances of a given polymer.262 Umbrella sampling was subsequently performed
and analyzed using theweighted histogram analysismethod (WHAM)278 to estimate
both the adsorption free energies of the dispersants onto the model dispersion sur-
face and the dimer free energies of dispersants.

3.4.4 Machine learning

Featurization

We calculated features such as the degree of polymerization, the relative sequence
entropy, the nature of the end groups (one-hot encoded), summed interaction pa-
rameters, and the nature of clusters based on the monomer sequence.
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All features were 𝑧-score standardized using the mean and standard deviation of
the training set (using the scikit-learn Python package279). More details can be found
in Appendix C.6.

Gaussian process regression surrogate models

Intrinsic coregionalization model (ICM) Gaussian process regression models268 (of
rank 1) were built using the GPy Python library280 based on Matérn-5/2 kernels. In
Appendix C.7 we show that coregionalization improves the predictive performance
in the low-data regime, i.e., the initial setting of the algorithm. The ICM models
assume that the outputs are scaled samples from the same Gaussian process regres-
sion (GPR) (rank 1) or weighted sum of 𝑛 latent functions (rank 𝑛). A higher rank
is connected to more hyperparameters and typically makes the model more di昀케cult
to optimize. We provide a performance comparison of rank 1 and rank 2 models in
Appendix C.7. Hyperparameter optimization was performed with random restarts
and in regular intervals as training points were added. More details can be found in
Appendix C.7.

Feature importance analysis

We used the SHAP technique marginalized over the full DoE dataset (summarized
with weighted 𝑘 = 40 means-clustering) to calculate model interpretations269 and
the full DoE dataset to calculate SHAP values. For the GPR surrogate models, we
apply the “KernelExplainer” method. Model interpretations for runs with di昀昀erent𝜖 are qualitatively consistent; the plot shown in the main text was computed for𝜖 = 0.05 and a coregionalized model with Matérn-5/2 kernel.

Pareto active learning

We implemented amodi昀椀ed version 𝜖-PAL algorithm256 in our Pythonpackage, PyePAL.
Our algorithm di昀昀ers from the original 𝜖-PAL algorithm by using the coe昀케cient of
variation as the uncertainty measure rather than the predicted standard deviations.
Moreover, our implementation does not assume that the ranges (𝑟𝑖) of the objectives
are known. This is, instead using 𝜖𝑖 ⋅ 𝑟𝑖 for the computation of the hyperrectangles,
we use 𝜖𝑖 ⋅ |𝜇𝑖| (see Appendix C.10). PyePAL generalizes to an arbitrary number
of dimensions as opposed to the original MATLAB code provided by Vivek Nair 281

(limited to 2), and by default sets the uncertainty of labeled points to the experi-
mental uncertainty or the modeled uncertainty. In addition to supporting standard
and coregionalized Gaussian processes surrogate models, our library interfaces with
other popular modeling techniques with uncertainty quanti昀椀cation, such as quantile
regression and neural tangent kernels. It also o昀昀ers native support for missing data,
for example, when using coregionalized Gaussian processes, support for both sin-
gle point (as done in this work) and batch sampling, and the option to exclude high
variance points from the classi昀椀cation stage.

Implementation details and hyperparameter settings in this work are provided in
Appendix C.10. Initial design points used to train the zeroth iteration model were
selected using greedy farthest point sampling in feature space.201 Hypervolume er-
rors shown in the main text were calculated using the nadir point as our reference
point.

Our code makes use of the following Python packages: GPy,280 jupyter,282 light-
gbm,283 matplotlib,284 neural-tangent,285 nevergrad,286 numba,287 numpy,288 pan-
das,289 scipy,290 scikit-learn.279
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Inverting the GPR models

To invert the GPR model, we trained gradient boosted decision tree (GBDT) surro-
gate models with a reduced feature set (e.g., dropping the relative entropy of the
monomer sequence) on the predictions of the GPR models. An elitist GA291 was
then used to maximize the output of the model while being penalized for creating
invalid polymer features, i.e., features that cannot be converted to a valid monomer
sequence using a backtracking algorithm, or features that are very similar to those
already present in our dataset. More details can be found in Appendix C.11.

3.5 D A T A A v A I L A B I L I T y
The input 昀椀les for the molecular simulations and the analysis results of the simula-
tions are available on theMaterialsCloud221 Archive (DOI: 10.24435/materialscloud:8m-
6d).

3.6 C O D E A v A I L A B I L I T y
Code for the machine learning part (including the featurization and genetic algo-
rithm) of this study is available as part of the dispersant_screener Python pack-
age (archived on Zenodo: 10.5281/zenodo.4256868, and developed on GitHub:
github.com/byooooo/dispersant_screening_PAL). A general-purpose imple-
mentation of the 𝜖-PAL algorithm that can be used with other models such as quan-
tile regression, is available as the PyePALpackage (archivedonZenodo: 10.5281/zen-
odo.4209470, and developed on GitHub: github.com/kjappelbaum/pyepal).

https://archive.materialscloud.org/record/2021.34
https://archive.materialscloud.org/record/2021.34
https://zenodo.org/record/4256868
github.com/byooooo/dispersant_screening_PAL
https://zenodo.org/record/4209470
https://zenodo.org/record/4209470
github.com/kjappelbaum/pyepal
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A B S T R A C T Knowledge of the oxidation state ofmetal centers in compounds and
materials helps understand their chemical bonding and properties. Chemists have
developed theories to predict oxidation states based on electron-counting rules, but
these can fail to describe oxidation states in extended crystalline systems such as
MOFs. Here we propose using a machine-learning model, trained on assignments
by chemists encoded in the chemical names in the CSD, to automatically assign oxi-
dation states to themetal ions inMOFs. Our approach only considers the immediate
local environment around a metal center. We show that it is robust to experimental
uncertainties such as incorrect protonation, unbound solvents, or changes in bond
length. This method gives good accuracy, and we show that it can be used to detect
incorrect assignments in the CSD, illustrating howmachine learning can capture col-
lective knowledge and convert it into a useful tool.

C I T A T I O N This chapter is a preprint version of our article: Jablonka, K. M. et al.
Nat. Chem. 2021, 13, 771–777.

C O N T R I B u T I O N K.M.J designed themachine learning approach, performed the
experiments, and wrote the article with B.S.
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4.1 I N T R O D u C T I O N
Oxidation states are a useful concept for understanding the properties and reac-
tivity of materials.22 Their history goes back to the early days of chemistry when
Lavoisier coined the word oxidation and Wöhler the expression “oxydationsstufe”
(old German spelling for the term oxidation number).292,293 Oxidation states are
central to balance redox reactions,294 for chemical nomenclature,295 and above all to
help chemists to systematize and reason about (redox) reactivity and spectroscopic
properties.296–298 For example, Mn(II) corresponds to a formal electron con昀椀gura-
tion of 3𝑑5, Mn(IV) to 3𝑑3, and Mn(VII) 3𝑑0. Chemists know that permanganate
(Mn(VII)) compounds are highly oxidizing and often of purple color, whereas Mn(II)
compounds are less reactive and typically colorless. From the oxidation state as-
signment in MnO4

– we also directly know that the 3d electrons of manganese are
strongly interacting with the oxygens (we formally assign them to oxygen).

Importantly, oxidation states are not quantummechanical observables but rather
a “convenient 昀椀ction” that helps chemists think about chemistry.299 The IUPAC de-
昀椀nes oxidation states as “…the charge of this atom after ionic approximation of its
heteronuclear bonds …”.300,301 This de昀椀nition is, however, too generic and cannot
be readily translated into a recipe to determine the oxidation state of any given com-
pound.

For crystalline materials, the oxidation state is often estimated using the bond
valence summethod.302 This method, which dates back to Linus Pauling,303 approx-
imates all bonds as fully ionic, and the oxidation state is estimated by summing up
all bond valence terms 𝑆𝑖𝑗, which are calculated based on a parametrization of an
exponential function of metal-ligand bond lengths (𝑅𝑖𝑗):

𝑆𝑖𝑗 = exp(𝑅0 − 𝑅𝑖𝑗𝐵 ) , (2)

where 𝑅0 and 𝑏 are empirical parameters. This technique has also found application
in estimating the valence of non-metals.302 There is an ongoing e昀昀ort in tuning the
bond valence sum method to automatically evaluate the entries in the CSD,304–306

which is the largest collection of metal-organic crystals.
However, the bond valence sum method is far from ideal as it has some ambi-

guities. First, one needs to assign bonds between the atoms, for which many dif-
ferent algorithms have been proposed given that the de昀椀nition of a bond can be
debated.307–309 Second, many di昀昀erent parameter sets exist which are derived for
di昀昀erent systems, e.g., metal oxides or metal-organic complexes.302 Yet, these pa-
rameters might need to be mixed to cover chemical space302 when certain parame-
ters are unavailable in one parametrization.

Finally, the functional form for the bond valence methodmight sometimes be too
rigid as it is based solely on bond lengths. Technically, this can cause problems when
one wants to apply the same tools on experimental structures and DFT-relaxed ones
or when the bond lengths are not very accurately determined. This approach is also
di昀昀erent from how chemists intuitively think about oxidation states, which often
is more closely related to the shape of the coordination polyhedra. For example,
chemists will intuitively associate a linear copper complex with Cu(I), whereas they
will associate a tetragonal complex with Cu(II).310 This intuition chemists have is
built on the fact that the electron con昀椀guration can be related to the coordination
geometry via concepts like the ligand-昀椀eld theory.

In this context, it is important to note that quantum chemical calculations are of
limited use. From a fundamental point of view, onemight think that state-of-the-art
quantum chemical calculations would give us the total energy for the di昀昀erent oxida-
tion states, and hence it would be straightforward to determine the oxidation state
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that gives the lowest energy. Unfortunately, for most MOFs the unit cell is so large
that one has to use DFT, which tends to favor compounds with lower d orbital oc-
cupancy and leads to non-integer oxidation states for multivalent compounds, such
as 2.5 for the irons in magnetite (Fe3O4), due to the self-interaction error (in the
generalized gradient approximation (GGA)).311,312 Other computational techniques
have been developed based on charge-partitioning schemes, but as the charge on an
embedded atom is ill-de昀椀ned and subject to charge-transfer interactions with the
ligands,313,314 also these methods are unable to remove the ambiguity in the assign-
ment of oxidation states. Hence, in practice, quantum calculations require a “guess”
of the oxidation state as input rather than giving us insights into the oxidation state.
Fundamentally, this is due to the fact that all methods to derive oxidation states, be
it computational or spectroscopic, need to introduce some additional rules to assign
oxidation states, for example, via comparison to reference systems or by specifying
how to count electrons based on wave functions as oxidation states are not quantum
mechanical observables.315

In summary, there is a need for a new approach toward the assignment of integer
oxidation states that can capture the intricacies of chemistry—to provide starting
points for DFT calculations and to support chemical reasoning.

In this work, we propose to use the collective knowledge of chemists to assign
oxidation states, replacing the rule-based deductive approach of formal counting
rules with a fully inductive one. The approach described here harvests the collective
(noisy) knowledge of chemists to create a consensus assignment of oxidation states,
which to our knowledge has not been explored to provide a simple solution to this
important practical question.

Towards this goal, we parsed the chemical names in the CSD for oxidation states
of metal centers, numerically encoded the local chemical environment, and trained
an ensemble of ML models, which makes predictions based on a “vote” between
four base models, to classify the oxidation state. We chose to focus on MOFs as
their experimental structures are archetypal examples for many of the reasons auto-
matic deductive techniques might fail to assign oxidation states: Unbound solvent
molecules are present in many experimental MOF structures, and sometimes the
structures also contain charge compensating counter ions. Moreover, the model is
challenged by problems like missing or incorrect protonation and atomic disorders.
Even if our main focus in this work is on predicting the oxidation state of metal cen-
ters in MOFs, we also demonstrate that the model that was trained only on MOFs
can transfer to other types of materials, such as binary ionic solids, or simple metal
complexes.

4.2 R E S u L T S A N D D I S C u S S I O N
To create our data set of oxidation states formetal centers inMOFs, we leveraged the
fact that the chemical names of nearly half of all entries in the CSD150 contain oxi-
dation states in parentheses following the metal names (as it is recommended in the
guidelines for inorganic nomenclature, the IUPAC red book).295 This assignment,
manually curated by the editors of the CSD, can be based on di昀昀erent arguments:
chemical intuition, founded on knowledge of the chemical literature and experience
with similar reactions and compounds, some computing protocol (e.g., the bond va-
lence method), or spectroscopic evidence. Even if these oxidation states are not
assigned with a unique and well-de昀椀ned protocol, several chemists (at least the au-
thors and the editor at the CSD) consider this assignment to be correct.150,316 The
central assumption in this work is that some individual assignments might be wrong,
but if enough chemists work on similar systems, the collective knowledge will be
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Figure 23: Schematic representation of the featurization approach. Schematic representa-
tion of the featurization approach. The feature vector takes into account three
aspects. The metal type is considered through its position in the periodic table
(row and column). The geometry of the coordination environment of the metal
center is captured by measuring the similarity of the actual coordination environ-
ment to ideal coordination environments—this re昀氀ects chemical knowledge such
as “square-planar Pt is usually d8”. Four polyhedra are shown as examples. The
chemical environment of the metal center is based on statistics of the elemental
properties of a metal and its nearest neighbors; for example, electronegativity
di昀昀erence, which has an in昀氀uence on how many electrons a neighboring atom is
likely to donate. An illustrative metal paddlewheel cluster is shown (atom color
code: Cu, blue; O, red; C, brown; H, white).

right. Similar to image recognition, the task of assigning oxidation states can be triv-
ial to some chemists, but teaching computers how to do it opens completely new
avenues due to the scalability. Many works in the past have focused on leveraging
information from the CSD, but most focused on directly using the structures, for ex-
ample, to build statistics of bond lengths and angles for conformational analysis,317

leading the structure correlation principles founded by Bürgi and Dunitz.318 In this
work, we combine the structure information with another piece of information, the
name of a chemical compound, that researchers typically do not associate with the
CSD.

4.2.1 Encoding local environments and machine learning

In this work, we use a MLmodel to capture the knowledge of chemists about the oxi-
dation state. To be able to trainMLmodels, one has to encode the local environment
as a vector of numerical descriptors (“features”). This is commonly known as fea-
turization, and the success of any ML model crucially depends on selecting features
that are able to describe the problem at hand—ideally in a physically meaningful
way.239,319 We based our featurization approach on the locality approximation in
which we consider only the immediate local environment around a metal center in a
structure (cf. Figure 23 for an illustration). This is also re昀氀ected in Pauling’s principle
of local charge neutrality320 and the nearsightedness principle of electronic matter,
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which describes the density change caused by a potential change far away is small.161

In addition to being physically meaningful, this approximation allows us to create a
large training set that enables powerful similarity-based reasoning. This realization
re昀氀ects Pauli’s parsimony principle, which states that the number of unique local en-
vironments is limited. Using the locality approximation, we can also consider struc-
tureswith unbound solventmolecules andmissing or incorrect protonation, as those
solvent molecules or missing protons are typically outside the local environment of
a metal center.

Our feature vector combines the three aspects chemists have identi昀椀ed as key to
the oxidation state: the metal type, the geometry of the coordination environment,
and the chemical environment (see Figure 23). Importantly, this featurization is
based on chemical insights—but gives the 昀氀exibility to accommodate cases in which
classical rules fail.321,322 Weused the 昀椀rst two values of the feature vector to identify
the position of the metal in the periodic table, i.e., its row and group number. The
column encodes the well-known principle that elements in the same group share
similar chemistry, and the addition of the row makes the encoding of the metal po-
sition in the periodic table unique. We further added the number of electrons in
the di昀昀erent shells of the neutral atom as additional features for the metal center to
additionally encode the range of possible oxidation states.

The next elements of our feature vector recognize that there is a deep relationship
between coordination geometry and the electronic con昀椀guration. Prime examples
for this relationship, which have been used in the past to propose an extension of the
bond-valence sum method,323–326 are the ligand 昀椀eld splittings for di昀昀erent coordi-
nation environments, the Jahn-Teller distortion for degenerate electronic con昀椀gura-
tions, or the valence-shell electron-pair repulsion (VSEPR) model.327,328 To encode
these e昀昀ects numerically, we use order parameters, which measure the similarity
of the coordination environment to a collection of ideal coordination environments
(e.g., octahedral, tetrahedral, bent linear).309,329 In this way, we capture heuristics
like “square-planar Pt is usually d8” which experienced chemists can rely on but
which are di昀케cult to comprehensively encode in a deductive approach. Importantly,
our featurization does not explicitly depend on bond lengths, which makes it more
robust and interoperable—e.g., we can use the same model on DFT optimized and
experimental structures.

The key insight on which formal counting rules are built is that di昀昀erent ligands
are thought to donate a di昀昀erent number of electrons.330 We attempted to encode
this more 昀氀exibly by calculating statistics, like the electronegativity di昀昀erences, of
elemental properties between the metal center and its geometrical nearest neigh-
bors.331

Thematrix describing the immediate local environmentswas then used as an input
for a voting classi昀椀er which arrives at its 昀椀nal prediction by averaging the predictions
(probability of oxidation states) of four base models, each based on a di昀昀erent ap-
proach (extremely randomized decision trees, boosted decision trees, nearest neigh-
bor, and linear functions) to make the estimates maximally uncorrelated, similar to
chemists that use di昀昀erent ways of reasoning about oxidation states. This voting
makes our predictions more robust and gives us an uncertainty estimate.332 This ap-
proach is similar to the way in which we use the collective knowledge of chemists
at the level of the training data to arrive at a data-driven de昀椀nition for the oxida-
tion state—not all chemists use the same method to assign the oxidation state but
taken together the collective assignment for a particular chemical environment can
be robust.

After calculating the feature vector for each metal site, we split the data into dis-
joint sets for training and testing (see Methods for more details). In addition to that,
we also use structures with strong spectroscopic evidence for the oxidation state
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Figure 24: Performance metrics. Accuracy, precision, and recall for the assignment of oxida-
tion states for Cu in the MOF subset of the CSD using di昀昀erent classi昀椀ers. The
barplots show accuracy (i.e., what fraction of the predictions is correct), recall
(e.g., howmany Cu(II) we identify from all Cu(II)), and precision (e.g., howmany
Cu(II) we identi昀椀ed are actually Cu(II)). “Uniform” represents the same proba-
bility for both oxidation states. “Majority”: all structures are assigned the ma-
jority class, here II. “Strati昀椀ed”: strati昀椀ed sampling was used for the training set
distribution—for example, assigning Cu(II) with a 75.8 % chance (see Table 23
for the frequency of oxidation states in the MOF subset of the CSD). Bond va-
lence: oxidation states assigned using the bond valence sum method. Machine
learning: oxidation states assigned using the approach described in the present
study. In the equations, total prediction refers to how often a given oxidation
state was predicted in our dataset; the true predictions are the subset of those
for which the prediction was correct.

assignment as separate test cases.

4.2.2 Performance assessment

To assess the accuracy of our method, we 昀椀rst focused on copper, for which we can
compare our results with an optimized and validated bond valence sum method.304

In addition, for copper both oxidation states I and II are well represented in theMOF
subset of the CSD (Cu(I): 24.2 %, Cu(II): 75.8 %).

To determine the performance of our ML method and the bond valence method,
we calculate the accuracy (i.e., what fraction of our predictions is correct) of our pre-
dictions as well as measures for sensitivity (recall, e.g., how many Cu(II) we iden-
tify from all Cu(II)) and precision (e.g., how many Cu(II) we identi昀椀ed are actu-
ally Cu(II)). These metrics are important as due to the imbalanced distributions of
Cu(I) and Cu(II), we already have a 75 % chance of success by assuming all oxidation
states to be II (majority vote in Figure 24). In addition to the metrics calculated for
the bond valence sum method and the presented model, we also report the perfor-
mance for random assignment of oxidation states (random sampling) and random
sampling with a sampling probability of Cu(I/II) equal to the frequency of Cu(I/II)
in our dataset (strati昀椀ed sampling, i.e., assigning Cu(II) with a ca. 75 % chance) as
baselines. These baselines are important for a fair evaluation of a classi昀椀er, as even a
random sampling might achieve high accuracy on an imbalanced dataset. Figure 24
clearly shows that the machine-learning model outperforms the baselines and the
bond valence method in all metrics.

It is interesting to use our ML results to investigate why the bond valence method
fails for some structures. For this, we projected our feature space onto two dimen-
sions using PCA (cf. Figure 25), a statistical technique that attempts to capturemost
of the variance in only a fewprincipal components (here two). In these principal com-
ponents, the two most relevant feature values are the extent to which the copper is
trigonal co-planar with coordination number three and the extent to which copper is
square co-planar with coordination number four. The black stars are structures for
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all Cu

bond valence error

10-6 10-3

trigonal
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Figure 25: First two principal components for Cu sites. Projection of the feature space
onto the two 昀椀rst principal components (linear combinations of features that
capture most of the variance in the data). Every material is a dot in this 昀椀g-
ure. The arrows show the direction of the two features “square co-planar CN
= 4”, and “trigonal co-planar CN = 3” that have the highest loadings in the space
spanned by the 昀椀rst two principal components. The color coding shows the
value of the order parameter of the trigonal planar coordination (logarithmically
scaled color map in which low values of the “trigonal planar” order parameter
are shown in blue, and high ones—indicating high similarity to “trigonal planar”
coordination—in red). Black stars mark metal sites of structures for which the
bond valence method predicted the wrong oxidation state. We also show two
structures (CSD refcodes XUWRAJ, a coordination polymer with Cu(II) center
and tetrachloroterephthalate-based ligand, and TUKLOC, a Cu(I) coordination
polymer with dipyrrolylmethane-base ligand) that are at the extremes of the 昀椀rst
principal component and for which the bond valence sum method is wrong and
correct, respectively. For these structures, we show the 昀椀rst coordination sphere
in color, where copper is orange, oxygen blue, nitrogen blue, and iodine violet).
The 昀椀gure shows that the errors cluster for low values of the trigonal co-planar
feature.

which the bond valence method predicts the oxidation state incorrectly. We can see
that these incorrect assignments cluster for copper with low values for the trigonal
co-planar order parameter. In the presented machine-learning model, we see that
for these structures, the geometric features are of higher importance, and exactly
these geometric features can not explicitly be described in the distance-based bond
valence approach.

By design, our method is directly applicable to all metals but will be less accurate
for metals and oxidation states that are less frequent in the current training set. To
obtain a more detailed measure of the success of our predictions, we used a test set
of 42,463metal sites that were not used in the training set to compute the confusion
matrices that tabulate the predicted against the true oxidation states, for di昀昀erent
parts of the periodic table (cf. Figure 26a). All oxidation states were correctly as-
signed for the easy s block (e.g., Li, Na, Ca), which generally only adopts either the +I
or +II oxidation state. Even for the more challenging d block (e.g., Fe, Cu), where we
have a wider range of accessible oxidation states, p block (e.g., Al, Pb, Bi), and f block
(e.g., Ce, Eu, Ho), we obtained success rates of at least 90 %. These results translate
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Figure 26: Predictive performance across the periodic table. Confusion matrices compare
the actual and predicted assignments. In the ideal case, the o昀昀-diagonal elements
are all zero. The numbers in thematrices are percentages and are normalizedwith
respect to the columns (i.e., the percentages of actual oxidation state numbers
add up to 100 %). The percentages are also used for the color coding. a, Con-
fusion matrices for all predictions, independent of the uncertainty of the model.
b, Confusion matrices only for predictions for which all four base estimators in
our ensemble agree (39,943 sites, s block: 100 %, d and f block: 94 %, p block:90 %). Confusion matrices were calculated for predictions on a holdout test set
of 42,463metal sites. We did not remove all typos listed in Appendix D.2 for this
analysis.

in commonly used classi昀椀cation metrics that exceed 96 % (see Appendix D.2).
One additional advantage of ensemble ML models is that they can estimate how

reliable a prediction is. Models based on di昀昀erent hypothesis spaces tend to dis-
agree when used outside the domain of applicability (i.e., when they extrapolate)
and agree when the queried case is well represented in the training data. For the
machine-learning approach described here, we 昀椀nd a mean di昀昀erence between the
number of disagreeing base estimators (i.e., members of the ensemble model) of
0.89, which indicates that usually one base estimator will disagree in the case of a
wrong prediction. If we use this to eliminate predictions in which the model is un-
certain, we 昀椀nd that the overall prediction accuracy increases signi昀椀cantly. We now
also get near-perfect predictions for the p, low valence d, and f block metals (see
Figure 26b).

It is instructive to investigate those cases in which wemake a prediction with high
con昀椀dence yet make a wrong assignment. These structures (ca. 300) were 昀氀agged,
and we retrieved the article to manually inspect the oxidation state. Out of these, in
70 cases, we observed that the assignment in the CSD did not match the one in the
original paper (seeAppendixD.2), sometimes caused simply by the exchange of IV to
VI or I with II. In the rest of the articles, we question the assignment of the oxidation
state for several of them, and, of course, we also have cases in which our method
incorrectly assigns the oxidation state. All these cases are listed in Appendix D.6.
The fact that many of the cases with discrepancies are erroneous assignments in the
CSD suggests that it would be advantageous to use our method as a diagnostic; if
wemake a high-con昀椀dence prediction that di昀昀ers, a more detailed investigation into
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the oxidation state would be advisable.
To further con昀椀rm the accuracy of our predictions, we identi昀椀ed a number of struc-

tures for which the oxidation state assignment is supported by strong spectroscopic
evidence. Also here, themodel showed a good performance by predicting the correct
results in all but one of over 50 cases, including mixed-valence cases (cf. Table 38).

The one structure for which our method failed is a Ce(IV)-MOF. As there are not
many structures with Ce(IV) in the MOF subset of the CSD, we suspected this to be
a case where our predictions are limited by the coverage of Ce(IV) in the training
set. Therefore, we extended our training set to all structures in the CSD (i.e., MOFs
and non-MOFs, see Appendix D.8), and for this training set, the present machine-
learning approach correctly predicts Ce(IV).

4.2.3 Case studies

It is interesting to look at the assignments of a few case studies in detail. Of partic-
ular interest are MOFs with mixed-valence and the case of 昀氀exible MOFs for which
there is considerable discussion in the literature about the oxidation state.

The importance of geometrical features in assigning the oxidation state is evi-
dent for the case of the mixed-valence MOF Cu(I/II)-1,3,5-tricarboxylate (BTC).333

Mixed-valence MOFs have been excluded from our training set as the CSD does not
systematically indicate which oxidation state corresponds to which metal. As our
features are local, we can use the model to determine the oxidation state for each
metal site in these mixed-valence MOFs. Since our program does not consider the
symmetry, we determine the oxidation state for each of the 16 metal sites in the
Cu(I/II)-BTC unit cell separately (cf. Figure 27). In agreement with the experimen-
tal data333 we assign the four coppers in the paddlewheel (Figure 27c) to be +II while
the eight coppers in themacrocyle (copper carboxylate ring shown in Figure 27a) are
assigned to be +I. In Figure 27, we schematically illustrate the relative importance of
the di昀昀erent features that determine the assignment. To estimate the feature impor-
tance, we use the SHAP technique that is built based on a game-theoretic concept in
which one wants to estimate the fair payout for a player in a game.269,334 In our case
we want to determine the “fair” contribution of the features to the prediction and,
in essence, analyze the change in the prediction of the model for all possible combi-
nations of features without the feature of interest. A large positive SHAP value indi-
cates that the feature increases the predicted value. From this analysis, we see that
the assignment is mostly based on the local coordination geometry (blue ring in the
pie charts in Figure 27), where for the paddlewheel the square pyramidal (sq. pyr.)
and for the macrocyclus the linear order parameter is the most important feature.
In Figure 27d we give the top 昀椀ve features that determine the oxidation state. In
these 昀椀gures, each dot corresponds to one of the 16 metal sites, and the color corre-
sponds to the value of the features. If the structure were perfectly symmetric, there
would be only two dots. The order parameters for the coordination environment
re昀氀ect that the Cu in the paddlewheel is considerably square pyramidal (high values
for sq. pyr.) but not linear, while the opposite is true for the Cu in the macrocyclus.
This nicely illustrates how the machine-learning approach described here captures
the chemical intuition that a square pyramidal coordination environment is always
associated with Cu(II), whereas a linear coordination environment is associated with
Cu(I).

An interesting case of a 昀氀exible MOF is MIL-47. For this MOF Barthelet et al. 335

reported an oxidation of the V(III) center upon desorption of a terephthalate guest
molecule, which also resulted in a change of 昀氀exibility of the framework. In contrast,
Centrone et al. 336 foundno evidence for such a change in oxidation state. Themodel
presented here supports the initial assignment, as also did follow-up studies:337,338
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Figure 27: Predictions of the oxidation states in mixed-valence MOF Cu(I/II)-BTC. a, Cu(I)
carboxylate macrocycle, with below a schematic representation of the relative im-
portance of the geometrical features compared with the chemical ones for the
assignment of the Cu(I) sites (CN: coordination number, sq. pyr: square pyrami-
dal,). c Crystal structure of Cu(I/II)-BTC. c, Structure of the Cu(II) paddlewheel;
here, too, the geometrical features are of high importance for the assignment of
the Cu(II) sites (tri. pl: trigonal planar). Atom color code: Cu(I), blueberry blue;
Cu(II), light blue; O, red; C, brown; H, white. d, Summary of the Shapely addi-
tive explanations (SHAP)269 for the Cu(I) and Cu(II) sites. Red shows a feature is
of high value, and blue shows a feature is of low value. Cu(II) values are gray on
the SHAP value plot for Cu(I), and vice versa. A negative SHAP value (shown on
the abscissa) translates into a lower predicted oxidation state, whereas a positive
SHAP value corresponds to a higher oxidation state.

For the crystal structure with the terephthalate guest molecule (cf. Figure 28a) we
昀椀nd vanadium in the oxidation state +III, whereas we 昀椀nd vanadium in the oxida-
tion state +IV for the crystal structures without the guest molecule (cf. Figure 28d).
As visible in Figure 28, the structures show a subtle change in the coordination ge-
ometry upon activation, which the model mostly captured in a change of the order
parameter for octahedral coordination (coordination number 6 order parameters in
Figure 28e) which is higher for the structure with the guest molecule. This re昀氀ects
the chemical intuition that V(III) is regularly octahedrally coordinated and that the
regular octahedron is distorted upon oxidation.339 It is di昀케cult to capture such ef-
fects in deductive approaches like formal electron counting or with the functional
form of the bond valence method.

Another peculiar example of the importance of small geometrical details in the
assignment of the oxidation states is a redox-active MOF of the MOF-74 type in
which the iron center was shown to be oxidized upon O2 adsorption at room tem-
perature, which was also re昀氀ected in a slight change in the coordination geometry of
O2 from end-on (η1) to a rather side-on (η2) coordination.340 The model presented
here can recognize the change in oxidation state based on the slight change in co-
ordination geometry. In a classical bond valence or ligand-counting analysis, the
assignment would remain ambiguous due to the dependence on the arbitrary choice
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Figure 28: Predictions of the oxidation states in MIL-47 before (as-synthesised) and after
activation. a, Octahedral coordination in the as-synthesized structure. b Crystal
structure of the as-synthesized structure, with below a schematic representation
of the relative importance of the geometrical features compared with the chem-
ical ones for the assignment of the oxidation states of the vanadium sites (CN:
coordination number, pent. pyr: pentagonal pyramidal, Δcol di昀昀erence in the
column number). c Crystal structure of the activated structure. d Distortion of
the octahedron after activation. Here, too, the geometrical features are of high
importance for the assignment of oxidation states (s. bnd: single bond, ΔNV: dif-
ference in the number of valence electrons). Atom color code: V, orange; O, red;
C, brown; H, white. e, Summary of the Shapely additive explanations (SHAP)269

for the V(III) and e V(IV) sites. Red shows a feature is of high value, and blue
shows a feature is of low value. V(III) values are shown in gray on the SHAP value
plot for V(IV), and vice versa. A negative SHAP value translates into a lower pre-
dicted oxidation state, whereas a positive SHAP value corresponds to a higher
oxidation state.

of the method to assign bonds between the atoms.

4.2.4 Novel MOFs

An interesting question is how well we would predict the oxidation state of a novel
MOF of which the chemistry is di昀昀erent from structures currently in the CSD. One
way to estimate the transferability of the model is to test it on databases of other
structure classes, including binary ionic solids from the Materials Project222 , tran-
sition metal complexes341 and COFs,147 without additional training. For small tran-
sition metal complexes, chemists conventionally assign oxidation states by adding
up the electron donation of ligands around the metal center. For ionic crystals, on
the other hand, chemists will usually base their reasoning directly on the chemical
formula. The model presented here uni昀椀es this picture: for the cases in which the
model is highly con昀椀dent in its prediction, we can predict the oxidation state with
almost the same accuracy as for MOFs (see Appendix D.5.5–D.5.6). Moreover, from
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a more practical point of view, these results give con昀椀dence that the approach pre-
sented here will predict reasonable oxidation states for novel classes of MOFs that
are not yet in the CSD.

We provide an app that uses our pre-trained model to assign oxidation states of
metal centers of MOFs on the Materials Cloud. This app requires the crystal struc-
ture as input and outputs the oxidation states of the di昀昀erent metal sites together
with an estimate of the con昀椀dence. In addition, the program can provide details on
the feature’s importance.

4.3 C O N C L u S I O N S

Oxidation states are a fundamental concept in chemistry. For many compounds
(like simple metal complexes), we can write down the oxidation state from empirical
knowledge. The bond valence summethod is successful in assigning oxidation states
of more complex structures. For small systems, we can even carry out accurate quan-
tum calculations to estimate the oxidation state.342 However, there are many struc-
tures for which these approaches are of limited use. Yet, chemists have provided
a large amount of data on the oxidation state of structures for which these conven-
tional approaches cannot be used. In this work, we show that with an appropriate set
of descriptors, this collective knowledge can be converted into a surprisingly power-
ful tool. Our work highlights the power data-driven techniques can have in chem-
istry and materials science; as an example to solve fuzzy problems where no reliable
alternative exists but relying on the collective knowledge acquired by chemists.

4.4 M E T H O D S

Weused the CSD PythonAPI to retrieve the chemical names for the structures of the
MOF subset of May, 2019.116 Regular expressions were used to parse the oxidation
states and the corresponding metals. We excluded 6921 structures from our model-
ing work昀氀ow due to atomic overlaps in the experimental structure.
For featurization, weused thematminerPythonpackage159 and standardized (based
on standard deviation andmean of each column of the training set) all features prior
to use in the modeling process.
The ML model adopted in this work is a soft voting classi昀椀er using gradient boost-
ing, 𝑘-nearest neighbors, logistic regression, and an extra trees base classi昀椀er imple-
mented in the scikit-learn library.279 For hyperparameter optimization of each
base estimator, we used a mixed strategy of random search, simulated annealing,
and the tree Parzen estimator (tpe) algorithm using the hyperopt-sklearn library
to avoid biases due to a single search strategy. Classi昀椀cation probabilities were cal-
ibrated on a validation set, disjoint from training and test set. We use soft voting
to be able to provide an uncertainty metric. Further, this approach is appealing as
it gives higher weight to more con昀椀dent models. More details can be found in Ap-
pendix D.2.
To ensure that test errors are not optimistically biased due to multiple similar, but
not identical, local environments in one structure, we not only constrained the split
into training and test set to have the same ratios of oxidation states and elements (it-
erative strati昀椀cation343) but also to include all chemical environments of one struc-
ture in only one set. That is, if one chemical environment of a structure appears
in the training set, all other chemical environments of the same structure will not
appear in the test set. Identical 昀椀ngerprints are automatically discarded from our

https://go.epfl.ch/oximachine
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training set. We perform this split based on “base identi昀椀ers” of the CSD database
identi昀椀ers, which we create by stripping all trailing integers. This accounts for the
fact that some entries in the CSD are updated entries (e.g., with re昀椀ned lattice con-
stants) for the same structure for which a trailing number has been added to the
original identi昀椀er. By restricting all structures with the same base identi昀椀er to be in
the same set, we avoid data leakage.
Further, we use a submodular selection approach344 to select a smaller, diverse set
of training points to make our training more e昀케cient (and again recognize the parsi-
mony principle of Pauling by minimizing redundancy in our training set). To address
the fact that some metals (like copper) are more than an order of magnitude more
frequent than other metals (like ruthenium), we adjusted our sampling procedure to
randomly subsample the structures with the most common metals (Cu, Zn, Cd).
Crystal structures were drawn using VESTA.345

D A T A A v A I L A B I L I T y
The feature matrices, labels, and a pre-trained model are deposited on the Materi-
als Cloud archive (DOI: 10.24435/materialscloud:2019.0085). Data and code that
reproduces the plots shown in the main text can be found in a Code Ocean capsule
(DOI: 10.24433/CO.3636895.v1).

C O D E A v A I L A B I L I T y
Predictions for MOF structures can be performed using the oximachinerunner
Pythonpackage (https://github.com/kjappelbaum/oximachinerunner), which
is installable from PyPI. The code for parsing, featurization as well for the ML mod-
els is available onGitHub (https://github.com/kjappelbaum/learn_mof_ox_
state/tree/master, https://github.com/kjappelbaum/oximachine_featurizer)
anddeposited onZenodo (DOIs: 10.5281/zenodo.3567011, 10.5281/zenodo.3567274).
Theweb app is hostedon thework section ofMaterialsCloud (go.epfl.ch/oximachine).221
The code for this app, along with a Docker昀椀le, is also available on GitHub (https:
//github.com/kjappelbaum/oximachinetool) and deposited on Zenodo (DOI:
10.5281/zenodo.3603606). The code used to generate the graphical abstract is
available in ref. [346].

https://archive.materialscloud.org/2019.0085
doi.org/10.24433/CO.3636895.v1
https://github.com/kjappelbaum/oximachinerunner
https://github.com/kjappelbaum/learn_mof_ox_state/tree/master
https://github.com/kjappelbaum/learn_mof_ox_state/tree/master
https://github.com/kjappelbaum/oximachine_featurizer
https://zenodo.org/record/3567011
https://zenodo.org/record/3567274
go.epfl.ch/oximachine
https://github.com/kjappelbaum/oximachinetool
https://github.com/kjappelbaum/oximachinetool
https://zenodo.org/record/3603606


5 M A C H I N E L E A R N I N G F O R
I N D U S T R I A L P R O C E S S E S :
F O R E C A S T I N G A M I N E
E M I S S I O N S F R O M A C A R B O N
C A P T U R E P L A N T

A B S T R A C T One of the main environmental impacts of amine-based carbon cap-
ture processes is the emission of the solvent into the atmosphere. To understand
how these emissions are a昀昀ected by the intermittent operation of a power plant, we
performed stress tests on a plant operatingwith amixture of two amines, 2-amino-2-
methyl-1-propanol, and piperazine (CESAR1). To forecast the emissions and model
the impact of interventions, we developed a machine-learning model. Our model
showed that some interventions have opposite e昀昀ects on the emissions of the com-
ponents of the solvent. Thus, mitigation strategies required for capture plants op-
erating on a single component solvent (e.g., MEA, monoethanolamine) need to be
reconsidered if operated using amixture of amines. Amine emissions from a solvent-
based carbon capture plant are an example of a process that is too complex to be
described by conventional process models. We, therefore, expect that our approach
can be more generally applied.

C I T A T I O N This chapter is a preprint version of our article: Jablonka, K. M. et al.
Sci. Adv. 2023, 9, eadc9576.

C O N T R I B u T I O N K.M.J designed themachine learning approach, performed the
machine learning experiments, and wrote the article with B.S. and feedback from the
other authors.
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5.1 I N T R O D u C T I O N
The most well-known and broadly used benchmark solvent to capture CO2 is mono-
ethanolamine (MEA).11 Energy e昀케ciency, however, is not the only criterion that is
important in selecting a solvent for a carbon capture process. Amine emissions are
equally important, as these may require cost-incurring gas treatment strategies to
meet the operational permits and address environmental concerns.348,349 Atpresent,
we do not have a clear understanding of such amine emissions from a capture plant
operating with these new solvent mixtures such as CESAR1.350,351

Amine emissions from carbon capture plants are one example of an industrial pro-
cess for which the plant’s design, control, and optimization require detailed knowl-
edge of how the process parameters interact and impact the operation of the plant
and what the (chemical) mechanisms and rate constants are. Due to the complex-
ity of such plants, process models typically focus on capturing the steady-state op-
eration.352 But there are many cases where operation beyond the steady state is
required. For instance, the design and operation of current and future power plants
will need to constantly adapt to the increased share of intermittent renewable energy
generation.353–356 This requires tools that fully capture the dynamic and multivari-
ate behavior of the plant away from its steady-state operation. The classical analysis
techniques, such as response function 昀椀ts,357,358 or chemometrics approaches359

give some insights into the typical response to the di昀昀erent perturbations. How-
ever, these techniques cannot take the full multivariate, non-linear nature of the
time-dependent behavior of a complex plant into account. In addition, conventional
causal analysis techniques cannot be used without an understanding of the mech-
anisms (i.e., the causal graph)360 or additional experiments, which interpretation,
however, is not trivial since one cannot easily compare to a baseline (i.e., the be-
havior of the plant under the same environmental and solvent conditions without a
particular change).

In this work, we show that data science methods that are typically used for dy-
namic pattern recognition andpredictions of 昀椀nancial data can successfully be adapted
to forecast the performance of a plant (in real-time) given its current and historic be-
havior, even if it is operated far from its steady-state conditions—without a detailed
understanding of the underlying process. These forecasts can subsequently be used
to model potential emission mitigation scenarios and to understand experimental
observations.

5.1.1 Experimental campaign

To mimic the intermittency expected for the operation of future power plants, we
carried out an experimental campaign that involved a series of stress tests on the pi-
lot capture plant at Niederaußem. Importantly, due to its size and the fact that it has
been operating on a slipstream of 昀氀ue gas from a raw lignite-昀椀red power plant361,362

with CESAR1 solvent for over 12 months (see Figure 29 for a schematic 昀氀ow di-
agram), it provides an ideal real-life example of the di昀케culties of understanding
amine emissions.358 These stress tests were based on eight di昀昀erent scenarios of
how intermittency can impact the operation and hence the amine emission of the
capture plant (see Appendix E.1 for more details on the rationale of these scenarios).

Figure 30 shows that the sequence of stress tests causes emissions signi昀椀cantly
higher than those under normal operating conditions. Another interesting observa-
tion is that piperazine (Pz) and 2-amino-2-methyl-1-propanol (AMP) have di昀昀erent
emission pro昀椀les. Such a campaign gives us a wealth of experimental data on the be-
havior of a capture plant. Clearly, these data would be more valuable if we could use
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Figure 29: Simpli昀椀ed process 昀氀ow diagram of the post-combustion carbon capture pilot
plant at Niederaußem. The plant uses a slipstream from the coal-昀椀red power
plant. The positions of the process parameters discussed in the main text are in-
dicated in the 昀椀gure. A complete piping and instrumentation diagram (P&ID) can
be found in Figure 147.

them for quantitative predictions on future emissions. However, we cannot even
make qualitative predictions. For example, during most of the stress tests, interven-
tions of the operators were required to ensure the safe operation of the plant. Such
interventions make even a qualitative interpretation of the data a challenge, as we
cannot disentangle the e昀昀ects of these interventions from the operational changes
induced by the stress test.

Therefore, we have a case in which we have a large amount of valuable experimen-
tal data, but where the complexity of the operation of the pilot plant does not allow
any other conclusion that these emissions are problematic. In particular, we can-
not draw any statistically relevant conclusions on why our stress tests caused such a
dramatic increase in emissions and which countermeasures we could take to reduce
emissions.

5.1.2 Machine learning model

During the experimental campaign, data were taken every minute. This provides
us with a large data set. Such a dataset allows us to use data-science methods and
develop a machine-learning model to analyze the data. In this section, we summa-
rize the main features of our approach; for details, we refer to the Appendix and
the methods section. Our machine-learning approach is based on the observation
that we can build a forecastingmodel by thinking of the time-dependent process and
emission data as an image (i.e., matrix of data, see Figure 31). This representation
allows us to use the most powerful machine-learning techniques for pattern recogni-



102 F O R E C A S T I N G A M I N E E M I S S I O N S

0

250

500

750

1000

e
m
is
s
io
n
s
/
a
.u
.

AMP

this study

another campaign

shutdown of the plant

2020-01-22 2020-02-01 2020-02-08 2020-02-15 2020-02-22

date

0

250

500

750

1000
e
m
is
s
io
n
s
/
a
.u
.

Pz

this study

another campaign

shutdown of the plant

Figure 30: Amine emissions during and after the experimental campaign. The time frame of
the stress tests is highlighted in grey. The power plant was shut down from 25 to
30 January (red region), which explains the very low emissions around that time.
In this work, we only used the data generated before the shutdown of the plant.
In the period of 6–8 February (grey region) other experiments were carried out at
the pilot plant, but these were not part of our campaign. This 昀椀gure shows that
applying the di昀昀erent scenarios causes the plant to emit muchmore compared to
its steady-state operation. A preliminary analysis of the data has been reported
in Charalambous et al. 358

tion. In this representation, the state of the plant at a given time 𝑡 de昀椀nes a “state”
feature vector x(𝑡) with 𝑝 elements representing the process variables (e.g., 昀氀ue gas
temperature, water wash temperature). If we take the state vectors of the plant for𝑡 timestamps, we have a matrix of 𝑡×𝑝 entries, which can be seen as an “image” that
is connected to a future emission pro昀椀le, y(𝑡).
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Figure 31: Schematic illustration of the data representation. The data set can be thought of
an “image” with “width” equal to length of the input sequence (𝑇) and “height”
equal to the number of parameters, 𝑝. We represent the value of parameter 𝑥𝑗
at a time 𝑡𝑖 with colors. We then use a machine learning model to learn how this
“image” characterizing the history, and current state of the plant is connected to
its future emissions.

The next step is to link the pattern in the image of the history of the plant to
a particular future emission. For this, we have adopted a gradient-boosted deci-
sion tree363,364 model that is trained on a feature vector of concatenated historic
data of process parameters and emissions (i.e., we combine the rows, characterizing
the di昀昀erent parameters and emissions, into a long vector). We train these mod-
els using quantile loss365,366 to obtain uncertainty estimates. We have also adopted
a temporal CNN with Monte Carlo Dropout for uncertainty estimation and show
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results (equivalent to those obtained with the gradient-boosted decision tree) ob-
tained with this model in Appendix E.8.

5.1.3 Insights into amine emissions from machine learning

We apply our machine learning model for di昀昀erent purposes, and each of them re-
quires us to forecast the emissions, but each with a di昀昀erent aim and time horizon:

1. (Real-time) prediction of future emissions: The aim here is to predict what the
emissions 𝑥 hours in the future will be given the historic and current operation
and emissions.

2. Causal impact analysis of the data: Tomeasure the impact of a particular stress
test on the amine emissions, a reference is needed; i.e., a baseline that gives
us the emissions that would occur without the changes directly induced by
the stress test. Without this baseline, it is impossible to correctly quantify the
e昀昀ect of the di昀昀erent stress tests on the observed emissions.

3. Emissions mitigation: To understand and identify how we can mitigate emis-
sions, we use our model to predict emissions in “what-if” scenarios. For ex-
ample, we predict how the overall emissions would change if we ran the entire
experimental campaign with a lower temperature of the water wash section.

In the next sections, we show how we use our machine learning model to forecast
amine emissions for the three di昀昀erent purposesmentioned above. The basic model
architecture we use is the same; however, the way we apply and train the model for
the di昀昀erent ways of forecasting is di昀昀erent.

5.1.4 Prediction of future emissions

Themachine learningmodel we introduced in the previous section uses historic data
to predict future emissions. For example, we use a sequence of input data (e.g.,
2 hours), and predict the emissions, say, 10minutes, 1 hour, or 2 hours in the future.
For doing so, we use a sliding window; for the next prediction, we update the input
sequence with the observed emissions (see Figure 32). The model can be used for
making predictions for any time horizon; however, one can expect the accuracy to de-
crease for longer time horizons compared to shorter ones. To quantify the accuracy
of our prediction, we use the data we have not used in our training (and validation)
set. One has to be careful in making this comparison. Our machine learning model
makes predictions on the likely emissions, given the plant data preceding these pre-
dictions, and in the testing step, we use the measured data in the test set. However,
this validation is overly pessimistic with respect to potential real-world applications
since the validation and test set contain, by construction, step changes that have not
been seen in the training set. In addition, these stress tests are designed to take the
plant outside normal operations. Also, the moment such a stress test is applied has
no logical relation with the historic data of the plant and hence cannot be learned.
This makes our validation overly pessimistic, as we are rather testing how well our
learning extends to very extreme conditions in the stress test.

5.1.5 Causal impact analysis

The keymotivation for performing our experimental campaign is to understandwhat
changes to the plant’s operation have a signi昀椀cant impact on the amine emissions.
This understanding is essential to identify those parameters that must be tightly
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Figure 32: Predicting future emissions. In this 昀椀gure, 𝑥𝑖(𝑡) represents the input data of the
plant (e.g., temperatures, pressures, etc. in di昀昀erent parts of the plant) and 𝑦(𝑡)
the emissions. The grey box represents the data the model uses to predict fu-
ture emissions. The black curve represents the measured past emissions, and the
grey curve the measured future emissions. The purple curve represents the “real-
time” predicted future emissions, and the shaded purple area is the uncertainty
of the predictions. Wemimic such “real-time” predictions by sliding our grey box
over the data; i.e., themeasurements of the current time are added, and the oldest
data are no longer seen by the window, and wemake a new prediction. In the bot-
tom 昀椀gure, we collect the predictions for the di昀昀erent time horizons (2minutes
red, 1 hour green, and 2 hours blue). We use the 昀椀rst half of the dataset to train
the model.

monitored and controlled to mitigate emissions. In statistics, the gold standard for
answering such a question requires a control experiment367 to establish a baseline.
At present, such a baseline is impossible to obtain. As the pilot plant receives the 昀氀ue
gas from a commercially operated coal-昀椀red power plant, it is impossible to precisely
reproduce the varying conditions of the plant. For this, one would need to run two
identical pilot plants simultaneously.

Similar problems exist, for example, in 昀椀nance, where one might want to mea-
sure the impact of some political intervention and where it is equally impossible to
duplicate society for a control experiment. Interestingly, for these problems, causal
impact analysis368 can be used to construct a so-called counterfactual baseline of the
system’s behavior without the intervention. For this, we use our machine-learning
model to “rerun” the campaign, but without the stress tests. The fact that we now
can obtain a reasonable performance baseline is one of the major technical insights
of our approach.

Let us assume that we have a perturbation on variable 𝑥2(𝑡), e.g., we apply a step
change for variable 𝑥2(𝑡) at times 𝑡 ∈ [𝑡startstep; 𝑡endstep,]. To obtain a prediction
of the baseline, we then train our model on the training data but without any input
from 𝑥2(𝑡) [i.e., we also remove (Granger) causally related features]. We then have a
model that predicts the emissions worse than if 𝑥2(𝑡)was included in the training (as
fewer features are used as input for themodel), but it does give us our best prediction
for the normal operation of the plant irrespective of the actual value of 𝑥2(𝑡). This
is the best approximation of the baseline operation we are interested in. Similarly,
we train our model for all other variables that are changed during the di昀昀erent stress
tests conducted in the experimental campaign. We then use each of these models to
predict the baseline (see Figure 33).
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Figure 33: Causal impact analysis. The left column shows the training of themodel, in which
we use all the data preceding a particular step change to train our model on pre-
dicting the capture plant’s performance. In this example, we make a step change
of variable 𝑥2(𝑡), for example, a, and we train a model without variable 𝑥2(𝑡).
For example, b, we make a step change in variable 𝑥3(𝑡) and hence train another
model without variable 𝑥3(𝑡). In this calculation, we have assumed that the other
variables are not causally related with 𝑥2(𝑡) and 𝑥3(𝑡), respectively; if there is a
causal relation, these variables also need to be removed. The right column shows
howwe compute the baseline; the step changes are indicated by the vertical lines.
The black curve gives the actual plant data, 𝑦(𝑡), obtained from the experimen-
tal campaign. The violet curves, 𝑦′(𝑡) give the machine-learning predictions of
normal operation without the stress test, i.e., the baseline. The predictions show
that the 𝑥2 step change test caused a real reduction in emissions, whereas the
change in 𝑥3 showed no e昀昀ect.

5.1.6 Emission mitigation

To shed light on how we can reduce the overall amine emissions during, for instance,
a given experimental campaign, we have used our model to run “what-if” scenarios.
These scenarios were inspired by the outcome of the causal impact analysis, which
highlighted some of the variables that impacted the emissions themost. An example
of such a scenario could be: “what-if we run the entire stress test with an increase in
variable 𝑥2(𝑡) of 10 %”. For this scenario, we replace the input of our model 𝑥2(𝑡) →1.1𝑥2(𝑡) (see Figure 34) to compute the predicted emissions 𝑦′(𝑡). We can then



106 F O R E C A S T I N G A M I N E E M I S S I O N S

compute the change in total emissions from:

rel. emission change = 100 × ∫ d𝑡 (𝑦′(𝑡) − 𝑦(𝑡))∫ d𝑡 𝑦(𝑡) .
To compute these scenarios, we need to predict the emissions 𝑦(𝑡) given an input

x(𝑡). To do so, we retrain the model using all available data from the experimen-
tal campaign to ensure the highest possible accuracy from our model. For a more
detailed discussion, see also Appendix E.11.
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Figure 34: Emission mitigation. To predict the e昀昀ects of a given variable on the total emis-
sions, we train our machine-learning model on the entire data set (left). We then
use this model to run a “what-if” scenario, i.e., to use the model trained in the
昀椀rst step to predict the emissions 𝑦′(𝑡) (red) for this changed input. For example,
what are the emissions if we replace input 𝑥2(𝑡) (blue array) by, say, 𝑥′2(𝑡) = 𝛼2(𝑡)
(here, 𝛼2 = 1.1)? We can then calculate the di昀昀erence between the actual mea-
sured emissions 𝑦(𝑡) and the predictions 𝑦′(𝑡) (green). If we perform this for
di昀昀erent 𝛼, we can estimate and plot the change in emissions as a function of 𝛼.

5.2 R E S u L T S A N D D I S C u S S I O N

5.2.1 Prediction of future emissions

In Figure 35, we compare the measured Pz and AMP emissions with the predicted
emissions for di昀昀erent forecasting horizons. For the short-horizon predictions (top
row), we observe that the measured emissions are typically within our prediction
interval (shaded area) and that our model even correctly captures the spikes in the
emission pro昀椀le [AMP mean absolute percentage error (MAPE) 2.4 %, overall per-
centage error (OPE) 0.38 %; Pz MAPE 4.3 %, OPE 2.0 %, see Appendix E.7]. We can
also make predictions for a longer time horizon. For one to two-hour windows, we
can correctly forecast the trends, but as expected, we lose accuracy on the events
(such as spikes) that happen on a short timescale [AMP MAPE 9.5 %, OPE 3.8 %; Pz
MAPE 21 % OPE 10 %]. It is interesting to zoom in on some areas where our pre-
dictions deviate signi昀椀cantly from the actual measurements. These deviations are
associated with a stress test not seen in the training, yet it is encouraging to see that
our model did learn something as we predict the trends. In addition, our model in-
dicates at those conditions a substantial uncertainty, which is exactly how the stress
test is designed; to take the plan far outside normal operations. Therefore, it is very
encouraging that our model recognizes this and correctly re昀氀ects this in the uncer-
tainties.
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Of course, a stress test is far from ideal to test our model to make (real-time)
predictions, but these results do indicate that our model, if applied under normal
operating conditions, can be used tomake predictions about the emissions on a two-
hour window, which does give the operators a window to take actions if emissions
are predicted to exceed speci昀椀cation limits.
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Figure 35: Amine emissions as predicted by the machine learning model. To test the per-
formance of the model for the amine emissions of AMP (left) and Pz (right), we
trained the model on the 昀椀rst part of the data, used a subsequent part for hyper-
parameter search, and tested the performance on the 昀椀nal part. The splits are
indicated with grey vertical lines. The gap without predictions is due to the fact
that the model needs to be initialized with a part of the sequence. The blue lines
show so-called historical forecasts, which can be produced by an expanding win-
dow approach where the model is moved over the time series, and we simulate
what the predictions would have been if one used the model with the forecast-
ing horizon with an updated dataset (i.e., the model sees the actual emissions for
making forecasts and does not have to use its predictions, but we do not retrain
the model). In the rows, we show the predictions for di昀昀erent forecasting hori-
zons, and we can observe, as one would expect, that the predictions for shorter
forecasting horizons are better than those for longer ones. The shaded areas 昀椀ll
the range between the 10 % and 90 % quantiles.

5.2.2 Causal impact analysis

The 昀椀rst step in our analysis of the experimental data is computing the baseline for
all stress tests. In Figure 36, we compare the measured emissions for three of the
stress tests with the predicted baseline (which we predicted with the model archi-
tecture we validated in Figure 35). We can see the importance of these baselines
in Figure 36 c and d. At the 昀椀rst black vertical line, the lean solvent temperature
was increased from 43 °C to 52 °C and put back to normal at the second vertical line.
The measurements (black lines) suggest increased emissions during and after the
intervention. However, this behavior is strikingly similar to the prediction without
the intervention (within the prediction interval) for AMP. Interestingly, applying the
same analysis to those stress tests that involved changes in the water wash 昀氀ow rate
or the solvent and water wash temperature (a, b, e and f), we observe a signi昀椀cant
e昀昀ect. In Appendix E.10, we show the analysis for all interventions investigated in
our campaign.
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Figure 36: Causal impact analysis for three of our dynamic experiments. In a causal impact
analysis, we use themachine learningmodel to predict what the emissions (a, c, e
AMP emissions, and b, d, f Pz) werewithout intervention (blue). The e昀昀ect size is
the di昀昀erence between the prediction and the actual measurement (black). If we
observe no di昀昀erence between the measurement (black) and prediction (blue),
then there is no e昀昀ect. a, b Shows the measurement and predictions for the step
decrease (decr.) in water wash (WW) 昀氀ow rate. One can observe that also the
counterfactual model forecasts an increase (incr.) in amine emissions compared
to the actual observations. c, d Shows the e昀昀ect of the increase (incr.) in lean
solvent temperature. One can observe that Pz (d), in contrast to AMP (c), shows
a signi昀椀cant reduction in emission w.r.t. the baseline. e, f Shows the e昀昀ect of
increased water wash and lean solvent temperature. One can observe that Pz (f),
in contrast to AMP (e), shows a reduction in emission w.r.t. the baseline. Shaded
areas cover the area between the 0.05 and 0.95 percentile. Dotted vertical lines
indicate the start and end of the step change.

Interestingly, the causal impact analysis reduces this extremely complex emission
behavior (see Figure 30) into a surprisingly simple conclusion that controlling thewa-
ter wash and solvent temperature and the water wash 昀氀ow rate are the most promis-
ing handles for emission mitigation. However, without the counterfactual baseline,
we would have concluded that many other interventions that show a change in emis-
sions during the intervention are also good handles for emission control. This shows
how machine-learning techniques can be used to extract insights from complex ex-
perimental datasets that remained opaque to conventional approaches.
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5.2.3 Emission mitigation

The causal impact analysis can give us insights into the signi昀椀cance and magnitude
of the e昀昀ects of changes we actually performed on the plant. However, many other
parameters were implicitly changed during the stress test. Using our model, we can
use this data to investigate which changes to the operation of the plant would result
in lower overall emissions during the stress test.

Figure 37 shows the predicted cumulative change in amine emissions over the
full campaign for the two sets of variables that caused some of the largest changes
in our in silico experiments. In these in silico experiments, we change the value of
two parameters by a 昀椀xed percentage over the entire stress test, keeping the dynam-
ics unchanged, and let our model predict the emissions. The heatmaps then show
the di昀昀erence with the measured emissions, for which reason the center (0, 0) of
the heatmaps is grey. These 昀椀gures point to the most important conclusion from
our experimental campaign. Figure 37a suggests that lower AMP emissions are ob-
tained when operating at a lower solvent temperature. However, we do not have
the minimum Pz emissions under these conditions. On the other hand, minimum
Pz emissions are predicted for increased lean solvent temperature and increased
temperature at the top bed—under which conditions AMP emissions are predicted
to increase. Similar conclusions can be drawn from the other scenarios (see Ap-
pendix E.11). These results suggest that Pz and AMP have di昀昀erent emission mecha-
nisms. If volatility were the only mechanism, one would expect the amine emissions
to increase with increasing solvent temperatures. This is what we observe for AMP.
Since AMP is more volatile, the AMP partial pressure throughout the column is ex-
pected to be around two orders of magnitude higher than that of Pz369 One would
not expect signi昀椀cant emissions of Pz if volatility were the only mechanism. How-
ever, one can also have emissions through aerosols370 These aerosol emissions are
thought to be related to supersaturation in the column, which can be caused by a
temperature bulge in the column pro昀椀le that can be in昀氀uenced by a change in lean
solvent temperature351,371 Absorbed in such aerosol droplets, Pz and AMP are form-
ing non-volatile carbamates, and (pure component) studies have shown that the ki-
netics of this reaction is much faster for Pz.369 Moreover, due to steric hindrance,
the AMP carbamates are short-lived, and AMP is present as a protonated species in
equilibrium with the free amine.372 This leads to a situation in which there is a back-
pressure build-up that hinders further AMP absorption in aerosol particles, which is
not the case for Pz. Hence, one would expect the aerosol mechanism to bemore rele-
vant for Pz emissions, andwe conclude that in our stress test, the aerosolmechanism
seems more relevant for Pz than for AMP. Because the two components in the CE-
SAR1 mixture have di昀昀erent governing emission mechanisms, di昀昀erent mitigation
strategies have opposite e昀昀ects on the emission of the two components. Therefore,
one needs to design the capture plant to be able to deal with bothmechanisms. This
is a more challenging task when considering blended solvents, such as CESAR1, than
single amine solvents. Including these additional costs in the current discussion is es-
sential to replace conventional MEA-based capture plants with those based on more
advanced solvent systems such as CESAR1. Even though we could not have derived
this insight without our machine-learning-based analysis, further experiments will
be needed for a more detailed understanding of the causal mechanisms more exper-
iments as our current model can only highlight predictive correlations.

Even at steady-state, we would not have been able to develop a conventional
process model to predict amine emissions from the carbon capture plant. For in-
stance, we would need additional experiments as we lack relevant thermodynamic
data on the amines and an understanding of the emission mechanisms. To make
things worse, the plant was far from steady-state over the course of the experimen-
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Figure 37: Predicted changes in emissions. Ordinate and abscissa show the relative change
in the process variable (in percent). The color indicates the cumulative change
in normalized emissions over the full observation time compared to the actual
emissions (i.e., not absolute emissions). To increase the reliability of the fore-
casts, we trained the model for this analysis on the complete dataset and used
a short output sequence length. Left column (a, c) shows predicted changes in
emissions for AMP. The right column (b, d) shows the predicted changes in emis-
sions for piperazine (Pz). a, b plot the changes in emissions for changes in water
wash temperature (temp.) and lean solvent temperature. For AMP, the highest
predicted reduction in emissions is for decreased water wash temperature and de-
creased temperature of the lean solvent, whereas for Pz the highest predicted re-
ductions in emissions are possible for increased solvent temperature. c, d shows
the predicted change in emissions for a change in the temperature of the 昀氀ue gas
upstream of the adsorber column and the temperature of the top bed. Here, de-
creasing the temperature at the top bed and the temperature of the 昀氀ue gas yields
the lowest AMP emissions but high predicted Pz emissions.

tal campaign. The current process models are too simple to deal with this complex-
ity. In this work, we developed an alternative approach in which we start with the
data and learn themapping between the process and the emissions directly from the
data. The resulting machine-learning model allows us to not only forecast (in real-
time) the emissions of the plant but also to gain insights into which parameters are
key for emission mitigation. A similar approach can be used to forecast and under-
stand other key performance parameters, such as those related to the plant energy
requirements. Amine emissions from a carbon capture plant are just one example
of an industrial process for which a better understanding of its operation beyond
its steady state is needed. Another example is the start-up of a plant during which
one has to carry out many tests to identify safe operational limits. These tests can
take many months before a plant can be put into operation. Typically, during such



5.3 M E T H O D S 111

a start-up phase or any other change to a new operating regime, there is a lot of
data created and collected, but this data collection has outpaced our ability to sen-
sibly analyze the data, let alone understand it. Our work shows that we could feed
the data into an active learning model to harvest all the knowledge collected dur-
ing these experiments. Interrogation of this model can help us de昀椀ne the next most
informative experiment,207,373 which we expect to greatly reduce the time to oper-
ability and, in contrast to conventional approaches, can easily (via retraining) adjust
to changes in the plant (e.g., solvent degradation). This power ofmachine learning in
chemical engineering also highlights the need to share data in a machine-actionable
form,38,374,375 and we believe that machine learning can potentially make an even
bigger impact in chemical and process engineering than it did in computer vision. In
the case of computer vision, the basic features of an image learned by a model are
often closely related to how we perceive images with our brains. However, in an
industrial plant, we often lack an understanding of the underlying mechanisms, but
with machine learning, we can discover the underlying rules of the mapping from
the parameters to observables and make predictions for phenomena we could not
predict thus far.

5.3 M E T H O D S

5.3.1 Pilot plant

Figure 29 shows a schematic 昀氀ow diagram of the capture plant at Niederaußem (Ger-
many). The 昀氀ue gas is supplied by a 965MWel raw lignite-昀椀red power plant sub-
jected to a state-of-the-art multistage electrostatic precipitator, a conventional wet
limestone 昀氀ue gas desulphurization plant, and a direct contact cooler (DCC) located
upstream of the absorber. The capture plant follows a conventional amine scrubbing
process. The absorber column comprises four beds and is integrated with a 昀氀exi-
ble intercooling system and a water wash section. The 昀氀exible intercooler, which
can be located either between the bottom and the second packing or between the
second and third packings, controls the temperature rise in the absorber. A water
wash section has been added to the pilot plant to reduce amine emissions to the at-
mosphere.376,377 The amine degradation, due to the presence of oxygen and other
impurities such as nitrogen oxides, as well as elevated temperatures during solvent
regeneration, can result in other gaseous emissions of degradation compounds such
as ammonia.378

The 昀氀ue gas upstream of the absorber was analyzed using a BA5000 Bühler in-
frared spectroscope. The CO2-lean 昀氀ue gas downstream of the water wash outlet
was analyzed using a GasMET CX/DX 4000 analyzer (i.e., CO2, CO, O2, AMP, Pz,
NH3, and H2O).

5.3.2 Experimental campaign: Intermittency scenarios

As the baseline, we assume that the capture plant operates with the power plant at
full load but that the intermittency associated with a future increase in renewables
will cause regular changes in the load of the power plant. Variations in this load not
only change the amount of 昀氀ue gas that the capture plant has to process but can also
change the amount of steam available for the capture plant. In the scenarios that
drive our stress tests, we focus on those (combinations of) changes, of which our
previous study on MEA361 has shown that they can impact emissions. The timescale
and the magnitude of the changes are based on the expected intermittency353 and
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typical requirements of the grid services,356,379,380 respectively. A more detailed
description is given in Appendix E.1.

5.3.3 Machine learning

To avoid over昀椀tting and the exploitation of spurious correlations, the models were
trained on a small feature set created using manual feature selection and engineer-
ing (see Appendix E.6). For all our modeling, we removed deterministic trend com-
ponents from the data using linear regression, which is motivated by the fact that
the characteristic timescale of these components is beyond the one captured by our
dataset (and analysis). Additionally, removed outliers using a 𝑧-score 昀椀lter (𝑧 = 3),
performed exponential window smoothing (window size 16min), and downsampled
the data to a frequency of 2min. The impact of the preprocessing is shown in Fig-
ure 150. For use in themodels, we additionally standardized the data usingmin-max
scaling. We did not retrain models for historical forecasts.

Quantile Regression using Gradient Boosted Decision Tree Models

To forecast the emissions, we used gradient-boosted decision tree models in which
the feature vector is constructed by concatenating lagged time series for process pa-
rameters and emissions. In this approach, we train a new gradient-boosted decision
tree (as implemented in the LightGBM library381) for every forecasting horizon us-
ing the darts package382 To obtain uncertainty estimates, we use quantile regression.
We tune the hyperparameters of the gradient-boosted decision tree and the number
of lags using hyperparameter optimization on a validation set using Bayesian opti-
mization. For all models, we scaled the data (emissions and process variables) based
on statistics computed on the training dataset.

Causal impact analysis

For the causal impact analysis, we remove causally related covariates and trained
models on the data of the days preceding the step change and following the step
changes. For every model, we performed a new hyperparameter optimization (us-
ing the shorter sequence preceding or following the step change as a validation set).
We also attempted to use Bayesian structured time series models as in the original
implementation of the causal impact analysis techniques368 and found qualitative
agreement.

Wemade use of the following Python383 libraries: pandas,289 sklearn,279 scipy,290

statsmodels,384matplotlib,284 jupyter,282 numpy,385 pytorch,386 darts,382 lightgbm,381

shap.387

D A T A A N D C O D E A v A I L A B I L I T y
The raw data (emissions and process parameters) and model checkpoints needed to
evaluate the conclusions in this paper are archived on Zenodo (DOI: 10.5281/zen-
odo.5153417). The code for our analysis is available onGitHub (github.com/kjappelbaum/
aeml) and archived on Zenodo (DOI: 10.5281/zenodo.7116093).

https://dx.doi.org/10.5281/zenodo.5153417
https://dx.doi.org/10.5281/zenodo.5153417
github.com/kjappelbaum/aeml
github.com/kjappelbaum/aeml
https://doi.org/10.5281/zenodo.7116093
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6 I S G P T- 3 A L L Y O U N E E D F O R
L O W - D ATA D I S C O V E R Y I N
C H E M I S T R Y ?

A B S T R A C T Machine learning has revolutionizedmany昀椀elds andhas recently found
applications in chemistry andmaterials science. The small datasets commonly found
in chemistry lead to various sophisticated machine-learning approaches that incor-
porate chemical knowledge for each application and therefore require a lot of exper-
tise to develop. Here, we show that large language models trained on vast amounts
of text extracted from the internet can easily be adapted to solve various tasks in
chemistry and materials science by simply prompting them with chemical questions
in natural language. We compared this approach with dedicated machine-learning
models for many applications spanning properties of molecules and materials to the
yield of chemical reactions. Surprisingly, we 昀椀nd this approach performs comparable
to or even outperforms the conventional techniques—in particular in the low data
limit. In addition, by simply inverting the questions, we can even perform inverse
design successfully. The high performance, especially for small data sets, combined
with the ease of use, can have a fundamental impact on how we leverage machine
learning in the chemical and material sciences. Next to a literature search, querying
a foundationmodelmight become a routine way to bootstrap a project by leveraging
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the collective knowledge encoded in these foundation models.

C I T A T I O N Prior versions of this chapter have beenpresented at the2022NeurIPS
AI4Mat and “Critical assessment of molecular machine learning” workshops. A cur-
rent version is available as a preprint onChemRxiv: Jablonka, K.M. et al. InChemRxiv
preprint 10.26434/chemrxiv-2023-fw8n4, 2023.

C O N T R I B u T I O N K.M.J performed and designed the experiments andwrote the
article with editing by and contributions from B.S. and feedback from P.S. A.O. pro-
vided support with the DFT simulations.
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6.1 I N T R O D u C T I O N

One of the fascinating advances in machine learning has been the development of
extremely large languagemodels (LLMs), so-called foundationmodels.389–393 These
models are appealing because of their simplicity; given any text prompt, like a phrase
or a sentence, thesemodels return text that completes the phrase in natural language.
Interestingly, the quality of the return text is so high that, in many instances, one
cannot even tell that a machine wrote it. We only start to see the impact of this as
many (startup) companies are focused on creating apps for a particular application.
From a scienti昀椀c point of view, the most striking examples are that these foundation
models can write sensible abstracts for scienti昀椀c articles or even code for particular
programming tasks.394–397 Recently, it has been shown that these models can also
solve relatively simple tabular regression and classi昀椀cation tasks.398 But as these
models were not explicitly trained on these tasks, it is a remarkable result.393

That these models can solve simple tasks, they are not trained for made us won-
der whether they can also answer scienti昀椀c questions for which we do not have an
answer. As most chemistry problems can be represented in text form, we should be
able to train these models to answer questions that chemists or material scientists
have. For example, “if I change the metal in my metal-organic framework, will it be
stable in water?” Or, “what is the band gap of my material?” These questions are
often impossible to answer using theory or require highly sophisticated simulations
or experiments.

We will always have very little (experimental) data for applications in chemistry
and material science. Hence, it is important that this learning does not require mil-
lions of data points but that meaningful results can already be obtained with tens
to hundreds of data points. We know from prior work on text classi昀椀cation or gen-
eration applications that this works particularly well using models from the GPT-3
family,393 which were trained by the arti昀椀cial intelligence company OpenAI. The
largest GPT-3 model has approx. 175 billion parameters were trained on hundreds
of billions of text fragments (tokens). In this work, we show that this model gives a
surprisingly good performance for a range of very di昀昀erent chemistry questions (Fig-
ure 38), often outperforming the state-of-the-art machine learning models speci昀椀-
cally developed for these tasks.

Datasets Tasks
“What is the 
transition wavelength of 
2-phenyldiazenylaniline”

“What is the lipophilicity 
of COc1cc(N2CCN(C)CC2)c3nc
(cc(N(C)C)c3c1)C(=O)Nc4ccc
(cc4)N5CCOCC5?”

“What is a molecule 
with E isomer transition 
wavelength of 325 nm,
Z isomer transition 
wavelength of 286 nm?”
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Figure 38: Overview of the datasets and tasks addressed in this work. In this work, we bench-
mark GPT-3 on datasets spanning chemical space from molecules over materials
to reactions (see Appendix F.2). On those datasets, we investigate di昀昀erent tasks
ranging from classi昀椀cation, i.e., predicting a class (e.g., “high”, “low”) given a text
representation of a molecule, material, or reaction, regression, i.e., prediction of
昀氀oating point numbers, to inverse design—the prediction of molecules. MOF
rendering created with iRASPA.346
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We selected a set of questions that illustrate that these models can answer a wide
range of scienti昀椀c questions ranging from the properties of materials, how to syn-
thesize materials, and even how to design materials. In selecting these questions,
we included some that have been addressed with machine learning. This allowed
us to benchmark against state-of-the-art machine learning approaches speci昀椀cally
developed for these applications.

Before discussing the di昀昀erent applications in detail, let us 昀椀rst discuss how we
昀椀ne-tune399 the GPT-3 model in practice. For this, let us look at a simple but highly
non-trivial example. High entropy alloys have attracted much interest as a novel
class of structural metals. Interestingly, one has a sheer in昀椀nite number of possible
combinations of metals. From a practical point of view, it is important to know if
a given combination of metals will form a solid solution or multiple phases. Hence,
the question we would like to ask is "What is the phase of <composition
of the high entropy alloy>?" and our model should give a text completion
from the set of possible answers {single phase, multi-phase}. In Table 3, we
have given the set of questions and answers we have used to 昀椀ne-tune the GPT-3
model. These are questions and answers on high entropy alloys for which the phase
has been experimentally determined. The model tuning takes a few minutes and
gives us a newmodel, which takes as input "What is the phase of Tb0.5Y0.5"
and gives as text completion "1", which corresponds to single-phase. This simple
example already gives some remarkable results. We selected this example to directly
compare its performance with the current state-of-the-art machine learning models
with descriptors specially developed tomimic the relevant chemistry for this applica-
tion.400 In Figure 39, we show that with only around 50 data points, we get a similar
performance as the model of Pei et al. 400, which was trained on more than 1000
data points.

Table 3: Example prompts and completions for predicting the phase of high-entropy alloys.
These models have been trained using a self-supervised approach, i.e., to predict
the next token given an input text sequence. This implies we o昀昀er the list of ques-
tions and answers as one large string. The program learns that in our string “###”
indicates the end of a prompt and “@@@” the end of a completion. Here, we used
the fact that it is cheaper and easier to learn one character, hence 0 = multi-phase.
If this training string is submitted to the GPT-3 API, one gets the identi昀椀er for the
昀椀ne-tuned model. With this identi昀椀er, one can query the GPT-3 API for the com-
pletion of an unknown high-entropy alloy.

prompt completion experimental

What is the phase of Co1Cu1Fe1Ni1V1?### 0 multi-phase
What is the phase of Pu0.75Zr0.25?### 1 single-phase
What is the phase of BeFe?### 0 multi-phase
What is the phase of LiTa?### 0 multi-phase
What is the phase of Nb0.5Ta0.5?### 1 single-phase
What is the phase of Al0.1W0.9?### 1 single-phase
What is the phase of Cr0.5Fe0.5?### 1 single-phase
What is the phase of Al1Co1Cr1Cu1Fe1Ni1Ti1?### 0 multi-phase
What is the phase of Cu0.5Mn0.5?### 1 single-phase
What is the phase of OsU?### 0 multi-phase

These results made us wonder if similar results can be obtained for other proper-
ties. Hence, we looked at a range of very di昀昀erent properties of molecules, materi-
als as well as chemical reactions, i.e., spanning most, if not all, aspects of chemistry.
We focused on those applications for which conventional machine-learning meth-
ods have been speci昀椀cally developed and generally accepted as benchmarks in their
昀椀eld. In addition, we also compared our model to the top-performing ones on tasks
from the Matbench212 suite of benchmarks. Matbench has been speci昀椀cally created
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Figure 39: Performance of our GPT-3 model for predicting solid-solution formation in high-
entropy alloys. In the top 昀椀gure, we compare the accuracy of the model as a func-
tion of the number of training points. The dashed horizontal line indicates the
performance reported in Pei et al. 400 using a dataset of 1252 points and 10-fold
cross-validation, i.e., corresponding to a training set size of around 1126 points.
The orange (uniform), purple (most frequent), and red (strati昀椀ed) are baselines
that one would obtain without any learning. The green line is the results we ob-
tained using the Automatminer,212 which uses as input the chemical composition.
The Automatminer then returns the best featurization and model among those
implemented using automated machine learning with genetic programming (as
implemented in the TPOT package215). We additionally tested a neural network,
compositionally-restricted attention-based network (CrabNet) (yellow line),401

that performs well using compositions as input. The blue line is the performance
of our GPT-3 model (with error bands showing the standard error of the mean).
This 昀椀gure shows that we reach similar accuracy as the model of Pei et al. with as
little as around 50 data points. Accuracy is only one measure that, in some cases,
fails to detect issues with the method if the data sets are imbalanced. To test for
those cases, we generally use the 𝐹1 and 𝜅 tests. In this particular case, the data
set is well-balanced, so these tests give similar conclusions as the accuracy. In
the Appendix, we show how GPT-3 can also be used to accurately predict which
phase (fcc, bcc, hcp) will form.

to compare machine learning approaches of material properties (i.e., standardized
data sets and performance evaluation).

Table 4 compares the performance of a 昀椀ne-tuned GPT-3 model with baselines.
For molecules, we looked at properties ranging from highest occupied molecular or-
bital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps and solubility in
water to the performance in organic photovoltaics. For materials, we focused on
the properties of alloys, metal-organic frameworks, and polymers. And 昀椀nally, for
reactions, we considered two key cross-coupling reactions in organic chemistry. We
compare the learning curves in the Appendix for each of these. Table 4 shows that in
the lowdata regime, ourGPT-3model is typically at least as good as the conventional
MLmodel and often needs fewer data. In the high-data regime, the conventional ML



120 I S G p T - 3 A L L y O u N E E D F O R L O w - D A T A D I S C O v E R y I N C H E M I S T R y ?

Table 4: Data-e昀케ciency comparison of best-performing GPT-3-based approaches with best-
performing baselines. Numbers greater than 1 indicate GPT-3 is more data e昀케-
cient. For the best comparison, we also split into (pre-trained) deep-learning (DL)-
based baselines (here, MolCLR,402 ModNet,403 CrabNet,401 and TabPFN404) and
baselines not using (pre-trained) deep-learning approaches (GPR, XGBoost, ran-
dom forest (RF), automatedmachine learning optimized formaterials science212) on
hand-tuned feature sets. There are several caveats to this analysis. First, focusing
on the low-data regime might not always be the most relevant perspective. Second,
we only focus on the binary classi昀椀cation setting in this table. Third, we focus on the𝐹1 macro score for this table (all cases are class-balanced). Fourth, we consider the
performance of the GPT-3model for ten training data points as a reference. We pro-
vide more details in Appendix F.6. The version of GPT-3 we utilized in this work has
been trained on data up to Oct 2019 that mostly comes from web scraping (Com-
monCrawl405 andWebText406) alongwith books corpora andWikipedia. Structured
datasets, however, have not been part of the training.

group benchmark publication
year

best non-DL best DL base-
line

molecules photoswitch transition wavelength143 2022 1.8 1.2
free energy of solvation407 2014 3.1 1.3
solubility408–410 2004 1.0 0.02
lipophilicity411,412 2012 4.9 0.97
HOMO-LUMO gap413,414 2022 4.3 0.62
OPV PCE415 2018 2.3 0.76

materials surfactant free energy of adsorption207 2021 1.4 0.37
CO2 Henry coe昀케cients132 2020 1.1 12
CH4 Henry coe昀케cients132 2020 1.0 0.59
heat capacity125 2022 0.24 0.76
HEA phase400 2020 24 9.0
bulk metallic glass formation abil-
ity212,416

2006 0.98 0.62

metallic behavior212,417 2018 0.52 0.46

reactions C-N cross-coupling418 2018 2.9
C-C cross-coupling419 2022 1.5

models often catch up with the GPT-3 model. This makes sense as for a given size
of the data set, the need for additional data and correlations captured by GPT-3 is
less needed.

We have to mention that we did not optimize the 昀椀ne-tuning of the GPT-3model,
i.e., we did not try to optimize how a sentence is presented to the model; one can
envision that for chemical sentences, speci昀椀c groupings (i.e., tokenization) can have
better results.396,420,421 Also, we did not tune the number of times we show an ex-
ample to a model (i.e., the number of epochs or the learning rate). The conventional
models, on the other hand, have typically been optimized. Importantly, we are also
not limited to 昀椀ne-tuning; in Appendix F.5 we show that we can even achieve good
performancewithout 昀椀ne-tuning by incorporating examples directly into the prompt
(so-called in-context learning,393,422 i.e., learning during inference time).

An interesting question is how to represent amolecule ormaterial. Most of the lit-
erature uses IUPAC names. For ML applications, there has been a lot of e昀昀ort to rep-
resent a chemical with unique line encodings (e.g., simpli昀椀ed molecular-input line-
entry system (SMILES)423 or self-referencing embedded strings (SEFLIES)424,425).
As the GPT-3 model has been developed using natural language, one might expect
that chemical names are preferred over line representations such as SMILES or SE-
FLIES. Therefore, we investigated di昀昀erent representations for our molecular prop-
erty prediction tasks (see alsoAppendix F.4). Surprisingly, our results (seeAppendix F.6)
show that good results are obtained irrespective of the representation used. This
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suggests that the GPT-3 model can map the di昀昀erent representations of a molecule
to a similar internal representation. The fact that we often get the best performance
using the IUPAC name of the molecule makes 昀椀ne-tuning GPT-3 for a particular ap-
plication relatively simple for non-specialists.

A more challenging task than classi昀椀cation is to make a regression model, which
would allow us to predict the value of a continuous property such as the Henry coef-
昀椀cient for the adsorption of a gas in a porous material. As we are using a language
model, an actual regression model that predicts real numbers (∈ ℝ) is impossible
(without changes to the model architecture and training procedure). However, in
most, if not all, practical applications, the accuracy for which we can make predic-
tions is always limited. For example, for the Henry coe昀케cient of a material, an ac-
curacy of 1 % (or a certain number of decimal points) is su昀케cient for most appli-
cations. Hence, we use molecules with Henry coe昀케cients rounded to this accuracy
as a training set and assume that the GPT-3 model can interpolate these numbers.
Of course, one could also convert this into a classi昀椀cation problem by making very
small bins and giving these a name. For this more challenging regression task, we
need more data for tuning the GPT-3 model, and we still get a performance that can
approach the state-of-the-art, but as this approach needs much more data, the ad-
vantage, except for the ease of training, is less. A similar conclusion we obtain for
other, unrelated regression problems (see Appendix F.7).

6.1.1 Inverse design

One can argue that the ultimate goal of machine learning in chemistry is to cre-
ate a model that can generate molecules with a desired set of properties. This is
also known as inverse design.426 Broadly speaking, there are two approaches. If
we have large datasets, we can train generative models such as variational autoen-
coders (VAEs)427,428 or generative adversarial neural networks (GANs).191,429 With-
out large datasets, evolutionary techniques such as genetic algorithms can generate
novel, potentially interesting molecules.429–432 Those evolutionary methods work
best if one can limit the underlying chemistry; for example, 昀椀nding the optimal func-
tional group on a material of which the backbone is well-de昀椀ned.433

Given that the GPT-3 model can predict the properties of molecules and materi-
als with a surprisingly small data set, trying an inverse design strategy is tempting.
This would be particularly important in the early stages of research; one often has
a small set of experimental data points and a limited understanding. Yet, we could
leverage a 昀椀ne-tuned GPT-3 model to generate suggestions for novel materials with
similar or even better performance. This would be an incredible step forward. In
particular, as we have shown, the tuning of such a natural language model is much
more accessible than the training of conventional ML models. Here, we investigate
this setting: Can a 昀椀ne-tuned GPT-3 propose valid molecules and materials that sat-
isfy the constraints or desired properties speci昀椀ed in a prompt in natural language?
Again, we are illustrating the potential for a few case studies.

Molecular photoswitches are organic molecules with extended aromatic systems
that make them responsive to light. Upon radiation, they switch reversibly between
di昀昀erent isomers (with di昀昀erent properties, such as dipolemoments). This reversible
switching makes them interesting for applications ranging from sensing to drug dis-
covery. Thesemolecules are complex, making su昀케ciently accurate predictions using
昀椀rst-principles theory very expensive. Yet it is important to have some guidance to
identify promising molecules, and machine learning models have been developed
for this. One of the important properties of these photoswitches is the wavelength
at which there is a maximum in the adsorption spectrum for the E and Z isomer.
Hence, we 昀椀ne-tuned GPT-3 with the same data used by Gri昀케ths et al. 143. As we
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have shown above, we can 昀椀ne-tune GPT-3 to accurately answer questions like What
is the pi-pi* and transition wavelength of CN1C(/N = N/C2 = CC =
CC = C2) = C(C)C = C1C?".

For GPT-3, inverse design is as simple as training the model with question and
completion reversed. That is, answer the question What is a photoswitch with
transition wavelengths of 324.0 nm and 442 nm, respectively with a
text completion that should be a SMILES string that is a meaningful molecule. This
approach should be contrastedwith the approach used byGri昀케ths et al. 143, in which
a library of molecules is generated, and their ML model is used to evaluate the tran-
sition wavelengths of each material. If one has a lot of knowledge about the system,
one can design large speci昀椀c libraries that contain many promising molecules, in-
cluding molecules with transition wavelengths of 324.0 nm and 442 nm. But, such a
brute force technique is not what we understand as inverse design, as it, by de昀椀ni-
tion, cannot predict a molecule we did not include in our library.

Figure 40: Molecule Cloud for randomly generated photoswitchmolecules. Molecule Cloud
generated using the tool reported by Ertl and Rohde 434. Red background indi-
cates samples from molecules in the database reported by Gri昀케ths et al. 143 that
our model did not generate, blue indicates the molecules our model generated
and that are part of Gri昀케ths’s database, green background indicates samples that
are generated by our model and that are not part of the database of Gri昀케ths
et al. 143 but part of the PubChem database. The purple background indicates
molecules that our model generated but that are part neither of PubChem nor
the database of Gri昀케ths et al. 143

A simple test to see if our model can generate new structures is to ask it to gener-
atemolecules with transitionwavelengths similar to those from the dataset reported
by Gri昀케ths et al. 143 Figure 40 shows a representative sample of the molecules gen-
erated by the model. As expected, many molecules come from the training set (col-
ored orange in the 昀椀gure). Importantly, many molecules are not in the training set,
and interestingly, some are not even in the PubChem database of known chemicals.
In Figure 41, we show that for the molecules, the transition wavelength is within a
mean absolute percentage error of around 10 %.
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Figure 41: Photoswitch inverse design metrics as a function of temperature. The fraction
of valid SMILES indicates the fraction of generated SMILES that can successfully
be parsed using RDKit.171 We then determine the fraction (frac.) of those that
already have been part of the training set and 昀椀nd that at low temperature GPT-3
tends to simply remember molecules from the training set. To quantitatively cap-
ture the similarity of the distribution of the generatedmolecules to the ones from
the training set, we compute the Fréchet ChemNet Distance,435 which quanti昀椀es
both diversity and distribution match139 and goes through a minimum at interme-
diate temperatures. For quantifying how well the generated molecules match the
desired transition wavelengths, we use the models reported by Gri昀케ths et al. 143

to predict the transition wavelengths. In the 昀椀gure, the dashed horizontal lines
indicate themean absolute error (MAE) of thosemodels. Across all temperatures,
we found high mean synthesizability (SA score436 smaller 3).

It is interesting to quantify how novel our newly generatedmolecules are. For this,
we compare these molecules with the ones that Gri昀케ths et al. 143 collected, one of
the largest databases of synthesized azo-photoswitches. We quantify the similar-
ity by computing the distance between molecular 昀椀ngerprints. Figure 42 visualizes
this by laying out the resulting (approximate) nearest-neighbor graph in two dimen-
sions. The orange and green spheres represent molecules from the Gri昀케ths dataset,
the blue spheres show the novel ones, and the pink ones are not even part of the
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PubChem database (the largest open-source chemistry database). As expected, we
昀椀nd many new structures that are derivatives of molecules in the Gri昀케ths database.
However, we also 昀椀nd branches that are not part of the library of Gri昀케ths et al. 143,
illustrating that we truly have carried out inverse design.

In generating these molecules, we adjusted the so-called softmax temperature in
the GPT-3 settings. This temperature has been introduced to generate more natu-
ral text. If we set this temperature to zero, we will generate text with the most fre-
quently usedwords. Tomake the textmore natural, we can increase the temperature,
making it more likely that less commonly used synonyms are chosen. For chemistry,
if we aim to complete a SMILES starting with carbon, the zero-temperature solution
would always complete the symbol that most commonly follows carbon (“(” in the
QMugs dataset), whereas too-high temperatures would randomly choose any ele-
ment. Hence we need to 昀椀nd a balance between the obvious and impossible chem-
istry.
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Figure 42: TMAP visualization of the generated photoswitches and the training set. The
tree-map (TMAP) algorithm builds a nearest-neighbor graph, which is then em-
bedded in two dimensions. Therefore, similar molecules are connected with an
edge. We color the points depending on if they are part of the original dataset of
Gri昀케ths et al. 143 but not generated (green), part of the database, and generated
by our model (orange). Our models can also generate molecules that have not
been part of the photoswitch dataset (note that the model was only trained on
92 molecules from this database). In some cases, those molecules have been re-
ported before and are part of the PubChem database (blue) or are not even part
of PubChem (pink). From this 昀椀gure, we see that the generated molecules some-
times substitutions for molecules in the dataset. In other cases, newly generated
molecules introduce a completely new sca昀昀old. For this visualization, we used
the TMAP437 algorithm on photoswitch molecules described using MinHash 昀椀n-
gerprint with 2048 permutations.438

The impact of the temperature parameter is shown in Figure 41. At low tempera-
tures, the generatedmolecules often come from the training set and only show a low
diversity. Across all temperatures, the generated molecules seem synthesizable, as
judged by a low SA score.436 Increasing the temperature gives us more diverse and
novel structures, but one can also expect more structures that make no chemical
sense, i.e., are invalid.

6.1.2 Stretching the limits

The results on the photoswitches illustrate the potential of GPT-3 models for chem-
istry. As these models require very little knowledge of chemistry, it raises the ques-
tion if the results can be trusted. Of course, one can always carry out the standard
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machine-learning validation by splitting the dataset into a training and a test set,
and this should give a clear indication of whether the GPT-3 model is better than a
random guess. To get somemore insights into why we can trust these GPT-3 predic-
tions, we carried out some experiments where we tried to stretch the limits.

We have already seen that we can obtain good results independent of how we
represent a molecule (IUPAC names, SMILES, or SEFLIES), but can GPT-3 interpret
an abstract representation of molecules we invented? Jablonka et al. 207 developed
an active learning approach to design dispersants using a coarse-grained approach.
This dispersant was a linear copolymer with four monomer types and a chain length
between 16 and 48 units, giving a chemical design space of 58 million di昀昀erent dis-
persants. One important goal in this work was to 昀椀nd dispersants with the right
binding free energy, i.e., which polymer length and which monomer sequence is op-
timal. As there is noway theGPT-3 knows about the properties or representations of
the coarse-grained polymers, it is interesting to see if we can get any sensible result
if we ask the question What is the adsorption free energy of coarse-
grained dispersant AAAABBBBDDDDAAAACCCC or as inverse design, Give me a
structure of a coarse-grained dispersant with a free energy of
17. Surprisingly, for the prediction of the adsorption free energy, the GPT-3 model
outperforms the models developed by Jablonka et al. 207 Additionally, it can also
successfully carry out the inverse design and generate monomer sequences that give
the desired composition and, with a mean percentage error of around 22 %, the de-
sired adsorption free energy (the ground truth already has a mean percentage error
of around 9 %, see Appendix F.8.1 for details). This example sheds some light on the
power of 昀椀ne-tuning of GPT-3. The essence of our free energy question is correlat-
ing a pattern of a small set of tokens to a free energy. To generate meaningful text,
GPT-3 is apt at extracting patterns in text. GPT-3 can 昀椀nd that patterns of tokens
are correlated to a property. It will learn that, for instance, our ABAA pattern can be
correlated to the conventional notation of block-copolymers.

In the case of the photoswitches, we have seen that the GPT-3 model can gener-
ate new molecules that are quite di昀昀erent from the training set. To explore in detail
how far we can stretch the limits of what newmolecules we can generate, we choose
an application for which quantum calculations are known to predict the experimen-
tal values su昀케ciently accurately. The HOMO-LUMO gap is such an application. For
instance, the HOMO-LUMO gap is relevant in electronic applications that aim to
excite a molecule at a speci昀椀c energy. This HOMO-LUMO gap can be predicted
accurately using semi-empirical quantummechanics (GFN2-extended tight-binding
(xTB)439), which is computationally a昀昀ordable enough for us to compute for all gen-
erated molecules (see Figure 239). Moreover, the QMugs dataset,413,414 has listed
these HOMO-LUMO calculations for 665 k molecules. Here we use the quantum
calculations as the “ground truth” to validate our predictions.

In the Appendix, we show that with the training of only 500 samples, we can
get a reasonable estimate of the HOMO-LUMO gap of the molecules in the QMugs
dataset. Also, by reverting the question, we have our model trained for inverse de-
sign. In Appendix F.8.3, we show that by asking the model What is a molecule
with a HOMO-LUMO gap of 3.5 eV, we get similar to the photoswitches, a set of
promising novel molecules. These novel molecules are not part of our training set
and not even part of the QMugs dataset.

We now conduct some experiments to test how well the GPT-3 model can extrap-
olate to HOMO-LUMO gaps for which it has not received any training. To mimic
this situation, we retrained our inverse design model using a dataset that only has
molecules with HOMO-LUMO gaps smaller than 3.5 eV and subsequently query the
model with a question that requires the GPT-3 model to extrapolate. We do this by
asking 1,000 times the question: What is a molecule with a HOMO LUMO
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gap of <XX>, where each time we slightly change the value of the HOMO LUMO
gap, i.e., we sample XX from a Gaussian centered at 4 eV. Interestingly, the GPT-3
model does provide structures with a distribution of which our quantum calculations
con昀椀rm that a signi昀椀cant fraction has a HOMO-LUMO gap > 4.0 eV. Again this is a
remarkable result. In our training set, there was not a single molecule with a band
gap > 3.5 eV, which shows that the GPT-3model canmake useful extrapolations. We
can do a similar experiment for the photoswitches, for which wemight have a library
of photoswitches whose transition wavelengths are all below 350 nm. For practical
applications, however, it can often be essential to have adsorption at larger wave-
lengths. In this case, we can successfully use a 昀椀ne-tuned GPT-3 model to generate
photoswitch molecules that adsorb at lower energy (Figure 237, which we also vali-
dated with time-dependent DFT (TDDFT) in Appendix F.8.2).

These 昀椀ndings inspired us to do an inverse design experiment, aiming to design
molecules with properties that take us very far from the training set.440 We are in-
terested in molecules that have a HOMO-LUMO gap > 5 eV. From the distribution
of HOMO-LUMO gaps in the QMugs database (see Figure 43), we see that the av-
erage band gap is around 2.58 eV. There is only a hand full of molecules that have a
HOMO-LUMO gap above 5 eV in this database. Hence, this is a challenging inverse
design problem; there are too few materials in the database that have the desired
properties; hence conventional machine learning can give us little if any, guidance.
Here our experiment is the quantum calculation, andwe typically assume thatwe can
evaluate hundreds of materials in a reasonable time. If we use fewer evaluations, the
model struggles to generate molecules with HOMO-LUMO gaps beyond the initial
distribution. From a machine-learning point of view, a set of hundreds of materials
is in a very low data regime. However, from an experimental point of view, this is
a signi昀椀cant but doable e昀昀ort. Of course, this is a somewhat arbitrary limit, and in
Figure 245 we also give data for signi昀椀cantly fewer experiments.

it. 1

it. 2

it. 3

it. 4

it. 5

QMUGs

Figure 43: Iteratively biased generation ofmolecules toward largeHOMO-LUMOgaps using
GPT-3 昀椀ne-tuned on the QMugs dataset of draws. We start by 昀椀ne-tuning GPT-3
on a sample of the QMugs dataset and use this model to query for gaps from a
normal distribution with shifted mean (mean 4.0 eV, standard deviation 0.2 eV).
We then iteratively select the high-gap samples of the generated molecules and
昀椀ne-tune the model on this data (i.e., starting from the second generation, the
model is 昀椀ne-tuned onmolecules it itself generated). Smooth curves show kernel-
density estimates; the plot is truncated at 10 eV, but the models also generate
some molecules with larger HOMO-LUMO gaps. If we limit the number of quan-
tum chemistry evaluations to 100, we can still successfully shift the distribution
as shown in Figure 245.
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We start with the training using a set of hundreds of molecules randomly selected
from the QMugs dataset (blue distribution in Figure 43). These selected molecules
will have band gap distribution similar to the QMugs dataset. We then query for
HOMO-LUMOgaps, now around 1000 times requesting amolecule with a band gap
taken from a normal distribution with shifted mean (mean 4 eV standard deviation0.2 eV). We evaluated these newmolecules (green curve in Figure 43), which indeed
shows a shift of the distribution to higher HOMO-LUMO gaps. In the next iteration,
we retrain the model with the new data and query again higher HOMO-LUMO gaps.
Figure 43 shows that we have achieved our aim after four iterations.

Inmanypractical applications, one hasmore requirements than the correctHOMO-
LUMO gap. Suppose we need a bromine-containing material with a well-de昀椀ned
HOMO-LUMO gap. Without additional training, we queried our model using What
is a molecule with a HOMO-LUMO gap of 3.5 eV and Br as part
of the molecule. Figure 44 shows the results of such questions for di昀昀erent
functional groups. We do not necessarily generate more molecules with the desired
functional groups if we take the low-temperature results. However, at higher tem-
peratures, where we allow for more creativity, we generate molecules with as much
as ten times more structures with the desired functional group than the query with-
out specifying the functional groups. As we did not train the model for this type of
question, it is not obvious whether it can recognize Br as an element and add it to
a chemically meaningful place in the SMILES string. Yet it is known that these mod-
els can give meaningful answers without any training (zero-shot). It is fascinating
that the GPT-3 model can connect a SMILES string and the part of the query that Br
should be part of the molecule.
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Figure 44: Generating molecules with desired functional groups. The 昀椀gure shows the en-
richment, i.e., the ratio of the fraction of functional groups in the generated
molecules to their occurrence in QMugs for di昀昀erent functional groups as a func-
tion of temperature (see Appendix F.11). The 昀椀rst entries in the legend show the
simple addition of halogens. The last two show the addition of more complex
functionalities (alkyne, methyl-alkyne). For all points above the horizontal line,
the generated molecules contain the desired functional group more frequently
than in the QMugs distribution. For the smooth curves, we performed local poly-
nomial regression (Gaussian kernel of width 0.25 and degree 2). Original data
points are shown with dots.

It is interesting to ask our 昀椀ne-tuned models query that does not make any chem-
ical sense, e.g., What is the transition wavelength of Berend?. Table 5
shows some of the answers we get. For those tests, the models always generated
the same class. Also, for the inverse design models, we often obtain the same out-
put molecule (Appendix F.10). GPT-3 may convincingly hallucinate an answer for a
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clearly invalid input. For these cases, the strength of GPT-3, that it can learn chem-
istry from many di昀昀erent inputs, is also its main weakness; it does not have a 昀椀lter
for questions that do not make any chemical sense, and we also have no guarantees
that the answersmake chemical sense. In conventionalmachine learning approaches,
one has to convert inputs into a feature vector and, in this stage, 昀椀lter out chemical
nonsense (such as inputs that are not molecules).

Table 5: Completions to queries that are invalid or do not have any chemical meaning. For
this experiment, we used amodel we 昀椀ne-tuned to predict the transitionwavelength
of photoswitch molecules and replaced the molecular representations with various
other strings.

prompt completion

What is the transition wavelength of Berend? 0
What is the transition wavelength of Kevin? 0
What is the transition wavelength of Philippe? 0
What is the transition wavelength of Andres? 0
What is the transition wavelength of Bus? 0
What is the transition wavelength of car? 0
What is the transition wavelength of tree? 0
What is the transition wavelength of house? 0
What is the transition wavelength of cat? 0
What is the transition wavelength of magni昀椀cent? 0
what is the adsorption energy of Berend? 0
what is the adsorption energy of Kevin? 0
what is the adsorption energy of Philippe? 0
what is the adsorption energy of Andres? 0
what is the adsorption energy of Bus? 0
what is the adsorption energy of car? 0
what is the adsorption energy of tree? 0
What is the transition wavelength of OOBeZnK? 0
What is the transition wavelength of ZnSiZnFeMn? 0
What is the transition wavelength of CaBeHNBe? 0
What is the transition wavelength of NiHNeFeS? 0
What is the transition wavelength of MnNiNiCoO? 0
What is the transition wavelength of ZnAsMgZnNi? 0
What is the transition wavelength of lfplx? 0
What is the transition wavelength of lvdzu? 0
What is the transition wavelength of hvdos? 0
What is the transition wavelength of bdxsu? 0
What is the transition wavelength of mhokz? 0
What is the transition wavelength of padfx? 0
What is the transition wavelength of gdhpr? 0

6.1.3 Concluding remarks

Our results raise a very important question, how is it possible that a natural language
model with no prior training in chemistry outperforms dedicated machine-learning
models? To our knowledge, this fundamental question has no rigorous answer. The
fact that we get good results independent of the chemical representation illustrates
that these language models are very apt at extracting correlations from any text. For
example, we found good results using both conventional chemical names and com-
pletely hypothetical representations. In both cases, the model could quantitatively
correlate the pattern of repeating units correctly to di昀昀erent kinds of properties. In
some regards, this is not that di昀昀erent from how an experienced chemist would de-
sign a material. Suppose a chemist sees a publication of a new material, and she or
he notices that some properties are very similar to the materials studied for a com-
pletely di昀昀erent application. These similarities are often the source of inspiration to
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try variations of this novel material for this application. Extracting and remembering
such correlations enables GPT-3 to perform (inverse) design. That GPT-3 can work
with these correlations over such a large range of topics makes it so powerful.

Of course, we would like to emphasize that if we say that our GPT-3 model is suc-
cessful, it only implies that we have established that our GPT-3 model has identi昀椀ed
correlations in the current training data that can be successfully exploited to make
predictions. However, this does not imply that the correlations are always mean-
ingful or related to cause-e昀昀ect relationships. Hence, our research does not stop
here. Using GPT-3 to identify these correlations and ultimately get a deeper under-
standing will be the next step. In this context, we argue that GPT-3 is only a tool to
make more e昀昀ective use of the knowledge scientists have collected over the years.
At this point, it is also important tomention thatmost scienti昀椀c literature (including
all failed or partially successful experiments38) has not been seen by GPT-3. Hence,
one can expect an even more impressive performance if this literature is added to
the training data.

As we show in this work, a machine learning system built using GPT-3 works im-
pressively well for a wide range of questions in chemistry—even for those for which
we cannot use conventional line representations such as SMILES. Compared to con-
ventional machine learning, it has many advantages. GPT-3 can be used for many
di昀昀erent applications. Each application uses the same approach, in which the train-
ing and use of themodel are based on questions formulated in natural language. This
raises the bar for future machine learning studies, as any newmodels should at least
outperform this simple approach instead.

The other crucial practical point is that using a GPT-3 model in a research setting
is similar to a literature search. It will allow chemists to very e昀昀ectively leverage the
chemical knowledge we have collected. GPT-3 has been designed to discover corre-
lations in text fragments, and the fact that these correlations are extremely relevant
to chemistry opens many possibilities for chemists and material scientists alike.

D A T A A v A I L A B I L I T y
All data used in this work was obtained from public sources and can be downloaded
with our Python code (https://github.com/kjappelbaum/gptchem).

C O D E A v A I L A B I L I T y
All code created in thiswork is available onGitHub (https://github.com/kjappelbaum/
gptchem).

https://github.com/kjappelbaum/gptchem
https://github.com/kjappelbaum/gptchem
https://github.com/kjappelbaum/gptchem
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7.1 C O N C L u S I O N S
Material design is an optimization problem across multiple scales where we often
lack tools or theory for systematic design—due to both reducible and irreducible
complexity.26 The works presented in this thesis show that data-driven approaches
can be used in the material discovery process across all relevant scales: From the
prediction of oxidation states on the atom scale over adsorption properties on the
mesoscale to the prediction of solvent emissions on the pilot-plant scale. In those
cases, ML couldmake predictions possible or faster or act as amuse441—for example,
by inspiring engineers to perform further experiments on their plant.

However, the previous chapters highlighted many pitfalls and challenges for data-
intensive research approaches, which the e昀昀orts in this thesis address.

A crucial limitation of most, if not all, the ML models built as part of the thesis is
that they cannot yet provide actionable insights for a chemist or chemical engineer—
who would like to know which compound they can make in the lab (at scale). This
problem is not unique to ML (classical computational chemistry also faces this chal-
lenge). However, ML seems like an ideal 昀椀t for addressing this problem: The ques-
tions of synthesizability are too complex to address with theory but might be an-
swered fromdata. The e昀昀orts around developing data capture systems for chemistry
might pave the way toward also addressing those questions (Chapter 1).

With the developments presented inChapter 2, weprovide digital (reticular) chemists
with a toolbox to leverage this data. Whilewe showed that previous e昀昀ortsmight not
have achieved the ultimate impact due to suboptimal model evaluation practices—
we now have the infrastructure to avoid this. In particular, we also provide tooling—
in auni昀椀ed framework—tobuild highly predictive representations ofmaterials. While
we have been using the tools described in Chapter 2 to build highly predictive mod-
els for properties such as colors,34 oxidation states,122 band gaps,114 and gas up-
takes,114,132 this should only be the beginning. Applying these tools to more proper-
ties, such as photocatalytic descriptors or carbon capture process performance met-
rics, is a natural next step. However, all these models will only be of use if chemists
can use them. For this, they need to be made easily accessible and provide explana-
tions and uncertainty estimates.

We cannot expect those models to be perfect for all cases. Therefore it is impor-
tant also to collect feedback—on the predictions, but also the explanations—and
incorporate this as part of an active learning loop since it is not the performance on
a test set (drawn from the same distribution as the training data) that matters but
the one in a real-world application.

For an active learning application inmaterial science, it is essential to properly deal
with the fact that material design is multiobjective. In Chapter 3, we presented an
algorithm that can do so and has now found various applications beyond the original
polymer design task. However, there are still challenges. First, similar to many other
active learning and Bayesian optimization frameworks, the algorithm presented in
Chapter 3 is sensitive to the choice of hyperparameters. In developing the algorithm
on historic datasets, this is not necessarily a problem, as one can easily test di昀昀erent
parameter settings. However, in practice, one needs to choose speci昀椀c parameters
prior to starting an experimental campaign. One possibility to address this challenge
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is to use ensembles over di昀昀erent parameter settings or to meta-learn442 good hy-
perparameter settings on related datasets. In addition, the current algorithm oper-
ates on a 昀椀xed design space and hence requires that relevant materials are enumer-
ated. Chemical space is, however, so large that enumeration is impractical. Hence, a
natural extension for future work is to use generative models to adaptively enumer-
ate relevant parts of the chemical space. However, these e昀昀orts are also only useful
if they are accessible to synthetic chemists and material scientists.

Chapter 6 presented an approach that canmakemachine learningmore accessible:
By consolidating di昀昀erent tasks in a convenient natural-language-based framework.
We showed that 昀椀ne-tuning or in-context learning of GPT-3 can give surprisingly
good performance on classi昀椀cation, regression, and inverse design from molecules
over materials to reactions. These results, along with the 昀椀ndings from White and
co-workers,394,395 show the transformative potential of foundation models in chem-
istry.

7.2 F u T u R E R E S E A R C H
L L M S I N C H E M I S T R y One can make two undeniable improvements on the
work presented in Chapter 6: First, building a chemistry-speci昀椀c dataset and sec-
ond, using chemistry-speci昀椀c tokenization (which has been shown to be of high per-
formance in prior work such as the Galactica model).396 To address these challenges,
large computational resources are required that are not easily accessible to labs in
academia. As a core teammember of theChemNLP project, we can leverage themas-
sive computational resources provided by stability.ai to collect an extensive chem-
istry dataset and build a foundationalmodel for chemistry. The potential uses of this
model are ample: Much of chemical information is hidden in text form—a founda-
tional model for chemistry can aid in converting it into machine-actionable form.397

As a speci昀椀c step in this direction, we are currently using the 昀椀le parsers developed
as part of the data infrastructure we developed (Chapter 1 andChapter 2) to develop
a dataset tailored for building models that can write parser code. Beyond that more
technical use of foundational models, there is also a unique possibility that the nat-
ural language setting provides: For many applications, such as predicting reaction
outcomes, the context, e.g., how the reaction was carried out, is essential. In many
cases, however, this context can only be fully described in text form. LLMs could pro-
vide us with an avenue to also consider this context while linking it to other parts of
chemistry. This latter point is also signi昀椀cant on its own: By training the models on
a large body of knowledge, we could provide every chemist with a virtual assistant—
a patient, experienced chemist that has read all the literature. However, it is also
important to realize that only focusing on the text modality is not enough—much of
chemical data is better represented in other forms (images, graphs), and hence, we
must work on making foundation models multimodal.

S C I E N T I F I C u N D E R S T A N D I N G A N D R O B u S T N E S S In contrast to a real
chemist, however, those models will also answer if they have no clue. And those
models will also provide no explanations for their reasoning—even though scien-
ti昀椀c understanding is an important part of doing science. And we can only expect a
model that is right for the right reasons to generalize to a new dataset. Future work
must focus on making ML more focussed on mechanistic understanding and not the
minimization of a loss on a training set. To make this possible, interpretable and
chemically meaningful representations are needed. A graph-based representation
might seem intuitive for chemical compounds (chemists naturally think in terms of
atoms and bonds). However, it is not su昀케cient alone to address the multi-scale

https://github.com/OpenBioML/chemnlp
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Figure 45: Hierarchy is an important architecture principle for natural and engineered sys-
tems. Machine learningmust understand this building principle to provide action-
able and meaningful insights across length and time scales. For polymers for en-
ergy applications that requires, for instance, themodel to understand the relation-
ships between, atom, repeating unit, and polymer aggregates on themacroscale—
analysis of each of which alone will not generate enough insight for the design of
a polymer that works in the real world.443

nature of material design. For instance, for polymer materials, the model should
be intelligible not only on the level of atoms and bonds—but also on the level of
monomers or blocks of building blocks.

C L O S I N G T H E L O O p A N D B R I D G I N G T H E S C A L E S Importantly, such an
improved representation might help us bridge the scales. While this thesis has used
ML on vastly di昀昀erent scales, it has not yet bridged them. To a large extent, this is
because models operating on di昀昀erent scales use very di昀昀erent representations as
input. The community would bene昀椀t tremendously if approaches were developed
that can work across scales—for instance, by (learnable) adaptive pooling in graph
neural networks.444 Doing thismight also bring along technical advances, such as ad-
dressing the problem that it is challenging to exchange information between distant
atoms in a message-passing neural network (NN) (MPNN).

Ultimately, also bridging the scales is not enough. We need to provide chemists—
or self-driving labs—with actionable insights. That is, our ML systems need to also
consider constraints from the consideration of life-cycle analysis (LCA) and plane-
tary boundaries as well as synthesizabiliy, scalability, and economics. Clearly, this
requires breaking the walls of traditional chemistry departments and genuinely em-
bracing the transdisciplinary nature of the central science.

E M B R A C I N G T H E C E N T R A L S C I E N C E Chemistrymight be the grand appli-
cation of ML: Chemistry helps us cure diseases, 昀椀ght climate change, and can pro-
vide us with an enormous growth of quality of life. Many questions in chemistry
are too complex or too expensive for conventional approaches. In some sub昀椀elds,
ML has already revolutionized the research practice. Progress in others, however, is
still bottlenecked by collective action problems, traditions, and suboptimal research
practices. In addition, we still struggle to leverage all the unique features of the cen-
tral science: We have many experienced chemists that could help instill our models
more chemical reasoning by closely and routinely interacting with them. Domain
scientists have been extracting and re-discovering patterns for a long time: For het-
erogenous catalysis, homogenous catalysis, biocatalysis, and beyond. However, all
this data and knowledge is still stuck in silos and not used as an inductive bias for
our models. For instance, why don’t we “bootstrap” our models or Bayesian opti-
mization runs with closely related datasets? It is time to embrace the central sci-
ence’s multidisciplinary nature, break the walls of silos and leverage the best from
all neighboring disciplines. Let’s embrace the central science.
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A.1 I M p L E M E N T I N G A N D M A I N T A I N I N G A N
O p E N S C I E N C E I N F R A S T R u C T u R E

In this part, we want to focus on the implementation, discussing some key lessons
we learned from implementing an ELN.We think chemistry can learn several lessons
from the world of open source.

A.1.1 Survival advantage of the worse

In a networkedworld, theworse solution canhave an advantage over anover-engineered
one (the infamous “worse is better” principle).445 Over the years, the chemistry
community could observe the proposal of a welter of ontologies, schema, and ELNs.
While those are admirable e昀昀orts, we feel that new 昀椀le formats will not help the com-
munity. In particular, they will not address the biggest problem, which is the lack of
interoperability between existing solutions. For most data types, there are already
standardized, sometimes even IUPAC-recommended vocabularies, schema, and se-
rialization formats, and from our experience, one cannot anticipate all eventualities
of a data schema (chemistry is likely just too 昀氀exible, some even argue that a schema-
昀椀rst approach will never scale446). Many successful technologies experienced that
after an initial design (that is good enough for a potential disruptive innovation), it
is much more worthwhile to implement a prototype and keep on iterating based on
user feedback (which will be conditioned on imperfect design, but stick to it as it
provides them value). The “worse” solution will have better survival characteristics
because it is easier to iterate on it (whereas an overly complicated solution might
become impossible to maintain).

In this context, it is also interesting to re昀氀ect on what Oleksik et al.81 described
as “a tension that is intrinsic to the digital nature of ELNs: a con昀氀ict between the
昀氀exibility, 昀氀uidity, and low threshold for modifying digital records and the require-
ment for persistence and consistency”. In the ELNs that are currently used in the
chemistry community, one 昀椀nds both extremes: Some interfaces are reminiscent of
昀椀lling a long form (like for a tax declaration), whereas others provide no structure at
all (like a simple note-taking app). From the viewpoint of data capture (seeing the
data analysts as the end-users), a highly structured form might be “best”—but it
will be a worse overall solution as chemists who are supposed to enter the data will
not adopt it.

We昀椀nd that a key design requirement is tomake the barrier for data entry as low as
possible, potentially using some ideas like prede昀椀ned sentences with variable 昀椀elds,
to increase adoption. For chemistry, this alsomeans that an ELNs should support the
editing of chemical structures—also to be able to store this information in a reusable
form and not as an image that was created by another software.
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A.1.2 Software can be maintained and improved by the community

Some of our experimental colleagues raised the viewpoint that complicated pieces
of software cannot be maintained by researchers.

Our everyday life shows that the opposite is true. We all use software that is de-
veloped and maintained by the community. Our world would, as we know it, would
not be possible without open-source projects such as Linux, Firefox, or Python. All
these pieces of software are probably better because they are open, hence better
tested (“given enough eyeballs, all bugs are shallow”447). Clearly, there are issues
with the sustainability of open-source software, and there are initiatives that call
for novel funding schemes448,449—but there are also many examples that show that
successful businesses can be built around open software. For example, the SciNote
ELN is licensed under the open Mozilla public license, but there is still a business
model that sells deployments of the ELN on the cloud together with support—for
users that do not want to deploy the ELN themselves. A similar scheme is used for
the eLabFTW ELN where Deltablot sells “pro support” and hosting, i.e. service level
agreements (SLAs).

On the other hand, we can think of an open science infrastructure as something
like our NMR facility. Our departments have funds to keep this infrastructure run-
ning. It seems forward-looking to do the same for a data infrastructure that not only
supports research but could also enable new research.

Notably, the open-source model has not only been proven successful for software
development but also for the sciences. One example is the polymath project where
the maths professor Timothy Gowers used his blog to ask for help with a proof for a
central theorem.450 Within less than two months, the results—based on about 800
comments from 27 people—were being written up in a paper. Similarly, an open-
source science project found a new pathway to an enantiopure form of the drug praz-
iquantel.65 One of the reasons this model works is that the relevant expertise and
the new viewpoints can make themselves heard—no research group can have all the
experience and expertise there is in the world, and often an overly specialized team
can struggle to escape a local minimum in their thinking.65,451 The acceleration of
research that both the polymath and the open-source malaria project observed was
described by Timothy Gowers, the initiator of the polymath project, as “It feels as
though this process is to normal research as driving is to pushing a car.”452

As with open-source software, open-source science is also interesting because the
creation process is open. We can follow all the discussions that led to the develop-
ment of Linux, we can follow all the small steps that have beenmade for the polymath
project, and we can also see how the route to the enantiopure form of praziquantel
was discovered. All this can be used as an educational resource, but also to under-
stand why things are as they are.
An open science infrastructure like the one outlined in this work can be a key ingre-
dient for this process—by simply opening the lab notebooks and allowing others
to comment on it. One can even envision that (parts of) the data captured via the
ELNs is fed directly as a dataset into the Kaggle platform,453 where (aspiring) data
scientists can use it to develop new machine learning models.

A.1.3 Modularity, on di昀昀erent levels, is key

An ELN is a complex piece of software. If one were to develop it as one giant mono-
lith, it would be infeasible to try to 昀椀x or update one part of the code without break-
ing another one, and it would also hamper parallel development on di昀昀erent parts
of the codebase by di昀昀erent developers (“Linus does not scale”). A monolith is not
scalable. Simply alone for this reason, it is vital that the tool is developed at themost

https://lwn.net/2002/0131/a/patch-penguin.php3
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granular level. But besides making development and maintenance easier, it comes
with other advantages. The world of (web) development is fast changing. No one
knows what the new, state-of-the-art technologies will be in 10 years. By tightly
coupling all parts of the ELN, it will be completely unfeasible to upgrade to a new
framework. For example, if one keeps the frontend (the client side code that runs
in the browser and visualizes the data) separate from the backend (the code that
runs on the server and does the heavy lifting) one can much easier migrate to new
frameworks.454 One new ELN framework that followed this approach is the Chemo-
tion ELN developed at the Karlsruhe Institute for Technology (KIT). One advantage
of developing the frontend in a modern web framework is that the resulting service
can be used on any platform—also on mobile devices—via the web browser.

One challenge digital records face compared to paper-based notes is immediacy.63

It is usually much faster to quickly jot something down on paper than to enter it via
a clumsy interface on a computer that might not even be in the lab. For this reason,
we envision that the ELN must improve how researchers can ingest data. One way
we explored in our work is chatbots34 that easily allow capturing pictures or videos—
something that is typically much harder to do with paper-based notebooks and that
would allow capturing the experiments in much more detail. Others explored to
improve the ease of use using speech recognition,455,456 but these techniques did
not 昀椀nd widespread use, one reason for which the specialized chemistry vocabulary
might be.

The LabTrove ELN showcases an advantage digital solutions can have over con-
ventional paper-based notebooks: They allow one to connect the re昀氀ection about
the data directly with the data records themselves. In the context of LabTrove, one
might write summary blog posts in preparation for weekly group seminars that link
to particular experiments. In this way, not only the experiments themselves but also
the re昀氀ection on the experiments and the thought processes that led to the next
steps are captured—similar to what happens in open-source science projects.

A.1.4 吀栀e user base is heterogeneous

One challenge every ELN faces is that the user base is heterogeneous. On the one
hand, this stems from the fact that, in our perspective, the users are not only the
experimental chemists but also scientists that will re-purpose the data. Both favor
di昀昀erent ways of interacting with the system. But also within the group of experi-
mental chemists, there are varying amounts of interest in what is going on behind
the scenes. On top of that, chemists will attempt to use the ELN from di昀昀erent plat-
forms. Many would prefer to use it from a mobile device but access also from their
Mac, Windows, or Linux desktop computer. One viable solution to address all these
di昀昀erent needs is to o昀昀er the ELN as a cloud service that can be accessed from a
web browser on any device. This also simpli昀椀es the rollout of 昀椀xes and updates, as
the developers do not depend on users installing them. Lastly, this also simpli昀椀es
users’ life as they do not need to install anything—they just need to open their web
browsers. Note that it can make sense to implement the ELN such that most opera-
tions take place on the client side. This is feasible as the most common operations
in the ELN are not resource-intensive (e.g., looking up data in a database, plotting
spectra, writing notes). It can also make the ELN more responsive than the design
in which all operations take place on a server (e.g., implemented using Jupyter note-
books, where one would need to start one container per user and cannot pro昀椀t from
many of the optimization techniques that modern web frameworks o昀昀er).
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Figure 46: Non-comprehensive schematic timeline of standards proposed for chemical data.
Inspired by Anderson et al. 465.

A.1.5 Convergence and interoperability

For this vision to be sustainable on a larger scale, di昀昀erent solutions must be able
to talk to each other. It is clear that there cannot be only one database or only one
ELNs as the needs of di昀昀erent communities are just too diverse. But the di昀昀erent
tools must be interoperable to make data reusable and harvestable on a larger scale.
Standardizationwill also be key to integrating “manual chemistry” captured via ELNs
with syntheses executed by robots and to link experimental workwith computational
works.

While there have been many e昀昀orts to create standards for data management in
chemistry (some examples are described in Table 6 and 7), there are only a few (for
example, the CIF) that are widely used. Motivated by this, some initiatives have
tried de昀椀ning standards for the 昀椀eld (see Table 8). However, some of the most ad-
vanced e昀昀orts are spearheaded by industry consortia, like the Allotrope Framework,
which in some cases, requires membership to see the full documentation. While
this can be a way to fund the e昀昀orts, it can also undermine one of the purposes for
standardization, i.e., to make data reusable by everyone.466 We have to realize that
one of the features of open source is that it can level the playing 昀椀eld, i.e., give less
well-funded groups the same access to high-quality tools. Moreover, in the recent
pandemic, we could witness how access to data can make a di昀昀erence in response to
an emergency.467,468

We know from the computational materials science community that progress on
open standards, even though slow, is possible. Starting in 2016, the OPTIMADE469

consortium, inwhich allmajor computational databases havebeen represented, agreed
upon a speci昀椀cation with which the databases can “talk” to each other. Practically,
this means that users can easily retrieve, combine, and compare data from all major
databases.
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Table 9: There is no lack of standards. This table is a non-comprehensive overview. The
most common serialization language (serial.) is XML. XML is a web standard that
is supported in most programming languages, is easily extendable, and is human-
readable. It was originally developed as markup language and not as a data stor-
age format. In contrast to XML, JSON is relatively easy to parse and is also sup-
ported by most, if not all, programming languages (often having a direct mapping
to standard datatypes such as dictionaries). Self-de昀椀ning Text Archive and Retrieval
(STAR) is the 昀椀le structuring used in CIF. Not human-readable are HDF5 (Hierarchi-
cal Data Format), netCDF (which in the most recent implementation builds on top
of HDF5), SQLite, and protocol bu昀昀ers. Those 昀椀le types have the advantage that
they can represent data more compactly than the text-based format. The reason
for that is, for example, the numerical accuracy of numbers. In string-based repre-
sentation, it takes more space (to “print” all the digits) than in a native representa-
tion. One di昀昀erence between the standards in this table is the extent to which the
formats provide controlled vocabularies. Some only provide basic implementations
like parameter labels withwhich any parameter can be stored, whereas others spec-
ify a tightly controlled vocabulary that only allows speci昀椀c terms (blurring the line
between format and schema). Only a few reuse and extend vocabularies that are
more widely used, e.g., the web in general (schema.org). This overview clearly re-
昀氀ects that there will not be a one-size-昀椀ts-all format, given that some applications
need formats optimized for performance, whereas others will require audit trails
and digital signature features. But the table shows that many implementations are
not that di昀昀erent, e.g., multiple HDF5 implementations of the mzML standard, and
that the community most likely does not need one additional (potentially backward
incompatible) re-implementation of the mzML standard. What is interesting to ob-
serve is that most formats do not have a formalized mechanism for the proposal
and discussion of changes to the standard. While some use public mailing groups
and issue trackers, to our knowledge, only autoprotocol follows the schema of “en-
hancement proposals”, which is used in major software developments to propose
and discuss new designs in a standardized, public-facing, and documented way. The
inspection of the table also highlights that formats with buy-in from industry (e.g.,
ADF, UDM, AniML, Autoprotocol) found signi昀椀cantly wider adoption and are better
maintained.

name year scopes description serial.

JCAMP-
DX471

1988 general analyt-
ical chemistry

IUPAC recommended format. Many instruments
can export this format,many databases such as the
NIST web-book understand this format. Allows
for some compression. Can be customized using
private labels.

its own

ANDI472 1992 general analyt-
ical chemistry

The Analytical Data Interchange format is most
used in its 昀氀avor for mass spectrometry, ANDI-MS
more widely used. Designed by ASTM

netCDF

CML 1995 chemical data
in general

Is supported by many common programs and has
been extended, for example, for spectra (CML-
Spect).464 One core idea of designers of the CML
was that the information should be validatable, for
example, to automatically 昀椀nd if there negative
atom counts

XML

NMRSTAR473 1996 (biological)
NMR

archival format used by the Biological Nuclear
Magnetic Resonance data Bank (BMRB), the inter-
national repository of biomolecular NMR data

STAR

matML474 1999 materials prop-
erty data

Development initiated at NISTwith the goal to de-
velop a format for the interchange of materials in-
formation, but did not 昀椀nd wide usage

XML

SpectroML475 2002 UV-VIS super-seeded by AnIML XML

schema.org
http://jcamp-dx.org/
http://jcamp-dx.org/
http://andi.sourceforge.net/
https://www.xml-cml.org/
https://bmrb.io/formats.shtml
https://www.matml.org/
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ThermoML476 2003 thermophysical
and thermo-
chemical
property data

IUPAC standard for storage and exchange of ex-
perimental thermophysical and thermochemical
property data. Data produced by the NIST Ther-
modynamics Research Center are provided in this
format. IUPAC-based terminology is used as basis
for data tagging

XML

GAML476 2003 general analyt-
ical chemistry

The Generalized Analytical Markup Language at-
tempted to make it easier to store multi-detector
data (compared to JCAMP and ANDI). Explicitly
avoids mapping vendor speci昀椀c metadata to a
common dictionary

XML

mzXML477 2004 mass spec-
trometry

strict schema with enumerated attributes, o昀케-
cially deprecated in favour of mzML

XML

AnIML457 2004 general analyt-
ical chemistry

The Analytical Information Markup Language
aims to document work昀氀ows. It allows to embed
digital signatures and audit trails, aims to be 昀氀ex-
ible enough for novel spectroscopic techniques.
Found already support by somemanufacturers like
Agilent or ELNs such as LabWare. BSSN software
(now owned by Merck) implemented converters
for more than 150 instruments458

XML

mzData478 2006 mass spec-
trometry

Designed to be 昀氀exible via extendable controlled
vocabulary

XML

mzML479 2008 mass spec-
trometry

Aims to combine the best elements of mzXML
and mzData, metadata is accurately and unam-
biguously annotated using the PSI-MS controlled
vocabulary

XML

mz5480 2012 mass spec-
trometry

Uses HDF5 in an attempt to address performance
issues with mzML. Manual mapping to the 昀椀eld la-
bels of mzML

HDF5

ADF 2013 general analyt-
ical chemistry

The Allotrope Data Format features an ontology
based on the widely used Basic Formal Ontology.
Data is stored in RDF graph, can be programati-
cally validated. The format also supports audit tri-
als. Additional 昀椀les can be stored in virtual 昀椀le
system. Full analytical life-cycle can be stored in
one 昀椀le. Wide support from instrument manufac-
tures. Maintained by the Allotrope Foundation,
which was founded by pharmaceutical companies,
and which uses the membership fee paid by indus-
trial members to contract external partners to de-
velop and maintain the format

HDF5

mzDB481 2015 mass spec-
trometry

Attempts to optimise for high-throughput data
processing and storing

SQLite

autoprotocol4822016 life science
protocols

Autoprotocol is directly mappable to hardware
commands for robotic automation. Notably, it has
a mechanism for the proposal of changes to the
standard (Autoprotocol Standard Changes). It is
maintained by Strateos

JSON

PIF 2017 information
about physical
systems

The Physical Information File was designed to be
able to describe a broad array of data “from parts
in a car down to a single monomer in a polymer
matrix”, hence can have a nesting of subsystems.
It is maintained by Citrine Informatics

JSON

UDM 2017 experimental
informa-
tion about
compound
synthesis and
testing

The Uni昀椀ed Data Model is a format to store reac-
tion data (schema, conditions, provenance, etc.)
and biological testing. Has been maintained by El-
sevier, who transferred the ownership to the Pis-
toia Alliance.

XML

https://www.nist.gov/mml/acmd/trc/thermoml
http://www.gaml.org/
http://tools.proteomecenter.org/wiki/index.php?title=Formats:mzXML
https://animl.org/
https://www.psidev.info/attachments/mzdata
https://www.psidev.info/mzML
http://www.allotrope.org/
https://basic-formal-ontology.org/
https://github.com/mzdb/mzdb-specs
https://www.autoprotocol.org/
https://citrineinformatics.github.io/pif-documentation/
https://github.com/PistoiaAlliance/UDM
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NMReDATA483 2018 NMR compared to nmrML and NMRSTAR tries to not
be exhaustive but limit itself to core set of parame-
ters, carefully include structure assignment. Main-
tained by the NMReDATA initiative

SDF

nmrML484 2018 NMR one goal was to follow the design of mzML, the
motivation was to address the di昀昀erent “dialects”
of JCAMP-DX implementations

XML

GEMD 2019 links materials,
the processes
that produce
them, and the
measurements
that charac-
terize them.
It resolves
some prob-
lems that were
present in the
data model
underlying the
PIF

JSON

ord-schema 2019 organic reac-
tions

The developers built this schema based on a sur-
vey they conducted in late 2019/early 2020 with
the clear goal to create datasets that can help or-
ganic reaction prediction. The consortium is lead
by aGoverningCommitteewithmembers from in-
dustry (Google, Merck, P昀椀zer) and academia

protocol
bu昀昀er

XDL 2020 organic reac-
tion protocols

Developed to compile machine-readable experi-
mental scripts that can be executed by robots such
as the “chemputer”.85

XML

AIF106 2021 gas de/adsorp-
tion isotherms

The authors of the Adsorption Information File
provide tools convert proprietary 昀椀les to AIF

STAR

mzMLb485 2021 mass spec-
trometry

Uses HDF5 in an attempt to address performance
issues with mzML, preserves the mzML structure.
Attempts to improve over mz5 by preserving the
link to also future mzML versions

HDF5

https://nmredata.org/
http://nmrml.org/
https://citrineinformatics.github.io/gemd-docs/
https://github.com/connorcoley/ord-schema
https://croningroup.gitlab.io/chemputer/xdl/standard/index.html
https://github.com/jackevansadl/adsorptioninformationformat
https://github.com/biospi/pwiz/releases/tag/v0.6
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Table 6: Someexamples (non-comprehensive) of schema that have beendeveloped for chem-
istry and materials science. A more comprehensive overview can be found on
https://fairsharing.org/ via a search for “standards”. There have been many
e昀昀orts that did not 昀椀nd widespread use.

schema description

Analytical Information Markup
Language (AnIML)457

focused on analytical chemistry and biological data, developed
by anASTM (American Society for Testing andMaterials) work-
ing group. Found already support by some manufacturers like
Agilent or ELNs like LabWare. BSSN software (now owned
by Merck) implemented converters for more than 150 instru-
ments458

autoprotocol459 development focused on de昀椀ning experimental plans in the life
sciences that can then be remotely executed,459 but has ele-
ments that are general (e.g., compounds, inventory) and cover
di昀昀erent aspects of chemistry. Notably, it has a mechanism for
the proposal of changes to the standard (Autoprotocol Stan-
dard Changes)

Physical Information File
(PIF)460

designed to be able to describe a broad array of data “from
parts in a car down to a single monomer in a polymer matrix”,
hence can have a nesting of subsystems. Maintained by Citrine
Informatics

Graphical Expression of Materi-
als Data

Developed by Citrine Informatics, links materials, the pro-
cesses that produce them, and the measurements that charac-
terize them. It resolves some problems that were present in
the data model underlying the PIF

ThermoML461 IUPAC standard for storage and exchange of experimental ther-
mophysical and thermochemical property data. Data produced
by the NIST Thermodynamics Research Center are provided in
this format

Chemical Markup Language
(CML)462,463

is supported by many common programs and has been ex-
tended, for example, for spectra (CMLSpect).464 One core idea
of the designers of the CML was that the information should
be validatable—for example, to automatically 昀椀nd if there are
negative atom counts

schema for the Open Reaction
Database (ord-schema)

the developers built this schema based on a survey they con-
ducted in late 2019/early 2020 with the clear goal to create
datasets that can help organic reaction prediction. Governing
committee around participants from industry (Google, Merck,
P昀椀zer) and academia (MIT, Princeton)

XDL85 Developed to compile machine-readable experimental scripts
that can be executed by robots

OECD Harmonized Templates data formats for information on chemicals and safety informa-
tion

Materials Schema e昀昀ort to extend schema.org (a large e昀昀ort that creates schema
for structured data on the web) which would allow indexing by
major search engines. This e昀昀ort is inspired by the bioschemas
initiative that has been developing types for the life sciences
to increase the 昀椀ndability of data. Currently being developed
(pre-alpha version) by NIST

Allotrope Data Format (ADF) consortium of pharmaceutical industries and a larger partner
network of instrument manufacturers with the aim to create a
data infrastructure that captures the full lifetime of a sample in
the lab. It has been working on an ontology (that is available
under a permissive license), standard data schema/昀椀le, and al-
ready has good coverage for many analytical techniques. Many
developments (like access to the source code) requiremember-
ship in the consortium

Uni昀椀ed Data Model (UDM) format to store reaction data (schema, conditions, provenance,
etc.) and biological testing. Has been maintained by Elsevier,
who transferred the ownership to the Pistoia Alliance.

https://fairsharing.org/
https://animl.org/
https://animl.org/
https://www.autoprotocol.org/
https://citrineinformatics.github.io/pif-documentation/
https://citrineinformatics.github.io/pif-documentation/
https://citrineinformatics.github.io/gemd-docs/
https://citrineinformatics.github.io/gemd-docs/
https://www.nist.gov/mml/acmd/trc/thermoml
http://www.xml-cml.org/
http://www.xml-cml.org/
https://open-reaction-database.org/
https://open-reaction-database.org/
https://croningroup.gitlab.io/chemputer/xdl/standard/index.html
https://www.oecd.org/ehs/templates/
https://pages.nist.gov/material-schema/
https://bioschemas.org/
https://bioschemas.org/
https://www.allotrope.org/
https://github.com/PistoiaAlliance/UDM
https://www.pistoiaalliance.org/
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Table 7: Examples of common characterization techniques, 昀椀le formats, and the conversion
tools that have been developed by the cheminfo team (GitHub organizations chem-
info, cheminfo-js, cheminfo-py, mljs, image-js.

technique 昀椀le formats conversion
library

pXRD Bruker brml, PowDLL xy xrd
adsorption isotherms Belsorp xls, DVS csv, Micro-

metrics csv and txt, IGA txt
isotherm-
analysis

thermal gravimetric analysis (TGA) Perkin Elmer csv and txt, TA
Instruments txt

tga-
spectrum

x-ray photoelectron spectroscopy
(XPS)

VAMAS vamas

nuclear magnetic resonance spec-
troscopy (NMR)

Bruker zip, JEOL jdf brukerconverter,
jeolcon-
verter

liquid/gas chromatography (LC/GC) NetCDF netcdfjs
mass spectrometry (MS) mzData, mzML, mzXML mzData
images (transmission/scanning elec-
tron microscopy)

TIFF, png tiff, fast-
png

Table 8: Some initiatives that work on the standardization, digitization, and reusability of
chemical data.

initiative description

GOFair Chemistry Implementation Network one of the ambitious goals is to create a manage-
ment structure for standards through IUPAC, which
has several ongoing projects concerning the develop-
ments of data standards470

Research Data Alliance Chemistry Research
Data interest group

aims to establish standards and ontologies and also
proposes to involve instrumentmanufacturers in the
discussions

RDA/CODATA Materials Data, Infrastruc-
ture & Interoperability interest group

aims to foster the exchange of computational and
experimental materials data via interoperability and
shared standards

Materials Research Data Alliance emerged from NSF’s 2019 Summit on Big Data and
Materials Cyberinfrastructure with the goal of creat-
ing a community around materials data sharing and
reuse

National Research Data Infrastructure for
Chemistry (NFDI4Chem)

German consortium with the aim to build an open
and FAIR infrastructure for research data manage-
ment in chemistry

https://github.com/cheminfo
https://github.com/cheminfo
https://github.com/cheminfo-js
https://github.com/cheminfo-py
https://github.com/mljs
https://github.com/image-js
https://github.com/cheminfo/xrd
https://github.com/cheminfo/isotherm-analysis
https://github.com/cheminfo/isotherm-analysis
https://github.com/cheminfo/tga-spectrum
https://github.com/cheminfo/tga-spectrum
https://github.com/cheminfo/vamas
https://github.com/cheminfo-js/brukerconverter
https://github.com/cheminfo/jeolconverter
https://github.com/cheminfo/jeolconverter
https://github.com/cheminfo/netcdfjs
https://github.com/cheminfo/mzData
https://github.com/image-js/tiff
https://github.com/image-js/fast-png
https://github.com/image-js/fast-png
https://www.go-fair.org/implementation-networks/overview/chemistryin/
https://www.rd-alliance.org/groups/chemistry-research-data-interest-group.html
https://www.rd-alliance.org/groups/chemistry-research-data-interest-group.html
https://rd-alliance.org/groups/rdacodata-materials-data-infrastructure-interoperability-ig.html
https://rd-alliance.org/groups/rdacodata-materials-data-infrastructure-interoperability-ig.html
https://www.marda-alliance.org/
https://nfdi4chem.de/
https://nfdi4chem.de/
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B.1 G R O w T H O F M A C H I N E L E A R N I N G F O R R E T I C -
u L A R C H E M I S T R y A N D p O R O u S M A T E R I -
A L S

To illustrate the importance of machine learning for reticular chemistry and porous
materials, we conducted a literature survey using Scopus, interfaced via pybiblio-
metrics.486 We used TITLE-ABS-KEY(("reticular chemistry" OR "metal-
organic framework" OR "covalent-organic framework" or "zeolite")
AND ("machine learning" OR "neural network" OR "data-driven" OR
"deep learning" OR "random forest" OR "gradient boost" OR "support
vector" OR "regression" OR "recommendation system" OR "inverse de-
sign" OR "recommender system" OR "active learning" OR "bayesian
optimization")) as query and plot in Figure 47 the number of publications aggre-
gated per year (excluding 2023, which already counted 7matches at the time we last
performed this survey, December 12, 2022).
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Figure 47: Count of publications aggregated per year thatmention some concept of reticular
chemistry or porous materials besides machine learning concepts.

B.2 G A S A D S O R p T I O N R E F E R E N C E D A T A S E T
Note that this dataset contains a signi昀椀cant fraction of zeros for cases in which the
simulation was skipped because they were deemed inaccessible to the guest follow-
ing geometric analysis. This is because the QMOF dataset focused, for reasons of

147
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computational cost, on the subset of MOFs with small unit cells. Additionally, it is
important to realize that the MOF subset of the CSD116 contains a large fraction of
nonporous materials (best described as coordination polymers).

B.2.1 Computed properties

We used the DDEC6 charges487–490 from the PBE-D3(BJ) calculations as provided
with the QMOF database. We always described the framework using the UFF217

force昀椀eld, applying analytical tail-corrections218 for the contributions after the cut-
o昀昀 of 12Å. For zeo++,176 we always used 100,000 samples for the calculation of the
probe-occupiable volume and 100Å−3 samples for the computation of the blocked
pockets.
CO2 and N2 isotherms were sampled using the algorithm described in Ongari et
al. 147 For other isotherms, we used a 昀椀xed grid of pressure points. We always em-
ployed 100,000 cycles with the RASPA code for the computation of the Henry co-
e昀케cients.216 The additional simulation-speci昀椀c settings are detailed in the follow-
ing Tables. The full provenance graph can be downloaded on the MaterialsCloud
(10.24435/materialscloud:qt-cj).

Table 10: Simulation parameters for CO2 isotherms (and Widom insertions).

parameter value

force 昀椀eld guest TraPPE491

saturation density / mol L−1 21.2

probe radius / Å 1.525𝑇 / K 300

initialization cycles 1000

production cycles 10000𝑝 sampling precision 0.1

max distance between 𝑝 points / bar 5

lowest pressure point / bar 0.001

largest pressure point / bar 30

Table 11: Simulation parameters for N2 isotherms (and Widom insertions).

parameter value

force 昀椀eld guest TraPPE491

saturation density / mol L−1 28.3

probe radius / Å 1.655𝑇 / K 300

initialization cycles 1000

production cycles 10000𝑝 sampling precision 0.1

max distance between 𝑝 points / bar 5

lowest pressure point / bar 0.001

largest pressure point / bar 30

For the process simulations, we used very simpli昀椀ed models of a temperature–

https://doi.org/10.24435/materialscloud:qt-cj
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Table 12: Simulation parameters for H2 isotherms (and Widom insertions).

parameter value

force 昀椀eld guest MDT+DL (as described in Bucior et al. 230, i.e.,
dispersion from Michels et al. 492 and charges
from Darkrim and Levesque 493)

saturation density / mol L−1 35.4

probe radius / Å 1.48

initialization cycles 3000

production cycles 3000

temperature grid / K 77, 198, 298

pressure grid / bar 1.0, 5.0, 25, 50, 75, 100

Table 13: Simulation parameters for CH4 isotherms (and Widom insertions).

parameter value

force 昀椀eld guest TraPPE494

saturation density / mol L−1 26.34

probe radius / Å 1.865𝑇 / K 298

initialization cycles 1000

production cycles 10000

pressure grid / bar 1.0, 5.8, 20, 35, 50, 65

pressure swing process148 in which we assume a constant heat capacity for all mate-
rials, which is known not to be a correct approximation.132

B.2.2 Dataset description

The following Figures show the distributions of the computed properties.

B.3 D u p L I C A T E S

Table 14: Simulation parameters forO2 isotherms (andWidom insertions). Based on settings
chosen in Moghadam et al. 495

parameter value

force 昀椀eld guest TraPPE496

saturation density / mol L−1 71.3

probe radius / Å 1.51𝑇 / K 298

initialization cycles 5000

production cycles 5000

pressure grid / bar 1, 5, 10, 20, 30, 50, 80, 100, 140, 200
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Table 15: Simulation parameters for Xe Widom insertions.

parameter value

force 昀椀eld guest BOATO497

saturation density / mol L−1 22.4

probe radius / Å 1.985

Table 16: Simulation parameters for Kr Widom insertions.

parameter value

force 昀椀eld guest BOATO497

saturation density / mol L−1 29.0

probe radius / Å 1.83

Table 17: Simulation parameters for water Widom insertions.

parameter value

force 昀椀eld guest TIP4P/2005498

saturation density / mol L−1 53.3

probe radius / Å 1.58

Table 18: Simulation parameters for H2S Widom insertions.

parameter value

force 昀椀eld guest ESP-MM499

saturation density / mol L−1 26.9

probe radius / Å 1.74
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Figure 48: Distribution of log10 CO2 Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 49: Distribution of log10 CO2 adsorption energy / kJ mol−1.
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Figure 50: Distribution of log10 N2 Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 51: Distribution of log10 N2 adsorption energy / kJ mol−1.
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Figure 52: Distribution of log10 CO2 parasitic energy (coal) / MJ kgl−1.
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Figure 53: Distribution of log10 CO2 gravimetric working capacity (coal) / kg CO2 kg−1.
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Figure 54: Distribution of log10 volumetric working capacity (coal) / kg CO2 m−3.
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Figure 55: Distribution of log10 CO2 parasitic energy (nat. gas) / MJ kgl−1.
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Figure 56: Distribution of log10 CO2 gravimetric working capacity (nat. gas) / kg CO2 kg−1.

0 10 20 30 40 50

volumetric working capacity (nat. gas) / kg CO2 m−3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
e
n
s
it
y

Figure 57: Distribution of log10 volumetric working capacity (nat. gas) / kg CO2 m3.
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Figure 58: Distribution of log10 昀椀nal CO2 purity (nat. gas) / mol mol−1.
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Figure 59: Distribution of log10 CH4 Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 60: Distribution of log10 CH4 adsorption energy / kJ mol−1.
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Figure 61: Distribution of log10 CH4 working capacity vol. (5.8-65 bar/298K) / cm3
STP cm

−3.
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Figure 62: Distribution of log10 CH4 working capacity (5.8-65bar/298K) / mol kg−1.
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Figure 63: Distribution of log10 CH4 working capacity fract. (5.8-65 bar/298 K).
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Figure 64: Distribution of log10 O2 Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 65: Distribution of log10 O2 adsorption energy / kJ mol−1.
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Figure 66: Distribution of log10 O2 working capacity (5-140 bar/298 K) / cm3
STP cm

−3.
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Figure 67: Distribution of log10 O2 working capacity (5-140 bar/298 K) / mol kg−1.
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Figure 68: Distribution of log10 O2 working capacity (5-140 bar/298 K).
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Figure 69: Distribution of log10 Xe Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 70: Distribution of log10 Xe adsorption energy / kJ mol−1.
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Figure 71: Distribution of log10 Kr Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 72: Distribution of log10 Kr adsorption energy / kJ mol−1.
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Figure 73: Distribution of log10 H2 working capacity (5-100 bar/298-198 K) / g L−1.
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Figure 74: Distribution of log10 H2 working capacity (5-100 bar/77 K) / g L−1.
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Figure 75: Distribution of log10 H2 working capacity (1-100 bar/77 K) / g L−1.
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Figure 76: Distribution of log10 H2S Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 77: Distribution of log10 H2S adsorption energy / kJ mol−1.
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Figure 78: Distribution of log10 H2O Henry coe昀케cient / mol kg−1 Pa−1.
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Figure 79: Distribution of log10 H2O adsorption energy / kJ mol−1.
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Figure 80: Learning curves with all data points and only unique undecorated sca昀昀olds (BW
dataset and CH4 deliverable capacity as the target, using XGBoost regressor on
the default dataset). The shaded area indicates 95 % standard intervals. For this
case study, dropping undecorated sca昀昀old duplicates leads to improved perfor-
mance metrics.
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Figure 81: Learning curves with all data points and only unique undecorated sca昀昀olds (CoRE
dataset and CO2 Henry coe昀케cient as the target, using XGBoost regressor on the
default dataset). The shaded area indicates 95 % standard intervals.
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B.4 F E A T u R I z E R S

B.4.1 Addition of aggregations
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Figure 82: Minimum distance 昀椀ngerprint with and without additional aggregations. The
original average minimum distance 昀椀ngerprints as proposed by Widdowson et
al. aggregate point-wise distance distributions (PDD) using (weighted) averages
(top row). Inmofdscribe, users can compute other aggregations such asmin, max,
and the standard deviation (std, bottom row, e-MD). To ensure a fair comparison,
we optimize the full pipeline (including pre-processing and themodel) using auto-
matedmachine learning.185 The plots visualize themeasuredmodel performance
and estimated e昀昀ect sizes in terms of Hedges’ g.500 The blue points always indi-
cate the coe昀케cient of determination (𝑟2 on a holdout test set, measured on the
left axes) of the models trained with additional aggregations (e-MD.) The green
ones indicate the coe昀케cients of determination of the models trained with only
themean (AMD) as aggregation. To quantify the e昀昀ect, we bootstrap theHedges’
g (a suitable e昀昀ect sizemetric in the case of little data,170 shown on the right axes)
and show it with a kernel density estimate. In all cases, the addition of chemistry
shows very large e昀昀ects.186

B.5 G R A p H H A S H E S
Weisfeiler and Lehman devised a graph-isomorphism test based on iterative re昀椀ne-
ment of graph colorings to derive a canonical form.155 Two non-isomorphic graphs
might share the same canonical form; however, if the canonical forms are not iden-
tical, the graphs are de昀椀nitely not isomorphic. Therefore, this test might lead us to
identify too many isomorphic graphs. However, since our objective is mostly dupli-
cate removal to avoid data leakage, this is preferable to missing duplicates.

In practice, we encode the periodic crystal graph as a labeled quotient graph (LQG)
(labels indicating into which periodic image the bonding extends) but do not con-
sider the directions and edge voltages for the hash derivation. We rely on the fact
that two LQGs of the same crystallographic net cannot have non-isomorphic unla-
beled quotient graphs (UQGs). Hence, computing a hash of the Weisfeiler-Lehman
canonical form of the UQG will always lead to too many duplicates, not too few.

B.6 S p L I T T E R S
Our main objectives for the default settings in the splitter classes are:
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• To minimize data leakage. To ensure this, we implement grouped splits. Typ-
ically, we group on undecorated sca昀昀old hashes.• To minimize imbalance e昀昀ects on the imbalance. To ensure this, we imple-
ment strati昀椀cation. Typically, we stratify on the target (and bin if the target is
continuous*).

B.6.1 Grouped and strati昀椀ed holdout splits

Whilewe can rely onsklearn’s implementations for the grouped 𝑘-fold cross-validation
case, there is no o昀昀-the-shelf implementation for the grouped and strati昀椀ed case (for𝑘-fold cross-validation and partitioning). Therefore, we implement the following al-
gorithm in which we perform the following steps:• Assign each structure to a group, for instance, based on the undecorated scaf-

fold hashes.• Aggregate the target property within each group, e.g., using the arithmetic
mean.• Use the aggregated properties for a strati昀椀ed split• For each group, add all the members

While this algorithm does not guarantee that we will match the requested train/test
ratio, it guarantees grouping and some level of strati昀椀cation, which are more impor-
tant objectives for a stringent model evaluation.

B.6.2 Case studies

H y p E R p A R A M E T E R G R I D• colsample_bylevel: on logarithmic grid from 0.01 to 0.1• depth: integers between 1 and 16• iterations integer between 1 and 10000• learning_rate 昀氀oat on log scale between 0.001 and 0.5• l2_leaf_reg: 昀氀oat between 0.01 and 10• random_strength: 昀氀oat between 0.01 and 10• bagging_temperature: 昀氀oat between 0.01 and 10

B.7 M O F F R A G M E N T A T I O N
The MOF fragmentation algorithm is outlined in Algorithm 1. Therein, we use the
following de昀椀nitions:• branching site is a site that ful昀椀lls the following conditions:

– has at minimum coordination number 3

* Note that this is already a weak source of data leakage as we need to consider the full dataset for binning.
Also, note that there is still debate on the pros and cons of this approach, see https://github.com/
kjappelbaum/mofdscribe/discussions/242.

https://github.com/kjappelbaum/mofdscribe/discussions/242
https://github.com/kjappelbaum/mofdscribe/discussions/242
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Figure 83: Bootstrappedmean di昀昀erence inmean absolute error for predicting low-pressure
CO2 uptake. The model was trained on the CoRE dataset in mofdscribe with
the default feature set and tested on the ARABG dataset.

– has at least one path withmaximum2 edges that leads tometal and does
not contain a bride

– has at minimum 2 non-metal connections that are not bridges

If there aremultiple neighboring sites selected according to this de昀椀nition, we
pick the one closest to the metal (the fewest number of edges).• bridge is an edge that, when broken, increases the number of connected com-
ponents• connected component is a connected subgraph that is not part of any larger
connected subgraph

Data: MOF
Result: fragments and net
unbound_solvent = locate_unbound_solvent(MOF)
ignored_metals = []
while potential_metal_in_linker do

node_candidates = locate_nodes(MOF, unbound_solvent,
ignored_metals)

bound_solvent = locate_bound_solvent(MOF, node_candidates)
linker_candidates = locate_linkers(MOF, node_candidates,
bound_solvent)

metals_to_ignore, potential_metal_in_linker =
check_metal_in_linker(MOF, linker_candidates)

end
net = build_net(MOF, node_candidates, linker_candidates)

Algorithm1: Fragmentation pseudocode. The while loop ensures thatwe do not
classify metal-containing linkers (e.g., porphyrins) as metal clusters. Typically,
only one—or in the case of porphyrin linkers—two loops are performed.
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Figure 84: Bootstrappedmean di昀昀erence inmean absolute error for predicting low-pressure
CO2 uptake. Themodel was trained on theCoRE dataset in mofdscribewith the
default feature set and tested on the BW dataset.

T H E locate_unbound_solvent F u N C T I O N creates a 3 × 3 × 3 supercell and
analyzes if there are any non-periodic connected components. Those are 昀氀oating
molecules in the cell. In practice, weuse a customized versionof theget_subgraphs_as_molecules
function in pymatgen.174

T H E locate_nodes F u N C T I O N performs depth-昀椀rst-search between all met-
als (ignoring those on theignored_metals list) andpotential branching sites. After
clustering of neighboring branching sites and simpli昀椀cation in case multiple neigh-
boring branching sites are found, we identify the connected components that are
spanned by the depth-昀椀rst-search paths between metals and branching sites (where
needed, we complete this path by also including, for example, boundhydrogen atoms
on oxygen atoms connecting metals and branching sites). Those connected compo-
nents are the metal nodes.

T H E locate_bound_solvent F u N C T I O N checks for bridges on the node can-
didates. Note that, by default, we do not break those bridges. That is, the bound
solvent remains bound to the nodes.

T H E locate_linkers F u N C T I O N identi昀椀es the remaining connected com-
ponents. For this, it deletes all solvent and node vertices (and the associated edges)
from the structure graph. However, it keeps the branching indices. The remaining
connected components are the linkers.

T H E check_metal_in_linker F u N C T I O N attempts to identify linkers con-
taining metals (e.g. porphyrins) that were incorrectly identi昀椀ed as metal clusters.
For this, it checks for the co-planarity of the metal and the branching sites.

We also ensure that the output molecules (in the linker and metal cluster collec-
tions) are correctly unwrapped by performing a breadth-昀椀rst-search over the struc-
ture graph and picking the Cartesian coordinates of the neighbor image closest to
the current Cartesian coordinates.
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# load a CIF
mof = MOF.from_cif('tests/test_files/HKUST-1.cif')

# Fragment the MOF
fragments = mof.fragment()

# If you are in a Jupyter notebook you can visualize the components.
fragments.linkers[0].show_molecule()
fragments.nodes[0].show_molecule()

# You can also search PubChem for the building blocks
fragments.linkers[0].search_pubchem()

# To get the [RCSR code](http://rcsr.anu.edu.au/nets) run
fragments.net_embedding.rcsr_code

Listing 5: Example for the use of the moffragmentor.

T H E build_net F u N C T I O N uses the Cartesian coordinates of branching sites
on metal clusters on linkers to identify connected building blocks and their barycen-
ters. Additionally, we remove 2-connected vertices. To obtain an RCSR code, we
input the labeled quotient graph in CGD format to the Systre program.501

All building blocks (metal clusters, linkers, solvent molecules) are stored in ded-
icated Python objects with wrapped molecules, original coordinates, and branching
indices (among others) as attributes.

An example of the use of moffragmentor is given in Listing 5

B.8 L E A D E R B O A R D
Our website hosts multiple task-speci昀椀c leaderboards. Each leaderboard has an in-
teractive plot (comparing the metrics) along with a data table. The plots and data
tables are automatically populated based on the json output of a bench run. In
particular, we use custom Sphinx directives (via the sphinxcontribs-needs pack-
age) to standardize the metrics and implement interactive data tables with 昀椀ltering
functionality.

The pull request template we ask users to 昀椀ll upon contributing a new model not
only asks for the json 昀椀le summarizing the metrics but also for a restructured text
(.rst) 昀椀le describing the model. This template also contains several questions in-
spired by the model cards proposed by Kapoor and Narayanan 130, intended to en-
courage submitters to re昀氀ect on potential data leakage.





C S U P P O R T I N G I N F O R M AT I O N
F O R “ B I A S F R E E
M U LT I O B J E C T I V E A C T I V E
L E A R N I N G F O R M AT E R I A L S
D E S I G N A N D D I S C O V E R Y ”

C.1 N O T E S O N A C T I v E L E A R N I N G A N D p A R E T O
D O M I N A N C E

C.1.1 Problem setting considered in this work

In this work, we are interested in classifying with con昀椀dence a set of observations in
objective space as (approximate)-Pareto optimal points or as non-dominating points,
with a particular focus on sampling from regions of design space near the Pareto
optimal points.

C.1.2 Order theory

A partial order is a binary relation* ⪰ on a set Ω that satis昀椀es

1. re昀氀exivity : 𝑥 ⪰ 𝑥
2. antisymmetry: 𝑥1 ⪰ 𝑥2 and 𝑥2 ⪰ 𝑥1 imply 𝑥 = 𝑦
3. transitivity: 𝑥1 ⪰ 𝑥2 and 𝑥2 ⪰ 𝑥3 imply 𝑥1 ⪰ 𝑥3

for all 𝑥1, 𝑥2, 𝑥3 ∈ Ω.

The Pareto dominance relationship de昀椀nes a partial order that is additionally scale
and translation invariant as follows:

1. translational invariance: ∀𝑥 ∈ ℝ𝑚 ∶ 𝑥1 ⪯ 𝑥2 ⇒ 𝑥1 + 𝑥 ⪯ 𝑥2 + 𝑥
2. scale invariance: ∀𝛼 ∈ ℝ+ ∶ 𝑥1 ⪯ 𝑥2 ⇒ 𝛼𝑥1 ⪯ 𝛼𝑥2
In contrast, a total order is a partial order that ful昀椀lls the comparability axiom:∀𝑥1, 𝑥2 ∈ Ω ∶ 𝑥1 ⪯ 𝑥2 ∨ 𝑥2 ⪯ 𝑥1

A set with a total order de昀椀nes a chain. To induce a total order, one hence needs to
introduce a bias.

Clearly, we want to remove any form of bias in (computational) materials discov-
ery. In the initial design and discovery stage, we are interested in identifying a set
of possible candidates to enter the next design stage. That is, we 昀椀rst want to iden-
tify the partially ordered set (poset) of optimal candidates, ideally with con昀椀dence,
without weighting our di昀昀erent objectives. In principle, this can also provide addi-
tional insights into whether certain objectives must be weighted di昀昀erently. It is

* A binary relation, 𝑅 between sets 𝑋 and 𝑌, 𝑋𝑅𝑌, is a subset of the Cartesian product 𝑋 × 𝑌
169
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important to realize that for the extreme case when the number of iterations equals
the number of design points, we will also be able to identify the unbiased partial or-
der using any approach. However, in typical applications, enumerating through all
iterations is unfeasible, and thus we want to use an active learning approach to keep
the number of iterations as minimal as possible.

In the following sections, we illustrate how the biases in popular acquisition func-
tions, such as expected improvement, can a昀昀ect the resulting optimization outcome.
For more detail, we refer the reader to Zitzler et al. 252, Wagner et al. 271, del Rosario
et al. 502, and Mo昀昀aert and Nowé 503 (in the context of reinforcement learning).

C.1.3 Improvement measures

In the single-objective case, it is clear how to measure improvement; it is directly
given by the ranking of scalar objective values. In themulti-dimensional case, this im-
provement measure is no longer well-de昀椀ned. Commonly used improvement mea-
sures introduce a total order in the search space and hence bias the search.

Expected Improvement

There has been an e昀昀ort to generalize expected improvement (EI) measures that are
probabilistically optimal under some assumptions (see below) for multiobjective op-
timization. In general, expected improvement measures take the form of an integral
over the product of the improvement and the probability of improvement over the
non-dominated area 𝐴, which is represented by factorized normal distributions.

EI = ∫
y∈𝐴 𝐼(y, P)⏟

improvement

𝑚∏𝑖=1
1̂𝑠𝑖(x)𝜙 (𝑦𝑖(x) − ̂𝑦𝑖(x)̂𝑠𝑖(x) )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

probability of improvement

d𝑦𝑖(x) (3)

C.1.4 Biases with improvement measures

Only de昀椀ned on a subset of the Pareto set

The simplest approach to deal with a multiobjective problem is linear scalarization,
i.e., mapping the multiobjective problem into a single-objective optimization prob-
lem. Here, we develop a weighted sum of our objectives and use this as our overall
objective function: 𝐿 = 𝑚∑𝑖 𝑤𝑖𝑦𝑖. (4)

This de昀椀nes a convex function. Therefore, this approach will fail when parts of a
Pareto front are non-convex. One can imagine performing multiple searches with
di昀昀erent weighting functions, but this can be burdensome, and it is unclear how to
de昀椀ne such weighting functions.504

Dimensional imhomgenity

The 昀椀rst (trivial) bias is dimensional inhomogeneity. This can be nicely exempli昀椀ed
by choosing the improvement measure as the Euclidean distance from a Pareto op-
timal point to the closet point in the non-dominating set as proposed by Keane505

and also implemented by Janet et al.:245

𝐼(y, P) = 𝑘
min𝑗=1

√√√⎷
𝑚∑𝑖=1 (𝑦𝑖(x) − 𝑦𝑗𝑖)2, (5)
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where 𝑘 iterates over the set of non-dominating points with the current Pareto front
P. Here, we can see that the summation can include distance metrics between ob-
servables in di昀昀erent dimensions. The Euclidean norm shares sensitivity to various
scaling of the di昀昀erent objectives for all 𝐿𝑝>0 metrics (i.e., metrics based on a norm∑𝑖 ‖𝑥𝑖‖𝑝). This can be problematic, as we can imagine that one objective (e.g., 𝑖 = 1)
might be on the order 10−3, whereas another (e.g., 𝑖 = 2) might be on the order of106. Without re-scaling, the second objective would be given a much higher weight.
Hence, unless we have a priori knowledge of the range of values for di昀昀erent ob-
jectives, such re-scaling can be nontrivial. Wagner et al.271 have shown that such a
metric does not preserve the Pareto dominance relation.
In Figure 85, we illustrate additional examples of how EI can be sensitive to such
re-scaling methods.
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Figure 85: Improvement landscape for two 昀椀ctitious Pareto frontiers using eq. 5. The color
coding indicates the value of the improvement function in each grid point. In
a Bayesian optimization scheme, we would choose the sample with the highest
value of the improvement function, assuming that the variance is equal for all
points. In a material discovery setting, however, there will not be a material on
each grid point. A material with a certain combination of objectives might not
exist, in which case, there would be regions of space in the 昀椀gure where the im-
provement is unknown. Note that this improvement function landscapes include
“rifts” that distort the Pareto dominance relation. Also note that the improve-
ment landscape changes when we change the scales. This is evident by compar-
ing a with b. For example, we see for Pareto front 0 that in the unscaled space
improvements in directions of objective 2 get a higher weight, wherefore the as-
pect ratio of the red region changes upon scaling of the objectives.
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Choice of reference point

The hypervolume indicator is known as the only quantitative indicator that is strictly
increasing with respect to Pareto dominance.252 However, it can be sensitive to the
choice of a reference point.

Moreover, by construction, the hypervolume indicator gives higher weight to the
convex part of the Pareto front.252 As shown in Figure 86, we show how improve-
ment measures are greatest (red regions) in the top right portions of the 昀椀gure pan-
els. Regions within this space that solely improve one objective can contribute to
the hypervolume indicator quite drastically depending on the reference point.506

C.1.5 Optimization vs. active learning

Expected improvementmeasures are probabilistically optimal under the assumption
that the current sample is in the evaluated set and that the current evaluation is
the 昀椀nal evaluation.251 In our problem setting, however, we do not assume that the
current evaluation is the 昀椀nal evaluation and that this evaluation will be part of the
output set.251,507 For our active learning approach, we are interested in expediting
the classi昀椀cation of points in objective space as (approximate) Pareto-dominating
points and non-dominating points. Moreover, we aim to perform this classi昀椀cation
with tunable certainty, i.e., we want to be sure that the points we discard are with
high certainty worse than those we classify as Pareto optimal (or those that are still
unclassi昀椀ed).

In contrast, popular optimization techniques such as Bayesian optimization and
e昀케cient global optimization (EGO) aim to 昀椀nd numerical solutions to a set of objec-
tive functions or a single, overall objective function obtained through scalarization.
An illustration of a typical problem under Bayesian optimization with expected im-
provement is shown in Figure 87. In this example, sampling the point with the high-
est expected improvement is likely not the optimal decision in the long run. How-
ever, this point is considered themost (locally) optimal due to the overly greedy (i.e.,
exploitative) nature of EI. For this reason, other metrics such as “lookahead EI” have
been suggested.508

It is important to realize that in the limit of many samples, all optimization and ac-
tive learning techniques will allow us to construct a good Pareto front; however, dif-
ferent techniques will take di昀昀erent paths toward reaching this goal. Active learning
techniques are more concerned with the overall information gain needed to improve
the classi昀椀cation of optimal vs. non-optimal points, whereas the aforementioned
optimization approaches try to balance information gain with exploitation via an ac-
quisition function. In the case of 𝜖-Pareto active learning (PAL) the “exploitation”
occurs implicitly in the “discarding” classi昀椀cation step.

C.2 D E S I G N S p A C E
For our design space, we considered 4 monomer types and chain lengths between
16 and 48. Furthermore, we must consider that the reverse sequence equals the
forward sequence.

The total number of polymers in our design space is then given by

𝑛 = 12 48∑𝑖=16𝑖+=1
𝑖4 = 5.361 189 0 × 107. (6)

This results in more than 53 million possible sequences.
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Enumeration is impossible for so many polymers. For example, assuming an av-
erage memory requirement of 62 kB per monomer sequence, the memory footprint
would correspond to 3.3TB. This huge number of polymers also justi昀椀es our deci-
sion to use DoE as an initial sampling scheme of the design space. Here, we consid-
ered increments of two, which results in a smaller design space of

𝑛 = 12 48∑𝑖=16𝑖+=2
𝑖4 = 1.406 675 2 × 107. (7)

C.3 I N F L u E N C E O F C O M p O S I T I O N A N D S E -
q u E N C E

Figure 89 shows histograms of the standard deviation of each of the polymer descrip-
tors at a 昀椀xed polymer composition and varying sequence. From the distributions,
we see that the sequence is secondary compared to the composition of the polymer,
as the majority of points fall within 1 standard deviation of the mean.

C.4 C O A R S E G R A I N E D M O D E L
In DPD for polymers, the force is usually computed as

F𝑖𝑗 = FC𝑖𝑗 + FD𝑖𝑗 + FR𝑖𝑗 + Fspring𝑖𝑗 . (8)

With soft repulsive force

FC𝑖𝑗 = ⎧{⎨{⎩𝑎𝑖𝑗 (1 − 𝑟𝑖𝑗𝑟𝑐 ) ̂r𝑖𝑗 𝑟𝑖𝑗 < 𝑟𝑐0 𝑟𝑖𝑗 ≥ 𝑟𝑐, (9)

with repulsion parameter 𝑎𝑖𝑗, cuto昀昀 radius 𝑟𝑐 and unit vector ̂r𝑖𝑗.
The dissipative force is given as

FD𝑖𝑗 = −𝛾 (1 − 𝑟𝑖𝑗𝑟𝑐 )2 ( ̂r𝑖𝑗 ⋅ v𝑖𝑗) ̂r𝑖𝑗, (10)

with friction coe昀케cient 𝛾, the velocity di昀昀erence between the particles, v𝑖𝑗, and 𝜃
being a random number between 0 and 1.

The random force is computed as

FR𝑖𝑗 = 𝜎𝜃𝑖𝑗√𝛿𝑡 (1 − 𝑟𝑖𝑗𝑟𝑐 ) ̂r𝑖𝑗, (11)

with noise parameter 𝜎 .
The Frenkel spring force term is

Fspring𝑖𝑗 = −𝐾s (𝑟𝑖𝑗 − 𝑅0) ̂r𝑖𝑗. (12)

Following Smit and co-workers509 we chose the spring constant 𝐾s = 100𝑘B𝑇 and
equilibrium distance 𝑅0=0.80 DPD units, which was found in previous studies to be
the 昀椀rst maximum of the pair correlation function of a pure monomer system.510 All
simulations were run using a number density set to 3 and an integration timestep of
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0.025.

Español and Warren 511 have shown that DPD will sample the canonical ensemble
if 𝛾 = 𝜎22𝑘B𝑇 . (13)

Here we chose 𝛾 = 4.5.
Table 19: DPD cross interaction parameters. “S” denotes the solvent beads, “S2” denotes

the beads belonging to the attractive layer of the surface, “S1” denotes the beads
belonging to the repulsive core, and “R”, “Ta”, “Tr”, “W” represent the monomer
beads.

bead 𝑖 bead 𝑗 a𝑖𝑗
S R 30
S Ta 27.25
S Tr 27.25
S W 20
S S1 25
S S2 25
R Ta 25
Ta Tr 25
Tr W 25
R W 25
R Tr 25
Ta W 25
S2 R 15
S2 Ta 15
S2 Tr 20
S2 W 20
S1 R 75
S1 Ta 75
S1 Tr 75
S1 W 75
S2 S1 25

C.4.1 Surface model

The adsorption surface is modeled as face-centered cubic (fcc) lattice structure with
an equilibrium bond length of 0.707 and a lattice cell length of 3√4/3 ∼ 1.1 DPD
length units. The surface model consists of an inner and outer layer region: The
outer layers are one DPD length unit thick and constitute the attractive surface (S2),
whereas the inner-layer (8DPD length units) represents the repulsive core (S1). Note
that the simulations are set up symmetrically and thus contain two outer layers for
both sides of the surface. All fcc surfaces consisted of 10,240 DPD beads, corre-
sponding to a total thickness of ∼10 DPD length units. The bond constant of the
lattice was set to 100 𝑘B𝑇.

C.5 M O L E C u L A R S I M u L A T I O N S

C.5.1 Free energy of adsorption

Adsorption free energy simulations were initially prepared by solvating the fcc lat-
tice surfacemodel with 25,000 solvent beads (S) and the single-chain polymer. This
yielded a box dimension of approximately 17.6 × 17.6 × 37.8 cubic DPD length units
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for each polymer system (3125 systems in total). Simulations were set up using
Enhanced Monte Carlo (EMC) and run using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) code. Standard molecular dynamics (MD) sim-
ulations were performed for 1M timesteps for all systems, prior to running steered
MD and umbrella sampling simulations.

Both steered MD and subsequent umbrella sampling simulations were performed
using the “ParticleSeparation” collective variable (CV) de昀椀ned in the Software Suite
for Advanced General Ensemble Simulations (SSAGES) code. The CV distance was
de昀椀ned as the distance between the fcc lattice center-of-mass and polymer center-
of-mass along the 𝑧 (normal) dimension. CV distances were set 1 DPD length units
apart with minimum and maximum CV values of 1 to 12, respectively. This corre-
sponded to 12 simulations being performed for each polymer system (12⋅3125 poly-
mers = 37,500 simulations in total). Steered MD simulations were 昀椀rst performed
for 200,000 timesteps using a biasing spring constant of 15 𝑘B𝑇 to steer the poly-
mer into the target CV windows. Umbrella sampling was then performed for 1 M
timesteps using a spring constant of 15 𝑘B𝑇 for each umbrella. The weighted his-
togram analysis method (WHAM) was used to obtain the 昀椀nal potential of mean
force (PMF) as a function of surface-polymer 𝑧 center-of-mass separation distances.
We found that setting the spring constant to 15 𝑘B𝑇 with CV separation distances of
1 DPD length unit provided good overlap between CV distance histograms used in
WHAM. The adsorption free energy free energy of adsorption (Δ𝐺ads) was taken as
the di昀昀erence in free energy between free energy minimum along the 𝑧-dimension
and the free energy of the polymer in the bulk phase, i.e., maximum 𝑧 separation dis-
tance of 12. Note that we assume the Helmholtz free energy and Gibbs free energy
as approximately equal (i.e., 𝑝𝑉 contributions are assumed negligible).

C.5.2 Dimer repulsion energy

Dimer repulsion energy simulations were prepared by solvating two identical poly-
mers with 100,000 solvent beads, which corresponded to a box dimension of 32.2×32.2 × 32.2 cubic DPD length units. Steered MD and umbrella sampling simulations
were performed using the “ParticleSeparation” CV in the 𝑥, 𝑦, and 𝑧 dimensions, i.e.,
radial dimension. CV distances were set 1 DPD length units apart with minimum
and maximum CV values of 0 to 11, respectively. This again corresponded to 12 sim-
ulations being performed for each polymer system (12 ⋅ 3125 polymers = 37,500
simulations in total). Similar to the adsorption free energy calculations, steered
MD simulations and subsequent umbrella sampling simulations were performed for
200,000 and 1.5M timesteps, respectively, with biasing spring constants of 15 𝑘B𝑇.
WHAM was used to obtain the 昀椀nal PMF curve as a function of polymer-polymer
radial center-of-mass separation distance. Entropy corrections of 2 log(r) were also
applied to the PMF curve. The dimer repulsion free energy repulsive free energy of
polymer dimer (Δ𝐺rep) was taken as the di昀昀erence in free energy between the free
energy at CV separation distances of 0 and the free energy at the maximum radial
separation distances.

C.5.3 Radius of gyration

Radius of gyration simulations were prepared by solvating a single polymer with
5000 solvent beads corresponding to a box dimension of 11.9 × 11.9 × 11.9 cubic
DPD length unit. All simulations were run for 2M DPD timesteps.



176 S u p p O R T I N G I N F O R M A T I O N F O R M u L T I O B j E C T I v E A C T I v E L E A R N I N G

The radius of gyration (𝑅g) is computed as

𝑅g
2 = 1𝑀 ∑𝑖 𝑚𝑖(𝑟𝑖 − 𝑟cm)2, (14)

where 𝑀 is the total mass, 𝑟cm the center of mass and the sum is over all beads,
using the gyration command in LAMMPS. 𝑅gs were output every 1000 steps and
averaged over the entire simulation trajectory.

C.6 F E A T u R I z A T I O N

C.6.1 Polymer representation

Our text-based polymer notation uses the DPD bead types in place of atoms used in
standard “SMILES”. Parentheses can be used to re昀氀ect branching, however, we only
consider linear polymers for the scope of this work.

C.6.2 Features considered in this work

For the linear polymers, we computed the following features from the monomer se-
quence. The feature names follow the ones we use in the dataset:• length: degree of polymerization (number of beads)• head_tail_{bead}: 1 if bead at head or tail of polymer, 2 if at head and tail,

0 otherwise• rel_shannon: Shannon entropy of the polymer chain relative to the maxi-
mum possible entropy for a chain of the same length• cluster statistics, describing clusters in which the same bead type is repeated:

– num_{bead}: number of clusters for the bead type, relative total the
total number of clusters

– total_clusters: total number of clusters in a polymer chain

– max_{bead}: maximum cluster size for the bead type

– min_{bead}: minimum cluster size for the bead type

– mean_{bead}: mean cluster size for the bead type• {bead}: the frequency of a bead type in the polymer chain• Statistics of the DPD interaction parameters:

– total_solvent: the sumof theDPD interaction parameters of the poly-
mer chain with the solvent

– total_surface: the sumof theDPD interaction parameters of the poly-
mer chain with the surface

– std_solvent: the standard deviation of the DPD cross-interaction pa-
rameters of the polymer chain with the solvent

– std_surface: the standard deviation of the DPD cross-interaction pa-
rameters of the polymer chain with the surface
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C.6.3 Feature selection for the GPR surrogate models

For the 昀椀nal models we used the following features: num_[W], max_[W], num_[Tr],
max_[Tr], num_[Ta], max_[Ta], num_[R],max_[R],[W],[Tr], [Ta], [R],rel_shannon,
length. We used the same features for every surrogate model.

C.7 G p R S u R R O G A T E M O D E L

We used the GPy280 package to build and train the GPRs and used the limited mem-
ory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm for hyperparameter op-
timization.

For optimization of the hyperparameters we performed 20 random restarts with
di昀昀erent initializations and used hyperparameters corresponding to the best maxi-
mum likelihood solution.

C.7.1 Utility of coregionalized models

Coregionalized models use multi-output kernels, which have the following form:

B ⊗ K = ⎛⎜⎜⎜⎝
𝐵1,1 × K(X1,X1) ⋯ 𝐵1,𝐷 × K(X1,X𝐷)⋮ ⋱ ⋮𝐵𝐷,1 × K(X𝐷,X1) ⋯ 𝐵𝐷,𝐷 × K(X𝐷,X𝐷) ⎞⎟⎟⎟⎠ ,

where K is a kernel function, B is regarded as the coregionalization matrix, and 𝑋𝑖
represents the inputs corresponding to the 𝑖-th output. B allows the model to share
information between outputs, which would not be possible for two independent
kernels; it is hence especially valuable when one only has training data and sparse
response data (i.e., missing data for some of the responses) for multiple objectives
(see Appendix C.7.3). In case when all objectives are independent one would 昀椀nd𝐵𝑖𝑗 = 0 ∀ 𝑖 ≠ 𝑗. However, in the 𝜖-PAL algorithm we are interested in learning any
regularities that might exist in our design space as fast as possible.

Therefore we investigated how the coregionalized models perform compared to
two separate GPRmodels given our training data. We chose 𝑅g and Δ𝐺ads as targets.
For this analysis, we employed the Matérn-3/2 kernel and ICM for coregionalization.
To remove the degeneracy in the variance hyperparameter (one in the ICM and an-
other in the Matérn kernel), we constrained the variance of the Matérn kernel.

Two key parameters for the surrogate models in the 𝜖-PAL algorithm are the pre-
dicted variance (as this will in昀氀uence how large our rectangles are) and the accuracy
of the prediction (as 𝜖-PAL will no utility if the model is not predictive). To investi-
gate if a coregionalized kernel can be of use for our problem, we performed a learn-
ing curve analysis, as our overall goal for active learning is to predict well with as
little training data as possible. To obtain error estimates, we performed the analysis
10 times with di昀昀erent random seeds. In Figure 94, we 昀椀nd that the coregionalized
models outperform the two separate ones—notably for the smaller training set sizes,
which we would be suitable for the 𝜖-PAL algorithm.

In Figure 95, we show the variance as a function of the training set size.
In Figure 96, we show the predictive performance of the GPRmodels trained with

the 𝜖-PAL active learning process.
In Figure 97 and 98, we show the SHAP summary plots for surrogate models

trained with 𝜖 = 0.01 and 𝜖 = 0.1, respectively,
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C.7.2 Other model types

In Figure 99, we compare the predictive performance of a rank 1 ICM model, rank
2 ICM model, independent GPR, the neural tangent kernel (NTK), and the neural
network Gaussian process (NNGP). The NTK and NNGP were computed using the
neural-tangents library.285 TheNTK andNNGPwere based on the architecture [8, 8,
8] with error function activation. We did not perform hyperparameter optimization
for these NN-based models.

For the GPR models, we used a Matérn-5/2 kernel without ARD. We tested the
models for predicting the 𝑅g and Δ𝐺ads.

The learning curves indicate that in our case, there is little di昀昀erence between rank
1 and rank 2 coregionalized models.

C.7.3 Dealing with missing data

For the case study with missing data, we randomly discarded one-third of the sim-
ulation results for the dimer repulsion energy. The PyePAL code can deal with this
situation with any kind of model, but coregionalizedmodels are particularly suitable
as they can exploit correlations between the objectives and hence help with “昀椀lling
in” the missing measurement. The progress of an active learning experiment in this
setting is illustrated in Figure 100.

C.8 p A R E T O O p T I M A L S T R u C T u R E S I N F E A -
T u R E A N D p R O p E R T y S p A C E

C.8.1 Objective (property) space

Out of 3125 polymers in our experimental design, 73 are Pareto optimal according
to our brute-force simulation results (Figure 101).

C.8.2 Feature space

To visualize feature space, we project the high-dimensional feature space onto two
dimensions using PCA (Figure 102, usingscikit-learn279) andUMAP (Figure 103,
using umap-learn512). We can observe that the Pareto optimal structures do not
cluster in one region of feature space but are spread all over the feature space.

C.9 H y p E R p A R A M E T E R T u N I N G F O R T H E p A L
A L G O R I T H M

C.9.1 In昀氀uence of the initial training set

One crucial assumption for the theoretical bounds to be valid is that the true error is
bounded by the estimate provided by the GPR (this can be problematic if the model
is overcon昀椀dent513). For this reason, we found empirically that it is practical to ini-
tialize the search with a diverse set of about that is large enough that the model is
predictive. The minimum number of samples can be estimated using learning curve
analysis. The in昀氀uence of the number of initial points on the performance on our
dataset is shown in Figure 104.
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To ensure a good sampling of the initial space, we chose the 𝑛 samples using
a greedy MaxMin sampling, initialized with the point closest to the mean of the
dataset.

Figure 105 compares greedyMaxMin samplingwith initialization basedon 𝑘-means
clustering. We 昀椀nd that the MaxMin sampling typically leads to faster convergence
but that the 𝑘-means sampling converges to lower errors.

C.10 ε- p A L I M p L E M E N T A T I O N

C.10.1 Overview of the algorithm

The input of the 𝜖-PAL algorithm is the initial design space 𝐸, the priors for the
GPR models, as well as the hyperparameters 𝜖𝑖 and 𝛿. Additionally, we use a scaling
parameter (𝛽scale) of the scaling parameter for the hyperrectangle (𝛽𝑡) as the theo-
retical value tends to be too conservative. For most of our 𝜖-PAL runs, we set the
hyperparameters 𝛿=0.05, 𝜖𝑖, and scaled𝛽𝑡 by 1/20. In our PyePAL package, we allow
the user to choose custom schedules for the optimization of the hyperparameters of
the GPR, batch size, and exclude high-variance points from the classi昀椀cation step.

For the subsequent discussion, we need to de昀椀ne the following symbols, which
mostly follow the notation from Zuluaga et al.:• design space (𝐸): 昀椀nite set of points from which we sample• (𝜖-accurate) Pareto set (𝑃): the solution we aim to 昀椀nd• set of unclassi昀椀ed points (𝑈): in the 昀椀rst iteration 𝑈0 = 𝐸• set of discarded points (𝐷): points for which we can say with high con昀椀dence

that they are not 𝜖 Pareto optimal• using the standard deviation and mean vectors predicted by the GPRs we use
the𝛽𝑡 to compute a conservative uncertainty hyperrectangle of point x (𝑄𝜇,𝜎,𝛽(x))• iterative intersection of the hyperrectangles gives us uncertainty region of
point x (𝑅𝑡(𝑥)): 𝑅𝑡(𝑥) = 𝑅𝑡−1 ∩ 𝑄𝜇,𝜎,𝛽(x)

It is also useful to compare the concept of Pareto optimality with the one of 𝜖-
accurate Pareto dominance, assuming a maximization problem.• Pareto dominance: We say that 𝑦 dominates 𝑦′ i昀昀 𝑦 ⪰ 𝑦′, i.e., 𝑦 is no worse

than 𝑦′ in all objectives and strictly better in at least one objective• 𝜖-Pareto dominance: We relax the de昀椀nition to 𝑦 + 𝜖 ⪰ 𝑦′, which we also
write as 𝑦 ⪰𝜖 𝑦′

Note that in contrast to the original implementation, we do not require knowledge
of the value ranges of the objectives to compute the uncertainty hyperrectangles.
In general, this is not known a priori. That is, instead of computing the tolerance
as 𝜖𝑗𝑟𝑗, where 𝑟𝑗 is the range of objective 𝑗, we use 𝜖𝑗𝜇𝑗 where 𝜇𝑗 is the prediction
for objective 𝑗. Additionally, this ensures that the tolerance is proportional to the
value of the 𝜇𝑗 (and is not in昀氀ated/de昀氀ated depending on the range). We compare
both behaviors in Figure 108. We 昀椀nd the adaptive tolerances converge to lower
errors and to also show lower errors in the initial and intermediate iterations. This
is particularly pronounced if we do not set the uncertainties of the sampled points
to zero but instead use the uncertainties predicted by the GPR.
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For the calculation of the hypervolumesweuse code from thenevergrad library.286
Note that hypervolumes are not used in the algorithm itself but are logged to moni-
tor our algorithm convergence.

Moreover, we implemented the prediction error 𝜀(�̂�, 𝑃)256
𝜀(�̂�, 𝑃) = 1‖𝑃‖ ‖𝑃‖∑𝑖 min𝑥′∈�̂� max1≤𝑗≤𝑝 (𝑓𝑗(x) − 𝑓𝑗(x′)) ⋅ 100𝑟𝑗 , (15)

where �̂� is the predicted Pareto front, 𝑝 the number of objectives, 𝑟𝑗 is the range of
the values for objective 𝑗, and ‖𝑃‖ the number of points in the set of Pareto optimal
points, 𝑃.

For more detail on the 𝜖-PAL algorithm, we refer the reader to the original imple-
mentation.256,257

I N I T I A L I z A T I O N To initialize the GPRs a few samples from the design space
need to be 昀椀rst evaluated. In practice, this can be done by selecting 𝑘 samples closest
to the centroids of a 𝑘-means cluster or by using a greedyMaxMin sampling approach
(which we initialize with the median or mean).

M O D E L L I N G As discussed in section C.7, we use Gaussian processes as surro-
gate models and the mean and variance of the posterior function to construct hyper-
rectangles. We decided to add the frequency of hyperparameter optimization of the
GPR models as a hyperparameter for the 𝜖-PAL algorithm.

D I S C A R D I N G Anypoint is removed from theunclassi昀椀ed set if its optimistic out-
come is 𝜖 dominated by the pessimistic outcome of another point. More speci昀椀cally,
we 昀椀rst consider the Pareto pessimistic set 𝑝pess(𝑃) and then the Pareto pessimistic
set 𝑝pess(𝑃 ∪ 𝑈), where a Pareto pessimistic set is de昀椀ned as the set of points x for
which there is no other point x′ such that min (𝑅𝑡(𝑥)) ⪯ min (𝑅𝑡(x′)). For this rea-
son, we are guaranteed that the discarding step is safe since there always will be a
point that 𝜖 dominates the discarded points. This is a key feature that is of particular
importance for materials design and discovery.

I D E N T I F I C A T I O N O F 𝜖 p A R E T O O p T I M A L p O I N T S A point x belongs
with high probability to the output set of 𝜖-accurate Pareto points if there is no other
point 𝑥′ ∈ 𝑃 ∪ 𝑈 such that max (𝑅𝑡(x′)) ⪯𝜖 min (𝑅𝑡(𝑥)).
S A M p L I N G In the sampling stage, the next sample is one of the Pareto optimal
or unclassi昀椀ed points with the highest uncertainty 𝑤𝑡:𝑤𝑡(x) = max

y,y′∈𝑅𝑡(x) ∥𝑦 − 𝑦′̂𝑦 ∥2 . (16)

Note that the algorithm does not sample from the discarded points. To ensure scale
invariance, we rescale the uncertainty in each direction by the mean prediction, i.e.,
we use the coe昀케cient of variation for sampling. Beyond de-biasing the search, this
change can have an impact on the performance of the algorithm as shown in Fig-
ure 110.

As the choice of the aggregation function (with which the di昀昀erent objectives are
combined into one scalar for the sample step) is not unique, we compared the per-
formance of the Frobenius norm (default in the PyePAL package, used for this work)
with the mean and median (Figure 111).

In our implementation, we, by default, will use the measured mean and standard
deviations instead of the predictions of the surrogate model. From Figure 112, we
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see that replacing the GPR uncertainty for the sampled points with zero greatly ex-
pedites the convergence.

We chose to not implement sampling methods that require retraining of the mod-
els for all potential candidates (e.g., expected error reduction514,515) as those tech-
niques would extremely increase the computational cost of the algorithm (retrain-
ing and evaluating the model(s) for every possible new sample, averaged over all
possible labels), even though those techniques might mitigate the tendency of un-
certainty sampling516 to sample outliers.

S T O p p I N G The algorithm stopswhen all points are either discarded or classi昀椀ed
as Pareto optimal, i.e., if 𝑈 = ∅.
C.10.2 Batch sampling

Batch sampling can be bene昀椀cial if simulations or experiments can be parallelized
and when a sequential scheme is too time-consuming. The original 𝜖-PAL scheme
samples only one sample per iteration. In this work, we did not employ batch sam-
pling. However, in our PyePAL package, we allow the user to perform 𝜖-PAL in batch
mode. We use a greedy approximation and sample the 𝑛 next best samples according
to the selection criterion rather than just sampling one point. Note that the greedy
approximation lowers the e昀케ciency of the exploration of the space.

C.10.3 Multiple ε

For some applications, it is often preferred to have the di昀昀erent tolerances for 𝜖 on
the Pareto front for each objective. To account for such 昀氀exibility, we use one 𝜖𝑖 per
dimension 𝑖.
C.10.4 吀栀eoretical guarantees

Zuluaga et al.256 showed that the 𝜖-PAL algorithm comes with some guarantees for
the quality of the solution. For that reason, one assumes that the functionswhich are
modeled with the GPRs are arbitrary functions from the reproducing kernel Hilbert
space (RKHS) with some associated kernel 𝑘. Additionally, the noise of the sam-
ples is assumed to have zero mean conditioned on the history and to be bounded
by 𝜎 . For an appropriate choice of hyperparameter 𝛽𝑡, Zuluaga et al. proved that an𝜖-accurate Pareto front can be found in a bounded number of iterations with proba-
bility 1 − 𝛿, where 𝛿 is also a hyperparameter that can be speci昀椀ed by the user.

C.10.5 Limitations

It is well known that kernel methods tend to need stringent feature selection.239 In
case one only has access to a high-dimensional feature space with noisy data, the
GPR models might have a too low predictive performance for a decent convergence
of 𝜖-PAL. Future work could investigateMonte-Carlo dropout-based surrogatemod-
els.517

Furthermore, 𝜖-PAL, operates on a 昀椀nite design space, i.e., it will not 昀椀nd a design
that is not in the set of possible designs it is provided with as input. Therefore, any
continuous design space needs to be discretized.
Additionally, since we require the returned points to be 𝜖-Pareto optimal, this ap-
proach can require many iterations until the 昀椀rst point is classi昀椀ed as 𝜖-Pareto opti-
mal if the predicted variance stays high even after many iterations.
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C.10.6 Sensitivity of the hypervolume error to the choice of the reference
point

Since the reference point for the hypervolume calculation is a user-de昀椀ned parame-
ter, we explored a range of di昀昀erent settings. For the reference points, we consid-
ered the minimum of our design space (sampled using the DoE), some intermedi-
ate point (−5, −5, −5), and a point orders of magnitude larger than the objectives(−1000, −1000, −1000). In Figure 113, we compared the convergence behavior to
the median of 100 random explorations of the design space.

C.11 I N v E R S E D E S I G N
We use the term “inverse design” to refer to 昀椀nding a valid polymer that maximizes
the outputs of our models.426

C.11.1 Surrogate model

To be able to perform practical inverse design, we cannot use all the features used
in this work. For example, the Shannon entropy feature, provided a length and set
of characters, is partially invertible but would require a complex constraint for our
optimization algorithm. This would make the search ine昀케cient.
To avoid this issue, we trained GBDTs models with reduced feature sets to predict
the predictions of the GPR models. For those surrogate models, we optimized the
hyperparameters with Bayesian optimization. The details can be found under sweep
ids f2cteo9b, 704xptpt, 1vwsrp8b on the wandb platform). Note that using surro-
gate models that are trained on the predictions of other models is a commonly used
technique to interpret models.334,518

C.11.2 Genetic algorithm

We also attempted to use particle swarm optimization (PSO) as implemented in
the pyswarm519 package but found better results with GAs, for which we used the
geneticalgorithm Python package.291 The main advantage of GA over PSO for
our optimization problem is that GA allows for a more natural treatment of mixed
datatype (integer and real) optimization.

Since not all possible features correspond to valid polymers and we are mostly
interested in novel polymers, we used the following 昀椀tness function

ℒ(x) = −10 ̂𝑦(x)𝑦train

+ CP(x) + NIVP(x) + 𝛼NP(x), (17)

where ̂𝑦 is the prediction of the model. CP and NIVP are penalty terms that penalize
structures with unphysical cluster size features and those which are not invertible,
respectively. The penalties have the following form

CP(x) = ⎧{⎨{⎩max_bead_type > length ⋅ bead +30
else 0 ∀ bead, (18)

where we used the feature notation from section C.6.2, and

NIVP(x) = ⎧{⎨{⎩at least one valid monomer seq. generated 0
else 50, . (19)

https://app.wandb.ai/kjappelbaum/dispersant_screener/sweeps/f2cteo9b
https://app.wandb.ai/kjappelbaum/dispersant_screener/sweeps/704xptpt
https://app.wandb.ai/kjappelbaum/dispersant_screener/sweeps/1vwsrp8b
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where we use the algorithm described in section C.11.3 to iteratively attempt the
mapping from features to a bead sequence.

The last term in eq. 17 is a penalty term that increases the loss for structures that
are similar to the ones from our database to encourage the GA to explore new areas
of chemical space:

NP(x) = max (𝑦train (min ‖xtrain,i − xtrain‖ − min ‖x − xtrain‖) , −𝑦train) . (20)

To consider a wide balance between exploration and exploitation, we swept through𝛼 = {0, 0.1, 0.5, 1, 2, 10, 20, 50, 100} with multiple random restarts for each 𝛼.
We considered the feature bounds listed in Table 20.

Table 20: Feature bounds for the GA.
feature lower bound upper bound type

length 16 48 int
max_{bead} 0 36 int
{bead} 0 1 real

For the elitist GA we used the hyperparameters listed in Table 21.

Table 21: Parameters used for the GA.

parameter value

restarts 3
maximum number of iterations 300
elite ratio varied {0, 0.01, 0.05, 0.07}
population size 300
mutation probability 0.1
crossover probability 0.8
parents portion 0.1
crossover type uniform
early stopping after 500 iterations without improvement

C.11.3 Mapping back to valid monomer sequences

For our promising solutions, we enumerated possible monomer sequences.
To map back to physically valid bead sequences, we round the bead numbers and
degree of polymerization found in GA to integers and calculate the maximum size
of the clusters to capture the topological features of the polymer (pool of beads and
clusters).

To e昀케ciently evaluate if any permutation of the given characters can build a valid
monomer sequence, we use a backtracking algorithm.520 This algorithm sequentially
evaluates if adding a character from the pool can still provide a valid monomer se-
quence, based on the constraints on the number of beads and the maximum size of
the clusters. If the addition is successful, we pop this character from the pool and
continue recursively calling the function until the pool of candidate beads is empty.

Since none of the predictions we made for the polymers we found in the “inverse
design” step dominated a point from the Pareto front we found in the subspace sam-
pled with DoE, we did not perform any additional simulations.

In Table 22, we compare hypervolumes found with the GA, and 𝜖-PAL on the
subspace sampled with DoE.
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Table 22: Hypervolume of design space sampled with DoE and Pareto front found using the
GA.

reference point hypervolume original
DoE

hypervolume GA PyePAL (𝜖=0.01)
minimum (1.46, 3.04,1.61 × 10−3) 268 166 257

(-5,-5,-5) 1536 1283 1515
(-1000, -1000,
-1000)

1 026 829 209 1 025 214 020 1 026 813 775
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(b) Reference point [-60,-3].
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(c) Reference point [-3,-60].

Figure 86: Improvement function landscape based on the improvement in hypervolume,
computed with di昀昀erent reference points for the integration of the area below
the Pareto frontier. The color coding indicates the value of the improvement func-
tion in each grid point. In a Bayesian optimization scheme, we would choose the
sample with the highest value of the improvement function, assuming that the
variance is equal for all points. In a materials discovery setting, however, there
will not be a material on each grid point. A material with a certain combination
of objectives might not exist, wherefore there would be blank spots in the 昀椀gure.
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Figure 87: Expected improvement and predictive (posterior) distribution for a GPR model
(Matérn-5/2 with automatic relevance determination (ARD)) on noisy samples
from the Branin function.504 Dotted line indicates the feature value we would
sample next based on themaximum value EI. In this particular case, it seemsmore
intuitive, though, to take a sample in the undersampled regions with high uncer-
tainty. Figure based on illustrations in Wu and Frazier.508

degree of polymerization

20 40

Figure 88: Two-dimensional projection of our polymer design space. We used the UMAP
technique to project our design space, which we sampled using DoE, onto two
dimensions. Points are colored according to the degree of polymerization. Car-
toons illustrate the composition of some copolymers.
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Figure 89: Histograms show the standard deviation of the descriptors for 昀椀xed polymer com-
position and varying sequence. The black solid line shows the standard deviation
between the means of the descriptors for 昀椀xed composition. The dashed vertical
line gives the mean standard deviation for 昀椀xed composition (means of the his-
tograms).
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Figure 90: Potential of mean force (𝑊) as a function of surface and polymer center-of-mass
separation distance along the Z normal direction. Δ𝐺ads is taken as the di昀昀erence
in free energy between the bulk and minimum free energy.
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Figure 91: Umbrella sampling histograms obtained as a function of surface-polymer COM
separation distance (cv0). Target CV separation distances were set to 1DPD unit
apart.
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Figure 92: Potential ofmean force (𝑊) as a function of polymer and polymer center-of-mass
separation distance along the radial (𝑟) direction. Δ𝐺rep is taken as the di昀昀erence
in free energy between those at themaximumandminimumseparation distances.
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Figure 93: Radius of gyration 𝑅𝑔 as a function of simulation timestep. ⟨𝑅𝑔⟩ is taken as the
average 𝑅𝑔 over the entire simulation trajectory as indicated by the horizontal
orange line.
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Figure 94: Learning curves for models with coregionalized kernel and independent models.
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Figure 95: Predicted variance as a function of the training set size for models with coregion-
alized kernel and independent models.
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Figure 96: Predictive performance of the models trained with the 𝜖-PAL active learning pro-
cess.
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Figure 97: SHAP summary plot for a surrogatemodel (ICM,Matérn-5/2 kernel) trained over
the course of a 𝜖-PAL run with 𝜖 = 0.01, 𝛿 = 0.05 𝛽scale = 0.05.
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Figure 98: SHAP summary plot for a surrogatemodel (ICM,Matérn-5/2 kernel) trained over
the course of a 𝜖-PAL run with 𝜖 = 0.1, 𝛿 = 0.05 𝛽scale = 0.05.
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Figure 99: Learning curves for di昀昀erent model types. All GPR models were built using
Matérn-5/2 kernels without ARD. The NNGP and NTK were built for a small,
three-layer NN.

a b

Figure 100: Classi昀椀ed points and hypervolume error as a function of the number of iter-
ations. Using ICM with Matérn-5/2 kernel. Hypervolume error for random
search (with all data present, i.e., no missing outputs) is shown for comparison.
All search procedures were initialized using the same set of initial points but vary
substantially after only one iteration step. The hypervolume reference point for
this 昀椀gure is (-5, -5, -5).
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Figure 101: Overview of the design space and the Pareto optimal points in this design space.
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Figure 102: Projection of the feature space onto two dimensions using PCA.
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Figure 103: Projection of the feature space onto two dimensions using UMAP.
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Figure 104: In昀氀uence of the number of initial points. Hypervolume error as a function of
the number of initial points. We left 𝜖 = 0.05, 𝛿 = 0.05, 𝛽scale = 0.05 昀椀xed and
sampled using k-means sampling. Note that a lownumber of initial samples (e.g.,𝑛 = 10) can lead to unreliable results. This can be the case if the surrogatemodel
is non-predictive and overcon昀椀dent, causing themisclassi昀椀cation of points early
in the search. For this reason, the PyePAL package warns users when the cross-
validation error is greater than the variance of themodel. Moreover, the learning
curves (Figure 99) indicate that the models have a large generalization error for𝑛 ≪ 60. Hypervolumes were calculated using the nadir point as our reference
point.
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Figure 105: In昀氀uence of the sampling method used to create the initial set. Hypervolumes
were calculated using the nadir point as our reference point.
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Figure 106: Relative hypervolume errors and total number of iterations of the 𝜖-PAL algo-
rithm as a function of 𝜖 (𝜖𝑖 = 𝜖 ∀𝑖 ∈ {0, 1, 2}).
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Figure 107: Pareto vs. 𝜖-Pareto front for two objectives. a illustrates the concept of the
Pareto set, i.e., the set of maximal points, and the Pareto, whereas b shows a 𝜖-
Pareto front. 𝜖 Pareto optimality would also be given if the Pareto set includes
the green point instead of the neighboring red one.
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Figure 108: Fixed tolerances vs. adaptive tolerances. To expedite this experiment we used a
lg2 spaced schedule for hyperparameter optimization (in contrast to the linearly
space schedule used in the rest of this work). We left 𝛿 = 0.05 and 𝛽scale = 0.05
昀椀xed, used a Matérn-5/2 kernel without ARD, and initialized with 40 points
sampled using greedy farthest point sampling. Hypervolumes were calculated
using the nadir point as our reference point.
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Figure 109: Illustration of the set of Pareto pessimistic points. In the discarding step, we
would keep the point with the green uncertainty region 𝑅𝑡(𝑥) as we cannot say
with certainty that it is lower than the Pareto pessimistic 𝑝pess front but will dis-
card all points with gray hyperrectangles. In the discarding step, we build two
di昀昀erent Pareto pessimistic fronts. First, only from the points we already classi-
昀椀ed as 𝜖-Pareto optimal. Then, followed by ones where we consider the union
of 𝜖-Pareto optimal and unclassi昀椀ed points.
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Figure 110: In昀氀uence of scaling the variance on the performance of the algorithm. Using the
coe昀케cient of variation instead of the unscaled uncertainty marginally improves
the performance in our test cases.
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Figure 111: In昀氀uence of the aggregation function. We observe that the Frobenius norm leads
to faster termination of the search, e.g., compared to median aggregation, which
leads to lower 昀椀nal hypervolume errors. Hypervolumes were calculated using the
nadir point as our reference point.
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Figure 112: Replacing the uncertainty with the measured uncertainty (here assumed to be
zero). To expedite this experiment we used a lg2 spaced schedule for hyperpa-
rameter optimization (in contrast to the linearly space schedule used in the rest
of this work). We left 𝛿 = 0.05, 𝜖 = 0.05, and 𝛽scale = 0.05 昀椀xed, used a Matérn-
5/2 kernel without ARD, and initialized with 40 points sampled using greedy
farthest point sampling.
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Figure 113: Convergence behavior compared to random search for di昀昀erent hypervolume
reference points.
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Figure 114: Projection of the generated feature sets on the 昀椀rst two principal components of
the database.
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The data 昀氀ow used in this work is schematically summarized in Figure 115.

- removal of errors for rare oxidation states
- removal of mixed valence structures
- featurization 

94 716 structures in CSD MOF 
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parsing chemical names
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Figure 115: Data昀氀ow. High-level overview over the path from structures from the CSD
database to the training set.

D.1.1 Construction of the training set

Given that manual annotation of oxidation states of metal centers for a large collec-
tion of structures is unfeasible, we decided to parse the available information in the
CSD. Currently, there is no searchable 昀椀eld for oxidation states in the CSD, where-
fore we used a regular expression to extract the oxidation states from the chemical
names (e.g., catena-(tris(μ-4,4’,4’‘,4’’’-(porphyrinato-5,10,15,20-tetrayl)tetrabenzoato)-
octakis(μ-hydroxo)-octakis(μ-oxo)-dodeca-aqua-hexacarbonyl-dodecahydroxy-tri-cobalt(ii)-
dodeca-zirconium(iv)). The Roman literals were then converted to Arabic numerals
for the machine learning pipeline. In recent e昀昀orts of the CSD, the oxidation states
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have been validated.305,316

Private communication by the CSD con昀椀rmed that all oxidation states in the CSD
have been added by an editor based on the chemistry in the structure and/or with
reference to the paper if unclear.

Theparsing functionality is implemented in theoximachine_featurizerPython
package (DOI 10.5281/zenodo.3567274).

D.1.2 De昀椀nition of MOF used for this study

In this work, we follow the algorithmically implementable de昀椀nition of MOFs that
was put forward by Moghadam et al. 116. This de昀椀nition is based on seven rules for
substructure search that describe the bond between a metal and an organic com-
pound, following the work from Goldsmith et al. 521. Additionally, Moghadam et
al. 116 require that the keyword catena is in the name, i.e., that the structure is poly-
meric. Note that these rules do not directly capture the “potential porosity”, which
is an element of the IUPAC provisional recommendations522 for the de昀椀nition of
MOFs). Therefore, our training and test set contain structures that chemists might
not classify as MOF but rather, e.g., polyoxometallates (see representative struc-
tures in Figure 119 and 120, in Appendix D.1.7). Similar observations were recently
reported by Chen and Manz 523.

D.1.3 Visualization of the metal distribution

To analyze whether the distribution of elements in the MOF subset of the CSD is dif-
ferent from the distributions of elements in the CSD overall, we created Figure 116.
As an additional point of reference, we also plot the distribution of metals in the
CoRE-MOF database, which is a subset of the CSD that was selected in 2014 using
slightly di昀昀erent criteria. Primarily, it considers in its selection only 3D structures
that are porous to hydrogen, i.e., with a pore limiting diameter larger than 2.4Å.
The CoRE-MOF contains ca. 5000 structures, and has been widely used in computa-
tional studies.134,524 To avoid comparability problems due to varying cell sizes, we
raise the count for a particularmetal by one if we 昀椀nd it in the structure, independent
of how many metal nodes are in that structure.

We observe that the distribution of CSD MOF subset is generally closer to the
one of the CSD overall than the distribution of the CoRE-MOF database. Both the
CSD MOF subset and the CoRE-MOF database are enriched in Zn, Cu, Cd, Co and
deprived in Fe, Ru, Pt, Tl, Au, Rh, Re, Ir, Os. This, on the one hand, shows opportu-
nities for the MOF community, like gray areas in chemical space, and, on the other
hand, indicates that some aforementioned metals are cases in which one might ex-
pect the model to transfer less well to new chemistry.

D.1.4 Distribution of oxidation states

Before the modeling, we performed exploratory data analysis (EDA) focusing on the
frequency of oxidation state annotations in theCSDand the distribution of oxidation
states (cf. Table 23).

https://zenodo.org/record/3567274
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Figure 116: Metal frequencies. Metal distributions in di昀昀erent subsets of the CSD.

Table 23: Distribution of metals and oxidation states in the CSD overall and the MOF subset
of the CSD, sorted by count in the full CSD. Frequencies of occurrence are given
in percentage.

CSD overall MOF subset

elem. count freq. oxidation states (freq.) count freq. oxidation states (freq.)

Cu 54985 16.9 I (23.2), II (76.4), III (0.4) 11440 20.8 I (24.2), II (75.8), III (0.0)
Ni 26004 8.0 I (1.0), II (95.6), III (3.3),

IV (0.2)
2493 4.5 I (0.1), II (99.0), III (0.9)

Co 25042 7.7 I (2.1), II (64.0), III (33.8),
IV (0.0), V (0.0)

4816 8.7 I (0.1), II (94.2), III (5.7)

Zn 22672 7.0 I (0.1), II (99.9) 6538 11.9 I (0.0), II (100.0)
Fe 19473 6.0 I (1.1), II (54.6), III (43.7),

IV (0.6), V (0.0)
1986 3.6 II (68.4), III (31.5), IV (0.1)

Pd 18539 5.7 I (1.0), II (98.0), III (0.4),
IV (0.6), V (0.0)

101 0.2 I (1.0), II (97.0), III (1.0),
IV (1.0)

Pt 14695 4.5 I (0.6), II (85.9), III (2.0),
IV (11.5), VI (0.0)

180 0.3 II (87.8), III (3.9), IV (8.3)

Mn 14424 4.4 I (4.2), II (64.8), III (26.6),
IV (4.0), V (0.4), VI (0.0),
VII (0.0)

3578 6.5 I (0.1), II (86.9), III (12.5),
IV (0.4), V (0.1)

Ag 11591 3.6 I (98.9), II (0.6), III (0.4) 4621 8.4 I (99.7), II (0.3)
Cd 10814 3.3 I (0.0), II (99.9), III (0.0) 5490 10.0 I (0.0), II (99.9), III (0.1)
Ru 10573 3.2 I (1.3), II (83.1), III (12.2),

IV (2.8), V (0.1), VI (0.6)
174 0.3 I (1.1), II (66.7), III (31.6),

IV (0.6)
Au 6999 2.1 I (73.7), II (1.8), III (24.5),

IV (0.0)
286 0.5 I (90.6), III (9.4)

Continued on next page
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Table 23: Distribution of metals and oxidation states in the CSD overall and the MOF subset
of the CSD, sorted by count in the full CSD. Frequencies of occurrence are given
in percentage.

CSD overall MOF subset

Mo 6380 2.0 I (0.8), II (11.8), III (5.7),
IV (14.3), V (20.0), VI (47.4)

535 1.0 II (4.9), III (1.5), IV (4.3),
V (26.4), VI (63.0)

Sn 5855 1.8 I (0.1), II (19.6), III (0.1),
IV (80.2), V (0.0), VI (0.0)

469 0.9 II (9.6), IV (90.4)

Rh 5555 1.7 I (45.9), II (14.6), III (39.2),
IV (0.2), V (0.1)

160 0.3 I (7.5), II (85.0), III (7.5)

V 5356 1.6 I (0.9), II (3.8), III (13.4),
IV (39.6), V (42.3), VI (0.0)

448 0.8 II (0.4), III (11.2), IV (45.3),
V (42.9), VI (0.2)

Re 4684 1.4 I (30.5), II (4.7), III (12.9),
IV (6.5), V (37.0), VI (1.8),
VII (6.7)

18 0.0 I (22.2), II (5.6), III (44.4),
IV (5.6), V (16.7), VII (5.6)

Ti 4437 1.4 I (0.0), II (3.1), III (13.0),
IV (83.9)

77 0.1 II (1.3), III (11.7), IV (87.0)

Cr 4114 1.3 I (2.2), II (15.9), III (73.8),
IV (1.7), V (2.2), VI (4.3)

329 0.6 I (0.6), II (10.0), III (87.5),
V (0.3), VI (1.5)

Hg 3906 1.2 I (1.4), II (98.6) 681 1.2 I (2.6), II (97.4)
Ir 3622 1.1 I (21.6), II (3.0), III (73.7),

IV (1.2), V (0.6)
20 0.0 I (15.0), III (75.0), IV (10.0)

Pb 3010 0.9 I (0.1), II (95.8), III (0.0),
IV (4.1)

1067 1.9 II (99.0), IV (1.0)

Eu 2560 0.8 II (8.2), III (91.8) 899 1.6 II (3.1), III (96.9)
U 2757 0.8 II (0.4), III (9.4), IV (32.3),

V (6.8), VI (51.0)
332 0.6 III (0.3), IV (12.3), V (1.5),

VI (85.8)
W 2682 0.8 I (0.4), II (14.6), III (3.4),

IV (17.2), V (14.5), VI (49.8)
276 0.5 IV (7.6), V (28.6), VI (63.8)

Dy 1816 0.6 II (0.8), III (99.2) 439 0.8 II (0.7), III (99.3)
Gd 1997 0.6 II (0.5), III (99.5) 643 1.2 II (0.3), III (99.7)
Sm 1881 0.6 II (15.6), III (84.4) 503 0.9 II (2.2), III (97.8)
La 1712 0.5 II (0.3), III (99.7) 576 1.0 III (100.0)
Nd 1748 0.5 II (0.4), III (99.6) 559 1.0 III (100.0)
Tb 1673 0.5 II (0.5), III (99.5), IV (0.1) 629 1.1 II (0.2), III (99.7), IV (0.2)
Zr 1693 0.5 II (3.5), III (4.5), IV (92.0),

VI (0.1)
136 0.2 III (0.7), IV (98.5), VI (0.7)

Yb 1709 0.5 II (28.0), III (72.0) 238 0.4 II (2.5), III (97.5)
Er 1190 0.4 II (0.6), III (99.2), IV (0.2) 392 0.7 II (1.0), III (98.7), IV (0.3)
Bi 1424 0.4 II (1.4), III (92.3), V (6.2) 216 0.4 II (1.4), III (96.3), V (2.3)
Y 1429 0.4 I (0.1), II (0.1), III (99.8),

IV (0.1)
215 0.4 III (100.0)

Ce 1293 0.4 I (0.1), II (0.6), III (75.5),
IV (23.8)

318 0.6 II (0.3), III (89.6), IV (10.1)

Os 1334 0.4 I (0.5), II (46.0), III (14.8),
IV (21.0), V (1.6), VI (15.1),
VII (0.1), VIII (1.0)

22 0.0 II (81.8), III (9.1), IV (9.1)

In 1366 0.4 I (6.1), II (2.7), III (91.1) 269 0.5 II (0.4), III (99.6)
Ga 1063 0.3 I (10.1), II (7.1), III (82.8) 73 0.1 I (1.4), II (2.7), III (95.9)
Nb 860 0.3 I (3.4), II (2.7), III (10.8),

IV (20.2), V (62.9)
56 0.1 III (3.6), IV (73.2), V (23.2)

Pr 1020 0.3 II (0.3), III (99.5), IV (0.2) 421 0.8 III (99.8), IV (0.2)
Mg 994 0.3 I (2.0), II (98.0) 213 0.4 II (100.0)
Li 568 0.2 I (99.5), II (0.2), III (0.2),

IV (0.2)
133 0.2 I (98.5), II (0.8), IV (0.8)

Na 779 0.2 I (99.9), III (0.1) 337 0.6 I (100.0)
Ho 676 0.2 II (0.7), III (99.3) 235 0.4 II (0.4), III (99.6)
K 512 0.2 I (100.0) 182 0.3 I (100.0)
Ta 758 0.2 I (1.7), II (1.3), III (6.7),

IV (12.1), V (78.1)
5 0.0 II (20.0), V (80.0)

Ca 677 0.2 I (0.1), II (99.9) 290 0.5 II (100.0)
Tl 762 0.2 I (63.1), II (1.3), III (35.6) 156 0.3 I (76.9), II (0.6), III (22.4)
Ba 466 0.1 II (100.0) 219 0.4 II (100.0)

Continued on next page
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Table 23: Distribution of metals and oxidation states in the CSD overall and the MOF subset
of the CSD, sorted by count in the full CSD. Frequencies of occurrence are given
in percentage.

CSD overall MOF subset

Np 190 0.1 II (0.5), III (3.2), IV (22.6),
V (46.8), VI (26.3), VII (0.5)

48 0.1 IV (18.8), V (62.5), VI (18.8)

Sr 370 0.1 II (100.0) 192 0.3 II (100.0)
Sc 431 0.1 I (0.5), II (1.2), III (98.4) 44 0.1 III (100.0)
Tm 313 0.1 II (12.1), III (87.9) 71 0.1 III (100.0)
Lu 449 0.1 II (0.2), III (99.8) 66 0.1 III (100.0)
Hf 462 0.1 II (1.7), III (2.4), IV (95.9) 26 0.0 III (3.8), IV (96.2)
Th 435 0.1 II (0.5), III (2.1), IV (97.2),

VI (0.2)
38 0.1 III (2.6), IV (94.7), VI (2.6)

Pu 127 0.0 III (26.0), IV (48.0), V (4.7),
VI (21.3)

19 0.0 III (26.3), IV (31.6), V (10.5),
VI (31.6)

Rb 78 0.0 I (98.7), II (1.3) 31 0.1 I (100.0)
Cs 77 0.0 I (98.7), II (1.3) 36 0.1 I (100.0)
Be 49 0.0 II (100.0) 2 0.0 II (100.0)
Am 26 0.0 III (80.8), V (7.7), VI (11.5) 5 0.0 III (60.0), V (20.0), VI (20.0)

Figure 117: Oxidation state frequencies. Relative frequencies of oxidation states for transi-
tionmetals that are common forMOFs and that occur inmore than one oxidation
state (> 0.05 relative frequency for minor oxidation states).

Figure 117 compares the relative frequency of oxidation states for common tran-
sition metals in the MOF subset (94 716 structures in total, from the release of
May 2019) with the full CSD dataset of more than one million structures. From
Figure 117, one can observe that the distribution of oxidation states in the MOF sub-
set is not drastically di昀昀erent from the overall distribution, which justi昀椀es our focus
on MOFs.

Also, this analysis showcases that turning the assignment of oxidation states into
a classi昀椀cation problem with strong priors is possible. Each metal only occurs in a
small number of oxidation states, e.g., for copper only the oxidation states +I and +II
are relevant for MOF chemistry. In some cases, like for alkali or alkaline earthmetals,
only one oxidation state is reported, and the metal will immediately be associated
with only that oxidation state. We also used this exploratory analysis to 昀椀nd poten-
tially wrong assignments in the CSD by manually analyzing all the entries with rare,
sometimes nonphysical, oxidation states. These cases were excluded from training,
as discussed in the next section (cf. Section D.1.5).
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D.1.5 Structures excluded from training set

Mixed valence structures

Our text-parsing pipeline was not built to resolve the chemical names, so we can-
not assign the oxidation state to a particular metal site. Hence, we excluded cases
where the same metal occurred in two di昀昀erent oxidation states in the same struc-
ture (mixed-valence compounds) from the training set. Figure 118 shows the num-
ber of such cases for each metal. Note that our model can deal with type 1 mixed-
valence525 compounds as we treat each metal site separately.

Figure 118: Type 1mixed-valence compounds. Number of cases in which the element occurs
multiple times in di昀昀erent oxidation states as a function of the metal. Most of-
ten, these are MOFs containing both Cu(I) and Cu(II) metal nodes in the same
structures.
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Uncommon oxidation states

In ourmodel, we do not constrain a priori the possible oxidation states depending on
the metal. This means selecting a general range of oxidation states for all the metals
that the model can predict.

In the choice of this range, we excluded classes (i.e., oxidation states) with less
than ten examples, as no reliable cross-validated training can be performed for those
cases. We found that this is only the case for the oxidation state seven, for which
there is only one example in the CSD, namely a structure (BOJSUO) with Re(VII)
centers in which Re2O7 units are linked by solvent (dioxan) molecules. For this rea-
son, we concluded that it is reasonable to limit our model to the oxidation states one
to six as also the oxidation states 0 and lower as well as VIII and higher526 are not
relevant for MOFs and not well represented in the CSD.

Cases excluded after exploratory data analysis

During EDAof theMOF subset of theCSDwe investigated all the oxidation state/metal
combinations with less than 20 examples by comparing the entries in the CSD with
the assignment in the paper to con昀椀rm the reliability of the chemical names in the
CSD, and to also ensure that our training set does not contain nonphysical oxidation
state assignments. As a result of this process, we excluded the structures in Table 24
fromour training and test set aswe founddisagreements between the oxidation state
in the name in CSD and the assignment given in the paper or nonphysical oxidation
states like Li(IV). This 昀椀ltering highlights the power exploratory analysis on big data
can have, as we could already capture some mistakes in the underlying data source
without major e昀昀orts and chemical analysis.

Table 24: Potential errors in the CSD found by means of EDA.Materials excluded after EDA
due to discrepancy with oxidation state in original paper or nonphysical oxidation
state.

CSD reference
code

metal centre and assignment
in the chemical name in the
CSD

reason for exclusion

BIZLOO527 Zr(VI) non-physical oxidation state
AFEHOL528 Mn(I) rare oxidation state without ex-

perimental evidence
SULPMS529 Ag(II) Ag(I) in original paper
ADASUW530 Ag(II) Ag(I) in original paper
FENXAY531 Ag(II) more likely Ag(I)
KAWCES532 Ag(II) more likely Ag(I)
AMUTEI533 Ag(II) more likely Ag(I)
MAJLOZ534 Ag(II) more likely Ag(I)
WAZKOZ535 Ag(II) more likely Ag(I)
LAVYIT536 Ag(II) Ag(I) in original paper
EQEHUE537 Ag(II) Ag(I) in the original paper
VOMMUH538 Ag(II) Ag(I) in original paper
MITSIS539 Cd(I) Cd(II) in paper
WAQFAY540 Cd(III) Cd(II) in paper
ARADEE541 Cd(III) Cd(II) in paper
MAVLED542 Cd(III) Cd(II) in paper
ZEQROE543 Cd(III) no evidence for unusual oxida-

tion state
RAWFAZ544 Ce(II) Ce(III) in the original paper
XEDJUN545 V(II) V(IV) in paper
TEJFOG546 Hg(I) Hg(II) in paper
ZEJWOD547 Gd(II) Gd(III) in paper
KEPGES548 Gd(II) Gd(III) in paper

Continued on next page
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Table 24: Potential errors in the CSD found by means of EDA.Materials excluded after EDA
due to discrepancy with oxidation state in original paper or nonphysical oxidation
state.

CSD reference
code

metal centre and assignment
in the chemical name in the
CSD

reason for exclusion

BUHVOP549 Er(IV) Er(IV) not known
WAQKIK550 Dy(II) Dy(III) in paper
ZEJXEU547 Dy(II) Dy(III) in paper
KEXZUI551 Tl(II) Tl(I) in original reference
REYDUX552 Li(II) non-physical oxidation state
ZARBEZ553 Li(IV) non-physical oxidation state
NENNOK554 Ni(I) Ni(II) in the original paper,

though Ni(I) in title
WOQKET555 Co(I) Co(II) in the original paper
VEYJOB556 V(VI) nonphysical oxidation state,

V(V) in paper
MITFON557 Th(VI) nonphysical, Th(IV) in original

paper
IJATUI Eu(II) Eu(III) in the original paper558

ZEJWIX Er(II) Er(III) in the original paper547

COFYOM Er(II) Er(III) in the original paper559

KEPGIW Er(II) Er(III) in the original paper548

VUNQUS Sm(II) Sm(III) in the original paper560

ZEJXAQ Ho(II) Ho(III) in the original paper547

MAPGUI Yb(II) Yb(III) in the original paper561

L A N T H A N I D E S I N O x I D A T I O N S T A T E + I I I N T H E M O F S u B S E T
Given that lanthanides in oxidation state +II are harder to access in typical MOF
synthesis, we list below the relevant CSD reference codes in the MOF subset.• Europium: MAKWUS,562 EDINAG,563 IJATUI (see Table 24), LEQRUU,564

MAVRUX,565 WIDREH,566 LIBDAB,567 YAVXEY,568 LIBCUU,567 REJXEJ,564

LEQTIK,564 YAWMIT,569 ZEQWAT,570 IQEZAF,571 WUJKUI,572 MOXQIB,573

TAKDIU,574 PIKJUR,575 AGUROK,574 EHAZES,576 ULUCUZ,577 MAKWIG,562

YAVXAU,568 MAKWOM,562 QALNEW,563 JEZZOG,578 NOQYOH579

• Gadolinium: ZEJWOD (see Table 24), KEPGES (see Table 24)• Erbium: ZEJWIX (seeTable 24),WUKNEV,580COFYOM(seeTable 24), KEPGIW
(see Table 24)• Samarium: JODXOS,581UCEGAK,582UCEGOY,582UCEGEO,582UCEFUD,582

UCEHAL,582UCEGUE,582 VUNQUS (seeTable 24), GONGUL,583WEBHUG,584

TABHIP585• Holmium: ZEJXAQ (see Table 24)• Ytterbium: IQEYUY,571 LIBDEF,567 XULTAZ,586 UGOTOZ,587 MAPGUI (see
Table 24), UGOTIT587

• Cerium: RAWFAZ (see Table 24)• Terbium: FIFVUN588

• Dysprosium: WAQKIK (seeTable 24), ZEJXEU (seeTable 24), VAYDUW(mixed
valence)589
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D.1.6 Diverse set selection

In practice, one does not want to use all available data for training due to constraints
in computational time and memory (and the risk of over昀椀tting for a highly redun-
dant dataset). Following Pauling’s parsimony principle, and the fact that entries in
the CSD can be the same MOF with a slightly varied linker, we wanted to distill the
data set to a non-redundant set of chemical environments. Note that if the local
chemical environments around the metal centers were exactly the same in 昀椀nger-
print space, we would, anyway, automatically exclude them. To perform the diverse
set selection, we use the apricot Python package344 which implements submodu-
lar selection using facility location functions and several algorithmic optimizations.
Those facility location functions take the form𝑓 (𝑋) = ∑𝑦∈𝑌 max𝑥∈𝑋 𝜙 (𝑥, 𝑦) , (21)

and select a subset 𝑋 from the data set 𝑌, with 𝜙 as a similarity measure, for which
we used the Euclidean distance.

Due to memory constraints (as evaluating eq. 21 involves computing the square
distancematrix), we applied the algorithmon randombatches of the full data set that
we could 昀椀t into memory. To address the fact that some elements are more frequent
in the CSD than others, we used a random set of 5000 structures for elements that
occur more frequently than 5000 times (random subsampling) before we applied
the sub-modular selection algorithm.

D.1.7 Representative environments

To better understand the distribution of structures in the chemical space spanned
by our feature vectors, we used the mmd-critic framework.590 This technique se-
lects prototypes, which are examples that are representative of the distribution of
structures in the chemical space spanned by the features we used for our models. In
addition, it also selects critics, which are also real data points that represent parts
that are not well captured by the prototypes. Those critics lead to an increase in in-
terpretability compared to other techniques such as 𝑘-medoid clustering.
Note that this analysis is fully unsupervised, i.e., we do not consider the oxidation
states but only the feature matrix.

The technique is built around the maximum mean discrepancy (MMD) between
two distributions 𝑃 and 𝑄 over the function space ℱ :

MMD(ℱ, 𝑃, 𝑄) = sup𝑓 ∈ℱ (𝐸𝑋∼𝑃 [𝑓 (𝑋)] − 𝐸𝑌∼𝑄 [𝑓 (𝑌)]) . (22)

The prototypes 𝑆 are a subset of 𝑋 that minimize the MMD between 𝑆 and 𝑋. The
critics, on the other hand, are selected such that the di昀昀erence between the dataset𝑋 and the set 𝑆 is maximal. These optimization problems can be written with kernel
functions (if ℱ is a reproducing kernel Hilbert space), and the problem reduces to
minimization and maximization of a witness function, respectively.

We chose the initial Gaussian kernel width (𝛾 = 0.085) for this analysis based on
the median heuristic591 and then measured the one-nearest-neighbor classi昀椀cation
performance (trained on 500 prototypes) for di昀昀erent kernel widths between the
0.1 and 0.9 quartiles of 5000 random distances between the data points in the fea-
ture set. The code for this analysis is available in our fork of the mmd-critic code
(https://github.com/kjappelbaum/MMD-critic.git).

Figure 119 shows ten prototype environments and Figure 120 summarizes ten crit-
ics environments (the images were created usingMercury). Common characteristics

https://github.com/kjappelbaum/MMD-critic.git
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the critics show are unusual coordination geometries (e.g., ten-fold coordinated tho-
rium center in BIFPOY) or uncommon compound classes (e.g., organoindium, organ-
otin, organogermanium or coordination polymers formed by Cp∗ ligands) that are
rare in the MOF subset of the CSD. The prototypes, on the other hand, showcase
more common metals in prototypical environments.

SIQBEA: Co(II) ORISAK: Cu(II) LIVKIN: Tb(III) DITTAC: Zn(II) VUGFEI: Sn(IV)

DOGROI: Mo(VI) NEVXAP: Hg(II) YEBMEY: Ca(II) COKNIB01: Cu(II) TADXUT: Gd(III)

Figure 119: Prototypes. Overview over ten prototypes, i.e., structures that are representa-
tive of the dataset.

VIJGUR: Sn(IV) / Ge(IV) QOTSOI: Gd(III) BIFPOY: Th(IV) TCYPIN01: In(III) EQOCIW: Co(II)

ECUFAM: La(III) MEXYUM: Th(IV) YUNHIZ: Pr(III) KUYLOG: Cu(II) / Mn(II) UCEGEO: Sm(II)

Figure 120: Critics. Overview over ten critics, i.e., structures that are not well represented
by the dataset.

D.2 M O D E L D E S C R I p T I O N A N D A N A L y S I S

D.2.1 Model architecture choice

Given that each element only exists in a limited number of oxidation states that is
usually smaller than the total number of possible oxidation states for all elements,
one could also imagine training a separate classi昀椀er for each model. We decided
not to use this architecture to leverage the patterns that exist in chemistry and, in
this way, also to be able to attempt predictions for elements for which little data
is available but for which other elements in the training set exist that show similar
chemistry (e.g., in the same column).
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Also, we chose not to hard-code any rules, such as 昀椀xing oxidation state +I for
alkali metals, to help the model learn patterns across the periodic table—and also
to be able to verify that the model indeed learns such patterns across the periodic
table. In any case, such heuristics can still be applied on top of the predictions of our
model.

Similarly, we do not take the overall stoichiometry of the compound into account
to ensure that the model is robust w.r.t errors in the protonation or the number of
charge-compensating counter-ions. Latter is important for a real-world application
of our model, as in setting up molecular simulations, one typically tries to deduce
the correct protonation from the oxidation state of the metal center.

D.2.2 Class imbalance

To avoid poor generalization due to imbalanced class distributions, we also tried to
employ oversampling techniques (like SMOTE andADASYN)592 but did not observe
an increase in predictive performance that would justify the increase in computa-
tional complexity and the risk of over昀椀tting. We found that we can achieve good
performance by subsampling the most frequent classes and a diverse set selection
(cf. section D.1.6). We envision that a more promising approach for future work is
to sample structures with oxidation states that are uncommon for MOFs from other
parts of chemistry (i.e., the remaining parts of the CSD). The results of some initial
attempts are reported in section D.8.

D.2.3 Metrics

To evaluate the performance of our models, we considered di昀昀erent metrics, which
are de昀椀ned as follows (for the binary classi昀椀cation case), using true positive (TP),
true negative (TN), false positive (FP), false negative (FN):

accuracy = TP + TN
TP + TN + FP + FN

(23)

precision = TP
TP + FP

(24)

recall = TP
TP + FN

(25)

balanced accuracy = 12 ( TP
TP + FP

+ TN
TN + FN

) (26)

F1 = 2TP2TP + FP + FN
(27)

MCC = TP ⋅ TN − FP − FN√(TP + FP) (TP + FN) (TN + FP) (TN + FN) (28)

One metric that is often used is the AUC. This metric measures the area under a
curve of the FP rate (1-speci昀椀city) plotted against the TP rate (sensitivity). An ideal
classi昀椀er has a high speci昀椀city combined with high sensitivity, hence an AUC close
to one.

For multi-class problems, one can directly use Cohen’s 𝜅:593
𝜅 = 1 − 1 − 𝑝01 − 𝑝𝑒 , (29)

where 𝑝0 is the observed accuracy and 𝑝𝑒 is the accuracy a random classi昀椀er would
achieve.
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To extend the othermetrics to themulti-class setting, one can calculatemicro and
macro averages, respectively. In macro averaging, the metric is calculated indepen-
dently for each class and then averaged, whereas in micro averaging the individual
TP, TN, FP, FN for each class are summed up.

Note that we calculate the metrics based on the individual metal sites (and not
for the whole structures).

D.2.4 Training and model selection

For initial model selection on small feature sets, we used 10-fold strati昀椀ed cross-
validation to estimate the prediction errors as it was shown594,595 to provide a good
balance between variance and bias at a reasonable computational cost. For larger
training sets (> 10000) we fell back to a holdout test set. We used iterative strati昀椀-
cation (on the oxidation states and the atomic number) to ensure that the training
and test set fold class proportions are approximately equal.343 Note that we also
perform diverse set selection as described in Section D.1.6.

For model selection, we evaluated ensembles of di昀昀erent classi昀椀ers, with both
hard and soft voting, and optimized the hyperparameters for each base estimator
using amixed search strategy (to avoid a possible bias by using only one strategy) us-
ing hyperopt596 (using at most 500 evaluations for a maximum of 6min using 80 %
tree-Parzen estimator597 because of its high e昀케ciency,598 10 % random search267

and 10 % annealing) on the default search spaces in our fork (https://github.
com/kjappelbaum/hyperopt-sklearn) of the hyperopt-sklearn599 package
using a validation holdout set of 30 %.

We aimed to combine base estimators with di昀昀erent hypothesis spaces to make
the model more robust and also to get an uncertainty estimate. A representative set
of hyperparameters is shown in Table 25.

Table 25: Summary of representative model hyperparameters.

parameter value

k-nearest neighbors (knn)

leaf size 30
metric manhattan
neighbors 5
weights distance

extra trees (et)

criterion gini
max depth None
max features 0.99662
max leaf nodes None
min impurity decrease 0.0
min impurity split None
min samples leaf 1
min samples split 2
min weight fraction leaf 0.0
estimators 64

gradient boosting (gb)

criterion friedman mse
learning rate 0.57012
loss deviance
max depth None
max features 0.7464

Continued on next page

https://github.com/kjappelbaum/hyperopt-sklearn
https://github.com/kjappelbaum/hyperopt-sklearn
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Table 25: Summary of representative model hyperparameters.

parameter value

max leaf nodes None
min impurity decrease 0.0
min impurity split None
min samples leaf 1
min samples split 2
min weight fraction leaf 0.0
estimators 23
n iter no change None
subsample 0.58778
tol 0.0001

stochastic gradient descent (sgd)𝛼 5.954895e-06
average False
early stopping False𝜖 0.1𝜂0 0.00116898
昀椀t intercept True𝑙1 ratio 0.114230
learning rate optimal
loss log
max iter 148296682
penalty l1
power t 0.34923
tol 2.92064e-05

Due to our need to use pre-trained calibrated base estimators in the 昀椀nal vot-
ing classi昀椀er, we implemented our custom VotingClassifier class based on the
sklearn implementation, which is available in our learnmofox Python package. This
class is needed to run or retrain the models.

D.2.5 Global and class performance metrics

The performancemetrics listed belowwere calculated using the pycm package.600 In
Table 26 we summarize some global statics. In Table 27 we show the class statistics
and in Table 28 we show the confusion matrix.

Table 26: Global performance metrics.

metric value

accuracy 0.997 ± 0.003
F1 macro 0.98
F1 micro 0.99𝜅 0.987 ± 0.0006𝜅no prevalence

601 0.98
relative classi昀椀er information602 0.96
precision macro 0.98
precision micro 0.99

D.2.6 Bootstrapped performance estimates

To evaluate the performance of our classi昀椀er, we used the bootstrap technique to
calculate statistics for several classi昀椀cationmetrics. Con昀椀dence intervals were calcu-
lated using the percentile method described by Efron,605 using the 2.5th and 97.5th
percentiles of the distribution of metrics for the bootstraps.

https://github.com/kjappelbaum/learn_mof_ox_state
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Table 27: Summary of class statistics. Decimal places for values > 0.995 are cut and not
rounded.

metric I II III IV V VI

accuracy 0.99 0.99 0.99 0.99 0.99 0.99
adjusted F score 0.99 0.99 0.99 0.99 0.96 0.99
AUC 0.99 0.99 0.99 0.99 0.95 0.99
AUPR 0.99 0.99 0.99 0.97 0.93 0.99
precision 0.99 0.99 0.99 0.96 0.96 0.99
Matthews correla-
tion coe昀케cient603

0.99 0.99 0.98 0.97 0.93 0.99

Gini index604 0.99 0.99 0.98 0.98 0.91 0.99

Table 28: Confusion matrix. Numbers in each cell show the number of classi昀椀ed metal cen-
ters for each case. In the ideal error-free case, the matrix would only have entries
on the diagonal.

prediction
I II III IV V VI

ground truth

I 12604 34 3 0 0 4
II 84 34399 53 12 0 0
III 18 184 9555 12 0 0
IV 0 8 8 2302 24 0
V 0 0 0 54 614 10
VI 0 4 0 8 0 2724

D.2.7 Comparison with baseline (昀氀oor) metrics

As baselines for our metrics, we used two dummy classi昀椀ers that arrive at the predic-
tion by guessing uniformly at random (drawing from a uniform distribution of oxida-
tion states) or guessing at randomwhile respecting the training set class distribution
(strati昀椀ed). The results shown in Table 29 show that our model performs substan-
tially better than random guessing. The models for these analyses were trained on
47951 examples and tested on 42463 disjoint test cases.

Table 29: Baselines. Baseline metrics, derived using dummy classi昀椀ers (for all metals, and
not only Cu, as shown in the main text in Figure 2). Median e昀昀ect sizes (all 𝑝 <0.01) relative to the best performing baseline classi昀椀er.

metric strati昀椀ed
random
guessing

uniform
random
guessing

majority our model minimum
e昀昀ect size

accuracy 0.40 0.17 0.57 0.98 0.41
balanced ac-
curacy

0.17 0.17 0.17 0.96 0.80

F1 micro 0.40 0.17 0.57 0.98 0.41
F1 macro 0.17 0.12 0.12 0.96 0.80
precision 0.40 0.17 0.57 0.98 0.41
recall 0.40 0.17 0.57 0.98 0.41

D.2.8 Randomization tests to estimate the signi昀椀cance of the classi昀椀er
scores

To further ensure that the classi昀椀er learned a real structure in the data, we also
performed permutation tests in which the classi昀椀cation procedure is repeated 200
timeswith permuted labels.606,607 If the classi昀椀er learned a real structure in the data,
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Figure 121: Di昀昀erence between baselines and our model. Median e昀昀ect size of the F1 macro
score using 200 bootstraps for the test set and 10000 bootstraps for the e昀昀ect
size.

it should perform signi昀椀cantly better than the straw models.608 Here, we used 10-
fold cross-validation to measure each model’s empirical error.

For e昀케ciency reasons (poor convergence without structure in the data), we per-
formed this test on a subset of the data (100 sites), which we selected using submod-
ular selection. For this reason, the score for themodel trained on non-permuted data
is also lower.

Figure 122 shows a histogram for the balanced accuracies on a holdout test set
and indicates that our model performs signi昀椀cantly (𝑝 = 0.005) better than the
straw models that contain no chemical information.

D.2.9 Reliability diagram

Reliability diagrams plot the actual probabilities against the predicted probabilities
and are useful to asses whether the probabilities which a model produces can be in-
terpreted as con昀椀dence scores. An ideal classi昀椀er (reliable model) would fall onto
the diagonal, but one usually 昀椀nds distorted curves as, for example, ensemble classi-
昀椀ers tend to predict less frequently very high and very low probabilities.609 As these
diagrams are constructed using binning operations, some 昀氀uctuations arise due to
varying bin sizes or bin means. To take this into account, we use a revised consis-
tency bars technique that provides consistency bars that are the .5 and .95 quantiles
derived from bootstrapping.610

From this analysis (on 10000 holdout examples with 1000 bootstraps) we 昀椀nd
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Figure 122: Permutation experiment to determine the signi昀椀cance of classi昀椀cation results.
Histogram of balanced accuracy scores (ten-fold cross-validated) for classi昀椀ca-
tion with permuted labels.

Figure 123: Reliability diagram with consistency bars.

that our classi昀椀er could even increase its con昀椀dence in the predictions with more
than50 % con昀椀dence andpredict probabilities close to onemore often (cf. Figure 123).
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D.2.10 Learning curves

We recorded learning curves to measure the predictive performance’s dependence
on the training set size. To do so, we ran our training pipeline (including probability
calibration) for di昀昀erent training set sizes and recorded the metrics on the 昀椀xed-size
holdout set of 63790 examples. Note that for doing so, we left the hyperparameters
昀椀xed as the optimal ones we found for the largest training set size. In Figure 124, we
also provide, as visual aides, the baseline metrics (cf. Figure 29). One can observe
that even with the smallest training sets, we perform better than the baseline. Using
tens of thousands of data points, all metrics exceed a score of .96.

0.7

0.8

0.9

1.0

ba
la

nc
ed

 a
cc

ur
ac

y

ac
cu

ra
cy

0.7

0.8

0.9

1.0

F 1
 m

ac
ro

F 1
 m

icr
o

102 103 104

training points

0.7

0.8

0.9

1.0

pr
ec

isi
on

102 103 104

training points

re
ca

ll

Figure 124: Learning curves. Metrics as a function of the number of training and validation
points.

D.2.11 Ensemble property analysis

Even though it is well-established that ensemble models improve the stability and
predictive performance (for uncorrelated base estimators),611 we compared the per-
formance of the optimized base estimators with the 昀椀nal ensemble model on the
test set.
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Uncertainty estimate via voting agreement

To quantify the quality of the uncertainty estimate, we calculated bootstrapped (𝑛 =5000) e昀昀ect sizes which are summarized in Table 30 and which indicate that the
ensembling approach gives us a signi昀椀cant and relevant estimate about uncertain
predictions.612 This is also observable in Figure 125, where we plot the number of
disagreeing base estimators for true and correct predictions and the bootstrapped
mean e昀昀ect size.

Table 30: Uncertainty estimate via voting agreement. Bootstrapped e昀昀ect sizes for the num-
ber of base estimators that disagree with the 昀椀nal prediction of the ensemble
model.

measure e昀昀ect size [95 % con昀椀dence in-
terval]

statistical test

mean di昀昀erence 0.89 [0.81,0.96] 𝑡-test: 𝑝 = 0.0
median di昀昀erence 1.0 [1.0,1.0] Kruskal-Wallis: 𝑝 = 0.0
Hedges’ g 3.6 [3.3, 3.9] 𝑡-test: 𝑝 = 0.0

Figure 125: Uncertainty estimate via voting agreement. Number of base estimators that dis-
agree with the 昀椀nal prediction for correct and incorrect predictions (we subsam-
pled and added noise to the data for the swarmplot for a clearer representation)
and the bootstrap mean e昀昀ect size estimate.

Note that this uncertainty estimate is not perfect. Even if all models agree, the
prediction can still be wrong.

D.3 F E A T u R I z A T I O N

D.3.1 Detailed descriptions of features considered in this work

Obviously, a model that only considers the local environment will not be able to
predict non-integer oxidation states as they are present in some (type-III) mixed-
valence525 structures like the Creutz-Taube ion,613,614 where twometal centers with
equivalent local environments exhibit inner-sphere electron transfers. This could
be addressed by using non-integer oxidation states as class labels, possibly with the
addition of global features or a message-passing model architecture.
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Metal center

To encode the metal center, we considered the row, column, and atomic number as
well as the number of valence electrons (also encoded as the minimal distance to an
18-electron shell) and the number of un昀椀lled s, p, and d orbitals (all properties for
the ground state atom). We retrieved those properties using Magpie615 and pymat-
gen.174

Chemistry

To encode the local chemistry, we used an extended set of the descriptors proposed
byWard et al..331 We calculated this descriptor vector using matminer and included
signed and maximum, minimum as well as average local di昀昀erences (signed and un-
signed) of the Mendeleev number, row, columns, electronegativity, number of s va-
lence electrons, number of p valence electrons, number of d valence electrons, num-
ber of f valence electrons, number of valence electrons, number of un昀椀lled s elec-
trons, number of un昀椀lled p electrons, number of un昀椀lled d electrons, number of un-
昀椀lled f electrons, number of un昀椀lled electrons as well as the ground state band-gap
(indicates how metallic an element is).

Geometry

To encode the local coordination geometry, we used the CrystalNNFunction im-
plemented in matminer which calculates Steinhardt bond orientational order pa-
rameters616 and the similarity to di昀昀erent coordination environments using the ap-
proach described by Zimmermann et al.165,329 We also considered adding symmetry
functions suggested by Behler,617 which were also calculated using the matminer
package (𝜂𝐺2 = [0.05, 5, 20, 80], 𝜂𝐺4 = 0.005, 𝜁𝐺4 = [1, 4], cuto昀昀 6.5Å) but did
not use them in the 昀椀nal model, following the minimal descriptor length principle.

Revised autocorrelation functions (RACs)

RACs are the extended and tailored version of autocorrelations (ACs)618 descriptors
for transitionmetal chemistry,163 whichwere recently adapted toMOF chemistry.132

RACs use a graph representation of amolecule/crystal to correlate atomic properties
between atoms separated by a certain number of bonds. The nodes of this graph rep-
resentation are atoms labeled with atom types, and two nodes are connected when
there is a chemical bond between the corresponding atoms. The correlations used
for RACs in this study are the product of or di昀昀erence between atomic properties,
which are computed using these equations:

start
scope𝑃prod𝑑 = start∑𝑖

scope∑𝑗 (𝑃𝑖𝑃𝑗)𝛿(𝑑𝑖,𝑗, 𝑑) (30)

start
scope𝑃diff𝑑 = start∑𝑖

scope∑𝑗 (𝑃𝑖 − 𝑃𝑗)𝛿(𝑑𝑖,𝑗, 𝑑). (31)

In these equations, atomic property 𝑃 of atom 𝑖 selected from the start atom list
is correlated with atom 𝑗 selected from the scope atom list if they are separated by 𝑑
number of bonds. 𝑑𝑖,𝑗 is the shortest path between the two atoms on the graph.

In this work, for each metal center of a MOF structure, we compute RACs with
the start atom list being only the metal center and the scope atom list including
all the atoms of the structure. RACs were computed up to the maximum depth of
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three bonds using 昀椀ve heuristic atomic properties, namely atom identity (𝐼), con-
nectivity (𝑇), Pauling electronegativity (𝜒), covalent radius (𝑆), and nuclear charge
(𝑍). To construct the graph for each metal center, we compute the adjacency ma-
trix based on the periodic pairwise distances of atoms in the crystal. We assign a
bond between two atoms when their pairwise distance multiplied by a tuning factor
is below the sum of the covalent radii of the two atoms. The tuning factor is set to
be 0.9 except for metal-organic pairs, which we tune depending on the atom types.
No metal-metal bond is allowed in our graph representation. The code to compute
these features is available in the molsimplify package.619

Using only RACs, we could not achieve satisfactory performance (cf. Table 31),
and we did not add them to our 昀椀nal vector vectors due to the minimum descriptor
length principle and the fact that there are technical problems with calculating them
for disordered structures.

F E A T u R E L I S T u S E D I N T H E F I N A L M O D E L The set of features we used
for the model with which we obtained the results shown in the main text is listed
below. The name in quotes is the name which is the name which we used in our code
and data 昀椀les.

Chemistry• “local di昀昀erence inMendeleevNumber”: Absolute local di昀昀erence in the atomic
numbers• “local di昀昀erence in Column”: Absolute local di昀昀erence in the column (group)
number• “local di昀昀erence in Row”: Absolute local di昀昀erence in the row number (pe-
riod)• “local di昀昀erence in Electronegativity”: Absolute local di昀昀erence in electroneg-
ativity• “local di昀昀erence in NsValence”: Absolute local di昀昀erence in the number of s
electrons in the ground state atom• “local di昀昀erence in NpValence”: Absolute local di昀昀erence in the number of p
electrons in the ground state atom• “local di昀昀erence in NdValence”: Absolute local di昀昀erence in the number of d
electrons in the ground state atom• “local di昀昀erence in NfValence”: Absolute local di昀昀erence in the number of f
electrons in the ground state atom• “local di昀昀erence in NValence”: Absolute local di昀昀erence in the number of
valence electrons in the ground state atom• “local di昀昀erence in NsUn昀椀lled”: Absolute local di昀昀erence in the number of
un昀椀lled s electrons in the ground state atom• “local di昀昀erence in NpUn昀椀lled”: Absolute local di昀昀erence in the number of
un昀椀lled p electrons in the ground state atom• “local di昀昀erence in NdUn昀椀lled”: Absolute local di昀昀erence in the number of
un昀椀lled d electrons in the ground state atom• “local di昀昀erence in NfUn昀椀lled”: Absolute local di昀昀erence in the number of
un昀椀lled f electrons in the ground state atom• “local di昀昀erence in NUn昀椀lled”: Absolute local di昀昀erence in the number of
un昀椀lled electrons in the ground state atom
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• “local di昀昀erence in GSbandgap”: Absolute local di昀昀erence in the ground state
bandgap of the bulk material• “local signed di昀昀erence in MendeleevNumber”: Signed local di昀昀erence in the
atomic numbers• “local signed di昀昀erence in Column”: Signed local di昀昀erence in the column
(group) number• “local signed di昀昀erence in Row”: Signed local di昀昀erence in the row number
(period)• “local signed di昀昀erence in Electronegativity”: Signed local di昀昀erence in elec-
tronegativity• “local signed di昀昀erence in NsValence”: Signed local di昀昀erence in the number
of s electrons in the ground state atom• “local signed di昀昀erence in NpValence”: Signed local di昀昀erence in the number
of p electrons in the ground state atom• “local signed di昀昀erence in NdValence”: Signed local di昀昀erence in the number
of d electrons in the ground state atom• “local signed di昀昀erence in NfValence”: Signed local di昀昀erence in the number
of f electrons in the ground state atom• “local signed di昀昀erence in NValence”: Signed local di昀昀erence in the number
of valence electrons in the ground state atom• “local signed di昀昀erence in NsUn昀椀lled”: Signed local di昀昀erence in the number
of un昀椀lled s electrons in the ground state atom• “local signed di昀昀erence in NpUn昀椀lled”: Signed local di昀昀erence in the number
of un昀椀lled p electrons in the ground state atom• “local signed di昀昀erence in NdUn昀椀lled”: Signed local di昀昀erence in the number
of un昀椀lled d electrons in the ground state atom• “local signed di昀昀erence in NfUn昀椀lled”: Signed local di昀昀erence in the number
of un昀椀lled f electrons in the ground state atom• “local signed di昀昀erence in NUn昀椀lled”: Signed local di昀昀erence in the number
of electrons in the ground state atom• “local signed di昀昀erence in GSbandgap”: Signed local di昀昀erence in the ground
state bandgap of the bulk material• “maximum local di昀昀erence inMendeleevNumber”: Maximum local di昀昀erence
in the atomic numbers• “maximum local di昀昀erence in Column”: Maximum local di昀昀erence in the col-
umn (group) number• “maximum local di昀昀erence in Row”: Maximum local di昀昀erence in the row
number (period)• “maximum local di昀昀erence in Electronegativity”: Maximum local di昀昀erence
in electronegativity• “maximum local di昀昀erence in NsValence”: Maximum local di昀昀erence in the
number of s electrons in the ground state atom• “maximum local di昀昀erence in NpValence”: Maximum local di昀昀erence in the
number of p electrons in the ground state atom• “maximum local di昀昀erence in NdValence”: Maximum local di昀昀erence in the
number of d electrons in the ground state atom
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• “maximum local di昀昀erence in NfValence”: Maximum local di昀昀erence in the
number of f electrons in the ground state atom• “maximum local di昀昀erence in NValence”: Maximum local di昀昀erence in the
number of valence electrons in the ground state atom• “maximum local di昀昀erence in NsUn昀椀lled”: Maximum local di昀昀erence in the
number of un昀椀lled s electrons in the ground state atom• “maximum local di昀昀erence in NpUn昀椀lled”: Maximum local di昀昀erence in the
number of un昀椀lled s electrons in the ground state atom• “maximum local di昀昀erence in NdUn昀椀lled”: Maximum local di昀昀erence in the
number of un昀椀lled d electrons in the ground state atom• “maximum local di昀昀erence in NfUn昀椀lled”: Maximum local di昀昀erence in the
number of un昀椀lled f electrons in the ground state atom• “maximum local di昀昀erence in NUn昀椀lled”: Maximum local di昀昀erence in the
number of un昀椀lled electrons in the ground state atom• “maximum local di昀昀erence in GSbandgap”: Maximum local di昀昀erence in the
ground state bandgap of the bulk material• “mimum local di昀昀erence inMendeleevNumber”: Minimum local di昀昀erence in
the atomic numbers• “mimum local di昀昀erence in Column”: Minimum local di昀昀erence in the column
(group) number• “mimum local di昀昀erence in Row”: Minimum local di昀昀erence in the row num-
ber (period)• “mimum local di昀昀erence in Electronegativity”: Minimum local di昀昀erence in
electronegativity• “mimum local di昀昀erence inNsValence”: Minimum local di昀昀erence in the num-
ber of s electrons in the ground state atom• “mimum local di昀昀erence inNpValence”: Minimum local di昀昀erence in the num-
ber of p electrons in the ground state atom• “mimum local di昀昀erence inNdValence”: Minimum local di昀昀erence in the num-
ber of d electrons in the ground state atom• “mimum local di昀昀erence in NfValence”: Minimum local di昀昀erence in the num-
ber of f electrons in the ground state atom• “mimum local di昀昀erence in NValence”: Minimum local di昀昀erence in the num-
ber of valence electrons in the ground state atom• “mimum local di昀昀erence inNsUn昀椀lled”: Minimum local di昀昀erence in the num-
ber of un昀椀lled s electrons in the ground state atom• “mimum local di昀昀erence in NpUn昀椀lled”: Minimum local di昀昀erence in the
number of un昀椀lled s electrons in the ground state atom• “mimum local di昀昀erence in NdUn昀椀lled”: Minimum local di昀昀erence in the
number of un昀椀lled d electrons in the ground state atom• “mimum local di昀昀erence inNfUn昀椀lled”: Minimum local di昀昀erence in the num-
ber of un昀椀lled f electrons in the ground state atom• “mimum local di昀昀erence in NUn昀椀lled”: Minimum local di昀昀erence in the num-
ber of un昀椀lled electrons in the ground state atom• “mimum local di昀昀erence in GSbandgap”: Minimum local di昀昀erence in the
ground state bandgap of the bulk material
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Metal features• “column”: Group number of the metal• “row”: Period number of the metal• “valenceelectrons”: Number of valence electrons of the ground state of the
metal• “di昀昀to18electrons”: Heuristic for missing electrons to a stable d-shell for the
ground state of the metal• “sun昀椀lled”: Number of un昀椀lled s electrons of the ground state metal• “pun昀椀lled”: Number of un昀椀lled p electrons of the ground state metal• “dun昀椀lled”: Number of un昀椀lled d electrons of the ground state metal

Geometry features The “wt” order parameter describes how consistent a site
is with a certain coordination number.• “wt CN_1”: consistency of site with coordination number 1• “sgl_bd CN_1”: order parameter for single bounded• “wt CN_2”: consistency of site with coordination number 2• “L-shaped CN_2”: order parameter for L-shaped coordination• “water-like CN_2”: order parameter for water-shaped coordination• “bent 120 degrees CN_2”: order parameter for 120° coordination• “bent 150 degrees CN_2”: order parameter for 150° coordination• “linear CN_2”: order parameter for linear coordination• “wt CN_3”: consistency of site with coordination number 3• “trigonal planar CN_3”: order parameter for trigonal planar coordination• “trigonal non-coplanar CN_3”: order parameter for trigonal non-planar• “T-shaped CN_3”: order parameter for T-shaped coordination• “wt CN_4”: consistency of site with coordination number 4• “square co-planar CN_4”: order parameter for square co-planar coordination• “tetrahedral CN_4”: order parameter for tetrahedral coordination• “rectangular see-saw-like CN_4”: order parameter for rectangular coordina-

tion• “see-saw-like CN_4”: order parameter for see-saw coordination• “trigonal pyramidal CN_4”: order parameter for trigonal pyramidal• “wt CN_5”: consistency of site with coordination number 5• “pentagonal planar CN_5”: order parameter for pentagonal planar coordina-
tion• “square pyramidal CN_5”: order parameter for square pyramidal coordina-
tion• “trigonal bipyramidal CN_5”: order parameter for trigonal bipyramidal coor-
dination• “wt CN_6”: consistency of site with coordination number 6• “hexagonal planar CN_6”: order parameter for hexagonal planar coordination
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• “octahedral CN_6”: order parameter for octahedral coordination• “pentagonal pyramidal CN_6”: order parameter for pentagonal pyramidal co-
ordination• “wt CN_7”: consistency of site with coordination number 7• “hexagonal pyramidal CN_7”: order parameter for hexagonal pyramidal coor-
dination• “pentagonal bipyramidal CN_7”: order parameter for pentagonal bipyramidal
coordination• “wt CN_8”: consistency of site with coordination number 8• “body-centered cubic CN_8”: order parameter for body-centered cubic coor-
dination• “hexagonal bipyramidal CN_8”: order parameter for hexagonal bipyramidal
coordination• “wt CN_9”: consistency of site with coordination number 9• “wt CN_10”: consistency of site with coordination number 10• “wt CN_11”: consistency of site with coordination number 11• “wt CN_12”: consistency of site with coordination number 12• “cuboctahedral CN_12”: order parameter for cuboctahedral coordination• “wt CN_13”: consistency of site with coordination number 13• “wt CN_14”: consistency of site with coordination number 14• “wt CN_15”: consistency of site with coordination number 15• “wt CN_16”: consistency of site with coordination number 16• “wt CN_17”: consistency of site with coordination number 17• “wt CN_18”: consistency of site with coordination number 18• “wt CN_19”: consistency of site with coordination number 19• “wt CN_20”: consistency of site with coordination number 20• “wt CN_21”: consistency of site with coordination number 21• “wt CN_22”: consistency of site with coordination number 22• “wt CN_23”: consistency of site with coordination number 23• “wt CN_24”: consistency of site with coordination number 24• “q4 CN_9”: Steinhardt bond orientational order parameter of order 4• “q6 CN_9”: Steinhardt bond orientational order parameter of order 6• “q2 CN_10”: Steinhardt bond orientational order parameter of order 2• “q4 CN_10”: Steinhardt bond orientational order parameter of order 4• “q6 CN_10”: Steinhardt bond orientational order parameter of order 6• “q2 CN_11”: Steinhardt bond orientational order parameter of order 2• “q4 CN_11”: Steinhardt bond orientational order parameter of order 4• “q6 CN_11”: Steinhardt bond orientational order parameter of order 6• “q2 CN_12”: Steinhardt bond orientational order parameter of order 2• “q4 CN_12”: Steinhardt bond orientational order parameter of order 4• “q6 CN_12”: Steinhardt bond orientational order parameter of order 12
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D.3.2 Feature importance quanti昀椀cation

Model performance with di昀昀erent feature sets

One direct way to measure the bene昀椀t of adding additional features to a model is to
compare the metrics for predictive performance, leaving the training (and test size)
昀椀xed and varying the feature set. We used the same number of training, validation,
and holdout points in all cases, which we collected using submodular selection in the
respective feature space.

Table 31: Performance for di昀昀erent feature sets. Performance metrics for models trained on
di昀昀erent feature sets. The diverse set selection was performed separately on each
feature set.

feature sets accuracy balanced
accuracy

F1 mi-
cro

F1
macro

precision recall

metal center, chem-
istry, geometry

0.99 0.98 0.99 0.99 0.99 0.99

RACs, metal centre 0.98 0.97 0.98 0.98 0.98 0.98
RACs, metal centre,
chemistry, geome-
try

0.99 0.97 0.99 0.97 0.99 0.99

chemistry, geome-
try

0.99 0.97 0.99 0.97 0.99 0.99

RACs, chemistry,
metal centre

0.98 0.97 0.98 0.96 0.98 0.98

RACs, chemistry 0.98 0.96 0.98 0.96 0.98 0.98
metal centre, chem-
istry

0.96 0.90 0.96 0.91 0.96 0.96

chemistry 0.96 0.89 0.96 0.90 0.96 0.96
geometry 0.91 0.84 0.91 0.86 0.91 0.91
RACs 0.88 0.80 0.88 0.84 0.88 0.88
metal centre 0.90 0.75 0.90 0.73 0.90 0.90

D.3.3 Model using an optimized feature set

Using insights from the feature importance analysis (see below), we constructed a
model with a small and optimized feature set (optimized_feature_set preset in
mine_mof_ox, see for example experiment a0104584b5c0451aa631b8e516491e5f
oncomet.ml for hyperparameter optimization, 1d2c686f9dc94007ae2f6aa9391af555
for the training). For this model, we used the local structural order parameters (with-
out the Steinhardt bond orientational order parameters), local signed di昀昀erences in
electronegativity, and valence electrons in the shell of the group state atoms as well
as the row and the column. The performance of this model is comparable to one
with the full feature set, e.g., we still achieve an overall accuracy of over 98 %, and
the AUC scores for all oxidation states are greater than 0.96. The confusion matrix
is listed in Table 32, an overview of relevant metrics is listed in Tables 33 and 34.

D.3.4 Shapely additive explanations (SHAP) feature importance

To estimate the feature importance for the case studies, we used the SHapley Ad-
ditive exPlanations (SHAP) method.269 Analyses using the permutation feature im-
portance technique show the same qualitative results.

To eliminate the in昀氀uence of the metal center features, we used only feature vec-
tors for copper sites from the training set as the background data. For e昀케ciency

https://www.comet.ml/kjappelbaum/mof-oxidation-states/a0104584b5c0451aa631b8e516491e5f
https://www.comet.ml/kjappelbaum/mof-oxidation-states/1d2c686f9dc94007ae2f6aa9391af555
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Table 32: Confusionmatrix for a holdout test set using amodelwith an optimized feature set.
Numbers in each cell show the number of classi昀椀ed metal centers for each case. In
the ideal error-free case the matrix would only have entries on the diagonal. The
confusion matrix shows all predictions, i.e., including high- and low-con昀椀dence
predictions.

prediction
I II III IV V VI

ground truth

I 8172 50 0 0 0 0
II 151 23953 81 0 0 0
III 0 329 6734 14 0 2
IV 0 0 48 1073 10 6
V 0 0 0 4 284 18
VI 0 0 0 0 0 1528

Table 33: Global performance metrics for the model with the optimized feature set.

metric value

accuracy 0.9944 ± 0.003
F1 macro 0.97
F1 micro 0.98𝜅 0.97 ± 0.002𝜅no prevalence

601 0.97
relative classi昀椀er information602 0.92
precision macro 0.98
precision micro 0.98

reasons, we summarize the background data using 𝑘-means clustering and weight
the cluster centroids by the number of neighbors.

Feature importance plots in the text show the absolute values, ‖𝜙𝑖‖, of the SHAP
values, which are de昀椀ned as the sum over all feature subsets 𝑆 ⊆ 𝐹, where 𝐹 is the
set of all features, using a model 𝑓𝑆∪{𝑖} that is trained with feature 𝑖 absent and one,𝑓𝑆, with that feature present:

𝜙𝑖 = ∑𝑆⊆𝐹|{𝑖}
‖𝑆‖! (‖𝐹‖ − ‖𝑆‖ − 1)!‖𝐹‖! [𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] . (32)

In the case of global explanations, those values are averaged over multiple sites.
In summary plots (e.g., Figure 126), the features are ordered according to overall
importance (the most important features are plotted 昀椀rst).

The analysis of the feature importance (cf. images/oximachine 126 and 127) re-
veals that our model captures several chemical intuitions:• Going to higher row numbers, the metals become more basic (more shielded

valence electrons) and more able to attain higher oxidation states.620

Table 34: Summary of class statistics for the model with the optimized feature set. Decimal
places for values > 0.99 are cut and not rounded.

metric I II III IV V VI

accuracy 0.99 0.99 0.99 0.99 0.99 0.99
adjusted F score 0.99 0.99 0.98 0.98 0.97 0.99
AUC 0.99 0.99 0.97 0.97 0.97 0.99
AUPR 0.99 0.99 0.97 0.97 0.95 0.99
precision 0.98 0.98 0.98 0.98 0.97 0.98
Matthews correla-
tion coe昀케cient603

0.98 0.97 0.96 0.96 0.95 0.99

Gini index604 0.99 0.97 0.95 0.94 0.93 0.99
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Figure 126: SHAP summary plot of global model explanations. SHAP summary plot for pre-

diction on the holdout test set (200 examples selected using submodular se-
lection). The violins show the distributions of the SHAP values, and the color
indicates the value of the feature. The SHAP value indicates the in昀氀uence on
the prediction of the model; a more positive value indicates that this particular
feature value makes the model predict a higher oxidation state. Gray areas mark
areas for which we do not have any data points.
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Figure 127: SHAP local interpretations. SHAP value as a function of the feature value, for
the number of un昀椀lled s (a) and d (b) electrons, respectively, and color-coded
the feature with the strongest interaction.

• The highest oxidation states and the highest variation in oxidation states tend
to occur in the middle of the d block (number of un昀椀lled d electrons, col-
umn).621• Un昀椀lled s electrons (alkali metals or some d block anomalies) in昀氀uence the
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predicted outcome di昀昀erently depending on the number of d electrons.• There are strong interactions between chemistry and geometry (the features
that in昀氀uence the SHAP value for geometry features most strongly are often
chemistry features).

D.3.5 Cases of (in)correct classi昀椀cation by the bond-valence sum method

Comparison between SHAP and permutation feature importance

The variance analysis using PCA shows (cf. Section D.4) that the geometrical factors
are most important for our model to distinguish between the two oxidation states of
copper. As discussed above, we observe that our model generally associates higher
coordination numbers with higher oxidation states—which follows chemical intu-
ition. Especially the square pyramidal coordination order parameter seems to be a
strong feature.

0.2 0.1 0.0 0.1 0.2 0.3 0.4

SH A P v a lu e  ( im p a c t  o n  m o d e l  o u t p u t )

m im u m  lo c a l  d i f f e r e n c e  in  M e n d e le e v number

lo c a l  s ig n e d  d i f f e r e n c e  in  GSb a n d g a p

p e n t a g o n a l  p y r a m id a l  CN 6

t r ig o n a l  p y r a m id a l  CN 4

m a x im u m  lo c a l  d i f f e r e n c e  in  electronegativity

lo c a l  d i f f e r e n c e  in   #p valence

lo c a l  s ig n e d  d i f f e r e n c e in row

w t  CN 2

b e n t  1 2 0  d e g r e e s CN 2

lo c a l  s ig n e d  d i f f e r e n c ee in #s unfilled

m a x im u m  lo c a l  d i f f e r e n c e  in  #d valence

b e n t  1 5 0  d e g r e e s CN 2

w t  CN 4

lo c a l  d i f f e r e n c e  in  #d valence

l in e a r  CN 2

r e c t a n g u la r  se e -sa w -l ik e  CN 4

lo c a l  d i f f e r e n c e  in  #s valence

lo c a l  s ig n e d  d i f f e r e n c e  in #s valence

t r ig o n a l  b ip y r a m id a l  CN 5

w t  CN 6

lo c a l  d i f f e r e n c e  in  electronegativity

lo c a l  s ig n e d  d i f f e r e n c e  in  electronegativity

lo c a l  s ig n e d  d i f f e r e n c e  in #p valence 

t e t r a h e d r a l  CN 4

t r ig o n a l  n o n -c o p la n a r  CN 3

w t  CN 5

o c t a h e d r a l  CN 6

t r ig o n a l  p la n a r  CN 3

sq u a r e  c o -p la n a r  Ct N 4

sq u a r e  p y r a m id a l  CN 5 

low

high

fe
a

tu
re

 v
a

lu
e

Figure 128: SHAP summary plot for the Cu MOFs in the holdout test set analyzed using the
bond valence (BV) summethod. As background data, we used a 𝑘nn summarized
set of Cu sites from the training set. The violins show the distributions of the
data, and the color indicates the value of the feature. The SHAP value indicates
the in昀氀uence on the prediction of the model; a more positive value indicates
that this particular feature value makes the model predict a higher oxidation
state. Gray areas mark areas for which we do not have any data points.
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Figure 129: SHAP dependence plots for coordination number three (a) and four (b) order
parameters, respectively.

D.3.6 Cu(I,II)-BTC

The SHAP summary plot is shown in Figure 130 and follows chemical intuition: High
similarity to highly coordinated coordination environments (square pyramidal, trigo-
nal pyramidal) increases themodel output, i.e., the predictedoxidation stateswhereas
high similarity to coordination environments with fewer neighbors (linear, 15° bent)
decrease the predicted oxidation state. Similarly, we 昀椀nd that a higher local di昀昀er-
ence in electronegativity (or local di昀昀erence in p valence electrons)makes ourmodel
predict a higher oxidation state.

The absolute SHAP values for all features of both the Cu sites are listed in Ta-
ble 35.

Table 35: SHAP values for Cu(I/II)-BTC.. Listing of SHAP values for all features, for the
macrocyclus and paddlewheel.

feature Cu(I) Cu(II)

square pyramidal CN 5 -0.909072 0.613580
linear CN 2 -0.749447 0.004850
bent 150 degrees CN 2 -0.441103 -0.001509
wt CN 5 -0.417583 0.267922
wt CN 2 -0.317646 0.015357
local signed di昀昀erence in # p valence -0.259301 0.085554
square co-planar CN 4 -0.219004 0.004310
octahedral CN 6 -0.210336 0.012484
trigonal bipyramidal CN 5 -0.172772 0.143708
local signed di昀昀erence in electronegativity -0.164075 0.097353
wt CN 6 -0.154959 0.014733
local di昀昀erence in # d valence -0.136092 0.031119
local di昀昀erence in # s valence -0.108644 0.028151
pentagonal planar CN 5 -0.105035 0.015531
rectangular see-saw-like CN 4 -0.101144 0.021873
minimum local di昀昀erence in Mendeleev number -0.093163 -0.002152
local signed di昀昀erence in # s valence -0.089992 0.055203
maximum local di昀昀erence in # d valence -0.070762 0.013815
minimum local di昀昀erence in column -0.070761 0.003338
hexagonal planar CN 6 -0.069904 0.012230
local di昀昀erence in electronegativity -0.058395 0.156434

Continued on next page
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Table 35: SHAP values for Cu(I/II)-BTC.. Listing of SHAP values for all features, for the
macrocyclus and paddlewheel.

feature Cu(I) Cu(II)

local di昀昀erence in # p un昀椀lled -0.047810 0.012924
maximum local di昀昀erence in row -0.046069 0.003691
local signed di昀昀erence in Mendeleev number -0.041669 0.000337
wt CN 8 -0.038648 0.016203
trigonal non-coplanar CN 3 -0.035160 0.075156
pentagonal bipyramidal CN 7 -0.035019 0.000838
hexagonal bipyramidal CN 8 -0.034717 0.000000
local signed di昀昀erence in column -0.031195 0.012950
trigonal pyramidal CN 4 -0.030897 0.019953
wt CN 9 -0.030870 0.011095
local di昀昀erence in # p valence -0.030326 0.031584
pentagonal pyramidal CN 6 -0.023506 0.015684
maximum local di昀昀erence in Mendeleev number -0.023378 0.003170
local signed di昀昀erence in # un昀椀lled -0.023308 0.009563
hexagonal pyramidal CN 7 -0.021975 0.013250
local di昀昀erence in column -0.021620 0.004096
maximum local di昀昀erence in electronegativity -0.019064 0.057823
minimum local di昀昀erence in Gs bandgap -0.019059 0.004106
maximum local di昀昀erence in # un昀椀lled -0.018811 0.011059
bent 120 degrees CN 2 -0.017309 0.016965
wt CN 14 -0.015547 0.010130
local di昀昀erence in nun昀椀lled -0.015272 0.001980
body-centered cubic CN 8 -0.015137 0.000000
local di昀昀erence in # f valence -0.014620 0.017249
local signed di昀昀erence in # p un昀椀lled -0.014207 0.003621
maximum local di昀昀erence in # valence -0.013693 0.010710
maximum local di昀昀erence in Gs bandgap -0.013342 0.006750
single bond CN 1 -0.012870 0.014012
maximum local di昀昀erence in # p valence -0.011895 0.038656
wt CN 4 -0.011703 0.006224
minimum local di昀昀erence in # valence -0.011239 0.006032
local di昀昀erence in # d un昀椀lled -0.010490 0.014419
water-like CN 2 -0.006790 0.033701
cuboctahedral CN 12 -0.006654 0.011608
local signed di昀昀erence in # valence -0.006469 0.017717
l-shaped CN 2 -0.005743 0.022772
local signed di昀昀erence in # d valence -0.001617 0.006144
local signed di昀昀erence in # d un昀椀lled -0.000048 0.003249
minimum local di昀昀erence in # f un昀椀lled 0.000000 0.000000
wt CN 15 0.000000 0.000000
wt CN 16 0.000000 0.000000
wt CN 17 0.000000 0.000000
wt CN 18 0.000000 0.000000
wt CN 19 0.000000 0.000000
wt CN 20 0.000000 0.000000
wt CN 21 0.000000 0.000000
wt CN 22 0.000000 0.000000
wt CN 13 0.000000 0.000000
wt CN 11 0.000000 0.000000
wt CN 24 0.000000 0.000000
d un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # d un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # f un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # s valence 0.000000 0.000000
local signed di昀昀erence in # f un昀椀lled 0.000000 0.000000
minimum local di昀昀erence in electronegativity 0.000000 0.019048
minimum local di昀昀erence in # s valence 0.000000 0.000000
minimum local di昀昀erence in # p valence 0.000000 0.000000
minimum local di昀昀erence in # d valence 0.000000 0.000000
minimum local di昀昀erence in # f valence 0.000000 0.000000

Continued on next page
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Table 35: SHAP values for Cu(I/II)-BTC.. Listing of SHAP values for all features, for the
macrocyclus and paddlewheel.

feature Cu(I) Cu(II)

minimum local di昀昀erence in # s un昀椀lled 0.000000 0.000000
minimum local di昀昀erence in # p un昀椀lled 0.000000 0.000000
minimum local di昀昀erence in # d un昀椀lled 0.000000 0.000000
wt CN 23 0.000000 0.000000
local signed di昀昀erence in row 0.000000 0.007132
minimum local di昀昀erence in # un昀椀lled 0.000000 0.000000
local di昀昀erence in Gs bandgap 0.000000 0.034698
column 0.000000 0.000000
row 0.000000 0.000000
local di昀昀erence in # fun昀椀lled 0.000000 0.000000
valence electrons 0.000000 0.000000
local di昀昀erence in # valence 0.000000 0.012122
di昀昀to18electrons 0.000000 0.000000
s un昀椀lled 0.000000 0.000000
p un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # f valence 0.000000 0.000000
maximum local di昀昀erence in # s un昀椀lled 0.000000 0.000000
local di昀昀erence in row 0.000270 0.002022
local di昀昀erence in Mendeleev number 0.003694 0.011932
wt CN 10 0.004626 0.004663
t-shaped CN 3 0.005452 0.019825
wt CN 1 0.007540 0.004919
tetrahedral CN 4 0.011486 0.047986
maximum local di昀昀erence in # p un昀椀lled 0.011745 0.001457
local signed di昀昀erence in # f valence 0.011933 0.000000
wt CN 3 0.012414 0.007049
minimum local di昀昀erence in row 0.013717 0.000000
wt CN 12 0.014530 0.003594
wt CN 7 0.016616 0.007560
local di昀昀erence in # s un昀椀lled 0.017490 0.009048
maximum local di昀昀erence in column 0.020533 0.020929
trigonal planar CN 3 0.021260 0.237176
see-saw-like CN 4 0.039270 0.025903
local signed di昀昀erence in Gs bandgap 0.041773 0.033488
local signed di昀昀erence in # s un昀椀lled 0.075302 -0.017143

D.3.7 MIL-47

The SHAP values for all features of both the MIL-47(as) and the activated structure
are listed in Table 36.

Table 36: SHAP values for MIL-47. Listing of SHAP values for all features, for the activated
and the as-synthesised (as) structure.

feature MIL-47 (as) MIL-47 (activated)

octahedral CN 6 1.549734 0.254080
wt CN 6 0.686747 0.051034
pentagonal pyramidal CN 6 0.618746 0.051499
tetrahedral CN 4 0.603557 0.323607
wt CN 1 0.401267 0.007937
minimum local di昀昀erence in column 0.331678 0.117328
single bond CN 1 0.260923 0.167693
pentagonal planar CN 5 0.242957 0.091866
minimum local di昀昀erence in # valence 0.208751 0.011380
water-like CN 2 0.200464 0.069949
minimum local di昀昀erence in electronegativity 0.194526 0.074362
hexagonal planar CN 6 0.176997 0.019653
square pyramidal CN 5 0.168113 0.079079

Continued on next page
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Table 36: SHAP values for MIL-47. Listing of SHAP values for all features, for the activated
and the as-synthesised (as) structure.

feature MIL-47 (as) MIL-47 (activated)

maximum local di昀昀erence in Gs bandgap 0.156312 0.009012
trigonal pyramidal CN 4 0.155963 0.104752
trigonal bipyramidal CN 5 0.144059 0.003517
wt CN 5 0.097325 0.009215
wt CN 4 0.093918 0.088117
trigonal non-coplanar CN 3 0.082951 0.056379
bent 120 degrees CN 2 0.055490 0.014857
local signed di昀昀erence in # valence 0.054438 0.139427
maximum local di昀昀erence in # un昀椀lled 0.048549 0.018605
square co-planar CN 4 0.045803 0.024420
see-saw-like CN 4 0.041538 0.037883
L-shaped CN 2 0.036103 0.014675
local signed di昀昀erence in Gs bandgap 0.035061 0.007301
maximum local di昀昀erence in column 0.034825 0.013176
local di昀昀erence in row 0.033432 0.053456
maximum local di昀昀erence in # d valence 0.028875 0.005876
minimum local di昀昀erence in # p valence 0.021635 0.050926
maximum local di昀昀erence in electronegativity 0.021287 0.021878
maximum local di昀昀erence in # valence 0.017577 0.029955
minimum local di昀昀erence in Mendeleev number 0.017080 0.000000
local signed di昀昀erence in electronegativity 0.016949 0.000000
local di昀昀erence in Mendeleev number 0.016421 0.011915
local di昀昀erence in Gs bandgap 0.015905 0.012549
body-centered cubic CN 8 0.015069 0.008068
local di昀昀erence in # d valence 0.014898 0.000000
wt CN 2 0.012992 0.001018
local di昀昀erence in # un昀椀lled 0.012812 0.011292
wt CN 3 0.011915 0.018215
linear CN 2 0.010913 0.005758
hexagonal pyramidal CN 7 0.010699 0.025266
local signed di昀昀erence in Mendeleev number 0.009299 0.023733
local di昀昀erence in # p un昀椀lled 0.007539 0.009860
local di昀昀erence in column 0.005591 0.012662
local di昀昀erence in electronegativity 0.004472 0.035064
wt CN 7 0.002071 0.012288
trigonal planar CN 3 0.000428 0.005401
wt CN 16 0.000000 0.000000
T-shaped CN 3 0.000000 0.006251
wt CN 8 0.000000 0.027586
hexagonal bipyramidal CN 8 0.000000 0.009893
wt CN 23 0.000000 0.000000
wt CN 22 0.000000 0.000000
bent 150 degrees CN 2 0.000000 0.011127
wt CN 9 0.000000 0.010256
wt CN 10 0.000000 0.000000
wt CN 11 0.000000 0.000000
wt CN 21 0.000000 0.000000
wt CN 15 0.000000 0.000000
wt CN 12 0.000000 0.000000
wt CN 20 0.000000 0.000000
wt CN 19 0.000000 0.000000
rectangular see-saw-like CN 4 0.000000 0.000000
cuboctahedral CN 12 0.000000 0.000000
pentagonal bipyramidal CN 7 0.000000 0.015977
wt CN 17 0.000000 0.000000
wt CN 13 0.000000 0.000000
wt CN 14 0.000000 0.000000
wt CN 18 0.000000 0.000000
minimum local di昀昀erence in # un昀椀lled 0.000000 0.026772
d un昀椀lled 0.000000 0.000000

Continued on next page



D.4 p R I N C I p A L C O M p O N E N T A N A L y S I S F O R T H E C O p p E R C A S E S T u D y 231

Table 36: SHAP values for MIL-47. Listing of SHAP values for all features, for the activated
and the as-synthesised (as) structure.

feature MIL-47 (as) MIL-47 (activated)

p un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in Mendeleev number 0.000000 0.034787
local signed di昀昀erence in # un昀椀lled 0.000000 0.008021
local signed di昀昀erence in # f un昀椀lled 0.000000 0.000000
local signed di昀昀erence in # d un昀椀lled 0.000000 0.021360
local signed di昀昀erence in # p un昀椀lled 0.000000 0.019717
local signed di昀昀erence in # s un昀椀lled 0.000000 0.013731
local signed di昀昀erence in # f valence 0.000000 0.000000
local signed di昀昀erence in # d valence 0.000000 0.007560
local signed di昀昀erence in # p valence 0.000000 0.029144
local signed di昀昀erence in # s valence 0.000000 0.007232
local signed di昀昀erence in row 0.000000 0.042591
local signed di昀昀erence in column 0.000000 0.028065
local di昀昀erence in # f un昀椀lled 0.000000 0.000000
local di昀昀erence in # d un昀椀lled 0.000000 0.021614
local di昀昀erence in # s un昀椀lled 0.000000 0.007000
local di昀昀erence in # valence 0.000000 0.015774
local di昀昀erence in # f valence 0.000000 0.000000
local di昀昀erence in # p valence 0.000000 0.004856
local di昀昀erence in # s valence 0.000000 0.033869
maximum local di昀昀erence in row 0.000000 0.005906
maximum local di昀昀erence in # s valence 0.000000 0.000000
maximum local di昀昀erence in # p valence 0.000000 0.023295
minimum local di昀昀erence in # p un昀椀lled 0.000000 0.012704
s un昀椀lled 0.000000 0.000000
di昀昀to18electrons 0.000000 0.000000
valence electrons 0.000000 0.000000
row 0.000000 0.000000
column 0.000000 0.000000
minimum local di昀昀erence in Gs bandgap 0.000000 0.000000
minimum local di昀昀erence in # f un昀椀lled 0.000000 0.000000
minimum local di昀昀erence in # d un昀椀lled 0.000000 0.000000
minimum local di昀昀erence in # s un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # f valence 0.000000 0.000000
minimum local di昀昀erence in # f valence 0.000000 0.000000
minimum local di昀昀erence in # d valence 0.000000 0.000000
minimum local di昀昀erence in # s valence 0.000000 0.016594
minimum local di昀昀erence in row 0.000000 0.023644
maximum local di昀昀erence in # f un昀椀lled 0.000000 0.000000
maximum local di昀昀erence in # d un昀椀lled 0.000000 0.024568
maximum local di昀昀erence in # p un昀椀lled 0.000000 0.020117
maximum local di昀昀erence in # s un昀椀lled 0.000000 0.090870
wt CN 24 0.000000 0.000000

D.4 p R I N C I p A L C O M p O N E N T A N A L y S I S F O R
T H E C O p p E R C A S E S T u D y

Toextract the common features of the cases inwhich theBV sum fails (cf. sectionD.7),
weperformedHuber regression (𝜖 = 3, green line in Figure 131) on the two-dimensional
principal component (PC) embedding of the feature space (which can explain 37.4 %
of the total variance of the data, note that this analysis is linear) of the copper sites
for which the BV sum method predicted the wrong oxidation state. We then ex-
tracted the features with the highest loading by taking the dot product with the
principal components. In this way, we identi昀椀ed the 昀椀ve features with the highest
loading to be features for coordination order parameters of coordination number
four. Note that in this analysis, the metal center features automatically vanish as we
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Figure 130: Extended SHAP summary plot for the case of Cu(I,II)-BTC. The violins show the
distributions of the data, and the color indicates the value of the feature. The
SHAP value indicates the in昀氀uence on the prediction of the model; a more posi-
tive value indicates that this particular feature value makes the model predict a
higher oxidation state. Gray areas mark areas for which we do not have any data
points.

limit our attention to only copper centers.
The fact that the order parameters for coordination geometry are powerful in sepa-

rating the oxidation states is also evident from Figure 132, where we color the points
depending on the oxidation state. It is clearly observable that a clear separation be-
tween the two oxidation states is possible mostly by means of the geometrical order
parameters.

D.5 D E T A I L S A B O u T T H E T E S T S E T S

D.5.1 Detailed analysis of the predictive performance

Table 37: Classi昀椀cation metrics on the test set as a function of the metal. Micro and macro
refer to the averaging methods, where micro averaging gives high weights to rare
classes.

metal accuracy recall (micro) precision (micro) recall (macro) precision (macro)

Ag 0.999 0.999 0.999 0.5 0.499

Continued on next page
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Table 37: Classi昀椀cation metrics on the test set as a function of the metal. Micro and macro
refer to the averaging methods, where micro averaging gives high weights to rare
classes.

metal accuracy recall (micro) precision (micro) recall (macro) precision (macro)

Am 1.0 1.0 1.0 1.0 1.0
Au 0.989 0.989 0.989 0.75 0.995
Ba 1.0 1.0 1.0 1.0 1.0
Bi 1.0 1.0 1.0 1.0 1.0
Ca 1.0 1.0 1.0 1.0 1.0
Cd 1.0 1.0 1.0 1.0 1.0
Ce 0.931 0.931 0.931 0.5 0.466
Co 0.959 0.959 0.959 0.646 0.747
Cr 0.954 0.954 0.954 0.604 0.667
Cs 1.0 1.0 1.0 1.0 1.0
Cu 0.979 0.979 0.979 0.981 0.972
Dy 1.0 1.0 1.0 1.0 1.0
Er 0.995 0.995 0.995 0.5 0.498
Eu 0.978 0.978 0.978 0.579 0.989
Fe 0.894 0.894 0.894 0.886 0.878
Ga 1.0 1.0 1.0 1.0 1.0
Gd 1.0 1.0 1.0 1.0 1.0
Hf 1.0 1.0 1.0 1.0 1.0
Hg 0.979 0.979 0.979 0.5 0.49
Ho 1.0 1.0 1.0 1.0 1.0
In 1.0 1.0 1.0 1.0 1.0
Ir 1.0 1.0 1.0 1.0 1.0
K 1.0 1.0 1.0 1.0 1.0
La 1.0 1.0 1.0 1.0 1.0
Li 1.0 1.0 1.0 1.0 1.0
Lu 1.0 1.0 1.0 1.0 1.0
Mg 1.0 1.0 1.0 1.0 1.0
Mn 0.961 0.961 0.961 0.884 0.921
Mo 0.985 0.985 0.985 0.796 0.785
Na 1.0 1.0 1.0 1.0 1.0
Nb 0.828 0.828 0.828 0.25 0.25
Nd 1.0 1.0 1.0 1.0 1.0
Ni 1.0 1.0 1.0 1.0 1.0
Np 1.0 1.0 1.0 1.0 1.0
Os 0.889 0.889 0.889 0.444 0.5
Pb 1.0 1.0 1.0 1.0 1.0
Pd 1.0 1.0 1.0 1.0 1.0
Pr 1.0 1.0 1.0 1.0 1.0
Pt 0.916 0.916 0.916 0.5 0.458
Pu 0.0 0.0 0.0 0.0 0.0
Rb 1.0 1.0 1.0 1.0 1.0
Re 0.0 0.0 0.0 0.0 0.0
Rh 0.913 0.913 0.913 0.905 0.957
Ru 0.938 0.938 0.938 0.959 0.894
Sc 1.0 1.0 1.0 1.0 1.0
Sm 1.0 1.0 1.0 1.0 1.0
Sn 0.958 0.958 0.958 0.604 0.657
Sr 1.0 1.0 1.0 1.0 1.0
Tb 1.0 1.0 1.0 1.0 1.0
Th 1.0 1.0 1.0 1.0 1.0
Ti 1.0 1.0 1.0 1.0 1.0
Tl 0.978 0.978 0.978 0.917 0.987
Tm 1.0 1.0 1.0 1.0 1.0
U 1.0 1.0 1.0 1.0 1.0
V 0.942 0.942 0.942 0.893 0.967
W 0.992 0.992 0.992 0.778 0.938
Y 1.0 1.0 1.0 1.0 1.0
Yb 0.95 0.95 0.95 0.5 0.475
Zn 1.0 1.0 1.0 1.0 1.0

Continued on next page
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Table 37: Classi昀椀cation metrics on the test set as a function of the metal. Micro and macro
refer to the averaging methods, where micro averaging gives high weights to rare
classes.

metal accuracy recall (micro) precision (micro) recall (macro) precision (macro)

Zr 1.0 1.0 1.0 1.0 1.0

D.5.2 Examples with spectroscopic evidence

In addition to a larger holdout set which we used to estimate test statistics, we also
used some examples for which we found spectroscopic evidence in the literature as
a separate test set. To 昀椀nd those cases, we performed literature research using the
terms MOF + {XPS, NEXFAS, EXFAS, XANES, redox, oxidation state,
susceptibility, magnetometer}.
We considered only those cases in which we could retrieve a CIF and list them in
Table 38. In cases where the structure is deposited in the CSD, we excluded the
structures from the training set.

Table 38: Test structures with strong experimental evidence for the oxidation state assign-
ment.

CSD reference code metal (ox. st.) predictions assignment technique

KOLVOC622 Fe(II) Fe(II) Moessbauer
XUVDEZ623 Fe(II) Fe(II) Moessbauer
WODZEX624 Fe(II) Fe(II) Moessbauer
MAHSUK01625 Co(II) Co(II) X-ray photoelectron spectroscopy

(XPS)
BUPVEP626 Ce(IV) Ce(III) X-ray absorption near edge struc-

ture (XANES)
ZIFTIU627 Ce(III) Ce(III) XANES
ZITMUN628 Ce(III) Ce(III) XANES
KAJZIH333 Cu(I/II) Cu(I/II) XPS
ORIVUI629 Ni(II) Ni(II) XPS
QAMTEG630 Tb(III) Tb(III) XPS
COKNOH01340 Fe(II) Fe(II) Moessbauer
GUVZEE340 Fe(III) Fe(III) Moessbauer
GUVZII340 Fe(II) Fe(II) Moessbauer
GASMUK631 Au(III) Au(III) nuclear magnetic resonance

(NMR)
DOVBIB632 Co(III) Co(III) magnetic susceptibility
JIZJAF633 Co(II) Co(II) magnetometer
JIZJEJ633 Co(II) Co(II) magnetometer
JIZJIN633 Co(II) Co(II) magnetometer
JIZJOT633 Co(II) Co(II) magnetometer
JIZJUZ633 Co(II) Co(II) magnetometer
PETWOC634 U(IV) U(IV) XPS
PETWUI634 U(IV) U(IV) XPS
PETXAP634 U(IV) U(IV) XPS
VIMRAM635 Cu(II) Cu(II) magnetometer
YOPQEB636 Co(II) Co(II) magnetometer
RISXAU637 Fe(II) Fe(II) magnetometer
DOTVEP638 Co(II) Co(II) magnetometer
DOTVOZ638 Co(II) Mn(II) magnetometer
DOTVUF638 Mn(II) Mn(II) magnetometer
DOTVAM638 Co(II) Co(II) magnetometer
VAYGAF639 Co(II) Co(II) magnetometer
QUBBEU640 Co(II) Co(II) magnetometer
KIDLAL641 Mn(II) Mn(II) magnetometer
ACODEE642 Fe(II) Fe(II) Moessbauer
YOCTIW643 Cu(I/II) Cu(I/II) XPS

Continued on next page
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Table 38: Test structures with strong experimental evidence for the oxidation state assign-
ment.

CSD reference code metal (ox. st.) predictions assignment technique

BAHLED644 Fe(II) Fe(II) magnetometer
TINXAR645 Co(II) Co(II) magnetometer
XOGGOR01646 Mn(II) Mn(II) magnetometer
GIFMIU647 Fe(II, III) Fe(II, III) magnetometer
CIXNUV648 Mn(II) Mn(II) magnetometer
CIXPAD648 Mn(II) Mn(II) magnetometer
YIGXOD649 Co(II) Co(II) magnetometer
ACUWIH650 Mn(II) Mn(II) XPS, magnetometer
WCUWON650 Co(II) Co(II) XPS, magnetometer
MOHSEJ651 Co(II, III) Co(II, III) magnetometer
DEFRIR652 Gd(III) Gd(III) XPS
TISHAF653 Fe(III) Fe(III) magnetometer
GUJREK654 Cu(I/II) Cu(I/II) magnetometer, electron paramag-

netic resonance (EPR)
YADHIV655 Cu(II) Cu(II) magnetometer
YADHOB655 Cu(II) Cu(II) magnetometer
YADHUH655 Cu(II) Cu(II) magnetometer

D.5.3 Test on structures added in a new CSD release

The training and testing of the models was carried out using the CSD release from
May 2019. With the release from November 2019, new structures were added to
the MOF subset which our model could never see before. For this reason, the new
additions are a good test for our model.
Therewere 1166 additions (structureswith new reference code) in the non-disordered
set, for 952 of which the chemical name in the CSD contains an oxidation state. In
total, we analyzed 5587 metal sites for these new additions.
We 昀椀nd disagreement between the oxidation state in the chemical name in the CSD
andour prediction for 92metal sites, corresponding to 13 unique structures. Overall,
this corresponds to an accuracy of >99%. Also the area under the receiver-operating
characteristic curve (AUC-ROC) is greater 0.94 for all classes except V, i.e., I, II, II,
IV, VI. The F1 macro score is 0.81, the F1 micro score is 0.98. The confusion matrix
is shown in Table 39
Also, in this small analysis, we found typos in the CSD, which also list in Table 39,
all four are copper compounds (HOJHUM, HOMQEI, NOJSUD, SOKKAH).

Table 39: Confusion matrix for test on the new additions to the CSD. Numbers in each cell
show the number of classi昀椀ed metal centers for each case. In the ideal error-free
case, the matrix would only have entries on the diagonal.

prediction
I II III IV V VI

ground truth

I 354 46 0 0 0 0
II 12 3678 14 0 0 0
III 0 20 713 0 0 0
IV 0 0 0 637 0 0
V 0 0 0 2 0 0
VI 0 0 0 0 0 111

D.5.4 Transfer to COFs

Additionally, we also tested the transferability of our model to COFs for which we
found some examples with metals in the CURATED COFs database.147 We only con-
sidered COFs for our test case for which the oxidation state of the metal center was
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Figure 131: Projection of the feature space onto the two 昀椀rst principal components (linear
combinations of features that capture most of the variance in the data). The
color coding shows the value of the trigonal co-planar feature.
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Figure 132: Projection of the feature space onto the two 昀椀rst principal components (linear
combinations of features that capture most of the variance in the data). The
color encoding shows the oxidation states. The green line is obtained from Hu-
ber regression on the erroneous cases, which are denoted by stars.

explicitly mentioned in either the supporting information or the paper’s main text.
The compounds and oxidation states of themetal centers are listed in Table 40. Our
model correctly predicted all cases with high con昀椀dence (all except vanadium).
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Figure 133: Confusion matrix for only elements of the d-block.
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Figure 134: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 5 % frequency in the
MOF subset of the CSD.
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Figure 135: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 10 % frequency in
the MOF subset of the CSD.
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Figure 136: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 20 % frequency in
the MOF subset of the CSD.
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Table 40: Transfer to COFs. COFs with metals in the ligand for which the oxidation state is
reported in the paper.

CURATED COF id metal (oxidation state)

11010N2656 Ni(II)
12061N2657 Cu(II)
12062N2657 Co(II)
13110N2658 Cu(II)
15180N2659 Cu(II)
15181N2659 Cu(II)
15182N2659 Cu(II)
18080N2660 Co(II)
18081N2660 Co(II)
18082N2660 Co(II)
18083N2660 Co(II)
19040N2661 V(IV)
19041N2661 V(IV)
19270N2662 Zn(II)
19271N2662 Zn(II)

D.5.5 Transfer to transition metal complexes

As an additional test for transferability, we considered a collection of small transition
metal complexes of Mn, Fe, Co, and Cr in oxidation states II and III that Janet and
Kulik extracted from the CSD and optimized using hybrid-level DFT and used to
test their NN as it “spans a broader range of compounds”.341 We summarize the
oxidation states of the metal centers in those structures along with the predictions
of our model in Table 41. Note that we used the geometry of the spin state with the
lowest energy for this test.

The global performance statistics are summarized in Table 42 and the class statis-
tics in Table 43.

Table 41: Transfer to small metal complexes. Experimental transition metal complexes that
Janet and Kulik extracted from the CSD for which the base estimators agree and
the maximum prediction probability is greater than .75.

CSD code metal ground truth predicted oxidation state

EYUSOI Mn III II
ECADOB Co II II
EYUNIW Co II II
DMAZCO Co II II
ETUSOC02 Fe II II
DOQRAC Fe II II
EXEHUM Co II II
FALVEU02 Co II II
ECUGIS Co II II
FEISXC01 Fe II II
EDETIT Co II II
EZIROU Co II II
ECOWEZ Fe III III
EHEWIZ Mn II II
ECODIM Fe II II
DELVAS Co II II
EYETUY01 Cr III III
FAQZEF Co II II
CETDAG Mn II II
EJEVEV Mn III II
DUCJOA01 Co II II
ETUCED Co II II

Continued on next page
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Table 41: Transfer to small metal complexes. Experimental transition metal complexes that
Janet and Kulik extracted from the CSD for which the base estimators agree and
the maximum prediction probability is greater than .75.

CSD code metal ground truth predicted oxidation state

EPASIY Mn II II
EYOMUC Co II II
DEPMOD Mn II II
FAHLEI Mn III III
DUCDIP Fe II II
DUCBIN Co II II
FAMBOL Mn II II
EBUSEB Co II II
EBIKOP Co II II
ELAHII Co II II
EXOWOD Fe II II
DOXBEX Co II II
FEHPYO Fe II II
ABIWEO Fe II II
EZOYEY Mn II II
DELNIS Co II II
DIRGES Co II II
DIVFUL Mn II II
CETJIU Co II II
DOZROA Fe II II
FATJIT Co II II
DEVCUF Co II II
ABORIU Cr III III
DEGVET Mn II II

Table 42: Transfer to metal complexes for predictions with low uncertainty. Global perfor-
mance statistic for the prediction on 49 transition metal complexes assembled by
Janet and Kulik for which all base estimators agree and for which the maximum
prediction probability is greater than .75.

metric value

accuracy macro 0.96 ± 0.03
F1 macro 0.89
F1 micro 0.96𝜅593 0.78 ± 0.15𝜅no prevalence

601 0.91
relative classi昀椀er information602 0.55
precision macro 0.98
precision micro 0.96

Table 43: Transfer to metal complexes. Class statistic for the prediction on 63 transition
metal complexes assembled by Janet and Kulik for which all base estimators agree
and for which the maximum prediction probability is greater than .75.

metric II III

accuracy 0.96 0.96
adjusted F score 0.95 0.83
AUC 0.83 0.83
AUPR 0.98 0.83
precision 0.95 1.0
Matthews correlation coe昀케cient603 0.80 0.80
Gini index604 0.67 0.67
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D.5.6 Transfer to binary (ionic) solids

We retrieved all 590 stable (zero above complex hull on Perdew-Burke-Ernzerhof
(PBE) functional level of theory) binary solids composed of Ag, Al, Au, B, Ba, Be, Bi,
Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Hg, Ho, In, Ir, K, La, Li, Mg,
Mn, Mo, Na, Nb, Ni, Os, Pb, Pd, Pr, Pt, Pu, Rb, Re, Rh, Ru, Sc, Sn, Sr, Ta, Tb, Tc, Ti, Tl,
Tm, U, V, W, Y, Zn, Zr as metallic species and F, Cl, Br, I, O, S, N as anionic species
from the Materials Project222 using their API. Using these simple binary cases, we
could use formal counting rules to automatically assign oxidation sites. The code to
do so is available in the oximachine_featurizer package. Note that this test case
is particularly harsh as we did not train our model with such solids and only had few
examples for some of the metals and chemical environments.

Notably, we observe—as discussed in Section D.2.11—that the base estimators
usually disagree in case of wrong predictions. For example, this 昀椀ltering excludes
cases VII and VIII, which we did not observe in training. Considering only the pre-
dictions in which the model is con昀椀dent, we observe the performance statistics sum-
marized in Tables 44 and 45. If we also consider the cases in which the model is not
con昀椀dent in its predictions, we 昀椀nd the statistics summarized in Tables 46 and 47.
Overall, we observe that removing the cases in which the model is not con昀椀dent
signi昀椀cantly improves the scores.

The bad performance for the oxidation state IV appears to be due to lanthanides,
mainly occurring in oxidation state III in MOF chemistry.

Generally, this analysis indicates that our approach canbe extended to all chemistries.

Table 44: Transfer to binary solids for predictions with low uncertainty. Global performance
statistic for the prediction on 189 binary (ionic) solids from the Materials Project
for which all base estimators agree and for which the maximum prediction proba-
bility is greater than .75.

metric value

accuracy macro 0.90
F1 macro 0.70
F1 micro 0.74𝜅593 0.64 ± 0.04𝜅no prevalence

601 0.48
relative classi昀椀er information602 0.51
precision macro 0.78
precision micro 0.74

Table 45: Transfer to binary solids. Class statistic for the prediction on 189 binary (ionic)
solids from the Materials Project for which all base estimators agree and for which
the maximum prediction probability is greater than .75.

metric I II III IV VI

accuracy 0.99 0.86 0.80 0.85 0.98
adjusted F score 0.99 0.81 0.84 0.56 0.69
AUC 0.99 0.82 0.82 0.63 0.71
AUPR 0.97 0.76 0.75 0.40 0.71
precision 0.94 0.80 0.67 0.47 1.0
Matthews correla-
tion coe昀케cient603

0.96 0.67 0.60 0.31 0.65

Gini index604 0.99 0.64 0.63 0.26 0.43
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Table 46: Transfer to binary solids. Global performance statistic for the prediction on 590
binary (ionic) solids from the Materials Project.

metric value

accuracy macro 0.90 ± 0.02
F1 macro 0.36
F1 micro 0.59𝜅593 0.44 ± 0.05𝜅no prevalence

601 0.05
relative classi昀椀er information602 0.24
precision macro None
precision micro 0.59

Table 47: Transfer to binary solids. Class statistic for the prediction on 590 binary (ionic)
solids from the Materials Project.

metric I II III IV V VI VII VIII

accuracy 0.95 0.79 0.74 0.79 0.95 0.95 0.99 0.99
adjusted F score 0.84 0.74 0.78 0.57 0.29 0.48 0 0
AUC 0.84 0.74 0.75 0.62 0.53 0.60 0.50 0.50
AUPR 0.77 0.62 0.68 0.39 0.37 0.40 None None
precision 0.86 0.59 0.59 0.41 0.67 0.60 None None
Matthews correla-
tion coe昀케cient603

0.75 0.47 0.48 0.26 0.20 0.33 None None

Gini index604 0.68 0.48 0.50 0.24 0.07 0.20 0.0 0.0

D.5.7 Case studies on defective MOFs

Given that our method only uses the local environment around a metal center, we
were interested in how well it can deal with cases in which we distort the bonding of
some linkers in well-known MOFs, which approximates missing-linker defects. Sim-
ply removing a linker will obviously lead to a smaller change in the local environment
than in a real system, where the full electron density around a metal center will re-
organize to relax into a new minimum—as for example, Smolders et al. reported for
the transitions between Ce(III) and Ce(IV).663

As a 昀椀rst case study, we replaced one carboxylic acid group in some benzene-1,3,5-
tricarboxylate linkers of Cu-BTCwith hydrogen andmethyl, respectively. The result-
ing structure is shown in Figure 137. Our model predicts Cu(I) with high con昀椀dence
for sites that no longer bind to carboxyl groups (as required by charge balance).

Figure 137: Defective Cu-BTC. Simulating missing linkers with uncompensated charges by
terminating some carboxyl groups with methyl and hydrogen, respectively.

Furthermore, linker defects do not necessarily need to change the oxidation state
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(a) PCN-250 without axial water molecules (lost
in the experiment below 150 °C. (b) PCN-250 without axial water molecules and a

missing linker.

Figure 138: Thermally induced decarboxylation for PCN-250.

of the metal, as it is known for UiO-66 where di昀昀erent forms of charge compensa-
tion, e.g., with formate664–666 or hydroxy anions.667,668 Weveri昀椀ed that ourmethod
predicts the correct oxidation state for all structures reported by Trickett et al.667 as
well as all DFT optimized structures by Svane et al.669

An interesting example might also be the case of PCN-250 (Figure 138). Here,
Zhou and co-workers reported an oxidation state change, from a Fe(III)3 cluster to a
Fe(II)Fe(III)2 cluster, during activation of the framework, which was con昀椀rmed with
57FeMössbauer spectroscopy.670 TGA-MS analysis revealed that an initial water loss
is likely not responsible for the reduction of the Fe sites. Hence, a decarboxylation
mechanism was proposed.
Similarly, our model does not predict oxidation state changes if we remove the axial
water molecules. But, if we remove one linker, we observe a change in the oxidation
state. We performed this analysis based on the crystal structure measured by Zhou
and co-workers for the activated sample.

D.5.8 Case studies on charged frameworks and removal of charge-compensating
counter ions

We also speci昀椀cally investigated charged ligands or charged frameworks where we
removed the counter ions. We picked those cases randomly from the CoRE-MOF
structures with charged or ion annotation and made sure that the oxidation state
was not in the CSD such that there was no way for our model have seen the structure
with the correct oxidation state before.
These examples illustrate that due to the locality of our model, we do not depend
on the direct knowledge of counter ions.• Thapa et al. reported a charge-separated diamondoid MOF with anionic tetra-

hedral borate ligand and cationic Cu(I) metal ion. We correctly predict the +I
oxidation state of the copper centers with high con昀椀dence.671• Xuet al. reported a [AMI]2[Co3(BDC)4]MOFwith [AMI]+ (1-amyl3-methylimidazolium)
cations. We correctly predict Co(II) with and without the counter ions.672• Nättinen and Rissanen reported a MOF with nitrate counter ions. Also after
removal of those ions we correctly predict Cu(II) with high con昀椀dence673
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• Eubank reported a MOFwith nitrate counter ions. Also after removal of those
ions we correctly predict Cu(II) with high con昀椀dence674• Huo et al. reported polyoxometalate-MOF hybrid in which channels are oc-
cupied by Keggin polyoxoanions. Also after removing the polyoxoanions we
correctly predict the oxidation state for the Cu(I) sites.675• Song et al. reported a polyoxometalate-MOF hybrid. Also after the removal of
this ion we correctly predict Cu(II). Note that this structure (UCOCUM) has
an oxidation state annotation in the CSD but was not used in our model due
to timeout of the featurization for the large counter ion.676• Bai et al. reported coordination polymers for which we correctly predict Ag(I)
after removing the maleate.677• With FARHOX Li et al. reported a Pb(II) MOF with cesium cations. Also after
the removal of the cesium cations, we correctly predict Pb(II).678• Van Albada et al. reported a mixed valent coordination polymer for which we
also correctly predict Cu(I) and Cu(II) after removing the perchlorate counter
ion.679

D.5.9 Case studies on low-dimensional frameworks and clusters

In addition, we investigated some examples of lower-dimensional MOF structures
and clusters in more detail, showcasing that an approach that uses only the local en-
vironment of the metal center is transferable between di昀昀erent compound classes.• Chaudhari et al. reported a π-stacked array of 2D-MOFs for which we correctly

predict Zn(II) with high con昀椀dence.680• Brown et al. reported a 1D-coordination polymer for which we correctly pre-
dict Cu(II) with high con昀椀dence.681• Park et al. reported a 2D semiconductive MOF for which we correctly predict
Cu(II).682• Wang et al. reported an inorganic–organic hybrid constructed from Keggin-
type polyanions and copper clusters in which 1D bands are extended into a
two-dimensional (2D) network. We correctly predict Cu(II) and W(VI).683• Yamabayashi et al. reported the formation of a 3D framework from quantum
dots. We predict the Ti(IV) and V(IV) oxidation states of the OD titanyl and
vanadyl precursors correctly.684• Tong et al. reported homo- and mixed valent [2 × 2] Co4 Grid Complexes
For ILEPOG we correctly predict homovalent Co(II) (with intermediate con昀椀-
dence), and for ILEQAT, we correctly mixed valent Co(II/III)685• Birk et al. reported Cr–F–Ln clusters for which we correctly predict Cr(III) and
Ln(III)686• Wong et al. reported Ru2Co2 [2 × ×2] grids for which we correctly predict
Ru(II) and Co(II)687• Shiga et al. reported spin-crossover Fe(II) grids (e.g., MIQLEG) for which we
correctly predict Fe(II)688
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D.5.10 Case studies on solid-solution and bimetallic MOFs• Fei et al.689 reported a series of solid solution cationic metal–organic materi-
als with varying ratios of Co(II) and Zn(II). To demonstrate the robustness of
our tool and how it can be applied to solid solution MOFs, we used the Trans-
former Python library690 to create a set of solid solutions with varying Co/Zn
ratios. For this, we created the full set (6 unique structures of Co4– xZnx) of
solid solutions for a 1 × 1 × 2 supercell and 昀椀nd Co(II) and Zn(II) in all cases.
One could use a larger supercell for di昀昀erent Co/Zn ratios.• A more challenging case might be a series of MOFs of the general formula
[(AlOH)1–x(VO)x L]n (MIL-53/MIL-47) for which Kozachuk et al.338 probed
the metal centers using EPR. Again, we used the Transformer library to create
all unique solid solution structures (34 unique structures of Al8– xVx) of a 1 ×1 × 2 supercell of MIL-53. We 昀椀nd an oxidation state of +III for the ideal solid-
solution structures for all metal sites. In experiment, the authors found that
the EPR silent V(III) ions are incorporated in the as synthesized samples but
undergo oxidation upon activation. To re昀氀ect this in our solid solutions, we
now created substituted structures starting from the activated structure of
MIl-47. Our model consistently predicts Al(III) and V(IV).

D.5.11 Case study on robustness with respect to incorrect protonation

One might argue that upon oxidation of as-synthesized MIL-47(V) the bridges are𝜇-O instead of 𝜇-OH groups, and that model might rely on this information. To
test how sensitive the model is with respect to the protonation, we created a set of
structures with varying protonation (considering 𝜇-O, 𝜇-OH and 𝜇-H2O as bridging
group, leaving all other atoms and the O itself 昀椀xed) and used them as input for
our model. In all cases, we 昀椀nd V(IV) for the activated structure and V(III) for the
as-synthesized one, supporting the discussion in the main text.

D.5.12 Case study on robustness with respect to the bond lengths

To analyze how sensitive our methods are w.r.t to changes in the bond lengths, we
focused on the 190 structures from the CoRE-density-derived electrostatic charge
(DDEC) database for which the oxidation state has been deposited in the CSD. In the
CoRE-DDEC database, the structures have been relaxed using PBE, which tends to
underbind for which reason pymatgen recommends scaling the bond lengths to be
compatible with the bond valence parameters determined by O’Keefe and Brese691

(https://pymatgen.org/pymatgen.analysis.bond_valence.html).
If we now compare the predictions of our model for the structures from the DFT

optimized database with the ones for the experimental counterparts, we can esti-
mate how sensitive the method is w.r.t. to changes in the bond lengths.

For all structures except one in this set, we 昀椀nd the same predictions for the exper-
imental and the DFT optimized structure. The one exception is the Cu(II) coordina-
tion polymer TARWAKwhere there has been a larger change in coordination geometry
upon relaxation (contraction of bonds of more than 0.6Å). But, the model trained
on all structures from the CSD (section D.8) is more robust here and predicts con-
sistent results also for this case.

https://pymatgen.org/pymatgen.analysis.bond_valence.html
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D.6 p O S S I B L E E R R O R S I N T H E C A M B R I D G E
C R y S T A L L O G R A p H I C D A T A B A S E I D E N T I -
F I E D B y M E A N S O F T H E M O D E L

Table 48: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: cases in which the assignment in the CSD disagrees with the assign-
ment in the paper.

CSD reference code metal center CSD prediction

ACITAK692 Cu(II) Cu(I)
AFENAA693 Cu(II) Cu(I)
AQUCOF694 Cu(I) Cu(I/II)
AQUDAS694 Cu(I) Cu(I/II)
ATAGOR695 Cu(II) Cu(I)
BAXLAP696 Cu(II) Cu(I)
BICPOV697 Cu(I) Cu(II)
BIYWAK698 Cu(II) Cu(I)
COFYOM559 Er(II) Er(III)
COXQOV699 Mn(II) Mn(III)
CUVJUA700 Cu(II) Cu(I)
FIGZIG701 Cu(II) Cu(I)
EBUPUO702 Cu(II) Cu(I)
EKIPAP01703 Cu(II) Cu(I)
ENATUJ704 Ga(II) Ga(III)
EQIZAF705 Cu(II) Cu(I)
FIGTUL706 U(III) U(IV)
FIGZIG701 Cu(I) Cu(II)
FIGZOM701 Cu(II) Cu(I)
FIGZUS701 Cu(II) Cu(I)
FODLAM02707 Cu(II) Cu(I)
FUZBUX708 Cu(II) Cu(I)
GEVPOM709 Hg(II) Hg(I)
HAVHAQ710 Cu(II) Cu(I)
HAWVIN711 Co(II) Co(III)
HAWVUZ711 Co(II) Co(III)
HITQOR712 Cu(II) Cu(I)
HOJHUM713 Cu(II) Cu(I/II)
HOMQEI714 Cu(I) Cu(II)
JAPYEH715 Cu(II) Cu(I)
JAPYIL715 Cu(II) Cu(I)
JAPYOR715 Cu(II) Cu(I)
JAPYUX715 Cu(II) Cu(I)
JAPZAE715 Cu(II) Cu(I)
JAPZEI715 Cu(II) Cu(I)
ToDo: JAPZIM715 Cu(II) Cu(I)
JAPZUY715 Cu(II) Cu(I)
KAKTIA01716 Cu(II) Cu(I)
KAWFUL717 Cu(II) Cu(I)
KESSIM718 Mn(II) Mn(III)
KOGNIE719 Cu(II) Cu(I/II)
KUTNUI720 Cu(II) Cu(II/I)
LARRAA721 Cu(II) Cu(I)
LIDWAX722 Cu(II) Cu(I)
MIFQOJ/MIFQEZ723 Mn(III) Mn(II)
MOHQOQ724 In(II) In(III)
NAMTON725 Cu(II) Cu(I)
NECBUT707 Cu(II) Cu(I)
NECCUU726 Cu(II) Cu(I)
NOJSUD727 Cu(I) Cu(II)
NUZXAI728 W(IV) W(V)

Continued on next page
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Table 48: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: cases in which the assignment in the CSD disagrees with the assign-
ment in the paper.

CSD reference code metal center CSD prediction

OJANES729 Hg(II) Hg(I)
PEPVEM730 Cu(II) Cu(I)
PURVIH731 Cu(II) Cu(I)
REKPUV732 Cu(I) Cu(II)
SIBDUD733 Cu(II) Cu(I)
SISMAL734 Cu(II) Cu(I)
SIYXIH735 Fe(II) Fe(III)
TAZGEG736 Cu(II) Cu(I)
TCAZCO737 Co(III) Co(II)
TEDDUC738 Cu(II) Cu(I)
TICMEY739 Fe(II) Fe(III)
UDOQAF740 V(IV) V(V)
UGARID/UGARID01740 Mo(II) Mo(VI)
VUNQUS560 Sm(II) Sm(III)
XAHREE741 Cu(II) Cu(II/I)
XEHVOW742 Fe(II) Fe(III)
YAKFIZ743 Cu(II) Cu(I)
ZASTUK744 Mn(IV) Mn(II)
RAXBAV745 Fe(III) Fe(II/III)
BAYMOF746 Fe(II) Fe(III)
GIMBIN747 Mn(III) Mn(II)
KIKPOM748 Cr(II) Cr(III)
JESMOJ749 Hg(II) Hg(I)

For most of the cases (47) listed in Table 48 we contacted the corresponding au-
thors (for some of the structures, we could not trace down the e-mail address of
the corresponding author). 14 (ca. 30%) responded and unequivocally con昀椀rmed
the typo. One of the responses we received hints that the origin of the error can be
traced back to the automatic naming in re昀椀nement programs.

To understand the limitations of our models better, we investigated misclassi昀椀ed
cases from the holdout and training sets in more detail and, by that means, found
errors in the assignment in the CSD which we list in Table 48.

Table 49: Unclear assignments. Examples of cases in which the model and paper disagree
without further evidence for either assignment. Note that those cases are also
counted as wrong predictions when we determine the classi昀椀cation metrics.

CSD reference code metal centre CSD prediction

AQONAW750 Mn(III) Mn(II/III)
KAKTIA01 Cu(II) Cu(I)
PEHWEE Co(III) Co(II)
PEPVAI730 Cu(II) Cu(I)
QEWBAV Fe(II) Fe(III)
SESNAG751 Co(III) Co(II)
SOXZIP Co(III) Co(II)
WUDLIQ752 Sn(II) Sn(IV)

From the confusion matrix, we can estimate that there are 1344 such metal sites
in the test set where our model prediction disagrees with the assignment in the CSD.
In 723 cases, this happens even though our model has high con昀椀dence in its predic-
tions. In Table 50 we list some examples for which our model failed to predict the
oxidation state.

Naturally, due to the limited amount of data, our model will tend to fail for rare
oxidation states such as Re(I), Er(II), Yb(II), and Os(II).
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Table 50: Potentially wrong predictions. Examples of potentially wrong predictions made by
our model. Note that in several instances, there is no strong experimental support
for the assignment.

CSD reference code metal centre
CSD/paper

prediction note

AFAHAR753 Re(I) Re(III) bad coverage in
training set, one
base estimator
predicts Re(I)

ALICII754 Cu(II) Cu(I) linear copper coor-
dination typical for
Cu(I)

FANSET755 Ni(II/III) Ni(III) is unusual, there is
no example for it in
the training set

HURRER756 Ce(IV) Ce(III) most similar struc-
tures from training
set are Ce(III)

KAWQOP757 Fe(II) Fe(III) most similar struc-
tures from training
set are Fe(III)

UFILUR758 Mn(II) Mn(III) model is not con昀椀-
dent, predicts mix-
ture of Mn(II) and
Mn(III)

ZOQLEW759 Pt(IV) Pt(II) metal site in train-
ing set is Pt(II) in
WEJRIN

WUKNEV580 Er(II) Er(III) rare oxidation state
SELJID563 Eu(II) Eu(III) rare oxidation state
MAKWUS562 Eu(II) Eu(III) rare oxidation state

D.7 B O N D v A L E N C E S u M B A S E L I N E
Given that the most widely used to assign oxidation states in crystalline materials is
the BV summethod, we compared the performance of the BV summethod with our
method for the case of copper. We chose copper as it is the most frequent metal in
the CSD. Furthermore, this is also the metal Shields et al. focused on in their study,
which includes the BV reparametrization for this element and its bonds with C, O, P,
S, Cl, As, Se, Br, I, and 1-, 2- and 3-coordinated N.304

We found that approaches that try to self-consistently assign the oxidation state
for all atoms in a structure, as implemented in pymatgen, are not converging inmost
cases. Moreover, they are unreliable in case of incorrect protonation. Therefore,
we implemented the BV protocol to only assign the oxidation states of the metals
(copper in this analysis), considering their environment of close atoms. Using the
parameters of Shields et al.,304 we were able to reproduce most of the numerical
results they reported: for only three values of over 24 reported in the paper, we see a
deviation of more than 0.1 in the total bond valence sum (FOMHEU Cu(I), FAHHIC
Cu(II) and BUACUM Cu(II)). The source of this deviation is unclear and possibly
related to the convention used to de昀椀ne bonds. The code for our implementation is
written in Python and available on GitHub as part of the manage_crystal package
(https://github.com/danieleongari/manage_crystal). The 昀椀nal oxidation
state is chosen as the one that has the minimum di昀昀erence from the computed BV
sum.

Note that, to use the BV protocol, we had to take into consideration a number of

https://github.com/danieleongari/manage_crystal
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caveats:• Only bonds between Cu and C,O, P, S, Cl, As, Se, Br, I, and Nwere considered:
bonds between Cu and other elements were simply discarded.• All the atoms that are present in the CIF 昀椀le were considered. Also the ones
having a partial occupation.• To adopt a consistent de昀椀nition for the size of the atoms, the van der Waals
diameter was de昀椀ned as in the Universal Force Field (UFF).217• Copper was assumed to bond its neighboring atom when their distance is less
than 80 % of the sum of their van der Waals radii.• Nitrogen atoms need to be labeled as 1-, 2- or 3-coordinated, where this num-
ber corresponds to the coordination number of donor atom in ligand, i.e., ignor-
ing bonds to metal atoms.304 Covalent bonds with nitrogens were assumed for
atoms closer than 50 % of the sum of their van der Waals radii.• In the case of nitrogen atoms with no bond, the parameter for general Cu-
N bond was used. This lone nitrogen often indicates a bound amine solvent
whose geometry is only partially resolved.• Also in the case of nitrogen atoms with more than four bonds, we used the
parameter for the general Cu-N bond. This is typically the case of disorders
or partial occupations in the ligand that resolve in multiple disordered atoms.

The confusion matrix for the BV method, as applied for the labeled Cu-MOFs of
the CSD, is reported in Table 51. Note that, for Cu(I) and Cu(II), 3.3 % and 17.9 %
of the oxidation states are assigned incorrectly, respectively.

Table 51: Confusion matrix for the assignment using the bond valence sum method. Confu-
sion matrix for the assignment of oxidation states for copper MOFs using the BV
sum method.

BV assignment
Cu(I) Cu(II)

chemical name
Cu(I) 2370 81
Cu(II) 1457 6687

D.8 T R A I N I N G A M O D E L O N A L L S T R u C T u R E S
O F T H E C S D

Using the same approachwe used for theMOF subset, we parsed the oxidation states
for all (more than 1 million) compounds of the CSD. We attempted featurization for
354761 structures for which the oxidation state was reported in a form that can be
used with our model, i.e., excluding mixed-valence compounds. Additionally, we
parsed the COD for oxidation states. 879 CIFs, mostly inorganic solids, contain
chemical names, saved under the _chemical_name_systematic tag, containing
the oxidation state.

For 208,410 structures from the CSD and 811 from the COD the featurization suc-
ceeded, and we trained our model on those (applying a train/test split of 0.75/0.25
to allow for test set for a reasonable coverage of the chemical space). Note that the
range of oxidation states in this set is larger (ranging from -1 to 8) than the one for



D.8 T R A I N I N G A M O D E L O N A L L S T R u C T u R E S O F T H E C S D 249

theMOF subset, and there is also no constraint to only a subclass of compounds, e.g.,
only polymeric compounds. Note that the coverage for oxidation states -1 (three ex-
amples) and 8 (seven examples) is still limited in this dataset. But, since the training
set is now substantially larger, the predictive performance improves for metals and
oxidation states rare in theMOF subset (and for which amodel trained only onMOFs
might not perform better than random guessing).
As for the model trained only on MOFs, we excluded those structures for which we
found typos (see Table 53) and which are used as special test cases, e.g., due to ex-
perimental evidence, from the training set.

For an illustration of this dataset, we show in Figure 139 some representative struc-
tures and in Figure 140 the distribution of features and labels.

(a) VELTAI:
Co2(CH3COO)4(C18H18N4)2 ⋅ 2C2H5OH (b) ENEVAV: Indole-substituted vanadocene.

(c) IRAKOB: Iridium hydride.
(d) GETQEE: [Eu(4-EBA)3(4-EBAH)(5,5’-DM-2,2’-

bipy)]2.

(e) COD: 1011219: Cu3S4V. (f ) COD: 1008902 Co3O8U2.

Figure 139: Structures from the dataset including all CSD and the COD. Structures were cho-
sen using submodular selection in feature space.

D.8.1 Model architecture

Weused the samemodel architecture as for themodel that was only trained on struc-
tures from theMOF subset of the CSD.We also employed iterative strati昀椀cation and
dropped all duplicates (here meaningmetal centers of the samemetal with the same
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(d) Distribution of atomic numbers of the metals.

Figure 140: Coverage of theMOF dataset compared to the dataset sampled from all the CSD
and CODwith respect to the di昀昀erent feature and label scopes. Note that cover-
age is only one dimension of diversity quanti昀椀cation. One also needs to consider
balance and disparity.132

oxidation state in the same structure, which is a tighter criterion than the one we
used for the model trained on the MOF subset). For hyperparameter optimization,
we also employed amixed search strategy with hyperopt, using themacro average of
the 𝐹1 score (i.e., placing a higher penalty on incorrect prediction of rarer oxidation
states) on a validation set (that was also selected with iterative strati昀椀cation) as the
metric.

D.8.2 Potential typos identi昀椀ed in this analysis

Alsowith thismodel, we investigated 85 high-con昀椀dence predictions on the training
set that disagree with the oxidation state reported in the chemical name in the CSD.
Note that we could not access the original articles for all 85 structures.

Table 52: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: Cases in which the assignment in the CSD disagrees with the assign-
ment in the paper. Found from 85 high-con昀椀dence predictions on the training set.

CSD reference code metal center CSD paper

VAHCEM760 Pd III II
ZUQVUC761 Co II III
CAVXAB762 Mn III II
ZUVVUH763 Ru III II
BERXAX764 Co III II
BIWRUX765 Cu II I
ZICXOY766 Co II III
XUDJUB767 Cd I II

Continued on next page
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Table 52: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: Cases in which the assignment in the CSD disagrees with the assign-
ment in the paper. Found from 85 high-con昀椀dence predictions on the training set.

CSD reference code metal center CSD paper

ZASBEC768 Co II III (valence transition close to RT)
PEXRIU769 Cu II I
TACJUE770 Yb II III
MATVEK771 Co II III
YUSKIH772 Ru III II
SEBCUA773 Cu I I/II
NAYCIZ774 Ru I III
XAVJAF01775 Cu II I
YAZPOG776 Co II III
AQOPEB777 Co III II
BAQMIR778 Pt I II
BIPLIX779 Co II III
ZEGFOG10780 Mo III V
KIFVOL781 Cu I II
CAGROT782 Co II III
ROFDEV783 Au II I
JIVWUH784 Pd III II
BIYWEO698 Cu II I
AKIYUO785 Cu III II
ROFCUK783 Au II I

Table 53: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: Cases in which the assignment in the CSD disagrees with the assign-
ment in the paper. Found in a less systematic analysis of predictions on the training
and test set.

CSD reference code metal center CSD paper

PEQXUF786 Au I III
YEJJUT787 Au III I
ROFDAR783 Au II I
BARGAF788 Cu II I
ZIPFOT789 Cu II I
WALWEM790 Cu II I
UCIDEQ791 Pt I II
VIGQUA792 Pt 0 II
ZOCLAE793 Au II I
FELHUZ10794 Cu II I
QICXEG795 Cu I II
WUBLEK01796 Cu II I
ZERHAF797 Cu II I
FARROH798 Cu II I
ZEJXAQ547 Ho II III
UHOGUT799 Sn IV II/IV
XALXAJ800 Cu II I
DEFCID801 Cu II I
YEGLAZ802 Mo IV VI
ZEJWIX547 Er Ii III
CUNTOV803 Co II III
BAWGEO804 Cu II I
BUPHEA805 Cu II I
OLELAS806 Cu I II
DOCPOD807 Co II III
WOKJOW808 Zr III IV
WOQKET555 Co I II
WOKJAI808 Zr III IV
BEFZAP809 Cu II I
VUQWAG810 W V IV

Continued on next page
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Table 53: Possible errors in the CSD. Possible errors in the CSD assignment identi昀椀ed using
the model: Cases in which the assignment in the CSD disagrees with the assign-
ment in the paper. Found in a less systematic analysis of predictions on the training
and test set.

CSD reference code metal center CSD paper

GATDAH811 Cu II I
WEZPEX812 Cu I II
LEKFEM813 Pt I II
KIWDOJ814 Re VII V

The potential typos we 昀椀nd with our model indicate that our model could have
utility in verifying oxidation state assignments, also for chemistries that are more
complex than the one of MOFs.

A fascinating case from this experimentmight be the oneof [Ru(bpy)3]. Echegoyen
and co-workers proposed a Ru(0) center to explain the lack of an EPR signal and the
lack of counter ions.815 The corresponding structure is deposited as TIWPEU in the
CSD. Our model predicts Ru(II), and follow-up studies816 suggested that the ligand
rather than the metal is reduced, supporting the notion of a Ru(II) center, which our
model predicts.

D.8.3 Performance analysis

As for the model trained on the MOF subset, we analyzed the performance on dif-
ferent subsets of the test set with various metrics. The overall confusion matrix is
shown in Figure 141, overall metrics are summarized in Table 54, statistics per el-
ements are reported in Table 55 and confusion matrices only for elements with a
minimum variance in oxidation states are shown in Figure 142–145.

As for the model trained and tested on the MOF subset of the CSD, we 昀椀nd good
predictive performance for all oxidation states—especially for the con昀椀dent predic-
tions.
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Figure 141: Confusion matrix for the model trained and tested on CSD and COD.

For the AUC the average metrics in Table 54 are provided as

AUNU = ∑|𝐶|𝑖=1 𝐴𝑈𝐶𝑖|𝐶| (33)

and the version weighted with the class proportions

AUNP = |𝐶|∑𝑖=1
𝑃𝑖
POP

𝐴𝑈𝐶𝑖. (34)
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Table 54: Performance metrics for the model trained and tested on CSD and COD.Decimals
for values greater 0.99 are cut and not rounded.

metric value (all predictions) value (only con昀椀dent predic-
tions)

accuracy 0.99 0.99
ROC AUNU 0.96 0.98
ROC AUNP 0.97 0.99
F1 micro 0.96 0.98
F1 macro 0.92 0.96
precision micro 0.96 0.98
precision macro 0.91 0.95
recall micro 0.96 0.98
recall macro 0.92 0.97
MCC 0.93 0.97𝜅 0.93 0.97
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Figure 142: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 2 % frequency in the
MOF subset of the CSD.
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Figure 143: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 5 % frequency in the
MOF subset of the CSD.

Table 55: Classi昀椀cation metrics on the test set as a function of the metal. Micro and macro
refer to the averaging methods, where micro averaging gives high weights to rare
classes.

metal accuracy recall (micro) precision (micro) recall (macro) precision (macro)

Ag 0.999 0.999 0.999 0.833 1.0
Am 1.0 1.0 1.0 1.0 1.0
Au 0.994 0.994 0.994 0.542 0.665
Ba 1.0 1.0 1.0 1.0 1.0
Be 1.0 1.0 1.0 1.0 1.0
Bi 1.0 1.0 1.0 1.0 1.0

Continued on next page
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Table 55: Classi昀椀cation metrics on the test set as a function of the metal. Micro and macro
refer to the averaging methods, where micro averaging gives high weights to rare
classes.

metal accuracy recall (micro) precision (micro) recall (macro) precision (macro)

Ca 1.0 1.0 1.0 1.0 1.0
Cd 1.0 1.0 1.0 1.0 1.0
Ce 0.977 0.977 0.977 0.97 0.955
Co 0.979 0.979 0.979 0.613 0.715
Cr 0.959 0.959 0.959 0.885 0.985
Cs 1.0 1.0 1.0 1.0 1.0
Cu 0.989 0.989 0.989 0.658 0.657
Dy 0.997 0.997 0.997 0.5 0.498
Er 1.0 1.0 1.0 1.0 1.0
Eu 0.991 0.991 0.991 0.625 0.995
Fe 0.938 0.938 0.938 0.428 0.435
Ga 0.975 0.975 0.975 0.5 0.494
Gd 0.993 0.993 0.993 0.5 0.497
Hf 0.981 0.981 0.981 0.5 0.491
Hg 0.996 0.996 0.996 0.333 0.332
Ho 1.0 1.0 1.0 1.0 1.0
In 0.994 0.994 0.994 0.875 0.997
Ir 0.957 0.957 0.957 0.467 0.473
K 1.0 1.0 1.0 1.0 1.0
La 1.0 1.0 1.0 1.0 1.0
Li 1.0 1.0 1.0 1.0 1.0
Lu 1.0 1.0 1.0 1.0 1.0
Mg 0.991 0.991 0.991 0.5 0.496
Mn 0.982 0.982 0.982 0.703 0.774
Mo 0.941 0.941 0.941 0.814 0.92
Na 1.0 1.0 1.0 1.0 1.0
Nb 0.955 0.955 0.955 0.8 0.783
Nd 0.996 0.996 0.996 0.5 0.498
Ni 0.987 0.987 0.987 0.391 0.557
Np 0.889 0.889 0.889 0.875 0.917
Os 0.919 0.919 0.919 0.692 0.734
Pb 1.0 1.0 1.0 1.0 1.0
Pd 0.991 0.991 0.991 0.333 0.373
Pr 1.0 1.0 1.0 1.0 1.0
Pt 0.992 0.992 0.992 0.55 0.798
Pu 1.0 1.0 1.0 1.0 1.0
Rb 1.0 1.0 1.0 1.0 1.0
Re 0.947 0.947 0.947 0.863 0.936
Rh 0.943 0.943 0.943 0.549 0.572
Ru 0.951 0.951 0.951 0.52 0.767
Sc 0.957 0.957 0.957 0.5 0.479
Sm 0.981 0.981 0.981 0.75 0.991
Sn 0.984 0.984 0.984 0.95 0.991
Sr 1.0 1.0 1.0 1.0 1.0
Ta 0.875 0.875 0.875 0.705 0.856
Tb 0.988 0.988 0.988 0.5 0.494
Tc 0.935 0.935 0.935 0.656 0.74
Th 1.0 1.0 1.0 1.0 1.0
Ti 0.933 0.933 0.933 0.444 0.644
Tl 1.0 1.0 1.0 1.0 1.0
Tm 0.949 0.949 0.949 0.819 0.819
U 0.954 0.954 0.954 0.778 0.91
V 0.955 0.955 0.955 0.603 0.779
W 0.936 0.936 0.936 0.59 0.766
Y 1.0 1.0 1.0 1.0 1.0
Yb 0.994 0.994 0.994 0.997 0.978
Zn 1.0 1.0 1.0 1.0 1.0
Zr 0.981 0.981 0.981 0.333 0.327
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Figure 144: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 10 % frequency in
the MOF subset of the CSD.
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Figure 145: Confusion matrix for only elements for which there are at least two oxidation
states for which the least frequent one occurs with at least 20 % frequency in
the MOF subset of the CSD.

D.8.4 Future work

For future work, we also plan to include all structures from the Inorganic Crystal
StructureDatabase (ICSD), i.e., improve the coverage for purely inorganic compounds,
and then use a neural network with Monte-Carlo sampling as uncertainty estimate
(to increase the e昀케ciency of themodel with larger datasets). Potentially, rarer oxida-
tion states, e.g., Fe(I), Fe(IV), Fe(V), could be oversampled by creating hypothetical
compounds.
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E.1 I N T E R M I T T E N C y S C E N A R I O S
Due to the electricity grid load following requirements and the increasing penetra-
tion of intermittent renewables, fossil fuel-based electricity generation can play an
important role in load balancing the grids. In such a 昀氀exible operation, it is important
that the capture unit can follow these dynamics. Most of the studies so far focused
on technical and economic challenges associated with the 昀氀exible operation of the
capture plant.356,379,380 However, a key aspect when assessing the implications of
power plant 昀氀exibility is how the CO2 capture plant needs to be operated to comply
with future environmental legislation with respect to amine emissions.

Our study focused on intermittency scenarios that could have a strong e昀昀ect on
amine emissions. As a baseline, we assume the capture plant operates with the
power plant at full load. Therefore, each scenario looks at the di昀昀erent consequences
of reducing the load of the power plant on a daily basis and hence expecting a lower
昀氀ow rate of 昀氀ue gas entering the absorber column.

For the emissions, not only the reduced load of the 昀氀ue gas is relevant, but at
the same time, there can be other e昀昀ects. For example, a possible consequence of a
part-load operation can be a reduction in the steam 昀氀ow entering the reboiler unit
or other changes. By combining the possible consequences, our stress test consists
of the following eight scenarios:

1. Water wash temperature increase; one of the possible side e昀昀ects of 昀氀uctua-
tions in the 昀氀ue gas 昀氀ow is that it can result in changes in the temperature in
the absorber, which directly impacts the temperature of the water wash. Also,
a sudden change in CO2 concentration caused by unstable operation of the
power plant can directly a昀昀ect the water wash temperature.

2. Water wash 昀氀ow rate decrease; increasing the water wash 昀氀ow rate is most fre-
quently used to control amine emissions.817 It is, therefore, important to see
if this control mechanism functions sub-optimally.

3. Flue gas temperature increase; a 昀氀ue gas temperature variation might result
from unstable plant operation.

4. Lean solvent 昀氀ow rate decrease; one of the mechanisms to control variations in
the capture rate is to change the solvent 昀氀ow rate.818

5. Lean solvent and 昀氀ue gas 昀氀ow rate decrease; a possible part-load operation of
the power plant due to less electricity production.819

6. Lean solvent temperature increase; a side e昀昀ect of the variation of the steam
supply to the reboiler can impact the solvent temperature.
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7. Increase of both the lean solvent and water wash temperatures; one of the pos-
sible side e昀昀ects of both variations in the steam and solvent 昀氀ow rate and in
the 昀氀ue gas 昀氀ow.

8. Capture rate decrease; is a side e昀昀ect of a reduced steam availability that might
happen when the power plant operates at part load and is expected when a
higher amount of electricity supply to the grid is required, which can cause a
drop in the capture rate.

Each scenario is translated into a change of di昀昀erent process variables that can
cause the desired e昀昀ect. For example, the water wash temperature is changed by
changing the 昀氀ow rate of the cooling water in the heat exchanger of the water wash
section. The details are given in Table 56.

In this testing phase, no regime of self-accelerating degradation occurred, even if
phases with increased reboiler temperature and increased oxygen concentration in
the 昀氀ue gas give reason to expect an increased degradation rate of CESAR1. Note
that due to the design of the experimental campaign, we cannot directly capture
changes that occur over a timescale longer than 24 h.

Table 56: Parametric tests with the CESAR1 solvent at post-combustion capture (PCC) pilot
plant at Niederaussem. Experiments were performed as step changes and selected
to cover relevant regions of interest in the space of operating conditions. The ex-
periments and a preliminary analysis have already been described inCharalambous
et al. 358

region of interest
exp. WW FG LS CRate description

1 Water wash temperature (TI-19) increase from≈ 45 °C to 55 °C 1
2 Water wash 昀氀ow (FI-19) decrease from6000 kg h−1 to 5000 kg h−1 2
3 Flue gas temperature (TI-3) increase from 45 °C

to 55 °C 3
4 Lean solvent 昀氀ow (FI-11) decrease from≈ 2400 kg h−1 to 2000 kg h−1 4
5 Lean solvent 昀氀ow (FI-11) decrease from≈ 2400 kg h−1 to 2000 kg h−1 and 昀氀ue gas

昀氀ow (FI-2) decrease from 1500 kg h−1 to1300 kg h−1
6 Lean solvent temperature (TI-12/TI-13) increase

from 43 °C to 52 °C 5
7 Lean solvent temperature (TI-12/TI-13) increase

from 43 °C to 53 °C and water wash temperature
(TI-19) increase to 42 °C

8 Capture rate decrease from 90 % to 80 % 7
1 This is achieved by changing the temperature of the cooling medium (i.e., water) in the
heat exchanger ( heat exchanger (HEX)) located in the water wash section.2 This is achieved by changing the speed of the pump located in the water wash section.3 This is achieved by changing the temperature of the cooling medium in the HEX located
in the direct contact cooler ( DCC) unit.4 This is achieved by modifying the amount of the solvent in the pilot plant.5 This is achieved by controlling the temperature of the coolingmedium in theHEX located
after the pump, which sends the lean solvent from the stripper to the absorber.6 In this experiment the water wash baseline temperature was 33 °C.7 This is controlled by the steam 昀氀ow in the reboiler and the reboiler level.
Abbreviation: WW, water wash; FG, 昀氀ue gas; LS, lean solvent; CRate, CO2 capture rate.
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The actual experimental campaign included two additional experiments (see Ap-
pendix E.3), which we did not include in our analysis due to the plant’s instability
after a power plant shutdown.

E.2 E x p E R I M E N T A L M E T H O D S
The plant is equipped with online gas-analysis systems to continuously monitor the
composition of the inlet and outlet gas streams. The online gas-analysis systems are
used to quantify the composition of (i) 昀氀ue gas at the absorber inlet (i.e., CO2, CO,
NO: BA5000 Bühler infrared spectroscope; O2: BA3500, Bühler, paramagnetic
detection, SO2: MCS 100E, Sick/Maihak, photometric detection limit <4mgm−3),
(ii) CO2-lean 昀氀ue gas downstream of the water wash outlet, and (iii) CO2 product
stream.

The GasMET analyzers used for monitoring solvent emissions exiting the water
wash section have been calibrated for standard inorganic components (i.e., NH3,
SO2, NOx, CO, CO2) and for AMP and Pz. The detection limit for amines is approx.1mgm−3 (STP). Both GasMET analyzers were zeroed with nitrogen at the begin-
ning of the experimental campaign and re-zeroed once a week during the measuring
period.

All liquid samples were analyzed by ATR-FTIR spectroscopy, for which two cali-
bration sets were used. One calibration was performed for CO2 loadings and amine
concentrations within the range expected for lean and rich samples. The other cali-
bration was performed for very low amine concentrations and was used to monitor
the CO2 loading and amine concentrations in the water wash. The detection limit
for AMP and Pz are around 0.3wt%.

E.3 E x p E R I M E N T A L D A T A
Table 57 lists all dynamic tests and the steady-state performance of the pilot plant
in terms of the CO2 capture rate, CO2 loadings, amine and CO2 emissions, and re-
boiler duty. Figure 146 illustrates the water wash performance comparing the water
wash temperature and the emissions (i.e., CO2, AMP, Pz, H2O, NH3) at the exit of
the water wash section. The grey areas in the 昀椀gure represent the times when no
dynamic tests were performed (days 4–5 and 11–16).
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Table 57: Summary of pilot plant emissions and pilot plant performance. The parametric
tests are indicated with the symbol ’X.’

L/G ratio Loading / wt% CO2 Capture Emissions / mg/m3 ‡ Reboiler duty
Run

Step-Change
Parameter Lean Rich WW Rate / % AMP Pz CO2‡ MJ/kg CO2

1 Baseline 1.56 0.09 0.29 0.53 86.3 64.2 10.2 1.16 2.8
2 X Water wash (WW) temp. 1.56 0.07 0.30 0.42 86.5 152.1 19.7 1.18 4.2

Average over 24h 1.56 0.08 0.30 0.45 87.0 102.7 24.9 1.22 3.2
3 Baseline 1.53 0.07 0.32 0.57 86.6 60.2 24.9 1.41 3.1
4 X WW 昀氀ow rate 1.53 0.07 0.31 0.48 86.3 67.3 14.3 1.40 3.4

Average over 24h 1.53 0.07 0.31 0.51 85.7 64.5 21.1 1.46 2.9
5 Baseline 1.53 0.09 0.31 0.58 84.1 63.2 18.8 1.43 3.0
6 X Flue gas (FG) temperature 1.53 0.09 0.34 0.52 83.8 65.3 12.9 1.49 3.1

Average over 24h 1.53 0.09 0.30 0.56 85.4 72.2 23.0 1.35 2.7
7 Baseline 1.53 0.07 0.31 0.58 84.4 77.1 59.4 1.63 2.3
8 X Lean solvent (LS) 昀氀ow rate 1.30 0.05 0.26 0.67 77.3 48.5 20.6 2.78 2.8

Average over 24h 1.48 0.06 0.31 0.62 82.8 63.0 28.0 1.96 3.0
9 Baseline 1.53 0.07 0.28 0.54 84.6 34.8 20.6 1.90 3.2

10 X LS and FG 昀氀ow rates 1.53 0.07 0.27 0.57 83.5 50.6 18.0 1.07 3.9
Average over 24h 1.53 0.07 0.29 0.55 83.3 60.1 24.5 1.78 3.0

11 Baseline 1.53 0.07 0.28 0.50 85.0 56.8 16.0 1.11 4.2
12 X LS temperature 1.53 0.07 0.27 0.41 87.7 97.4 8.0 1.07 2.6

Average over 24h 1.53 0.07 0.30 0.45 86.3 70.3 17.8 1.08 2.8
13 Baseline 1.53 0.08 0.27 0.53 81.3 62.6 23.0 1.47 2.6
14 X LS and WW temperature 1.52 0.07 0.28 0.39 84.2 126.6 3.5 1.25 2.7

Average over 24h 1.53 0.07 0.29 0.44 85.5 82.0 15.8 1.15 3.0
15 Baseline 1.56 0.08 0.30 0.52 82.6 75.8 28.3 1.43 2.4
16 X Capture rate 1.36 0.07 0.30 0.64 75.5 51.1 23.2 2.25 2.4

Average over 24h 1.51 0.07 0.28 0.60 83.2 60.2 20.8 1.46 3.3

† At standard temperature and pressure (STP).
‡ CO2 is given in vol%.
Abbreviation: WW, water wash; FG, 昀氀ue gas; LS, lean solvent.

E.3.1 Pilot plant parameters

The typical operational parameters and the boundary conditions of the capture plant
are provided in Table 58. The average values of these parameters are also provided
before the start of the dynamic campaign (on day 275 with operation with the CE-
SAR1 solvent).

Table 58: Typical operational parameters and boundary conditions used during the testing
campaign. Including average values before the start of the campaign.

Parameter Unit Value Value † Description

Flue gas temperature at DCC inlet °C 64 63 —
Flue gas temperature at absorber inlet °C 40–45 44 —

Flue gas 昀氀ow rate m3 h−1 ‡ 1150 1150 —
CO2 content of the 昀氀ue gas vol%, dry 12.5 12.5 Measured at absorber inlet
O2 content of the 昀氀ue gas vol%, dry 5.0 5.4 Measured after desulphurization

SO2 content of the 昀氀ue gas mgm−3 ‡ <1.0 <1.0 Measured at absorber inlet
Dust mgm−3 ‡ <2.0 <2.0 —

NOx content of 昀氀ue gas mgm−3 ‡ 100–160 100–160 Measured at absorber inlet
NO2 content of 昀氀ue gas mgm−3 ‡ 6–8 6–8 Measured at absorber inlet

Solvent 昀氀ow rate kg h−1 2600 2400 —
Water circulation in the DCC kg h−1 8000 9758 —
pH value of water in the DCC — 7–7.2 7–7.2 —

CO2-lean 昀氀ue gas temperature °C 40-45 46 Measured at water wash outlet
Solvent regeneration temperature °C 120 120 —

Desorber pressure bar(a) 1.75 1.75 —
CO2 capture rate — 90 92 —

Speci昀椀c energy demand GJ/tCO2 3.0 3.3 For solvent regeneration

† Average values measured before the start of the dynamic campaign (on day 275).
‡ Dry value at standard temperature and pressure (STP).
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Figure 147: Detailed PID diagram. Abbreviations are explained in section E.3.2.

E.3.2 Abbreviations• PI-2 Pressure of the 昀氀ue gas stream at the exit of the direct contact cooling (
DCC) unit.• TI-2 Temperature of the 昀氀ue gas stream at the exit of the DCC unit.• FI-2 Flow rate of the 昀氀ue gas stream entering the absorber column.• PI-3 Pressure of the 昀氀ue gas stream upstream of the absorber column.• TI-3 Temperature of the 昀氀ue gas stream upstream of the absorber column.• CO2-3 CO2 concentration of the 昀氀ue gas upstream of the absorber column.• O2-3O2 concentration of the 昀氀ue gas upstream the absorber column.• TI-32 Temperature at the top of the 1st bed (counting from the bottom of the
absorber).• TI-33 Temperature at the top of the 2nd bed (counting from the bottom of
the absorber).• TI-34 Temperature at the top of the 3rd bed (counting from the bottom of the
absorber).• TI-35 Temperature at the top of the 4th bed (counting from the bottom of
the absorber).• PI-4 Pressure of the treated gas exiting the water wash section.• TI-4 Temperature of the treated gas exiting the water wash section.• FI-4 Flow rate of the treated gas exiting the water wash section.• CO2-4CO2 concentration of the 昀氀ue gas at thewaterwash exit – output (CO2
emissions).• NH3-4NH3 concentration of the 昀氀ue gas at thewater wash exit – output (NH3
emissions).
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• FI-11 Flow rate of the lean solvent entering the absorber (at the top of the
column).• TI-12 Temperature of the lean solvent entering the absorber (at the top of the
column).• TI-13 Temperature of the lean solvent entering the absorber.• FI-20 Flow rate of fresh water added to the water wash section.• FI-211 Flow rate of water in the HEX located at the water wash section.• TI-211 Temperature of water in the heat exchanger located at the water wash
section.• TI-212Temperature of water out of the HEX located at the water wash section.• TI-8 Temperature of the lean solvent leaving the desorber sump (upstream of
the HEX).• TI-9 Temperature of the lean solvent downstream of the HEX.• TI-5 Temperature of the rich solvent exiting the absorber.• TI-7 Temperature of the rich solvent downstream of the HEX• TI-28 Temperature of the CO2 concentrated stream exiting the top of the
stripper.• PI-28 Pressure of the CO2 concentrated stream exiting the top of the stripper.• PI-30 Pressure of the CO2 concentrated stream exiting the condenser (after
the stripper).• TI-30 Temperature of the CO2 concentrated stream exiting the condenser.• FI-30 Flow rate of the CO2 concentrated stream exiting the condenser.• FI-38 Flow rate of the steam entering the reboiler.• PI-38 Pressure of the steam entering the reboiler.• FI-36 Flow rate of the stream exiting the reboiler.• TI-36 Temperature of the steam exiting the reboiler.• Reb. Duty Reboiler energy use.• FI-19 Flow rate of the water wash section (water wash circulation rate).• TI-19 Temperature of the water wash.• PI-1 Pressure of the 昀氀ue gas upstream to the DCC unit.• TI-1 Temperature of the 昀氀ue gas upstream to the DCC unit.• TI-35b Temperature of the rich solvent into the reboiler.• FI-35 Flow rate of the solvent into the reboiler.• TI-39 Temperature of the solvent out of the reboiler.• FI-23 Flow rate of excess liquid leaving the water wash (WW) section into the
absorber.



E.4 E x p L O R A T O R y D A T A A N A L y S I S 263

• TI-22Temperature of thewater in theWWsection upstreamof theWWpump.• Level Des. Level of the liquid into the desorber.• Level Reb. Level of the liquid into the reboiler.• TI-24 Temperature of the liquid upstream to the HEX located in the intercool-
ing section.• TI-25 Temperature of the liquid downstream to the HEX of the intercooling
section.• FI-25 Flow rate of the liquid in the intercooling section.• FI-16 Flow rate of the liquid downstream of the HEX located in the DCC unit.• TI-16 Temperature of the liquid downstream of the HEX located in the DCC
unit.• FI-151 Flow rate of the water in the HEX of the DCC unit.• TI-151 Temperature of the water in the HEX of the DCC unit.• TI-152 Temperature of the water out of the HEX of the DCC unit.• FI-241 Flow rate of the water in the HEX of the intercooling section.• TI-241 Temperature of the water in the HEX of the intercooling section.• TI-242 Temperature of the water out of the HEX of the intercooling section.

E.4 E x p L O R A T O R y D A T A A N A L y S I S

Using theAugmented-Dickey Fuller test (as implemented in the statsmodels library384)
we tested for stationarity and found that the raw data is non-stationary due to de-
terministic and non-deterministic trend components (see also autocorrelation func-
tions in Figure 148). For themachine learning analysis, we removed the deterministic
trend component using linear regression through the endpoints. We then tested for
Granger causalities (Figure 149) using the statsmodels library.
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Figure 146: Water wash temperature and CO2, AMP, Pz, H2O vapor, and NH3 emissions
pro昀椀les as recorded using the GasMET FTIR at the water wash outlet during the
CESAR1 dynamic campaign (i.e., 10 dynamic experiments over 10 operational
days). The grey area denotes the period when no dynamic experiments were
performed (i.e., days 4–5 and days 11–16).
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E.5 D A T A p R E - p R O C E S S I N G
Weperformed a range of pre-processing steps tomake the data amenable tomachine
learning. Figure 150 illustrates their impact on the time series. One can observe that
we preserve the shape of the time series but reduce the intensity of the spikes (but
we still preserve their presence and location).
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Figure 150: Impact of data pre-processing. The sub昀椀gures show impact on di昀昀erent objec-
tives.

E.6 F E A T u R E S E L E C T I O N
Feature selection was guided by domain knowledge (i.e., excluding parameters ex-
pected to have no causal relation with the emissions) and aided by Granger causality
heatmaps shown in Figure 149.

In the 昀椀nal models, we used the following feature set:• TI-19: Temperature of the liquid in the water wash.• FI-19: Flow rate of the liquid in the water wash.• FI-11: Flow rate of the lean solvent entering the absorber.
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• TI-3: Temperature of the 昀氀ue gas entering the absorber.• TI-12/TI-13: Temperature of the lean solvent entering the absorber• TI-35: Temperature at the topmost bed of the absorber

For causal impact analysis, we also included (TI-35 - TI-4), i.e., the temperature
di昀昀erence of the temperature at the topmost bed of the absorber and the tempera-
ture of the treated gas exiting the water wash section

E.7 q u A N T I L E R E G R E S S I O N u S I N G G R A D I E N T
B O O S T E D D E C I S I O N T R E E S

Gradient-boosted decision trees can be used for time series forecasting using a con-
catenated lagged time series as input. One new regressor can then be trained for ev-
ery point in the forecasting horizon. Here, we use the LightGBM implementation.381

To produce uncertainty intervals, we regress on the quantile loss, 𝑙𝛼(𝑥), which for
quantile 𝛼 reads

𝑙𝛼(𝑥) = ⎧{⎨{⎩−(1 − 𝛼)𝑥 if𝑥 ≤ 0𝛼𝑥 if𝑥 ≥ 0 (35)

E.7.1 Performance

We use multiple metrics to measure the predictive performance of our models given
two time series 𝑦1 and 𝑦2 of length 𝑇.

M E A N A B S O L u T E E R R O R ( M A E )

MAE = 1𝑇 𝑇∑𝑡=1 (|𝑦1𝑡 − 𝑦2𝑡 |). (36)

M E A N A B S O L u T E p E R C E N T A G E E R R O R ( M A p E )

MAPE = 100 ⋅ 1𝑇 𝑇∑𝑡=1
∣∣∣∣ 𝑦1𝑡 − 𝑦2𝑡𝑦1𝑡

∣∣∣∣. (37)

where 𝑦1𝑡 is the actual time series (ground truth).

O v E R A L L p E R C E N T A G E E R R O R ( O p E )

OPE = 100 ⋅ ∣∣∣∣∑
𝑇𝑡=1 𝑦1𝑡 − ∑𝑇𝑡=1 𝑦2𝑡∑𝑇𝑡=1 𝑦1𝑡

∣∣∣∣ . (38)

where 𝑦1𝑡 is the actual time series (ground truth).

Table 59: Performance metrics. Metrics for the median historical forecasts of the gradient-
boosted decision tree model for di昀昀erent forecasting horizons.

AMP Pz2min 1 h 2 h 2min 1 h 2 h

MAE / a.u. 0.0089 0.039 0.036 0.0095 0.050 0.040
MAPE / % 2.4 11 9.5 4.3 23 21
OPE / % 0.38 0.34 3.8 2.0 17 10
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E.7.2 Hyperparameter Optimisation

For all models except the ones used for the causal impact analysis, we searched hy-
perparameters on the grid presented in Table 60. For the causal impact analysis, we
did not optimize every feature lag separately but used the same lag for all covariates.
We used the Bayesian optimization implemented in the weights and biases platform
(https://docs.wandb.ai/guides/sweeps) for all searches. We only performed
a hyperparameter search for the 0.5 quantiles to limit computational cost and reused
the same hyperparameters for the other quantiles. However, we separately opti-
mized hyperparameters for AMP and Pz. Also, for the 昀椀rst step change we had, due
to the short window preceding the step change, limited the search to lags smaller
than 40.

Table 60: Parameter ranges for hyperparameter search. Hyperparameter ranges are consid-
ered for the GBDT models.

parameter name range

lag uniform in (0, 200)
feature lag uniform in (-200, 0)
n_estimators uniform in (50, 1000)
bagging_freq (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
bagging_fraction uniform in (0.001, 1.0)
num_leaves integers in (1, 200)
extra_trees (True, False)
max_depth (-1, 10, 20, 40, 80, 160, 320)

Table 61: Hyperparameter settings. Hyperparameter settings for AMP for di昀昀erent output
horizons.

parameter 2min 60min 120min

bagging_fraction 0.572 0.989 0.948
bagging_freq 1 4 10
extra_trees False False False
lag_1 -1 -158 -169
lag_2 -134 -70 -118
lag_3 -55 -196 -38
lag_4 -10 -125 -97
lag_5 -23 -102 -7
lag_6 -176 -113 -141
lags 100 70 174
max_depth -1 20 40
n_estimators 743 375 559
num_leaves 7 177 74

https://docs.wandb.ai/guides/sweeps


270 S u p p O R T I N G I N F O R M A T I O N F O R F O R E C A S T I N G A M I N E E M I S S I O N S

Table 62: Hyperparameter settings. Hyperparameter settings for Pz for di昀昀erent output
horizons.

parameter 2min 60min 120min

bagging_fraction 0.331 0.121 0.180
bagging_freq 10 8 7
extra_trees False False False
lag_1 -93 -136 -81
lag_2 -182 -144 -170
lag_3 -111 -146 -62
lag_4 -106 -114 -77
lag_5 -56 -55 -154
lag_6 -90 -83 -75
lags 100 171 195
max_depth 40 40 80
n_estimators 126 275 193
num_leaves 4 90 113

We used a forecasting horizon twice the step change’s duration for the causal im-
pact analysis.

Table 63: Hyperparameter settings. Hyperparameter settings for AMP for di昀昀erent step
changes (causal impact analysis).

parameter step 0 step 1 step 2 step 3 step 4 step 5 step 6

bagging_fraction 0.334 0.475 0.742 0.526 0.955 0.947 0.847
bagging_freq 10 8 3 5 10 0 2
extra_trees True False True False False True False
covariates lag -51 -172 -30 -71 -184 -23 -126
lags 47 5 145 167 194 173 121
max_depth 80 160 320 160 -1 80 160
n_estimators 123 866 816 348 880 394 511
num_leaves 40 178 177 42 162 167 130

Table 64: Hyperparameter settings. Hyperparameter settings for Pz for di昀昀erent step
changes (causal impact analysis).

parameter step 0 step 1 step 2 step 3 step 4 step 5 step 6

bagging_fraction 0.817 0.959 0.685 0.241 0.785 0.796 0.900
bagging_freq 9 2 10 3 0 2 10
extra_trees True True True True False True False
covariates lag -27 -10 -106 -19 -10 -79 -150
lags 13 185 170 46 77 10 130
max_depth 20 320 20 160 40 40 160
n_estimators 69 221 92 130 979 975 933
num_leaves 48 109 84 67 73 44 9
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E.8 T E M p O R A L C O N v O L u T I O N A L N E u R A L N E T -
w O R k S

Figure 151 gives an overview of the modeling process using temporal convolutional
neural networks.
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Figure 151: Schematic illustration of the modeling approach using temporal convolutional
neural networks. Mapping of the data of the plant onto an image; the data set
can be thought of an “image”with “width” equal to length of the input sequence
(𝑇) and “height” equal to the number of parameters, 𝑚. We represent with col-
ors the value of parameter 𝑃𝑗 at a time 𝑡𝑖. As the predictions should be invariant
to the order of the rows, we only apply the pattern learning via convolutional
昀椀lters (light grey) in the time direction. Therefore the image of the plant should
be seen as 𝑚 one-dimensional image. b, Convolutional kernels are slid over the𝑚 images as part of the pattern recognition algorithm. The weights of the ker-
nels (of the 𝑓 th 昀椀lter), 𝑊𝑓 = [𝑤𝑓−1, 𝑤𝑓0, 𝑤𝑓1], are initially set according to a con-
ventional initialization scheme and learned in the training procedure. In the 昀椀rst
layer, the kernel operates on directly neighboring values. In order to allow for the
model to learn di昀昀erent representations (patterns), we usemultiple learnable 昀椀l-
ters per layer of the neural network,382,820 i.e., the layer outputs multiple (e.g.,
64) one-dimensional “images”. The output of one layer is fed into the next layer
as an input. c, To allow learning of correlations across large time scales, as they
are expected to be relevant in industrial processes, we add “holes” to the kernels
(dilated convolutions) that operate on the output of preceding convolutional lay-
ers. d, The results of all the kernel operations (after applying operations of the
forms of b and c multiple times) are all collected via a “2D” convolution into a
predicted emission. This schematic shows that our output sequence cannot be
longer than 𝑇, the length of the input sequence. To deal with the “edges”, we
apply (causal) padding with zeros at the front of the input sequence (not shown
in the 昀椀gure).
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E.8.1 Model architecture

Temporal convolutional neural networks contain multiple key design elements (see
Figure 152):• layers of dilated causal convolutions: convolutional layers foundwidespread use

in computer vision applications, and a key factor contributing to the success is
the concept of weight sharing. In practice, it has been found that such models
are much easier to train than recurrent neural networks. One problem with
convolutional layers is that they usually only have a local receptive 昀椀eld. To
remedy this problem, dilated convolutions have been developed which di昀昀er
from “normal” convolutional kernels by having “holes” in the kernel. By in-
creasing the size of the holes one can achieve exponential increases in the re-
ceptive 昀椀eld of the model. The term “causal” refers to the fact that one wants
to avoid lookahead, i.e., a forecastingmodel should not depend on future data.
For this reason, zero padding is only applied to one side of the time series.• residual connections: also this technique was 昀椀rst developed in the context of
computer vision,821 and it was empirically found that the option to skip some
layers via an “identity mapping” can stabilize training and boost predictive
performance.• weight normalization : is a reparametrization trick that was found to stabilize
and speed up the convergence of training.• dropout: is a well-known technique for regularizing neural networks that work
by randomly disabling certain weights.

Note that this is not a model architecture we speci昀椀cally design for this work. It
is already available in the darts library.382
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Figure 152: Building blocks of TCN models. Figure adapted from Bui et al.11 a Dilated con-
volutions allow exponential increases in temporal resolutions via the use of con-
volutions with “holes”. The parameter 𝑑 indicates the dilation rate. bA residual
block contains layers of dilated causal convolutions, dropout, ReLU activation,
and weight normalization. The network also has the possibility to “skip” the di-
lated convolution. c Dilated convolutions with skip connections form a block.

.

Models were trained on an NVIDIA Quadro RTX 6000 graphics card within a few
minutes.

E.8.2 Monte Carlo Dropout

In statistics, one distinguishes between epistemic and aleatoric uncertainty. Aleatoric
uncertainty captures noise inherent in the data, whereas epistemic uncertainty is
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the uncertainty in the model (prior distribution over the weights). With the Monte-
Carlo dropout approach, we approximate the latter term by approximating the sam-
pling from the posterior by enabling the dropout layers during inference time. This
approach has already been used, for example at Uber,822 to estimate the uncertainty
of forecasts. Note that we did not add a term for the aleatoric uncertainty in our un-
certainty estimates. Also note that the theoretical justi昀椀cation of this uncertainty
estimation procedure is still debated.823,824

E.8.3 Hyperparameter optimisation

For hyperparameter optimization, we focused on predicting the amine emissions and
optimized on a validation set of the AMP emissions. (Implicitly assuming that hyper-
parameters that performwell for AMPwill also performwell for Pz.) For this, we per-
formed a time-based split using the 昀椀rst 50 % of the data for training, the subsequent25 % for validation, and the last 25 % for testing. Note that in our case this is a par-
ticularly challenging setting for the model as every day di昀昀erent intervention were
performed. We considered the hyperparameter grid in Table S 65 and optimized for
the mean absolute percentage error on historical forecasts on the validation set.

For hyperparameter optimization, we used the Bayesian optimization approach
implemented in weights and biases (https://docs.wandb.ai/guides/sweeps).

Table 65: Hyperparameter grid considered in this work and 昀椀nal settings. The 60min,10min, and 2min output sequence length model reached a validation mean ab-
solute percentage error of 10.4 %, 12.05 %, and 12.35 %, respectively.

parameter range 120min out-
put

60min out-
put

10min out-
put

2min output

number of
convolu-
tional layers

[4, 8, 16] 4 8 4 16

number of 昀椀l-
ters

[8, 16, 32,
64]

32 64 64 16

weight norm true / false false true false false
kernel size [2, 3, 4, 5] 2 4 3 3
dropout
probability

uniform
distribution
between 0.1
and 0.9

0.5617 0.3668 0.3239 0.1511

batch size [32, 64, 128] 64 64 128 128
number of
epochs

[100, 200,
300, 400]

100 200 100 200

input se-
quence
length

[31, 40, 60,
61, 80, 160]
(timestamps)

61 80 31 80

learning rate uniform
sampling in
logarithmic
space be-
tween 10−5
and 10−1

0.0192 0.0297 0.0100 0.01197

E.8.4 Forecasting performance

See Fig. 152 for historical forecasts.

https://docs.wandb.ai/guides/sweeps
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Figure 153: Historical forecasts for temporal convolutional neural networks for three output
sequence lengths. The 60min output sequence length model achieved an MAE
of 12.05 % on the validation set. The 10min output sequence length model
achieved an MAE of 12.35 % on the validation set. The 2min output sequence
length model achieved an MAE of 12.35 % on the validation set. The vertical
lines indicate the validation/test split points. The black curves show the mea-
sured emissions, and the blue curves show the forecasts with the solid line in-
dicating the mean and the band indicating the 2𝜎 interval estimated from 50
Monte-Carlo dropout runs.
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E.9 v A R I M A B A S E L I N E
We also attempted to use a vector autoregressive moving average with exogenous
regressors model (VARIMA) model (𝑝 = 𝑞 = 5 with constant and linear trend
term*) on the same covariates. The predictions are shown in Fig. S 154. We see that
also a VARIMA model can learn from the data, however, it—as one would expect—
struggles to predict the spikes.
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Figure 154: Forecasts vs. measured AMP (a) and Pz (b) emissions for a VARIMAX model.

Additionally, we investigated the use of the recently proposed Temporal Fusion
Transformers.825However, within our limited tuning (testing hidden layer sizes 8, 16,
32), we did not 昀椀nd them to outperform the temporal convolutional model (while
being more expensive in training and inference).

E.10 C A u S A L I M p A C T A N A L y S I S

Table 66: Performancemetrics. Model performance in the pre-intervention periods for AMP.

day MAPE / % OPE / %

1 200 nan
2 3.5 1.9
3 4.4 1.3
4 14 15
5 8.9 3.4
6 9.2 10
7 18 19

* The forecast quality for 𝑝 = 20, 𝑞 = 0, and 𝑝 = 10, 𝑞 = 0 are comparable to the ones shown here.



276 S u p p O R T I N G I N F O R M A T I O N F O R F O R E C A S T I N G A M I N E E M I S S I O N S

Table 67: Performance metrics. Model performance in the pre-intervention periods for Pz.

day MAPE / % OPE / %

1 670 nan
2 9.2 9.4
3 8.6 6.9
4 46 52
5 32 36
6 14 16
7 32 36

E.10.1 Day 1: Step increase in water wash temperature

For both amines, we observe a signi昀椀cant increase in emissions. However, themodel
is unreliable for this step change as there is only little data preceding the step change.
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Figure 155: Causal impact analysis for day 1. Causal impact analysis for the step increase in
water wash temperature.

E.10.2 Day 2: Step decrease in water wash 昀氀ow

For both amines, we observe a decrease in emissions.
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Figure 156: Causal impact analysis for day 2. Causal impact analysis for the step decrease in
water wash 昀氀ow rate.

E.10.3 Day 3: Step increase in 昀氀ue gas temperature

Even though the measured emissions (black) might suggest an increase in emissions,
this increase is not statistically signi昀椀cant.
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Figure 157: Causal impact analysis for day 3. Causal impact analysis for the step increase in
昀氀ue gas temperature.

E.10.4 Day 4: Step decrease in lean solvent 昀氀ow

Themodel shows relatively large prediction intervals and we cannot see a signi昀椀cant
e昀昀ect.
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Figure 158: Causal impact analysis for day 4. Causal impact analysis for the step decrease in
lean solvent 昀氀ow.

E.10.5 Day 5: Lean solvent 昀氀ow decrease and 昀氀ue gas 昀氀ow decrease
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Figure 159: Causal impact analysis for day 5. Causal impact analysis for the lean solvent 昀氀ow
decrease and 昀氀ue gas 昀氀ow decrease.

E.10.6 Day 6: Step increase in lean solvent temperature

We can observe a slight decrease in Pz emissions compared to the baseline predic-
tions.
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Figure 160: Causal impact analysis for day 6. Causal impact analysis for the step increase in
lean solvent temperature.

E.10.7 Day 7: Lean solvent and water wash temperature increase

We observe a decrease in emissions for Pz and an increase in emissions for AMP
compared to the baseline.

−2 0 2 4 6 8

time w.r.t step change / h

0.2

0.4

0.6

0.8

em
is
si
o
n
s

AMP

−2 0 2 4 6 8

time w.r.t step change / h

0.1

0.2

0.3

Pz

Figure 161: Causal impact analysis for day 7. Causal impact analysis for the lean solvent and
water wash temperature increase.

E.11 E M I S S I O N M I T I G A T I O N ( S C E N A R I O S )

E.11.1 Method

A S S u M p T I O N S Note that themodeling of scenarios is basedon several assump-
tions:• We assume that the dynamics of the systems are unchanged.• We assume that other, possibly correlated, variables remain unchanged. (com-

parably to the assumptions in partial dependency plots).334 Note that we re-
compute composite variables, such as temperature di昀昀erences, after perform-
ing the perturbations (before running the models).• We assume that the cumulative change in emissions is a meaningful measure
of the impact of the interventions.

Note that the maps shown in the main text are computed based on historical fore-
casts. That is, we use them as inputs for predicting the next timesteps the actually
observed emissions together with the changed inputs in process parameters.

We need to impose such harsh assumptions since conventional black box explana-
tion methods such as SHAP269 cannot directly be applied due to the time ordering
of the inputs. Note that while this analysis does not provide a causal interpretation,
it can still reveal important emission mechanism patterns.
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A L G O R I T H M To compute the heatmaps, we create a mesh grid of values, typi-
cally of dimension 21 × 21 ranging from −20 % to 20 % relative change. For every
point in the grid, we change the values of the two features on the axis according to
the coordinate tuple (𝑝𝑖, 𝑝𝑗) and run a forecast using ourmodel, resulting in the time
series 𝐹(𝑝𝑖, 𝑝𝑗, 𝑡). For the heatmap, we then compute

𝐸(𝑝𝑖, 𝑝𝑗) = ∑𝑡 (𝐹(𝑝𝑖, 𝑝𝑗, 𝑡) − 𝐹(0, 0, 𝑡)) (39)

For visualization purposes, we smooth the matrix 𝐸(𝑝𝑖, 𝑝𝑗) using a Gaussian 昀椀lter.
Note that the Gaussian 昀椀lter is applied after centering the data according to eq. 39,
which might lead to the center of the map not being centered at exactly zero. To
remedy this, we recenter the maps after the smoothing step.

E.11.2 Additional maps
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Figure 162: Scenario in TI-3 and TI-35. Emissions as a function of change (in percent) in TI-3
and TI-35 computed using historical forecasts of one-step-ahead predictions.
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Figure 163: Scenario in FI-19 and TI-1213. Emissions as a function of change (in percent) in
FI-19 and TI-1213 computed using historical forecasts of one-step-ahead predic-
tions.
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Figure 164: Scenario in FI-19 and FI-11. Emissions as a function of change (in percent) in FI-
19 and FI-11 computed using historical forecasts of one-step-ahead predictions.
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Figure 165: Scenario in TI-19 and FI-11. Emissions as a function of change (in percent) in TI-
19 and FI-11 computed using historical forecasts of one-step-ahead predictions.

E.11.3 Using forecasts as input for new forecasts

The maps in the main text are computed using historical forecasts for one-step-
ahead predictions. This implies that we assume that to assume that the emissions
before a prediction are as measured—but with changed values for some covariates.

In this section, we lift this assumption and use the predicted historic emissions to
compute forecasts.

The 昀椀gures show that the overarching conclusion that the two amines behave dif-
ferently for di昀昀erent possiblemitigationmeasures still holds true under this perspec-
tive.
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Figure 166: Scenario in TI-3 and TI-35. Emissions as a function of change (in percent) in TI-
3 and TI-35 were computed using forecasted emissions as input for subsequent
forecasts.
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Figure 167: Scenario in FI-19 and TI-1212. Emissions as a function of change (in percent) in
FI-19 and TI-1213 computed using forecasted emissions as input for subsequent
forecasts.
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Figure 168: Scenario in FI-19 and FI-11. Emissions as a function of change (in percent) in
FI-19 and FI-11 computed using forecasted emissions as input for subsequent
forecasts.
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Figure 169: Scenario in TI-19 and FI-11. Emissions as a function of change (in percent) in
TI-19 and FI-11 computed using forecasted emissions as input for subsequent
forecasts.

E.12 C A v E A T S O F T H E M O D E L I N G A p p R O A C H
Clearly, there is no guarantee that our model learned causal relationships (i.e., true
cointegration in contrast to spurious correlations), and the process parameter-emissions
relationships shown in the heatmapsmight be in昀氀uenced by indirect in昀氀uences. One
could build graphical models (time series chain graphs)826 to counteract this.

For the interpretation of our results, this implies that any strong e昀昀ect we predict,
for example, in our heatmaps, might equally well be caused by a strongly correlated
variable. We performed careful feature selection guided by discussion with domain
experts to mitigate learning of spurious correlations. However, this also implies that
the approach presented in this work is no silver bullet that can be applied to any
dataset without data preprocessing.

E.12.1 Consistency of feature attributions

Our feature attribution techniques do not ful昀椀ll all requirements that Lundberg et
al. enumerate.269 However, we observed that the trends, particularly the qualita-
tively di昀昀erent behavior of AMP and Pz, are consistent between models trained on
di昀昀erent feature sets.



F S U P P O R T I N G I N F O R M AT I O N
F O R “ I S G P T- 3 A L L Y O U N E E D
F O R L O W - D ATA D I S C O V E R Y I N
C H E M I S T R Y ? ”

F.1 M E T H O D S
For all the results shown in the main text, we used the smallest ada variant of GPT-3
available via the OpenAI API. For 昀椀ne-tuning, we used the same setting for all case
studies (eight epochs, learning rate multiplier of 0.02).
Error bands show, if not otherwise indicated, the standard error of the mean.

F.1.1 Data e昀케ciency comparison

To compare the data e昀케ciency of the GPT-3 models with our baselines, we 昀椀tted all
learning curves to powerlaws (−𝑎 exp (−𝑏𝑥) + 𝑐). We then used those powerlaws
to 昀椀nd the point the best-performing baseline shows the same performance as the
best GPT-3-based approach at the 昀椀rst learning curve point (that performs better
than random, as measured using the 𝜅 metric).

F.1.2 Validity checks

To check the validity of the generated SMILES, we use the is_valid method from
the GuacaMol package,139 which e昀昀ectively considers a SMILES as valid if it can be
parsed using RDKit.

F.2 A p p L I C A T I O N S A N D D A T A S E T S
In this work, we tested the GPT-3model for di昀昀erent chemistry andmaterial science
applications. We selected those applications for which successful machine-learning
approaches have been developed. This allows us to assess the performance of our
GPT-3 approach with the state-of-the-art. We have divided these applications into
three categories: properties of molecules, properties of materials, and reactions.

F.2.1 Molecules

p H O T O S w I T C H E S Photoswitches aremolecules that reversibly change their structure—
and thus polarity—upon irradiation with light. This behavior can be useful for var-
ious applications. Incorporated into drug molecules, for instance, photoswitches
might be used to control the activity of the drug molecule. Besides that, they might
also be incorporated into molecular machines or used for molecular energy and in-
formation storage. See Crespi et al. 827 for a review of azobenzene photoswitches.

283
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One would like to tailor the adsorption of a photoswitch molecule for a given ap-
plication. For example, for therapeutic applications, one would like to red-shift the
adsorption band to use lower energy light and minimize the potential for radiation
damage. Often, one also wants to achieve some separation between the adsorption
of the E and Z isomers, to ensure that they can be triggered independently.

One can tune the transition wavelength by modifying the structure. We have a
reasonable intuition if we make small modi昀椀cations to the structure. However, as
soon as we make multiple modi昀椀cations, this intuition is of limited use Gri昀케ths et
al. 143. Hence, one has to rely on computational chemistry, via TDDFT, to obtain
some guidance. However, these quantum calculations require expert knowledge and
are computationally prohibitive for large-scale screenings. This motivated Gri昀케ths
et al. to develop a machine-learning approach to predict the transition wavelengths
Gri昀케ths et al. 143

q M u G S A relevant property for many (opto)electronic application is the ener-
getic di昀昀erence between the HOMO and LUMO. Isert et al. 414 computed this (and
related properties) for multiple conformers of about 500,000 molecules using dif-
ferent levels of theory.

S O L u B I L I T y Aqueous solubility is an essential characteristic of molecules, par-
ticularly for pharmacological applications. If a molecule does not dissolve in water,
it will have poor bioavailability. Hence, aqueous solubility is an important factor in
evaluating potential drug molecules.828

An experiment by Pat Walters410 inspires our solubility case study. In this ex-
periment, Walters compared di昀昀erent models trained on the ESOL dataset of408

and tested them on a dataset of pharmacologically relevant molecules, the DLS-100
dataset.409 The models under consideration were a re昀椀tted version of the original
ESOL, RFs, a graph neural networks (GNNs) Weave modules,829 as well as a single-
layer graph convolutional neural networks.830

H y D R A T I O N F R E E E N E R G I E S A property closely related to solubility is the
hydration free energy. It describes the change in free energy when a molecule is
transferred from the gas phase into water. On a practical level, they are very useful
for benchmarking force 昀椀elds. However, they can also give insights into solvation
mechanisms.407

L I p O p H I L I C I T y Similar to solubility, lipophilicity is an essential factor in phar-
macokinetics.831 It is typically described using the water-octanol partition coe昀케-
cient (logD). Therefore, many works have focussed on predicting this coe昀케cient.

O R G A N I C p H O T O v O L T A I C S Organic photovoltaics (OPV) to provide photo-
voltaic systems that canbeproduced fromEarth-abundant elements using low-energy
techniques. A widely investigated device architecture comprises a p-type molecule
or polymer and an n-type fullerene, forming a bulk heterojunction framework. A key
performance indicator for OPV is the power conversion e昀케ciency (PCE), i.e., the ra-
tio of output power to input power.

F.2.2 Materials

M E T A L - O R G A N I C F R A M E w O R k S MOFs are one of themost exciting classes
of materials as they promise to provide a framework for systematically designing
materials across di昀昀erent scales.16,94,832 They are composed of metal clusters con-
nected via strong bonds to organic linkers. Due to their tunable porosity and the
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potential to tune the chemistry to a given application, they have been explored for a
wide array of applications ranging from gas storage and separation, over sensing, to
catalysis.

Henry coe昀케cients For gas separations, the Henry coe昀케cient is a key perfor-
mance indicator. For diluted streams, the Henry coe昀케cient multiplied by the pres-
sure gives the number of adsorbed molecules. In various studies, it has been shown
to be a valuable indicator for gas separation applications, e.g., carbon capture.149

Heat capacities If solid sorbents such as MOFs are used in a carbon capture
process, they must be heated to regenerate. The amount of needed heat crucially
depends on the heat capacity of the materials. Moosavi et al. 125 has shown that
neglecting this factor can change screening results if process performance metrics
are considered.

Water stability If a MOFs is used in an industrial process, it will invariably be
exposed to some form of water: For example, from a humid 昀氀ue gas stream or the
steam used to regenerate the material. A useful MOFs must remain stable under
such conditions. Unfortunately, as Burtch et al. 833 reviewed, water stability is a
complex phenomenon in which amaterial might be kinetically or thermodynamically
stable. Since we do not understand the degradation mechanism and the complex
chemistry ofMOFswith large unit cells, this question can currently not be (routinely)
addressed using tools from computational chemistry.

p O L y M E R S As another material case study, we considered linear polymers in a
coarse-grained representation.207 Those polymers are representative of dispersants
that have various applications in industry, for instance, to stabilize the color bright-
ness of pigments. An important performance parameter for this application is the
free energy of adsorption of the polymer onto a model surface (e.g., of a pigment
particle). Jablonka et al. 207 computed such free energies using mesoscale simula-
tions. In order to build a surrogate model for the expensive simulations, Jablonka et
al. 207 developed a ML approach based on features extracted from the monomer se-
quence. Besides the composition, this feature set also included cluster size statistics
and measures of the entropy of the sequence and was manually tuned for optimum
performance on this task.

H I G H - E N T R O p y A L L O y S High entropy alloys (HEAs)834–836 arematerials that
are composed of multiple elements (often > 5) in roughly equal proportions. Since
their discovery, they have attracted much interest due to their promising properties,
with somematerials overcoming the strength-ductility tradeo昀昀. In particular, Yeh et
al. 834 proposed that the con昀椀gurational entropy might stabilize the solid solutions
at the expense of intermetallics (which often tend to be brittle, note, however, that
the con昀椀gurational entropy rule does not fully stand the test).836 However, they also
span a large chemical space that is di昀케cult to explore using conventional techniques.
A critical question is what phase(s) will form for a given alloy composition. Before
the discovery for HEA Hume-Rothery put forward a set of general rules for the po-
tential for forming solid solutions of binary alloys. Since then, various approaches
have been put forward to predict the phase formation of HEAs, including a ML ap-
proach by Pei et al. 400, who constructed feature vectors based on atomic properties.
Here, we reuse their dataset, but simply provide GPT-3 with the composition, e.g.,
Ag0.05Zr0.95 as input.
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M A T B E N C H T A S k S To ensure a fair comparison to top-performing models in
material science, we also considered the tasks from the MatBench suite that are
based on compositions.212

Bulk metallic glass formation ability The ability of a material to form glasses
is known as the glass formation ability and is linked to the chemical composition.
Dunn et al. 212 extracted a dataset of composition and the bulk metallic glass forma-
tion ability from the Landolt–Börnstein collection.416

Metallicity In addition, we also considered classifying compositions as metallic
or non-metallic. For this Dunn et al. 212 extracted a dataset reported by Zhuo et
al. 417

Experimental band gaps Zhuo et al. 417 also extracted a dataset of composi-
tions and band gaps of inorganic solids from Zhuo et al. 417

Yield strength of steel For structural materials, it is essential to know at which
stress it ceases to showelastic behavior. That is, above the yield point, a deformation
will be permanent. Dunn et al. 212 extracted this information for steels from Citrine
informatics.

F.2.3 Reactions

Very central to the central science are chemical reactions. A lot of time is often
spent optimizing conditions to increase the yield. Recently, there have been many
attempts to expedite this process using ML approaches such as Bayesian optimiza-
tion (BO). Inmanyworks, it was found that one-hot encoding performs equivalent to
chemically informed representations.31,837,838 However, it would bemuchmore con-
venient if the reactants were simply provided as text without preprocessing. Here,
we focus on two datasets. First, experimentally determined yields of Pd-catalysed
Buchwald–Hartwig C–N crosscouplings reported by Ahneman et al. 418 and, second,
yields for Pd-catalysed Suzuki-Miyaura C-C cross-couplings reported by Perera et
al. 419

F.3 F I N E - T u N I N G p A R A M E T E R S
As an initial experiment, we investigated the impact of a range of 昀椀ne-tuning pa-
rameters. We focussed on balanced binary classi昀椀cation on the photoswitch using
SMILES.

In Figure 170 we observe that the 昀椀ne-tuning parameters can have a pronounced
e昀昀ect on the classi昀椀cation performance. Particularly for only a few passes through
the data (low number of epochs) and a low learning rate (𝜂) the resulting model
might even perform worse than random guessing.

Interestingly, we do not 昀椀nd the largest model to perform consistently better.
We decided to use the same settings for all subsequent experiments instead of

optimizing them for every experiment. While this might limit the performance we
observe, it also avoids over昀椀tting.
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Figure 170: In昀氀uence of 昀椀ne-tuning parameters on the model performance.

Note that the model must also use the few examples we provide to learn the
prompt structure. FromDinh et al. 398 we know that pre-training with prompts 昀椀lled
with random data can help the model learn.

F.4 I N F L u E N C E O F T H E M O L E C u L A R R E p R E -
S E N T A T I O N

There is not one unique way of representing molecules in text form. While the IU-
PAC name might have widespread use for the communication of synthesis proto-
cols or papers, cheminformatics focussed on line representations such as SMILES,423

INChI, and recently, SEFLIES.424 For an overview, see Krenn et al. 425.
To understand possible representation e昀昀ects better, we investigated other pos-

sible representations of the molecules in the photoswitch dataset. First, we frag-
mented themolecules using extended functional groups (EFGs).839 We then directly
used those fragment SMILES as representation but also investigated the removal of
chemical information using a numerical encoding. In addition, we also removed ex-
plicit chemical information from SEFLIES by replacing the characters using a numeri-
cal encoding. To investigate potential sequence length e昀昀ects, we also investigated
padding the SEFLIES characters. In Figure 171 we show that both chemistry and the
sequence length in昀氀uence the predictive performance. Removing explicit chemistry
information tends to decrease the performance, and reshaping it into relevant “buck-
ets” via fragments tends to increase the performance. This indicates that while the
昀椀ne-tuning of GPT-3 gives performance that is competitive with strong baselines,
unlocking the ultimate power still requires, as is the case with all models, 昀椀ne-tuning
of the representation. In the case of LLMs, this implies tuning prompt and string rep-
resentations in contrast to conventional feature engineering.
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Figure 171: Mean e昀昀ect sizes for accuracy on the photoswitch case study for di昀昀erent repre-
sentations. Top row shows the accuracy obtained in independent runs with dif-
ferent representations. The bottom row shows bootstrapped mean e昀昀ect sizes
versus the SEFLIES baseline. We created the 昀椀gures using the DABEST library.840

F.5 F E w S H O T R E A S O N I N G

As Brown et al. 393 showed, LLMs are few-shot learners that can generalize to new
tasks without any gradient-based learning (e.g., 昀椀ne-tuning).

For this reason, we also investigated this setting. To do so, we focussed on classi-
昀椀cation on the photoswitch dataset and prompted di昀昀erent versions of GPT-3 with
prompts of the form

I am a highly intelligent question answering bot that answers questions
about transition wavelengths of photoswitch molecules.

Q: CC(C=C(N(CCC#N)CCO)C=C1)=C1/N=N/C2=CC=C(C(F)(F)F)C=C2
A: 421.0

Q: OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1/N=N/C2=C(O)C=CC(C)=C2
A: 400.0

Q: O=[N+]([O-])C1=CC=C(/N=N/C2=CC=C(NCCC#N)C=C2)C=C1
A: 455.0

Q: FC1=CC=C(/N=N/C2=CC=CC=C2)C=C1
A: 322.0

Q: CCN(CC)C(C=C%21)=CC=C%21/N=N/C%22=CC=C(N%23CCOCC%23)C([H])=C%22
A: 417.0

Q: CN(C=N1)C=C1/N=N/C2=CC=CC=C2
A: 336.0

Q: CCN(CC)C(C=C1)=CC=C1/N=N/C2=C(C#N)C=C(C#N)C=C2
A: 515.0

Q: CN(C)C(C=C1)=CC=C1/N=N/C2=CC=CC=C2[N+]([O-])=O
A: 440.0

Q: CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(O)=O)C=C2
A: 342.0

Q: CC(C=C(N(CCC#N)CCO)C=C1)=C1/N=N/C2=CC=C(C(C)=O)C=C2
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A: 412.0

Q: CC(C=C(N(CCC#N)CCO)C=C1)=C1/N=N/C2=C(F)C=CC=C2

As evident from Figure 172 and Figure 173 we 昀椀nd that also with this approach,
we 昀椀nd good results, competitive, or even outperforming the GPR baseline (also see
Appendix F.6). Interestingly, we also observe a stronger dependence on the repre-
sentation of the molecules when we use this prompt-based approach without 昀椀ne-
tuning. However, a fundamental limitation of this approach is that the number of
examples one can provide is limited by the context length of the model. For this rea-
son, the learning curves also add at di昀昀erent points (with larger models having larger
context sizes and di昀昀erent representations needing a di昀昀erent number of tokens).

0.0

0.5
accuracy

name SMILES inchi

text-davinci-003

text-ada-001
text-babbage-001
text-curie-001
code-davinci-002
GPRselfies

0.0

0.5
F1 macro

0.0

0.5
F1 micro

0 100

0.0

0.5

0 100 0 100 0 100
number training points

Figure 172: Classi昀椀cation metrics on the photoswitch dataset for binary classi昀椀cation with
few-shot prompts. Columns indicate di昀昀erent representations, colors di昀昀erent
models.
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Figure 173: Classi昀椀cation metrics on the photoswitch dataset for 5-class classi昀椀cation with
few-shot prompts. Columns indicate di昀昀erent representations, colors di昀昀erent
models.
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These encouraging results motivate further work using other prompting strate-
gies, including soft prompting,841 such as instruction prompt tuning.842
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F.6 C L A S S I F I C A T I O N E x p E R I M E N T S

F.6.1 Note about baselines

For the classi昀椀cation case studies, we use MolCLR and tabular Prior-Data Fitted Net-
work (PFN) (TabPFN) as baselines in most cases.

M O L C L R Wang et al. 402 proposed the Molecular Contrastive Learning of Repre-
sentations via Graph Neural Networks approach in which GNNs are pre-trained on
large unlabeled datasets using a contrastive loss and graph augmentations such as
atommasking, bond deletion, and subgraph removal. They could show that this pre-
training improves the performance of GNNs on various property prediction tasks. In
this work, we 昀椀ne-tuneMolCLR on all tasks with the default settings reported by the
original authors.

T A B p F N TabPFN404 is a transformer (25.82 million parameters) that has been
pre-trained onmillions of synthetic datasets (𝐷𝑖 sampled from some prior 𝑝(D)with
the task of predicting held-out points with a forward pass (i.e., it predicts posterior
predictive distribution (PPD) 𝑞𝜃(𝑦test|𝑥test, 𝐷)). This can be thought of as gradient-
based meta-learning.

G p R w I T H F R A G p R I N T S For datasets that have SMILES available, we also use
GPRsmodels with Tanimoto kernels with “fragprint” descriptors, which are concate-
nations of fragment features and 昀椀ngerprints.143,843

For speci昀椀c case studies, there are additional baselines we took from the literature
and which we describe in the corresponding section.

F.6.2 Photoswitches

The learning curves for classi昀椀cation are shown in Figure 174 and Figure 176. Par-
ticularly for the binary classi昀椀cation, the GPT-3 model 昀椀ne-tuned on IUPAC-names
outperforms the baselines.
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Figure 174: Learning curves for binary classi昀椀cation on the photoswitch dataset. We did a
balanced split in two classes to predict the 𝜋-𝜋∗ transition wavelength of the E
isomers.
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Figure 175: Learning curve intersection points for binary classi昀椀cation on the photoswitch
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 176: Learning curves for 5-class classi昀椀cation on the photoswitch dataset. We did a
balanced split in 昀椀ve classes to predict the 𝜋-𝜋∗ transition wavelength of the E
isomers.
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Figure 177: Learning curve intersection points for binary classi昀椀cation on the photoswitch
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.

F.6.3 Free energy of solvation

The learning curves for the classi昀椀cation tasks are shown in Figure 178 and Figure 180.
Here, we 昀椀nd GPT-3 昀椀ne-tuned using the SEFLIES representation to perform well.



294 S u p p O R T I N G I N F O R M A T I O N F O R G p T - 3 F O R C H E M I S T R y

0 50 100 150 200

0.50

0.75
accuracy GPT-SMILES

GPT-SELFIES

GPT-InChI

GPR

TabPFN

MolCLR

0 50 100 150 200

0.50

0.75
F1 macro

0 50 100 150 200

0.50

0.75
F1 micro

0 50 100 150 200
training set size

0.25
0.50
0.75

Figure 178: Learning curves for binary classi昀椀cation on the FreeSolv dataset. We performed
a balanced split into two classes.

0 50 100 150 200
num training points

1

2

3

4

5
data efficiency gain

  of GPT-SELFIES

GPR

TabPFN

0.
4

0.
6

Figure 179: Learning curve intersection points for binary classi昀椀cation on the FreeSolv
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 180: Learning curves for 5-class classi昀椀cation on the FreeSolv dataset. We performed
a balanced split into 昀椀ve classes.
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Figure 181: Learning curve intersection points for 5-class classi昀椀cation on the FreeSolv
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.

F.6.4 Lipophilicity

The learning curves for the classi昀椀cation tasks are shown in Figure 182 and Figure 184.
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Figure 182: Learning curves for binary classi昀椀cation on the lipophilicity dataset.
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Figure 183: Learning curve intersection points for binary classi昀椀cation on the lipophilicity
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 184: Learning curves for 5-class classi昀椀cation on the lipophilicity dataset.
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Figure 185: Learning curve intersection points for 5-class classi昀椀cation on the FreeSolv
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.

F.6.5 HOMO-LUMO gaps

First, it is essential to note that di昀昀erent conformers have di昀昀erent gaps between
HOMOand LUMO. The distribution of the standard deviation of theHOMO-LUMO
gaps for di昀昀erent conformers of a molecule in the QMUGs dataset is shown in Fig-
ure 186.
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Figure 186: Distribution of standard deviations of the HOMO-LUMO gap of the three con-
formers of the molecules in the QMUGs dataset.

Since we base our model on line representations, we cannot resolve those e昀昀ects
and train our models on the average HOMO-LUMO gap of the three conformers
reported by Isert et al. 414 The learning curves for the classi昀椀cation tasks are shown
in Figure 187 and Figure 189.
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Figure 187: Learning curves for binary classi昀椀cation of HOMO-LUMO gaps on the QMUG
dataset.
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Figure 188: Learning curve intersection points for binary classi昀椀cation on the QMUG
dataset.
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Figure 189: Learning curves for 5-class classi昀椀cation of HOMO-LUMO gaps on the QMUG
dataset.
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Figure 190: Learning curve intersection points for 5-class classi昀椀cation on the QMUG
dataset.
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F.6.6 Photoconversion e昀케ciencies in organic photovoltaics

Nagasawa et al. 415 reported a dataset of performance of around 1000 conjugated
molecules compiled from the experimental literature. They also reported machine
learning models for which they found good predictive performance for RF models
using a extended connectivity 昀椀ngerprint (ECFP). In their dataset, there are some
duplicated entries which we grouped and aggregated using the mean value. Since
the authors did not report the hyperparameters they used, we also implemented 5-
fold cross-validated hyperparameter optimization on a RF model as a baseline and
completed with the baselines we use throughout all case studies.

The learning curves for the classi昀椀cation tasks are shown in Figure 191 and Fig-
ure 192.
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Figure 191: Learning curves for binary classi昀椀cation on the OPV dataset. We performed a
balanced split into two classes based on the average PCE.
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Figure 192: Learning curves for 5-class classi昀椀cation on the OPV dataset. We performed a
balanced split into 昀椀ve classes based on the average PCE.

F.6.7 Solubility
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Figure 193: Learning curves for binary classi昀椀cation on the solubility dataset.



302 S u p p O R T I N G I N F O R M A T I O N F O R G p T - 3 F O R C H E M I S T R y

0 100 200 300 400 500

0.0

0.5
accuracy

GPT-SMILES
GPT-SELFIES
GPT-InChI

GPR

TabPFN
GraphConv
Weave

Esol (pretrained)
MolCLR

0 100 200 300 400 500

0.0

0.5
F1 macro

0 100 200 300 400 500

0.0

0.5
F1 micro

0 100 200 300 400 500
number of training points

0.00

0.25

Figure 194: Learning curves for 昀椀ve-class classi昀椀cation on the solubility dataset.

F.6.8 MOF Henry coe昀케cients

Carbon dioxide and methane

To fairly compare our results to a strong baseline, we reuse the features and models
reported by Moosavi et al. 132 Note that the models reported by Moosavi et al. 132

were extensively tuned on the target taskwith speci昀椀cally engineered features. Since
the current implementation of TabPFN can only handle 100 features, we selected the
100 most relevant features according to the feature importance of a RF model.
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Figure 195: Learning curves for binary classi昀椀cation of CO2 Henry coe昀케cients.
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Figure 196: Learning curves for binary classi昀椀cation of CH4 Henry coe昀케cients.
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Figure 197: Learning curves for 5-class classi昀椀cation of CO2 Henry coe昀케cients.
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Figure 198: Learning curves for 5-class classi昀椀cation of CH4 Henry coe昀케cients.

F.6.9 MOF heat capacities

We use data reported by Moosavi et al. 125. We also use the model reported by
Moosavi et al. 125, for which they extensively optimized hyperparameters. Notably,
this model can achieve good data e昀케ciency because it has been trained on local en-
vironments. Additionally, this model is a bootstrapped ensemble, which we repli-
cated for our baseline. To ensure a fair comparison, we only trained on MOFs and
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not COFs and zeolites. Additionally, we only considered those MOFs for which we
could determine amo昀椀d.152 Note that, similar toMoosavi et al. 125 we did not utilize
advanced splitting strategies other than strati昀椀cation on the gravimetric heat capac-
ity. Additionally, we performed the split on the structures and not on the sites and
dropped duplicates based on the mo昀椀d.

Additionally, we investigated a composition-only approach (reduced formula of
the primitive cell). As a baseline for this, we considered CrabNet.401
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Figure 199: Learning curve for binary classi昀椀cation of MOF heat capacities.
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Figure 200: Learning curve for 5-class classi昀椀cation of MOF heat capacities.
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F.6.10 MOF water stability

As baselines we use a gradient-boosted classi昀椀er and TabPFN on the features re-
ported by Batra et al. 129 We follow the binary classi昀椀cation setting reported by Ba-
tra et al. 129 in which the kinetically and thermodynamically stable MOFs are merged
into one class.
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Figure 201: Learning curve for the classi昀椀cation of the water stability of MOFs

F.6.11 Linear polymers

We investigated balanced binary and 昀椀ve-class classi昀椀cation. Figure 202 and Fig-
ure 204 show learning curves.



F.6 C L A S S I F I C A T I O N E x p E R I M E N T S 307

0.50

0.75
accuracy GPT

XGBoost
TabPFN

0.50

0.75
F1 macro

0.50

0.75
F1 micro

101 102

number of training points

0.0

0.5

Figure 202: Classi昀椀cation performance for binary classi昀椀cation of free energy of adsorption
of linear polymers.
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Figure 203: Learning curve intersection points for binary classi昀椀cation on the polymer
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 204: Classi昀椀cation performance for classi昀椀cation of free energy of adsorption of lin-
ear polymers into 昀椀ve classes.
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Figure 205: Learning curve intersection points for 5-class classi昀椀cation on the photoswitch
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.

F.6.12 High-entropy alloys

Single- vs. multi-phase

Unfortunately, Pei et al. 400 did not report learning curves or a code implementation.
However, we 昀椀nd that with very few points and without any feature engineering, we
can match their predicted performance. The dataset is balanced. As an alternative
baseline, we use automated ML, as implemented in the automatminer package212

with the “express” preset.
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Figure 206: Classi昀椀cation performance for classifying HEAs as “single-phase” and “multi-
phase”, respectively. The dashed horizontal line indicates the performance
reported in Pei et al. 400 using a dataset of 1252 points and 10-fold cross-
validation, i.e., corresponding to a training set size of around 1126 points. Au-
tomatminer baseline computed using “express” preset.

As an additional deep-learning-based baseline, we considered CrabNet401 if the
default model architecture (due to the computational cost of comprehensive hyper-
parameter optimization and the fact that it performed favorably on matbench on
di昀昀erent tasks with the same hyperparameters).

Multiphase, vs. hcp, bcc, fcc

As an extension, we not only considered the binary classi昀椀cation into “single phase”
and “multiphase” but directly predicted the structure type (hcp, fcc, bcc) for a given
alloy composition. The classes are not balanced, with “multiphase” forming the
majority class. As shown in Figure 207, GPT-3 can learn to predict the phase based
on only the composition and with very few data points.

We performed these experiments by 昀椀ne-tuning for eight epochs with a learning
rate decay rate of 0.02.
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Figure 207: Classi昀椀cation performance for classifying HEAs into multiphase, hcp, fcc, bcc,
respectively. Since Pei et al. 400 did not report this experiment, whereforeweuse
simply dummy models as baselines. Error bands show the standard deviations
for 10 independent train/test splits.

As a baseline, we used automated machine learning via automatminer (and the
“express” setting).212
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F.6.13 Reactions

For the reaction case studies, we use baselines based on GPRs and natural language
processing (NLP)-derived昀椀ngerprints aswell as one-hot encoding andbag-of-SMILES
representation.844,845
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Figure 208: Learning curves for classi昀椀cation on binary classi昀椀cation of the reaction yield on
the data set of Ahneman et al. 418.
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Figure 209: Learning curve intersection points for binary classi昀椀cation on the Ahneman et
al. 418 dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 210: Learning curves for classi昀椀cation on the 昀椀ve-class classi昀椀cation of the reaction
yield on the data set of Ahneman et al. 418.
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Figure 211: Learning curve intersection points for 5-class classi昀椀cation on the Ahneman et
al. 418 dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 212: Learning curves for classi昀椀cation on binary classi昀椀cation of the reaction yield on
the data set of Perera et al. 419.
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Figure 213: Learning curve intersection points for binary classi昀椀cation on the Perera et al. 419
dataset. Vertical lines indicate the 𝜅 scores of the GPT-3 model.
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Figure 214: Learning curves for classi昀椀cation on 昀椀ve-class classi昀椀cation of the reaction yield
on the data set of Perera et al. 419.
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Figure 215: Learning curve intersection points for 5-class classi昀椀cation on the Perera et al. 419
dataset.



F.6 C L A S S I F I C A T I O N E x p E R I M E N T S 315

F.6.14 Matbench

Metallic glass formation ability

Table 68: Performance of 昀椀ne-tuning of GPT-3 compared to the current matbench leader-
board for the glass task.

model accuracy balanced accu-
racy

𝐹1 ROC-AUC

GPT-3 0.82 ± 0.01 0.77 ± 0.01 0.88 ± 0.01 0.77 ± 0.01
MODNet
(v0.1.12)403

0.97 ± 0.01 0.96 ± 0.01 0.98 0.96 ± 0.01
AMMExpress
v2020212

0.87 ± 0.05 0.86 ± 0.02 0.90 ± 0.04 0.86 ± 0.02
RF-
SCM/Magpie212,615,846,847

0.90 ± 0.01 0.86 ± 0.02 0.93 ± 0.01 0.86 ± 0.02
MODNet
(v0.1.10)403

0.87 ± 0.01 0.81 ± 0.02 0.91 ± 0.01 0.81 ± 0.02
Dummy 0.59 ± 0.02 0.50 ± 0.02 0.71 ± 0.01 0.50 ± 0.02
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Figure 216: Learning curve analysis for the matbench glass task. As baselines, we consid-
ered theAutomatminerwith “express” settings andMODNet (with hyperparam-
eters optimized by Breuck et al. 403 for this task).
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Metallic behavior

Table 69: Performance of 昀椀ne-tuning of GPT-3 compared to the current matbench leader-
board for the expt_is_metal task.

model accuracy balanced accu-
racy

𝐹1 ROC-AUC

GPT-3 0.89 0.89 0.89 0.89
AMMExpress
v2020212

0.92 0.92 0.92 0.92
RF-
SCM/Magpie212,615,846,847

0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01
MODNet
(v0.1.10)403

0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.01
Dummy 0.49 ± 0.01 0.49 ± 0.01 0.49 ± 0.02 0.49 ± 0.01
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Figure 217: Learning curve analysis for the matbench is_metal task. As baselines, we con-
sidered the Automatminer with “express” settings and MODNet (with hyperpa-
rameters optimized by Breuck et al. 403 for this task).
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F.7 R E G R E S S I O N

F.7.1 Note on regression using GPT-3

Without changes to the architecture and the training procedure, regression, i.e., the
prediction of 昀氀oating point numbers with, in principle, an in昀椀nite number of decimal
places, is not possible. However, we can approximate regression in two ways. First,
one could use many classes, such that the class bins are in the order of the experi-
mental error (often larger than one decimal place). Second, one can try to directly
predict rounded 昀氀oating point numbers.

In both cases, one would expect the performance to be worse than in the classi昀椀-
cation setting. Here, we focused on the simplest case of directly predicting rounded
昀氀oating point numbers. Typically, GPT-3 performs worse than baselines in this set-
ting. However, it sometimes approaches the performance of the baselines.

F.7.2 Photoswitches
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Figure 218: Learning curve for regression on the photoswitch dataset.

F.7.3 HOMO-LUMO gaps
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Figure 219: Learning curve for regression on the QMUG dataset.
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F.7.4 Solubility
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Figure 220: Learning curve for regression on the solubility dataset.

F.7.5 Free energy of solvation
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Figure 221: Learning curve for regression on the free energy of solvation dataset.
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F.7.6 Lipophilicity
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Figure 222: Learning curve for regression on the lipophilicity dataset.

F.7.7 Photoconversion e昀케ciency
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Figure 223: Learning curve for regression on the OPV dataset.
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F.7.8 Henry coe昀케cients
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Figure 224: Learning curves for regression for the prediction of the CO2 Henry coe昀케cient
of MOFs.

F.7.9 Surfactants
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Figure 225: Learning curve for regression for predicting the adsorption free energy on the
dispersant dataset.
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F.7.10 Reactions

C-N cross-coupling
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Figure 226: Learning curve for regression yield prediction on the C-N cross-coupling
dataset.
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Figure 227: Learning curve for regression yield prediction on the C-C cross-coupling
dataset.

F.7.11 Matbench

Also, in the regression setting, 昀椀ne-tuning of GPT-3 on the composition performs
better than the dummy model and is competitive with models on the matbench
leaderboard. Table 70 summarizes the metrics for the prediction of band gaps and
Table 71 for the prediction of the yield strength of steels.
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Experimental band gaps

Table 70: Performance of a 昀椀ne-tuned GPT compared to the matbench leaderboard for the
expt_gap task.

model MAE RMSE MAPE max error

GPT-3 0.46 ± 0.02 1.06 ± 0.09 0.52 ± 0.07 9.36 ± 1.96
Ax SAASBO
CrabNet
v1.2.7401,848

0.33 ± 0.01 0.81 ± 0.06 0.36 ± 0.05 7.19 ± 1.97
MODNet
(v0.1.12)403

0.33 ± 0.02 0.77 ± 0.07 0.35 ± 0.04 7.11 ± 1.47
Dummy 1.14 ± 0.03 1.44 ± 0.07 0.95 ± 0.17 8.93 ± 1.23

Yield strength

Table 71: Performance of a 昀椀ne-tuned GPT compared to the matbench leaderboard for the
steels task.

model MAE RMSE MAPE max error

GPT-3 142 ± 16 204 ± 17 0.10 ± 0.01 679 ± 64
MODNet
(v0.1.12)403

88 ± 12 145 ± 37 0.06 ± 0.01 722 ± 277
CrabNet401 107 ± 19 153 ± 29 0.07 ± 0.01 477 ± 79
RF-Regex
Steels212

91 ± 7 128 ± 10 0.06 ± 0.01 423 ± 72
Dummy 230 ± 10 301 ± 21 0.16 1032 ± 59
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Note that for the inverse design case studies, we focused on examples for which we
can readily test the performance of the predicted materials.

F.8.1 Monomer sequences

Since our objectives come from computationally expensivemesoscale simulations, it
was not computationally feasible for us to run the simulations for all the generated
polymers. Instead, we trained our XGBoost baseline model on all the polymers in
our dataset and used this model to score the generated monomer sequences. The
performance of this model is shown in Figure 228.
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Figure 228: XGBoostmodel trained on the polymer database. Mean absolute error 1.24 𝑘B𝑇.

Random generation continuous target

In Figure 229we show the performance for generating polymers with properties ran-
domly sampled from the training distribution. We use rounded continuous numbers
in the prompts.
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Figure 229: Inverse design metrics for the random generation of polymers as a function of
temperature.

Random generation binned target

Instead of using continuous numbers in the prompt, we also considered using the
ordinal encoding into 昀椀ve bins. As a loss, we then computed the distance to the
nearest bin edge.
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Figure 230: Inverse design metrics for the random generation of polymers as a function of
temperature for ordinal design objectives (adsorption free energies).

F.8.2 Photoswitches

To investigate if we can evaluate our generative model using TDDFT, we conducted
some experiments to analyze how well we can match the experimental or previously
reported DFT data.
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Figure 231: Correlation between experimental transitionwavelengths and reported TD-DFT
data.
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Figure 232: SMILES generation metrics for random generation of photoswitches.

Adummy-mean baseline on the photoswitch dataset, gives aMAE of 53.82 nm for
the E isomer 𝜋 − 𝜋∗ transition wavelength, and one of 12.63 nm for the Z isomer𝜋 − 𝜋∗ transition wavelength.

Sampling from the training distribution

As the initial experiment, we prompted the model with transition wavelengths ran-
domly sampled from the distribution of the dataset by Gri昀케ths et al. 143 Figure 232
shows the quality and the diversity of the generated molecules, Figure 233 shows
the constrain satisfaction.

Extrapolation

To investigate if our approach can outperform high-throughput virtual screening
(HTVS), we only trained our model on photoswitches that adsorb at wavelengths
below 350 nm. Upon inference, we queried for photoswitches with transition wave-
lengths above this threshold.

In Figure 235 we show the quality of the generated SMILES, and in Figure 236 the
constrain satisfaction. Figure 237 compares the generated distributions.
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Figure 233: Constrain satisfaction for random generation of photoswitches.
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Figure 234: TMAP visualization of the generated photoswitches and the training set. For
this visualization, we used the TMAP437 algorithm on photoswitch molecules
described using MinHash 昀椀ngerprint (MHFP) with 2048 permutations.438
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Figure 235: SMILES generation metrics for extrapolative generation of photoswitches. We
昀椀nd that low temperatures generated more valid molecules that, however, are
less unique and often part of PubChem.
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Figure 236: Constrain satisfaction for extrapolative generation of photoswitches. We gener-
ally 昀椀nd larger errors than for the random generation. “all” refers to themetrics
for all generated photoswitches, including those that have been part of the train-
ing set. “novel” only includes those not part of the training set.
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Figure 237: Distribution of transition wavelengths in generated photoswitch molecules, the
training set, and the underlying database. For this 昀椀gure, we considered 192
unique molecules generated across all tested temperatures (0–2) and noise lev-
els. We 昀椀nd that even if we train the model on only a subset of the dataset
(green), it can generatemolecules (orange) that span amuchwider range in tran-
sition wavelengths. Transition wavelengths for the generated molecules have
been predicted using the GPR models reported by Gri昀케ths et al. 143

Figure 238 gives TMAP visualizations as a function of temperature.
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Figure 238: TMAP visualization of the generated photoswitches and the training set. For
this visualization, we used the TMAP437 algorithm on photoswitch molecules
described using MHFP with 2048 permutations.438 Some molecules generated
by GPT-3 do not contain azo groups. Therefore we show in the top row only
those that contain azo groups and below all generated valid molecules. We per-
form the analysis at di昀昀erent inference temperatures (columns).

T D D F T v A L I D A T I O N To further analyze our shortlisted candidates, weperformed
TDDFT simulations. We used Gaussian 16, Revision C.01849 to perform geometry
optimization followed by the computation of the singlet excited states. Following
Jacquemin et al. 850 we used the PBE0 functional (PBE1PBE)851 and 6-31G(d’,p’) ba-
sis set,852,853 modeling the e昀昀ect of ethanol solvent using Polarizable Continuum
Model (PCM).854 Table 72 list the results.

Table 72: TDDFT Predicted transition wavelengths. SMILES generated in the extrapolation
experiment (training set containing only molecules with transition wavelengths
small than 350 nm.

SMILES E 𝜋-𝜋∗ / nm Z 𝜋-𝜋∗ / nm

CC1=NOC(C)=C1/N=N/C2=CC=C(NC)C=C2 386.78 386.79
CC1=C(C(C)=NN1)/N=N/C2=CC=C(NC)C=C2 373.75 387.06
C[N]1C=CC=C1N=NC2=CC=CC=C2 371.45 355.75
CC1=C(C(C)=NN1)/N=N/C2=CC(NC)=CC=C2 325.23 317.49
FC1=CC=CC=C1/N=N/C2=CC=C(N)C=C2 379.68 333.06
FC1=CC=CC=C1/N=N/C2=C(N)C=CC=C2 422.21 386.60
C[N]1C=CC=C1N=NC2=CC(NC)=NN=C2 393.60 356.72
C[N]1N=CC(=C1N)N=NC2=CC=CC=C2 353.73 360.62
CC1=NOC(C)=C1/N=N/C2=C(N)C=CC=C2 401.91 376.42
CC1=C(C(C)=NN1)/N=N/C2=CC(N)C=C2 341.33 342.74
C[N]1C=CC=C1N=NC2=CC=CC=C2 355.75 293.61

F.8.3 HOMO-LUMO gaps

Note that we useHOMO-LUMOgaps computed usingGFN2-xTB for computational
e昀케ciency. As also reported by Isert et al. 414, there is a deviation between those gaps
and those computed using DFT (Figure 239).
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Figure 239: DFT vs. GFN2-xTB bandgaps on the QMUGs dataset.

Tomeasure the compliance of the generatedmolecules with the prompts, we gen-
erated conformers using RDKit (via our givemeconformer wrapper855 that also per-
forms optimization using the Merck molecular force 昀椀eld,856 ranking, and pruning),
performed a geometry optimization using GFN2-xTB, and evaluated the HOMO-
LUMO gap. Since we did not run metadynamics to generate diverse conformers,
our results di昀昀er for some cases from the ones reported in QMugs.

On the QMUG dataset, a dummy mean predictor would 昀椀nd a MAE of 0.51 eV.
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Figure 240: SMILES quality metrics for random generation of SMILES for an inverse model
trained on the QMugs dataset. Colors indicate the training set size.
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Figure 241: Constrain statisfaction for random generation of SMILES for an inverse model
trained on the QMugs dataset. Colors indicate the training set size.

Shorter molecules

Many molecules in the QMugs database have many atoms. To investigate the in昀氀u-
ence of the SMILES length, we created a subset of the QMugs database in which the
SMILES have less than 50 characters.

Precision of the prompt

In our current form of performing inverse design, we create the prompts specifying
the desired HOMO-LUMOgap as a 昀氀oating point number rounded to a speci昀椀c num-
ber of decimal points (by default 2). To investigate the in昀氀uence of this parameter,
we also tested a model in which we rounded to only one decimal point.
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Figure 242: SMILES quality metrics for random generation of SMILES for an inverse model
trained on the short-SMILES subsetQMugs dataset. Colors indicate the training
set size.
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Figure 243: Constraint satisfaction metrics for random generation of SMILES for an inverse
model trained on the short-SMILES subset QMugs dataset. Colors indicate the
training set size.

Extrapolation

In order for a generative model to be more useful than HTVS, it must be able to
generate molecules that lie outside the training distribution. To test GPT-3’s abil-
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ity to do so, we truncated the QMugs distribution to only include molecules with
bandgaps smaller than 3.5 eV.
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Figure 244: Distribution of HOMO-LUMO gaps of molecules generated by GPT-3 昀椀ne-
tuned on the random and truncated training set, respectively. The vertical line
indicates 3.5 eV, the threshold above which we excluded molecules from the
extrapolation training set (bottom row). 𝑝-values in the inset are computed
using Kolmogorov-Smirnov (𝑝KS) and 𝑡-tests (𝑝t) between the full distribution
of HOMO-LUMO gaps of the QMugs database and the one of the generated
molecules.

Biasing the generation

To investigate if we can use GPT-3 to shift the generated distribution far from the
training distribution, we utilized an iterative approach:

A L G O R I T H M

Bootstrapping To start the work昀氀ow

1. Fine-tune GPT-3 in inverse setting on a random sample

2. Query from a biased distribution, with mean shifted by 𝛼 with respect to the
current mean

3. Evaluate 𝑛 molecules

Inner loop While the goal is not achieved, do

1. Combine all labeled data

2. Select a training set that is biased toward the target distribution (e.g., trun-
cated with a lower bound)

3. Fine-tune a model
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Figure 245: Generated distribution of HOMO-LUMO gaps for biased inverse models. For
this experiment, we limited the number of molecules we evaluated using xTB to
100.

4. Query from a biased distribution, with mean shifted by 𝛼 with respect to the
current mean

5. Evaluate 𝑛 molecules

D I F F E R E N T B A T C H S I z E S For the experiment in themain text, weperformed
the experiment evaluating the following number of evaluations: 2252 in the 昀椀rst,
1997 in the second, 370 in the third, 1875 in the fourth, and 1572 in the last.

Additionally, we also performed the experiment by constraining the number of
moleculeswe evaluate using xTB to 100. Note thatwequeriedmanymoremolecules
from the biased distribution and then randomly selected 100 from this distribution
for evaluation using xTB and we can also successfully shift the distribution (Fig-
ure 245). In future work, this can be improved by ranking the candidates using a
ML surrogate model.
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To test if the model extracted meaningful structure-property relationships, we per-
formed permutation tests (on the classi昀椀cation task on the photoswitch dataset).
For this, we randomly shu昀툀ed the target column and 昀椀ne-tuned and tested GPT-3
on this data.
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Figure 246: Learning curves for binary classi昀椀cation forGPT-3models 昀椀ne-tunedon shu昀툀ed
versions of the photoswitch dataset. Learning curve for the GPR model trained
on unshu昀툀ed data shown for reference.
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Figure 247: Learning curves for 5-class classi昀椀cation for GPT-3 models 昀椀ne-tuned on shuf-
昀氀ed versions of the photoswitch dataset. Learning curve for the GPR model
trained on unshu昀툀ed data shown for reference.
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F.10 I N v A L I D I N p u T S
ML models can con昀椀dently hallucinate. To test the behavior of our 昀椀ne-tuned mod-
els, we investigated di昀昀erent inputs: random names, random combinations of ele-
mental symbols as well as random combinations of letters.

F.10.1 Forward classi昀椀cation model

Table 73: Completions for a classi昀椀cation model trained on the photoswitch dataset when
fed with inputs that are not a SMILES string.

prompt completion

What is the transition wavelength of Berend? 0
What is the transition wavelength of Kevin? 0
What is the transition wavelength of Philippe? 0
What is the transition wavelength of Andres? 0
What is the transition wavelength of Bus? 0
What is the transition wavelength of car? 0
What is the transition wavelength of tree? 0
What is the transition wavelength of house? 0
What is the transition wavelength of cat? 0
What is the transition wavelength of magni昀椀cent? 0
What is the transition wavelength of a Berend? 0
What is the transition wavelength of a Kevin? 0
What is the transition wavelength of a Philippe? 0
What is the transition wavelength of an Andres? 0
What is the transition wavelength of a Bus? 0
What is the transition wavelength of a car? 0

Table 74: Completions for a classi昀椀cation model trained on the photoswitch dataset when
fed with inputs that are not a SMILES string and additional change to the prompt
template.

prompt completion

what is the adsorption energy of Berend? 0
what is the adsorption energy of Kevin? 0
what is the adsorption energy of Philippe? 0
what is the adsorption energy of Andres? 0
what is the adsorption energy of Bus? 0
what is the adsorption energy of car? 0
what is the adsorption energy of tree? 0
what is the adsorption energy of house? 0
what is the adsorption energy of cat? 0
what is the adsorption energy of magni昀椀cent? 0
what is the adsorption energy of a Berend? 0
what is the adsorption energy of a Kevin? 0
what is the adsorption energy of a Phlippe? 0
what is the adsorption energy of an Andres? 0
what is the adsorption energy of a Bus? 0
what is the adsorption energy of a car? 0
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Table 75: Completions for a classi昀椀cation model trained on the photoswitch dataset when
fed with inputs that are not a SMILES string and not even valid words.

prompt completion

What is the transition wavelength of jtjei? 0
What is the transition wavelength of jytcs? 0
What is the transition wavelength of cymtv? 0
What is the transition wavelength of ntnlz? 0
What is the transition wavelength of oqeze? 0
What is the transition wavelength of linwg? 0
What is the transition wavelength of ktgje? 0
What is the transition wavelength of cjmqi? 0
What is the transition wavelength of srved? 0

Table 76: Completions for a classi昀椀cation model trained on the photoswitch dataset when
fed with inputs that are not a SMILES string but a random combination of element
symbols.

prompt completion

What is the transition wavelength of PFeScNaFe? 0
What is the transition wavelength of ClMnCuScBe? 0
What is the transition wavelength of GeClNaCFe? 0
What is the transition wavelength of BeCuGeZnFe? 0
What is the transition wavelength of CoGeNaMnCr? 0
What is the transition wavelength of CaFOGaNi? 0
What is the transition wavelength of NaKNeNiN? 0
What is the transition wavelength of GeNeMgMnMg? 0
What is the transition wavelength of ZnNiZnFF? 0
What is the transition wavelength of CaTiAsCoMg? 0

F.10.2 Inverse design model

The results for invalid inputs to an inverse design model are shown in Table 77–
Table 79.
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Table 77: Completions for an inverse designmodel trained on the photoswitch dataset when
fed with inputs that are not a SMILES string (but valid words or names).

prompt completion

What is a molecule with E isomer transition
wavelength Berend, Z isomer transitionwave-
length Berend?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength Kevin, Z isomer transition wave-
length Kevin?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transi-
tion wavelength Philippe, Z isomer transition
wavelength Philippe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelengthAndres, Z isomer transitionwave-
length Andres?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength Bus, Z isomer transition wave-
length Bus?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(Br)C=C2

What is a molecule with E isomer transition
wavelength car, Z isomer transition wave-
length car?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength tree, Z isomer transition wave-
length tree?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C)C=C2

What is a molecule with E isomer transition
wavelength house, Z isomer transition wave-
length house?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength cat, Z isomer transition wave-
length cat?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength magni昀椀cent, Z isomer transition
wavelength magni昀椀cent?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength a Berend, Z isomer transition
wavelength a Berend?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength aKevin, Z isomer transitionwave-
length a Kevin?

CC1=C(C(C)=NN1)/N=N/C2=CC(NC(C)=O)=CC=C2

What is a molecule with E isomer transition
wavelength a Philippe, Z isomer transition
wavelength a Philippe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength an Andres, Z isomer transition
wavelength an Andres?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength a Bus, Z isomer transition wave-
length a Bus?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(Br)C=C2

What is a molecule with E isomer transition
wavelength a car, Z isomer transition wave-
length a car?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2
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Table 78: Completions for an inverse designmodel trained on the photoswitch dataset when
fed with inputs that are not a SMILES string (but random combinations of element
symbols).

prompt completion

What is a molecule with E isomer transition
wavelength PFeScNaFe, Z isomer transition
wavelength PFeScNaFe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength ClMnCuScBe, Z isomer transi-
tion wavelength ClMnCuScBe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength GeClNaCFe, Z isomer transition
wavelength GeClNaCFe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength BeCuGeZnFe, Z isomer transi-
tion wavelength BeCuGeZnFe?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength CoGeNaMnCr, Z isomer transi-
tion wavelength CoGeNaMnCr?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength CaFOGaNi, Z isomer transition
wavelength CaFOGaNi?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength NaKNeNiN, Z isomer transition
wavelength NaKNeNiN?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength GeNeMgMnMg, Z isomer transi-
tion wavelength GeNeMgMnMg?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength ZnNiZnFF, Z isomer transition
wavelength ZnNiZnFF?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C)C=C2

What is a molecule with E isomer transition
wavelength CaTiAsCoMg, Z isomer transi-
tion wavelength CaTiAsCoMg?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2
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Table 79: Completions for an inverse designmodel trained on the photoswitch dataset when
fed with inputs that are not a SMILES string (but random combinations of random
letters).

prompt completion

What is a molecule with E isomer transition
wavelength jtjei, Z isomer transition wave-
length jtjei?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength jytcs, Z isomer transition wave-
length jytcs?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength cymtv, Z isomer transition wave-
length cymtv?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength ntnlz, Z isomer transition wave-
length ntnlz?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(O)=O)=CC=C2

What is a molecule with E isomer transition
wavelength oqeze, Z isomer transition wave-
length oqeze?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength linwg, Z isomer transition wave-
length linwg?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength ktgje, Z isomer transition wave-
length ktgje?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

What is a molecule with E isomer transition
wavelength cjmqi, Z isomer transition wave-
length cjmqi?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(O)=O)=CC=C2

What is a molecule with E isomer transition
wavelength srved, Z isomer transition wave-
length srved?

CC1=C(C(C)=NN1)/N=N/C2=CC=C(C(F)(F)F)C=C2

What is a molecule with E isomer transition
wavelength xjkgl, Z isomer transition wave-
length xjkgl?

CC1=C(C(C)=NN1)/N=N/C2=CC(C(F)(F)F)=CC=C2

F.11 N O v E L T A S k S
Wealso investigated howour 昀椀ne-tuned inverse designmodels can perform few-shot
tasks.

For this, we added statements such as “and F as part of the molecule?” to the
end of the prompt and measured if the generated molecules were enriched with the
speci昀椀ed functional group. To quantify potential changes in distribution, we ran-
domly sampled from the distribution of properties on the training dataset and then
computed the enrichment factor. We queried amodel 昀椀ne-tuned on 1000 randomly
sampled molecules from QMugs.

enrichment factor = fraction in valid SMILES in generated batch
fraction in training set

(40)

Note that we do use an indicator function that only considers if a functional group
is a molecule or not to compute the fractions. We do not consider the count of a
given functional group in a molecule.
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G L O S S A R Y

𝐷 set of discarded points.𝐸 design space.𝑃 (𝜖-accurate) Pareto set.𝑄𝜇,𝜎,𝛽(x) uncertainty hyperrectangle of point x.𝑅g radius of gyration.𝑅𝑡(𝑥) uncertainty region of point x.𝑈 set of unclassi昀椀ed points.Δ𝐺ads free energy of adsorption.Δ𝐺rep repulsive free energy of polymer dimer.𝛽𝑡 scaling parameter for the hyperrectangle.

access token are random character strings that can, similar to pass-
words, be used to grant the rights for certain opera-
tions. Usually, access tokens can be minted for a lim-
ited scope, e.g., for only one sample and only speci昀椀c
rights (e.g., read rights).

AMD average minimum distance.
AMP 2-amino-2-methyl-1-propanol.
API an Application Programming Interface (API) describes

how one can interact with a program. It describes what
requests can be made and in which form they must be
made. In contrast to a user interface it is not intended
for direct use via a “frontend” but rather to o昀昀er pro-
grammatic access.

APRDF atomic-property labeled radial distribution function.
ARD automatic relevance determination.
AUC area under the ROC curve.
AUPR area under the precision-recall curve.

backend the piece of software that accesses the data. One
standard model in software development is the client-
servermodel, where the backend is the part of the code
that runs on the server.

BO Bayesian optimization.
BV bond valence.

CIF Crystallographic Information File.
client the archetypal example of a client is a web browser. A

client canbeused to access a service o昀昀eredby a server.
CNN convolutional neural network.
COD Crystallographic Open Database.
COF covalent-organic framework.
CoRE Computation-Ready, Experimental.
CrabNet compositionally-restricted attention-based network.
CSD Cambridge Structural Database.
CV collective variable.
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DCC direct contact cooler.
DDEC density-derived electrostatic charge.
deployment deployment refers to the activities that are needed to

make a piece of software available to users.
DFT density functional theory.
disruptive innovation a disruptive innovation is an innovation that creates a

new market. One example of this are smartphones.
DoE design of experiments.
DOI a digital object identi昀椀er (DOI) is a unique and persis-

tent identi昀椀er that is created by some central agency
that keeps track of some metadata and commits to re-
solving it inde昀椀nitely.

DPD dissipative particle dynamics.
Dublin Core the Dublin Core Metadata Element Set is a set of 15

elements like “Contributor”, “Date”, “Format” that
should be used for describing data resources. A simi-
lar set of metadata is the DataCite Metadata Schema.

ECFP extended connectivity 昀椀ngerprint.
EDA exploratory data analysis.
EFG extended functional group.
EGO e昀케cient global optimization.
EI expected improvement.
ELN in this work, we see an electronic lab notebook (ELN)

not only as a place where experimental chemists take
notes but as a hub for chemical research. Note-taking
is an important functionality in this hub, but visualiz-
ing, interacting, and sharing data are at least equally
important.

EPR electron paramagnetic resonance.
et extra trees.

FAIR the FAIR principles are guidelines on how the 昀椀ndabil-
ity, accessibility, interoperability, and reusability of
data can be improved.42 Importantly, FAIR does not
necessarily mean open.

fcc face-centered cubic.
昀椀ve star data Tim Berners-Lee suggests that the highest-quality

open and linked data, i.e. 5-star data,857 must (1) be
available on the web under an open license (e.g., cre-
ative commons), (2) be structured (e.g., table instead
of the image of a table), (3) be non-proprietary (e.g.,
using standard text 昀椀les instead of binary formats), (4)
use URIs (e.g, using an URL such that others can share
and link to this piece of data), (5) link to other data. In
contrast to FAIR, linked open data (5-star data) must
be open.

FN false negative.
FP false positive.
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frontend the piece of software that displays the data, it is the
part of a website the users interact with. In the client-
server model this is the piece of software that runs on
the client (e.g., the web browser).

GA genetic algorithm.
GAN generative adversarial neural network.
gb gradient boosting.
GBDT gradient boosted decision tree.
GCMC grand canonical Monte Carlo.
GGA generalized gradient approximation.
GitHub github.com is where most of the open source code

“lives” and is collaboratively built. It is integrated with
the version control tool Git but also gives the option
to make copies of other code bases (“fork”/“clone”)
or to contribute code to some projects using “pull re-
quests”. Bugs and new features are usually discussed
in “issues”.

GNN graph neural network.
GPR Gaussian process regression.
GPT-3 generative pre-trained transformer model 3.

HEA high entropy alloy.
HEX heat exchanger.
HOMO highest occupied molecular orbital.
HTVS high-throughput virtual screening.

ICM intrinsic coregionalization model.
ICSD Inorganic Crystal Structure Database.
IUPAC International Union of Pure and Applied Chemistry.

JSON JavaScript object notation.

Kaggle is the largest community for data science and most
known for its competitions in which participants com-
pete to create the best model for a task posed by the
host of the competition.

knn k-nearest neighbors.

L-BFGS limited memory Broyden–Fletcher–Goldfarb–Shanno.
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simu-

lator.
LCA life-cycle analysis.
LDR labeled data record.
LIMS laboratory infrastructure management systems allow

to track and manage samples. Often they allow de昀椀n-
ing locations at which di昀昀erent material or equipment
is stored and can then track the moves and uses of the
materials.

link rot link rot describes the phenomenon that links tend to
cease to resolve to the content they originally pointed
to.

LLM large language model.

github.com
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LQG labeled quotient graph.
LUMO lowest unoccupied molecular orbital.

MAE mean absolute error.
markup a markup language allows annotating the text to de-

couple the structure from the content. One example
is LATEX where the \section command can be used to
de昀椀ne the concept of a section. In the context of data,
markup languages such as ExtensibleMarkup Language
(XML) are typically used. The archetypal example for
chemistry is CML.

MCC Matthews correlation coe昀케cient.
MD molecular dynamics.
MEA monoethanolamine.
metadata metadata is data that describes attributes of other data

and in this way provides context andmakes data discov-
erable. While this might sound abstract there aremany
use cases in which metadata can be helpful. For exam-
ple, date and time should be featured inmostmetadata
records. If we have access to them we can use them to
昀椀lter our data, but also correlate themwith other infor-
mation (such as the weather reports) to understand po-
tential outliers in our data. A useful overview of meta-
data schemes is https://rdamsc.bath.ac.uk/.

MHFP MinHash 昀椀ngerprint.
ML machine learning.
MMD maximum mean discrepancy.
MOF metal-organic framework.
MPNN message-passing NN.

NLP natural language processing.
NMR nuclear magnetic resonance.
NN neural network.
NNGP neural network Gaussian process.
NTK neural tangent kernel.

https://rdamsc.bath.ac.uk/
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ontology an ontology describes and clari昀椀es the meaning, con-
ceptualization, and relation of terms in a formal lan-
guage.858 That is, they go beyond the simple vocabu-
lary or thesaurus by also providing a model for the in-
formation. Ontologies are often written in the web on-
tology language (OWL). For example in the ChEBI on-
tology859 “metal atom” is de昀椀ned as “An atom of an
element that exhibits typical metallic properties, being
typically shiny, with high electrical and thermal conduc-
tivity” and the relation to other terms is formally de-
scribed (i.e., on could make mathematical inferences,
e.g., on the consistency). In the context of chemical
data and ELNs ontologies are important to make sure
that it is clear and well-de昀椀ned what certain items in a
databasemean (for example, the concept “bond order”
depends on the de昀椀nition—for this reason, a “bond or-
der” entry in a database would link to an ontology with
the de昀椀nition). Importantly, ontologies are relevant to
enable semantic interoperability, i.e., enabling the de-
coding of the meaning of data. Pachl et al.860 give an
excellent overview of ontologies that have been devel-
oped for chemistry (and 昀椀nd thatmany projects remain
un昀椀nished). One example that provides a controlled
vocabulary that can be programmatically accessed us-
ing an API is the IUPAC gold book. However, since a
vocabulary is not a full ontology, there are ongoing ef-
forts also to model the relationship between terms to
arrive at a full chemical ontology.861.

open notebook science popularized by Jean-Claude Bradley,93 open notebook
science refers to making all primary research outputs
openly available as they are recorded. The goal is
to minimize the amount of “dark data”, e.g., “unsuc-
cessful” experiments that would never get published,
and “insider information” that one might not report in
methods sections in papers. openlabnotebooks.org
collects some (mostly life-science) e昀昀orts.

open source open source software is software that is openly avail-
able for modi昀椀cation and reuse. Development of open
source software is often decentralized, and happens in
open collaboration.

OPV organic photovoltaics.
Organic Syntheses Organic Syntheses is a journal that publishes proce-

dures for the synthesis of organic compounds. The key
distinction is that the syntheses are replicated in a lab
of one of the members of the editorial board.

PAL Pareto active learning.
PBE Perdew-Burke-Ernzerhof.
PC principal component.
PCA principal component analysis.
PCC post-combustion capture.
PCE power conversion e昀케ciency.
PCM Polarizable Continuum Model.

openlabnotebooks.org
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PFN Prior-Data Fitted Network.
PMF potential of mean force.
PPD posterior predictive distribution.
proprietary proprietary 昀椀les contain data that are stored in an en-

coding scheme de昀椀ned by an organization. The di昀케-
culty with proprietary 昀椀les stems from the fact that the
schema is secret, that is, it is often not trivial to decode
and interpret the 昀椀les. For this reason, data can only be
昀椀ve star data if it is shared in a non-proprietary format.

provenance data provenance is a form of metadata that describes
the origin of data.

PSO particle swarm optimization.
pXRD powder X-ray di昀昀raction.
Pz piperazine.

RAC revised autocorrelation function.
RDF Resource Description Framework (RDF) triplestores

break down information into triples of “subject”,
“verb”, “object” that form a labeled graph which ma-
chines can use to explore information (and understand
how information is connected). An example of a triple
can be “substance” (subject) “inhibits” (verb) “pro-
tein” (object) and the same element can also be used in
“publication” (subject) “describes” (verb) “protein”.

repository is a location where software (in the case of soft-
ware repositories, e.g., on GitHub) or data are
stored/archived (e.g., Zenodo). www.re3data.org/
is a useful resource to 昀椀nd suitable repositories.

REST (Representational State Transfer (REST). One key de-
sign principle of RESTful interfaces is that they are
stateless. Practically speaking this means that the
clients will send all information that is needed to pro-
cess a request to a server. That is, the client, and not
the server, stores all the information about the client
state. Importantly, the REST scheme also de昀椀nes a uni-
form structure for the APIs.

RF random forest.
RKHS reproducing kernel Hilbert space.
ROC receiver-operating characteristic.

schema a schema describes the structure of the data in a for-
mal language. JSON-LD and XML are common formats
for schemas. Examples in the context of the sciences
are XML schema of the Chemical Markup Language
(CML)462 or the Analytical Information Markup Lan-
guage (AnIML)457.

SEFLIES self-referencing embedded strings.
server is the computer (program) that provides some func-

tionality for the clients. A typical example is a 昀椀le
server that provides 昀椀les to its client (as it is for exam-
ple done in companies). One typical server that is used
in ELNs is the database server that serves the database
to the clients.

www.re3data.org/
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sgd stochastic gradient descent.
SHAP SHapley Additive exPlanations.
SLA service level agreement.
SMILES simpli昀椀ed molecular-input line-entry system.
SOAP smooth overlap of atomic positions.

TabPFN tabular PFN.
TDDFT time-dependent DFT.
TMAP tree-map.
TN true negative.
TP true positive.
trusted timestamps trusted timestamps proof that certain information ex-

isted at a certain point in time. Importantly, they are
secure in the sense that also the owner of the document
cannot change the timestamp. They can be secured by
techniques like the blockchain862 or a time-stamping
authority.

UMAP uniform manifold approximation and projection for di-
mension reduction.

UQG unlabeled quotient graph.
URI Uniform Resource Identi昀椀ers (URIs, as de昀椀ned in RFC

3986) are sequences of characters that identify a phys-
ical (e.g., sample) or digital (e.g., web page) resource.
One special example are Uniform Resource Locators
(URLs). Internationalized Resource Identi昀椀ers (IRIs)
are generalizations of URIs to Unicode glyphs. Note
that there are initiatives, such as the Resource Identi-
昀椀cation Portal, that provide a centralized location for
URIs for research resources such as antibodies or cell
lines.

VAE variational autoencoder.
VSEPR valence-shell electron-pair repulsion.

web browser in an abstract sense, a web browser is a piece of soft-
ware that can be used to retrieve information from the
worldwideweb. Practically speaking it can “speak” cer-
tain programming languages like JavaScript and HTML.
This means that a program that is written in JavaScript
can be executed by all major browsers on any platform
or any device. This led some people to say that a web
browser is a “super app”863 that could potentially re-
place almost all other apps on a computer. This is im-
portant in the context of ELNs as this might allow us to
create systems that are easier to scale (one does not
have develop a separate app for every operating sys-
tem).

WHAM weighted histogram analysis method.

XANES X-ray absorption near edge structure.
XPS X-ray photoelectron spectroscopy.
xTB extended tight-binding.

https://scicrunch.org/resources
https://scicrunch.org/resources
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