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Abstract

A shift from fossil-based energy and products to more sustainable alternatives is essential to reduce

greenhouse gas emissions and associated climate change impacts. Biomass represents a promising

alternative for providing fuels and carbon-based products with reduced environmental impact.

Combined with power-to-X technologies, it holds the potential to store energy from excess renew-

able electricity and valorize it in a multitude of low-impact energy carriers and chemical products.

Biomass is a limited resource, creating the need for its efficient valorization. Due to the complexity

induced by different processing pathways and products to which biomass can be converted, ad-

vanced computational methods offer great potential to support decision-making when designing

biorefineries.

This thesis aims to provide comprehensive decision-support tools that assist the development

of integrated biorefinery designs for converting biomass to value-added products. Process mod-

eling and integration are combined with rigorous multi-objective optimization approaches, in-

cluding economic and environmental indicators. Multi-criteria decision analysis is explored with

the acknowledgment of uncertainty in modeling parameters, providing robust solutions adapted

to decision-makers. Furthermore, excessive computational loads evoked by simulation-based

superstructure components and model complexity are addressed using surrogate modeling and

machine learning. The developed methods are demonstrated on a Kraft pulp mill integrated with

fuel production opportunities from biogenic residue streams.

Results of the initial analysis of combined pulp and fuel production indicate that the carbon ef-

ficiency of the mill can be increased by up to 10% while offering economic and environmental

benefits compared to conventional operation. Moreover, multi-criteria decision analysis coupled

with interactive optimization illustrates the promising potential for generating and identifying solu-

tions tailored to the needs and preferences of decision-makers. The consideration of uncertainties

makes it possible to investigate the influence of model parameters on the optimization results and

to leverage the obtained information for decision-making. Extending superstructure formulations

by simulation-based model components increases model capability but introduces computational

complexity. Therefore, surrogate modeling approaches are coupled with active learning, reducing

the computational time of solution generation significantly. Furthermore, machine learning is used

to efficiently generate Pareto frontiers for non-linear optimization problems and reduce computa-

tional time by up to 60%. When analyzing the integrated biorefinery in consideration of temporal

v



Abstract

variability of energy demands and resource availability, carbon capture, storage and utilization, and

power-to-X technologies enable an increase of the mill’s carbon efficiency to over 90%, compared to

50% for conventional operation. The integration of the mill with a nearby residential district reveals

valuable synergies for both economic and environmental indicators. Depending on the cost of

internal exchanges and the degree of self-sufficiency reached, emission reduction on the system level

might lead to economic benefits for the actors of the considered system. Overall, it is shown that the

suggested methods considerably enhance decision-making capabilities for integrated biorefinery

design, enabling efficient valorization of biomass.

Keywords: Decision support, Integrated biorefinery, Superstructure synthesis, Multi-objective opti-

mization, Process design, Machine learning.
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Résumé
La transition des énergies fossiles aux énergies décarbonées est nécessaire pour réduire nos émis-

sions de gaz à effet de serre et limiter les impacts du changement climatique. La biomasse est

une énergie renouvelable polyvalente, car susceptible de fournir de l’énergie sous diverses formes

(chaleur, électricité, chimique). Les technologies de conversion « Power-to-X » permettent d’utiliser

l’énergie électrique excédentaire en convertissant la biomasse en des combustibles et carburants

carbonés mais non fossiles, avec un impact sur l’environnement réduit. Il s’agit cependant d’une

ressource à l’approvisionnement limité, qu’il faut donc valoriser intelligemment. Au vu des multiples

produits pouvant dériver de la biomasse et des nombreuses voies de conversion, des méthodes

de calcul avancées sont nécessaires pour sélectionner les alternatives les plus pertinentes, et donc

soutenir la prise de décision.

Cette thèse vise à fournir des outils d’aide à la décision pour le développement de concepts de bio-

raffineries intégrées. Des méthodes de modélisation et d’intégration procédé sont combinées avec

des approches rigoureuses d’optimisation multi-objectifs, incluant, entre autres, des indicateurs de

performance économiques et environnementaux. L’aide à la décision multicritère prend en compte

l’incertitude des paramètres de modélisation et propose donc des solutions robustes, adaptées aux

choix des décideurs. Le problème des charges de calcul excessives causées par le développement

d’une superstructure est résolu en utilisant des modèles de substitution et l’apprentissage automa-

tique. Les outils d’aide développés dans ce projet sont appliqués au cas d’étude d’une usine de pâte

à papier et des possibilités de synthèse de carburant à partir de résidus de production biogènes.

La bioraffinerie obtenue présente une efficacité carbone supérieure de plus de 10% à celle d’une

usine de pâte à papier conventionnelle, et de meilleurs indicateurs économiques et environne-

mentaux. L’analyse décisionnelle multicritère, associée à l’optimisation interactive, se révèle un

outil puissant pour le développement de solutions adaptées aux besoins des décideurs, et souligne

la nécessité d’étudier l’influence de différentes perspectives. La prise en compte des incertitudes

permet d’analyser l’impact des paramètres d’optimisation sur les résultats obtenus. Il est également

possible d’identifier les configurations de bioraffineries les plus satisfaisantes pour le décideur pour

une large gamme de paramètres analysés.

L’intégration de modèles détaillés de procédés dans une superstructure permet une analyse détaillée

des configurations de bioraffineries obtenues, au prix d’une plus grande complexité de calcul.

L’intégration de modèles de substitution avec une approche d’apprentissage machine permet de

réduire significativement les temps de calcul, de génération de solutions et frontières de Pareto.
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Résumé

Une analyse plus fine des concepts proposés, en prenant en compte la variabilité temporelle des

demandes d’énergie et des ressources disponibles, démontre la pertinence des technologies de «

Power-to-X », de capture et d’utilisation de CO2. Une efficacité carbone de plus de 90% peut être

atteinte contre seulement 50% pour des usines de pâte à papier conventionnelles. Enfin, intégrer

ces bioraffineries avec un quartier résidentiel voisin permet des bénéfices économiques comme

environnementaux grâce aux synergies créées. En fonction des coûts des échanges internes et

du degré d’autosuffisance, la réduction des émissions au niveau du système peut générer des

avantages économiques pour les acteurs du système considéré. Dans l’ensemble, il apparaît que les

méthodes proposées contribuent à une prise de décision éclairée, et permettent ainsi la conception

de bioraffineries intégrées efficaces.

Mots-clés : Aide à la décision, Bioraffinerie intégrée, Conception de superstructures, Optimisation

multi-objectifs, Conception du processus, Apprentissage machine.
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Zusammenfassung
Eine Umstellung von fossilen Energieträgern und Produkten auf nachhaltigere Alternativen ist

unerlässlich, um die Treibhausgasemissionen und die damit verbundenen Auswirkungen des Kli-

mawandels zu verringern. Biomasse stellt eine vielversprechende Alternative für die Bereitstellung

von Kraftstoffen und kohlenstoffbasierten Produkten mit reduziertem Umweltauswirkungen dar.

In Kombination mit Power-to-X-Technologien birgt sie das Potenzial, Energie aus überschüssigem

Strom zu speichern und in einer Vielzahl von umweltfreundlichen Energieträgern und Produkten zu

verwerten. Biomasse ist eine begrenzte Ressource, weswegen eine effiziente Nutzung erforderlich ist.

Aufgrund der Komplexität, die sich aus den verschiedenen Nutzungsmöglichkeiten von Biomasse

ergibt, sind fortschrittliche Berechnungsmethoden erforderlich, um Entscheidungsprozesse im

Entwurf von Bioraffinerien zu unterstützen.

Ziel dieser Arbeit ist es, umfassende Methoden zur Unterstützung von Entscheidungsträgern bereit-

zustellen, mit denen die Entwicklung integrierter Bioraffineriekonzepte zur Umwandlung von Bio-

masse in wertsteigernde Produkte ermöglicht werden kann. Prozessmodellierung und -integration

werden mit rigorosen multiobjektiven Optimierungsansätzen kombiniert, die sowohl wirtschaftliche

als auch ökologische Indikatoren berücksichtigen. Um robuste, auf Entscheidungsträger zugeschnit-

tene Lösungen bereitzustellen wird eine multi-kriterielle Entscheidungsanalyse unter Berücksichti-

gung von Unsicherheiten angewandt. Darüber hinaus werden rechenintensive Simulationen durch

den Einsatz von Ersatzmodellen und maschinellem Lernen bewältigt. Die entwickelten Methoden

werden an einem Zellstoffwerk mit integrierter Möglichkeit zur Kraftstoffproduktion aus biogenen

Rohstoffen demonstriert.

Die Ergebnisse einer ersten Analyse der kombinierten Zellstoff- und Kraftstoffproduktion zeigen,

dass die biogene Kohlenstoffeffizienz des Werks um bis zu 10% gesteigert werden kann, während

sich gleichzeitig wirtschaftliche und ökologische Vorteile im Vergleich zum konventionellen Be-

trieb ergeben. Darüber hinaus wird verdeutlicht, dass die angewandte multi-kriterielle Entschei-

dungsanalyse in Verbindung mit interaktiver Optimierung ein vielversprechendes Potenzial für

die Identifizierung von Lösungen eröffnet, die auf die individuellen Bedürfnisse und Präferenzen

von Entscheidungsträgern zugeschnitten sind. In diesem Rahmen ermöglicht die Berücksichti-

gung von Unsicherheiten den Einfluss von Modellparametern auf die Optimierungsergebnisse zu

untersuchen und die gewonnenen Informationen im Entscheidungsprozess zu berücksichtigen.

Simulationsbasierte Modellkomponenten, die in ein Superstruktur-Optimierungsproblem einge-

bettet werden, bieten zwar die Möglichkeit zur detaillierten Prozessanalyse, führen aber auch zu
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Zusammenfassung

einer erhöhten Rechenkomplexität. In dieser Arbeit wird daher ein auf aktivem Lernen basierendes

Konzept zur Entwicklung von Ersatzmodellen vorgestellt, welches die erforderliche Rechenzeit zur

Lösungsgenerierung erheblich reduziert. Darüber hinaus wird gezeigt, wie maschinelles Lernen für

die effiziente Generierung von Pareto-Fronten in nichtlinearen Optimierungsformulierungen einge-

setzt werden kann, und so Rechenzeiteinsparungen von bis zu 60% ermöglicht. Die entwickelten

Konzepte werden für eine abschliessende Analyse der integrierten Bioraffinerie unter Berücksich-

tigung der zeitlichen Variabilität des Energiebedarfs und der Ressourcenverfügbarkeit verwendet.

Es wird aufgezeigt, dass Technologien zur CO2-Abscheidung, -Speicherung und -Nutzung sowie

Power-to-X die Steigerung der Kohlenstoffeffizienz des Werks auf über 90% ermöglichen, verglichen

mit 50% bei herkömmlichem Betrieb.

Die Integration des Werks mit einem nahen gelegenen Wohnviertel gestattet die Nutzung von Syner-

gien, welche sich vorteilhaft auf wirtschaftliche und ökologische Indikatoren auswirken. Abhängig

von den Kosten für zwischen Wohnviertel und Industriewerk ausgetauschte Produkte und dem

erreichten Selbstversorgungsgrad kann die Emissionsverringerung auf der Systemebene zu wirt-

schaftlichen Vorteilen für die einzelnen Akteure führen. Insgesamt zeigt sich, dass das Ensemble der

vorgeschlagenen Methoden zu einer informierten Entscheidungsfindung beiträgt, und damit die

Entwicklung von effizienten integrierten Bioraffinerien ermöglicht.

Schlüsselwörter: Entscheidungshilfe, Integrierte Bioraffinerie, Superstruktur Design, Multikriterielle

Optimierung, Prozess Design, Maschinelles Lernen.
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Context and contributions

Introduction

Climate change is a major societal challenge and addressing it requires reducing greenhouse gas

(GHG) emissions substantially. In 2015, 196 nations committed to limiting global temperature rise to

well-below 2°C, with a limit of 1.5°C in the Paris Agreement. Achieving this goal requires a transition

away from fossil fuels in all sectors. The European Union (EU)’s New Energy Strategy lists critical

measures for each sector to reach the target of becoming the first climate-neutral continent by 2050,

outlined in the European Green Deal [1].

Despite no emission reduction targets being set for the industrial sector, it is stated that in the

course of the transition to 2050, the industry will need to become greener, more circular, and more

digital. The industrial sector was responsible for 32% of the total fuel consumption and 13% of the

energy-related GHG emissions in the EU in 2017 [1]. The industrial sector is included in emissions

reduction efforts of the EU emission trading system (ETS) but has free allowances for trade-exposed

sectors [1]. Particular recommendations for decreasing GHG emissions include defossilization

strategies in the form of direct usage of renewable energy, increased use of biomass, valorization

of waste heat, carbon capture and utilization, and the deployment of green hydrogen solutions [1].

Furthermore, policy measures such as carbon pricing and energy efficiency audits are suggested.

The transportation sector accounts for 28% of fuel consumption and 29% of energy-related CO2

emissions in the EU. The energy consumption is dominated by diesel (64%) followed by gasoline

(24%), biofuels (5%), and electricity (2%) [1]. The European Green Deal aims at a 90% reduction of

GHG emissions from the transportation sector by 2050, while the EU Renewable Energy Directive

(RED) requires the EU to meet a 10% target of renewable energy in transport by 2020 and 14% by

2030 [1]. Besides shifting large shares of freight transport to rail and improving energy efficiency

in vehicles, switching to renewable energy and sustainable biofuels is one of the main measures

considered. According to the International Energy Agency (IEA), biofuels, defined as liquid and

gaseous fuels derived from organic matter, could provide up to 27% of the total transport fuel by

2050, replacing diesel, kerosene, and jet fuels [1].

Thus, despite efforts to reduce greenhouse gas emissions and mitigate climate change, fossil re-
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sources are still indispensable today for supplying industrial and transportation energy needs and

chemical products. While in the residential sector, the energy transition is advancing and accel-

erated by the installation of innovative systems providing heating and electricity from renewable

resources, the intermittency, volatile character, and spatial distribution of renewable energy carriers

are hindering their deployment for replacing fossil fuels in the transportation and industrial sectors.

Integrated biorefineries, systems that convert renewable, bio-based resources into value-added

products and energy vectors, have significant potential to provide energy and chemicals with

reduced environmental impact [2]. Biomass, as such, refers to any organic matter on a renewable

basis, such as wood and wood residues, agricultural residues, algae, animal or food waste [3].

As biomass is a limited resource, sustainable production and efficient exploitation are essential

prerequisites for providing low-impact products and valuable energy alternatives that reduce adverse

environmental or socio-economic effects [4]. Furthermore, the limitation of biomass availability is

pushing toward its usage in high-value applications.

Biorefineries can be categorized as first, second, or third generation, depending on the feedstock

[3, 5]. In first-generation biorefineries, agricultural biomass is used, risking competition with food

production. Second-generation biorefineries operate on lignocellulosic biomass from agricultural

residues, forestry residues, and industrial and municipal waste, while third-generation biorefineries

use aquacultures of either microalgae or macroalgae [6]. Lignocellulosic biomass has been par-

ticularly recognized as a favorable alternative to fossil resources due to its abundance, low cost,

and because it is not competing directly with food crops [3, 7]. In that regard, biomass to liquid

(BtL) synthetic fuels have been identified as a promising means of converting residual or low-value

biomass and waste feedstocks into non-fossil fuels for sectors that are hard to electrify, such as

aviation [8]. According to the IEA, in 2020, only 7% of biofuel production was derived from residual

biomass, compared to the projected 45% expected in 2030 in a Net Zero Scenario [9]. This increase

should be enabled by a decline in production costs and by using hitherto neglected biomass sources.

In addition to municipal and agricultural waste, woody biomass makes up a sizable portion of the

lignocellulosic biomass being processed [10]. The pulp and paper industry is one of the largest

consumers of woody biomass. Over 19% of European roundwood is currently consumed in this

industrial sector [11]. Roundwood includes all wood removed from forests for further usage in

charcoal production and industrial applications [12]. The pulp and paper industry is not only one of

the biggest consumers of biomass in the EU, but is also the only industrial sector that – apart from

producing pulp – is a net exporter of electricity [13]. Thus, the pulp and paper industry represents

one of the largest consumers of renewable energy while holding the potential to contribute to the

objectives of reducing GHG emissions, utilizing efficient biomass valorization and combined biofuel,

pulp, and electricity production [14].

Besides the requirement of fossil-fuel alternatives in the transportation sector, fluctuating renewable
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power capacity is projected to expand by 50% between 2019 and 2024, leading to an increasing

need for storage of excess electricity [15]. The concept of sector coupling is a promising option to

manage intermittency of renewable energy sources [16]. Sector coupling suggests the connection

and interaction of sectors, exploiting synergies between different actors of the energy system [16,

17]. For enabling storage through sector coupling, power-to-X (P2X) and X-to-power technologies

are pertinent, transforming electricity to be bound in chemical products and fuels and vice versa.

Particularly in combination with biomass-to-X, P2X technologies enable storage of excess renewable

energy while preventing generation curtailment and offering fossil fuel alternatives for the trans-

portation sector [18]. As such, sectors handling large amounts of biomass, such as the pulp and

paper industry, hold the potential to store and manage energy provided by renewable resources and

contribute to the defossilization of the energy system.

Developing complex systems like integrated biorefineries that engage with the energy system, and

offering decision support for selecting amongst design alternatives, requires tools such as advanced

process systems engineering (PSE) methodologies. Furthermore, complexity induced by system

size may result in large computational expenses that motivate the application of machine-learning

approaches. For decision support, multi-criteria decision analysis (MCDA) has gained interest in

recent years [19], as decision-makers prefer to include multiple aspects in their decision-making

process. The analysis of future energy and process systems is subject to various uncertainties.

Fluctuations originating from demand and supply shifts and mismatches, or economic assumptions

can impact obtained results significantly [20]. Furthermore, given the current political, societal, and

environmental situations, it is noticeable that extreme events like natural disasters, wars, or global

pandemics can lead to system shocks, rendering outcomes solely based on one economic condition

unusable. Therefore, consideration of uncertainty is indispensable when providing rigorous decision

support.

In this thesis, systematic decision-making approaches for the design of integrated biorefineries are

presented for the case study of a Kraft pulp mill, where alternative pathways for biomass valorization

and their effects on the mill and the surrounding system are identified. Furthermore, applications

of machine learning to enhance solution generation capacity and opportunities to analyze system

uncertainty are discussed, and the potential of MCDA is explored. The following section provides

general context about biomass conversion pathways and state-of-the-art methods applied for

decision support in biorefinery design. It is worth noting that only a general overview of the state of

the art is provided to set the background and motivate the contributions presented in this thesis;

a detailed literature review addressing individual research gaps can be found in the respective

chapters. Moreover, the research objectives and individual contributions of the presented chapters

are summarized.
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Biomass conversion pathways and the pulp and paper industry

According to the IEA, biorefining can be described as "the sustainable processing of biomass into

a spectrum of marketable products (food, feed, materials, chemicals) and energy (fuels, power,

heat)" [21]. Biorefinery processes can be broadly divided into biochemical and thermochemical

pathways [3]. Thermochemical pathways involve complex processes, converting biomass into

syngas or pyrolysis oil using heat and catalysts. Main thermochemical pathways comprise pyrolysis

and torrefaction, gasification, and combustion. Biochemical pathways break down biomass into

different types of sugars, which are further processed into bio-based products using enzymes

and bacteria. The main steps in biochemical conversion are fermentation and digestion. The

main conversion pathways are summarized in Figure 1; an overview of the different conversion

technologies is provided in [3, 22].

Biomass conversion
pathways

Thermochemical

Direct combustion

Pyrolysis

Gasification

Biochemical

Hydrolysis/Fermentation

Anaerobic digestion

Aerobic digestion

Ethanol

Compost

Biogas Synthetic natural gas

Dimethyl ether

Electricity

Fischer-Tropsch fuels
Syngas

Ammonia

Heat

Biochar

Bio-oil
Hydrogen

Figure 1: Main biomass conversion pathways, adapted from [22].

Biorefinery products can be categorized into energy-based products and bio-based chemicals.

Energy-based products include liquid and gaseous biofuels such as synthetic natural gas (SNG),

Fischer-Tropsch (FT) fuels, methanol, butanol, bioethanol, dimethyl ether (DME), heat, and electric-

ity; bio-based chemicals can be further sub-categorized into phenolic compounds, organic acids,

aromatics, alcohols, polyols and amino acids [3, 22].

While the product opportunities that could be derived from biomass are appealing, biomass is a lim-

ited resource, making its efficient utilization essential. Particularly second-generation biorefineries

using lignocellulosic biomass have been recognized as promising alternatives to fossil resources for

producing fuels. Besides advantages regarding harvest, storage, and transportation, woody biomass

is favorable compared to herbous biomass in terms of energy density [3]. Contributions in the field

address the exploitation of lignocellulosic biomass in single- [24, 25], or multi-product refineries

[26, 27]. Besides the exploitation of biomass in stand-alone biorefineries, efficient resource and

by-product utilization in bio-based industries are increasingly addressed.

One of Europe’s largest managers of lignocellulosic biomass is the pulp and paper industry [11].

Approximately 50% of the consumed wood is converted to pulp and paper products, while the rest is

used energetically or converted to byproducts that are partially recycled and partially converted to
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Figure 2: Woody biomass flows in the EU, adapted from [23]. Percentages refer to volumetric flows
in solid wood equivalents. Solid wood equivalent refers to the amount of solid wood fiber contained
in the product (green volume prior to any shrinkage) [23].

energy. Thus, per kg of biogenic carbon stored in the form of pulp, approximately one other kg is

released in the form of CO2. The industrial sector is responsible for approximately 12% of the total

final energy consumption of the European industry, with an absolute energy use of 1300 PJ in 2020

[28], making it the third largest industrial energy consumer in the EU. The pulp and paper industry

features the lowest emission intensity per ton of oil equivalent (0.7 t CO2) considering all industrial

sectors, due to the use of mostly bioenergy and electricity from Nordic countries [1].

Thus, even though the fossil emission reduction potential in the pulp and paper industry itself

is limited, it represents one of the biggest consumers of biomass and holds the potential for co-

producing renewable energy in the form of fuels and electricity, making it an intriguing contributor

to the energy transition [14]. Furthermore, according to the European Commission, it is crucial

that the pulp and paper industry further optimizes its exploitation of resources while reducing its

environmental impact to address the objectives defined in the 2050 Roadmap toward a low-carbon

bio-economy, motivating the exploration of alternative biomass valorization opportunities [29].

Besides its energetic significance, the industry is a considerable contributor to the economic cluster

of the EU, generating an annual turnover of over 400 billion Euros while producing over 100 million

metric tons of paper and board [30]. The leading pulp and paper suppliers within the EU are Finland,

Sweden, Portugal, Spain, Austria, Belgium, and France [31]. The export of pulp and paper is expected

to increase enormously in Sweden, whereas, for other producing countries, it is estimated to remain

stable [31].
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The majority of the generated pulp in the EU comes from Kraft pulp mills (75%), while the rest is

generated via sulfite (11.4%), mechanical (7%), or unbleached sulfate (3%) pathways [32]. Kraft

pulping belongs to the chemical pulping processes; it was invented in the 1870s in Germany. The

name originates from the particularly strong, unbleached papers produced in the process. The

process entails the treatment of wood chips with a mixture of sodium hydroxide and sodium

sulfide, breaking the bonds that link lignin and cellulose [33]. Nearly all the inorganic compounds

required for the pulping process can be recovered in the recovery boiler, which is a significant

benefit compared to other pulping methods and has helped the Kraft process gain a firm foothold

in the world’s pulp production portfolio [33]. Additionally, Kraft mills are the kind of pulp mills for

which the largest potential has been recognized for implementing novel technologies for producing

biomass-based, high-value energy products in addition to pulp [34]. Particularly the co-production

of fuel and pulp via gasification has received attention in literature [30, 35, 36]. Therefore, the Kraft

process will be the primary focus of the case study discussed in this thesis.

Computational methods of PSE in bioferinery design

The complexity induced by the variety of feedstocks, production pathways, and final products

relevant to biorefinery design problems triggers the need for appropriate methods to assist design

and decision-making [37]. PSE aims to define, design, plan, and control systems with physical,

chemical, or biological operations, such as energy systems or chemical processes [38]. The following

briefly presents the main concepts of PSE.

Process simulation

The first steps of PSE were dominated by process simulation and analysis, relying on complex

flowsheeting methods [39]. Most flowsheeting software uses sequential solving approaches where a

resolution sequence needs to be established. In simultaneous approaches, the system equations are

solved simultaneously, allowing the tool to be used for data reconciliation and process design. In

recent years, surrogate models have been used as an alternative, describing a complex system by a

set of simplified but rather accurate equations, They are particularly applied in combination with

complex and CPU-intensive optimization problems [40–43].

Process synthesis

The emerging focus on quantitative descriptions of processes and phenomena led to a more thor-

ough analysis of the system performance and ways to improve it [44]. The first acknowledgments

of a need to formalize the procedure for designing process and energy system [44] were followed

by numerous contributions in the field that further systematized and demonstrated the concept
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of process synthesis [45–47]. Process synthesis addresses process development, simulation, and

optimization to define process unit interconnections and operations [44–47]. Two main types of

models are developed for process synthesis: traditional sequential-conceptual and systematic su-

perstructure optimization-based approaches [40]. Sequential models proposed by Douglas [46]

assume a natural hierarchy among engineering decisions made during the generation of a chemical

process flowsheet [40]. Such approaches can potentially reduce the synthesis problem’s complexity

drastically. However, interactions between decisions made at different stages are disregarded in this

approach [40]. Examples are the design of particular sub-systems such as distillation-based separa-

tion systems or heat and mass exchanger networks [48, 49]. Grossmann [50] added the concept of

system optimality to the process synthesis approach and introduced a way of formally quantifying a

system’s configuration performance concerning an objective function. This development led to the

second category of models: superstructure optimization-based approaches.

Superstructure optimization

A superstructure is a network of considered processing paths for determining optimal pathways of a

design problem. In a superstructure, each unit is represented by a performance model, including,

e.g., energy and mass balances, and optimization methods are applied to determine the optimal

design [51]. The superstructure optimization process consists of three steps: definition of a network

of all potential unit operations and connections including the set of all feasible alternative process

configurations, translation into a mathematical programming model, and result generation by

solving an optimization problem [38]. The superstructure can be represented in various forms; a

detailed review is provided in [38]. For translating the superstructure into a mathematical program-

ming model, mixed integer programming (MIP) is widely applied for energy and process system

optimization. The mathematical problem is formulated either as a linear or a nonlinear problem [50],

using discrete and continuous decision variables and one or multiple objectives. In MIP, discrete

variables typically describe structural alternatives, whereas continuous variables represent process

conditions and equipment sizes.

Superstructure optimization is highly linked to process integration, enabling the efficient exploita-

tion of resources and energy. In that regard, the potential for heat recovery between different

processes can be estimated using Pinch analysis developed by Linnhoff and Hindmarsh [49]. Pinch

analysis allows for designing a heat exchanger network that minimizes the external energy demands

of a system. The development of superstructure optimization coupled with Pinch analysis led to

an increase in industrial and research projects dedicated to the design of optimal heat exchanger

networks and energy management systems [52–56], as well as reactor networks [57, 58] and separa-

tion networks [59–61]. As noted by P Liu et al. [62], when generating solutions for superstructure

optimization problems, deriving a set of feasible alternatives may be preferred to the generation of

a single system design – one that is only potentially optimal under certain external conditions. In
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that context, multi-objective optimization (MOO) with heuristic or deterministic approaches is one

widely applied method for generating a set of alternative solutions [63].

Multi-objective optimization

The general approach of multi-criteria decision analysis is relevant when one wants to analyze the

trade-off between conflicting objectives, for example, through MOO coupled with Pareto frontier

visualizations. Applications of the method range from the design of biomass conversion and biore-

finery applications [64] to the optimization of mass and energy networks in industrial processes [65]

and numerous applications in urban systems [66]. The procedure for obtaining solutions from a

MOO formulation can be either of deterministic or heuristic nature [67].

Evolutionary algorithms, simulated annealing, and swarm particle optimization are heavily applied

meta-heuristic techniques that mimic natural phenomena to explore the solution space [68, 69].

Such techniques rely on stochastic exploration of the solution space to find combinations of vari-

ables that optimize a fitness function’s or objective’s performance. Although the implementation is

straightforward, many iterations may be needed to reach what is often only an estimation of the

Pareto frontier [68]. When exact methods are applied, the solution space is investigated deterministi-

cally, accelerating the procedure and ensuring the detection of Pareto-optimal solutions [68]. When

working with multiple objectives, parameterized scalarization functions such as the ε-constraint

and weighted sum methods are frequently applied, allowing for efficient and commonly available

single-objective solvers to be deployed [63]. The MOO problem can be explored for Pareto-optimal

solutions by varying the parameters of the scalarization function [63, 68, 70]. Once a set of solu-

tions is generated, each can be characterized by a series of performance indicators from which an

informed decision-maker can choose. A general overview of optimization strategies for generating

solutions is provided by P Liu, Cai, and Guo [71].

Surrogate modeling

Mathematical modeling of process systems in combination with superstructure optimization is

often coupled with process simulation to account for the effects of operating conditions on the

optimization results. Depending on the level of modeling detail, simulation models offer high

levels of accuracy and precision in their predictive capabilities [41]. However, their integration in

superstructure optimization problems usually leads to highly complex, large-scale mixed integer

nonlinear optimization models that face some computational challenges, such as the requirement

of derivative information when standard optimization approaches are used and high computational

costs [41]. In numerical simulations, it is natural that noisy function evaluations arise, hindering the

creation of accurate derivative estimations. Even though derivative-free optimization algorithms

offer some solutions, these models often cannot evaluate optimization problems with more than
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one degree of freedom, even in the absence of constraints and integer variables [72].

In an attempt to reduce a model’s complexity and to address the issues described above, the interest

in developing surrogate models has increased over recent years [73]. Surrogate models, also known

as meta-models or approximation models, are especially interesting for application in the context of

MOO problems that include superstructure consideration and simulation, where calculating the

model at each iteration point might not be practical [74]. In such cases, surrogate models can be

created to replace computationally expensive parts of the model superstructure. With surrogate

models, new calculations or estimations can be performed in less computational time than with the

original model. Convergence issues of complex simulations integrated with optimization problems

might be avoided, thus enhancing flexibility and efficiency in optimization.

Decision support applied for integrated biorefinery design

As this thesis aims to provide decision support for the design of integrated biorefineries, a general

overview of contributions in the field is provided. However, this overview is relatively compact, as it

is only supposed to demonstrate the main areas covered in the literature relevant to the synthesis

of this thesis; by no means is it aimed for it to be complete. The individual contributions in the

chapters provide more specific literature reviews tailored toward the research questions addressed,

and potential shortcomings are elaborated. As such, the general overview of the state of the art in

decision support applications of biorefinery design provided hereafter will be used for reference in

the chapters of this thesis. For readability, the main elaborated aspects are highlighted in bold.

One of the clearest definitions of decision support was established by Gorry and Scott-Morton

[75], who defined decision support systems as computer systems that deal with a problem where

at least some stage is semi-structured or unstructured [76]. According to their definition, a com-

puter system can be developed to deal with the structured portion of a decision-support problem.

Still, the decision-maker’s judgment is brought to bear on the unstructured part, constituting a

human–machine problem-solving system [75]. Since their emergence in the 1970s, decision support

systems have evolved drastically, accompanied by technological innovations, enabling more power-

ful functionality. A detailed review of the evolution of decision support advancements is presented

in [76].

Decision support and performance evaluation of integrated biorefineries is addressed widely in

the literature. For instance, ontology-based approaches are explored [77]. Multi-criteria decision

support methods are applied, where a performance metric for a given system is computed based on a

multitude of indicators and used for evaluation. A multi-criteria decision support tool for biorefinery

facility siting is presented in [78]. In the computation of the metrics, economic, environmental,

and social criteria are included, and user-defined weights can be taken into account to adjust the
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importance given to individual aspects of the computed metric.

A large share of available literature assesses the performance of biorefineries with PSE-related ap-

proaches, based on the assessment of optimization or simulation results. One example of scenario-

based decision support for the design of integrated biorefineries is presented by Naqvi, Yan, and

Fröling [79], where technologies of producing DME and methane as alternative fuels from black

liquor gasification integrated with a pulp mill are compared. The identification of system config-

urations deploying optimization is widely addressed. Besides economic performance indicators,

environmental and social aspects are increasingly considered. DKS Ng [80] addressed the systematic

synthesis of a sustainable integrated biorefinery with maximum economic potential by applying

simultaneous heat and power integration. For incorporating the optimization of process opera-

tion parameters, coupling simulation-based approaches with optimization frameworks has been

studied in scientific literature. In [81], an interface between process simulation and optimization

for structural and parameter optimization of downstream processes for biofuel and biochemical

production is proposed. The optimization problem is formulated within a generalized disjunctive

programming framework, and the solution to the problem is approached with a decomposition

strategy [81]. Furthermore, surrogate models have been widely applied to enhance superstruc-

ture optimization frameworks, with applications ranging from CO2 capture unit processes [40] to

biodiesel production plants [82].

For the generation of a set of alternative solutions to biorefinery design problems and the incorpo-

ration of objective functions that, for example, address thermodynamic, economic, environmental,

or social performance, MOO is applied. In work presented by Santibañez-Aguilar et al. [83], a biore-

finery producing ethanol, biodiesel, and hydrogen is optimized using MOO in combination with the

ϵ-constraint method in consideration of profit and environmental impact as competing objectives.

Viana Ensinas et al. [84] carried out process integration of a sugarcane ethanol distillery model,

taking into account first and second-generation processes in the same site using sugars and bagasse

as feedstock, respectively. Identifying optimal biomass feedstocks and conversion pathways based

on resource availability and demand constraints is addressed in [85], considering both economic

and environmental criteria in the optimization formulation. An approach for the technology and

product design and operation of a multi-product multi-platform biorefining enterprise considering

economic, environmental, and social sustainability is presented in [86]. A mixed integer linear

programming (MILP) financial planning model maximizes stakeholder value, including monetized

environmental implications in terms of emission mitigation costs and credits. A fuzzy MOO strategy

for integrated biorefineries to maximize profit while keeping the environmental impact at a mini-

mum was developed by Tay et al. [87], where energy recovery is considered via steam and electricity

production in the syngas platform.

Furthermore, the holistic approach comprising process integration and thermo-environomic

optimization for increasing energy recovery in biorefineries is addressed. Gassner and Maréchal
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[88] analyzed the optimal conceptual thermochemical fuel generation from biomass using a de-

composed modeling approach with separate energy flow, energy integration, and economic models.

Energy integration and economic models of the equipment and their interactions are integrated

into a MOO framework to compute a set of optimal process configurations. A systematic process

design methodology for decision support in selecting optimally integrated biorefinery processes is

presented by Celebi et al. [26]. Supply chain considerations are addressed in the design of biorefiner-

ies. In [89], an optimization approach for biorefinery supply chain design is presented, considering

multi-periods to account for biomass selection and allocation, technology selection, and regional ca-

pacity planning, as well as the spatial distribution of regional depots and biorefineries. Furthermore,

uncertainty in data and modeling assumptions is acknowledged when providing decision support

for integrated biorefineries. For example, Geraili, Salas, and Romagnoli [90] developed a decision

support tool that includes the presence of uncertainties at strategic and operational levels, applying

simulation coupled with stochastic optimization to the design and operation of a multi-product

lignocellulosic biorefinery.

Research potential and contributions

Several literature studies show benefits from the application of PSE-related methods; however, there

is additional potential to leverage the analysis of complex integrated biorefineries by advanced

decision support techniques. This thesis provides systematic decision-making approaches for

superstructure design problems of integrated biorefineries, demonstrated in the example of a Kraft

pulp mill. In the following, the main contributions presented in this thesis are summarized, whereas

each chapter provides further information on identified shortcomings the presented research aims

to address.

Chapter 1: How can existing Kraft mills be enhanced to co-produce pulp and fuel?

Shifting from fossil fuels to renewable energy sources is essential to realize emission reduction and

mitigate climate change effects. Especially in the hard-to-electrify segments of the transportation

sector, the usage of biofuels is a leading solution. As significant contributors to the wood-handling

industry, Kraft pulp mill operators hold the responsibility to improve resource efficiency in their

mills. Opportunities for the co-production of pulp, biofuels, and electricity in existing pulp

mills are elaborated with a focus on thermochemical conversion pathways of process residues.

A superstructure of possible process unit alternatives is assembled, and solutions are generated

using MOO techniques. The obtained solution space is explored considering relevant economic,

energetic and environmental key performance indicators (KPIs), and typical configurations that

seem promising under a variety of economic assumptions are identified. Bio-based product pricing

to yield equivalent profitability to current operation is determined. The effects on the transport

sector of extrapolating the integrated pulp and fuel production to the European level are discussed.
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Chapter 2: How can decision-makers be involved in the solution-finding process?

Often, superstructure optimization of complex PSE problems yields a multitude of solutions differing

in KPIs. MCDA and interactive optimization (IO) are powerful tools to analyze such complex solution

spaces. To assist in solution generation and filtering for complex process and energy system design

problems, a digital consultant is presented. The digital consultant translates the decision-maker’s

needs into machine language and vice versa, and an interactive step-by-step procedure for filtering

and evaluating solutions intuitively is followed. The approach delivers solutions to the decision-

maker based on design specifications and additional personal preferences formulated in the solution

synthesis and exploration.

Interactive communication between humans and machines is enabled during all solution explo-

ration processes, allowing the decision-maker to flexibly adapt their preferences and, thus, guide the

exploration of the solution space. By following this approach, the decision-maker’s understanding

of the solution space is improved. At the same time, the digital consultant builds on steering inputs

from the decision-maker and can suggest solutions or additional design space domains for further

exploration that might suit the decision-maker’s interest. Thus, while Chapter 1 provides an overview

of the general potential of combined pulp and fuel production, Chapter 2 proposes a methodological

approach for interactive decision-making for problems such as that presented in Chapter 1.

Chapter 3: How can optimization capacity be increased by deploying machine learning concepts?

To address high computational expenses arising from simulation-based optimization, an active

learning strategy is proposed to replace computationally expensive simulation models in process

superstructures with machine learning models. The machine learning models are continuously

improved in each iteration by adding relevant data points to the training set. When integrated into

the superstructure optimization problem, the surrogate models are only enabled if the variance

of the prediction is under a user-defined threshold, ensuring the quality of predictions used in

optimization.

In addition to reducing computational expenses induced by simulation-based model components,

the efficient generation of Pareto frontiers for non-linear MOO problems by means of machine

learning is addressed. A machine learning-based algorithm is deployed that predicts whether a

design point might represent a Pareto-optimal solution. The algorithm explores the design space

by following an active learning approach, improving the prediction quality in domains where it is

needed most.

Chapter 4: How can the acknowledgment of uncertainty leverage decision-making?

Uncertainty is inherent in process performance, cost parameters, environmental impact assump-

tions, availability, and demand projections considered when formulating an optimization problem.
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This chapter proposes approaches for generating and selecting solutions for a PSE design problem

while considering uncertainty in data for both the solution generation and the selection of adequate

solutions. A method is suggested to identify the most competitive configurations from a set of

Pareto-optimal solutions that perform well for various sets of parameter assumptions. Relevant

unit decisions influencing the objective functions and associated unit sizes that lead to competitive

solutions for various sets of parameter assumptions are identified. Furthermore, parameter domains

for which specific process unit sizes are preferable compared to others are derived. In addition,

the possibility of efficiently generating a set of solutions that perform close to Pareto-optimal

considering parameter uncertainty is explored by utilizing machine learning.

Chapter 5: What is the potential of integrating the pulp industry as an actor of the energy system?

Increasing shares of renewable energy carriers are likely to cause mismatches in supply and demand

of electricity. Furthermore, the hard-to-electrify parts of the transportation sector are in need of

options for defossilization. The potential of pulp mills to help closing demand and supply gaps

in the energy system is analyzed, relying on the co-production of pulp and fuels from biomass.

Furthermore, the integration of power-to-fuel and fuel-to-power processes is investigated, focusing

on contributions to the flexibility of the energy system and the enhancement of additional fuel

production in times of electricity oversupply. Carbon capture, utilization, and storage systems are

included in the analysis to further improve the mill’s carbon balance. Moreover, the interaction

between the pulp mill and a nearby residential district through electricity, transportation fuels, and

heat exchange is analyzed considering temporal variability of demand, prices, and environmental

impacts. MOO is coupled with systematic solution generation and exploration approaches to identify

promising mill configurations that are economically competitive and able to provide flexibility to

the energy system by acting not only as a consumer of energy but also as a supplier of fuel, heat,

and electricity when needed. Optimization is performed from two perspectives, one being that of

the mill operator and the other the one of an integrated system consisting of the mill and a nearby

residential district. For identified system configurations, required costs of internal flows between

stakeholders that enable a specific emission reduction at the system level without jeopardizing the

economic competitiveness of the individual entities are derived.
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1Biomass utilization for combined pulp

and fuel production

Overview

 Investigation of pathways of combined pulp and fuel production in a Kraft pulp mill

 Potential to increase the carbon efficiency of the mill by up to 10%

 Production cost of fuels in line with current market prices

The content of this chapter is partly published in [91–93].

Biofuels represent a promising low-carbon alternative for hard-to-electrify sectors, such as freight

transport or aviation. This chapter investigates possible pathways for increasing biomass value at

Kraft pulp mills, focusing on black liquor and bark streams. A comprehensive superstructure of

combined pulp and fuel production opportunities is developed. Mathematical programming is cou-

pled with superstructure optimization and systematic solution exploration to identify meaningful

process configurations. Obtained configurations are analyzed from economic, environmental, and

energetic perspectives, considering market variations. The results show that integrating biofuel

production in Kraft pulp mills results in increased resource use and energy efficiency – diversifying

the product portfolio and providing bio-based fuel alternatives to the market while being economi-

cally viable. The co-production of fuels and pulping products enables the operation of the lime kiln

solely on off-gases instead of fossil fuels, avoiding fossil emissions on-site, while the biogenic carbon

efficiency can be increased by up to 10%. Extending the analysis to the regional level, up to 2% of

the European road freight transportation demand could be provided with fuels from combined pulp

and fuel production at pulp mills in Europe, and 5% of the worldwide fuel demand for passenger

aviation when extrapolating the results to the amount of pulp produced worldwide.

1.1 Introduction

As elaborated in detail in the general introduction of this thesis, the new energy strategy presented

in 2020 in the frame of the European Green Deal contains key measures to guide Europe to climate
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neutrality by 2050. While for the industrial sector, suggested defossilization strategies include the

direct usage of renewable energy from biomass and waste heat, carbon capture, utilization and stor-

age (CCUS) and the deployment of hydrogen solutions, the transportation sector is required to shift

large shares of freight transport to rail and to improve energy efficiency in vehicles [1]. Furthermore,

switching to renewable energy and sustainable biofuels is one of the proposed measures to reach the

European Green Deal objectives of a 90% reduction of greenhouse gas (GHG) emissions by 2050 in

the transportation sector [1]. The pulp and paper industry, one of the largest biomass consumers in

Europe and currently a net exporter of electricity, holds great potential to contribute to the provision

of low-impact electricity and biofuels, deploying efficient resource valorization [11, 13, 14]. Kraft

mills currently produce a significant share of pulp and paper products in the European Union (EU);

they have been identified as having the largest potential among pulp mills for implementing new

technologies for producing biomass-based, high-value energy products in addition to pulp [34].

The objective of this chapter is to identify alternative pathways for biomass utilization in Kraft pulp

mills, increasing the value of crucial residue streams and decreasing the release of greenhouse gas

emissions at the system level by deploying conceptual mathematical programming and optimization

approaches. Section 1.2 reviews current research concerning biorefinery integration in pulp mills,

particularly focusing on biofuel production in Kraft mills. Subsequently, the considered biofuel

production pathways are described, and the methods for process modeling and solution generation

are presented in Section 1.3. Section 1.4 outlines a case study of combined pulp and fuel production,

for which the results are presented in Section 1.5. Discussion of the results is provided in Section 1.6.

1.2 State of the art in biomass utilization in Kraft pulp mills

This section gives an overview of Kraft pulp mills, their role as biorefineries, and alternative process

pathways to treat residual streams. Furthermore, current applications of efficiency enhancements

in Kraft pulp mills are reviewed. In addition to the articles already cited at the beginning of this

chapter, the literature review provided in [94] served as inspiration for this section.

1.2.1 Kraft pulp mills and their potential as biorefineries

The ongoing shift to a renewable-based society is driving a focus on improving energy efficiency and

on finding new ways of processing forest material in Kraft mills into profitable products. Their well-

established biomass supply chains, experience with wood handling and processing, and diversity

of available biomass streams make Kraft pulp mills promising candidates for transformation into

integrated biorefineries [94]. Kraft pulp mills have been identified as a biomass-based sector having

significant potential for the implementation of new technologies; the co-production of high-value

energy products motivates the research on the topic [34]. In addition to pulp, integrated Kraft pulp

mill biorefineries could produce value-added products such as polymers, composites, textile fibers,
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and transportation fuels. Furthermore, district heat and low-impact electricity could be provided,

profiting from improved resource and energy efficiency and benefiting from a broader, more robust

product portfolio [95]. Particularly biofuel production as part of a Kraft pulp mill biorefinery has

gained increasing interest over recent years, as it can act as an essential source of low-impact fuel.

As such, many biofuels derived from agricultural biomass are not necessarily preferable to fossil

fuels if the full life cycle is taken into account for the environmental impact assessment measured by

ecological scarcity [96]. However, biomass to liquid (BtL) fuels become more favorable when wood

residues are used for production, substantially reducing the environmental impacts compared to

short-rotation wood or other energy crops [96]. In addition, co-production of BtL fuels together with

heat and other products such as pulp in biorefineries can further decrease environmental impact,

improving the overall energetic efficiency [96].

Overview of the Kraft process

In a modern Kraft mill, wood is debarked, chipped, and screened to remove non-wood materials.

Wood chips are sent to the digester, where they are boiled under high pressure and high temperature

in the presence of sodium sulfide (Na2S) and sodium hydroxide (NaOH), separating the cellulosic

fibers (pulp). The pulp is washed to remove the spent liquor, also known as black liquor, and

screened, bleached, and dried. The black liquor is evaporated, concentrated, and sent to the

recovery boiler, where cooking chemicals are recovered and heat is provided to the process (Figure

1.1).

Figure 1.1: Simplified process diagram of Kraft pulp mill, adapted from [65]

Modern Kraft pulp mills are self-sufficient in electricity and heat due to the recovery boiler operations
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and the burning of bark and other residues in a biomass boiler. Thus, Kraft pulp mills can often

supply power to the grid, steam to local heating plants, or heat to district heating networks [34, 97].

Residue streams and chemical recovery

Several waste streams are generated in a Kraft pulp mill, including wastewater, lime mud, green

liquor dregs, lime slaker grits, boiler and furnace ash, scrubber sludges, and wood processing

residuals [98, 99]. Black liquor has attracted significant interest due to its high energy content,

despite not strictly falling within the definition of waste per the European Waste Catalogue as

it is a core part of the pulp production process [98]. It contains approximately half the energy

content of the wood input to a Kraft pulp mill and roughly six times the energy contained in other

biomass by-products generated by a typical mill [14]. The highly alkaline, so-called weak black

liquor leaving the digester contains significant amounts of water (80-85 wt%), organic residues

from the pulping process, inorganic cooking chemicals, and small amounts of inorganics dissolved

from wood [100]. The chemical composition of black liquor solids depends on the feedstock used

in the mill. Furthermore, operating conditions of the pulping unit influence the composition

[101]. Approximately two-thirds of black liquor solids consist of organic material; one-third are

inorganics. Sodium salts of dissolved lignin and dissolved and degraded carbohydrates form the

main components in the organic matter [100]. Black liquor has a high volatile content, with fixed

carbon representing only 20% of the organic solids. Further details on black liquor composition are

provided in Section A.2.1.

The black liquor stream is a vital component of the Kraft recovery cycle, a mature process that

efficiently recycles the inorganic pulping chemicals and provides steam and electricity to the process

[97]. Thus, without the recovery cycle, the Kraft pulping process would not be profitable from an

economic and environmental standpoint [102]. The weak black liquor stream that exits the digesters

of a conventional Kraft mill has a low heating value due to its high moisture content. The spent

weak black liquor is therefore concentrated in multi-stage evaporators to raise the solid content to

approximately 65–85% before being burned in the recovery boiler to provide heat and energy for the

pulping process [103, 104]. Reducing conditions at the bottom of the furnace permit recovery of

the cooking chemicals sodium and sulfur – both required for pulping – as molten Na2S and sodium

carbonate (Na2CO3), known as smelt [105] (Equation 1.1).

Black liquor → C+CO+CH4 +Hydrocarbons+CO2 +Na2CO3 +Na2S2O3 +Na2S (1.1)

Typically, the extent of sulfide formation over sulfate, measured by the reduction efficiency, is over

90%; the remains of the sodium react to carbonate [106]. Na2S can be returned directly to the

cooking process, while recovered Na2CO3 needs to be treated in the recausticizing unit. The molten
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smelt that contains Na2CO3 and Na2S is tapped from the bottom of the boiler and dissolved in a

water solution. The hereby formed green liquor is sent to the recausticizing unit, where the Na2CO3

is converted to caustic soda via the addition of calcium oxide (CaO). Causticizing yields calcium

carbonate (CaCO3), which is precipitating and removed from the subsequently called white liquor.

CaCO3 is burned in the lime kiln to reform CaO, releasing CO2 [99, 105]. The main reactions and

flows on the chemical recovery are summarized in Figure 1.2.

Besides the recovery of cooking chemicals, the energy content of the organic material in black liquor

is recovered and transferred to the steam network during incineration, providing the required heat

and electricity to the pulping process. In the upper section of the furnace, the organic material is

completely oxidized to provide heat for high-pressure steam generation. The heat produced by

the induced exothermic reactions is recovered as steam in heat exchangers placed at the top of the

boiler.

Figure 1.2: Key reactions and waste streams in the chemical recovery cycle, adapted from [99].

The bark removed from the wood logs is another significant waste stream in a Kraft pulp mill. It

makes up approximately 10% of the total wood feedstock [107]. The amount of residue depends

on the feedstock type, process characteristics, and the local conditions [108]. Between wood and

bark, the main difference is the ash content. Compared to wood, the bark contains more ash, less

cellulose, and more lignin while comprising notably lower amounts of volatile matter, resulting

in more fixed carbon [109, 110]. Detailed information on the differences in composition between

wood, bark, and black liquor is provided in Section A.2.1.
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Usually, bark and other woody residues are burned in the bark boiler to recover their energy content

for the pulping process [111]. This boiler is not essential in modern Kraft pulp mills since the amount

of heat provided by burning black liquor in the recovery boiler exceeds the pulp mill’s need for

process heat [32]. In most modern mills, it is operated anyway to increase electricity export [32].

Thus, CO2 is primarily produced via combustion processes in the recovery boiler, the bark boiler,

and the lime kiln. As the majority of fuel used at the pulp mill is biomass-based, the CO2 produced is

largely biogenic [106]. Generally, the lime kiln is the only source of fossil fuel-based CO2 emissions

during normal operation.

1.2.2 Alternative pathways to valorize bark

Similarly to general biorefinery concepts, pathways currently being investigated to increase the

value of the woody residue stream at pulp mills can be allocated into biochemical, thermochemical,

and physical processes. Likewise, the outputs of these processes can be grouped roughly into

value-added products and chemicals, fuels, heat, and electricity.

Alternatively to being used in the bark boiler, bark can be valorized in the lime kiln or sold as a dried

biofuel [32]. Besides being burned, gasification is a promising alternative to treat the bark, enabling

low-quality solid fuels like biomass to be converted to fuel syngas [107]. Generally, gasification

describes the conversion of a carbon-based feedstock to a gaseous product [112]. Gasification

includes the dominant process of partial oxidation, which produces syngas consisting of hydrogen

and carbon monoxide in varying ratios. In addition, syngas often contains water, light hydrocarbons,

and CO2. Oxygen or steam are typically used as oxidants to produce syngas, whereas the usage of

pure oxygen requires either access to an oxygen source or an air separation unit, increasing the cost

of upstream equipment. When air is used as an alternative oxidant to steam and pure oxygen, a large

volume of nitrogen is introduced in the process. This results in a reduction of the syngas heating

value and the requirement of larger downstream equipment [113]. Generated syngas can eventually

be converted to liquid fuels and chemicals [113].

Gasification increases the flexibility of resource usage since, after adequate cleaning, the produced

syngas can be used in various processes [111]. Besides being burned directly in gas engines, it may

be used in fuel cells or combined cycles to generate heat and power or to produce synthetic fuels.

The typical gasification system consists of several process units, including a feedstock preparation

area, a gasifier, a gas cleaning section, a sulfur recovery unit, and downstream processes such as fuel

synthesis and upgrading [114]. A detailed review of the available gasification-based treatment of

woody biomass and the involved processing steps is provided in Section A.1.1. Specifically, different

processing requirements of bark compared to other woody biomass are investigated. Furthermore,

an overview of the most common fuels produced from woody biomass is provided.
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1.2.3 Alternative pathways to valorize black liquor

Increasing the value of the black liquor stream is currently addressed by thermochemical treatment

and processes for separation and refining. The following section provides an overview of alternative

pathways for black liquor valorization in Kraft mills, with a focus on gasification-based applications.

Black liquor gasification

One major disadvantage of the recovery boiler operation in conventional Kraft mills is the low

electricity generation efficiency due to operating temperature limitations induced by the high alkali

content of black liquor. Furthermore, the process suffers from smelt water explosion, motivating

the development of black liquor gasification concepts [30]. Black liquor gasification has been inves-

tigated on a pilot scale with several technological approaches, but most of them were abandoned

due to technical inferiority, and very few are now at the commercial stage [30]. However, there is

sustained interest in the development of black liquor gasification, as it offers the potential for mills

to enrich their product portfolio with fuels, chemicals, and value-added products aside from pulp,

electricity, and heat. A detailed overview of state of the art in black liquor gasification technologies

and their applications is provided in Section A.1.2.

Furthermore, supercritical water gasification (SCWG) has been widely investigated for its usage with

black liquor. High gas yields, high gasification efficiency, and low tar formation are characteristics

of SCWG [115]. The technology profits from the properties of water above its critical point, where

it behaves like a non-polar solvent [116]. Organic matter is solubilized and rapidly decomposed

through hydrolysis. Subsequently, fragmentation occurs, and a gas mixture is generated [116, 117].

Wet and liquid biomass can be treated in SCWG without pre-drying, as water is needed in the

processes as a reactant and a reaction medium [115]. Coke and tar formation is inhibited by the fast

solution of the formed gas components in the supercritical water [118]. Furthermore, the synthesis

gas is produced at high pressure so that compression that might be required for further processing

does not consume much energy [119]. Easy separation of CO2 is possible since it is considerably

more soluble in water at high pressure and ambient temperature than methane (CH4) and hydrogen

(H2) [119]. However, high investment costs induced by the need for corrosion-, high temperature-

and high pressure-resistant materials are required for SCWG applications. Furthermore, high energy

demands for heating the water to the reaction temperature are induced [118]. Plugging from salt

deposition is another challenge SCWG are facing, as the properties of supercritical water lead to a

reduced solubility of salts [115].

Generally, the choice of gasification temperature in SCWG depends on the target products. If

hydrogen is the desired product, temperatures of 600°C or above are typically required at 30 MPa

[119]. At these conditions, the carbon in the biomass is primarily converted to CO2 [120]. Gasification

is performed without catalysts or with non-metal catalysts. At lower gasification temperatures that

21



1

Chapter 1. Biomass utilization for combined pulp and fuel production

favor methane production (400°C), catalysts are generally required to achieve high gasification

rates and to drive the product distribution toward the desired result [120]. However, catalytic

SCWG is likely to suffer from sulfur poisoning [120]. More detailed information on SCWG and its

thermochemical properties is provided in Section A.1.

When applying SCWG with black liquor in a Kraft mill, the energy-intensive evaporation and concen-

tration stages responsible for nearly 40% of the mill’s heat demand are no longer required, leading

to an increase in the energy efficiency of the process [30, 92]. Due to the low dielectric constant of

supercritical water, the inorganic compounds of the black liquor are precipitated [116]. Furthermore,

the alkali content in black liquor is acknowledged as an effective catalyst in the water gas shift (WGS)

reaction of SCWG and helps to improve carbon conversion efficiency [121]. The majority of research

in the domain of SCWG of black liquor has focused on high-temperature, non-catalytic gasification

to produce hydrogen; a review is provided in Section A.1.2.

Impact of black liquor gasification on the recovery cycle

Black liquor is a key part of the Kraft recovery cycle, so it is crucial that alternative valorization does

not penalize the recovery of the cooking chemicals. Effectively all of the sodium and sulfur leaves a

conventional Tomlinson recovery boiler in the smelt. However, a natural partitioning of sulfur and

sodium during gasification results in a large fraction of the sulfur leaving the gasifier in the gas phase,

mainly as hydrogen sulfide (H2S). Approximately 50% of the sulfur is contained in the producer

gas of high-temperature gasification processes. In contrast, for low-temperature gasification, over

90% of the sulfur in the black liquor leaves the gasifier as H2S in the producer gas [14]. Compared

to when processing black liquor in a recovery boiler, higher loads on the recausticizing unit and

the lime kiln are required due to the sulfur-sodium split appearing during gasification. Less sulfur

is available in the condensed phase to form Na2S, resulting in a larger amount of Na2CO3 being

formed. As the additional carbonate needs to be converted to NaOH in the recausticizing unit, a

higher lime kiln load is induced, increasing lime kiln fuel consumption [122]. It has been estimated

that for a low-temperature gasification system, an additional 44% of recausticizing unit and lime

kiln capacity would be required; for a high-temperature gasification system, the estimated increase

is 16% [14]. Thus, black liquor gasification may be a promising technology to valorize black liquor in

a Kraft mill, given that the effects on the chemical recovery cycle and process limitations induced by

materials are respected.

Lignin extraction

Lignin extraction from black liquor represents another alternative for increasing resource valoriza-

tion in a Kraft pulp mill, providing incremental capacity in the chemical recovery process units

and the recovery boiler and, thus, enabling augmented pulp production capacity [123]. Due to the
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reduction of the organic content in the recovery boiler, lignin extraction leads to reduced steam

production. Generally, the amount of lignin that can be extracted is limited by its effects on the

combustion properties in the recovery boiler [123]. One example of a commercialized lignin ex-

traction application is the LignoBoost process, developed by Chalmers University and Innventia

AB. In the LignoBoost process, a stream of black liquor is diverted from the evaporation plant, and

the lignin in the stream is precipitated by acidification via the addition of CO2. The precipitated

lignin is then filtered and washed to obtain a solid biofuel [124]. Extracted lignin can be used on-site

to decrease fossil fuel consumption or sold for use in the manufacturing of specialty chemicals,

materials, or fuels [123]. Other separation techniques for recovering lignin from black liquor besides

the LignoBoost process, including membrane filtration, are currently being developed [125].

1.2.4 Applied efficiency enhancement at Kraft pulp mills

Attempts to integrate biorefinery concepts in Kraft pulp operations date back to the 1940s when

combined lignin and pulp production was explored [123]. Since then, a steady increase in research

in the area can be observed. Besides producing fermentation products such as succinic acid, lactic

acid, and ethanol, carbon capture and storage and the thermochemical treatment of residuals

have been identified as promising pathways to increase resource efficiency in Kraft pulp mills. A

general overview of biorefinery concepts presented in the literature for integration with pulp mills

is available in [126] and [111]. Hereafter, the main directions presented in the literature are briefly

described and synthesized in Table 1.1. More detailed information on the individual contributions

is provided in Section A.1.3.

Numerous studies analyze energy efficiency improvements for the pulping process at one produc-

tion step, component, or mass stream. Furthermore, Pinch analysis is applied in various studies in

the pulp and paper industry [139–141], as well as the simultaneous optimization of heat, electricity,

and water [65]. Besides energy efficiency improvement, alternative biomass valorization in pulp

mills has been addressed in numerous contributions. For Kraft pulp mills, the focus lies on the inte-

gration of thermochemical conversion processes for biofuel production due to the thermodynamic

properties of the involved processes [142]. Most studies addressing black liquor gasification focus

on dry gasification, requiring energy-intensive evaporation and concentration stages [122, 131]. Su-

percritical water gasification of black liquor has been addressed as well, mostly in simulation-based

approaches or experimental work [79, 92, 133]. Gasification of woody residues is the subject of

numerous studies involving biomass gasification processes fed by bark and additionally purchased

wood [95, 127–129]. Besides, the combination of bark and black liquor gasification is explored [36,

107, 138, 143]. Overall, it was found that efficiency increase is possible by deploying gasification,

and heat-integrated production was identified to offer significant potential to contribute to GHG

emission mitigation in Kraft mills.
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1.2.5 Research gaps and objectives

While research studies focus on the gasification of either black liquor or bark residues, limited work

including both is available. Even though the co-production of pulp and fuel is frequently addressed,

only little work on the full integration, considering energetic aspects, is presented. Moreover,

looking into methods of generating and analyzing solutions, most studies rely on a simulation-based

approach rather than rigorous optimization tools. When optimization is applied, it is mostly based

on single-objective considerations. Furthermore, parameter uncertainty and solution robustness

are frequently overlooked.

The work presented in this chapter develops a superstructure-based approach in which biomass

conversion to pulp and fuel in a Kraft pulp mill is investigated. Solutions for different economic

scenarios are generated and analyzed. In that regard, typical configurations are identified; and

their economic and environmental performance, potential benefits for the mill operator as well as

effects on the transportation sector are analyzed. Furthermore, the impact of market variations on

performance criteria is investigated.

1.3 Methods

In this section, the superstructure considered for combined pulp and fuel production in a Kraft mill

is described. Furthermore, the methods for solution synthesis and result exploration are presented.

1.3.1 Superstructure synthesis for combined pulp and fuel production

To analyze the combined pulp and fuel production in a Kraft mill and achieve the above-mentioned

objectives, a conventional Kraft mill is modeled and enhanced with process units that support fuel

production from bark and black liquor. Gasification technology is selected as the main focus of

this work for valorizing the residue streams, as it enables low-quality solid fuels like biomass to be

converted to synthetic fuels [112]. The following paragraphs provide insights into the modeling

approaches for each process unit operation. The provided level of detail is proportional to the

degree of original modeling work performed. Process units mainly adapted from former research

contributions are summarized, and references to their origins are provided. The process units for

which more original modeling was required are described in more detail.

Kraft mill and chemical recovery cycle

The Kraft pulp mill model used in this study is adapted from Kermani et al. [65], while the model

for the lime kiln is based on information in [144], and the recausticizing unit on data available in

[145]. In a conventional Kraft mill, a bulk part of the carbon that enters the mill in the form of wood
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is either transferred to pulp, bark, or black liquor. Approximately 2-3% of the carbon entering is lost

during the pulping process in the form of sawdust and other minor components. As elaborated in

Section 1.2, in the recovery boiler, a split of black liquor into smelt that is is further processed into

green liquor used for causticizing, and a part that is valorized thermally is taking place. In this work,

the amount of carbon leaving the boiler with the smelt is estimated based on the sulfur and sodium

balance of black liquor, as described in Section A.2.2. During conventional operation, green liquor

is transformed to white liquor in the recausticizing unit as described in Section 1.2. It is assumed

that 5% of makeup lime are required to account for losses; and that the availability of quick lime is

85% [146]. In the lime kiln, carbonate forms quicklime which is then further transformed to calcium

hydroxide (Ca(OH)2). The lime kiln is assumed to operate at 80% of its current capacity, allowing it

to increase the load if required. Besides being fueled with natural gas, the option to valorize off-gases

from gasification in the lime kiln is investigated. Further details on the pulp mill and chemical

recovery models are provided in Table A.8, while the lime kiln model is described in detail in Section

A.2.5.

Composition of woody biomass and residue streams

Chemical pulps, such as those produced in the Kraft process, are based on a mixture of hard-

and softwoods [147]. For the considered Kraft mill, the typical pulp production is based on 60%

of hardwood species feedstock (poplar, beech, oak, and chestnut) and 40% of softwood species

feedstock (pines and spruce), by weight. Table A.1 shows the bark composition used in the analysis.

Table 1.2: Composition of softwood black
liquor solids on a dry, ash-free basis.

Component Value Unita

Lignin 31 %
Poly-saccharides 2 %
Aliphatic saltsb 40 %
Inorganics in black liquor solids 22 %

a weight-based, b includes aliphatic carboxylic acids
(29wt%) and sodium bound to organics (11wt%).

In the developed model, black liquor is restricted to the following components: lignin, poly-

saccharides, aliphatic (carboxylic) salts, and inorganics [94, 134] (Table 1.2). The four main com-

pounds sodium sulfate (Na2SO4), Na2CO3, NaOH, and Na2S, are considered for modeling the in-

organics, with the relative proportions given by Magdeldin and Järvinen [134]. As extractives are

typically removed in weak black liquor storage tanks, they are not included in the analysis. Any

extractives remaining in the black liquor stream are assumed to exit the system as losses in the salt

separator, therefore not affecting the syngas yield [94]. A comparison of the composition of wood,

bark, and black liquor is provided in Section A.2.1.
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Bark gasification and fuel synthesis

For valorizing bark in units alternative to the bark boiler, different process routes of gasification

and fuel synthesis types are considered, yielding FT fuels, DME, and methanol. All chosen fuels are

generated in exothermic fuel synthesis reactions and comprise promising application opportunities

as transportation fuels. Furthermore, producer gas can be upgraded to SNG via methanation. The

general setup of all routes consists of pretreatment, gasification, gas cleaning, gas conditioning, and

fuel synthesis. The process models are adapted from the work presented by Celebi [3], Tock, Gassner,

and Maréchal [27], Peduzzi [148], and Gassner and Maréchal [149]; therefore, only the main aspects

of each process unit are described hereafter.

Bark gasification and fuel synthesis are modeled in the simulation software Belsim Vali [150], and

the relevant energy and mass characteristics required to formulate the process superstructure are

extracted. Depending on the final product, entrained flow (ENF), circulating fluidized bed (CFB), or

fast internally circulating fluidized bed (FICFB) gasification reactors are considered for producer

gas generation. Processes downstream of the gasifier consist of cooling the syngas in a quench

and, in the case of the FICFB gasification reactors, removing tars [148]. Hot or cold gas cleaning

unit operations, filters, and a scrubber further remove impurities. For acid gas removal, chemical

absorption through liquid amine scrubbing is considered. Chemical absorption is a well-known

technology, especially in the context of CO2 removal from fuel gas and post-combustion gases.

Most amine-based CO2 removal technologies rely on monoethanolamine (MEA), but other types of

amines can also be used [148]. The producer gas composition may require adjustment to be suitable

for fuel synthesis. This can be achieved using a WGS reactor, where a part of the CO in the producer

gas stream leaving the gasifier reacts with water to produce CO2 and H2 at moderate temperatures

(Equation 1.2).

CO+H2O⇌H2 +CO2 ∆H 0
R =−41.2 kJ/mol (1.2)

For FT fuel production, fuel synthesis is modeled as a multi-tubular fixed bed reactor, with off-

gases burnt for heat generation. The produced syncrude is highly paraffinic and can be refined

into transportation fuels [148]. The model for DME production is based on a one-step synthesis,

where the WGS reaction, methanol synthesis from syngas, and methanol dehydration reaction occur

[27]. Methanol synthesis is modeled as an exothermic catalytic equilibrium reaction [27]. For SNG

production, internally cooled fluidized bed methanation is considered [3, 149]. Further details on

process conditions and modeling assumptions are provided in Table A.11.
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Black liquor gasification and upgrading

Since low reaction temperatures in SCWG black liquor gasification require the application of a

catalyst, proven to be challenging in combination with black liquor [151], this study focuses on the

production of hydrogen from black liquor in non-catalytic SCWG, as suggested in [152]. As proposed

by Gassner et al. [153] and Mian [154], gasification takes place after hydrolysis and salt separation to

ensure smooth operation of the gasifier and enable the recovery of the cooking chemicals.

The models for gasification, salt separation, hydrolysis, and gas separation of black liquor are based

on the work of Gassner et al. [153] and Mian [154] and adapted to non-catalytic operation with

black liquor with information available from Magdeldin et al. [152]. Similar to the process models of

bark gasification and fuel synthesis, the black liquor gasification pathway is mainly modeled in the

simulation software Belsim Vali [150]. Hereafter, the main characteristics of the process models are

described; more details on modeling assumption are presented in Table A.10 and Section A.2.3. As

an enhanced version of the model for black liquor gasification developed in [94] is deployed, the

following paragraphs were inspired by this work.

Hydrolysis and salt separation. In the hydrolysis stage, the weak black liquor stream is heated to

close to critical conditions (350°C), where biomass is hydrolyzed into smaller molecules. Hydrolysis

of lignin and poly-saccharides is modeled using the approach developed for typical lignocellulosic

matter provided in [153]. Organic material contained in organic-inorganic compounds (aliphatic

salts) and inorganics are accounted for separately, as further described in Section A.2.3. The water-

to-biomass ratio is therefore adjusted accordingly to reflect the mass ratios of lignin, hemicellulose,

and water in the modeled biomass stream [94].

Reduced solubility of salts above the critical point can lead to reactor clogging of the SCWG reactor

[115]. In the salt separator unit, the subcritical slurry is injected through a dip tube into a heated

vessel to reach supercritical conditions. Precipitating salts are separated by gravitation, while the

main flow reverses and leaves the vessel at the top. Details on the applied salt separator design

are available in [155–157]. Results from Magdeldin and Järvinen [134] considered to model the salt

separator indicate that the solid yield of salt separation is dominated by precipitated and deposited

inorganics [94]. In this analysis, complete recovery of inorganic cooking chemicals from the salt

separator is assumed [94]. For organic losses in the salt brine, 10% of the salt separator feed is

considered [153]. The modeling assumptions for hydrolysis and salt separation are summarized in

Table A.10; further details are available in Section A.2.3.

Gasification. The gasification model is based on the work available in [153, 158]. Gasifier sim-

ulations at a temperature range between 600-750°C are conducted to investigate the gasification

temperature’s influence on the syngas yield [94]. The cold gas efficiency ηcoldgas, describing the ratio

between the lower heating value (LHV) of the products to the black liquor solids entering, and the

gasification efficiency ηgasification, describing the amount of the black liquor solids converted into
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producer gas, are considered [159] (Equations 1.3 and 1.4).

ηgasification = ṁgasproduct

ṁBL,solid
(1.3)

ηcoldgas = LHV gas

LHV BL,solid
(1.4)

Gasification efficiency increases with gasification temperature (Figure 1.3). However, this value does

not take the pre-heating of the feedstock to reach the required operating temperature into account.

With gasification temperature, the cold gas efficiency increases as well. Besides efficiencies, the

product gas composition is affected by varying temperatures. At lower temperatures, the carbon

is present in almost equal shares in CO2 and CH4. With increasing gasification temperature, more

carbon is found in the form of CO2, and overall gas yield and hydrogen concentration are increased

[94].
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Figure 1.3: Sensitivity analysis on gasification temperature of hydrothermal gasification (HTG).

As in this work, the desired function of the SCWG process is to provide hydrogen, a gasification

temperature of 700°C is chosen. This temperature provides a satisfactory yield of hydrogen while

still resulting in reasonable material requirements. The gas in the gasifier is assumed to have a

near-equilibrium composition. To account for the uncertainty related to material cost, a safety

factor of two was projected for equipment cost related to black liquor gasification. More information

on equipment cost estimations is provided in Section A.2.7. The amount of sulfur leaving the gasifier

in the liquid as Na2S is based on equilibrium assumptions. The sodium in the liquid not bound

by sulfur is assumed to form Na2CO3, fed to the recausticizing unit in the form of green liquor.

For estimating the amount of green liquor available from the sodium carbonate leaving the salt

separator, the composition provided in [104] is used (Table A.5). Depending on the capacity factor

29



1

Chapter 1. Biomass utilization for combined pulp and fuel production

of the lime kiln, black liquor gasification induces either a higher lime kiln load or an additional need

to purchase lime, compared to burning it in the recovery boiler.

Gas separation and hydrogen purification. Gasification is followed by high-pressure flash sepa-

ration of the vapor and liquid phase and acid gas removal, modeled with information available in

[153]. The crude synthesis gas from gasification is expanded in a turbine, and water is removed from

the syngas in a high-pressure flash separation stage. A fraction of the CO2 leaves the high-pressure

separator in the liquid stream, as CO2 is considerably more soluble in water at high pressure than

methane and hydrogen. For the liquid phase leaving the separation unit at high pressure, power

recovery utilizing liquid expanders is included [153]. The liquid effluent is then flashed for the

recovery of recycled water, along with a CO2-rich depleted gas. Syngas can either be upgraded to H2,

or it can be used to adjust the H2/CO ratio of the producer gas from bark gasification. Different acid

gas removal and purification steps are considered in the superstructure, depending on where the

syngas produced from HTG is used. Details on the considered acid gas removal and purification

technologies are provided in Section A.2.4.

Electrolysis

Apart from biomass gasification, different types of electrolysis are considered to benefit from the

net-positive electricity balance of the conventional Kraft process and potentially increase fuel

production. Water electrolysis seems to be a promising option for integration in the mill, as it can

provide additional hydrogen to adjust the H2/CO ratio to the one needed for fuel production without

sacrificing CO in a WGS reaction. The electrolysis model is adapted from Peduzzi [148].

In co-electrolysis, high-temperature solid oxide electrolysis cells (SOECs) are used to convert CO2

and H2O into valuable chemicals starting from CO and H2. This process benefits from high con-

version and decent energy efficiency, offering opportunities to reduce CO2 emissions. However,

it is considered an early-stage technology. The SOEC model is adapted from X Zhang et al. [160]

and considers ohmic, diffusion, and activation losses. The electrolysis units are modeled in the

flowsheeting software Belsim Vali [150]; they are summarized in Table A.9.

Lignin removal

Aside from generating biofuels by means of gasification and electrolysis, the extraction of lignin

from black liquor before burning it in the recovery boiler is analyzed as an option to improve

the mill’s resource efficiency. The LignoBoost process is included in the superstructure, using

correlations between the lignin removal rate and the LHV of black liquor to estimate the effects of

lignin removal on the recovery boiler, as suggested by E Vakkilainen and Välimäki [161]. To ensure

that the combustion properties of the recovery boiler are not affected and full superheating can still
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be reached, a maximum lignin fraction of 20% is enabled for extraction [123, 161].

Utility system

In the presented superstructure, all process units are connected via a utility system comprising

a steam network, water tanks, and cooling utilities, adapted from Kermani et al. [65]. The steam

generation level is set at high pressure, and distribution takes place at multiple pressure levels,

chosen according to temperature-enthalpy profiles of the system. Due to the extremely high alkali

content of black liquor, advanced recovery boilers in Kraft mills are limited to operating at steam

temperatures around 500°C, being well below the one of other advanced boilers [30]. Therefore,

steam network operating conditions need to be chosen accordingly. The steam network operating

conditions from [65] are applied in this work, in line with the modeling assumptions for the Kraft

mill.

Summary of the considered superstructure

The described superstructure, including the major process units, is summarized in Figure 1.4; further

details regarding individual processes are provided in Section A.2.6. When integrating biorefinery

concepts, red processes in Figure 1.4 remain unchanged, as a constant production rate of pulp is

assumed. However, black liquor and bark might be treated in alternative processes; consequently,

the energy requirements of the evaporator, concentrator, recovery, and bark boilers are subject

to change. Furthermore, the load on the chemical recovery and the lime kiln depends on the

amount of recovered cooking chemicals. It will therefore be influenced, as the dark green units in

Figure 1.4 indicate. Process units added to the superstructure as alternative options are colored

in turquoise. Limitations to integrating biofuel production from bark and black liquor are the

undisturbed operation of the pulp production.
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1.3 Methods

1.3.2 Solution synthesis

The methodology for generating and exploring solutions consists of a strategic decision-making

approach operating on an upper and a lower level (Figure 1.5). In the upper level, the solution

generation and exploration are steered by setting optimization bounds, objectives, and parameters

whereas, in the lower level, solutions for a given problem are generated by means of optimization.

Uncertainty in parameter assumption is considered during solution generation, as relying on current

market conditions to steer the solution generation might lead to system configurations that do not

hold in real-world applications [162]. Therefore, different economic scenarios are used for solution

generation, allowing to identify the favorable solutions under certain market conditions and the

ones that are robust for a variety of market assumptions.

Decision space exploration:
Sampling of decision space to be
explored by lower level. 

Problem formulation:
For each sample, definition of
optimization problem to be solved.

Solution generation:
For each problem, generation of 
solution using MILP formulation.

Solution space exploration:
Evaluation of configurations regarding
defined KPIs.

Superstructure formulation:
Definition and modeling of considered
process units and their connections.

Figure 1.5: Simplified flowchart of the proposed methodology for the synthesis and exploration of
solutions in the upper- and lower-level framework.

In the first step of the solution synthesis, the superstructure is formulated at the lower level by means

of mathematical programming considering heat integration, following the mixed integer linear

programming (MILP) formulation in Section A.3.1. The process superstructure describes the system’s

units and how they interact with others. By activating specific units and their connections, different

system configurations are generated. The superstructure model encompasses two dimensions: the

mass and energy conversion in the units and their integration into the system (Figure 1.6).

The unit’s behavior is described through resource and energy demands specified at the respective

temperature levels. Units are related to specific costs for investment, operation, maintenance,

and environmental impact. They share layers of in- and outgoing streams, enabling them to be

connected to synthesize feasible designs when generating solutions. As further specified in [163],

units are subject to sizing constraints based on physical and technical feasibility. If desired, chemical

processes can be included for the respective units by calling simulation software [163]. In the

work presented herein, all process units relevant to black liquor gasification, bark gasification,

fuel synthesis and electrolysis are modeled for fixed operating conditions using the flowsheeting

software Belsim Vali [150]. The extracted results are transformed into mathematical programming

formulation and included in the superstructure.

For the economic analysis, operating and investment costs are calculated as a function of equip-

ment size, using cost functions available in [45, 164]. For environmental assessment, the life cycle
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inventory (LCI) Ecoinvent database [165] is used to estimate the environmental impacts of unit

operation, resource supply, and waste deposit. [166].

Upper level

Material and Energy flows
models of process system

units (flowsheeting)

Life Cycle
Assessment models

Economic models
Flows and process unit

sizes by mass and energy
integration, MILP

IntegrationSuperstructure synthesis
SolutionDecision variable bounds, parameters Lower level

Figure 1.6: Lower-level framework integrated in upper level, adapted from [167].

In the next step of the solution synthesis, the decision space of the upper-level framework is sampled

based on an assumed parameter distribution. Sampled parameters include economic parameters

subject to uncertainty, yielding a set of market conditions for which optimization is performed.

Furthermore, bounds of binary variables for adding or neglecting parts of the superstructure are

sampled to generate diverse solutions (Figure 1.5).

Each sample in the upper level is used to formulate a multi-objective optimization (MOO) problem,

and the ε-constraint method [168] is applied to obtain a Pareto frontier, using the MILP formulation

in the lower level to generate solutions. For each optimization problem communicated by the

upper level, the decision variables in the lower-level framework are fixed by solving the MILP

problem formulated in the AMPL optimization language [169], using the CPLEX branch-and-bound

algorithm [170]. That way, a diverse solutions space is generated, containing Pareto-optimal frontiers

for different economic scenarios and considered superstructure components. Lastly, the obtained

configurations are explored regarding obtained performance for objectives and key performance

indicators (KPIs).

1.4 Case study

To identify and analyze alternatives to treat residuals systematically, the previously described super-

structure of pulp production integrated with various biomass conversion processes is synthesized

and used for solution generation. The pulp production is set constant to 1000 air-dried tons (ADT)

per day, and the import of biomass remains unchanged. Thus, the main aspects of the superstructure

include the alternative process routes for converting the residue streams and the resulting products.

All available bark can be used in alternative process routes, while the weak black liquor that can be

sent to gasification is conservatively limited to 35% of its total flow rate [171]. A Pareto frontier of

seven points is created for each of the 30 decision space samples that are generated, with annual

total expenditure (TOTEX) and environmental impact (EI) as objectives.
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1.4.1 Parameters and decision variable bounds sampling

Regardless of the approach followed when applying uncertainty or sensitivity analyses, the use

of parameter distribution constitutes a major challenge. Bertsimas and Sim [172] demonstrated

that the usage of ranges is a viable opportunity, the hypothesis being validated in [20] on energy

system design. Following this reasoning, variations of ±20% in the parameters are considered when

exploring the decision space for solution generation, applying Latin hypercube sampling (LHS)

[173]. The assumptions on economic and environmental parameters are summarized in Table A.15,

and A.14.

Apart from varying market scenarios, different process units can be considered, leading to a diverse

solution space. As illustrated in Section A.3.1, each unit is associated with a binary decision variable,

determining whether it is used. Defining an upper bound Yu for this decision variable and varying it

when sampling the decision space creates different problems that can be solved by the MILP. While

some units are always considered, Yu is varied for others to make the solution space more diverse.

This approach resembles an integer-cut constraint approach applied to the upper-level formulation.

The units for which binary bounds Yu are varied are mentioned in Section A.3.3.

1.4.2 Key performance indicators

To evaluate generated system configurations, economic, thermodynamic, and environmental crite-

ria are considered. They are intended to serve decision-makers (DMs) in evaluating solutions with

commonly used macro-indicators.

Economic indicators

Operating expenditure (OPEX) (Equation 1.5) consists of two main components: cop1
u , representing

the fixed annual operating expenditure (including maintenance), and cop2
u that represents variable

annual operating expenditure, depending on the unit size and capacity at which it is operated in a

given timestep, f mult
u,t . The sum of the operating expenses over all timesteps t in T , and all units u in

U calculates the annual operating expenditure.

Capital expenditure (CAPEX) describes the annualized cost associated with the purchase and instal-

lation of new equipment C inv and is mainly derived from Turton et al. [45] and Ulrich and Vasudevan

[164]. Values for each unit u are updated to 2020 using the chemical engineering plant cost index

(CEPCI) and annualized over the expected lifetime n of the equipment with regard to the interest

rate i (Equations 1.6, 1.7). TOTEX includes both OPEX and CAPEX, providing an indication of the

plant’s profitability (Equation 1.8). For the system to be profitable, TOTEX needs to be negative. The

payback period ppayback relates the profit gained from the installed units OPEXbio to their capital ex-

penditure and measures how fast the investment is recovered. To calculate the payback period, only
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the investment cost related to the biorefinery units and the cost and revenues that can be directly

allocated to the operation of the fuel production units are included in the calculation (Equation 1.9).

OPEX =
U∑
u

T∑
t=1

(cop1
u · yuse

u,t + cop2
u · f mult

u,t ) · t op
t ) (1.5)

CAPEXu = i (1+ i )nu

(1+ i )nu −1
·C inv

u (1.6)

CAPEX =
U∑
u

CAPEXu (1.7)

TOTEX = C APE X +OPE X (1.8)

ppayback =
∑Ubi o

u C inv
u

−OPE X bio
(1.9)

Environmental impact indicators

The EI of the system reported in this study is calculated based on CO2-equivalent emissions and

multiplied by the impact factor ζCO+
2 of the respective indicator. The equivalent CO2 emissions COei

2

account for units’ construction ξCO2
cu

and dismantling ξCO2

du
, as well as operation COei,op

2 . In Equation

1.10, f mult
u denotes the size of a respective unit chosen by the optimizer for a given solution, as

further explained in Section A.3.1. Emissions from operation include extraction to gate and usage

on-site (direct emissions) of all resources r e in RE (εCO2
r e ). Furthermore, the export of services such

as electricity and fuel is considered as εCO2
se for all exported goods se in SE. The included impact

category is the Global Warming Potential GWP 100a from IPCC 2013, which is widely applied in

literature and can therefore serve as a benchmark category.

EI = ζCO+
2 COei

2 (1.10)

COei
2 = COei,op

2 +
U∑

u=1
(ξCO2

cu
+ξCO2

du
) f mult

u ) (1.11)

COei,op
2 =

T∑
t=1

(
RE∑

r e=1
ṁ+

r e,tε
CO2
r e +

SE∑
se=1

ṁ−
se,tε

CO2
se ) (1.12)
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Resilience indicators

As a measure of resilience, the plant’s self-sufficiency in regard to electricity (E) ηE,self is considered

(Equation 1.13).

ηE,self = E produced

E consumed
(1.13)

Energetic and environmental indicators

The energetic efficiency ηen takes the conversion efficiency of biomass into products that can be

used energetically, such as biofuels and electricity, into account. The carbon conversion efficiency

ηcarbon is defined as the ratio of carbon (C b) leaving the mill in products over the carbon entering

the system in the wood. The exergy efficiency relates the exergy E x of the products to the exergy of

the input. The avoided fossil emissions AE fossil are calculated as the difference of direct (on-site)

and indirect fossil CO2 emissions as defined by COei
2 between an obtained system configuration

and the conventional mill, as well as the avoided fossil emissions from not burning the fossil fuels

replaced by the produced biofuels COfuels,burn
2 . Equations 1.14-1.17 summarize the energetic and

environmental indicators; products include all produced fuels, as well as lignin and pulp.

ηen = Enproducts

Enwood +E+ (1.14)

ηcarbon = C bproducts

C bwood
(1.15)

ηexergy = E xproducts

E xwood +E+ (1.16)

AE fossil = COei,conv
2 −COei

2 +COfuels,burn
2 (1.17)

1.5 Results and discussion

Obtained solutions are fully integrated in terms of mass and energy balances, profiting from heat

recovery between the individual processes. For quantifying the uncertainty of the performance of

obtained configurations, the economic KPIs of each solution are recalculated for the parameter

distribution already used during solution generation. This provides insights into the resilience of a

given configuration to variations in market conditions and provides means of informed decision-

making. For recalculation, a parameter set of 10000 samples is used. With the obtained distributions,

a desired percentile of economic KPIs can be derived for each configuration and included in the

decision-making process. In the presented case study, all solutions for which the 95th percentile of

the TOTEX (TOTEX 95%) is negative are selected for further consideration. These configurations are

37



1

Chapter 1. Biomass utilization for combined pulp and fuel production

profitable in 95% of the parameter samples evaluated. All 210 generated solutions are profitable

under the given definition.

Profitable solutions are further clustered based on optimizer decisions of unit installations and sizes

to derive typical configurations observed throughout the solution space. The number of clusters

is determined based on the elbow method [174, 175] after data normalization and dimensionality

reduction. The t-distributed stochastic neighbor embedding formulation [176] is utilized to convert

the high dimensional space to a 2D object using principal component analysis (PCA), retaining

a high degree (0.99) of explained variance. The k-medoids algorithm [177] is used for clustering.

For solution evaluation, the conventional Kraft mill configuration in which no additional units are

installed and only pulp and electricity are exported is used for comparison, further referred to as

conventional or reference configuration.

1.5.1 Typical process configurations

Clustering based on configurations yields four typical solutions, all but one featuring additional

equipment compared to conventional mill configuration (Table 1.3). In the following, they are

displayed and labeled by increasing EI.

Table 1.3: Key performance indicators and production characteristics of typical configurations, per
metric ton of wood.

Key performance indicators and HTG characteristicsa

ID EIb TOTEX OPEX CAPEX ppayback Hprod.
2 HHTG

2 BLgas.,c HTG syngasfuel/sold

[kg CO2−eq] [USD] [USD] [USD] [yrs] [kg] [%] [%] [%]

0 -27.3 -399 -441 45 6.7 3.8 100 28 100/0
1 -13.4 -409 -438 31 5.0 4.3 100 34 90/10
2 -5.3 -370 -403 35 9.2 1.8 100 16 90/10
3 32.7 -399 -413 14 0.0 0.0 0 0 0/0

Import (+) and Export (-) [kg/t wood]d

FT fuels− Methanol− DME− Lignin− SNG− H−
2 Lime+ Nat. gas+ FW+, f E−

0 0.0 42.1 0.0 4.2 3.0 3.8 6.9 0.0 17.3 0.0
1 8.6 0.0 9.7 0.0 0.0 4.3 11.6 0.0 8.5 19.3
2 7.5 0.0 9.9 0.0 0.0 0.0 7.3 1.2 11.9 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 6.0 13.8 10.0 215.6

a all economic indicators as 95th percentile of distribution, b not including the impact of wood import and pulp export,
c BL: black liquor, d except for freshwater: [t/t wood], electricity: [kWh/t wood], f FW: freshwater.

ID 0, the configuration with the lowest EI, is defined by the simultaneous production of methanol,

lignin, and SNG. Furthermore, H2 is generated from the gasification of black liquor and exported. In

this configuration, all available bark and 28% of the available weak black liquor are gasified (Table

1.3). ID 1 also generates liquid fuels in the form of FT and DME, but no lignin is extracted, and no
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SNG is produced. Instead, electricity is exported. Slightly higher shares of weak black liquor are

gasified, increasing lime demand compared to ID 0. All of the producer gas from SCWG is used for

liquid fuel synthesis, decreasing the load on the WGS unit required to adjust the H2/CO ratio of the

producer gas from bark gasification. ID 2 features only FT and DME export, 16% of the available

black liquor is gasified, and all the producer gas is used for fuel synthesis. Lime demand is decreased,

but the off-gas production is not sufficient to fuel the lime kiln, inducing the need to import natural

gas. In ID 3, no additional equipment is installed, making the solution representative of conventional

Kraft mill configuration.

1.5.2 Environmental, economic and energetic performance

Figure 1.7 shows the EI of the identified typical solutions (Figure 1.7a) and the allocation of biogenic

carbon with related efficiencies (Figure 1.7b). Overall, there is a correlation between avoided fossil

emissions, carbon in fuel and natural gas consumption, as they influence each other directly. The

more carbon captured in fuel, the more emissions from burning fossil alternatives can be avoided.

Naturally, with increasing EI, the amount of biogenic carbon that is released increases, as the

biogenic carbon is used less as a substitute for fossil products. Energy and carbon efficiencies

change accordingly.

Storing or converting biogenic carbon instead of releasing it does not lead to inevitably to less

fossil carbon emissions, as higher natural gas and lime demands might be evoked by the changes

in the process configuration, leading to an increase in EI. It needs to be mentioned that in the

calculation of the carbon efficiency, the carbon that was removed from the syngas but not utilized

further is accounted for as released carbon. However, utilizing this carbon in other processes or

sequestrating it might be of interest. Overall, all analyzed typical configurations except ID 3 perform

better regarding EI than the conventional design; emissions are reduced by 70 to 112%, meaning

that net-negative emissions can be achieved. When all obtained configurations are considered, less

than 7% perform worse regarding EI than the conventional design of the Kraft mill. In the presented

analysis, the EI for buying wood and selling pulp are not displayed as they are assumed to remain

constant.

Based on the mean TOTEX obtained for the assumed parameter distribution, one typical config-

uration is performing better economically compared to the conventional configuration. For the

remaining three configurations (ID 0, 2, 3), benefits compensating the ∆TOTEX between the re-

spective configuration and the conventional mill configuration are calculated for selected emission

characteristics. The first emission property analyzed is avoided fossil emissions (AE), accounting for

avoided direct and indirect emissions and avoided emissions from burning fossil products substi-

tuted by biogenic fuels, as defined in Equation 1.14. These emissions are further referred to as scope

avoided emissions (SAE). Avoided direct and indirect emissions as calculated in EI between a config-
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Figure 1.7: Energetic and environmental aspects of identified configurations. a) Environmental
impact split and efficiencies. b) Split of biogenic carbon and carbon characteristics. c) Sensitivity
analysis on required emission compensation benefits for different offsetting strategies, in relation to
economic performance.

uration and the conventional mill (scope environmental impact (SEI)) are examined. Furthermore,

captured biogenic CO2 (scope captured biogenic carbon (SCB)) and the sum of avoided fossil and

biogenic direct CO2 emissions (scope avoided direct emissions (SAD)) are considered. Figure 1.7c

shows that for ID 0, ∆ TOTEX can reach zero by providing benefits of 12 USD/t CO2−equ to SAE. For

ID 2, the compensation related to SAE is 390 USD/t CO2−equ. When SEI is considered for providing

economic offset, ID 0 reaches a ∆TOTEX of 0 for 26 USD/t CO2−equ; for ID 2, a compensation of 835

USD/t CO2−equ is required. A reward for captured biogenic carbon (SCB) lies at 20 USD/t CO2−equ

for ID 0 and 722 USD/t CO2−equ for ID 2. For SAD, the break-even compensation can be reduced

to 20 USD/t CO2−equ for ID 0 and 406 USD/t CO2−equ for ID 2. As ID 3 performs similarly to the

conventional mill configuration regarding emissions, no compensation measures can be derived.

To extend the analysis, three additional configurations are selected from the set of unique configu-

rations; one with the largest share of carbon in fuel (CF), one with the largest amount of energy in

fuel (EF) and one with highest AE. Compensation benefits for avoided CO2 for which the respec-

tive solution becomes as profitable as the solution performing best economically regarding total
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cost (TC) are calculated, providing insights into the sensitivity of the system’s profitability towards

compensation subsidies in extreme cases (Figure 1.8).

Table 1.4: Production characteristics of identified configurations of highest carbon in
fuel (CF), highest avoided fossil emissions (AE), highest energy in fuel (EF) and lowest
total cost (TC).

KPIs, per metric ton of wood

EI TOTEXmean Carbon in fuel Energy in fuel AE BLgasif,a

[kg CO2−eq] [USD] [kg] [GJ] [kg CO2] [%]

CF 34.92 −376 22.1 0.29 78.6 0
AE −21.92 −391 20.4 0.91 130.0 5
EF −4.16 −414 17.0 1.43 98.9 34
TC −13.13 −434 15.6 1.23 103.1 31

Export [kg/t wood]b

FT/Methanol/DME SNG Electricity H2 Lignin

CF 0.0/0.0/9.9 22.5 0.0 0.0 0.0
AE 0.0/46.3/0.0 4.0 51.7 0.0 0.0
EF 0.0/45./0.0 0.0 0.0 4.5 0.0
TC 15.4/0.0/0.0 2.9 2.9 4.3 13.8

a BL: black liquor, b electricity in kWh/t wood.

Lowest TOTEX in configuration TC is achieved by simultaneous production of FT fuels, SNG, and

hydrogen from black liquor gasification (Table 1.4). The highest share of CF is achieved by the joint

production of DME fuels and SNG, with H2 available from electrolysis. Additional producer gas is

made available from co-electrolysis, using CO2 captured during fuel synthesis. TOTEX is 13% above

the lowest value observed (TC) and can be offset by benefits of approximately 700 USD/t CO2−equ

(Figure 1.8). The highest AE is achieved by combining methanol, SNG, and electricity export. 5%

of the black liquor are gasified; all producer gas is used for fuel synthesis. Overall, TOTEX is 10%

above the lowest one achieved and can be offset by benefits between 320 USD/t CO2−equ for SAE

and 600 USD/t CO2−equ for SAD. When the highest EF is selected, the chosen configuration features

methanol and hydrogen export, with 34% of the black liquor being gasified. Compensation for the

5% higher TOTEX compared to the best economic configuration TC can be achieved by benefits

between 185 USD/t CO2−equ (SAE), 300 USD/t CO2−equ (SCB) and 400 USD/t CO2−equ (SAD, Figure

1.8). These rather high offset requirements can be reduced when comparing the configuration’s

economic performance to the conventional configuration of the mill instead of the economically

best-performing configuration obtained. To be as competitive as the conventional configuration,

the offsetting benefits for AE range between 134 (SAE) and 315 USD/t CO2−equ (SEI), while for EF,

they account for approximately 400 USD/t CO2 for SAE, SAD and SCB. EF is outperforming the

conventional mill configuration economically (Figure A.1).

Overall, if the EI is supposed to stay below the one of the conventional configuration of the mill, fuel
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Figure 1.8: Sensitivity of three selected solutions towards compensation benefit for avoided fossil
emissions (SAE), environmental impact (SEI), captured biogenic carbon (SCB) and direct avoided
biogenic and fossil emissions (SAD).

production is limited by the environmental impact associated with increased lime demand, while

natural gas consumption can be avoided, to a certain extent, by burning off-gases of gasification in

the lime kiln. The observed variations of TOTEX remain relatively small compared to the economi-

cally best-performing configuration in all analyzed solutions, allowing for realistic compensation

benefits for avoided emissions to make the respective configurations economically viable.

1.5.3 Validation of combined approach

In order to identify the benefits of combined bark and black liquor gasification, the solution space

is filtered for solutions only applying bark gasification and solutions only considering black liquor

gasification. These solutions exist due to the inclusion of the binary variable bounds that determine

whether units are considered for solution generation in the decision space samples (Section 1.4.1).

For the configurations only considering bark or black liquor gasification, the average economic and

environmental KPIs are compared to the results obtained for all unique configurations. When only

bark gasification is considered and all black liquor is treated in the conventional recovery boiler,

energy efficiency is on average 3% lower than the obtained average from all configurations, while

the carbon efficiency is decreased by 6%. Configurations including only black liquor gasification

feature energy efficiencies 2% below the overall mean, and carbon efficiencies that are on average

6% lower than the overall mean. On average, 53% fewer fossil emissions are avoided when only

bark gasification is included; for the cases with only black liquor gasification, it is 26% less than

the average over all configurations. The average environmental impact is increasing by 15% in the

bark-related configurations; for the black liquor configurations, the average stays within 1% of the

one obtained from all configurations. Self-sufficiency is not influenced, as all obtained unique

configurations are fully self-sufficient regarding their electricity demand. When looking at the

economic performance indicators, average TOTEX 95% of both solution subsets is within 2% of the

respective indicator for the whole set of configurations. In summary, it is found that environmental
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and energetic indicators generally profit from the integration of combined bark and black liquor

gasification, whereas self-sufficiency and economic indicators are not influenced significantly.

1.5.4 Potential for the transportation sector

Looking more carefully at the energy system of tomorrow, the question to answer regarding trans-

portation fuel will eventually be, how fossil energy carriers - especially those used for freight transport

- can be replaced with sustainable alternatives. While electricity is a promising option for personal

transport, trucks and lorries are often dependent on the high energy density of fossil fuels. The

afore-analyzed configuration with the highest EF is selected to provide a perspective on the potential

of combined pulp and fuel production for the transportation sector. As Table 1.5 reveals, a total

of 1438 MJ of fuel equivalent is produced per metric ton of wood in this configuration, split into

methanol and hydrogen. Scaling this production to France and the European Union using the

roundwood consumption of the pulp industry leads to a perspective on the production of 6350 TJ of

fuels from the pulp mills in France and 78755 TJ in all of Europe.

Table 1.5: Production perspective and commodity replacement potential.

Analyzed mill

Fuel production 1438 MJ/t wood (897 methanol, 541 H2)

Energy system perspective

Region France EU 27 World

Analyzed commodity Road freight transport Aviation

Pulpwood consumption [178, 179] Mio. tovendry 4.4 54.7 314.0

Fuel production potential TJ/yr 6347 78755 451504

Road freight transport [180, 181] Bio.TKMa/yr 280 1745 N/A

Passenger aviation [182] Bio. RPKb/yr N/A N/A 8800

Commodity replacement potentialc % 1 2 5

a TKM: ton-kilomenter, b RKM: revenue passenger-kilomenter, c given for the analyzed commodity in

the respective region. Conversion factors and energy intensity from [183], energy intensity of TKM for

trucks from [184].

When the generated fuels are used to replace fossil energy carriers in road freight transport, approx-

imately 1% of the French demand and 2% of the demand in the EU can be replaced. Assuming a

worldwide demand of 8.8 × 1012 revenue passenger-kilometers (RPK) in 2019 [182], approximately

5% of worldwide passenger aviation energy demand could be replaced with the fuel potentially

available from combined pulp and fuel production realized at pulp mills all over the world.

Comparing the TOTEX of the configuration EF to that of the conventional mill configuration at

mean market conditions, a competitive selling price of 0.017 USD per MJ of energy in fuel – an
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equivalent of 55% of the average energy market prices of 2019 and 40% of 2022 – is sufficient for the

mill to break even with the conventional TOTEX. This corresponds to a diesel price of approximately

0.749 USD/l, a gasoline price of 0.891 USD/l and a hydrogen price of 1.841 USD/kg. Considering

the current market prices of these energy carriers, the co-production of pulp and fuels seems to be

economically interesting and environmentally sound.

1.5.5 Impact of variations in market environment

To select one solution from the pool of typical configurations identified, the relationship between

economic KPIs and parameter uncertainty might be of interest. Correlations between a KPI of inter-

est and the parameter set of the optimization are derived using the Spearman correlation coefficient

[185], and displayed in a polar plot sequenced by decreasing significance (Figure 1.9). For TOTEX, the

most significant parameter in the solution set is the equipment lifetime, followed by the freshwater

price, interest rate, and FT price (Figure 1.9a). For CAPEX, the lifetime, interest rate, and equipment

cost of the methanol production units are most relevant (Figure 1.9b). OPEX is mostly dependent

on freshwater, hydrogen and FT price (Figure 1.9c). Further analysis of correlations concerning

the typical configurations is provided in Section A.4.2. Thus, although the unique configurations

were analyzed in consideration of parameter variation by post-computational recalculation of the

economic performance, one needs to keep in mind that the assumed variation in the identified

parameters of interest certainly influences the economic performance previously evaluated. Further

analysis might be required in order to confidently choose between configurations.

(a) Correlations TOTEX (b) Correlations CAPEX (c) Correlations OPEX

Figure 1.9: Correlations between economic KPIs and the parameters subject to uncertainty

1.6 Conclusions and outlook

The future development of the energy system comprises the replacement of fossil fuels, the in-

tegration of renewable energy resources and the need for negative emission processes. Biomass

as a sustainable energy carrier offers promising opportunities to provide thermal energy at high

temperatures, electricity, and energy storage opportunities. In this chapter, the realization of the

design of a Kraft pulp mill integrated with biomass conversion technologies to improve energy
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efficiency while enabling the production of storable energy in the form of biofuels is presented. The

two main residual streams, bark and black liquor, are treated via gasification processes, and different

types of fuel synthesis options from producer gas are included in the analysis. The black liquor is

gasified in hydrothermal conditions, making the energy-intensive evaporation and concentration in

the mill redundant. Moreover, the usage of electrolysis and co-electrolysis is considered, which can

benefit from excess electricity in the grid. The main implication is to generate solutions that profit

from full energy integration when co-producing pulp and fuel, without penalizing the anticipated

pulp production. Rigorous mathematical programming was coupled with MOO for the generation

of a diverse solution set, considering different market scenarios. Typical solutions throughout the

obtained solution space are identified and analyzed regarding their economic and environmental

performance compared to the conventional configuration of the mill.

Overall, it was shown that from the mill’s perspective, the co-production of pulp and fuels is viable

for a fuel selling price that is identified as being well below current market prices. Multiple promising

configurations of combined pulp and fuel production were identified that feature environmental

and energetic benefits compared to conventional operation, either at an economically preferable

performance or within an economic margin that could be offset by providing benefits for avoided

emissions. For configurations achieving the highest energetic and environmental performance,

benefits for avoided fossil carbon emissions or captured biogenic carbon could realistically offset

financial deficiencies. Overall, the carbon efficiency in the mill can be increased by up to 10%,

and EI can be reduced by over 110%, yielding negative emissions. Looking more closely at the

European energy system, 2% of the required energy for road freight transport could be provided when

extending the suggested superstructure configuration to all pulp mills in Europe, while worldwide,

approximately 5% of the passenger aviation fuel could be replaced when extrapolating the analysis

to the worldwide pulp production.

Even though the current approach includes a variety of process units in the superstructure opti-

mization for combined pulp and fuel production, the holistic analysis is constrained by the limited

number of units included. Although flowsheeting is used to model the process units of gasification,

fuel synthesis, and electrolysis, the operating conditions of the process units are fixed and not

adapted for integration with other units. Integrating the operating conditions as decision variables

in the solution generation framework may be beneficial for the quality of obtained results. Fur-

thermore, for a complete analysis, the production of other fuels and bio-based products could be

included in the analysis, to enhance the consideration of a fully integrated biorefinery. Specifically,

the inclusion of CCUS and power-to-X (P2X) technologies seems promising, as during thermochem-

ical conversion and fuel synthesis, CO2 removed from the process remains currently partly unused.

In that regard, time-dependent mill operation acknowledging seasonal resource price variations,

and the mill’s potential to serve as an energy hub for reliably storing and providing energy when

required should be included in the analysis for evaluating the system in the context of the energy
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transition. Furthermore, the option of increased pulp production, enhanced by debottlenecking the

recovery boiler operation could be explored. Uncertainty in the economic domain has been included

in solution generation and exploration, providing some confidence about the obtained performance

indicators. Nevertheless, it has been shown that variations in market conditions influence obtained

solutions, motivating further investigation of the impact of uncertainty. In that regard, performing

sensitivity analysis on the environmental assumptions might also be relevant in the future.

Generally, the work presented in this Chapter has shown that combined pulp and fuel production

holds promising potential on both, the economic and the environmental performance metrics. How-

ever, the question of how to confidently choose a configuration to further be investigated has not

been addressed in detail. Solutions were chosen based on diversity criteria to show representatives

of the solution space, or based on one specific indicator such as the energy efficiency or the amount

of carbon stored in fuel. In the following Chapter 2, multi-criteria decision analysis approaches

and interactive optimization techniques are investigated to enable a more powerful, DM-tailored

analysis of results obtained from superstructure optimization. In Chapter 3, the question of how

computational expenses can be reduced is addressed, and Chapter 4 enhances the study of com-

bined pulp and fuel production further by detailed consideration of uncertainty. Finally, in Chapter

5, the superstructure is expanded with CCUS and P2X processes, and the analysis is carried out in

consideration of the dynamics of renewable energy availability.
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2A digital twin for decision-making in

process and energy system design

Overview

 Development of a digital twin supporting decision-making in process and energy system

design.

 Flexible integration of user-defined preferences for selection of solutions.

 Visually-assisted communication between the decision-maker and digital twin.

The content of this chapter is partly published in [186].

As shown in the previous chapter, the design of efficient processes and energy systems through the

development of new technologies and the improvement of current ones requires the use of rigorous

process synthesis methods for generating and analyzing design alternatives. In conventional process

systems engineering (PSE) methods, complex models relying on mathematical programming and

flowsheeting are built, and solutions are generated with a variety of optimization methods for a

given design problem. For the analysis of solutions, multi-criteria decision analysis and interactive

optimization have evolved over the last years, allowing for versatile exploration of alternatives. For

these methods to be applied in practice, time and intuitiveness are crucial aspects of usability.

This chapter introduces a digital twin of process and energy system design that interactively trans-

lates the needs and preferences of decision-makers (DMs) into an optimization-based model and

provides guidance to generate and identify relevant solutions, taking into account multiple aspects,

such as the impact of uncertainties and multi-criteria analysis. In all steps during the solution gener-

ation and exploration, the interactive digital twin (InDiT) enhances step-by-step communication

with the DM, relying on visual aids to keep the communication during solution generation and

exploration intuitive and flexible. Furthermore, InDiT can indicate how the optimization could be

steered for generating more solutions relevant to the DMs’s needs. In this way, decision-makers are

guided toward relevant solutions and improve their understanding of relations between the problem

definition and system design decisions, while InDiT builds on the DMs’s preferences and can, after
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training, suggest solutions that are best suited to their interests.

The novelty of this work lies in addressing both the systematic generation and exploration of solu-

tions with the assistance of a digital consultant. The digital consultant translates the DM’s needs

into machine language and vice versa, and interactive step-by-step communication is applied for in-

tuitively filtering and evaluating solutions. This approach guarantees that the DM does not only get

solutions based on the superstructure design specifications made prior to optimization, but that per-

sonal preferences are taken into account during the solution synthesis, and that the solution space

can easily be explored under different criteria. The proposed methodology is demonstrated and

applied to the design case of the Kraft mill integrated with biofuel production processes presented

in Chapter 1.

2.1 Motivation and state of the art

Increasing system complexity and dimensionality is inducing a drastic evolution of methods for

process and energy system design, as elaborated previously. As such, multi-criteria decision analysis

(MCDA) is more frequently involved in the decision-making processes. Generally, MCDA allows

to structure complex decision-making problems characterized by multiple conflicting indicators

and to provide guidance in the decision-making process [187–189]. The main advantages of MCDA

are summarized by Cajot et al. [190] as the capability to assist in resolving conflicting interests

and to provide transparency. Furthermore, public participation in the decision-making process

is promoted, as well as a deep understanding of the problem. MCDA allows for the synthesis of

aspects in one output and is applicable to the preferences of multiple stakeholders. Uncertainty

criteria can be included in the analysis, as well as a combination of quantitative and qualitative

information. Buchholz et al. [191] furthermore pointed to the ability of MCDA to help structure

problems and identify the most uncertain components in systems. Identified drawbacks are the

dependency on subjective judgment, the difficulty of quantifying environmental or social impacts,

and the risk of inconsistency in provided results induced by subjective stakeholder preference

[190]. Comprehensive reviews of MCDA methods, their unique selling propositions, and potential

drawbacks are provided in [190, 192].

For generating possible design alternatives to be evaluated with MCDA, manual scenario selection

or automated multi-objective decision-making-based approaches can be applied [193]. Criteria

considered in MCDA can be distinguished into objectives and attributes. Objectives indicate the

desired direction in which a DM would like to steer decision-making, while attributes measure the

performance of an alternative in a particular category, for example environmental parameters [190,

193].

The application of MCDA approaches has increased significantly over recent years, especially in the
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fields of environmental science, computer science, artificial intelligence, and operations research

and management science [19]. In the energy domain, it has been applied to the design of urban

districts planning [68], renewable energy integration [194, 195], energy systems analysis [196] and

electrical energy management [197]. Herva and Roca [198] provide a review of MCDA applications

for decision support in industrial, energy, waste, and wastewater management applications.

Concerning biomass-related topics, MCDA was applied for a variety of decision-making problems,

particularly for aggregating results of impact assessment within the bio-based economy [199].

Buchholz et al. [191] applied MCDA for the assessment of bioenergy systems in Uganda. Manzini

Poli et al. [200] applied a multi-criteria tool for the assessment of the sustainable use of agro-

industrial residues as solid biofuels. Hagman and Feiz [201] investigated different management

options for the stillage by-product usage of a Swedish wheat-based biorefinery applying MCDA

approaches. Furthermore, MCDA has been used for biorefinery siting [78] and for the ranking of

biorefinery systems considering uncertainties [202]. Bioenergy production technology alternatives

were evaluated by Mishra et al. [203] using MCDA approaches.

2.1.1 Interactive optimization

In combination with MCDA approaches, interactive optimization (IO), involving a human user

in the optimization procedure, has gained interest in the research community, impelled by the

incorporation of expert knowledge and experience in the optimization and solution exploration

process, as well as intuition and personal preferences [67, 68]. IO allows for reducing computational

efforts significantly, given that only the relevant space attractive to the DM is explored [204, 205].

Besides increasing the DM’s confidence in the obtained results, the interaction process supports

intuitive learning, without relying on a priori preference information [68]. However, IO methods rely

on the availability of a human DM, their ability to devote time to the solution exploration, and their

capability to understand the demands of the IO [68]. Thus, IO applications should be intuitive and

flexible in adapting to the user’s inputs in real-time and responding to their learning curve [68, 206].

The leading theory behind computer-human interaction is that by utilizing each party’s unique

strengths, complex problems can be solved more effectively [68, 205]. Human abilities include

subjectivity, problem-solving skills, strategic thinking, learning, pattern recognition, and conscious

rule-breaking [68, 207]. In terms of combining physical quantities, storing and displaying detailed

information, and carrying out repetitive tasks quickly and simultaneously, computers are outper-

forming humans [68]. In that regard, the interaction between the two is crucial for a successful IO

application, allowing for dialog by displaying results and transforming preferences communicated

by the DM to computer actions.

Typical IO applications consist of an analysis and a search phase, whereas the latter consists of a

generation, an exploration, and a steering phase [68]. As such, an IO framework and its human-
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computer interaction comprise four parts, a DM, an analyst, a generator, and a graphical user

interface (GUI) [67, 208]. In the analysis phase, the DM describes the problem, and the analyst

develops the model accordingly. During the search phase, the user steers the computer’s solution

generation through a GUI.

An optimization or simulation model describing the problem by its decision variables, objective

functions, and constraints is used to generate solutions in the generation phase [68]. The solution

generation can be of exact or heuristic nature [67]. Most IO approaches are based on heuristic or

meta-heuristic optimization methods. In contrast, only the minority is based on deterministic meth-

ods, as found in an extensive review of the subject by Meignan et al. [67]. Depending on the problem,

it can be argued that heuristic or exact methods are more effective. Meta-heuristics may not be more

efficient than exact gradient-based methods for structured, convex, linear, or quadratic program-

ming problems. Still, evolutionary algorithms can benefit from parallel processing to increase search

efficiency because they rely on multiple solutions per iteration [63, 68]. Visualization is recognized

as an important aspect of IO methods, particularly with regard to the solution exploration phase.

Specifically, parallel coordinates gained increasing attention in this regard, as they allow for intuitive

comparison of scenarios [209]. Abi Akle, Minel, and Yannou [210] approved their effectiveness in

displaying multi-objective optimization results compared to other visual aids for exploring solutions,

while Cajot et al. [68] applied them to multi-criteria decision support for urban energy systems. In

the steering phase, a feedback loop ensures the model is adapted as user preferences evolve [68,

211].

Comprehensive reviews of interactive optimization procedures, methods, and choices of visualiza-

tion tools are provided in [63, 68]. The power of interactive optimization has been widely recognized,

especially in water management applications such as the development of water quality management

systems [212], reservoir modeling and optimization [213] and groundwater monitoring design [206,

214]. Furthermore, the localization of supplementary recycling depots [215] was addressed utilizing

IO, aiming at increasing participation in residential recycling by assuring convenient access. The

application of IO for demand response analysis of local multi-energy systems has been recently

addressed by Fleschutz et al. [216], while Cajot et al. [68] applied IO for the design of urban energy

systems.

2.1.2 The concept of digital twins

Digital twins were initially proposed in the early 2000 and have experienced a significant increase

in application in recent years. Definitions of the concept found in literature range from virtual

representations of objects or systems that interact with their physical counterpart throughout their

life cycle to the seamless integration between cyber and physical systems based on simulation,

real-time data, machine learning, and reasoning [217, 218]. Generally, they consist of a physical part,
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a virtual representation, and a bi-directional data transmission channel [217]. Reviews of digital

twin definitions and applications are provided in [217, 219]. The most significant feature of the

digital twin technology repeatedly highlighted in literature is the dynamic aspect of the system,

including real-time and bi-directional data transmission between the physical entity and its virtual

representation.

The concept was initially developed for the manufacturing sector, the domain for which digital twin

contributions in literature dominate. Specific manufacturing branches are digital twin-enabled

design, logistics, and production maintenance, or specific production lines [220]. Furthermore,

green material resource management, recycling, and circular economy topics have been addressed

[220]. Comprehensive reviews of digital twins in manufacturing are available in [221, 222]. Many of

the applications of digital twins in the manufacturing domain aim at saving resources and energy,

an aim that is relatable to many energy systems-related applications. In that regard, the digital

twin concept was found to play an essential role in promoting a more digitized intelligent future in

the energy industry, for example, concerning power supply, assisting the improvement of energy

efficiency and operation optimization [220]. A review of applications of digital twins in the energy

industry is provided in [223]. Other energy-related application areas are energy distribution and

grid control, the transformation towards smart grids, and demand-side management [224–226].

Furthermore, smart electric vehicle integration has been analyzed in the frame of energy demand

management by means of a digital twin [227]. Besides, digital twins were applied in the domain

of urban energy planning [68], smart cities [228, 229], civil engineering [230], health applications,

and education. A review of the recent digital twin applications supporting sustainability in various

domains is provided by Hassani, X Huang, and MacFeely [220].

2.1.3 Research gaps and objectives

As elaborated in the context and motivation of this thesis, integrated biorefineries have been ana-

lyzed extensively in the literature, applying concepts of PSE [26, 83, 84, 153, 231], also concerning

pulp mills [79, 92, 107, 133, 134, 138, 232]. However, while MCDA has been increasingly applied in

combination with IO for urban energy system design, environmental science, and demand-side

management, the concept does not appear to be used considerably in the field of superstructure

synthesis of process systems. For bio-based systems such as integrated biorefineries, the application

of MCDA seems limited to mainly environmental analyses. Coupling MCDA with IO for the synthesis

of systems such as integrated biorefineries is not explored. Furthermore, even though uncertainty

criteria have been applied in MCDA [191], the combination of IO with MCDA in consideration of

uncertainty has not been studied.

The research herein addresses the efficient generation and identification of solutions that are mean-

ingful for a DM by applying a digital twin concept to the solution synthesis and exploration of energy
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and process system design problems. In this context, meaningful refers to the preferences the DM

expresses at any solution synthesis and exploration stage. The proposed methodology InDiT aims

to guide a DM in multi-dimensional solution spaces based on user-defined preferences, providing

insights about typical unit choices, correlations between user preferences and the solution space, as

well as trade-offs between competing decision criteria. Furthermore, the effects of uncertainty in

model parameters on the obtained solutions should be included in the framework. Thereby, the

approaches presented in Chapter 1 for solution generation and exploration are enhanced, expanded,

and systematically integrated into InDiT to enable advanced decision-making. The developed

concept for interactive decision support is tested and validated on the design of a Kraft pulp mill

integrated with biofuel production, presented in Chapter 1.

2.2 Methods

The developed Interactive Digital Twin InDiT assists the generation and exploration of meaningful

solutions for a given process superstructure, letting the DM influence the decision-making at

different stages of the process by translating their needs into computer language and steering the

solution synthesis in the required direction. InDiT’s workflow consists of three main parts:

• Superstructure formulation

• Solution synthesis

– Decision space exploration

– Problem formulation

– Solution generation

• Solution exploration and steering of result generation.

Decision space exploration:
Sampling of decision space to be explored using
steering inputs 1. 

Problem formulation:
For each sample in decision space, definition of
optimization problem to be solved.

Solution generation:
For each defined problem, generation of  solution
using MILP formulation.

Definition of steering inputs 1: 

Bounds of model parameters
Parameter uncertainty
Key performance indicators, objectives

Definition of steering inputs 2:

Parameter uncertainty
Ranking criteria and weights

Solution space exploration:
Analysis and filtering of solutions considering
steering inputs 2.Superstructure formulation:

Definition and mathematical
modeling of considered process
units and their connections.

Figure 2.1: Simplified flowchart of proposed methodology InDiT for the synthesis and exploration of
solutions for superstructure optimization.

The simplified workflow of the InDiT algorithm is presented in Figure 2.1. The first step, namely the

superstructure formulation, considers the system design as a list of units that need to be selected,
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sized, and connected to realize a system functionality under user-predefined conditions and objec-

tives. The developed superstructure contains all considered units and possible connections between

them, as described in Section 1.3.2. Based on steering inputs specified by the DM (highlighted in

Figure 2.1), InDiT explores the decision space and defines a set of problems to be solved. Systematic

solution generation strategies are followed by comprehensive exploration and assessment of the

generated results concerning the desired performance indicators. The solution exploration identifies

the most promising and meaningful solutions to the DM and proposes steering actions to enrich

the list of relevant solutions. In the following paragraphs, these steps are described further.

2.2.1 Superstructure formulation and solution synthesis

Framework for solution synthesis

The methodology for superstructure formulation and solution generation is adapted from Gassner

and Maréchal [88] and I Kantor et al. [163], as described in Sections 1.3.2 and A.3.1. From now on, it

is referred to as the lower-level framework in an upper-/ lower-level framework structure, where

the lower-level framework generates results for optimization problems and is controlled by the

upper-level framework. While the lower-level framework remains the same as the one described

in Section 1.3.2, the upper level now consists of InDiT. InDiT imposes optimization problems,

evaluates the results of the lower-level framework, and steers the generation of new results. Figure

2.2 shows the simplified structure of the lower-upper-level framework interaction. Similar to the

multi-objective optimization (MOO) approach for solution generation presented in Chapter 1, for a

problem communicated by the upper-level framework InDiT, the lower-level framework generates a

solution and reports it back.

InDiT

Material and Energy flows
models of process system

units (flowsheeting)

Life Cycle
Assessment models

Economic models
Flows and process unit

sizes by mass and energy
integration, MILP

IntegrationSuperstructure synthesis
SolutionDecision variable bounds, parameters Lower level

Figure 2.2: Interaction of InDiT with lower-level framework.

Definition of steering inputs

The aim of defining steering inputs for InDiT is to capture the DM’s preferences and needs and to

translate them into framework conditions usable for solution synthesis. Relevant decision variables

Θ of the upper-level framework influencing the decision space of the lower-level framework need to
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be identified by the DM. They contain the bounds of the continuous (x) and discrete (y) decision

variables of the lower-level framework that shall be varied during solution generation. Furthermore,

lower-level framework parameters pun that the DM judges to be subject to uncertainty are defined,

with corresponding distributions.

Besides the bounds of the decision variables and uncertainty parameters, the objectives z and key

performance indicators (KPIs) the DM is interested in need to be stated. The difference between

objectives and KPIs is that objectives are used to steer the lower-level framework optimization

(e.g., minimizing the total system cost), while a KPI is an indicator of particular interest for a DM.

As a mixed integer linear programming (MILP) formulation is used in the lower-level framework,

the objectives have to be linear, while KPIs can include nonlinear relations as well since they are

computed a posteriori. Objectives can compete with one another. As elaborated previously, MCDA

has been proven particularly useful for environmental analysis. Therefore, InDiT is enabled with the

consideration of a multitude of life cycle impact assessment indicators that might be of interest for a

DM.

Decision space exploration

The exploration of the decision space aims to enhance the generation of a diverse variety of valid

solutions by the lower-level framework. For this purpose, samples are drawn from the identified

upper-level framework’s decision variables Θ. Furthermore, the parameters pun for which an

uncertainty range has been identified are sampled within an identified distribution. If no DM-

defined distribution is available, Latin hypercube sampling (LHS) is applied [233]. The sampling of

the decision variable bounds and the uncertain parameters leads to a set of N D1 formulations of

a multi-objective optimization problem, consisting of N P uncertain parameters and NΘ decision

variable bounds of the lower-level framework.

Problem formulation

The problem definition step corresponds to the translation of the decision space characteristics,

containing objectives, decision variable bounds, and parameters, into optimization problems that

the lower-level framework can solve. The optimization problem that is formulated for each sample

in the decision space D1 of InDiT can be summarized as follows:
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min z(x, y, p) ∀z ∈ Z (2.1)

subject to:

g (x, y, p) ≤ 0 (2.2)

h(x, y, p) = 0 (2.3)

Θmin
x ≤ x ≤Θmax

x (2.4)

Θmin
y ≤ y ≤Θmax

y (2.5)

Z contains the N z objective functions that are to minimize, x, y are the continuous and discrete

decision variables of the lower-level framework, p the parameters; g define the inequality constraints,

and h the equality constraints, whileΘ defines the bounds of the continuous and discrete decision

variables imposed by InDiT. A deterministic optimization procedure is applied on the lower level to

evaluate the defined problem for each sample, as it guarantees Pareto-optimal solutions with fewer

iterations than heuristic methods. This requires the transformation of the multi-objective problem

formulation of Equation 2.1 into parameterized single objectives.

For transforming the problem into a single-objective formulation, an augmented form of the ε-

constraint method is applied, first introduced by Y Haimes, Lasdon, and Wismer [168] and enhanced

by Mavrotas [234]. Details on the reasoning for choosing this scalarization function, as well as

further details on its characteristics are elaborated in Section B.1.2. After calculating the payoff table

that defines the considered ranges of the parameterized objective functions, a sampling algorithm

is applied to define N M bounds for the parameterized objective functions z. As the aim is to allow

for flexible and efficient exploration of the solution space for multiple objective functions, Sobol

sampling is applied to create parameterized constraints εm,z for generating solutions, as suggested

by Cajot et al. [68]. Further details on this choice are provided in Section B.1.2.

Solution generation

For each of the formulated single-objective optimization problems, the lower-level framework model

is evaluated, and solutions are generated in a deterministic way using the MILP formulation (Figure

2.2). It is ensured that generated solutions are better than those generated for the least-favorable

market conditions in the decision space. For this purpose, the payoff table for the least-favorable

set of economic conditions is determined, and for each sample d1 in D1, the obtained payoff table

is benchmarked against this set, as further described in Section B.1.3. Furthermore, to avoid the

evaluation of infeasible sets of ε-bounds, an early exit mechanism is implemented in line with

what was suggested by Mavrotas [234]. This is notably important when more than one objective is

subjected to an ε-constraint, as some propositions of constraints might be infeasible [234]. Further

details on the early exit mechanism are provided in Section B.1.3. The detailed workflow of InDiT is
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summarized in Figure 2.3

DM preferences

Definition of  payoff table for
objectives   

Sampling of constraints: 
creating  samples for 

 problems, with 
 auxiliary objectives

Definition of steering inputs (1):

 Bounds of model parameters :

 uncertain optimization parameters  
 Objectives 

Key performance indicators 

Sampling of decision space:
Creating  samples of    decision variables and

 uncertain parameters: 
Decision space 

for each sample
 in  

Early exit?

Infeasible
problems 

no

Evaluation of problem
in lower level

for each
problem

yes

no

yes

Feasible? 

Solutions 

Solution generation

solution 

Solution exploration

Definition of steering inputs (2):

Uncertain parameters  
Quantile to be considered
Ranking criteria and weights 

Solutions 
 

Derivation of steering
measures

Filtering

Insights from solution
exploration

DM preferences

Decision space exploration

Problem definition

Figure 2.3: Proposed methodology InDiT for synthesizing and exploring solutions. The solution
exploration is specified further in Figure 2.4.

2.2.2 Exploration of solution space

The described algorithm leads to a set of S solutions, each part of a Pareto frontier for a decision

space sample d1. For analyzing the solutions and enabling informed decision-making, methods

for systematically ranking and visualizing the solutions based on chosen criteria are coupled with

DM input that steers the decision support in the desired direction. The proposed workflow for

exploring solutions with InDiT is illustrated in Figure 2.4. On the left side, the flow of the algorithm is

illustrated, while on the right side, the individual steps are summarized. Trapezoidal boxes indicate

a filtering step in which the selected solutions are reduced by some criteria, while squared boxes

represent data processing performed for further analysis. All steps included in the exploration aim

at guiding the DM towards a relevant subset of solutions. The steps can be repeated for different

steering criteria and DM inputs for comparing results. The main concepts of each step are presented

in the following paragraphs. Details on the implementation can be found in Section B.1.4.
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Identification of solution dynamics and
steering inputs

Selected solutions 

Filtering of solutions
based on DM's preferences

Ranking solutions based on robustness and
performance

Diversification of solutions
Sampling uncertainty parameters from assumed distribution  
Recalculation of KPIs and objectives

Measure of robustness: number of times solution is occurring in solution space
Measure of performance: MCDA methods leading to aggregated KPI  

Solutions 

Evaluation of
robustness of

solutions towards
uncertainy

Displaying solutions in parallel coordinates
Reduction of solution space according to decision maker's preferences 

Clustering solution space on unit decisions
Choosing cluster representatives based on aggregated KPI 

Figure 2.4: Solution exploration in InDiT.

Filtering solutions based on decision-maker preference

The filtering step of the solution exploration enables the evaluation of solutions based on a variety

of KPIs and objectives that the DM might be interested in. A graphical representation is chosen

for providing a first overview of the solution space. Unique solutions are identified by grouping all

solutions S on optimizer decisions. For each unique solution, the occurrence is derived based on

how often the optimizer chooses the respective configuration in all solutions. All unique solutions

are displayed in parallel coordinates, allowing a comprehensive analysis of the trade-offs between

different process pathways. In parallel coordinates, negative correlations are displayed via crossing

lines, while non-crossing lines indicate synergies [68]. Color indication and other visual encodings

can be used to display the characteristics of the data. In this first graphical representation, the

user-defined KPIs and the objectives are shown in one single plot. At this point, the DM can refine

the selection of solutions by manipulating the visualization tool. In that regard, the brushing of axes

leads to the display of the solutions within the desired performance range [68, 235, 236]. Apart from

displaying KPIs, the DM has the option to analyze the underlying optimizer decisions in parallel

coordinates. The first user-defined filtering of solutions reduced the solution space S to S∗ ≤ S.

Evaluation of solution robustness under parameter uncertainty

Several studies have noted how modeling work is subject to uncertainty in the input assumptions

and that inadequate premises will lead to wrong results, no matter how well-defined a model is

[20, 162, 237]. To prevent misjudgments from results whose performance does not hold under

variations in economic parameters, uncertainty analysis is included after optimization, which

can be completely steered by the DM in steering input 2. In this input, the parameters deemed
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uncertain (pun), as well as the distribution that should be applied for uncertainty analysis, need to

be specified. If no parameter distribution functions are provided, a quasi-random distribution is

assumed, ensuring even exploration of the parameter space. For the obtained set of samples D2

of parameters pun subject to uncertainty, InDiT re-calculates the economic KPIs and objectives

per solution, as previously described in Chapter 1. The resulting distribution can be used to derive

insights into how well a solution performs under different economic scenarios. For example, a

percentile of the recalculated KPIs can be used for further evaluating the solution performance. The

evaluation of robustness under parameter uncertainty can be included at any point of the filtering

and ranking, providing flexibility to the DM and boosting confidence in obtained results.

Ranking solutions based on robustness and performance

Even though parallel coordinates facilitate the analysis of the solution space compared to tables, the

multitude of KPIs and objectives to be considered still leads to a rich and complex decision space

that is hard to capture visually. For this reason, it is suggested to include an aggregated rank for

solution performance, applying MCDA. In the presented MCDA approach, each unique solution is

attributed with a score (user rank) that is supposed to draw the DM’s focus on limited information,

bundling the most relevant information gained from the rich display in parallel coordinates [68]. The

technique for order of preference by similarity to ideal solution (TOPSIS) method is applied, which

ranks each solution based on its proximity to an ideal solution and the worst solution. The ideal

solution is characterized by the best value in every criterion, and the worst solution by the worst

value in every criterion [238, 239]. The TOPSIS method results in a ranking of solutions between

zero and one, which can be added as an axis to the parallel coordinates visualization. For applying

TOPSIS, the DM needs to define the ranking criteria and associated weights, as well as information

about the benefit or cost of each criterion included in the rank calculation. Considered criteria can

include not only the objectives and the KPIs, but also other solution properties, such as the size of a

particular unit or the level of autonomy of the system. In that regard, the occurrence of a unique

solution in the solution space S can also be included, as it can be seen as a relative measure of how

robust the respective set of decisions is for varying economic scenarios. Furthermore, characteristics

of the KPIs and objectives recalculated for the parameter distribution in D2 can be selected as

criteria. One key aspect of TOPSIS is that the evaluation criteria and their respective weights can be

defined after the first set of solutions is generated, and distinct scores can be calculated based on

different criteria that one might consider vital. After getting a better overview of the quality of the

generated solutions concerning the selected evaluation criteria, the DM can safely exclude some

solutions that are uninteresting in their current purpose and receive a solution set S∗∗ ≤ S∗ ≤ S.
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Diversification of solutions

Once all remaining solutions are ranked based on user-defined criteria, the question remains of

how to choose the most promising ones. Apart from user-specific ranking criteria and performance

under uncertainty, the richness of the solution space can be interesting to the DM. Having a final set

of solutions that perform comparably regarding the user rank but are diverse in optimizer decisions

allows for choosing one final solution based on more "soft" criteria, such as the current market

situation (purchasing prices) or specific solution properties. Clustering solutions in groups with

similar characteristics is a common approach to select configurations from a large set of solutions

[177, 240]. The solutions in S∗∗ are clustered on the optimizer decisions so that clusters of similar

solutions are generated, as already applied for the initial analysis in Chapter 1. K-medoids is used for

clustering; as it leverages robustness and relies on the existing data set for representative solutions,

unlike similar algorithms such as k-means [241]. In addition, despite the higher computational

effort, the suggested representative solutions are necessarily feasible, which might not be the case

for the virtual cluster centroids calculated with k-means. For determining the optimal number of

clusters, the elbow method [174, 175] is utilized. Principal component analysis (PCA) is used for

translating the optimizer decisions and the resulting clusters into two dimensions that can easily

be visualized. For each of the clusters, the best solution – taking the user-defined MCDA rank into

account – is chosen and added to the pool of final solutions S∗∗∗. That way, the DM can be sure

to have a diverse solution space that contains the preferred solutions considering their personal

evaluation criteria.

Understanding solution dynamics and refining the search

One open aspect remaining after reducing the size of the solution space by diversification is whether

the solution space is sufficiently investigated, or whether the decision space needs to be re-sampled

for creating additional relevant solutions. For this purpose, it is necessary to understand how the

optimizer decisions are influenced by choices expressed in the steering inputs, and how the desired

KPIs are influenced by the optimizer decisions. Particular questions that might be addressed by

InDiT at this stage are:

• Is the solution space explored sufficiently, or might there be other solutions interesting for the

DM that have not yet been created?

• Which unit decisions are always taken in the selected solutions, regardless of the specified

steering parameters?

• Which unit decisions influence a respective KPIs the most?

• How can solution generation be influenced to reveal more relevant solutions?

For validating the completeness of the solutions space and exploring KPI-specific characteristics,

the identification of active optimization constraints is proposed, e.g., the constraints which trigger

59



2

Chapter 2. A digital twin for decision-making in process and energy system design

Dimension 1

D
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 2

selected solutions  **
final  solutions ***
identified clusters

(a)

 all solutions 
final solutions  

(b)

Figure 2.5: Exploring the optimizer decisions of the chosen solutions. a) Clusters based on decisions
in selected solutions. Final solutions chosen in each cluster based on user rank, displayed for
decision space reduced to two dimensions. b) Bar plots of decisions with highest correlations to
user rank. Grey: all solutions; red: final solutions after clustering.

changes in objectives. The correlation matrix for the user rank and the optimizer decisions is

calculated. Continuous optimizer decisions (installed unit sizes) with the highest correlation are

displayed in a bar graph, where an observed range of the decisions in all generated solutions S

is shown, as well as the range of decisions present in the selected subset of solutions, S∗∗∗. This

enables the DM to limit the considered decision space to only the ranges of interest for the selected

solutions. If it is found that the whole range between the upper and lower bound for a unit size

appears in the solutions S∗∗∗, it is advised to increase the bounds and relax the constraint on the

unit sizes in the steering input, if physically possible. On the other hand, if only a certain range or

only one point is used for the selected solutions, the bounds can be changed to narrow down the

range the lower-level framework has to explore for generating solutions. After it has been decided

that the solution space is explored sufficiently, the obtained solutions S∗∗∗ are displayed in parallel

coordinates again so that the DM can make their final choice. By evaluating the performance of the

different solutions regarding desired KPIs, the final decision might be evident. If it is not evident, the

DM can take other subjective factors into account.

2.3 Application and results

The proposed methodology is intended for decision support in complex, multi-dimensional su-

perstructure optimization problems, where the direct prioritization of preferences before solution

generation is challenging to realize. InDiT is supposed to provide a set of acceptable solutions at

the beginning and then explore the generated results under different DM-defined criteria. In this

case study, the proposed methodology is applied to the exploration of design configurations of an
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integrated biorefinery pulp mill for the combined production of pulp and fuel, presented in Chapter

1.

2.3.1 Process superstructure development and solution synthesis

The superstructure considered in this case study is described in Section 1.3.1, including data for

process unit performance, as well as economic and environmental parameters. For generating

solutions, the following steering inputs are defined:

Economic parameters subject to uncertainty. Economic parameters describing the cost of re-

sources, market prices of services, and investment costs are considered under uncertainty. A varia-

tion of ±20% from the reference cost for all parameters is assumed for demonstrating the method,

considering uniform distribution, to avoid bias from strongly assumed distributions. However, for

future analyses, other user-defined variations might be applied; inspiration in this regard can come

from [45, 242].

Key Performance Indicators. Apart from the economic, resilience, environmental, and energetic

indicators described in Section 1.4.2, different relevant environmental impact (EI) indicators are

included in the analysis. In the previous chapter, the EI was measured as global warming potential

(GWP) 100a from IPCC 2013. The updated renewable energy directive (RED) 2 includes sustainability

and greenhouse gas (GHG) emission-saving criteria for biomass products. For biomass products

to be officially recognized as contributors to the national and European Union (EU) targets for

renewable energy and to be eligible for financial support, the criteria need to be met [243]. Criteria

considered in RED 2 include –among others – sustainability criteria regarding harvest and land use,

land use change, and forestry criteria. However, bioliquids and biomass fuels produced from waste

and residues other than agricultural, aquaculture, fisheries, and forestry residues are only required

to meet the GHG emission reduction criteria and not the land-related sustainability criteria [243]. In

[244], relevant life cycle analysis (LCA) indicators for producing biofuels have been identified to be –

besides GWP – acidification, eutrophication, and fossil resource use, due to their widely-recognized

importance for biomass-based processes. Therefore, they are included herein. A comprehensive

review of recent studies on LCA in biomass to biofuel conversion is provided in [245].

Decision space exploration, problem formulation, and solution generation

Decision variables of the upper-level framework are sampled in the steering input 1. N D1 = 15

samples are generated in the first step, aiming at cutting computational expenses for initial solution

generation roughly in half compared to the result generation in Chapter 1. For each sample d1 ∈ D1,

a set of Pareto-optimal solutions is generated. In this case study, two objectives are explored by

the lower-level framework optimization, total expenditure (TOTEX) and EI measured in GWP. The
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solutions of the worst economic scenario are computed, and a tolerance of 20% is added, meaning

that payoff tables of samples in D1 are only used for the calculation of the Pareto frontier if their

performance is not more than 20% worse than the payoff tables of the worst economic scenario. For

each payoff table qualifying for further evaluation, five Pareto-optimal points are calculated using

Sobol sampling to generate the ε-bounds. According to the criteria defined above, all of the payoff

tables qualify for further evaluation, leading to 135 function evaluations.

2.3.2 Solution exploration

From the solution generation defined in the previous section, 134 unique solutions are retrieved.

The dominated bounds of lexicographic optimization are not considered, resulting in 105 unique

configurations included for exploration. Following the procedure presented in Figure 2.4, all unique

solutions are displayed in parallel coordinates (Figure 2.6). To better illustrate the suggested method

InDiT, the steps of the solution exploration are followed from the perspective of two DMs, and the

obtained solutions are compared. Both DMs are assumed to have no strong preference towards a

certain trend in the solutions before analyzing the performance under uncertainty; thus, all unique

solutions are included in the uncertainty calculation.

Figure 2.6: Unique solutions are visualized in parallel coordinates. Each line represents one solution
displayed on multiple axes that can represent configuration characteristics, KPIs, or objectives.
Shown is the filtering criterion of DM 1, only considering configurations with a TOTEX lower than
conventional mill configuration for further analysis.

Figure 2.7 shows the performance for two samples in D1 under economic uncertainty, including

the range of the 5th to the 95th percentiles, the means of the recalculated TOTEX distribution in

D2, and the original TOTEX obtained with the parameters used during optimization. Depending
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on the sample with which the solutions are generated, the mean of the performance distributions

performs better or worse than the original result. Furthermore, the ranges of solution performance

vary significantly, depending on the sample of D1 analyzed and the optimizer decisions prominent

in a certain Pareto frontier. It needs to be noted that for the displayed TOTEX, the capital expenditure

(CAPEX) recalculated after optimization is taken into account and not the linearized one used during

optimization (Section A.2.7). DM 1 discards all solutions that perform worse than the conventional

mill design regarding the mean TOTEX in the analyzed economic parameter ranges, which leaves

them with 48 unique solutions (Figure 2.6).
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Figure 2.7: Original and recalculated cost for two samples in D1, showing the mean and the range of
the 5th to the 95th percentile of TOTEX.

Ranking and diversification

For ranking, DM 1 includes mean TOTEX and carbon efficiency in user rank calculation, both equally

weighted. This leads to a user rank between 0.41 and 0.67 for the remaining unique solutions. DM 2

is interested in acidification potential, avoided fossil emissions, and energy efficiency, which leads to

a user rank between 0.59 and 0.67 (Table 2.1). The direction indicates whether a criterion included

in TOPSIS should be interpreted as a benefit or cost.

Table 2.1: Decision-maker specifications for ranking calculation and resulting user rank ranges.

TOPSIS specifications User rank
KPIs Weights Direction Min Max

DM 1 TOTEX mean 1/2 -1 0.41 0.67
ηcarbon 1/2 1

DM 2 Acidification potential 1/3 -1
Avoided fossil emissions 1/3 1 0.59 0.67
ηenergy 1/3 1

Clustering the unique solution based on the optimizer’s decisions leads to three diverse solutions

for DM 1, each being the best-performing solution based on the defined user rank in the respective
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cluster. For DM 2 who did not discard any solutions before clustering, four clusters and thus four

diverse solutions are obtained. Figure B.2 displays the generated clusters for both DMs reduced to a

two-dimensional space. The two solution sets, including relevant KPIs, user ranks, as well as fuel

production characteristics, are visualized in Figure 2.8.

(a) DM 1

(b) DM 2

Figure 2.8: User rank, relevant key performance indicators and annual fuel production displayed for
both DMs. Each line represents one configuration in the final set of solutions suggested to the DMs.

It is noticeable that both DMs receive final solutions with biofuel production included, and the

obtained production portfolio seems to be similar for both. They all rely on a combination of liquid

fuel, hydrogen, and synthetic natural gas (SNG) production, while hydrogen is produced from black

liquor gasification. For the carbon efficiency and energy efficiency, similar ranges occur in the two
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sets of identified solutions relevant for each DM. In contrast, more significant differences can be

observed for TOTEX, acidification potential, environmental impact in the form of GWP, and avoided

fossil emissions. Thus, even though no major differences are observed in the product portfolio of the

solutions suggested to both DMs, InDiT allows for the identification of specific solutions relevant

to the preferences of a DM. As Figure 2.8 indicates, for both DMs, one solution is dominating the

others regarding the defined user rank, suggesting to consider this configuration for the combination

of desired KPIs. For DM 1, the configuration with the highest user rank relies on a combination

of Fischer-Tropsch (FT) fuels and SNG production, with all available bark and only minor shares

of black liquor being gasified. To complement the lime kiln operation, natural gas is imported,

resulting in higher GWP compared to other configurations. For DM 2, the configuration dominating

the others suggests the production of dimethyl ether (DME), SNG, and hydrogen. 20% of the weak

black liquor are gasified, and the lime kiln can be operated solely on off-gases from gasification.

Steering the result generation

The most relevant decisions influencing the calculated user rank are visualized in a polar plot for

both DMs (Figure 2.9).
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Figure 2.9: Correlations between the optimizer decisions and user ranks.

Out of the eighty-six units to install, the twenty most correlated ones in relation to the user ranks are

displayed. Particularly influencing the user rank of DM 1 is the size of the process units related to

the production of SNG. Process units relevant for DM 2 are the lime kiln, units related to black liquor

gasification, and the units that indicate the allocation of carbon in the process, such as the solid

carbon burner, and the model unit that records the amount of biogenic CO2 removed in acid gas

removal units (CO2 removed). The lime kiln operation determines the amount of fossil emissions

generated on-site. Its load, as well as the load of the recausticizing unit and the related additional
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lime demands, are correlated to the amount of weak black liquor gasified. Thus, when EIs indicators

are in focus, the treatment of black liquor is highly relevant for solution performance. On the one

hand, gasifying black liquor generates off-gases that can be used to fuel the lime kiln; on the other

hand, increasing shares of lime might be required.
C

oo
lin

g 
SN

G

Pr
et

re
at

m
en

t S
N

G

G
as

ifi
er

 S
N

G

C
oo

lin
g 

SN
G

 (M
)

G
as

ifi
er

 S
N

G
 (M

)

D
ry

in
g 

SN
G

 (M
)

Pr
ep

ar
at

io
n 

SN
G

U
pg

ra
di

ng
 S

N
G

Sh
ift

 S
N

G

PS
A 

SN
G

M
et

ha
na

tio
n 

SN
G

Sh
ift

 S
N

G
 (M

)

St
ea

m
 S

N
G

St
ea

m
 S

N
G

 (M
)

Li
gn

ob
oo

st

Li
gn

in
 b

ur
ne

r

Sy
nt

he
si

s 
M

eO
H

M
eO

H
 W

G
S

Pr
et

re
at

m
en

t M
eO

H

G
as

 c
le

an
in

g 
M

eO
H

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
ec

is
io

ns

0.55

0.60

0.65

0.70

0.75

C
or

re
la

tio
n 

to
 u

se
r r

an
k 

[-]

Maximum bounds [-]
All solutions [-]
Selected solutions [-]
Correlations [-]

(a) DM 1

So
lid

 c
ar

bo
n 

bu
rn

er

C
O

2 
re

m
ov

ed

Li
m

e 
ki

ln

O
ff-

ga
s 

bu
rn

er
 (L

K)

Se
le

xo
l

Li
gn

ob
oo

st

Pr
et

re
at

m
en

t M
eO

H

D
is

til
at

io
n 

M
eO

H

M
eO

H
 W

G
S

Sy
nt

he
si

s 
M

eO
H

G
as

 c
le

an
in

g 
M

eO
H

U
pg

ra
di

ng
 S

N
G

Pr
et

re
at

m
en

t S
N

G

PS
A 

SN
G

G
as

ifi
er

 S
N

G

D
ry

in
g 

SN
G

 (M
)

G
as

ifi
er

 S
N

G
 (M

)

Pr
ep

ar
at

io
n 

SN
G

St
ea

m
 S

N
G

 (M
)

C
oo

lin
g 

SN
G

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
ec

is
io

ns

0.45

0.50

0.55

0.60

0.65
C

or
re

la
tio

n 
to

 u
se

r r
an

k 
[-]

Maximum bounds [-]
All solutions [-]
Selected solutions [-]
Correlations [-]

(b) DM 2

Figure 2.10: Exploitation of the decision space in all unique solutions and the ones selected for each
DM.

Figure 2.10 shows the most relevant optimizer decisions for both DMs, ordered by descending

correlation coefficient. They are normalized with regard to the largest sizes obtained in all con-

figurations. For both DMs, the relevant unit sizes in all configurations, as well as the unit sizes of

the identified relevant solutions are shown. Furthermore, the bounds of the optimizer decision
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variables are displayed, if applicable. For most of the relevant process units, the sizing constraints

are not active, meaning that the bounds of the decision variables imposed by InDiT are not reached

in the solutions generated by the lower level. The only exception is the size of the lime kiln that is

already installed at the mill, and the lignin removal unit. However, even though no explicit bounds

induced by InDiT are active, the maximum unit sizes of all units are still bound by the amount of

resources available in the process. As such, in all solutions identified for both DMs, all bark is sent

to gasification. Therefore, enabling the gasification of more woody biomass by either increasing

the wood import or reducing the pulp production could be a promising option to investigate. For

both DMs, the selection between configurations relevant to the given user ranks could be refined by

limiting the optimizer decision space to the identified ranges of relevant process unit sizes.

2.4 Discussion

In the presented method of steering the solution generation, prior knowledge about the process

unit relation to each other is inevitable for appropriate interpretation. To improve this method,

sensitivity analysis before unit size sampling in the solution generation might be adequate to

identify the process units that are representative of certain process pathways and focus the analysis

on them. Another limitation of this work is the absence of uncertainty in the analysis of EI, which

should be added in future work. Nevertheless, the method has demonstrated an opportunity for

comprehensive solution generation and exploration when complex optimization problems are

analyzed. The solution space can be explored for a variety of DM preferences and specifications,

including uncertainty considerations. The step-by-step propagation of the method allows the DM

to follow the process of solution filtering and to iterate through different steps multiple times to

adjust their preferences according to the retrieved results. The practice of visualizing each step

gives guidance and makes the process intuitive to understand, enabling the choice configurations

accordingly.

2.5 Conclusions and outlook

This chapter addresses the challenge of providing decision support for complex superstructure

optimization problems by introducing a digital twin InDiT that consults the DM during solution

synthesis and exploration. Other than the majority of computer-aided decision-making approaches,

the digital twin does not only synthesize results based on the technical system incorporated in a

simulation or mathematical programming formulation; it moreover mirrors the whole decision

process a DM is passing through, translating their needs into computer language and retrieving

relevant information. In that regard, the proposed methodology is not supposed to replace a human

DM but to support the decision-making process objectively.
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Taking the DM’s preferences into account at different stages in the framework and incorporating it in

MCDA allows for efficient solution generation, for adapting the search space if preferences change,

and for exploring the solution space under different perspectives, filtering solutions and identifying

promising alternatives. Coupling the visually-assisted solution exploration with a rigorous solution

generation step relying on mathematical programming and optimization guarantees the Pareto

optimality of solutions for a specific decision space. Tackling uncertainty in economic parame-

ters during solution generation and exploration allows for analyzing solution performance under

different economic conditions. Furthermore, InDiT provides a steering proposition that suggests

how further relevant solutions could be generated. Thus, the aim is not to provide the DM with

one optimal solution but to instead provide an approach that enables a fast and comprehensive

exploration of the solution space of a complex PSE-related problem. The results proposed by InDiT

mirror the DM’s preferences and allow for analyzing under which external criteria a generated

solution is preferable.

The method was applied to the design of a Kraft pulp mill integrated with biofuel production. So-

lutions were investigated for two DMs and their preferences. In both cases, multiple solutions of

comparable performance regarding the DM’s preferences were retrieved, all portraying different

system configurations. Furthermore, InDiT was able to suggest how more meaningful solutions

could potentially be generated. Even though InDiT might not necessarily lead to one dominating

solution, it ensures that the final set of solutions are all within the accepted range of what the DM

seeks, so they can focus their decision purely on personal preference, without worrying about mean-

ingful information that might be hidden in the data without being noticed. However, the presented

case study was based on artificially-generated requests of DMs, and the real-world usability of the

tool would need to be evaluated. Nevertheless, the presented concepts of introducing a digital twin

that mirrors the whole decision-making process of an engineer and actively communicates with its

human counterpart are believed to have the potential to help the decision-making in many complex

engineering applications, enabling a holistic understanding of the solution space and the impact of

expressed preferences. As the method is estimated to be sufficiently general, it is hoped the concept

could eventually be generalized and applied to other problems in the domain.
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3Increasing superstructure optimization

capacity through active learning

strategies
Overview

 Efficient and flexible design of surrogate models, replacing non-linear process simulations

integrated in superstructure optimization frameworks

 Adaptive learning procedure based on prediction uncertainty

 Increase of optimization capacity in non-linear multi-objective optimization problems by

identification of relevant design space regions leveraged by machine learning

The content of this chapter is partly published in [246–248].

In the previous chapter, approaches for providing decision support in consideration of multi-

dimensional decision-maker (DM) needs were explored. Oftentimes, it is desired to acknowledge

operating conditions in the decision-making process of process systems engineering (PSE) appli-

cations, leveraging the system’s performance. Simulation-based optimization models are widely

applied to find optimal operating conditions of processes. Often, computational challenges arise

from model complexity, making the generation of reliable design solutions difficult. In the first

part of the following chapter, an algorithm for replacing non-linear process simulation models

integrated in multi-level optimization of a process and energy system superstructure with surrogate

models is proposed. An active learning strategy to continuously enrich the database on which

the surrogate models are trained and evaluated is applied. Surrogate models are generated and

trained on an initial data set, each featuring the ability to quantify the uncertainty with which a

prediction is made. New data points are continuously labeled and added to the training set until

a defined prediction quality is met. They are selected from a pool of unlabeled data points based

on the predicted uncertainty, ensuring a rapid improvement of surrogate quality. When applied

in the optimization superstructure, the surrogates can only be used when the prediction quality

for the given data point reaches a specified threshold. Otherwise, the original simulation model

is called for evaluating the process performance, and the newly obtained data points are used to
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improve the surrogates. The method is tested on three simulation models, ranging in size and

complexity. The proposed approach yields mean squared errors of the test prediction below 2% for

all cases. Applying the active learning approach leads to more accurate predictions compared to

random sampling for the same size of database. When integrated into the optimization framework,

surrogates of simpler simulation models are favored in over 70% of cases, while the more complex

ones are enabled by using simulation results generated during optimization for improving the

surrogates after the initial generation. Overall, it is shown that the proposed method saves time and

adds flexibility to complex superstructure optimization problems that involve optimizing process

operating conditions. Computational time can be significantly reduced without penalizing result

quality. At the same time, the continuous improvement of surrogates when the simulation is used in

the optimization leads to a natural refinement of the model.

Besides the high computational expenses that the integration of process unit operation evaluation

in the form of simulation models in an optimization framework introduces, the optimization of

the unit operating conditions adds non-linearities into the optimization framework. In the second

part of this chapter, an approach is presented that addresses how to efficiently generate Pareto-

optimal sets of solutions by applying machine learning concepts when optimizing process unit

operations. The criteria of Pareto optimality is used to evaluate the performance of a set of design

space variables and the corresponding solution, and an algorithm is trained to predict if a solution

belongs to the Pareto frontier. An adaptive learning concept is applied to systematically identify the

next best function evaluation to improve the confidence of the Pareto frontier definition. Design

points with a high probability of being in the Pareto-optimal domain are identified and evaluated

by the original optimization model, increasing the confidence with which the Pareto frontier is

predicted. Simultaneously, the design space is reduced by continuously discarding the design points

for which the probability of being in the set of Pareto-optimal solutions is low. The procedure is

terminated when all points are labeled as Pareto-optimal or discarded. The algorithm is applied to

design a utility superstructure for an industrial process, and compared to a quasi-random design

space sampling approach.

3.1 Active learning-based surrogate model development

3.1.1 Introduction

Ensuring efficient and optimal usage of valuable resources naturally leads to the consideration

of an ensemble of integrated options for generating design solutions; and systematic approaches

like computer simulation, mathematical modeling, and superstructure optimization need to be

applied to identify relevant configurations. Such numerical approaches generally offer high levels

of accuracy and precision in their predictive capabilities but lead to large-scale, highly-complex,

mixed-integer nonlinear optimization models and face computational challenges [41].

70



3

3.1 Active learning-based surrogate model development

Efficient solution generation is hindered by high computational cost, noisy function evaluation of

simulation-based optimization models, and solving issues due to complexity and non-convexity

of rigorous first-order processes [82]. In a general optimization problem, an objective function is

optimized with respect to decision variables, while a set of boundaries, inequality, and equality con-

straints are implied in the problem formulation. For simulation-based optimization, widely applied

in process design, the constraints are often not available in algebraic form but are rather computed

for any given decision variables via numerical integrators, lookup tables, or other constructs without

an algebraic derivative. This leads to problems when applying standard optimization approaches

that require derivative information. In the case that derivatives can be approximated or evaluated,

some standard simulation software solvers are capable of optimizing without the algebraic model,

for example, Aspen Plus [249]. However, the reliability of simulations often decreases with the

complexity of the problem. Therefore, specialized algorithms are necessary, which are designed to

recover from simulator convergence failures.

Furthermore, researchers are often confronted with the high computational cost and noisy function

evaluation inherent in simulation-based optimization models. With numerical simulations, it is

natural that noisy function evaluations arise; however, they hinder the creation of accurate derivative

estimations. This is addressed by creating derivative-free optimization algorithms that can solve

optimization problems when derivatives are unavailable, not reliable, or suffer from expensive

function evaluation [41, 72]. However, these models often struggle to find the best solution, especially

for constrained cases [72]. Another approach to reducing complexity has been to apply special

decomposition techniques [46].

Further issues that arise from attempting to solve simulation-based mathematical programming

models are that the complexity and non-convexity of rigorous first-order process models make

them impossible to solve [82]. To overcome this issue in superstructure-optimization problems,

separate flowsheets are used for different process configurations, and resulting costs are compared. A

typical strategy may therefore follow a more heuristic approach, potentially resulting in sub-optimal

solutions and inefficient implementation [82].

Applications in multi-objective optimization (MOO) problems of superstructures have shown an

increasing need for efficient construction and use of surrogate models. The presence of many

possible alternative configurations and operating conditions makes calculating the flowsheet model

at each iteration impractical [74]. In such cases, the original data can be used in computational

experiments to generate missing data points, such as if a set of experiments were performed. These

data can then be used to fit surrogate models to describe the simulated system. Using surrogate

models, system simulation with new operating points can be performed in less computational

time than with the original model, and model results can be generalized without encountering

flowsheet convergence issues. In addition to advantages stemming from reduced computational

time, surrogate models are known to provide a significant degree of flexibility and to be efficient in
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optimization applications [250]. Furthermore, surrogate models enable the inclusion of uncertainty

in the analysis.

3.1.2 State of the art in surrogate model design

Simulation-based optimization is a common approach in PSE, and significant work has been

performed in the field of surrogate model development. Particularly in the domains of molecular

chemistry, supply chain management, residential energy systems, and chemical engineering, a

large number of surrogate modeling applications are reported [251–253]. Furthermore, a variety of

literature focuses on the general methodology to optimize surrogate models [254, 255]. Different

types of approximation models exist. Artificial neural networks (ANNs) [256] represent one popular

method to approach modeling, optimization, and control of chemical process systems. Their

behavior is based on the imitation of a brain’s neurons. Another method widely applied is the

Kriging-interpolation technique [257]. This method provides a statistical prediction of a function

by minimizing its mean square error. Other approaches are simple polynomial regression models,

response surface methodology, multivariate adaptive regression splines, and radial basis function. A

comprehensive overview of different modeling types is provided by Jin, W Chen, and Simpson [258].

In problems related to PSE applications, surrogate modeling for simulation-based optimization is

mostly addressed using Kriging or neural network models [41]. ANNs have especially been applied in

chemical process modeling [74, 82, 259, 260]. Their ability to fill gaps in the search grid caused by the

absence of analytical solutions has been acknowledged [259], as well as their competence to reduce

the computational time considerably when integrated in optimization frameworks, without penal-

izing model quality [260]. Queipo et al. [261] showed that ANNs can replace the time-consuming

numerical simulation of a heterogeneous and multi-phase petroleum reservoir used for the pre-

diction of complex permeability and porosity distributions. Fernandes [262] used ANNs to model

Fischer-Tropsch synthesis and maximize product yield. Teske [74] developed a global surrogate

model of a rate-based fluidized bed methanation reactor model in the process chain of wood to

synthetic natural gas (SNG) using – among others – ANNs. Fahmi and Cremaschi [82] optimized

the design of a biodiesel production plant by replacing all subsystems in a process flowsheet model

with surrogate models based around ANNs and thereafter solving a defined mixed integer nonlinear

programming (MINLP) problem. Nuchitprasittichai and Cremaschi [263] optimized a conventional

amine-based carbon dioxide capture process to minimize the capture cost using ANNs. Tock and

Maréchal [260] developed parameterized modes of a carbon dioxide capture process for predicting

optimized thermo-economic performance, including investment cost, heat demands, and corre-

sponding temperature levels for a range of flue gas flow rates and carbon dioxide concentrations.

The optimized sub-problem was integrated into a global problem formulation combining energy

flow, energy integration, and economic models with a multi-objective optimization strategy as

described by Gassner and Maréchal [88]. The approach was applied to study a natural gas combined
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cycle process with flue gas re-circulation.

Apart from ANNs, polynomial- and Kriging-based approaches are applied for surrogate modeling in

process design. A methodology for optimizing steady-state flowsheet simulators using empirical

surrogate models based on these approaches has been presented by Palmer and M Realff [43]. Ac-

cording to Palmer and M Realff [43], the developed meta-models only require a small set of solutions

obtained from the simulation and still allow the optimization to proceed. Caballero and Grossmann

[42] developed an algorithm for using surrogate models in modular flowsheet optimization of con-

strained, nonlinear problems. Due to the lack of derivatives and the noise caused by specific unit

operations in this particular modular process simulator optimization application, reliable derivative

calculation was not possible. Noisy black box models of distillation columns and reactors were

substituted by Kriging interpolation models. Henao and Maravelias [40] presented a framework

for surrogate-based superstructure optimization of an amine-based CO2 capture system. Kriging

interpolation and ANNs were applied to design surrogate models integrated into the superstructure.

Hasan et al. [264] performed process modeling, simulation, and Kriging-based optimization of

adsorption-based CO2 capture technologies. Quirante, Javaloyes, and Caballero [265] presented a

superstructure optimization approach for distillation columns that applied Kriging interpolation-

based surrogate models. It was shown that the applied models qualify to represent the original

system accurately with less than 5% error. More sampling points in the model yielded better accu-

racy in reproducing the actual simulation results. However, with an increasing number of sampling

points, the computational time to calibrate the model also increased. Particular note should also be

made of recent research by the Institute for the Design of Advanced Energy Systems (IDAES) [266].

The institute seeks to address the gaps in commercial simulation packages and general algebraic

modeling languages by developing advanced process systems engineering capabilities to support

the design and optimization of innovative processes. A framework for generating process models

has been developed in this context, containing interfaces for exporting, loading, and restoring

modeling results. Furthermore, the interconnection of the modeling systems with higher-level tools,

workflows, and user interfaces are included [266]. A library of models for common unit operations

has been developed, allowing for the simple representation of each unit. The applied data-driven

machine language repository contains regression tools for the development of property models

for the kinetics and thermodynamics of a system. The application of the developed tools ranges

from coal-fired power plants to the optimization of power generation networks and next-generation

power plants. Sikorski et al. [267] applied parameterization of a biodiesel production plant model

and showed the input-output relations between process parameters and heat loads. For the surro-

gate design, polynomial and high-dimensional model representation methods were used, proving

to be valid tools for representing the original processes. Pedrozo et al. [268] built multi-variable

piecewise linear surrogate models based on commercial simulation software results and capital

cost correlations by solving generalized disjunctive programming problems. The surrogates were

integrated with a mixed integer linear programming (MILP) problem formulated to determine the
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optimal design. Mountraki, Benjelloun-Mlayah, and Kokossis [269] introduced an iterative approach

for systematically evaluating property process parameters from experimental data compatible with

commercial software. The approach was applied to modeling an existing biorefinery. Extensive

reviews of surrogate-based optimization are provided by Forrester and AJ Keane [270] and McBride

and Sundmacher [73].

As an alternative to using static data sets for training surrogate models, algorithms can be extended

to permit dynamic decisions regarding which data are best to add at the current state of the model

training and evaluation process. The concept of active learning is especially valuable when labeling

data is computationally expensive or when updating the model with data that arrives continuously

is desired [271]. In active learning, the model is initialized with a small sample of data from the

design space and iteratively enlarged in domains where it is most needed. The technique enables

efficient surrogate construction with limited data requirements. This can be compared to Bayesian

optimization, in which one would like to know the next best measurement, assuming the current

evaluation is the last one [272]. The next best measurement is added to the data set based on the

predictions of a machine learning model and an acquisition function that determines the potentially

most promising measurement. Thus, the approach is closely linked to hyperparameter optimization,

as the goal of both is to choose data and model parameters in the most efficient way [273, 274]. Active

learning strategies have grown in popularity in recent years across a variety of fields as a means of

reducing the required amount of labeled data. Sener and Savarese [275] used an active learning

approach for image classification based on convolutional neural networks. Shen et al. [276] apply

active learning to reduce the data in their deep learning algorithms for named entity recognition.

Jablonka et al. [272] developed an active learning algorithm to predict the Pareto-optimal materials

for the design of de novo polymers and systematically improve the accuracy of the estimated Pareto

frontier.

3.1.3 Research gaps and objectives

Despite increasing interest in other domains, to the author’s knowledge, active learning approaches

have not yet been applied in PSE-related domains. Presented studies for surrogate model design,

especially integrated with optimization frameworks, instead follow a static approach of training

and evaluating models. Most presented studies focus on the surrogate model development for

one specific process system, comparing performances of different surrogate models rather than

addressing the development of a generic tool for surrogate model design for different processes.

Lastly, it is observed that the prediction uncertainty is not exploited, from which the integration in

optimization frameworks could largely benefit, as it would allow for not only predicting process

results but also giving an estimation for the quality of a prediction.

This research aims to develop an approach for designing surrogate models of chemical process
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units integrated into process and energy system optimization frameworks with an active learning

strategy. The design aims at assisting in the efficient replacement of time-consuming simulations of

chemical processes with more flexible designs while avoiding convergence issues in the upper-level

optimization. For ensuring reliable predictions and optimization results, it is essential to not only

design surrogates but also to provide a measure of their performance. Furthermore, since labeling

data is computationally expensive, it is desired to reduce the number of labeled data points as

much as possible with the surrogates continuously improving themselves while being used in the

optimization framework. Thus, the main features of the approach explored here are flexibility for

adapting to process models of different sizes and complexity, convenience and efficiency in the

application, and the capacity to predict process characteristics and associate the predictions with a

quality estimate.

3.1.4 Methodology for developing active learning artificial intelligence

The methodology suggests a generic algorithm for efficient and reliable design of surrogate models of

chemical processes that can be integrated with process and energy system optimization frameworks

and that are able to improve themselves continuously. The active learning artificial intelligence

(ALAI) instance is used in two phases, namely the design and the application. In the design step,

initial data are generated from the original process model, and a set of surrogate models is designed,

evaluated, and stored in the ALAI instance. In the application step, the generated ALAI instance is

included in the optimization framework and used for solution generation, given that the prediction

quality is good enough. Otherwise, the original, simulation-based process model is called, and the

obtained data are used to improve the ALAI instance.

Process and energy system design and optimization strategy

The design of process and energy systems is a complex task that requires systematic modeling

and optimization approaches for generating solutions and evaluating them on economic, social,

and environmental aspects. In this approach, the optimization problem is divided into two parts,

the upper and the lower level, as described in Section 1.3.2. Generally, the model formulation of

the lower level is adapted from Gassner and Maréchal [88] and I Kantor et al. [163]. It contains

superstructure models that comprise the mass and energy conversion in the units, as well as the

mass and energy integration in the system. The synthesis of configurations from this superstructure

includes manipulating the decision variables by an optimizer. Decision variables of the lower level

are either binary, addressing unit installation, or continuous, addressing unit size. For generating a

solution, the decision variables for a solution are determined by solving a MILP problem in the lower

level. Compared to the applications of the framework in Chapters 1 and 2, chemical conversions are

included by calling simulation software in each optimization call, to provide reaction characteristics

and the corresponding energy and mass flows for the respective process units. In the method
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presented herein, the optimization problem is formulated in AMPL [169], and solved by the CPLEX

[170] solver. Further information on the MILP formulation in the lower level is available in Section

1.3.2.

Evolutionary, multi-objective optimization algorithm

Life Cycle
Assessment models

Economic models

Flows and process unit
sizes by mass and energy

integration, MILP

SolutionsDecision variables

Lower level

Energy and material
flow superstructure

Biorefinery processes:
Simulation/ ALAI

State variables

Figure 3.1: Simplified methodology for superstructure design and solution synthesis, adapted from
[54].

For exploring the solution space of a given design problem and generating multiple solutions, the

lower level communicates with an upper-level optimization as described in Chapter 1. However, the

upper level differs from the one previously presented in Chapter 1, where random sampling was

applied to diversify the solution space, and the one in Chapter 2, where the interactive digital twin

concept was applied on the upper level. In this chapter, the upper level consists of an evolutionary

MOO algorithm that is able to address the MINLP problem induced by the consideration of process

operating conditions, as it is suggested in [88]. In each iteration, the upper level fixes nonlinear

decision variables, such as the operating conditions of a certain process unit. For a problem

communicated by the upper level, the lower level generates a solution and reports it back to the

upper level (Figure 3.1).

Complexity definition of process models

For evaluating the proposed method and identifying differences in model characteristics and perfor-

mance, it is crucial to understand the complexity of a simulation model. Therefore, a ranking system

is developed, quantifying the complexity of a simulation flowsheet based on multiple characteristics.

Recent approaches for the determination of model complexity focus on applying components from

axiomatic design and information theory. Popovics and Monostori [277] introduced an approach

to defining simulation model complexity based on structural and software complexity measures.

Structural complexity takes the number of modeled objects and the connections into account. For

each model object, a set of attributes is considered. In this work, a similar approach is followed,

where for each simulation model, the structural complexity γmodel is defined by the number of

equations N equ, the number of variables N var, the number of material and energy streams leaving

and entering the system N in/out
s , the number of reactions N react as well as the overall unit complexity

γunits. The overall unit complexity is computed as the sum of all unit complexities γu , which are
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respectively calculated as the sum of unit input and output streams N in/out
u (Equation 3.1).

γmodel =N equ +N var +N in
s +N out

s +N react +γunits (3.1)

γunits =∑
u
γu (3.2)

γu =N in
u +N out

u (3.3)

Adaptive ALAI design

The aim of designing a surrogate model is to replace the simulation-based units in the described

lower level to enhance problem evaluation efficiency and robustness. In the design step of ALAI, the

model needs to contain the relationship between the design variables (e.g., operating conditions) and

the system responses of complex thermo-chemical processes currently approximated by simulation

software in the lower level (red box in Figure 3.1).

Initial data generation yielding
sample pool 

Random selection of 
 features from : 

Labeling of features  : ,
addition to 

Building surrogates with  

?
Selecting  features 

from  based on prediction
uncertainty 

Labeling of new features
 

Adding  to  

Enabling usage of ALAI in
optimization framework

yes

no

sample
pool 

User input: process characteristics

Design space exploration

Surrogate model design

Iterative model improvement

Figure 3.2: Proposed algorithm for designing ALAI, green boxes are presented in more detail in
Figures 3.3 and 3.4.

Thereby, the objective is to generate a reliable representation of the respective process with as few

simulations as possible. Further improvement of the ALAI design is achieved in the application

step. By estimating the prediction quality of the surrogate models for unlabeled data, using this
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information to identify the most uncertain feature samples, and adding them to the ALAI training

data set, prediction uncertainty is continuously reduced. The initial design of ALAI follows the

algorithm summarized in Figure 3.2.

Process design space exploration and data preprocessing. As a first step, the DM is asked to specify

the process to be replaced by surrogate models, as well as NΘ decision variables relevant to the

operation of the selected process unit. For the decision variables, feasible ranges in which the

process can operate need to be defined. Decision variables could include operating conditions

of process units but also efficiencies and compositions of relevant flows. Setting up the initial

data generation, the design space D is created by drawing N total samples for the decision variables

or inputs of the process to be replaced. Thus, D is of the dimension NΘ× N total. For sampling

the decision space, the quasi-random Latin hypercube sampling (LHS) algorithm is applied to

systematically cover the entire decision space [233]. For a randomly-selected subset of samples from

D of the size NΘ×N initial, the respective outputs are created by calling the original simulation of the

process and recording the outputs. Outputs, in this case, are the characteristics of the simulation

that are relevant for the system superstructure formulation in the lower level. They can contain

stream temperatures, reaction heat loads, or any other process characteristics included in the mass

and energy formulation of the unit. After parsing the data obtained from simulations to remove

potential outliers and constant outputs, standard scaling is applied to transform inputs and outputs

to distributions centered around zero and unity variance. For scaling, the mean and standard

deviation of the training set are taken into account, avoiding data leakage during model evaluation.

The processed data set of inputs and outputs from model simulations is used as features X and

labelsΨ for surrogate model design and stored in data set V .

Surrogate model design. For building the surrogate models in ALAI, the algorithm in Figure 3.3 is

followed. The data set V containing features and labels is divided into a training and a testing set,

with which ALAI builds and evaluates a set of surrogate models. Instead of building one fixed type of

surrogate model, ALAI considers multiple types of deep learning and machine learning models. The

reasoning for this is to enable ALAI to flexibly choose the best-performing surrogate model based on

the characteristic of the processing unit and available data. A prerequisite of each surrogate model

type to be accepted in ALAI is its ability to treat multi-output regression problems and its capability

to estimate uncertainty σ̂with which predictions ψ̂ are made. By using the prediction uncertainty as

a measurement of prediction quality, ALAI can be continuously improved after the initial generation

of the surrogate models.

78



3

3.1 Active learning-based surrogate model development
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Figure 3.3: Proposed algorithm for surrogate model design in ALAI.

Artificial Neural Networks. As deep learning (DL) components, ANNs are integrated into the ALAI

superstructure. ANNs are computational models that are inspired by the nervous system of living

beings. They can be interpreted as a set of interconnected processing units (neurons). ANNs hold

many valuable features, such as their ability to adapt from experience, their learning competence,

or their capability to generalize [278]. Each neuron in an ANN gathers input signals from other units,

assembles them, and produces a response. Each of the input variables x is affiliated with a weight w ,

which enables the quantification of their relevance with respect to the functionality of the neuron.

The sum of the weighted inputs is saved in the linear aggregation l . If the result of the activation

potential reaches the activation threshold b, the neuron produces an output signal. The activation

functions a limit the neuron output value o within a certain range. The output signal can then serve

as an input for other neurons in the network [279] (Equations 3.4- 3.5).

l =
1∑

i=1
wi · xi −b (3.4)

o =a(l ) (3.5)

The structure of ANNs can be divided into three parts: the input layers, the hidden layers, and the

output layers [279]. The input layer receives external signals and passes them on to the hidden

layers. Usually, the inputs are normalized to improve the numerical precision of the mathematical

operation. Hidden layers are responsible for extracting patterns associated with the analyzed system.

In the output, the final signals of the network are generated [279]. The training process of an

ANN consists of tuning the synaptic weights and thresholds by using samples that represent the
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system behavior. After being trained on a subset of the data that describes the system, the ANN

generalizes the behavior so that outputs can be predicted for any set of input parameters. Optionally,

hyperparameter optimization is performed to improve the ANN’s performance by optimizing the

number of hidden layers, the number of neurons per layer, and the activation function. Other

hyperparameters that can be optimized are the number of epochs, representing the iterations used

for fitting the model, as well as the batch size, which describes the number of samples considered

per gradient update during training.

For approximating the prediction uncertainty of an unlabeled set of samples, dropout layers are used

as suggested by Gal and Ghahramani [280]. According to Gal and Ghahramani [280], an ANN with

dropout applied before every weight layer is mathematically equivalent to a Bayesian approximation

of the probabilistic Gaussian process (GP), which is an adequate tool to describe model uncertainty,

but at a high computational cost. This problem can be overcome by transferring the concept of

uncertainty to ANNs using dropout layers. In ANN design, dropout is typically applied to avoid

over-fitting. When applying dropout, layer nodes in the ANN are randomly deactivated during

training following a Bernoulli distribution. Consequently, a range is provided for each label by

the ANN, allowing the calculation of the mean and standard deviation for a prediction. A detailed

explanation of the approach of using dropout as a valid representation for uncertainty is provided by

Gal and Ghahramani [280]. In ALAI, an ANN including dropout layers is built with which – for each

process condition evaluation request and each model output to be predicted – a range of predictions

is obtained. This allows for computing the standard deviation and displaying it as a measure of

prediction quality [280]. ANNs in ALAI are built in Keras [281], a deep learning API written in Python

[282]. Keras is running on top of the machine learning platform TensorFlow [283]. Hyperparameter

optimization of the ANN is carried out with Scikit learn grid search using cross-validation [284].

Gaussian process regression. Gaussian process regression (GPR) is a Bayesian approach especially

known for its strong performance on small data sets. Generally, the Bayesian approach infers a

probability distribution over all possible values. For the example of a linear function f (x) = x⊺w

and ψ = x⊺w + ϵ, where f is the function value, x the input vector, w a parameter vector and ψ

the observed target value, the Bayesian approach specifies an initial distribution p(w) that reflects

the prior knowledge of the parameters and uses Bayes’ Rule to update the probabilities as more

evidence becomes available [285]. ψ is assumed to differ from f (x) by additive noise that follows an

independent Gaussian distribution with zero mean and variance [285]. In the Bayesian model, the

inference is based on the posterior distribution, calculated as the likelihood p(Ψ|X , w) times the

prior p(w) over the marginal likelihood p(Ψ|X ), where X andΨ denote all observations of x and ψ

in the training set [285] (Equation 3.6). The marginal likelihood is the integral of the likelihood times

the prior [285].
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p(w |Ψ, X ) = p(Ψ|X , w)p(w)

p(Ψ|X )
(3.6)

Predictive distributions at unseen points x∗ are calculated by weighting all predictions f ∗ by their

calculated posterior distribution [285] (Equation 3.7).

p( f ∗|x∗, X ,Ψ) =
∫

w
p( f ∗|x∗, w)p(w |X ,Ψ)d w (3.7)

GPR is a non-parametric Bayesian approach that does not calculate the probability distribution

of specific function parameters but rather the probability over all possible functions fitting the

data. Thus, unlike other supervised machine learning algorithms, the approach does not rely on a

parametric functional form to model the data, but uses learning to adapt an ensemble of functions

[273]. The initial distribution reflects the prior knowledge of the different possible functions, repre-

sented by samples drawn from a multivariate normal distribution, characterized by its mean and

covariance [273]. Thus, GPR infers a probability distribution over all possible functions instead of

returning exact predictions for each. A posterior distribution is obtained that allows for estimating

the uncertainty of the prediction, which can serve as a valuable measure of the prediction quality.

For implementing GPR in the machine learning (ML) component of ALAI, GPy, a Python library

for GP models from the Sheffield machine learning group, [286] is applied. GP models for co-

regionalized multi-output regression are used, as they are particularly interesting when one suspects

that certain output dimensions might be correlated, which is likely the case for thermodynamic

process design data. For building and optimizing the GPR models, the model package for Latent

Variable Multiple Output GPs implemented by Dai, Álvarez, and Lawrence [287] is used, and RBF

kernels and optimization with 10 random restarts are applied.

Random forests. Random forests, as proposed by Breiman [288], are included as an alternative to

GPR in the ML component of ALAI. Random forest regression is a supervised learning algorithm

combining predictions from multiple decision tree regressors to make a more accurate prediction

compared to a single model [289]. Every decision tree regressor that the random forest contains

can be seen as a piecewise constant approximation of the output. Apart from the training stage

itself, the selection of hyperparameters is also decisive for the performance of the surrogate model,

especially since the design must function with a large variety of process units. In the presented

framework, a range of hyperparameters is explored in a grid search that uses cross-validation [284],

enabling a more robust estimation of the model performance. Explored hyperparameters include

the number of trees and the number of features used for building trees. For estimating the prediction

uncertainty, the model structure of random forests is important. The random forest algorithm is a

combination of a large number of estimators (decision trees), which, individually, may be subject to
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variance but which, collectively, give the model the required robustness. The approach of predicting

uncertainty follows the method suggested by Meinshausen [290], where the estimators in a random

forest are used to model the conditional distribution function of the output. The inter-quantile range

obtained from the set of estimators is used to measure distribution dispersion and thus quantify the

uncertainty of the model [290].

Iterative model improvement. After building the initial set of surrogate models, ALAI compares

their performance on the test data and returns those best suited for making predictions for a given

data structure. Alternative performance metrics α could be used, but mean squared error (MSE)

is implemented as a default approach. If the desired test metric quality is satisfied for at least one

of the included surrogate models, ALAI is accepted to be used in the superstructure optimization

instead of the simulation software (Figure 3.2). However, if the performance is not satisfying, ALAI is

improved by labeling more points and adding them to the data set V that is used for training and

evaluation (Figure 3.4). For adding more data points to V , all surrogate models in ALAI are called to

make predictions on the remaining samples in D . The surrogate model making the best predictions

is determined by the mean uncertainty µσ with which it makes predictions. A batch of samples

with the highest uncertainty prediction for this model is selected for being labeled and added to V .

After labeling, ALAI is updated with the new data. This procedure is repeated until the resulting test

metrics of one surrogate satisfies the quality demands.

for each iteration

Calling DL, getting prediction and
uncertainty for all samples in   

Calling ML, get prediction and
uncertainty for all samples in   

? Returning  most uncertain
samples from DL evaluation: 

Returning  most uncertain
samples from ML evaluation: 

yes

no

Figure 3.4: Proposed algorithm for selecting sample batches when iteratively improving ALAI.

ALAI application and continuous improvement

After the ALAI instance designed for a processing unit has achieved sufficient quality for integration

in the system superstructure, it can theoretically replace the call of the simulation software. When

the process system optimization model calls for a process unit simulation that has been replaced

by ALAI, all surrogate models included in ALAI are called to make predictions ψ̂ j for the features
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χ j given by the upper-level framework. In addition to the resulting labels, the ALAI superstructure

returns the predicted uncertainty σ̂ j for each surrogate model included in the superstructure, which

is interpreted as the confidence that the surrogate model applies to the prediction. If the uncertainty

of a prediction made by ALAI is lower than a specified threshold σth, the prediction of ALAI with the

highest confidence is used. Conversely, if ALAI returns a high uncertainty for a given prediction, the

call is discarded, and instead, the upper-level framework activates the original simulation software

to label the samples and carry out the optimization. In the latter case, χ j , and ψ j are added to

data set V and ALAI is trained on the updated data, while simultaneously, the optimization call is

completed with the generated labels ψ j (Figure 3.5).

Optimization call  with features   

Retrieving predictions  and  from ALAI call

?

Using  for mass and energy integration in
optimization call

Calling original simulation model, retrieving labels  

Using  for mass and energy integration in
optimization call Adding  to 

Updating ALAI

yes

no

Figure 3.5: Proposed algorithm for improving ALAI during application in optimization.

3.1.5 Application of active learning artificial intelligence

Process description

The suggested approach of designing and applying ALAI instances is tested and validated on three

process unit simulation models, namely a biomass to Fischer-Tropsch (FT) process, an ammonia

reactor (AR), and a co-electrolysis (CE) system. For all process simulation models, an ALAI instance

is built and integrated into a MOO framework. The upper level optimizes operating conditions for

the given process unit considering economic performance using a genetic algorithm, while in the

lower level, heat integration between the process and a utility system is performed.

Ammonia is one of the most significant inorganic chemicals being industrially produced for societal

needs, serving as the principle component for fertilizers in the food production system. Industrial

ammonia is mainly produced in the Haber-Bosch process, where nitrogen (N2) is catalytically reacted

with hydrogen (H2) to produce ammonia (NH3). The ammonia synthesis reactor simulation model

is simplistic: it consists of 10 connected units, three system inputs, and three system output streams.
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System input/output streams are defined as streams that cross the boundary of the considered

system, e.g., the import of resources. The simulation model features 60 variables and equations.

Except for three control units, all units have one or two input and output streams. The overall system

includes one reaction taking place. Calculating the system complexity with the method described in

Section 3.1.4 leads to a score of 147 for the ammonia synthesis simulation model (Table 3.1).

Table 3.1: Simulation model properties and characteristics of integration with process superstruc-
ture.

Process simulation models AR CE FT

Number of equations 60 120 1542
Number of unmeasured variables 60 120 1542
Number of system input streams 3 10 23
Number of system output streams 3 9 26
Number of reactions 1 1 38
Overall complexity score of units 20 (10 units) 54 (31 units) 302 (142 units)
Overall system complexity 147 314 3473

Integration with optimization in
upper level

AR CE FT

Inputs varied 4 4 5
Number of relevant outputs 7 27 130

- constant outputs 2 5 67
- changing outputs 5 22 63

In co-electrolysis (CE), the concept leverages high-temperature solid oxide electrolysis cells (SOECs)

for the conversion of CO2 and water into valuable chemicals. The model is adapted from X Zhang

et al. [160], as previously described in Section 1.3.1. The CE simulation model contains 31 units, 10

system inputs, and nine system output streams. Furthermore, each unit has between zero and six

input and output streams. 120 variables are present, and thus 120 equations are evaluated. One

overall reaction is taking place in the system. The system complexity calculation leads to a score of

314.

The FT process converts biomass into hydrocarbon liquids and waxy solids via a stepwise polymer-

ization process. The FT simulation model is adapted from Peduzzi [148], as described in Section

1.3.1. It consists of 142 units represented in the simulation software, 23 system input, and 26 system

output streams. The simulation model consists of 1542 equations and variables and 38 reactions.

Each unit holds between zero and four input streams and zero and six output streams. The calculated

system complexity is 3473.

For all process simulation models, a set of input parameters that can be varied during operation

and that influence the economic performance of the system are defined. For AR, four inputs are

varied, including separation temperature, purge ratio, reactor pressure, and compressor efficiency.

For CE, four inputs are varied as well, namely the reaction temperature and pressure, the current
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density, and the molar fraction of inlet water. For FT, five inputs are varied, modifying temperatures

at various process steps and anticipated humidity fractions (Table 3.2).

Table 3.2: Operating conditions analyzed in case studies.

AR Range CE Range

Separation temperature [270,292] [°C] Reaction temperature [950,1050] [°C]
Purge ratio [0.05,0.2] [-] Reaction pressure [1,2] [bar]
Reactor pressure [270,300] [bar] Current density [0.15,0.45] [A/m2]
Compressor efficiency [0.8,0.95] [-] Molar fraction water in [0.003,0.007] [-]

FT Range

Air inlet temperature [180,240] [°C]
Humidity drying [0.05,0.35] [-]
Torrefaction temperature [210, 300] [°C]
Quench temperature [700,1000] [°C]
Water gas shift temperature [250,320] [°C]

Building the ALAI instances of each described process crucially requires knowledge of which sim-

ulation outputs are to be predicted, hence, need to serve as labels. This information is retrieved

from the integration of the respective process model with the utility superstructure in the opti-

mization framework, which yields the information required for the optimization superstructure to

construct mass and energy balances, e.g., thermodynamic states and extensive variables charac-

terizing streams. With the identified inputs that should serve as features and the required outputs

to serve as labels that need to be predicted, a first data set V for training and evaluating ALAI is

generated by calling the process simulation model. The number of labels relevant for ALAI is further

reduced by eliminating those that are not influenced by the varying inputs and remain constant

throughout the design space exploration.

For enabling the process and energy system optimization to perform heat recovery, it is crucial to

receive the heating profile at a high-temperature resolution, which can result in a large number

of relevant outputs from the simulation model. For the AR simulation process, seven outputs of

the simulation are required for integration with the utility superstructure, of which two are found

to be constant. The remaining five relevant outputs include the mass flow rate of ammonia out of

the reactor, the volumetric flow rate in the reactor, the heat load, the input mass flow rate, and the

electricity requirements. For CE, 27 relevant outputs for the integration are identified, of which 22

vary with the inputs. They consist mainly of temperatures, heat loads, mass flow rates, and electricity

demands. For FT, an original set of 130 outputs from the simulations is needed for integration with

the utility superstructure. From the 130 outputs, only 63 are affected by varying the selected inputs,

while the rest remain constant. The 63 outputs include heat loads, corresponding temperatures,

mass flow rates, and electricity demands. Table 3.1 summarizes the described characteristics of the

simulation models.
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ALAI design and application

For all three case studies, initial data sampling is performed generating N total = 8000 data points

stored in D . A starting set of N initial = 10 random points is labeled and added to V with which ALAI is

trained and evaluated. After preprocessing the data and training the ALAI components, the different

surrogate models are evaluated based on the resulting MSEtest, which is chosen as the evaluation

metric for this case study. The threshold between the test predictions and the corresponding labels

for accepting an ALAI instance to be used in the optimization framework is set to MSEth = 0.02 (2%),

based on standardized labels. If, after the first generation of ALAI, the evaluation threshold is not

reached, a batch of N batch = 10 additional samples is added to the feature space of ALAI and labeled

by calling the corresponding simulation models. For deciding which samples in D to add to V , all

surrogate models of ALAI that were generated in the latest iteration are called to make predictions

for the remaining data points in D. The surrogate model making the best overall prediction is

determined based on the mean uncertainty that is reached for all predicted data points. The N batch

points with the highest prediction uncertainty are then selected based on the prediction uncertainty

of the identified best model. Once the ALAI instance has reached a sufficient evaluation metric,

in this case, a MSEtest not greater than 2% for any surrogate model, it is added as a component of

the optimization framework, replacing the original simulation model. When being called from the

optimization framework, a prediction uncertainty smaller thanσth = 8% is required for the surrogate

model prediction from the ALAI instance to be used for generating optimization results. If this

condition cannot be met, the flowsheet simulation model is called, and the generated data are used

to improve ALAI.

3.1.6 Results and discussion of active learning surrogate models

Overall, all three processes of interest can be represented with surrogate models after a certain

number of iterations for generating the database V . Since the value for N batch is small, ALAI is set to

complete 10 iterations for each of the three processes despite the reached test metrics, resulting in

V with 100 data points. Figure 3.6 shows the MSE and the training time obtained for the analyzed

process units replaced with surrogate models. The simplest process AR is best represented with

GPR (Figure 3.6a), where a MSEtest below 2% is reached with only 30 data points; at 100 data points,

MSEtest reaches 0.09% (Table 3.3). For the ANN, a MSEtest below 2% can be reached after 8 iterations,

while the Random forest reaches an MSEtest of 2% with 100 data points. For CE, similar performance

as for AR can be observed (Figure 3.6b). All surrogate models reach good performance for FT

regarding MSEtest after 10 iterations. The GPR outperforms the other surrogate models, as it reaches

MSEtest below 1% with only 30 data points and 0.07% with 100 data points. For the other surrogates,

this accuracy cannot be reached in the data size scope evaluated; however, the ANN and random

forest surrogates both report decent performance as well, with MSEtest of 0.5% and 4%, respectively.
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Figure 3.6: Overall performance regarding MSEtest and training time for analyzed case studies.

When observing the time required for ALAI to build the surrogate models, it should be noted that

higher performance might come at the cost of training time. While generally, the training time for

FT surrogates is longer than for the other processes due to the size and complexity, GPR is especially

lengthy, showing the highest training time of the three surrogates. While the ANNs are trained within

seconds or fractions thereof, both the random forest and GPR approaches require comparatively

long training times. Here it may be noted that while the training time of the random forest increases

with the size of the data set, that of the Gaussian regression tends to decrease (Figure 3.6).

Table 3.3: MSEtest of ALAI after 10 iterations, 100 data points used, in [%].

AR CE FT

Gaussian regression 0.093 0.049 0.073
ANN 1.071 0.305 0.545
Random Forest 2.187 4.842 3.844

Overall, the results indicate that for all three case studies, a sufficient model performance regarding

the defined metrics MSEtest can be achieved even with small data sets. Generally, higher process

complexity yields higher errors in the first iterations of building ALAI; however, after 10 initial

iterations, the reported testing errors approach the same magnitude for all processes. GPR represents

an adequate surrogate model for approximating simulation models in varying complexity, while

ANNs perform better for more complex models than for simpler ones. Random forests show the

weakest performance for the analyzed case studies, requiring long training times and predicting with
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relatively high errors compared to the other surrogate methods. This observation is likely related to

the explored hyperparameter space, and adding more estimators or iterations during optimization

could improve surrogate performance at the potential cost of higher computational expenses.

Test prediction and uncertainty of surrogate models
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Figure 3.7: Parity plots of test predictions and uncertainty for AR. a) Random forest with 50 data
points. b) Random forest with 100 data points. c) Gaussian regression with 100 data points. d) ANN
with 100 data point.

The performance for different surrogate models in ALAI regarding the test prediction accuracy and

uncertainty for the volumetric flow rate from the reactor in AR is shown in Figure 3.7. Figure 3.7a

shows the test evaluation for the random forest after five iterations. Generally, the test prediction

does not adequately estimate the actual test labels, especially in the middle of the data set where

less training data is available. The reported MSEtest for the prediction is 5.3%. Correlated to the
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poor prediction are the reported uncertainties: predictions further away from available training

data yield higher reported uncertainty, indicated by whiskers of prediction. Figure 3.7b shows the

same surrogate for the same process but for a data set after 10 iterations. Predictions are generally

more accurate – the MSEtest is reduced to 2.2% – but the same effect as previously observed can

be seen, where regions with few data available result in worse predictions and higher predictions

uncertainties than those with more data points available for training and testing. The prediction

performance of the GPR for AR after 10 iterations is shown in Figure 3.7c. Here, the model performs

well for all areas, resulting in low prediction uncertainty. For the ANN (Figure 3.7d), similar results

emerge. However, it is notable that the surrogate tends to over-/ underestimate the test labels, and

reporting higher prediction uncertainties compared to GPR. From this analysis, it is acknowledged

that ALAI is able to relate predictions with uncertainty measurements that indicate the actual quality

of the prediction. Therefore, "bad" predictions are still helpful as long as they are identified as

unsuitable.

Comparison of ALAI approach to random sample selection
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Figure 3.8: Performance on test set with 100 labeled data points for FT, with random selection of
samples and ALAI approach. a) Random selection of points to label. b) ALAI approach for selection
of points to label.

The presented active learning approach is compared to a conventional labeling approach, where

data points are randomly added to the training set. As an explanatory example, an ALAI instance for

FT with only a random forest surrogate model included is built, guaranteeing an addition of data

points in each iteration based on the reported prediction uncertainty of only this surrogate model.

Furthermore, another random forest for the same process is built, but instead of selecting new points

for labeling based on prediction uncertainty, they are selected randomly. After 10 iterations, e.g.,

100 data points in each data set, the MSEtest of the random forest created with the ALAI approach is
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1.6% better than the MSEtest of the random forest that is based on the randomly generated data set.

Figure 3.8 shows the test accuracy and uncertainty prediction for one example label of the process,

comparing the performance of the random forest based on the random data set (Figure 3.8a) to the

performance of the random forest generated with the ALAI database and its active learning approach

(Figure 3.8b). Overall, the predictions made by the random forest in ALAI are more accurate, and

thus the reported uncertainties are lower. Therefore, instead of producing large data sets when

generating surrogates, a more time-efficient approach may initiate a small set and iteratively add

new labeled points based on uncertainty predictions, so that time spent on labeling data is reduced

without penalizing the prediction quality. Further information on the effect of the active learning

approach on the evolution of the data set is provided in Appendix C.

Application of ALAI in the optimization framework
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Figure 3.9: Performance of ALAI instances for FT and AR integrated into the optimization framework
with 500 optimization runs. a, c) Approach applied in each optimization call to evaluate operating
conditions. b, d) Distribution of predicted standard deviations reported from ALAI during optimiza-
tion.
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For integration with the optimization framework, a test metric threshold of MSEth= 2% was initially

defined. However, since ALAI was generated based on very small batch sizes, 10 iterations were

evaluated for model performance, resulting in a data set of 100 points. The required test prediction

quality MSEth is achieved with surrogates inherent in ALAI for all case studies. Thus, the ALAI

instances of iteration 10 can be added to the optimization framework described in Section 3.1.4 for

replacing the original simulation models.

The ALAI instance of the process of interest (henceforth referred to as FT10, AR10, and CE10)

is integrated with generic utilities and resources, such as electricity and heat supply. A genetic

algorithm is applied to find the Pareto frontier between capital expenditure (CAPEX) and operating

expenditure (OPEX). For this, the size of the respective process to be integrated is fixed. The decision

variables of the genetic algorithm are set to the varying operating conditions of the respective

process, which also resemble the features of the ALAI instance presented in Table 3.2. In each

iteration, the genetic algorithm sets the decision variables and calls ALAI for predicting the process

characteristics required by the optimizer on the lower level to perform mass and energy integration

between the process and the available utilities. For being accepted for usage in an optimization

problem, the best predicted standard deviation of any surrogate model in ALAI must be below 8%. If

this requirement cannot be reached by ALAI for a certain operating input, the original simulation

model is called to generate the data needed for the optimization, and the results are recorded for

later improvement of ALAI. When FT10 is integrated with the framework using the genetic algorithm

for conducting 500 optimization runs, the ALAI instance only performs well enough in 32 scenarios,

requiring usage of the original simulation model in the remaining 568 optimization calls, while

for AR10, 356 of 500 ALAI calls are accepted (Figure 3.9). The different dimensions on the Pareto

frontiers come from the respective process sizes considered.

Adding the data generated by the simulation calls during optimization to V improves the perfor-

mance of ALAI significantly. The improved ALAI instance FT10∗ is used in 598 out of 1000 sample

evaluations in the optimization framework, while AR10∗ is used in 727 out of 1000 cases. The results

indicate that the frequency with which ALAI is called can be increased by using the optimization

results for improving the surrogates, though considering that 8% uncertainty is acceptable. To

explore the impact of this threshold choice (σth ), an experiment is conducted on a data point for

which the prediction uncertainty of FT10∗ is reported to be 8%.

The original FT simulation model is called for the respective input data sample to record the

actual outputs, and the results are compared to the recorded predictions of ALAI. Even though

the prediction uncertainty is at the defined acceptance threshold of prediction uncertainty in the

optimization framework, the mean relative error between the 63 outputs obtained from simulation

and the predicted labels from ALAI are 0.7% for the ANN prediction and 0.03% for the GPR prediction.

The highest relative error recorded for the ANN prediction accounts for 6% of the true label value;

for GPR, the error is at 2% (Figure 3.10). Thus, depending on the application of the optimization
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framework, the uncertainty threshold σth should be modified to achieve the acceptable prediction

quality required.
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Figure 3.10: Errors recorded between predictions and simulation results for a sample point with a
predicted uncertainty of 8% with ALAI for FT. A total of 63 outputs are predicted for the FT process;
the occurrence indicates how often a relative prediction error is recorded.

Another important aspect for evaluating ALAI is computational speed. The time required for

generating an ALAI instance has been discussed in detail, but the other crucial aspect is the time

required to call an ALAI instance during optimization, including the time for loading surrogates,

making predictions, and reporting the predictions and performances back to the upper level. Table

3.4 shows the comparison between the simulation times of the original models and the times

reported for an ALAI call for all considered case studies. The process conditions of the most complex

simulation model considered (FT) can be approximated with ALAI in less than 10% of the original

simulation time. For CE, ALAI needs 67% of the simulation time, while for the simplistic AR model,

no time reduction is observed. A large part of the time required by ALAI is needed for making the GP

and random forest predictions. Depending on the process, this accounts for 53 to 63% of the total

reported time. The second largest time contribution is calling the ANN and using it for prediction.

Between 36 and 42% of the time is allocated to this stage. The rest of the time is used for loading

databases needed for standardization and the required software packages.

Table 3.4: Temporal performance of ALAI in optimization framework.

Case study tSimulation [s]a tALAI [s] ∆t [%] raccepted,ALAI [%] raccepted,ALAI∗ [%]b

AR 2.37 2.39 -1 71 73
CE 3.92 2.66 33 24 87
FT 30.25 2.70 91 6 60

a tSimulation/ALAI refer to one function call, b for AR and FT, the improved version of ALAI (ALAI∗)

refers to the usage of a larger data set for surrogate model design, for CE, σth is increased to 11%.

Thus, depending on how often an ALAI call is accepted for being used in the optimization framework
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and the complexity of the original simulation model, significant time savings can be achieved. For

the example discussed above, when FT10 is integrated for the first time, ALAI is called 500 times,

out of which 32 calls are accepted. In the rest of the cases, the original simulation is called. This

leads to 500 ALAI calls and additional 468 simulation calls, which take approximately 258 minutes.

If ALAI had not been used in this case but only the simulation models, the required time would

have actually been less (252 minutes). However, since the simulation results of the integration

were recorded and used to improve ALAI, the improved ALAI instance FT10∗ can be used in 598

out of 1000 optimization calls, which represents an acceptance rate of raccepted=60%. This results

in approximate time savings of 257 minutes or 50% compared to considering only the simulation

models. For CE10, the ALAI instance is accepted in 120 of the 500 cases, and for AR10, 356 ALAI

instances are accepted. Due to the small time difference between the ALAI call and the simulation

call, this leads to a time loss of 6 minutes for AR and 13 seconds for CE compared to allowing

only simulation calls in the optimization framework. Therefore, the ability to discard the call of

certain surrogates during optimization is added to ALAI. When activated, only the surrogate model

performing best regarding the latest MSEtest is called from the upper-level framework. For a call

of the modified ALAI instance AR10∗ with only one type of surrogate model included, this leads

to a reduction of evaluation time from 2.4 seconds to 0.23 seconds, a time reduction compared

to simulation evaluation of 90%. When additionally, the acceptance threshold for usage during

optimization was increased to σth=11%, AR10∗ would be used in 98% of the optimization calls,

leading to time savings during result generation of approximately 90%. Accordingly, when the

acceptance rate is changed from 8 to 11% for the application of CE10, 87% of the ALAI calls are

accepted for usage in the optimization.

3.2 Active learning for multi-objective optimization

In the first part of this chapter, the application of active learning strategies has been explored for the

development of surrogate models of simulation-based process units integrated into superstructure

optimization problems. In the following, active learning strategies are further investigated for

enhancing complex multi-objective optimization problems. At the end of the chapter, an overall

conclusion will be drawn.

3.2.1 Introduction

MOO is widely applied for analyzing trade-offs between two or more objective functions in the

domain of PSE. As described in the introduction of this thesis, the set of optimal solutions obtained

from a multi-objective optimization problem can be displayed in a Pareto-optimal curve, on which,

for each point on the curve, none of the objectives can be improved without penalizing the others.

Many applications of MOO feature objective functions that are black boxes, where the derivative
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information is unavailable; hence deterministic methods to solve the optimization problem can-

not be applied [291]. For this reason, stochastic, population-based methods, such as simulated

annealing [292], genetic algorithms [293], or particle swarm algorithms [294] are applied [291]. In

these methods, the Pareto-optimal set is approximated and improved from an initial set of points by

applying stochastic perturbations. However, evaluation of the objectives has often been shown as

computationally expensive. Therefore, surrogate-based optimization has recently gained interest

in the community of PSE [291]. Surrogate-based optimization approaches fit a computationally

inexpensive surrogate model to a number of points of the expensive objectives. However, training

large data sets to generate surrogate models makes the problem unnecessarily computationally

expensive, especially when simulation-based approaches are included in the superstructure. Train-

ing a machine learning model on a large, diverse, randomly-generated design space leads to many

irrelevant function evaluations, as not all design space domains require the same accuracy to find

the set of Pareto-optimal solutions efficiently [272]. To solve this shortcoming, sequential sampling

strategies have been investigated in the literature, where during each step, the surrogate model is

used to evaluate the next best sampling point and update the surrogate [291]. Bayesian optimization

determines the next best function evaluation by assuming that the current evaluation will be the

final one [272, 295]. Based on the predictions of a machine learning model, an acquisition function

is used to suggest the following best measurement. This function is characterized by the trade-off

between exploring unknown regions and taking use of domains where good values of the objectives

have been observed [291, 296]. The measurement is then added to the training set, guiding the

improvement of the model predictions in a region potentially of interest for the desired objectives.

However, this optimization technique relies on introducing a total order in the search space with

which the design points are ranked in terms of performance [272]. Besides biasing the search, this

may introduce technical difficulties, as elaborated in more detail in [272].

In this part of the chapter, the question of how Pareto frontiers of large superstructure optimization

problems involving black box evaluations can be generated efficiently with the assistance of machine

learning algorithms is evaluated. To ensure reliable predictions of the system performance along

the Pareto frontier, an active learning approach is applied, which iteratively improves the machine

learning model where it is needed the most.

3.2.2 State of the art in surrogate modeling for multi-objective optimization

A multitude of algorithms deploying surrogates for multi-objective optimization has been proposed

in literature. Evolutionary algorithms have been improved by the inclusion of surrogate models by

Voutchkov and A Keane [297], where GP models were used to replace expensive objective function

evaluations. One shortcoming identified in this method is that it relies on the prediction provided

by the GP and does not actively search in unexplored regions [270, 291]. The efficient global

optimization (EGO) algorithm is a well-known single-objective optimization algorithm based on GPs
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[291, 298]. It selects the next design point to be evaluated by maximizing the expected improvement

of the acquisition function [291]. ParEGO is an extension of the EGO algorithm that enables the

consideration of multiple objectives, using successively updated weights to sequentially scalarize

the MOO problem and iteratively explore the Pareto frontier [291, 299]. Bradford, Schweidtmann,

and Lapkin [291] identified the disadvantages that scalarization requires knowledge of the limits of

the outputs and that the use of uniformly random scalarizing weights does not guarantee a good

distribution of non-dominated points, since some Pareto-optimal points may be easier to find than

others. Moreover, the applied augmented Tchebycheff function is discontinuous and thus violates

the continuity assumption of the GP surrogates [291]. On several test problems, more sophisticated

algorithms that separately model each objective function outperformed the method [291, 300].

Furthermore, acquisition functions commonly used for single-objective optimization probability

of improvement have been extended to multi-objective problems [291, 301]. In that regard, the

probability acquisition function for MOO that is based on the probability estimations of a point

improving the Pareto-optimal set by applying GPs for each objective was first proposed by AJ

Keane [302] [291]. Weighting the probability of improvement for multi-objective problems with

the hypervolume metric, an expected hypervolume acquisition function can be obtained, as first

proposed by Emmerich [303] [291]. However, the calculation of the expected hypervolume is

computationally expensive, and the non-trivial selection of the reference point greatly affects

the obtained performance [291]. According to Bradford, Schweidtmann, and Lapkin [291], the

alternatively-suggested acquisition function based on the expected Euclidian distance between

Pareto-optimal points [302] suffers from similar drawbacks. Bradford, Schweidtmann, and Lapkin

[291] proposed an algorithm to approximate Pareto-optimal sets in a small number of function

evaluations, extending the Thompson sampling method from the multi-armed bandit community

[304] to continuous multi-objective optimization. The developed algorithm behaves competitively

to the state-of-the-art algorithms with the added advantage that no a priori knowledge is required

on the output scale [291]. Reviews of surrogate-based optimization methods can be found in [250,

270].

3.2.3 Research gaps and objectives

Several algorithms have been developed for solving MOO problems with the assistance of surrogate

models, though most still require a priori knowledge of the output function and computational

expenses scale exponentially with the desired objectives. This section expands upon the develop-

ment of active learning approaches discussed in the previous section with developments in MOO,

using the Pareto-dominance relation to determine the near Pareto-optimal solution set and relevant

domains of the design space. The proposed method avoids bias from introducing a total order in the

search space of a MOO problem. It is applied to identify relevant operating conditions of process

units integrated in a superstructure optimization problem.
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3.2.4 Methodology for active learning-assisted Pareto frontier identification

A modified version of the ε-PAL algorithm originally introduced by Zuluaga, Krause, and Puschel

[305] and enhanced by Jablonka et al. [272] is applied to the optimization of energy and process

system superstructures. The ε-PAL algorithm iteratively reduces the effective design space by

discarding dominated design points. The design point with the highest dimensionless uncertainty

from a set of relevant design points is evaluated. When all points are either classified or discarded,

the search ends. The approach offers the additional benefit of enabling the tuning between accuracy

and efficiency by setting the granularity of the approximation to the Pareto frontier in each objective

[272]. In the following sections, the general superstructure problem as well as the ε-PAL algorithm

are described.

Superstructure optimization

The superstructure modeling and optimization approach is adapted from [88, 163], as described

in Section 1.3.2 and applied in Chapter 1 and 2. The superstructure model at the lower level

is integrated into an upper-level framework, in which optimization problems are formulated to

explore the impact of non-linear decision variables on the results. For a problem communicated by

the upper-level framework, consisting of the design space sample to be evaluated next, the lower

level generates a solution and reports it to the upper level. The upper-level design space, in this

case, includes the decision variables that induce non-linear relations toward the objectives. For

generating and communicating optimization problems to the lower level, the ε-PAL algorithm is

involved in choosing the next design space sample to be evaluated by the lower level.

Machine learning for efficient Pareto frontier identification

For efficiently and reliably identifying the Pareto frontier in the design space that considers the

operating conditions of process units, the modified version of the ε-PAL algorithm presented in [272]

is applied. The algorithm initially developed by Zuluaga, Krause, and Puschel [305] and enhanced

by Jablonka et al. [272] is based on an adaptive learning concept that systematically identifies the

next best function evaluation to improve the confidence of the Pareto frontier identification.

For the Pareto frontier identification, ε-Pareto dominance is applied. The strict Pareto dominance

definition y ⪯ y ′, where the point y dominates y ′ if y is not worse than y ′ in all objectives and strictly

better in at least one objective relation, is relaxed by the definition y −ε⪯ y ′, given a minimization

problem. Thereby, ε denotes a tolerance by which divergence from the strict Pareto frontier is

accepted [305]. The algorithm identifies design points with a high probability of being Pareto-

optimal regarding the defined objectives and evaluates them by calling the original model. The

confidence of the Pareto frontier prediction is increasing while simultaneously, the relevant design
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space is reduced, as in each iteration, points are either identified as Pareto-optimal or discarded.

Thus, compared to Bayesian optimization methods, where the objective is to maximize the value

gained by the added points in each iteration, the active learning approach followed herein relies on

the identification of interesting design space regions – interesting being characterized by the ability

to generate results that are close to the Pareto-optimal domain [272].

The ε-PAL algorithm starts with initial data sampling to define the design space, consisting of the

features to be evaluated. The first set of samples is labeled by calling the original model. The

samples are selected based on a greedy MinMax sampling approach, or k-means clustering [272].

An initial surrogate model is trained based on the obtained data set of samples and corresponding

outputs of the original model, and predictions for unlabeled data points are made. For making

predictions, GPR models are applied. The uncertainty estimation σ of the GPR is used to construct

hyperrectangles around the prediction mean; the width is equivalent to the standard deviation of

the posterior of the GPR. The lower and upper limits are equivalent to the best/worst performance

estimates (Figure 3.11a). The points to be discarded with confidence, as well as the ones with a

high probability of being Pareto-optimal, can be identified from the ε-Pareto dominance relation

(Figure 3.11b). If the pessimistic estimate of a prediction is smaller than the optimistic estimate of

all other predictions, taking the defined tolerance into account, it will be part of the Pareto frontier,

considering a minimization problem [272]. Accordingly, if the optimistic estimate of a prediction is

above a certain tolerance of the pessimistic estimate of the current Pareto frontier, it can be discarded

with confidence [272]. For estimating the accuracy of the Pareto frontier, one can connect the upper-

right corners of hyperrectangles associated with the current estimate of the Pareto frontier, which

gives the most pessimistic estimation (dashed blue line in Figure 3.11b). The optimistic frontier is

obtained by connecting the lower-left corners [272]. If the predicted uncertainty of a point is in the

range of the pessimistic estimate of the current Pareto frontier, it can be selected for being labeled

by calling the original model in the next iteration (Figure 3.11c). The point can then either be added

to the current Pareto frontier or discarded (Figure 3.11d).
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Figure 3.11: ε-PAL approach for identifying relevant samples in design space, adapted from [272].
a) Hyperrectangles based on predicted mean and variance of objectives. b) Pareto-optimal points
identified. c) Relevant design space shrinks, orange point identified as the next point to label. d)
Uncertainty in orange point reduced after retraining the model with a new sample.
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Thus, a geometric construction is created to classify whether a predicted solution is Pareto-optimal

or whether it can be discarded. The classification allows the algorithm to confidently discard points

in each iteration, reducing the design space. This procedure is repeated until the desired accuracy of

the Pareto frontier is reached.

There is a high probability that discarded points are not part of the Pareto frontier. Therefore, no

labeling of design points in this region is needed, even though those points may contain large

uncertainty estimates. Besides, theoretical guarantees on the quality of the Pareto frontier are

obtained, as the tolerance ε is the maximum error of the Pareto frontier with probability δ, where ε

and δ are hyperparameters of the model set by the user [272, 305]. Furthermore, the implementation

by Jablonka et al. [272] does not require knowledge of the ranges of the objectives prior to result

generation, as it is not needed to compute the uncertainty hyperrectangles. Instead of computing

the tolerance as ε j ·r j , r j being the range of the objective, the tolerance is computed as ε j ·µ j , where

µ j is the mean prediction of the objective j . This adaptive definition of tolerances leads to lower

convergence errors compared to fixed tolerances [272]. For further information about the algorithm

and its implementation, the interested reader may consult [272, 305].

3.2.5 Application in steam network optimization

The proposed methodology is applied to the design of a Pareto frontier for the optimal operation of

a steam network integrated into a Kraft pulping process (described further in Chapter 1), producing

1000 air-dried tons (ADT) of pulp per day. As was shown by Kermani et al. [65], heat integration,

water network optimization, and the optimization of the operating conditions of the steam cycle can

largely contribute to the reduction of water and energy consumption of the mill. In this contribution,

the optimization of the operating conditions of a steam network integrated with the pulp mill is

investigated by applying the ε-PAL algorithm.

Table 3.5: Decision variables for designing the Pareto frontier, adapted from [65].

Decision variable Range Unit Description

pst
1 [50,160] bar Boiler pressure

pst
2 [9,14] bar High pressure steam header

pst
3 [3,8] bar Medium pressure steam header

pst
4 [0.5,2] bar Low pressure steam header
∆T sup

1 [150,300] °C Degree of super-heating in the highest pressure level

In the steam network, steam can be produced between 50 and 160 bar, and it can be consumed

at three pressure levels. To meet the specification of combined steam and electricity production

in industrial plants, steam production can only happen at the highest pressure level, and turbines

are placed between the highest pressure level and the subsequent levels. The Kraft mill model is

adapted from Kermani et al. [65] as described in Chapter 1, which might be consulted for more
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information. Objectives selected for optimization are OPEX and CAPEX.

The ε-PAL algorithm is applied on the upper level of the solution generation framework, evaluating

samples from the design space for retrieving Pareto-optimal configurations. The initial design space

considered for the construction of the ε-PAL algorithm consists of the decision variables in Table 3.5

adapted from Kermani et al. [65], all related to the steam network operation.

Two ε-PAL instances are initialized with GPR models containing RBF kernels, and the tolerance ε

is set to 0.01. Two sets of initial samples are drawn, one with 200 and one with 500 data points of

operating conditions. In the first iteration, 50 samples are labeled by calling the original optimization,

while in each following iteration, a batch of 10 additional samples is labeled.

3.2.6 Results of steam network optimization

When running the ε-PAL algorithm on the small set of samples, five Pareto-optimal points can

be identified. The learning curve in Figure 3.12a reveals that after 10 iterations, all design points

are either discarded or identified as Pareto-optimal. Figure 3.12b shows the classification of all

obtained design points. Overall, 140 of the 200 initial design points are labeled by calling the original

optimization model, and the hypervolume metric obtained is 9614. The computation on a Windows

machine with an Intel Xeon 2.4 GHz processor and 16 GB RAM took 83 minutes. Labeling all 200

samples for obtaining the same Pareto frontier by calling the optimization model requires 118

minutes, indicating time savings of 30%.

Figure 3.12c shows the learning curve for 500 sampled design points. After 16 iterations, all design

points are either discarded or classified as Pareto-optimal by the algorithm. A total of 11 Pareto-

optimal points are identified, and the rest are discarded. The hypervolume metric obtained from this

Pareto frontier is 9651, slightly higher than for the smaller design space. A total of 200 samples are

labeled by calling the original optimization model, resulting in a computational time of 122 minutes.

Compared to random sampling and evaluation of 500 samples by calling the original optimization,

this accounts for time savings of approximately 60%. It is worth noting that all points identified as

Pareto-optimal are also labeled, meaning that the prediction error in this region of the design space

is reduced, ensuring reliable results in the Pareto-optimal domain. In the last step of the algorithm, a

reclassification of data points that were classified in early iterations of the algorithm is performed to

avoid potentially weak predictive performance in the early stages of the model leading to incorrect

classification. In the figures presented above, this reclassification is not included; thus, all points

classified as Pareto-optimal during any iteration in the algorithm are displayed.
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Figure 3.12: Results of applying ε-Pal algorithm on two different data set sizes. a) Learning progress
for 200 samples. b) Identified Pareto frontier for 200 samples. c) Learning progress for 500 samples.
d) Identified Pareto frontier for 500 samples.

Besides having the potential to offer computational advantages when predicting the Pareto frontier

for non-linear optimization problems, the application of surrogate models at the stage of the

optimization can also provide insights into the relations between features and obtained objectives. In

the presented case study, features are operating conditions of the steam network, and the objectives

are OPEX and CAPEX. The shapley additive explanations (SHAP) technique is applied to derive

insights into the learning process of the model. SHAP enables to explore how features influence the

predictions of the labels and – if applicable – how features interact with each other. The Shapley

values used for SHAP are computed from coalitional game theory, where feature values act as players

in a coalition [306]. The obtained values provide insights on how to fairly distribute the prediction

among features.

In the SHAP plots for the objectives OPEX and CAPEX (Figure 3.13), the frequency of dots shown on

the x-axis corresponds to the density of the SHAP value distribution and is an indicator of how the

respective features impact the objective. Negative values indicate that a specific feature decreases
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the predicted value with respect to the baseline prediction. For each objective, the SHAP values

are computed using the GPR models applied in the ε- PAL algorithm. For OPEX, high values of

degree of superheating ∆T sup and the highest pressure level p1 lead to lower predicted values of

OPEX, as more electricity can be exported. For the lower pressure levels, the effects are inverse. For

CAPEX, higher ∆T sup leads to an increase in predicted CAPEX, while for the pressure levels, no clear

tendency can be observed.
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Figure 3.13: SHAP profiles obtained for objectives.

3.3 Conclusions and outlook

In the first part of this chapter, the methodology for replacing non-linear process simulation models

integrated into a multi-level optimization framework of a process and energy system superstructure

with surrogate models has been presented. An active learning approach (ALAI) is applied, where

multiple surrogate models are trained and evaluated on data sets that are continuously increased

based on the reported prediction uncertainty. It has been demonstrated that overall, ALAI has the

capability of generating reliable surrogate models that are able to predict the operating conditions

of complex processes, even with small data sets. Depending on the process model complexity, differ-

ent surrogate model performance was observed. While GPR show strong performance regarding

test metrics for processes of varying complexity, the performance of ANNs increased with model

complexity. Random forests generally performed better for simplistic process models. The strategy

of adding new data points based on the prediction uncertainty leads to better prediction results

compared to random sampling, offering higher prediction quality with little data labeling required.

It was demonstrated that, when active learning is applied, an initial data set of 100 points is sufficient

to reduce MSEs of the test data to below 2% for all processes, while random sampling leads to a

standardized MSEtest that is 1.6% worse than the one achieved with active learning. Thus, unless

large databases of labeled data are already available for building surrogate models, following the

active learning approach is favorable for generating process operation databases. Furthermore,

it was shown that the uncertainty-based active learning approach is able to adequately evaluate

the prediction quality of a surrogate model, which ensures reliable results during application in

the optimization framework. The application of ALAI in energy and process system optimization
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frameworks is expected to help researchers to improve both, the computational time for result

generation, as well as the availability of the process predictions, since calling surrogates does not

suffer from convergence issues commonly encountered with simulation software. Multiple surrogate

models can be trained and optimized for predictions; therefore, an adaptive and flexible model

creation process is enabled that – compared to training one type of surrogate – is able to generate

high-performance surrogates for a wide range of simulation complexity. When integrating ALAI

with the optimization framework, good prediction quality with average prediction errors below 1%

can be expected, even for complex models.

This work demonstrates that the application of ALAI for replacing simulation models in superstruc-

ture optimization reduces computational expense in optimization and improves convergence. For

complex simulation models with runtimes above 10 seconds that are integrated into an optimization

framework, time savings of up to 50% are expected when generating solutions. For simpler models,

it was shown that calling only one surrogate instead of continually comparing the performance of

several surrogates integrated into ALAI yields time savings of up to 90%.

Future work includes adding other surrogate models to ALAI to ensure a good representation of any

process and to improve its flexibility. Furthermore, as the uncertainty is currently derived solely

from the mean of the standard deviation, other metrics should be included in ALAI as options to

choose from. The benefit of including process unit operating conditions in a superstructure opti-

mization framework is largely dependent on the considered system and its characteristics; however,

identifying systematic measures for this benefit could be addressed in future work. Furthermore,

the effect of the evaluated batch sizes in each iteration of ALAI on the overall performance could be

explored.

In the second part of the chapter, the ε-PAL algorithm was applied to demonstrate that active

learning strategies can also be used to confidently identify Pareto-optimal design points for process

and energy system superstructures. Compared to random sampling and labeling of design points,

significant time savings were obtained, the relative savings increasing with the size of the design

space. The quality of the Pareto frontier, measured with the hypervolume indicator, increases with

the considered design space size. The algorithm manages to identify relevant regions in the design

space as near Pareto-optimal, allowing for continuous improvement of the prediction quality where

it is necessary. Future work in this domain will include bench-marking the applied methodology to

alternative approaches, such as genetic algorithms or Bayesian optimization techniques, as well as

obtaining results for larger design spaces.
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4Integrating uncertainty in decision

support

Overview

 Approaches to evaluate the performance of solutions of superstructure optimization

problems subject to uncertainty.

 Suggestions on how to generate meaningful solutions relying on Gaussian process models

to predict the robustness of Pareto-optimal solutions

The content of this chapter is partly published in [307, 308].

Uncertainty is present in different aspects of a superstructure optimization formulation, such

as process performances, pricing parameters of resources and products, environmental impact

factors, availability, and service demands. The work presented in Chapter 1 and 2 aimed to include

information available from performance under uncertainty in the decision-making process by

recalculating the distribution of objectives and key performance indicators (KPIs) after optimization

and by generating solutions for a variety of scenario assumptions. This chapter develops a framework

to explore the effects of parameter uncertainty on the obtained solution space and associated

decision-making process, extending the initial analysis performed in previous chapters. Particularly,

suggestions on how to use information inherent in performance under uncertainty to filter and

select solutions are proposed. Approaches presented address the identification of important process

unit decisions that drive the objective functions. The identification of process unit sizes that are

preferable for a variety of parameterized scenarios is explored, and parameter domains for which

certain process unit sizes might be outperforming others are analyzed. Furthermore, the criteria to

choose from a set of solutions obtained for superstructure optimization problems are discussed,

considering parameter uncertainty in both the generation stage and the exploration of the solution

space. Lastly, this work proposes methods to generate a set of meaningful and robust solutions for

decision-makers by applying an active learning approach, using Gaussian process models to predict

Pareto-optimal solutions that perform well under parameter uncertainty.
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4.1 Motivation and state of the art

Optimization has been established as a vital method to derive sustainable and robust designs of

process and energy systems in many domains of process systems engineering (PSE). However,

superstructure optimization problems are highly subject to uncertainty – an inherent feature of

any superstructure – affecting process performances, pricing parameters of resources and prod-

ucts, availability, and service demands. For example, investment decisions in industrial systems

are often based on short-term profitability criteria and assumptions on current and future invest-

ment, operating, and resource costs [45, 309]. However, such assumptions are often proven to

be wrong retrospectively [20]. Uncertainty in superstructure optimization has been addressed by

several research contributions [20, 310, 311], but remains a challenging problem in this domain.

A comprehensive review of uncertainty consideration in optimization focusing on big data and

deep learning applications is provided by Ning and You [311]. The review by Soroudi and Amraee

[312] presents the state of the art in decision-making under uncertainty applied to energy systems,

and classification and evaluation of different uncertainty-handling methods are provided. Zhou,

Ang, and Poh [313] present a review of decision analysis methods handling uncertainty. The most

common approaches to address uncertainty in superstructure optimization applied in literature

are robust optimization, chance-constrained programming, and stochastic programming [311, 314,

315]. Furthermore, recent approaches involve big data applications and machine learning [311].

In stochastic programming, optimization is conducted considering scenarios derived with proba-

bility distributions of uncertain parameters known a priori to conducting the optimization [316].

Usually, the uncertainties are characterized by discrete realizations of the uncertain parameters

as an approximation of the real probability distribution [316]. Each realization defines a scenario,

and the optimal solution of a stochastic programming problem yields the most favorable expected

value of the objective function over all scenarios [316]. Origins of stochastic programming date back

to the 1950s. Since this time, the field has evolved into a major research area of the mathematical

programming and operations research community [316]. In regard to the uncertainties in many PSE

applications, combining PSE and stochastic programming seems natural. However, applications

in PSE started a decade after the concept was suggested, mostly due to computational limitations

for solving stochastic programming problems [316]. With recent improvements in commercial

mathematical programming software and computer hardware, the interest in applying stochastic

programming evolved widely in the PSE community for a variety of applications, such as pharma-

ceutical, chemical, natural gas, petroleum, as well as biofuel production and carbon capture [316].

Depending on the decision-making strategy, a two-stage or a multi-stage stochastic programming

approach can be deployed. Two-stage stochastic programming has been applied for the analysis

of a variety of PSE-related problems under uncertainty, for example, supply chain design [317], or

bioethanol production from waste [318] [319]. More complex uncertainties are usually addressed in

multi-stage stochastic programming methods that include additional scenarios and stages [319].
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Classical textbooks summarize main developments in the field of stochastic optimization [315, 320],

and C Li and Grossmann [316] provide a comprehensive overview of available contributions of

stochastic programming in the domain of PSE.

As an alternative, robust optimization, as first introduced by Soyster [321], emerged to deal with

the issue of large amounts of uncertain parameters and scarcity of data [322]. Robust optimization

is based on a set of uncertainties in parameters that ensures the best benefits in the worst case

of possible scenarios [319, 322, 323]. The approach has been applied in a multitude of studies,

such as the optimal design and planning of hydrocarbon biofuel supply chains [324], or the op-

timization of a large-scale biomass conversion-based product and process network [325] [319].

Chance-constrained programming, a powerful paradigm for optimization under uncertainty, aims

to optimize an objective while guaranteeing constraints are satisfied with a given probability in an

uncertain environment [311, 326]. Similar to stochastic programming, the uncertainty is modeled in

probability distributions, capturing the randomness of uncertain parameters. Chance constraints

are flexible enough to quantify the trade-off between objective performance and system reliability

[311, 327].

Recently, the application of data-driven optimization for dealing with uncertainty has gained increas-

ing interest in literature [311]. Generally, data-driven approaches do not presume the uncertainty

model to be given a priori but rather assume that only uncertainty data are available [311]. Ning and

You [311] classify these data-driven approaches in four categories, namely data-driven stochastic

programming, data-driven chance-constrained programming, data-driven robust optimization,

and data-driven scenario-based optimization. They provide a detailed review of the matter; in the

following, the main aspects of each direction are briefly summarized.

Data-driven stochastic programming, also known as distributionally-robust optimization (DRO),

is motivated by a weakness of stochastic optimization, which is that assuming perfect a priori

knowledge of the probability distribution of uncertain parameters and the assumption of one

probability distribution might lead to sub-optimal solutions or deterioration in out-of-sample

performance [328]. As a result, DRO uses statistical inference and big data analytics to derive

an uncertainty set of probability distributions from uncertainty data [311]. Thereby, uncertain

parameters are characterized as a form of an ambiguity set [319, 329]. The general data-driven

stochastic programming model formulation is presented by Delage and Ye [330]. The main advantage

of the method compared to conventional stochastic programming is that it allows decision-makers

(DMs) to incorporate partial distribution information into the optimization, improving out-of-

sample performance [311]. Further advantages are elaborated in [311].

Instead of optimizing the worst-case expected objective, as is the case for DRO, data-driven chance-

constrained programming focuses on chance-constraint satisfaction under the worst-case proba-

bility [311]. It features constraints subject to uncertainty in probability distributions, while DRO
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typically involves the worst-case expectation of an objective function in consideration of an en-

semble of probability distributions [311]. Data-driven chance-constrained programs have been

successfully applied in power systems [331], stochastic control [332], and vehicle routing problems

[333].

Traditional robust optimization typically does not allow for sufficient flexibility to capture the

structure and complexity of uncertainty data, as uncertainty sets are usually defined a priori using

a fixed shape or model [311]. Additionally, the modeling flexibility is limited as the uncertainty

sets can only be described by a finite number of parameters. A promising paradigm for filling

the aforementioned information gaps and providing uncertainty estimation for decision-making

is revealed as data-driven robust optimization. A multitude of examples of data-driven robust

optimization is presented in the literature; for a comprehensive overview, the interested reader may

consult [311]. One example that tackles the over-conservatism observed in robust optimization

approaches by incorporating distributional information on the uncertainty by means of a Bayesian

machine learning approach is presented in [334]. In recent years, data-driven robust optimization

has been applied to various areas, such as planning and scheduling [334], process control [335], and

transportation systems [336].

In contrast to other data-driven optimization techniques, scenario-based optimization uses un-

certainty data or random samples in a more direct way [311]. Unlike stochastic programming,

scenario-based optimization does not call for explicit knowledge of the probability distribution [311].

Instead of using scenarios or samples to approximate the expectation term as in stochastic pro-

gramming, scenario-based optimization deploys uncertainty scenarios to seek an optimal solution,

guaranteeing constraint satisfaction [311]. The systems and control communities have embraced

this data-driven optimization approach, first presented in [337], with considerable enthusiasm [311,

338].

In addition to these data-driven approaches, deep learning applications have recently gained interest

in the research community for addressing uncertainty [311]. Deep learning has shown powerful

capabilities in the hierarchical representation of complex data [339] and has been appreciated and

applied in many areas of the PSE domain [311]. Since uncertainty data often exhibit complex and

highly nonlinear properties in many applications, the investigation of using deep neural networks to

identify valuable patterns of uncertainty data is promising [311]. A detailed review of deep learning

techniques and their applications to tackle uncertainty is provided by Ning and You [311].

4.1.1 Research gaps and objectives

As demonstrated by the preceding review, a multitude of methods and approaches exists to tackle

uncertainty in PSE design optimization problems. However, few approaches exist that include

uncertainty for both solution generation and solution ranking in post-optimization for decision-
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making. Furthermore, many of the existing approaches are computationally expensive, which makes

their application to real-world problems challenging.

This chapter proposes approaches to generate and select good solutions that perform well under a

variety of scenarios for a PSE design problem. By acknowledging the existence of uncertainty in data

during the solution generation and the selection of solutions, the information inherent in solution

performance under uncertainty is exploited to leverage decision-making. System characteristics,

such as relations between a configuration’s performance and the most critical process units, as well

as their sizes, are explored in consideration of uncertainty. Suggestions on incorporating solution

performance under uncertainty in choosing from a set of obtained configurations are discussed.

Furthermore, the application of machine learning in superstructure optimization frameworks is

explored, aiming at enhancing computational efficiency and reliability of generated solutions by

efficient identification of design space domains relevant under parameter uncertainty. Suggested

approaches are applied to the design of an integrated biorefinery.

4.2 Methods

In the first part of this section, a short overview of the overall method of how solutions are generated

is provided, relying on the elaborations in previous chapters (Section 4.2.1). In the second part, an

approach for identifying the configuration among a set of obtained Pareto-optimal configurations

that perform best under a wide range of market scenarios is proposed (Section 4.2.2). In the third

part, information on solution properties made available from uncertainty analysis and how it can

be exploited for decision-making is discussed (Section 4.2.3). Lastly, the question of how relevant

domains in the design space can be identified by means of an adaptive machine-learning approach

is discussed (Section 4.2.4). Relevance, in this case, refers to the obtained distribution of objective

functions for the considered scenarios and the identified domains of Pareto optimality.

4.2.1 Superstructure formulation and result generation

The method for superstructure formulation and solution generation applied in this chapter is based

on the upper- lower-level framework described in Section 1.3.2. While the lower level remains the

same as the one previously applied in Chapter 1-3, the characteristics of the upper level slightly

change. For generating solutions, the decision space – consisting of parameters that are subject

to uncertainty – is defined on the upper level, and initial data sampling is conducted to obtain

the parameter distribution D1. Obtaining distributions of environmental and economic param-

eters is challenging; often, they are not available or are impossible to define. To avoid a bias in

results induced by the assumption of inaccurate uncertainty distributions of parameters, parame-

ters are sampled from an equally distributed parameter space, applying Latin hypercube sampling

(LHS) [173]. For each sample, multi-objective optimization (MOO) is performed by applying the
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ε-constraint method [168]. The respective constraints as well as the parameter samples are commu-

nicated from the upper to the lower level, where the optimization problem is solved. The procedure

yields a Pareto frontier for the objectives of interest for each scenario in D1. In the next step, the

set of unique process configurations Sunique obtained over all samples in D1, characterized by the

activation status and installed size of the process units, is identified (Figure 4.1).

4.2.2 Validating robustness of obtained configurations under parameter uncertainty

For identifying solutions that perform well under parameter uncertainty among the obtained con-

figurations, the performance of all unique configurations Sunique present on the Pareto frontiers

obtained for D1 is recalculated a posteriori to optimization, as previously described in Section 2.2.2.

For this recalculation, a set of scenarios D2 describing the uncertainty in parameters is considered.

Similarly to D1, D2 is sampled using LHS. This procedure leads to N D2 ×N Sunique
data points, de-

scribing the configuration’s performance regarding the optimization objectives throughout different

scenarios. The recalculated objectives identify the best-performing configurations for each scenario

in D2. "Best" in this case is defined as being among the configurations closest to Pareto optimality

from all available configurations in a given scenario. To avoid missing interesting configurations

because they do not appear as the absolute best solutions in the evaluated scenarios but might be

close to the best ones, for each sample in D2, configurations are considered to be among the best

ones if their performance is not more than 5% below the performance of the currently identified

best-performing configurations. Simply stated, configurations that are not dominated by others for

the relevant objectives are identified.

For each sample 

Definition of superstructure, parameter distribution and objectives 

Sampling from parameter distribution: , 

Generation of Pareto frontiers for samples in :  

Identification of unique configurations in :  

Identification of best-performing configurations in 
Ranking of configurations in  based on performance in 

Selection of configuration from  for any  based on ranking

Solution generation

Figure 4.1: Proposed algorithm to rank and prioritize configurations.

This classification enables ranking the configurations that are Pareto-optimal for a scenario in D1
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regarding their presence in the near-Pareto-optimal domain for a larger variety of scenarios (D2)

and including this information in the decision-making process when selecting configurations. Thus,

the robustness rank r robust of a configuration is measured as the number of times it occurs in the

Pareto-optimal domain of D1 and the close to Pareto-optimal domain of D2, in relation to how often

it could theoretically occur (Equation 4.1).

r robust = N D1,Pareto−opt. +N D2,near−Pareto−opt.

N D1 +N D2
(4.1)

The described procedure is visualized in Figure 4.1 and further illustrated in Figure 4.2; for each

scenario in D2, configurations closest to Pareto optimality are identified. Unique configurations

are then ranked based on their occurrence in domains close to Pareto optimality (Figure 4.2a).

For a scenario in D1, the computed rank r robust of the configurations can be used to prioritize

Pareto-optimal configurations (Figure 4.2b).
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Figure 4.2: Ranking and prioritizing of configurations. a) Ranking solutions based on close-to-Pareto
optimality in D2. b) Prioritizing solutions in D1 based on the obtained rank r robust.

4.2.3 Interpreting the solution space

In addition to these approaches to validate and prioritize obtained Pareto-optimal solutions based

on their performance in the domain of parameter uncertainty, visually-assisted approaches for

the identification of relevant unit decisions and their impact on the objectives are presented. Fur-

thermore, the impact of parameter variation on unit selection is discussed to provide an enhanced

understanding of the solution space of a superstructure optimization problem and support decision-

making. The following questions are thereby addressed: (i) What are the most important process

units that influence the objectives of a superstructure optimization problem, and at which size
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are they typically installed? (ii) How do changes in the parameter space affect unit selection in

optimization? (iii) What are typical solutions? Under which conditions is a solution preferable

compared to others?

For the first question, the unit choices that affect the objectives most are determined using the

Spearman correlation coefficient, relating the changes in objectives of the optimization problem to

the changes in unit configurations and sizes [185]. The most correlated process units are identified

based on the sum of the correlation coefficients determined for all objectives. The distribution

of the obtained process unit sizes is visualized. For this visual representation, the configurations

that appear in the domains close to Pareto optimality in 90% of the scenarios in D2 are considered,

highlighting the process unit sizes present in the robust solutions obtained from the solution

generation. Robust, in this case, is meant to define the competitiveness of a certain configuration

compared to others for a multitude of scenarios.

The next question addresses the conditions under which a process unit is typically installed in

robust solutions and the identification of conditions under which a certain unit is most likely

to be competitive. Furthermore, typical sizes at which process units emerge in configurations

closest to Pareto optimality for certain scenarios are identified. This information might be relevant

in high-uncertainty situations where the DM is keen on having an overview of a wide range of

possibilities. Correlations between the parameter distribution and the objectives are derived for

each unique configuration in the solution space, as well as the correlations between the unit choices

and objectives for each scenario. These correlations are used to identify the process units and

parameters influencing the objectives. For each relevant process unit, its characteristics in robust

configurations across the range of considered scenarios are displayed, showing both unit installation

and size of the process unit.

To address the last question and identify typical solutions and their performance distribution, a

similar approach to the one in Section 4.2.2 is elaborated. The difference is that previously, the

DM provided knowledge about the scenario to consider in D1 and used the distributions in D2 to

evaluate the performance of the obtained Pareto-optimal configurations for this chosen scenario,

whereas in the approach suggested hereafter, no such knowledge is available. Therefore, validity

regions for obtained configurations, i.e., scenarios in which a configuration is preferable compared

to the others, are identified and used to evaluate their performance. Typical configurations are

obtained by clustering the unique solutions that are close to Pareto optimality in at least 90% of

the scenarios in D2 on unit decisions; the number of clusters is identified using the elbow method

[174, 175]. The data is reduced to two dimensions by applying principal component analysis (PCA)

with high explained variance, followed by t-distributed stochastic neighbor embedding that allows

for adequate visualization of the clusters. For clustering, the k-medoid partitioning technique is

applied, yielding cluster representatives from the respective cluster members rather than average

data [241]. For each cluster, the representative configuration is selected based on its occurrence in
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For each sample ,

Definition of superstructure, parameter distribution and objectives 

Sampling from parameter distribution: , 

Generation of Pareto frontiers for samples in :  

Identification of unique configurations in solutions : 

Identification of best-performing configurations in
Ranking of configurations in  based on performance in 

and : 

Clustering of configurations based on unit decisions, using
performance measure to select cluster representatives  

For each economic sample , identification of near Pareto-
optimal clusters

Visualization of performance ranges

Solution generation

Figure 4.3: Identification of cluster performance.

the Pareto-optimal domain of D1 and the near-Pareto-optimal domains in D2, expressed by r robust.

For visualizing the clusters’ performance, the scenarios in D2 where a respective cluster member

belongs to the configurations that are close to Pareto optimality are identified. The distribution

of the clusters’ performance in the identified scenarios is visualized considering binned objective

functions. For each bin, the number of times a cluster member is close to Pareto optimality in D2

and features an objective that is in the respective bin is determined. This allows for identifying

typical solutions that are preferable if a certain performance probability regarding the objectives is

desired. The described procedure is visualized in Figure 4.3.

4.2.4 Efficient design space identification using adaptive machine learning concepts

for each iteration 

Design space  

Optimization Postcomputation

Problem definition:
superstructure,

objectives,
parameter distribution

Parameter sampling 

parameter
distribution

superstructure,
objectives

: Solutions of 
: Robust objectives of 
: Design space samples of 

Figure 4.4: Solution generation for efficient design space identification.

In addition to the approaches suggested for the identification of well-performing configurations
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considering uncertainty based on the performance as near-Pareto-optimal in a large domain of

parameters, the identification of Pareto-optimal solutions with regard to recalculated objectives

is addressed by applying an active learning approach, using Gaussian process models to predict

Pareto-optimal solutions that are robust under parameter uncertainty. The uncertainty inherent

in parameters is used at two stages in the solution generation algorithm, once for the generation

of a diverse solution space and once for evaluating obtained solutions under a given uncertainty

distribution.

Problem initialization

Pareto frontier identification with  -Pal

Definition of superstructure, parameter distribution and objectives 

Design space sampling D

Result generation and postcomputation on batch  yielding 

Update of -Pal instance, labeling of remaining samples in  as Pareto-optimal,
discarded or unlabeled

?

yes

stop

Initial result generation and postcomputation on subset  of D
yielding robust objectives 

Training of -Pal algorithm for Pareto classification on initial data set  of design
parameters  and robust objectives 

Identification of next batch  of samples to be labeled

no

Figure 4.5: Progress of ε-Pal algorithm applied for identification of solutions robust under uncer-
tainty.

In the first step, uncertainties in parameter assumptions made prior to optimization are addressed,

such as resource and service prices. The assumed distribution of parameters is used to generate a

characteristic design space of different scenarios, which is then used to generate a diverse solution

space using the optimization framework previously described in Section 4.2.1. Design space con-

figurations in this regard contain sets of parameters subject to uncertainty. In the second step, the

concept of robustness is addressed and quantified by recalculating – a posteriori to optimization

– the 95th percentile of the desired objectives for each solution s under the assumed parameter

distribution in D . These newly calculated objectives z are used to define the robust Pareto frontier

(Figure 4.4).
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For efficiently and reliably identifying the Pareto frontier in the design space that considers parame-

ter uncertainty, a modified version of the ε-PAL algorithm presented in [272] and described in detail

in Section 3.2, where it has been applied for the identification of relevant process unit operating

conditions in an optimization problem, is applied. As elaborated in Chapter 3, adaptive learning

is used to systematically identify the next best function evaluation in the design space to improve

the confidence of the Pareto frontier identification for the desired objectives. Gaussian process

regression (GPR) models are applied for making predictions. The algorithm identifies design points

– e.g. parameters in economic scenarios – with a high probability of being Pareto-optimal regarding

the defined robust objectives and evaluates them by calling the optimization model. The confidence

of the Pareto frontier prediction increases while simultaneously reducing the relevant design space,

as points are either identified as Pareto-optimal or discarded in each iteration (Figure 4.5).

4.3 Application and results

4.3.1 Solution generation

The suggested approaches are applied to the solutions generated for the efficient design of an

integrated industrial biorefinery, where a Kraft pulp mill is enriched with process units that convert

excess electricity and residual biogenic streams such as bark and black liquor to storable energy in

the form of fuel, as described in Section 1.3.1. Optimizer decisions include system configurations

that contain the installation of units as well as their sizes. The initial results were generated for

the competing objectives total expenditure (TOTEX) and environmental impact (EI) measured in

global warming potential (GWP), applying the method described in Section 4.2.1. In the current

example, uncertainties inherent in economic parameters are considered. A sample set D1 of size 50,

containing 23 economic parameters to be varied with equal probability in ranges that are defined by

± 20%-50% of the mean of historic market observations, depending on the observed profiles. The

assumed parameter variations are displayed in Table D.1, while the averages of included pricing

parameters remain the same as the ones used for the case study in Chapter 1; they are provided in

Table A.15. For each of the samples in D1, a set of seven Pareto-optimal configurations is generated

with the methods described in Section 4.2.1 using the ε-constraint method, which yields a solution

space of 350 configurations. Of the 350 configurations, 341 are identified as unique regarding process

unit activation and size. For generating the set D2, 1000 samples of economic conditions are created,

following the same sampling approaches and parameter range assumptions used for D1. For each

unique configuration, the objectives are recalculated for all samples in D2, yielding 341000 data

points.
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4.3.2 Validation of solution robustness

The algorithm proposed in Figure 4.1 is used to identify preferable solutions for a certain economic

scenario in D1. For each economic sample in D2, the solutions closest to Pareto optimality from the

341 unique configurations are identified, which enables derivation of a performance measure r robust

for each configuration (Equation 4.1). Revisiting the economic sample in D1 and the corresponding

Pareto frontier, each configuration on the Pareto frontier can now be associated with this perfor-

mance measure. For the economic scenario displayed in Figure 4.6, a clear preference on which

configurations to choose based on this ranking can be observed; the second and third configurations

from the right are the most competitive in terms of occurrence on the near-Pareto-optimal domain

for different economic scenarios in D2 (r robust), the occurrence being visualized by the size of the

points.

Figure 4.6: Resulting Pareto frontier for an economic sample in D1, the size of the points indicating
their performance regarding r robust.

The configuration marked in red in Figure 4.6 is investigated further by looking at the characteristics

of the process unit installations. Figure 4.7 displays the sizes of the process units active in this

configuration, compared to the observed distribution of the respective process unit sizes in all

obtained unique configurations. For readability, only the six active process units with the highest

combined correlation to the objectives are displayed.

Even though not all units considered in the superstructure are displayed, some general conclusions

regarding the characteristics of the analyzed system configuration can be drawn. It can be observed

that for the process units related to methanol production, the chosen size lies in the upper third

of the observed distribution of the occurring unit sizes. The same applies to the solid carbon

burner, which is an indication of the overall usage of the dry gasification pathway. The size of the

natural gas burner is also an indication that no fossil emissions are released on-site in the given
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Figure 4.7: Characteristics of identified configuration regarding process unit sizes indicated in red,
compared to the distribution of process unit sizes in all unique configurations. Sizes are given in
mass flows entering process units in kg/s.

configuration. The lime kiln size is affected by the amount of black liquor gasified, the size being

positioned in the upper part of the observed range. For the process unit for pretreatment of biomass

for Fischer-Tropsch (FT) synthesis, two main sizes are observed in all unique configurations. In

the selected configuration, a size of zero is selected, meaning that the unit is not present in this

particular configuration. Generally, it can be observed that the chosen configuration consists

of process unit sizes that are common among a wide range of obtained unique configurations

(indicated by the length of the horizontal lines in Figure 4.7); this observation is strengthened by

the fact that the process unit sizes of the selected configuration also achieved near-Pareto-optimal

performance in over 90% of the scenarios in D2. Therefore, it can be concluded that for obtaining

robust configurations, installing the displayed process units in the respective sizes seems favorable.

4.3.3 Interpretation of the solution space

As suggested in Section 4.2.3, visually assisted approaches are explored to understand the corre-

lations between economic scenarios, optimizer decisions, and effects on the objectives. The size

distribution of the process units that feature high correlations between installed unit size and the

optimization objectives are presented for each of the main process components in the considered

superstructure. As main process components, black liquor gasification, bark gasification, and fuel

synthesis are considered.

Figure 4.8 shows the sizes of selected process units obtained in the solution space. Furthermore,
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the process unit sizes found in the configurations that perform closest to Pareto optimality in 90%

of the considered scenarios in D2 are marked; henceforth, these are referred to as dominating

sizes. For most process units, one or two dominating size ranges can be identified. It needs to be

mentioned that – since these are the process units that influence the objective functions significantly

– relatively few dominating sizes are detected. Nevertheless, the obtained figures help to identify

critical process units that influence the objectives under parameter variation, as well as sizes for the

respective units in which the system configuration’s performance is likely to be preferable in the

majority of economic scenarios. For the black liquor gasification component, represented by the

salt separator and hydrolysis unit, sizes that are clearly dominating are those in the upper range of

the observed distributions. For methanol (MeOH) synthesis, either no installation or an installation

of approximately 2-2.5 kg/s entering the reactor is preferred. For FT upgrading, a similar picture is

observed, the process unit size being either zero or close to 1.5. The bark boiler is not used in the

dominating configurations, meaning that valorizing bark in fuel synthesis by means of gasification

is generally preferred.

5 0 5 10 15 20
Salt separator and hydrolysis

0.5 0.0 0.5 1.0 1.5 2.0 2.5
MeOH synthesis

0.0 0.5 1.0 1.5
FT upgrading

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Bark boiler

Figure 4.8: Typical sizes of process units with high correlation to objective functions as they occur in
the near-Pareto-optimal domains (dots) vs. the observed sizes in all unique configurations.

After analyzing the relation between process unit sizes and obtained performance of related config-

urations in the uncertainty domain, the process units and their sizes are furthermore related to the

economic conditions in which their performance is preferable compared to other unit installations.

For each relevant process unit, the size distribution that is observed in the configurations closest to

Pareto optimality in D2 or Pareto-optimal in D1 is visualized in relation to the economic parameters

considered in the respective scenarios. For the example given in Figure 4.9, it can be noted that a

range of process unit sizes for methanol synthesis seems to be equally competitive or not competi-
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Figure 4.9: Heat map of methanol synthesis process unit sizes in domains close to Pareto optimality
for varying equipment lifetime.

tive for the economic parameters analyzed, meaning that a range of process unit sizes is performing

strongly or less strongly in all of the economic parameter space, and no relevant variation over

the economic space can be observed. Therefore, for the given example, no conclusions regarding

preferable economic conditions for the installation of specific process unit sizes can be drawn.

However, it can be noted that specific sizes, in the case of the visualized methanol synthesis unit

the ones that feature flows of 2-2.5 kg/s, are preferable compared to other sizes, independent of the

assumed equipment lifetime.

Following the identification of process units that characterize a configuration, their influence on

the objectives, typical process unit sizes, and economic conditions at which they are installed, a

broader perspective is utilized, considering the ensemble unit decisions that define a configuration.

In Section 4.3.2, the selection of configurations from a set of Pareto-optimal solutions for one

economic scenario in D1 was discussed. If, however, the DM is not confident in proposing or

forecasting an economic scenario, they can instead select a configuration based on the ensemble

of observations in all of the uncertainty samples in D2. More specifically, the whole ensemble of

economic scenarios in D2 is equally weighted when ranking configurations, instead of a priori

selecting the most likely scenario from D1. In the following example, the approach of identifying

typical, robust solutions described in Section 4.2.3 yields four cluster representatives; these cluster

representatives characterize the solutions that are selected as close to Pareto optimality in over 90%

of the economic scenarios.

For refining the selection between the cluster representatives, their individual performance regarding

the objectives is analyzed. For the observed range of economic performance (TOTEX), 10 bins
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are created, and for each cluster representative, the number of times it occurs in the domain

close to Pareto optimality in D2 and features a TOTEX in a respective bin is derived. In the visual

representation (Figure 4.10), the size of the circles represents the relative number of times the

cluster performs in the range of the binned objective and qualifies as close to Pareto-optimal in the

scenarios in D2; the color represents the cluster. Thereby, the number of appearances of a cluster

representative over the binned objectives is quantified with regard to how often it could theoretically

appear. Thus, if a cluster representative is among the configurations closest to Pareto optimality in

all economic scenarios, the accumulated size of the cluster circles over the binned TOTEX adds up

to 100%.
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Figure 4.10: Performance of clusters on binned Pareto frontier. The size of the dots represents how
often a cluster occurs among the configurations closest to Pareto optimality in the scenarios of D2

and is yielding a TOTEX within the respective bin.

For the analyzed superstructure optimization problem, the obtained cluster performance is pre-

sented in Figure 4.10. Cluster 1 has a high EI, with the occurrence on near-Pareto-optimal domains

being high when relatively low TOTEX are required. Cluster 2 dominates the economic performance

when the EI is supposed to be in the middle of the observed range, while clusters 0 and 3 are preferred

if requirements on the EI are stricter, and higher TOTEX is acceptable. In the presented example, all

selected cluster representatives are identified as being close to Pareto optimality in all scenarios of

D2, meaning that the visualized occurrence of each cluster in the domains close to Pareto optimality

in Figure 4.10 is accumulating to 100%.

4.3.4 Efficient identification of the design space

Lastly, the efficient design space identification when considering uncertainty in the solution genera-

tion is addressed by means of an active learning approach, as described in Section 4.2.4. The robust
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4.3 Application and results

Pareto frontier is derived for the 95th percentile (95%) of operating expenditure (OPEX) and capital

expenditure (CAPEX) for the parameter distribution in Table D.1, applying the ε-PAL algorithm.

Similar to the previously-presented applications, design space parameters subject to uncertainty

include price assumptions for resources, products provided, equipment cost, equipment lifetime,

and interest rate. The ε-PAL algorithm described in detail in Section 3.2.4 is applied to a design space

of 23 parameters subject to uncertainty, and a design space of 1000 samples is generated. For both

objectives, a pipeline that consists of standardization, PCA and GPR models is integrated in ε-Pal for

making predictions. An initial data set of 200 samples is labeled by calling the optimization model;

afterwards, in each iteration, 20 new samples are selected by the ε-PAL algorithm to be labeled. The

ε-Pal algorithm classifies all 1000 data points in 26 iterations after initial model creation. Seven

Pareto-optimal points are identified, the rest is discarded (Figure 4.11).
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Figure 4.11: Progress of ε-Pal classification.

As in the previous application of the algorithm in Chapter 3, it is observed that the ε-Pal algorithm

manages to identify the relevant design space domains that yield optimization results that perform

well for desired Pareto frontiers, in this case the one of the 95th percentiles of OPEX and CAPEX.

Approximately 70% of the data points are labeled by calling the original optimization model; the

rest is classified by the ε-Pal algorithm. Compared to labeling all points in the design space by

calling the original optimization model, 25% of time savings are achieved. This relatively high

share of samples to be labeled is induced by the fact that the GPR models included in the ε-Pal

algorithm are predicting relatively high uncertainties, causing the algorithm to call the original

model. Nonetheless, at the end of the procedure, reclassification of before-labeled points helps

to ensure that points are not falsely classified. Performance improvement could be achieved by

considering other machine learning algorithms to be included in the ε-Pal algorithm. As initial

testing indicated, XGBoost [340] seems to have higher predictive powers on the proposed data set

than GPR, strengthening the assumption that integrating other types of machine learning models

might be beneficial for the computational performance of the ε-Pal algorithm (Figure 4.12).
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Thus, it is concluded that the ε-PAL algorithm is a powerful tool to replace optimization calls when

facing non-linearities, but an adequate choice of included prediction models is crucial. Future work

may involve replacing GPR models with Monte Carlo dropout-based surrogate modes, as kernel

models are well-known for their tendency to require stringent feature selection [273]. Furthermore,

higher-dimensional feature spaces with noisy data might lead to low prediction performance, which

can potentially be avoided by exchanging the surrogate models [272, 280].
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(a) Parity plot Gaussian regression model
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Figure 4.12: Performance of Gaussian regression model and XGBoost.

4.4 Conclusions and outlook

In this chapter, approaches addressing decision-making under uncertainty for superstructure op-

timization problems have been presented. While the analysis cannot provide a single "optimal"

solution, it is suggested that the visual representations help to inspire and facilitate decision-making

under uncertainty by providing insights on correlations between unit choices, objectives, and eco-

nomic scenarios, thereby deepening the understanding of solutions obtained from superstructure

optimization problems. Future work could include the integration of the presented approaches

in the digital twin framework presented in Chapter 2, as well as the extension of the approaches

towards the consideration of other uncertain factors that do impact optimization problems, such

as environmental or even behavioral aspects. Furthermore, the application of an active learning

approach to efficiently generate solutions that perform Pareto-optimal considering uncertainty in

parameters was explored. The ε-Pal algorithm managed to identify the Pareto-optimal domains and

corresponding relevant design points, although relatively high shares of the data were labeled by

calling the original model. Future work might profit from replacing the GPR models with Monte

Carlo dropout-based surrogate modes. Additionally, the algorithm is operated on a finite design

space, which means that it is not able to find a design that is not in the set of provided scenarios.
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5Integrated biorefineries in the future

energy system

Overview

 Integration of Kraft pulp mill with residential district

 Potential to provide energy and storage capacities by means of biofuel production and

carbon capture and utilization

 Synergy exploitation between mill and residential district leads to emission reduction

 Optimization of internal cost identifies promising system configurations

Combined pulp and fuel production in Kraft pulp mills holds the potential to supply fossil fuel

alternatives at reasonable economic and environmental expenses that can assist emission reduction

in the transportation sector, as discussed in Chapter 1. However, apart from a general need to

reduce fossil-based emissions, the shift from fossil energy carriers to renewables is likely to cause

mismatches of supply and demand of electricity. This chapter aims to extend the analysis performed

in Chapter 1 to investigate the potential of integrated biorefineries to assist in balancing electricity

demand and supply while co-producing pulp and liquid fuels from biomass. Thus, in the example

of a Kraft pulp mill, biomass exploitation is analyzed regarding defossilization potential in the

transportation and the residential sector.

A conventional Kraft pulp mill is integrated with thermochemical conversion processes in which

residuals of the pulping process are converted to fuel. The integration of power-to-fuel and fuel-to-

power units is enabled to contribute to the flexibility of the energy system and enhances additional

fuel production in times of electricity oversupply. For further improving the carbon balance of

the mill and enabling net-negative emissions, carbon capture, utilization, and storage systems

are included in the analysis. The problem is analyzed in a multi-time scope, considering hourly

variations in electricity prices, environmental impact factors, demand profiles, and weather data.

Multi-objective optimization (MOO) is coupled with systematic solution generation and exploration

approaches. Thereby, two perspectives are considered for formulating the objective function, one
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that represents the mill operator, and one that represents a universal decision-maker (DM) that is

aware of the mill and the residential district. For both perspectives, promising configurations that

are economically competitive, robust regarding parameter uncertainty, and able to provide flexibility

to the energy system are identified. When considering the perspective of the mill operator, the

profitability of a configuration is largely dependent on the market profile of crude oil and electricity

prices, while the mill’s carbon efficiency can be increased from 50% to up to 90%, profiting from

carbon capture and utilization in fuel production and sequestration. When the perspective of the

integrated system is considered for optimization, direct emissions of the mill and residential district

can be reduced by up to 90% compared to the non-integrated system. Optimization of the cost of

internal flows reveals that this reduction comes at added expenses for all stakeholders, but that a

reduction of emissions by approximately 50% might even provide economic benefits. Furthermore,

extrapolating the analysis to the European level reveals that the benefits of integration and the

choice of configuration to be best suited for reducing emissions at reasonable financial expenses

depend largely on the energy portfolio present in the considered region.

5.1 Introduction

The European Union (EU) aims to achieve net zero emissions by 2050. However, atmospheric CO2

emissions are still steadily increasing, suggesting that our carbon budget to limit temperature rise

to 1.5°C will be depleted in 2032 [16]. Therefore, urgent action is required in all sectors to limit

greenhouse gas (GHG) emissions further [16]. Defossilizing the energy system while keeping the

energy supply affordable and reliable is one key aspect of reaching this goal. As such, the stability of

electricity supply is affected by the increasing share of intermittent renewable sources introduced to

the energy system, resulting in an increasing number of bottlenecks of supply [341, 342]. Besides

spatial mismatches between electricity generation from renewable resources and demand sites,

temporal discrepancies arise from the intermittent availability profile.

The concept of sector coupling has gained international attention as one of the most promising

options for dealing with intermittency issues. Connection and interaction of energy-demanding

sectors are expected to contribute to cost-efficient defossilization by exploiting synergy potentials

between actors of the energy system [16, 17, 341]. One of the most holistic definitions of sector cou-

pling is provided by the German Association of Energy and Water Industries, suggesting that sector

coupling involves the coupling of electricity, heat, and mobility as well as industrial processes and

their infrastructure, while increasing the flexibility of energy demand in the industrial, household

and transport sectors [17, 343].

The predominant research conducted in the area at the moment focuses on the temporal challenges

induced by renewable energy sources, targeting two objectives: increasing the flexibility of supply

and demand and enabling the storage of energy [17, 341, 344, 345]. For instance, the conversion
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of surplus electricity to hydrogen on the supply side or, on the demand side, the usage of residual

heat from power generation or industrial processes for district heating are considered promising

examples of sector coupling [346]. As such, electrification of energy demands was identified as one

core strategy for reducing emissions in the energy sector, allowing for simultaneous energy efficiency

improvements and defossilization [16]. Specifically in buildings, electrification of demands is widely

applied. In the transportation sector, vehicles powered by renewable electricity and hydrogen hold

great potential to mitigate emissions [16]. Limitations arise for providing freight transport and

aviation demands, where storing the required amount of energy at reasonable energy densities and

system efficiencies by means of electrification is challenging [16].

Besides freight transportation, the industrial sector is also hard to defossilize by means of electri-

fication due to high-temperature heat demands and its need for carbon to produce value-added

products. This requires alternatives to electrification to succeed in defossilization, such as the

use of biomass or carbon capture, utilization and storage (CCUS) technologies [16]. Generally,

the development of bio-based products is strongly supported by the EU’s industrial policy and is

regarded as a key enabling technology for shifting towards a more sustainable industry [347]. The

development of markets and competitiveness in bio-economy sectors by sustainably increasing

primary production, conversion of waste streams into value-added products, and resource efficiency

is part of the European Commission’s bio-economy strategy and action plan [347]. In that regard,

over the last decades, interest in both single-product and integrated biorefineries has increased,

reflected by the research conducted in the field [37]. Analyzed bio-based products are ranging from

biofuels to specialty chemicals and pharmaceuticals [26, 46]. However, biomass-handling sectors

not only hold the potential to serve as an integrated biorefinery as demonstrated in Chapter 1;

they are also capable of storing and managing energy provided by renewable resources and, this

way, contribute to the defossilization of the energy system. Storage opportunities are especially

interesting with regard to power-to-X (P2X) and X-to-power, as they allow to provide not only the

storage potential of electricity but also fossil fuel alternatives to the transportation sector. In P2X

technologies, excess electricity is converted to a product X, preventing curtailment of renewable

energy installations. P2X is nowadays mainly investigated for the integration between the electricity

and the gas sector. Gas storage allows to cope with seasonal variations in demand and renewable

electricity supply and may also support short-term flexibility [16].

In a study provided to the European Parliament’s Committee on Industry, Research and Energy, it

is pointed out that the relevance of sector coupling is highly linked to the policy goal of decentral-

izing the energy system and shifting towards renewable-energy-based sources [16]. One crucial

aspect highlighted is that defossilization of the economy by decentralizing the energy system is not

necessarily inducing negative burdens on society but can be seen as a potential for new business

opportunities, creating employment and contributing to a healthier and more liveable environment

[16].
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This chapter investigates the potential of coupling an integrated biorefinery with P2X, X-to-power,

and CCUS technologies at the example of a Kraft pulp mill to assist the energy transition by means

of providing fossil fuel alternatives and storage opportunities for low-impact energy. The following

section gives an overview of the state of the art in sector coupling with a special focus on the role

of the industrial sector and biomass usage, as well as CCUS. Subsequently, the research objectives

(Section 5.3), the suggested methods (Section 5.4), the case study (Section 5.5), and the results

(Section 5.6) are presented.

5.2 State of the art

The first contributions on sector coupling focused on connecting the electricity and the gas sec-

tor, addressing the intermittency of renewable resources [341, 344, 348]. More recently, coupling

approaches of the electricity and the transportation sectors were investigated, also referred to as

vehicle-to-grid, introducing storage opportunities of excess electricity in vehicles [345, 349, 350]. In

that regard, bi-directional charging of vehicles is investigated as an opportunity to feed electricity

back to the grid when needed [351]. Multi-sectoral or cross-sectoral coupling is also covered in

literature, for instance, looking at the coupling of heat, electricity, and transport systems in one

sector [352–355] as well as introducing spatial energy transportation in the analysis. A holistic

overview of sector coupling approaches is provided by Fridgen et al. [341]; a comprehensive review

of applications is available in [356].

5.2.1 Power-to-X for enabling energy storage

In light of sector coupling, there is ongoing research on P2X technologies storing excess electricity

from renewable resources that can later be dispatched for end-use. Converting abundant molecules

such as water, CO2, and air to gaseous or liquid fuels and value-added products enables storage of

intermittent energy sources, while supporting the defossilization of transport and energy infras-

tructure [357]. Generated fuels have similar characteristics regarding energy density as fossil fuels,

keeping the need for adaption of the current distribution and usage systems minimal. The adoption

of P2X technologies is currently subject to strong policy support, as its potential to facilitate the

integration of renewable power into energy-consuming sectors such as transportation, agriculture,

and manufacturing, and effectively displacing fossil fuels while providing sector-coupling benefits is

widely recognized [357]. Specifically, renewable hydrogen from water electrolysis is advocated by

strong policy support in the EU, Japan, Australia, and South Korea [357]. Worldwide, there are also

demonstrations of secondary CO2 conversion technologies that use renewable hydrogen and CO2

in methanation, hydrogenation, Fischer-Tropsch (FT) synthesis, and the Haber-Bosch process [357].

In combination with biomass valorization, the potential of P2X to provide fossil fuel alternatives

is widely recognized. Using relatively small and local plants to turn biomass residues into fuel has
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an immense potential to replace fossil fuels and to fix large quantities of CO2 [358]. Furthermore,

P2X holds great sector-coupling benefits because, at present, renewable energy utilization is mainly

improving the CO2 footprint of the electricity sector, whereas the other sectors are undergoing a

longer defossilization process [357].

5.2.2 Carbon capture, utilization and sequestration

As stated in the latest IPCC report [359], CCUS is a set of key technologies to limit climate change-

induced temperature increase to well below 1.5°C. Particularly, geological sequestration of CO2,

reforestation, and bioenergy with carbon capture and storage (BECCS) technologies are highlighted.

Carbon capture has been present at an industrial scale for over fifty years in post-combustion

applications. In most applications, an aqueous amine solution is sprayed from the top of an

absorption tower on a passing stream of flue gas [360]. However, while post-combustion absorption

methods are technologically and commercially mature, they suffer from the drawback that they

have high energy requirements, and the installation needs to be protected against corrosion and

oxidative degradation [360]. Other technologies that are explored are pre-and oxyfuel combustion

processes. Compared to post-combustion processes, they have the advantage of cutting the energy

penalty of capturing CO2 roughly by two. However, they are not yet commercially mature [360].

The pulp and paper sector may be able to serve as a potential carbon sink through the capture and

storage of biogenic CO2 emissions. According to estimates, Kraft pulp mills are responsible for 73%

of the CO2 emissions from the European pulp and paper industry, emitting annually more than 0.5

Mt of mostly biogenic CO2 [361]. Different capture technologies are available for use in Kraft pulp

mills, ranging from post-combustion chemical absorption to oxy-combustion in the recovery boiler

and pre-combustion from the gasification of black liquor [362]. The most practical capture method

is the amine-based post-combustion capture because it enables retrofitting of existing equipment

without rebuilding or altering the recovery boiler [363]. While having notable CO2 capture potential,

the on-site utilization potential of captured CO2 in conventional Kraft mills is rather limited [106].

Pulp mills currently see little incentive to implement carbon capture and storage technologies, as

biogenic emissions are not taken into account in emission trading schemes such as, for example,

the EU Emissions Trading System (EU ETS) [364]. As such, the introduction of CCUS into a pulp

mill is expected to increase the levelized cost of pulp in a standalone mill by 4–30% [364]. To keep

the levelized cost of pulp at a level comparable to a reference mill without CCUS, a standalone pulp

mill would need to receive negative CO2 emission credit. In that regard, the utilization of captured

carbon for bio-energy production seems to be a viable option to make the capture of biogenic CO2

at pulp mills economically attractive.

Captured CO2 can serve as feedstock for many applications such as tall oil manufacturing, lignin

extraction, or co-electrolysis and methanation applications [106]. Furthermore, it can be seques-
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trated by means of geological storage and mineralization. Mineralization is defined by the capture

of CO2 and its usage for the formation of carbonated products through the breakage of bonds within

mineral silicates. Captured CO2 reacts with either calcium (Ca), magnesium (Mg), or aluminum

(Al) to create carbonates; this mimics the natural weathering of rocks in an adsorption chemical

reaction [365]. At ambient conditions, the formed carbonates are stable and could be used in several

applications like construction materials, iron, steel, and glass production [365].

Two types of carbonation processes exist; direct aqueous carbonation and indirect carbonation. In

direct carbonation, different reactions and operations take place inside the reactor simultaneously.

CO2 dissolves into the water phase to form bicarbonates (H2CO3) and hydrogen ions (H+) [365].

Silicates of pretreated minerals are leached to form carbonates, which are then converted into

carbonated products. Although mineralization reactions have an exothermic character, the released

energy is not enough to satisfy the high demands of the mining and the pretreatment steps, which

makes integration with processes profiting from surplus heat availability intriguing [365]. Indirect

carbonation is a more complex, multi-step process with operating conditions depending on the

leaching agents [366]. In indirect carbonation, Mg and Ca are extracted from their silicates in the

feedstock using weak acids, and subsequently carbonated. Thereby, improved reaction kinetics and

product quality compared to direct carbonation come at the cost of increased process complexity

[367]. The recovery of solvents of the indirect carbonation is not straightforward due to the presence

of multiple compounds from solid wastes and side reactions taking place [368]. However, higher pu-

rity of carbonates compared to direct carbonation is obtained through the increased controllability

of the process, making it interesting for a variety of applications [369].

Over recent years, there has been a sharp increase in patents on the topic of CO2 carbonation

[370]. Due to the high investment cost and the need for relatively high CO2 concentrations, a CCUS

network is particularly interesting at the industrial scale, complementing, for example, coal or

natural gas-fired power plants, or biomass burning plants [360, 371]. For instance, Y Li et al. [319]

presented an optimization framework for investigating the synergies between a CCUS network,

energy supply, process units, and facilities for water and waste treatment.

Table 5.1 provides a summary of exemplary contributions in the domain of integrated biorefineries

coupled with P2X and CCUS technologies, specifically related to multi-time consideration and

acknowledgment of uncertainty. Even though interest has evolved recently in the mentioned

topics, especially in the domain of P2X integrated with biorefineries, there seems to be little work

available that exploits the potential of integrated biorefineries coupled with P2X and X-to-Power

in consideration of the time-dependent, volatile character of renewable electricity availability.

Furthermore, the potential to integrate CCUS with the valorization of renewable electricity in

biorefineries to assist defossilization seems to be not explored. It needs to be noted that the presented

survey is not meant to be complete; it is only intended to provide the reader with an overview of

research directions covered in literature.
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Table 5.1: Contributions in the domain of biorefinery design in combination with P2X and
multi-time consideration.

Author Scope Multi-
product

Multi-
time

P2X Uncer-
tainty

CCUSa

Kim, Sen, and Mar-
avelias [372]

Biomass-to-fuel production strate-
gies

✓ ✗ ✗ ✓b ✗

Onel et al. [373] Production of liquid transportation
fuels and olefins from forest residues
and natural gas

✓ ✗ ✓c ✗ ✓

Uebbing et al. [374] Superstructure for power to
methane conversion

✗ ✗ ✓ ✗ ✓

Kenkel, Wassermann,
and Zondervan [18]

Integrated jet fuel refinery ✓ ✗ ✓ ✓d ✓

R Lin et al. [202] Biorefinery systems ranking under
uncertainties

✓ ✗ ✗ ✓ ✗

Celebi et al. [26] Optimally integrated biorefinery pro-
cess

✓ ✗ ✗ ✗ ✓

Gassner and Maréchal
[375]

Polygeneration of SNG, heat and
power from biomass

✓ ✗ ✗ ✓e ✓

Rizwan, JH Lee, and
Gani [376]

Microalgae-based biorefinery ✓ ✗ ✗ ✓f ✗

Pettersson and Harvey
[137]

Black liquor gasification, down-
stream production of DME or elec-
tricity

✓ ✗ ✗ ✓g ✓

Fornell, Berntsson, and
Åsblad [377]

Techno-economic analysis of
ethanol and dimethyl ether (DME)
production from repurposed Kraft
pulp mill

✓ ✗ ✗ ✓h ✓

Mongkhonsiri et al.
[36]

Biorefinery-integrated Kraft-pulping
network

✓ ✗ ✗ ✗ ✓

Darmawan et al. [378] Cogeneration system from black
liquor

✓ ✗ ✗ ✗ ✓

Onarheim et al. [364] Amine-based post-combustion CO2
capture in pulp and paper industry

✓ ✗ ✗ ✗ ✓

Spínola et al. [379] Mineral carbonation for CO2 cap-
ture in Kraft mill

✓ ✗ ✗ ✗ ✓

Tock and Maréchal
[380]

Thermo-environomic optimization
of fuel decarbonization processes

✓ ✗ ✗ ✓i ✓

a CCUS includes the capture of CO2 and its recycling in the process, e.g., for gasification, b included for the
different levels of maturity in the process, c electrolyzer for hydrogen production, d fitting methods for economics
of novel technologies, e post-computational calculation of indicators that depend on assumptions, f sensitivity
analysis, g sensitivity analysis, market scenarios, h future market scenarios, i economic scenarios.
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5.3 Identified gaps and objectives

Despite the growing interest and strong policy support towards the development of biorefinery

concepts, there is little work that systematically considers biomass potential in combination with

P2X for the co-production of products and storage opportunities for intermittent electricity [37].

Furthermore, only limited work is available on the integration of CCUS in biorefineries, even though

the large amounts of available biogenic CO2 could serve as suitable feedstock for a variety of

applications.

The objective of this chapter is to investigate the role integrated biorefineries can play in the en-

ergy transition by assisting in closing the balance between renewable electricity availability and

demand, in the example of a Kraft mill. The options of a Kraft mill to assist in the defossilization of

transport and residential energy demands are investigated. Specifically, synergies between the mill

and a residential district regarding heating, electricity, and transportation demands are analyzed,

considering the time-dependency of demands, prices, and environmental impact, and the volatile

character of renewable electricity. In that regard, the potential of integrating biofuel production, P2X,

X-to-power, and CCUS in the Kraft process to reduce emissions of the mill and the residential district

is explored. Promising system configurations are identified and assessed regarding environmental

and economic performance, and potential benefits and costs arising for the system’s stakeholders

are derived.

5.4 Methods

Solutions of system configurations are derived using a MOO approach for varying economic and

environmental scenarios, as previously elaborated in Section 1.3.2. A superstructure of possible

system configurations is assessed, including a Kraft mill with potential enhancements such as P2X,

biomass to fuel, CCUS, and storage technologies. Furthermore, a residential district, including its

transportation, electricity, and heating demands, is integrated into the superstructure. Different

perspectives are used when performing optimization. One perspective includes the mill operator in

the scope of the objective function, while the other one considers a system consisting of the mill

operator, the residential district, and a utility operator. The emissions and economic performance of

obtained system configurations are compared to the conventional, non-integrated operation of the

mill and the residential district. Furthermore, required economic incentives for a configuration to

be viable for all stakeholders are derived and discussed regarding self-sufficiency gain and emission

reduction potential.
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5.4.1 Superstructure perspectives

The superstructure deployed to generate solutions is adapted and enhanced from Chapter 1, where

the addition of fuel synthesis process units to a Kraft pulp mill is explored. The following elaborates

on the additional process units considered in the superstructure apart from those already described

in Chapter 1.

Kraft pulp mill and fuel synthesis processes

In addition to the superstructure considered in Chapter 1, intermediate fuel storage tanks are in-

cluded, modeled as per Moret [20]. Furthermore, the integrated biorefinery can additionally be

equipped with carbon capture installations at all burners, and the option to sequestrate captured

carbon or to use it in other processes, such as co-electrolysis and methanation is enabled. Further-

more, the mill’s potential to export waste heat to a nearby district is explored. Further details on the

process models of the pulp mill and fuel synthesis units are provided in Sections 1.3.1 and A.2.

Power-to-X and X-to-Power

Apart from the electrolysis options previously considered, a solid oxide fuel cell (SOFC) unit is

included in the superstructure, providing electricity from fuel when the energy system is in need. It

can operate in both directions, also acting as a high-temperature solid oxide electrolysis cell (SOEC)

unit that converts CO2 and water to syngas, as already considered in the superstructure in Chapter 1.

Modeling assumptions for electrolysis and fuel cell units are summarized in Tables A.9 and E.1.

CO2 capture and sequestration

As described in Chapter 1, the main sources of CO2 in conventional mill operation are the recovery

boiler, the bark boiler, and the lime kiln. Depending on the lime kiln fuel, emissions are either

biogenic or of a fossil nature. Adding thermochemical process units to the superstructure leads to

the emergence of additional potential CO2 capture locations, mainly at off-gas burners and acid gas

removal units. The process units considered for carbon capture are listed in Table 5.2.

Table 5.2: Process units for potential carbon capture.

Process unit Carbon source

Lime kiln Calcination, burning off-gases/natural gas
Recovery boiler Burning organic contents of black liquor
Bark boiler Burning bark
Gasification and fuel synthesis Acid gas removal, burning off-gases

For CO2 capture, amine-based monoethanolamine (MEA) is considered, modeled with data pro-
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vided in [381] (Table A.11). In the synthesized superstructure, captured CO2 can either be used in

process units such as co-electrolysis, gasification, or methanation; it can be sequestrated deploying

mineralization, or stored geologically.

When applying mineralization for sequestrating CO2, minerals present in alkaline solid wastes of

the Kraft mill (green liquor dregs, slacker grits, limepurge, and ash) are considered; the chemical

composition of these streams is adapted from Quina and Pinheiro [99] to estimate the amount of

available minerals. Indirect and direct mineralization models are adapted from Castro-Amoedo et al.

[382], where the information provided by Ostovari, Sternberg, and Bardow [383] and Sipilä, Teir, and

Zevenhoven [384] is deployed. Apart from utilizing minerals in the residues from the pulp mill, the

mineral ore serpentine can be imported. In direct carbonation, pretreatment in the form of magnetic

separation, grinding, and chemical treatment of mineral ores occurs. With serpentine as mineral ore,

the pretreatment requires high-temperature heat, partially dehydroxylating serpentine and leading

to an amorphous structure that enables faster reaction kinetics [385]. The pretreated feedstock is

brought to reaction temperature and fed to the reactor, where it is mixed with aqueous solutions

of sodium bicarbonate (NaHCO3) and sodium chloride (NaCl). Compressed CO2 is injected into

the reactor, dissolving in water to form bicarbonate and hydrogen ions. Mg silicates leach from the

mineral matrix, and magnesium ions precipitate. Formed products are fed to a postprocessing step

for separation and drying [382]. In indirect carbonation, Mg is extracted from their silicates matrix

before carbonation in the leaching process, either based on acids or bases. The herein applied

model is based on acids, given their predominance in the experimental work presented [366, 386].

In the subsequent hydroxide formation stage, selective precipitation occurs by increasing pH with a

regulator. In the carbonation stage, magnesium carbonate is formed by the reaction of the respective

hydroxide with CO2 [382]. Deep geological sequestration is considered by means of compressing

captured CO2 and transporting it to available storage sites. Detailed information about modeling

assumptions on carbon capture and sequestration is provided in Section E.1.2.

Residential district

The integration of the mill with a nearby residential district is analyzed considering demand projec-

tions for the year 2030. Generally, it is assumed that the demands are comparable to the ones today,

but that the efficiency in providing energy services and the involved technology portfolio changes. It

is assumed that the heat demand of the residential district is currently satisfied using the typical

mix available for Swiss districts [387] and that, potentially, a district heating network (DHN) can be

installed, profiting from the waste heat available in the mill, operating either on water or on CO2.

Details on the DHN modeling assumptions are provided in Section E.1.3.

Hourly demand data for space heating, electricity, and domestic hot water demand is generated

based on the models presented in [388, 389] for the year 2019. It is assumed that heating and electric-
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ity demands will remain constant between 2019 and 2030 and that technological efficiencies change.

Furthermore, global irradiation and external temperature are considered on hourly resolution in

order to calculate the efficiency of the energy conversion technologies in the district accordingly.

Further details on the demands of the district are available in Section E.1.3, where Table E.9 provides

an overview of the district demands and weather data used in the analysis. Visual representation of

the time-dependent demands and weather data is provided in Figure E.3.

Besides heat and electricity demand, demand for personal and freight transportation is taken into

account. The total demand for personal transport is obtained from the Federal Statistical Office

[390]. It is assumed that the same distances as in 2019 are required in 2030, but that the portfolio of

passenger cars on the streets has shifted towards a higher share of electric vehicles. Shares of energy

carriers for vehicles are taken from Eurostat [391], and the share of electric vehicles is extrapolated

to 2030 with the forecast data from the International Energy Agency [392], assuming the relative

shares of gasoline and diesel cars remain constant. For public transportation demands, data from

Eurostat [391] for 2019 is used and scaled to the size of the district. Full electrical operation of

regional public transportation by 2030 is assumed, following the same efficiency trends as the ones

of cars. For freight transportation, the trend from the International Energy Agency [392] is followed

for the data obtained for 2019 from Eurostat [181] and scaled to 2030 accordingly. To obtain the

hourly resolution of the transportation demand, data available from the Swiss Federal Office for

Statistics on traveling habits [390] is used; for busses, the same relative hourly profile distribution

is assumed. Table E.7 provides further insights on the transport demand assumptions. For energy

efficiency improvement in transportation, trends on fuel consumption from the International Energy

Agency [393] are extrapolated to 2030, yielding that only 85% of the fuel required in 2019 will be

needed in 2030 for driving the same distance. Fuel demands in transportation can either be satisfied

by importing conventional fuels, or by using biofuels produced in the pulp mill. For converting

commodities such as conventional fuels, biofuels, and electricity to transportation services, the

conversion factors in Table E.6 are used.

All electricity demands in the residential district can be satisfied by excess electricity from the

mill, electricity from the grid, or photovoltaic (PV) panels that can potentially be installed. PV

performance and economics are modeled based on the work performed by R Suciu et al. [394],

where the electricity output is a function of area, time-dependent solar irradiation, and efficiency.

The efficiency depends on the PV panel temperature, which is a function of the thermal transmission

coefficient and the solar irradiation [394]. An overview of parameter assumptions of the process

units included in the district can be found in Table E.5.
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Utility superstructure

The utility superstructure presented in Chapter 1 is enhanced with an organic Rankine cycle (ORC)

adapted from Kermani et al. [395], that can provide heating services at low temperatures, for example,

to be transferred to the district heating network, and generates electricity. Direct heat exchange

between processes in the superstructure is largely restricted, as further elaborated in Section A.3.2;

generally, the steam network or ORC operation is required to exchange heat between process units.

The described superstructure is summarized in Figure 5.1.

5.4.2 Solution synthesis

For generating solutions, an adapted form of the decision-making method described in Chapter

1 is applied, profiting from a two-level solution generation and exploration framework, where

the upper-level samples from a decision space and defines a MOO formulation relying on the ε-

constraint method, whereas the lower-level framework provides solutions for the resulting mixed

integer linear programming (MILP) problem (Section 1.3.2). Parameter uncertainty is considered in

solution generation and exploration, as suggested in Chapter 2 and further extended in Chapter 4.

As such, D1 denotes the parameter samples for which results are generated utilizing optimization,

while D2 represents the parameter samples that are used to recalculate obtained performance

indicators for the configurations a posteriori to optimization. In an extension to previous chapters,

the uncertainty inherent in environmental impact indicators is also included in this analysis. Apart

from variation in economic and environmental parameters, the upper level is sampling some bounds

Y of binary decision variables of the lower-level MILP during solution generation, for generating a

diverse solution space. This procedure is further described in Section 2.2.1. To capture the time-

dependent character of prices and impact factors of energy commodities, weather data, and district

demands, data on an hourly resolution is taken into account during solution synthesis, as described

in Section 5.4.1. Further information on the considered parameters, their time-dependency, and the

approaches applied for acknowledging uncertainty, especially for time-dependent parameters, is

provided in Section E.2.

The system is analyzed from two different perspectives, one being one of the mill operator (perspec-

tive M), and the other one being the perspective of the whole system, containing the above-described

district with its heating, electricity, and transportation needs, the mill, and a utility operator that

allows for heat exchange between the two (perspective S). In perspective M, the mill operator can

export fuel, pulp, and electricity to the market and can sell waste heat to the district. The district itself

(orange box in Figure 5.1) is not considered in this case. The mill only perceives the possibility of

selling waste heat to the residential district at a fixed price, the maximum amount being constrained

by the time-dependent demands. The scope of perspective M is visualized as the red box in Figure

5.2.
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Utility operator

Pulp mill
Biofuels

Heat

Electricity

Figure 5.2: Scope of optimization for perspective M. Mill can sell and buy electricity and fuel and can
provide heat to the utility operator when the district is in need of heat. Author acknowledgments for
icons in Section E.4.

For perspective S, the district’s demands are fully considered in the optimization, meaning that

for all district demands, the mass balances need to be closed. The market for selling biofuels (red

boxes in Figure 5.1) is disabled, allowing the mill only to exchange fuels with the district directly.

Furthermore, the mill no longer perceives a selling price for waste heat but can only provide it

directly to the residential district, either via a CO2 or a water district heating network, operated

by a utility operator. Electricity can still be imported and exported from the grid, and pulp can be

sold. The district can satisfy its demands with commodities provided by the mill, or it can utilize

conventional heating technologies and fuels from the market to meet its demands. Furthermore, it

is connected to the electrical grid (Figure 5.3). Thus, when the system perspective is considered, the

internal market is neglected in the definition of the economic objectives, thus internal exchanges

within the system between the mill and residential district are deemed free, although investment for

required infrastructure might be required.

Utility operator

Pulp mill District
Electricity
Biofuels

Heat

Figure 5.3: Scope of optimization for perspective S. Internal exchanges between mill and district are
considered to be for free; everything that is exchanged with the environment outside the considered
system (red box) needs to be bought or sold. Author acknowledgments for icons in Section E.4.

As solving the problem for hourly resolutions exceeds the available computational capacities of the

lower-level framework, time series aggregation (TSA) is applied to consider the time dependency of
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model parameters. Further details on the TSA approach applied are provided in Section E.2.

Performance evaluation

For evaluating obtained configurations, the same key performance indicators as described in Chap-

ter 1, Section 1.4.2 are considered. They describe the economic (total expenditure (TOTEX), oper-

ating expenditure (OPEX), capital expenditure (CAPEX)), environmental (environmental impact

(EI)), and energetic (carbon, energy, and exergy efficiency) performance of the mill. Additionally, the

system efficiency of the mill operation ηsystem is taken into account, which describes the heat lost in

the mill by means of cooling in relation to the total amount of energy entering the mill (Equation

5.1).

ηsystem = 1− Encooling,−

En+ (5.1)

For perspective S, the system’s combined self-sufficiency is considered, which acknowledges heating,

transportation, and electricity demands for the mill and the district in relation to what is provided

internally, expressed as energy (En). The combined self-sufficiency is defined as:

ηcombined = Enelec,provided +Enbiofuel,provided +Enheat,provided

Enelec,demand +Enfuel,demand +Enheat,demand
(5.2)

Optimization of internal flows

Solutions of perspective S are initially computed in the absence of costs associated with the internal

exchanges between the mill operator and district, in order to derive potential energetic and environ-

mental benefits of exploiting synergies. For obtained configurations of perspective S, prices that

would economically motivate the exchange of commodities between the stakeholders of the system

are determined by means of optimization. For this purpose, the system is divided between the three

stakeholders, namely the mill, the utility operator of a district heating network, and the residential

district. An optimization problem is formulated that minimizes the district’s costs C district while

respecting the economic requirements of the mill and the utility operator.

The total cost of the utility operator C utility considers the investment in the district heating network,

the expenses for buying heat from the mill (Qdhn,mill) and other sources (Qdhn,other, buying included

in OPE X dhn,other), the selling of heat to the district, as well as the cost for satisfying internal elec-

tricity demands (E utility,net, Equation 5.4). The cost of the residential district C district is calculated as

the sum of the investment the district makes, the cost it pays for heat from the district heating net-

work (Qdhn,mill/other,+), electricity (E district,net), biofuel (mbiofuels,+), and heating and transportation
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demands satisfied with conventional commodities (OPE X heat,transport,conv, Equation 5.5). For the

cost of the mill C mill, revenues for selling products, as well as the cost of resources and investment

into fuel production process units are considered. Generally, it is assumed that all stakeholders

consume their self-produced electricity and sell the excess to others. Thus, E net always refers to the

net amount of electricity a stakeholder needs to import ( E net > 0) or export ( E net < 0) to balance its

internal production and demands. The electricity that is imported from the grid is assumed to be

imported solely by the mill; the costs are included in OPE X mill,other (Equation 5.6). Thus, E net,mill

describes the amount of electricity that the mill can provide to the other stakeholders, considering

the imported electricity from the grid, the electricity it produces, and the electricity it requires.

min C district (5.3)

st :

C utility =
S∑
s

(
ys

(
C inv,dhn

s

τ
+OPE X dhn,other

s

)
+Qdhn,mill

s ·
(
cheat,wholesale

s − cheat,retail
s

)
(5.4)

−Qdhn,other
s · cheat,retail

s +E utility,net
s · celectricity

s

)

C district =
S∑
s

(
ys

(
C inv,district

s

τ
+OPE X heat,transport,conv

s

)
+

(
Qdhn,mill,+

s +Qdhn,other,+
s

)
· cheat,wholesale

s

(5.5)

+mbiofuels,+
s · cbiofuels

s +E district,net
s · celectricity

s

)

C mill =
S∑
s

(
ys

(
C inv,mill

s

τ
+OPE X mill,other

s

)
−Qdhn,mill,−

s · cheat,wholesale
s −mbiofuels,−

s · cbiofuels
s

(5.6)

+E mill,net
s · celectricity

s

)

The maximum payback period of the investment that the utility operator is facing is parameterized

with ppayback,max, and the maximum changes in costs the mill operator can be subjected to compared

to a reference point C mill,ref are parameterized by f ∆,mill (Equations 5.7- 5.11).
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ppayback ≤ ppayback,max (5.7)

ppayback = C inv,utility
s

−OPE X utility
(5.8)

OPE X utility = (cheat,wholesale
s − cheat,retail

s ) ·Qdhn,mill
s − cheat,retail

s ·Qdhn,other
s (5.9)

+OPE X dhn,other
s +E utility,net

s · celectricity
s (5.10)

C mill ≤ C mill,ref · (1− f ∆,mill) (5.11)

The continuous decision variables the optimizer needs to fix (cheat,retail, celec, cbiofuels, cheat,wholesale)

are constrained within a range of minimum and maximum costs allowed (Equations 5.12-5.17); the

binary variable y that activates a configuration ensures that these constraints are only active for the

chosen configuration (Equations 5.18 - 5.19).

0 ≤ celec
s ≤ ys (5.12)

0 ≤ cbiofuels
s ≤ ys (5.13)

0 ≤ cheat,retail
s ≤ ys (5.14)

0 ≤ cheat,wholesale
s ≤ ys (5.15)

0.2cheat,retail
s ≤ cheat,wholesale

s ≤ cheat,retail
s (5.16)

cheat,retail
s ≤ celec

s (5.17)

The optimization can be either performed for one selected system configuration s or in awareness

of all obtained system configurations S. In the former case, the binary decision variable y that sets

the configuration is fixed manually; the optimizer only fixes the costs of the internal flows for a

given solution (Equation 5.18). In the latter case, the optimizer chooses the most profitable system

configuration for a given optimization problem (Equation 5.19).

ysi = 1 Constraint added if DM selects configuration si manually (5.18)
S∑
s

ys = 1 Constraint on integer variable for choosing one configuration from S (5.19)

5.5 Application

The proposed superstructure design is applied to the mill described in Chapter 1, producing 1000

air-dried tons (ADT) of pulp per day, located in France next to a residential district. For perspective

M, time-dependent data is aggregated into three representative timesteps, while for perspective S,
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four representative timesteps are required according to the approach presented in Section E.2.1. For

perspective M, 10 samples d1 are evaluated with seven Pareto-optimal points each; for perspective S,

three scenario samples d1 are created and evaluated with the same number of Pareto-optimal points.

Both economic and environmental parameters are included in D1; the considered variation of

parameters is presented in Table E.10. Besides varying the environmental and economic parameters

in the upper level of the solution generation framework, some upper bounds of the binary decision

variables of the MILP are varied to generate a diverse solution space. For perspective M, the binary

variable bounds that determine the consideration of the DHNs, fuel selling units, and sequestration

processes are included in the parameter sampling. For perspective S, the consideration between

a water or a CO2 DHN are varied. For each sample provided by the upper-level framework used

for solution synthesis, the lower-level framework performs MOO for the objectives TOTEX and EI,

measured in global warming potential (GWP). Thereby, the EI in perspective M includes released

biogenic carbon in order to explore the emission avoidance potential of the mill. For perspective S,

only fossil-based emissions are taken into consideration for calculating EI.

5.6 Results

The following section discusses the obtained results for both perspectives. Firstly, the main findings

and trends for optimizing perspective M are elaborated, followed by additional insights into the

optimization of perspective S, representing the integration between the mill and the residential

district.

5.6.1 Perspective M
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Figure 5.4: Economic performance vs. carbon efficiency and corresponding EIs.
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In Figure 5.4, the performance of the unique configurations of perspective M compared to con-

ventional mill operation is displayed. In conventional (reference) mill operation, the mill is solely

producing pulp and exporting electricity, no additional products are produced and no additional

units are installed. As performance indicator, the 95th percentile of TOTEX (TOTEX 95%) and EI (EI

95%) are displayed, calculated as described in Section 2.2.2.

Not only the positive correlation between the ∆ TOTEX 95% and carbon efficiency is revealed, but

also the general trend that EI decreases with increasing carbon efficiency. Overall, obtained solutions

perform better environmentally than the conventional operation of the mill, marked as a reference

design; and configurations with negative ∆TOTEX are economically preferable as well. Thus, it is

possible to improve economic and environmental performance compared to the reference operation

of the mill.
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Figure 5.5: Biogenic carbon utilization throughout the obtained solution space, corresponding
carbon efficiency, and environmental impact. Carbon bound in the form of pulp is not displayed.
Impact includes direct biogenic emissions.

Biogenic carbon entering the mill in the form of wood can either be stored in pulp or fuels, apart

from being captured and used for mineralization, co-electrolysis, gasification, or methanation. Fur-

thermore, it can be recycled in the process, sequestrated, or released in the environment (Figure E.5).

Figure 5.5 shows the aggregated relative carbon allocation in all solutions obtained for perspective

M, indicating the amount of carbon stored in the form of products and used in mineralization or ge-

ological sequestration. As the pulp production is set as constant, the amount of carbon stored in the

pulp does not change over the solution space. The carbon efficiency is improved by increasing the

share of carbon recycled in the process to be used in fuel synthesis. Sequestration adds to a further

increase in efficiency, while simultaneously leading to a decrease of EI. Overall, the biogenic carbon

efficiency can be increased to over 90% by means of combined fuel production and sequestration.

The time-dependent provision and import of electricity observed in all configurations is displayed in
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Figure 5.6: Energy provision and electricity purchase activity for varying market conditions. For
all unique configurations, the activities per timestep are displayed. a) Electricity provision and
purchase for varying electricity prices. b) Amount of energy provided for varying crude oil prices.

Figure 5.6a. Each marker represents a configuration’s import or export behavior at a certain timestep,

and the corresponding electricity price. The color indicates the EI of the configuration the marker

belongs to. Overall, the export of electricity (values below zero) is favored when the electricity price

is high. Accordingly, for lower electricity prices, more electricity is imported. The export of fuel

occurs for a wide range of crude oil prices (Figure 5.6b) with a tendency for more fuels to be sold

when the market prices are higher.

Identification of robust solutions

From the set of unique configurations of perspective M, typical representatives of the solution space

are identified. A clustering approach is applied, where the individual clusters are defined based

on the carbon allocation in products and sequestration units, as well as the amounts of fuels, heat,

and electricity im-and exported, using the k-medoids approach. The optimal number of clusters is

determined using the elbow method [174, 175]. Details on the clustering method applied can be

found in Section 2.2.2.

Six typical solutions are identified, and they are labeled and displayed by increasing carbon efficiency.

For selecting a representative for each cluster, a multi-attribute rank is computed for each configura-

tion. In each cluster, the configuration with the highest rank is selected. The attributes included in

the computation of the rank are the environmental performance of the configuration, expressed

in carbon and energy efficiency, as well as a measure for robustness, all equally weighted. The

robustness measure r robust expresses the occurrence of a configuration in the near-Pareto-optimal

domain in all economic and environmental scenarios in D1 and D2 (Equation 4.1). Thereby, Pareto

optimality in D1 is determined by the lower-level optimization directly; each obtained configuration
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is Pareto-optimal in one sample of D1. For determining the near-Pareto-optimal configurations

for each sample in D2, the near optimality criteria are applied with a margin of 5%, so that a con-

figuration is considered as near Pareto-optimal in a given scenario if its performance is not more

than 5% worse than the current best performance observed. More information on the calculation

of the robustness measure can be found in Section 4.2.2. As previously elaborated in Section 2.2.2,

the multi-attribute rank is computed based on the technique for order of preference by similarity

to ideal solution (TOPSIS) [396], which attributes a dimensionless performance measure to each

configuration. For the computation of the multi-attribute rank, all considered attributes are equally

weighted.
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Figure 5.7: Carbon balance and energy provision in typical configurations.

In Figure 5.7, the clustered solutions are displayed with increasing carbon efficiency, showing their

relative biogenic carbon allocation and energetic performance. In all identified configurations, all

available bark is gasified, and except for two configurations, all of them gasify 30% of the weak black

liquor. The cluster with the lowest carbon efficiency (ID 0) is exporting liquid biofuels, synthetic

natural gas (SNG), and electricity. No black liquor is gasified, but electrolysis is providing hydrogen

that is partly exported and partly used for fuel synthesis. Mineralization is applied to sequestrate

carbon, relying on residue streams of the mill for supplying minerals. In ID 1, 30% of the black

liquor is gasified, more electricity compared to ID 0 is exported, and instead, biofuel production

is decreased. High shares of electricity are imported to support biofuel production by means of

co-electrolysis, valorizing captured CO2. Mineralization is deployed and mineral ores are imported

to complement the mill’s residuals. In ID 2, the import of electricity is reduced, and only biofuels are

exported. Carbon emissions are further reduced by geological sequestration. ID 3 features higher

141



5

Chapter 5. Integrated biorefineries in the future energy system

shares of carbon being sequestrated, while only 20% of black liquor are gasified. Waste heat is

exported, as well as electricity and SNG. ID 4 has a similar carbon allocation as ID 3, although the

energy provided in form of SNG and electricity is slightly increased, while no waste heat is exported.

ID 5, the configuration with the highest carbon efficiency, is profiting from the sequestration of large

parts of the biogenic CO2. All configurations but ID 0 include a fuel cell operated on crude biofuels,

whereas in ID 5, the installed unit is the largest.This solution also features the highest carbon

efficiency of 90% obtained over all configurations, which represents an increase of 40% compared

to conventional operation. ID 2, 3, and 4 feature the highest energy efficiency over the typical

configurations due to their efficient conversion of resources into fuels and electricity. Compared

to conventional operation, the energy efficiency is increased by up to 9%, from 56 to 65%. When

considering all unique configurations, the energy efficiency can be increased to up to 68%. All typical

configurations require natural gas import to support lime kiln operation. Further details on the

obtained cluster representatives are provided in Section E.3.1, where the main characteristics of the

obtained clusters are summarized in Table E.15, and the performance of the cluster representatives

for selected key performance indicators (KPIs) is summarized in Figure E.12.
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Figure 5.8: Electricity stored and net electricity provided/consumed in typical configurations. The
color indicates the amount of energy provided by fuels.

In Figure 5.8, the amount of electricity stored and the net electricity exported or imported are

displayed. Net electricity refers to the difference between electricity imported and exported over

the course of a year. The electricity stored is the minimum value between imported and exported

electricity. Apart from ID 2, all configurations store electricity, meaning that during the year, they

import and export electricity. ID 1 and 4 are net importers, while ID 3 and 5 are net exporters. ID 0

provides the same amount of electricity as it is importing. Even though the net importer ID 2 does

not store electricity, it provides stored energy in the form of fuel.
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Figure 5.9: Split of TOTEX for typical configurations. Solid-colored bars represent CAPEX compo-
nents, bars with hatch style refer to OPEX. Bars are offset by the OPEX from buying wood and selling
pulp, which is assumed to be constant over all of the solution space.

The corresponding split of TOTEX for the cluster representatives at mean market conditions and the

obtained distribution of TOTEX in the analyzed scenarios of D2 is displayed (Figure 5.9). Apart from

selling pulp, the main revenues arise from exporting waste heat (ID 0, 1, 3), electricity (ID 3, 4, 5),

liquid fuels (ID 0, 1, 5), and SNG (ID 0, 2, 3, 4). In accordance with the amount of fuel produced, the

investment cost for fuel synthesis and gasification units behaves respectively. Costs for resources

are governed by the purchase of electricity, lime, and water.

The performance of the obtained cluster representatives in the solutions space regarding the 95th

percentile of the objectives and the carbon efficiency is displayed in Figure 5.10. The size of the

markers represents the number of occurrences of a configuration in the near-optimal domain

over the analyzed scenarios in D1 and D2 (r robust). As expected, configurations that show high

occurrences in the near Pareto-optimal domain, thus featuring large marker sizes, dominate the

near Pareto-optimal regions of the 95th percentile objectives. As all cluster representatives feature a

high robustness rank, they are in the domains that are closest to Pareto optimality when considering

all configurations. Generally, with increasing carbon efficiency, EI is likely to decrease. However, this

only holds partly in the presented typical configurations, as the import of electricity, natural gas,

and lime leads to an increase in EI. The conventional configuration of the mill is located closest to

ID 0 regarding carbon efficiency and EI while being slightly more expensive.

For the typical configurations, the required prices at which energy needs to be sold (cenergy) for a
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Figure 5.10: Performance of 95th percentile of objectives and carbon efficiency for obtained clusters.

configuration to perform as well as the conventional reference mill are computed, and the specific

environmental impact factors (ei energy) of the provided energy, considering GWP. Details on the

computation methods and assumptions are provided in Section E.3.1, particularly in Equations

E.12-E.11. Figure 5.11a displays the resulting ei energy and cenergy of providing one kWh of energy for

the typical configurations. Horizontal lines indicate the current impact factors of electricity, diesel,

and gasoline in selected countries. All configurations yield specific impact factors for providing

energy in the lower range of the current EIs of the final energy carriers. ID 1 requires high energy

selling prices to be as competitive as the conventional mill. ID 0, 2, 3, and 4 require relatively low

energy selling prices, due to comparably small expenses per produced unit of energy. ID 5, the

configuration with the highest carbon efficiency, is rather expensive due to the cost of sequestration

and therefore requires energy-selling prices in the higher domains.

Furthermore, the specific EIs ei energy,country and costs cenergy,country for providing energy with the

shares of final energy carriers occurring in a typical configuration are calculated for different coun-

tries. Figure 5.11b displays the ratios between specific EIs for providing the final energy shares of the

typical configurations by combined pulp and fuel production and providing the same shares with

the production portfolio applicable in the respective countries. Moreover, the ratios of energy prices

are displayed. As the analyzed countries feature different electricity mixes, noticeable differences in

the obtained EI for providing the final energy shares of the configurations can be observed, especially

for configurations with high shares of im- or exported electricity (ID 1, 4, 5). Differences in the costs

arise from country-specific market prices of energy carriers. Assumptions on country-specific costs

and impact factors used for the analysis are provided in Table E.14; energy and exergy content of

products are available in Table E.8. Details on the calculation for country-specific EIs and costs are
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provided in Equations E.13-E.17.
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Figure 5.11: Competitive selling prices and environmental impact factors of energy provided. a)
Profitable energy selling prices and impact factors for typical configurations. b) Profitable energy
selling prices and impact factors obtained in different regions.

For refining the decision between cluster representatives considering their performance regarding

TOTEX and EI under parameter uncertainty, the approaches suggested in Section 4.3.3 are applied.

Performance of the cluster representatives in the domains of parameter uncertainty is analyzed on

binned TOTEX. In Figure 5.12, the size of the circles represents the relative number of times a cluster

representative performs in the range of the binned objective in close to Pareto-optimal domains

of D2. For EI, the 95th percentile of the cluster representatives’ EI is displayed. Depending on the

maximum EI to be acceptable, different cluster representatives are preferable. If EI does not play a

role in the decision-making process, configuration ID 0 or ID 2 are preferable, most likely featuring a

TOTEX better than conventional operation (∆TOTEX <0). For an EI close to zero, ID 3 and 4 provide

comparable environmental performance, while ID 3 is likely to have a better TOTEX than ID 4. ID 5,

the configuration with the lowest EI, is likely to feature a TOTEX that is 25% worse than the one of

conventional mill configuration for the analyzed parameter ranges.

To further explore the behavior of the costs for providing energy in the obtained typical configura-

tions, sensitivity analysis is performed. For selected cost indicators, the required values for the mill

to be as profitable as conventional operation are derived for varying prices of electricity and fuel, as

well as varying interest rates. As cost indicators, the selling/buying price of net electricity celec,+/−

and the levelized cost of production (LCOP) of electricity and pulp are considered. Furthermore,

the relative difference in investment compared to conventional operation that is possible without

compromising economic performance, ∆c inv, is taken into account. The highest possible difference

between the cost of buying and selling electricity, ∆celec,buy−sell is calculated, describing how much

more the mill can pay for importing electricity in comparison to the price at which it is selling, while

still being as profitable as conventional operation.
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Figure 5.12: Performance of typical configurations on binned TOTEX, relative to the reference mill.
The size of the dots represents how often a cluster occurs among the configurations closest to Pareto
optimality in the scenarios of D2 while resulting in a TOTEX within the respective bin. Negative ∆
TOTEX indicate better performance compared to the reference mill.

Detailed descriptions of the considered cost indicators and supplementary information on the

corresponding results are provided in Section E.3.1; parameter variation included in the analysis is

given in Table E.18.

In Figure 5.13, the obtained distributions of the defined indicators are summarized. The cost of net

electricity celec,+/− either describes the price at which the mill can provide electricity to the grid if it

is a net exporter, or the maximum price it can pay for electricity if it is a net importer. In the former

case, a negative value means that the mill can provide electricity to the grid, even if it has to pay for it.

In the latter case, negative values indicate that the mill is not profitable unless it can receive money

for importing electricity (ID 0). This analysis is largely biased by the fact that the amount of stored

electricity is not taken into account, which is why LCOP provides a more realistic picture. For LCOP,

negative values indicate that the mill is profitable, even if it needs to pay for exporting electricity.

In line with the TOTEX and the energy characteristics previously discussed, ID 1 and ID 5 require

rather high LCOPs of electricity and pulp to offset the additional expenses compared to conventional

operation. Especially in ID 1, where significant cost expenses from mineralization arise without

resulting in economic benefits, the required LCOP are high. Accordingly, the possible difference

in investment cost compared to conventional operation are low. For the other configurations,

depending on the considered interest rate, the investment can be increased by a factor of up to 10.
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Figure 5.13: Cost indicator distribution of typical configurations for varying parameters.

The analysis of the solution space from perspective M has shown that the mill has various incentives

to enlarge its product portfolio and actively participate in the energy market, providing low-impact

alternatives to fossil-based energy. If it is required that the mill stores electricity from renewable

resources and provides low-impact energy, either configurations ID 0, 3, or 4 are preferable. If

electricity storage is not critical and the overall net energy output is essential, configuration ID 2

is interesting. ID 1 and 5 are not competitive at analyzed market conditions, due to high expenses

for carbon sequestration. It needs to be noted that the analysis was performed in the absence of

economic incentives for mineralization. Configurations with high carbon shares being sequestrated

in mineralization might become competitive if the produced carbonates’ potential to substitute

fossil-based products is considered. Thus, the question of which configuration to choose depends

largely on the requirements of the mill’s environment, as from the mill operator’s perspective,

multiple configurations offer economic incentives. In the next section, the analysis is expanded

to the perspective of an interconnected system of the mill, residential district, and utility operator

(perspective S), in order to find promising integrated configurations and derive benefits for the

system’s stakeholders.
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5.6.2 Perspective S

The above-presented solutions were generated and analyzed from the point of view of the mill

operator (perspective M) who is aware of the market dynamics and uncertainties in the system, but

how would the choice of configuration look like if it was not them who chose how to operate the mill,

but rather a universal DM? A change of perspective is performed to identify synergies of integration

on the system level.

Integration of mill and residential district

As elaborated in Section 5.4.1, for perspective S, the mill can still produce all commodities introduced

before. However, for biofuels and heat, only internal provision to the district is allowed, and selling

to the external market is disabled (Figure 5.3). Thus, the district and its heating, transportation, and

electricity demands, the mill’s needs to produce a constant amount of pulp, and the possibility of

exchanging goods between the two systems are considered. Heat is exchanged via a utility operator,

who provides the infrastructure for district heating, buys heat from the mill, and resells it to the

district. Everything that can not be provided internally can be purchased on the market, such as

transportation fuels, electricity, or fuels for heating. In this new optimization problem, the number

of timesteps required to adequately describe the temporal dynamics is increased to four due to the

volatile character of the district’s demands, the global irradiation, and the external temperature.

To determine an appropriate district size, sensitivity analysis is performed considering the heat

available from the mill in conventional operation (Section E.3.2). In the following case study, a

district size of 85000 inhabitants is analyzed.
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Figure 5.14: System configurations compared to conventional operation with 85000 people in the
district, annotations denote avoidance cost per metric ton of CO2 on the system level.
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The results of perspective S regarding emission reduction potential per capita (cap) and the change

of the TOTEX of the considered system are shown in Figure 5.14. EI reduction per inhabitant of up

to 950 metric tons of CO2 is possible, while the system TOTEX can be reduced by up to 75 USD/cap.

The reference serving for comparison is the system in its non-integrated state. For most of the

obtained configurations, the integration between mill and district leads to a lower system TOTEX

compared to non-integrated operation. The combined self-sufficiency regarding electricity, heat,

and transportation demands of the system (Equation 5.2) can be increased to up to 60%; in the

non-integrated case, it is 32%. A multi-attribute rank is computed based on the robustness of a

configuration in the uncertainty domain (Equation 4.1) and its combined self-sufficiency. The

configurations with the highest user rank are highlighted in Figure 5.14, the annotations denote the

avoidance cost per metric ton of CO2 on the system level.

Figure 5.15 shows the required CO2 taxes for obtained solutions that would make a solution as

profitable as the reference for different taxation strategies. Taxation strategies refer to the avoidance

of direct (S1), indirect (S2), or direct and indirect (S12) fossil emissions. Depending on the system

configuration, avoidance costs range between -200 and 400 USD/t CO2 when considering S12

emissions (Figure 5.15). Details on the obtained solutions are provided in Table E.19.
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Figure 5.15: CO2 taxes required to make integrated configurations as profitable as conventional,
non-integrated systems in relation to avoided emissions per inhabitant and relative avoided direct
emissions. Taxes are applied to the emissions scopes displayed in the respective figures (S1: direct,
S2: indirect, S12: direct and indirect).

Concluding from the presented analysis that a variety of system configurations exist that would

enable fossil emission reduction by simultaneously reducing total cost on the system level, internal

exchanges happening between the mill, the district, and the utility operator are investigated further.

Solutions of perspective S are generated in the absence of cost for internally exchanged goods; in

order to make the analysis applicable to the real world, potential costs of exchange for biofuels,

electricity, and heat are derived. When optimizing the prices of the internal flows as described in

Section 5.4.2, the resulting costs for each stakeholder are compared to a reference configuration. For
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the reference configuration of the mill that the mill performance in perspective S is benchmarked

against, the cheapest configuration obtained from perspective M is chosen. For the residential

district, its performance in the non-integrated system perspective S is used. In this non-integrated

configuration, the mill and residential district co-exist next to each other, without interacting.

The mill does not install any additional units to produce biofuels, and the district satisfies its

demands with imports from the market. The problem is parameterized by the payback period

the utility operator is subjected to and the relative change in TOTEX of the mill, compared to the

reference configuration. By parameterizing the bounds on the payback period of the utility operator’s

investment and the TOTEX change of the mill, a variety of solutions is generated.

The configuration with the highest direct (S1) emission reduction potential compared to conven-

tional system operation is chosen for internal optimization. The selected configuration (ID 20) has a

combined self-sufficiency of 47%, while 100% of the heating demands, 82% of the transportation

demands, and 25% of the electricity demands are provided internally. All bark and 30% of the

black liquor are gasified for fuel synthesis; additional syngas is provided from co-electrolysis. All

available roof area is used for PV installation, and the electricity import of the system compared

to non-integrated operation is increased by a factor of six. The lime kiln is operated on off-gases

from fuel production, and natural gas is imported to complement the operation. Carbon capture

units are installed, providing CO2 used in fuel synthesis. The heat is supplied to the district via a

CO2 DHN, reducing the cooling demands of the mill compared to non-integrated operation. The

utilization of the CO2 network increases electricity demands at the district level due to heat pump

operation. Compared to conventional operation, the combined self-sufficiency is increased by

15%, while the self-sufficiency regarding electricity needs is decreased by 45%. Due to the relatively

low EI of electricity in France considered for the analysis, the system is reducing its emissions by

increasing electricity import and decreasing its dependency on fossil-based commodities for heating

and transportation.

On the system level, the TOTEX increases by 60% in this configuration, while direct emissions on the

system level are reduced by 90%. The optimization yields combinations of commodity prices for

the parameterized payback period and relative ∆TOTEX of the mill that minimize the cost of the

residential district. The TOTEX bound the mill is subjected to is varied between ± 20% compared to

the cheapest configuration in perspective M, the highest acceptable payback period of the utility

operator ppayback,max is parameterized between 2 and 10 years. As shown in Figure 5.16, obtained

sets of commodity prices lead to an increase of the cost per inhabitant by up to factor 3, depending

on the TOTEX change the mill operator is subjected to, and the payback period of the DHN the utility

operator has to face. It is not possible to decrease the district’s cost compared to the conventional

scenario in the analyzed parameter space.

In the above-presented cost analysis, the configuration was selected manually, based on the direct

emission reduction potential. In the following, the choice of configuration is left open; hence, for
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each parameterized optimization problem, the optimizer chooses a configuration and fixes the

commodity prices, minimizing the costs of the district.
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Figure 5.16: Cost per inhabitant for provision of heat, transportation, and electricity as a function of
the payback period of the utility operator and ∆ TOTEX of the mill for the manually selected ID 20.

1000 1500 2000 2500 3000
Cost per capita [USD/yr]

20

15

10

5

0

5

10

15

20

TO
TE

X 
ch

an
ge

 m
ill 

[%
] 

Cheapest  perspective M

Conventional  perspective M

Cheapest  conv. district

2

3

4

5

6

7

8

9

Pa
yb

ac
k 

pe
rio

d 
ut

ilit
y 

op
er

at
or

 [y
r]

(a)

0 50 100
TOTEX change district [%]

20

15

10

5

0

5

10

15

20

TO
TE

X 
ch

an
ge

 m
ill 

[%
]

ID 9
ID 6
ID 8
ID 2
ID 3

2

3

4

5

6

7

8

9

10

Pa
yb

ac
k 

pe
rio

d 
ut

ilit
y 

op
er

at
or

 [y
r]

(b)

Figure 5.17: Obtained stakeholder KPIs when configuration choice is part of optimization. a)
Optimization results for parameterized constraints. b) Configuration choices.

Figure 5.17a reveals that for minimizing the cost of the district, five configurations are chosen, out

of which two (ID 6 and 8) are selected in over 90% of the obtained solutions. One configuration

the optimizer chooses (ID 8) also features the highest multi-attribute rank based on occurrence in

the uncertain parameter domain and combined self-sufficiency. All selected configurations have

higher self-sufficiencies regarding electricity consumption than ID 20, compromising heating and

transportation self-sufficiency and the amount for avoided emissions. Between 46 and 50% of

the direct emissions are avoided, while the system TOTEX is reduced by up to 4 % compared to

non-integrated system configuration. The selected configurations increase fuel provision deploying
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co-electrolysis, although the unit size is reduced to approximately 10% of the one installed in ID 20.

Accordingly, less carbon is captured from the process to be valorized for fuel production. Heat is

provided to the district via a CO2 DHN accompanied by conventional heating alternatives. In Figure

5.17b, it can be seen that ID 8 is chosen in regions where the costs of the residential district are low,

but the utility operator faces high payback periods, whereas ID 6 is chosen in domains where the

cost for the district are relatively high, and the payback period of the utility operator’s investment is

low. As biogenic CO2 was not included in the formulation of the objective for EI, sequestration of

biogenic carbon in the form of mineralization is only applied marginally, induced by the negative

emission targets associated with products from mineralization.

Table 5.3: Key characteristics of configurations selected by optimizer.

ID ηtransport ηheating ηelectricity ηcombined Capacitya user rankb

[-] [-] [-] [-] [MW] [-]

6 43 58 44 49 0/8.6 0.77
8 42 67 44 52 0/8.6 0.82
20 82 100 25 47 18.5/80.0 0.37

ID Cfossil,capt Barkgasif. Black liquorgasif. ∆TOTEXsystem [%] ∆S1reduced, c ∆S12reduced

[%] [%] [%] [%] [%] [%]

6 63 100 28 -3.3 47 355
8 0 100 28 -4.4 50 289
20 96 100 30 60.9 89 525

a electrolysis/co-electrolysis, b user rank refers to the multi-attribute rank computed based on robustness and

combined self-sufficiency applying TOPSIS, c∆ S1/S12reduced are calculated as S12ref−S12
S12ref ·100, positive values

mean avoided.

Table 5.3 summarizes the main characteristics and KPIs of the configuration with the highest CO2

emission avoidance potential (ID 20) and the ones mainly selected by the optimizer.

When the optimizer chooses the configurations based on the most favorable cost for the inhabitants

of the district, the price the people need to pay for their heating, transportation, and electricity

demands can be reduced compared to the non-integrated configuration, especially in the domain

where the constraints on the payback period of the utility operator and TOTEX change of mill are

relaxed. Depending on the constraints for the mill’s TOTEX and the payback period of the utility

operator, each inhabitant pays between 950 and 3500 USD/year, equivalent to a cost reduction

compared to expenses for conventional supply by up to 40%.

Visualizing the obtained configurations in parallel coordinates allows for determining required

selling prices of heat, electricity, and biofuels when specific conditions regarding objectives and

KPIs need to be met (Figure 5.18a). In the example in Figure 5.18b, solutions in which the cost per

inhabitant does not exceed 1600 USD per year, the TOTEX of the mill does not increase by more

than 10% compared to the cheapest mill configuration in perspective M, and the payback period

the utility operator is facing remains below seven years are filtered. For this set of requirements,
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(a)

(b)

Figure 5.18: Solutions in parallel coordinates. a) All obtained solutions. b) Selection of solution
based on requirements on ∆ TOTEX of mill, payback period, and cost of district.
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electricity prices of 0.02-0.05 USD/kWh, biofuel prices of 0.03-0.12 USD/kWh, and retail prices of

heat of 0.02-0.06 USD/kWh are required. ID 6 and ID 8 are viable to provide the desired performance

regarding the stakeholders’ cost. ID 6 allows for a reduction of EI on the system level by 0.71 t of CO2

per capita, which resembles a reduction of direct emissions by 50% compared to non-integrated

operation. It needs to be noted that the configurations identified by the internal optimization to

be most fitting to fulfill the imposed requirements are also the ones that feature the highest multi-

attribute rank based on robustness and combined self-sufficiency, suggesting that the proposed

rank is an adequate indicator to identify promising configurations.

Thus, the analysis has shown that it is possible to reduce the EI on the system level at reasonable

economic compromises for the involved stakeholders; even the reduction of expenses is possible.

As such, the installation of a DHN benefits both, the district and the mill, the latter reducing

their cooling demands. Furthermore, co-producing pulp and fuel from biomass leads to reduced

emissions from fossil transportation fuels; the integration of co-electrolysis and carbon capture

increases this potential.

Figure 5.19: Solutions obtained for parameterized market considering ID 6.

However, the economic analysis is highly sensitive to the market conditions surrounding the ana-

lyzed system. This is illustrated in Figure 5.19, where the effects of changes in the market environ-

ment on the cost for the residential district are displayed for ID 6, the configuration with the highest

emission reduction potential among the ones that meet the filtering criteria applied in Figure 5.18b.

Parameterized market conditions, consisting of pulp, wood, and electricity prices, are induced in

the internal optimization problem, and viable prices of internal exchanges are derived for ID 6.

Solutions for pessimistic market assumptions are filtered: high wood and electricity prices (ratio

wood, electricity market above 1) and low pulp prices (ratio pulp market below 1). To obtain similar
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performance regarding the mill and the utility operator’s cost, the residential district needs to make

significant compromises regarding the price it pays to satisfy electricity, heating, and transporta-

tion demands. Thus, the profitability and potential of integrated configurations largely depend on

the surrounding market conditions of the system. Furthermore, depending on the electricity mix

available, the impact of increasing electricity import to reduce the usage of fossil-based products

for transportation and heating presumably differs significantly. The analysis is extended to the

European level to further explore the effects of realizing the obtained configuration in different

regions.

European perspective

For the configuration with the highest emission reduction potential among the ones identified by

the internal optimization (ID 6), the emission avoidance potential from a European perspective

is calculated based on the pulp production in each country. Furthermore, the costs of avoiding

CO2 emissions are derived. For calculating the cost for offsetting emissions, the difference in total

system cost between an obtained configuration and the reference configuration of the system is

taken into account. Thus, the costs are not analyzed from the stakeholder’s perspective including

the internal flows, but from the overall system perspective that was presented in Figure 5.14. As such,

the reference to which the obtained solution is compared to is the non-integrated, conventional

system perspective.

Thereby, emissions and costs are updated with country-specific data. Seasonal operation of the

system is assumed to be the same in all countries, and country-specific parameter changes are

taken into account on an annual level. Thus, the presented extrapolations are not based on optimal

configurations for each country; they rather suggest what would happen if all mills in Europe

adopted the solution identified from the previous optimization. Hence, they are only meant to

provide approximate guidance on the overall dimension of the presented analysis rather than

detailed results for each country.

For calculating the emission avoidance potential and the cost per avoided metric ton of CO2, two

reference points for electricity cost and EI are taken into account. One represents the prices and

impact factors of today, approximated with data for 2019, and the other one includes values predicted

for a widely defossilized European power grid, suggested by Santecchia [346]. Both data sets are

provided in Table E.14. The overall emission avoidance potential in consideration of the electricity

mix of today and a defossilized power grid of the future is displayed in Figure 5.20a and 5.20b,

normalized by the emission level of the respective country (Table E.14). It is noticeable that the

highest emission reduction potential, relative to the emissions on the country level, is present in

the Nordic countries, due to the large amounts of pulp products. Furthermore, when considering

the power grid characteristics of today, EI might increase through the realization of ID 6 at all pulp-
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(a) Electrical grid of today (b) Defossilized electrical grid

Figure 5.20: Emission reduction potential in EU, in % of total GHG emissions on country level.

producing sites in a country. This is due to the large amounts of electricity imported, which might –

depending on the electricity mix of the respective country – lead to an increase in overall EI. When

considering the defossilized electrical grid, the overall EI is reduced in all countries.

(a) Electrical grid of today (b) Defossilized electrical grid

Figure 5.21: Offset price per metric ton of emitted CO2, with relation to the social cost (SC) of CO2,
today (200 USD/t CO2−equ).

Figure 5.21a shows the cost of offsetting one metric ton of CO2 (S12), related to the projected social

cost (SC) of CO2. The SC of CO2 is a statistical measure describing the cost of climate change

impact. It is assumed to be 200 USD/t CO2 (2020), as derived by Kikstra et al. [397] for the PAGE-

ICE assessment model for evaluating climate change, as a mean for the climate change scenarios

SSP1-1.4, SSP1-2.8, without considering growth effects. For the perspective of today, only countries

where EI is reduced are displayed. Notably, for most European countries, avoiding emissions by

combined pulp and fuel production is cheaper than the SC of CO2 when considering the power

grid of today. Particularly in Italy, costs are remarkably low due to the relatively high cost of fossil
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fuels (Table E.14). When prices and impact factors of the defossilized electrical grid are used (Figure

5.21b), the cost for offsetting increases slightly, but still, for most countries, offsetting emissions

by combined pulp and fuel production is cheaper than the SC of CO2. In Belgium, the projected

cost of electricity in the future defossilized grid is high compared to European average, resulting

in comparable high offsetting costs. It needs to be noted that the reference of SC for CO2 remains

the same for both perspectives, even though the actual costs might increase in the future. Further

analysis of the performance of the selected solution on European level is provided in Figure E.19.

5.7 Conclusions and outlook

In this Chapter, the integration of a biorefinery pulp mill with a nearby residential district was studied

from two perspectives, the one of the mill operator and the one of a system consisting of the mill

operator, the residential district, and a utility operator. From the mill perspective, integrating with the

district by providing fuels, electricity, and heat offers significant emission reduction potential during

pulp production; CCUS and P2X increase this potential further. Selling prices of electricity and fuel

that make the integration as profitable for the mill operator as conventional operation lie well within

current market values. The integration offers the storage of energy from renewable resources when

they are available in excess. The stored energy is converted to transportation fuels and electricity at

times when needed by the system. Typical configurations of the enhanced mill are identified that

enable the reduction of biogenic and fossil emissions, some of them offering both environmental

and economic advantages compared to conventional operation. Configurations reach carbon

efficiencies of up to 90%. The choice of which configuration is most viable largely depends on

the mill’s environment. If alternatives for fossil fuels are required, valorizing the resources in the

mill to provide fuel is a promising alternative. However, if the future electricity system requires

storage capacities, the enhanced operation of an electrolysis-fuel cell system might be of interest;

both of these options have shown promising representatives among the identified configurations.

Furthermore, depending on the development of the policy landscape, investing in sequestration

technologies might be of interest.

To explore which configuration is beneficial from a system perspective, the analysis was expanded to

an interconnected system of a mill operator, a nearby residential district, and a utility operator that

can connect the two via a district heating network. When optimization is conducted from the system

perspective, the combined self-sufficiency regarding electricity, heat, and fuels required by the mill

and the residential district can be increased from 32 to up to 60%, compared to a non-integrated

system configuration. Direct emissions can be decreased by up to 90%, although at a significant cost

increase. For more modest emission reductions of approximately 50%, costs on the system level

can be reduced compared to non-integrated operation. Throughout all obtained configurations,

emissions from transport are reduced by biofuel production at the pulp mill, and further emission

reduction is realized by electricity import for operating a co-electrolysis unit, increasing the amount
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of available biofuel. Furthermore, a DHN operating on CO2 or water is installed to provide heat to the

district, reducing the mill’s cooling demands. The configuration with the highest emission reduction

potential profits from importing large quantities of electricity and capturing carbon released at the

mill in order to complement biofuel production via the operation of a co-electrolysis unit. Internal

optimization of cost for exchanged commodities revealed that CO2 emission reduction is possible

at reasonable impacts on stakeholders and might even hold promising potential for improving

economic performance. Depending on the economic performance offered to the mill and the

utility operator, the expenses of the district change by -40 to +150% compared to the non-integrated

configuration, while the solutions the optimizer selects offer a direct emission reduction potential of

approximately 50%.

As it was shown by extrapolating the analysis to the European level, the actual emission reduction

potential and associated prices largely depend on the electricity mix of the respective country. While

solution generation was performed for a case study in France where the impact factor of electricity

is relatively low, in other countries, the increase in electricity demand to enable fuel production

might lead to increased EI. However, when considering a defossilized electrical grid of the future,

this effect dissipates. Nonetheless, the provided European analysis can only serve as a rather rough

indicator of the potential, and eventually, optimization should be performed on the country level.

Overall, it was revealed that by coupling a Kraft pulp mill with a residential district, significant shares

of the energy demand can be provided internally, while the EI of the system can be reduced by

means of low-impact biofuel and heat provision. Furthermore, storage opportunities for electricity

from renewable resources emerge. Future work could include the expansion of the considered

superstructure, for example, by advanced CO2 capture technologies, and a more comprehensive sen-

sitivity analysis on the considered district size. Moreover, the analysis pointed to the importance of a

holistic perspective, as the environment in which a system is placed widely influences the solution’s

performance. In that regard, future work could include the expansion of the optimization-based

analysis to different countries, revealing solutions tailored to country-specific energy portfolios and

demands.
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This thesis provides methods to enable and facilitate decision-making for complex superstructures,

addressing efficient valorization of biomass and the provision of low-impact energy. Existing super-

structure optimization methods are enhanced with holistic approaches to include multi-criteria

decision support and uncertainty considerations. The potential of machine learning methods to

improve computational performance is explored. For the case study of combined pulp and fuel

production, the developed methods are demonstrated and main conclusions are drawn.

In Chapter 1, the potential of combined pulp and fuel production in a Kraft pulp mill is high-

lighted, with emphasis on the importance of process and energy integration. A comprehensive

superstructure of thermochemical biomass conversion pathways is built and integrated with a

Kraft pulp mill. A set of process configurations is generated by first deriving a mixed integer linear

programming (MILP) formulation and then using rigorous multi-objective optimization (MOO).

Typical configurations are identified by means of clustering on unit decisions and analyzed re-

garding their environmental and economic performance. It is demonstrated that generally, there

are potential benefits for combined pulp and fuel production from both economic and environ-

mental perspectives. For the mill operator, economically viable co-production of pulp and fuel

is determined based on the current average selling prices of fuel. Depending on the considered

configuration, the biogenic carbon efficiency can be increased by up to 10%. Improvements in

environmental performance are possible for multiple configurations. The highest avoided emissions

are achieved in a configuration that is 4% more expensive than conventional operation and reduces

the environmental impact (EI) by almost 100%, with a corresponding emission compensation price

of 130-300 USD/t CO2, depending on the considered compensation scheme. The configuration with

the highest amount of energy stored in the form of fuel is economically slightly more competitive

than conventional operation and reduces the EI by almost 70%.

Chapter 2 evaluates the question of how decision-makers can be actively involved in the decision-

making process for problems such as the design of an integrated Kraft mill biorefinery described

in Chapter 1, and how solutions can be selected from a set of alternatives. Instead of only taking

the technical description of the system into account and relying on the optimizer to find the single

“best” solution, a digital twin is used to interactively filter the solutions based on a set of criteria

using multi-criteria decision analysis (MCDA). Any preferences expressed by the decision-maker
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(DM) during the solution generation and exploration processes are taken into account when filtering

solutions, guiding the digital twin to find the solutions most suited to a decision-maker’s interest.

When applying the algorithm to the integrated pulp mill biorefinery presented in Chapter 1, the

procedure provides meaningful solutions aligned with the user-defined specifications.

In Chapter 3, the use of surrogate models is explored to replace non-linear process simulation

components within multi-level optimization of a process and energy system superstructure. An

active learning approach is applied, where multiple surrogate models are trained and evaluated on

data sets that are continuously expanded based on the reported prediction uncertainty. Overall,

the developed algorithm proved capable of generating surrogate models that are able to reliably

predict the operating conditions and performance of complex processes, even with small data sets.

The active learning strategy of adding new data points based on prediction uncertainty leads to

better prediction results for the same volume of data compared to random sampling. Furthermore,

uncertainty-based active learning estimates ensure the quality of predictions made by the algorithm

during application in an optimization run. Applying surrogate models powered by active learning to

replace simulation models in energy and process system optimization frameworks is expected to

help researchers and domain experts to improve computational time for result generation compared

to training surrogate models with random sampling. Furthermore, the availability of the process

predictions is increased by the active learning strategy, not suffering from convergence issues

likely to occur with their simulation-based counterparts. Adaptive and flexible surrogate model

creation is enabled by considering multiple machine learning concepts, making the algorithm

suitable for varying process complexities. When integrating the active learning strategy with the

optimization framework, average prediction errors below 1% and remarkable time savings of up

to 50% for result generation were found. Further analysis showed that – particularly for rather

simplistic simulation models – time savings can potentially be increased to up to 90% by focusing

on only one type of surrogate model during the application and by relaxing the performance

requirements on the prediction quality. The second part of the chapter addressed the application

of an active learning strategy to identify ε-Pareto-optimal design points for nonlinear process and

energy models. Compared to random sampling and labeling of design points, time savings of up

to 60% were obtained, shown to increase with the size of the analyzed design space. The applied

ε-Pal algorithm manages to identify relevant regions in the design space as Pareto-optimal or near

Pareto-optimal, allowing for continuous improvement of the prediction quality where necessary.

Chapter 4 investigates the impact of uncertainty on optimization results and its potential to support

decision-making. It is demonstrated how the information inherent in solution behavior under

uncertainty can be used to identify relevant process units and robust sizes, as well as decisive

model parameters and their impact on the objectives. As a performance metric when identifying

configurations performing well under uncertainty, performance with respect to Pareto optimality for

different scenarios was taken into account. Guiding principles are established for interpreting the
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solution space obtained from problem analysis with MOO, including critical relationships between

objectives, unit selection, and parameter space assumptions. Lastly, the application of an active

learning approach to efficiently generate solutions with Pareto-optimal performance considering

parameter uncertainty is established and demonstrated.

Chapter 5 explores the integration of a biorefinery pulp mill with a nearby residential district, con-

sidering temporal variation of demand, prices, and environmental impact factors. Superstructure

optimization is used to generate design configurations from the mill operator’s perspective and

the perspective of a universal decision-maker who considers the integrated system of the mill

and a nearby residential district. A significant reduction potential of biogenic carbon emissions

during pulp production is identified when optimizing from the mill operator’s perspective; the

consideration of carbon capture, utilization and storage (CCUS) and power-to-X (P2X) increases

this potential further to a biogenic carbon efficiency of over 90%. Furthermore, the mill provides

storage capacity for renewable electricity available in excess, offering both temporal and spatial

advantages by providing easy-to-transport biofuels, as well as electricity when required. When

optimization is conducted from the system perspective, the combined self-sufficiency of mill and

district can be increased from 32 to 60% compared to non-integrated operation, decreasing direct

emissions by up to 90%. Optimization of internal selling prices of commodities between the system’s

stakeholders reveals that this reduction comes at significant expenses, but that a direct emission

reduction of approximately 50% comes at no added expenses for the mill operator, while offering

financial benefits to the residential district. When extrapolating the results to European level, it is

found that regional energy portfolio characteristics largely influence the effects of the integration

between mill and residential district, suggesting that the analysis would profit from detailed spatial

resolution.

Limitations and perspectives

The presented work aims to enhance decision-making capabilities for integrated biorefinery design

by developing computational methods involving superstructure optimization, multi-criteria deci-

sion analysis, uncertainty, and machine learning approaches. Despite the potential of the presented

approaches to enhance decision-making, they provide preliminary work in the domain, leaving

many gaps for additional research. The following paragraph summarizes several avenues of future

development.

The included superstructure for combined pulp and fuel production considered all major thermo-

chemical conversion pathways envisioned; however, further enhancements of the superstructure

could lead to more mature results of mill modifications that enable low-impact fuel production. In

this regard, approaches on how to determine when a superstructure is sufficiently developed could

be applied to ensure a suitable representation. Furthermore, the possibility of the mill to increase
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pulp production when the recovery boiler operates below maximum capacity could be investigated.

Even though the developed decision-making framework in the form of a digital twin has shown

the capacity to generate and filter solutions according to decision-makers’ interests, real-world

application in a project with industrial partners or policy makers in the frame of an open-source

platform would be required to prove its practical applicability. For this purpose, further generaliza-

tion of the solution generation and filtering mechanism would be required, as well as a definition

of the superstructure optimization format. Furthermore, the incorporation of social assessment

indicators should be completed to evaluate system designs based on their societal impact. For the

proposed approaches leveraging uncertainty for decision-making, it was found that particularly in

combination with visualization aids, the analysis offers promising insights on solution space charac-

teristics. Integrating the approaches in the digital twin concept and extending them to uncertainty

in environmental assumptions could improve their usability.

The coupling of machine learning methods with optimization is a subject widely addressed in

literature. In this thesis, an active learning tool was developed that generates surrogate models

integrated in superstructures and improves them continuously. While the method has shown to

be adequate for reducing computational time without jeopardizing solution accuracy, future work

could involve multiple enhancements to further improve computational performance. For example,

a more accurate estimation of the required iteration batch sizes, or the inclusion of more holistic

hyper-parameter tuning would benefit the overall performance of the active learning tool. Systemat-

ically discarding unnecessary components of the active learning instance during result generation

for optimization problems could further improve computational performance. Furthermore, the

application of an active learning algorithm to efficiently identify near-Pareto-optimal domains

is outlined, for which the same measures to further improve computational efficiency would be

beneficial. Additionally, benchmarking the approaches against Bayesian optimization strategies

would be of interest to further understand the characteristics of the active learning strategy.

Lastly, the role of Kraft mills in the frame of a low-carbon society was elaborated. In spite of

considering temporal resolutions of district demands, extreme events were not taken into account

in the time-series aggregation. As the penetration of low-carbon energy sources requires short-term

flexibility, a more detailed operational analysis of the mill with finer temporal resolution would

be required in future work, especially with regard to seasonal storage. In that context, forecast

uncertainties would play an important role in ensuring an optimized operation schedule. Even

though the spatial resolution was considered for the example of the mill integrated with the district,

a more holistic approach in the analysis would be required, involving biomass supply chains as well

as different district sizes and locations.
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A.1 Supplementary information on the state of the art in combined pulp

and fuel production

The following sections provide supplementary information on the state of the art of gasification-

based biomass conversion in Kraft pulp mills referenced in the main text. Besides the publications

referenced at the beginning of Chapter 1, this Section is inspired by the work presented in [94].

A.1.1 Alternative bark treatment

Bark as feedstock for gasification

The moisture content, one important feature of potential gasification feedstock, is typically between

65-70% for bark [32]. For conventional burning of bark in the bark boiler, drying to approximately

50% moisture content is sufficient for smooth operation and can usually be realized with excess

heat from the mill [32, 111]. When valorized in gasification processes, the moisture content is more

critical, especially for liquid fuel production. High moisture content lowers the reactor temperature,

resulting in the production of lower energy synthesis gas and generally lower yields. Furthermore,

larger downstream equipment is needed due to higher volumetric flow rates. Therefore, drying is an

inevitable pretreatment step prior to gasification. Drying needs to be realized to 10-20% moisture

content in order to minimize the size and cost of a fuel synthesis plant [113].

Besides drying bark to the appropriate moisture content, further pretreatment processes might be

necessary, depending on the type of gasification chosen. Grinding is sometimes required to provide

the feedstock in an appropriate form to the gasification unit. Generally, the soft and plastic nature of

biomass makes it difficult to grind and pulverize to fine sizes, particularly in comparison to other

fuels. However, the grindability of bark is higher than that of other feedstocks, which makes the

production of fine particles economically more attractive [398].
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Pyrolysis and torrefaction might be included in the pretreatment of biomass prior to gasification.

The use of the former reduces the heat load required for gasification, whereas the latter represents

a thermal treatment used to reduce the electricity demand of the grinding process to achieve the

necessary feed size for gasification. Bark features a higher ash content than stemwood, which leads

to higher maintenance requirements due to increased fouling and clinker formation in combustion

applications in the furnace and higher particulate emissions [109, 399]. In gasification-based

applications, the ash content also influences the behavior of the reactions. Dry gasifiers, such

as fluidized bed gasifiers, should be operated below the ash melting temperature, while slagging

gasifiers, such as entrained flow gasifiers, should operate above the ash melting temperature [400].

Compared to the gas produced from the gasification of wood chips, bark gasification yields gas

with higher levels of hydrogen, but lower levels of CO2, carbon monoxide, and methane [110]; while

similar shares of minor compounds are present.

Bark gasification and fuel synthesis

Different gasifier types are suitable for bark gasification and have been tested on different scales.

Fluidized bed (FB) gasifiers have been deployed for applications with lime kilns, boilers, power plants,

and district heating systems. They either operate as bubbling fluidized bed (BFB) or circulating

fluidized bed (CFB) gasifiers and can be managed at various pressure levels with oxygen or air as

oxidizers. Lime kiln applications usually rely on low-pressure air-fed CFB gasifiers, while pressurized

FB gasifiers are required for syngas or biofuel production [113, 401]. FB gasification reactors are

typically used for intermediate gasification units between 5-100 MWth; the required feed size is below

6 mm [398]. A certain amount of tars and particulates is present in the product gas from FB gasifiers,

which must be removed in downstream processing [398]. Biomass treatment via gasification triggers

the risk for bed agglomeration due to its alkali metal-rich ash composition; remedy can be provided

by reduction of the gasification temperature, regular exchange of the bed material, and the usage of

mineral binding additives [400].

Dual fluidized bed gasifiers, also known as fast internally circulating fluidized bed (FICFB) gasifiers,

feature an indirect heat supply in the form of a dual bed system by burning char in a separate

combustion chamber [402]. The separation of the combustion and the gasifier reactor ensures that

no nitrogen released during air combustion dilutes the product gas [398]. This way, the generation

of high-quality synthesis gas is possible without relying on costly and energy-intensive oxygen

gasification. However, pressurization is difficult due to the complex design of the technology [402].

Fixed bed (FXB) updraft gasifiers are usually deployed for thermal heating, cogeneration, and lime

kiln applications. A simplistic design, low capital, and operating cost, fuel flexibility as well as low

particulate and NOX emissions make the technology advantageous compared to other applications.

Feed requirements are typically below 50mm, but tar production is high, approximately 50g/nm3
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[398]. FXB gasifiers are usually limited to small to medium-scale applications, featuring thermal

requirements of up to 10 MWth. Most fixed-bed gasifiers are air-blown and produce low-energy

producer gas not suited for downstream processing into fuels or syngas of sufficient quality for fuel

synthesis [113].

Entrained flow (ENF) gasifiers are operated at high temperatures to allow for short residence times

[402]. High-temperature oxygen-blown entrained flow gasification is a well-proven gasification tech-

nology for the production of high-quality synthetic gas. High concentrations of carbon monoxide

(CO) and hydrogen (H2) are typically present in the produced syngas, and undesirable products

such as methane (CH4), heavier hydrocarbons, tars, and particulate matter, are present in rather

low concentration [400, 402]. Feedstock in the form of fine powder or as droplets of less than 0.15

mm is required for achieving high fuel conversion, throughput, and gas quality in the ENF gasifier,

which is why pretreatment is oftentimes coupled with torrefaction and grinding [398, 402]. Tars are

decomposed due to the high temperatures, and downstream tar reforming becomes redundant,

reducing the cost and complexity of the gasification equipment. A major part of the ash is removed

as slag in ENF gasifiers. The higher alkali content in bark compared to stemwood reduces the ash

melting temperature, lowering the amount of oxygen required to raise the temperature of the ash

above the melting point. However, more aggressive molten slag is present due to the high alkali

content, shortening the life of the gasifier’s refractory liner [398]. Traditionally, ENF reactors have

been used for large-capacity units (>50MWth).

Different biofuels can be produced from producer gas; in the following, a short overview is provided,

targeted towards the applications discussed within this thesis. Methanol, the simplest form of

alcohol is one of the largest chemical synthesis feedstocks, used for the production of formalde-

hyde, acetic acid, dimethyl ether (DME), olefins, and as a direct petrol blend component (in low

percentages) [403]. Methanol production is an exothermic catalytic equilibrium reaction that in-

volves the conversion of carbon oxides and hydrogen. The biochemical production route through

methanotrophic bacteria is still in an early stage of development, while the conversion of biogas to

methanol has been proven at the bench scale. Conventional methanol reactors are adiabatic with

cold unreacted gas injected between the catalyst beds and quasi-isothermal reactors with shell and

tube design [27, 404].

DME is a colorless, nontoxic, highly flammable gas, that can be handled in liquid form when pres-

surized [405]. DME has similar properties to liquefied petroleum gas in terms of infrastructure

requirements. The good ignition quality and the high cetane number enable the use of diesel engines

as a substitute for conventional diesel fuel. However, insufficient viscosity and poor lubricity com-

plicate the application [403]. For the production of DME, two process pathways can be considered:

methanol formation in an auto-thermal reactor and methanol dehydration in a fixed bed reactor, or

one-step synthesis of DME from syngas in a slurry phase reactor [27].
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Synthetic natural gas (SNG) may be produced from gasification, partial oxidation, methanation,

or other processes that do not involve starting from a solid feedstock. SNG contains high shares

of methane; the quantity varies by type of feedstock, processing steps, and requirements on the

final product. An advantage of SNG is its flexibility; it can be used as an industrial feedstock and

fuel for cars, trucks, or ships, or it can be injected into the natural gas grid for distribution to either

heat and power production [402]. SNG can be of compressed or liquefied form. While compressed

natural gas (CNG) is stored at high pressures and can be injected into the natural gas distribution

pipeline, liquefied natural gas (LNG) features higher energy density and is thus favorable for the

transportation for longer distances [3, 406].

Fischer-Tropsch (FT) fuels consist of a mixture of primarily straight-chain hydrocarbons (olefins

and paraffins), resembling a semi-refined crude oil. A range of traditional fuels, including diesel,

kerosene, and jet fuels can be produced by upgrading FT crude [3, 407]. FT fuels can be categorized

as drop in fuels, meaning they are suitable for usage at high blend shares or unblended without

requiring technical modifications to engines and fuelling infrastructure. The FT fuel synthesis

process consists of a catalytic non-selective exothermal reaction in which syngas is converted to

hydrocarbons. It can be classified based on temperature, catalyst, and type of reactor. In low

temperature FT synthesis, the production of waxes is favored. High-temperature FT synthesis

uses iron (Fe) catalysts and favors the production of lighter products, co-producing steam at high

temperature and pressure. Low temperature FT synthesis uses cobalt (Co) catalysts, which feature

longer lifetimes, higher activity, and lower water gas shift (WGS) activity [148]. Fe catalysts are

generally cheaper, less sensitive to impurities, active for WGS, easily available, and suitable for

CO-rich gas [408]. The polymerization of hydrocarbons can be theoretically described by the

Anderson-Schulz-Flory (ASF) distribution, which relates the weight fraction of the hydrocarbons

to the chain growth probability factor [409, 410]. A feature of the FT process is the possibility to

vary the ratio of liquid to gas products by altering the recycling rate of off-gas, offering significant

flexibility [411]. A potential disadvantage is the necessity of equipment to separate and upgrade

FT crude, resulting in added complexity and cost. Producing crude and refining it at an existing oil

refinery offers one possibility to circumvent this problem[402].

A.1.2 Alternative black liquor treatment

This section provides supplementary information on the state of the art in alternative black liquor

treatment, supplementing Section 1.2.3. Firstly, additional information on black liquor gasification

technologies is provided. Secondly, applications of supercritical water gasification presented in the

literature are presented.
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Black liquor gasification

During black liquor gasification, the organic content of the feedstock is converted to syngas, while

cooking chemicals are recovered. Black liquor gasification technologies can be divided broadly into

two categories; low-temperature gasification at 600-800°C, and high-temperature gasification at

900-1300°C [102]. Low-temperature gasification operates below the melting point of inorganics,

avoiding potential smelt-water explosions. However, low-temperature gasification is subject to

low-carbon conversion and fluidized bed agglomeration. In contrast, high-temperature gasification

processes yield a molten smelt. They may suffer from material problems due to the highly corrosive

environment, partly caused by the presence of molten alkali salts. The most commercially advanced

black liquor gasification (BLG) technology is Chemrec, a high-temperature gasification process

based on ENF gasification of black liquor. It operates at 950-1000°C and 32 bar, using oxygen as

a gasifying agent, evaporating black liquor under reducing conditions [102]. In the quench zone

placed below the gasifier, the generated gas and smelt are cooled and separated. The smelt falls into

a quench bath, similar to the dissolving tank of the recovery boiler, where it dissolves and forms

green liquor. Besides stand-alone operation, the gasifier can be installed in parallel with an existing

recovery boiler as a de-bottlenecking measure [412]. A comprehensive review of BLG technologies

currently being developed is available in [30].

Furthermore, supercritical water gasification (SCWG) has been widely investigated for its usage with

black liquor. SCWG processes generally take place at higher temperatures and can produce methane

or hydrogen gases in high yields. They can be divided broadly into two classes: catalytic processes

(400-450°C), which produce methane-rich syngas, and non-catalytic processes (600-800°C), which

produce hydrogen-rich syngas and achieve higher conversion efficiencies, but require more expen-

sive construction materials [151]. Salts typically present in biomass affect the performance of SCWG;

higher gas and less solid yield, as well as a changed composition of intermediates, are caused by the

presence of salts [115]. Detailed studies suggest this may be due to the catalyzing role of salts on

the WGS reaction. Likewise, the presence of alkali salts results in a low CO content in the gas phase

[119]. In the case of catalytic supercritical gasification, some inorganic salts present in the biomass

or formed during hydrolysis, will form scale in heat exchangers and reactors and lead to corrosion,

as well as poison catalysts [120].

Both SCWG processes feature advantages and disadvantages. The main advantage of low tempera-

ture catalyzed SCWG is that less expensive reactor material can be used, reducing the construction

cost of the system. However, the use of a catalyst to overcome the low reaction rate is essential, as

well as longer reaction times, increasing the operating costs of the system. Furthermore, catalyst

deactivation is likely to occur due to the complex components in black liquor [151]. For example,

sulfur contained in Kraft black liquor can poison specific metal catalysts, shortening their lifetime

and increasing operating costs. Significantly higher efficiencies can be achieved in high temperature

SCWG of black liquor, without requiring a catalyst. Generally, the main challenge for the com-
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mercialization of SCWG is the requirement for expensive materials of construction for the reactor

[151].

Applications of supercritical water gasification of black liquor

The integration of black liquor SCWG at Kraft pulp mills has been explored experimentally by nu-

merous contributions. Huet, Roubaud, and Lachenal [116] investigated sulfur-free black liquor

gasification in a batch autoclave at 430°C and 470°C without using a catalyst. Increasing the tempera-

ture was found to promote lignin decomposition and higher shares of H2 and CH4 in the syngas. The

rate between the energy in the gas and the black liquor was 46%, while 34% of the carbon and 53%

of the hydrogen initially present in the black liquor were converted into gases. The obtained liquid

phase consisted mainly of phenolic compounds. Higher efficiencies and a more complete conver-

sion are predicted at 700°C where thermodynamic equilibrium should be reached [116]. Regarding

the recovery of cooking chemicals, sodium recovery was found to be 97%, which is comparable with

the sodium recovery in a typical Kraft mill.

The majority of research in SCWG of black liquor focuses on high-temperature non-catalytic gasi-

fication for the production of hydrogen. Cao et al. [159] investigated hydrogen production from

supercritical water gasification of alkaline black liquor in a continuous flow system. Results indi-

cated that increasing temperature and residence time, and decreasing feed concentration enhanced

gasification performance. Depending on the temperature, the gasification product contained 40-

61% hydrogen. In a later study, Cao et al. [151] investigated the gasification of soda black liquor at

temperatures from 600-750°C experimentally. Results revealed that longer reaction times, higher

temperatures, and lower concentrations support hydrogen production and carbon conversion in

the gasifier. As such, the fraction of H2 increased, and the fractions of CO2 and CH4 decreased

with increasing temperature. The gas product featured a low CO content, consistent with the alkali

content in the black liquor stream promoting the WGS reaction. Compared to efficiencies predicted

for equilibrium assumptions of the thermodynamic state, the obtained efficiencies were still lower,

indicating that complete gasification was not achieved.

De Blasio et al. [121] conducted experimental work, diluting black liquor in a non-catalytic, continu-

ously operating plug-flow reactor. Operating behavior at 250 bar and temperatures of 500°C and

600°C was investigated. While at 500°C, experiments were performed successfully, at 600°C, early ter-

mination of the experiment was required due to salt deposition and clogging of the reactor entrance,

induced by the presence of alkali metals in the black liquor. If not removed, salts of these metals

become insoluble in supercritical water and precipitate inside the reactor. Purkarová et al. [413] also

reported clogging of experimental material when performing gasification of dilute black liquor at

550°C and 25 MPa. Blasio et al. [117] compared the performance SCWG of black liquor in stainless

steel and Inconel 625 batch reactors. The Inconel reactor increased hot gas efficiency to over 80%
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at 700°C, while the cold gas efficiency varied between 30% and 70%, suggesting either incomplete

decomposition of organics or carbonate content in the liquid effluent. Another observation was

decreasing tar and char formation with increasing gasification temperature.

A.1.3 Applied efficiency enhancement at Kraft pulp mills

Since the 1940s, the integration of biorefinery concepts in pulp mills is investigated. Apart from

the production from fermentation products such as succinic acid, lactic acid, and ethanol, carbon

capture and storage and the thermochemical treatment of residuals are promising pathways to

increase resource efficiency in a pulp mill. A detailed overview of possible options to be integrated is

available in [126] and [111], in the following, the main contributions tackling energy integration and

biofuel production are summarized.

Energy integration applied in the pulp and paper industry

Francis, Towers, and Browne [414] published a detailed review of best energy practices in existing

pulp and paper mills, in which Pinch analysis was declared to be an efficient tool for obtaining

energy savings. The method is applied in various studies in the pulp and paper industry [139–141].

However, according to Périn-Levasseur [31], these studies do not evaluate the full potential of all

alternatives. The combined consideration of heat, electricity, and water is not exploited. A methodol-

ogy that is based on modeling and optimization for combined energy and environment synthesis of

industrial processes has been developed by Maréchal and Kalitventzeff [415]. The work introduced

an approach in which energy and utilities are studied simultaneously. Mathematical programming

and thermodynamic analysis are combined to solve the energy integration of industrial processes.

The method is applied to a Kraft process as a demonstration. A comprehensive approach to process

integration is presented by Kermani et al. [65], who investigated the simultaneous optimization of

the heat, electricity, and water network of a conventional Kraft process.

Biofuel production at pulp mills

Furthermore, a variety of studies explore the opportunity to valorize black liquor and woody residue

streams. The pathways currently being investigated for increasing the value of the woody residue

stream at pulp and paper mills can be grouped into three main categories: biochemical, thermo-

chemical, and physical [111]. While biochemical process pathways are mostly integrated into the

sulfite pulping process, the analysis of biorefineries integrated into Kraft pulp mills mainly focuses

on thermochemical conversion routes due to the thermodynamic properties of the processes [142].

Therefore, numerous studies can be found that explore the opportunity to maximize the effective-

ness of the black liquor and woody residue streams by incorporating gasification. This section

focuses on applications of bark gasification, supercritical water gasification of black liquor as well as
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pulp mills integrating gasification of both the bark and black liquor streams. Particular attention is

given to applications in which the synthesis gas from gasification is further processed for biofuel

production.

Since the 1960s, gasification of black liquor has gone through a step-wise development as an option

to produce heat, electricity, and fuels such as DME, SNG, methanol, hydrogen, or synthetic diesel [30].

Many of the studies on black liquor gasification focus on dry black liquor gasification technologies.

This process still requires the use of energy-intensive evaporation and concentration stages prior to

the recovery boiler stage. Berglin and Berntsson [131] performed a thermodynamic analysis of an

integrated gasification cogeneration system in order to find operating conditions which maximize

power and heat yield. Larson et al. [122] investigated the economic and environmental performances

of integrating a pulp and paper mill with a biorefinery producing liquid fuels and chemicals from

black liquor.

Besides dry gasification of black liquor, SCWG has been studied. Naqvi, Yan, and Fröling [79] com-

pared two bio-refinery pathways for the valorization of black liquor: dry oxygen-blown pressurized

gasification followed by DME synthesis and catalytic hydrothermal gasification with methane syn-

thesis. The biofuel production potential and the fuel-to-product efficiency were higher for methane

than for DME production, owing to better integration with the pulping process and elimination of

the evaporation unit in the pulp mill. The research is further developed in [132], where a comparison

of two biomass gasification processes for methanol production integrated into a pulp and paper

mill was performed. The system performance was compared based on thermodynamic and envi-

ronmental performance indicators. In a preliminary study based on energy and mass integration,

it was found that valorizing black liquor in a catalytic hydrothermal gasification unit instead of a

recovery boiler would allow a representative Kraft pulp mill to export electricity and SNG while

being self-sufficient with respect to the heat demand [92]. Cao et al. [133] performed a systematic

analysis on combined hydrogen, heat, and power production from coupling the pulping process

with SCWG of black liquor. The integration of a supercritical water reactor system in a Kraft pulp

mill was explored by Magdeldin and Järvinen [134]. Re-directing 30–50% of the weak black liquor

stream to the SCWG unit resulted in an increase in pulp production capacity by 75%, with mill steam

and power requirements still satisfied and minimal disruptions to mill chemistry. Özdenkçi et al.

[135] analyzed the thermo-economic feasibility of SCWG of the black liquor stream at a Kraft pulp

mill, comparing different reactor materials and target product based on laboratory scale experiment

data. E Andersson and Harvey [143] compared the gasification of black liquor integrated into a

pulp mill to woody biomass gasification for hydrogen production. Pettersson and Harvey [136]

examined how assumptions regarding systems surrounding the pulp mill affect the CO2 emission

balance for different black liquor gasification concepts in a thermodynamic and environmental

analysis. Furthermore, Pettersson and Harvey [137] compared the gasification of black liquor to re-

covery boiler-based concepts for different mills, considering economic and thermo-environmental
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indicators.

Apart from black liquor gasification, the gasification of woody residues is the subject of numerous

studies. Isaksson et al. [129] and Isaksson et al. [95] investigated methanol, FT fuels, and SNG

production and applied process simulation and heat integration to evaluate different configurations.

It was found that green electricity production is competitive compared to biofuel production in

terms of greenhouse gas (GHG) emissions and that all analyzed scenarios are profitable, assuming

future policy instruments. Wetterlund, Pettersson, and Harvey [128] compared syngas co-generation

via a biomass-integrated gasification combined cycle with a fuel synthesis unit to produce DME. The

system analysis was made with respect to economic performance, global CO2 emissions, and pri-

mary energy use. Assumed energy market parameters influenced the results remarkably. Ljungstedt,

Pettersson, and Harvey [127] investigated the heat-integrated production of FT crude from the bark

in the pulp and paper industry. The integrated biorefinery was compared to a stand-alone plant

on the basis of wood fuel to FT crude efficiency, greenhouse gas emissions, and production cost.

Higher overall efficiency and a generally lower production cost for the heat-integrated, co-located

production were found, and heat-integrated production was identified to have a larger potential to

contribute to GHG emission mitigation. Isaksson [402] performed a thermo-economic and environ-

mental analysis of the conversion of wood residuals from the pulp and paper industry to various

products, such as FT fuels, DME, SNG, electricity, and heat. The application of process integration

for the determination of the most appropriate configurations of bioethanol production in the pulp

and paper industry has been assessed in a thermo-economic analysis by Hytönen and Stuart [130].

Based on the maximum profitability, different process pathways for the conversion of lignocellulosic

materials to ethanol were compared and evaluated.

Furthermore, the combination of bark and black liquor gasification is addressed in multiple studies.

Consonni, Katofsky, and Larson [107] compared exploiting biomass for co-generation or fuel synthe-

sis by integrating different wood residue and black liquor gasification process routes in a Kraft mill.

Thermo-economic indicators were compared for producing different products such as DME, fuel,

and ethanol.

Périn-Levasseur [31] analyzed the integration of different biomass conversion processes in the sulfite

pulp process. In their study, residual liquor from the pulping process can either be evaporated and

burned in a recovery boiler, fermented and distilled to produce ethanol, or fermented, evaporated,

and sterilized to produce yeast. For all conversion pathways, energy and mass integration are

considered using flow sheeting models. Different scenarios evaluating different objective functions

are analyzed. Mongkhonsiri et al. [126] performed superstructure optimization of a comprehensive

integrated pulp biorefinery to identify top-rated biochemicals such as succinic acid and lactic acid

as well as black liquor gasification with DME production that can supply bioenergy and biofuel. The

work is further developed in [232], where process design issues of the identified promising designs

are targeted, and [36], where the performance of three biorefinery options integrated into a Kraft
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mill on a scenario-based simulation approach was investigated. The main studies mentioned in this

literature review are summarized in Table 1.1.

A.2 Supplementary information on the process unit modeling

The following sections provide additional information on the process modeling referenced in the

main text; the process models are summarized further in Tables A.8- A.11. An enhanced version of

the models described in [94] is deployed for the black liquor gasification pathway. Therefore, the

sections connected to black liquor gasification A.2.1-A.2.4 were written profiting from Mc Donald

[94] as a source of inspiration.

A.2.1 Composition of bark and black liquor

Table A.1 provides the bark composition on a dry, ash-free basis used in the analysis. Table A.2

presents a typical black liquor composition made from Kraft pulping of softwood (pine) and hard-

wood (birch). The hardwood liquor’s slightly lower lignin content and higher concentration of

carbohydrate fragments are key distinctions between the two common liquors. In Table A.3, the

elemental composition of black liquor used in the process modeling is provided. A comparison of

typical compositions for wood , bark and black liquor for softwood and hardwood species is given in

Table A.4.

Table A.1: Composition of bark biomass on a dry ash-free basis, adapted from [104, 148].

Softwood bark Hardwood bark 60/40 Mix

Carbon % 50.9% 51.1% 51.1%

Hydrogen% 6.1% 6.3% 6.2%

Nitrogen % 0.4% 0.4% 0.4%

Sulfur % 0.1% 0.1% 0.1%

Oxygen % 42.5% 42.2% 38.0%
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Table A.2: Chemical composition of the dry matter in Kraft black liquor (% of total dry matter),
adapted from [105].

Softwood Hardwood

Lignin 31 25
Aliphatic carboxylic acids 29 29
Other organics 7 9

- Extractives 4 3
- Carbohydrate fragments 2 5
- Miscellaneous 1 1

Inorganics 33 33
- Sodium bound to organics 11 11
- Inorganic compounds 22 22

Table A.3: Elementary composition of black liquor dry solids, adapted from [104].

Element Mass [g/kg dry solids] End products

Carbon 350 CO2, Na2CO3

Hydrogen 36 H2O
Nitrogen 1 N2

Oxygen 339 CO2, Na2CO3, SO2, Na2SO4, H2O
Chloride 5 NaCl
Potassium 22 K2S
Sulfur 55 SO2, K2S, Na2S, Na2SO4

Sodium 190 Na2S, Na2SO4, Na2CO3

Table A.4: Comparison of composition and combustion characteristics of wood [148], bark and black
liquor [104]. Values are on a dry basis unless indicated otherwise.

Wood Barka Black Liquor

Softwood Hardwood Softwood Hardwood Softwoodb Hardwoodc

Carbon, % 51.2 49.7 48.3 49.0 35 32.5
Hydrogen, % 5.9 5.9 5.8 6.0 3.6 3.3
Nitrogen, % 0.1 0.2 0.4 0.4 0.1 0.2
Oxygen, %d 41.9 42.7 40 40 33.9 35.5
Sulphur, % 0.3 0.2 0.1 0.1 5.5 6.0
Sodium, % 0.3 0.2 0.1 0.1 19 19.8
Ashes at 550°C, % 1.0 1.7 5.1 4.1 22 22.5
HHV, MJ/kg 20.3 19.8 20.1 20.5 15.5 14.7
LHV, MJ/kg 19.1 18.6 18.8 19.2 14.6 13.8
Moisture content, % 55 55 60 55 80-85 (40)e 80-85 (40)e

LHVwet−basis, MJ/kg 9.4 9.1 8.1 9.2 1.0 (7.8)e 0.8 (7.3)e

a softwood and hardwood bark based on private data, b pine, Scandinavian, c birch, Scandinavian, d oxygen fraction
calculated, e moisture content of 40%.
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A.2.2 Kraft process and chemical recovery cycle

Assuming the elementary composition of black liquor in Table A.3, the composition of the smelt and

thereby the amount of carbon leaving the recovery boiler in the form of Na2CO3 is calculated as per

[104] (Table A.5).

Table A.5: Allocation of elemental sulfur and sodium in end products and smelt balance in recovery
boiler, per kg of dry solids black liquor.

Sulfur, g/kg dry solids End products

0.0 SO2

0.1 Dusta as Na2SO4

9.0 K2S in smelt
45.9 Na2S, Na2SOb

4

Sodium, g/kg dry solids End products

0.2 Dust as Na2SO4

3.3 Na2SO4in smelt
62.5 Na2S in smelt
3.3 NaCl in smelt
120.7 Na2CO3 in smelt

Smelt balance g/kg dry solids

31.0 K2S
106.1 Na2S
10.2 Na2SO4

8.5 NaCl
278.3 Na2CO3

1.0 Other inorganics

a dust emissions assumed to be 0.5 g/kg dry solids

as Na2SO4, b reduction (molar ratio of Na2S/S):

95% [416].

A.2.3 Hydrolysis and decomposition of carboxylic salts

In Table A.6, adjustments of the parameters required to adapt the feedstock composition of the

hydrolysis model presented by Gassner et al. [153] to black liquor are displayed.

Table A.6: Hydrolysis model parameters on dry, ash-free basis.

Parameter Value Unit

Lignin fraction in organic biomass 94 wt%
H/C-ratio of lignin 1.11 molar ratio
O/C-ratio of lignin 0.33 molar ratio
Effective water content 93 wt%
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The carboxylic salt decomposition was modeled separately in Aspen Plus, using the electrolyte

package and the Hegelson model (ELECNRTL-HG) for describing thermo-physical properties [249].

As per Magdeldin and Järvinen [134], the carboxylic acids are modeled using the compound sodium

acetate. The decomposition is assumed to follow the reaction:

2CH3COONa+H2O → CO2 +2CH4 +Na2CO3. (A.1)

An RSTOIC reactor was used, with the expected yield of approximately 0.7, as reported by Magdeldin

and Järvinen [134] and Onwudili and PT Williams [417] [94]. For estimating the heating requirements

of the black liquor, the sensible heat of water was conservatively used [94].

A.2.4 Gas separation and hydrogen purification

The warm gas desulfurization (WGD) Process Technology considered for gas cleaning uses a pres-

surized dual transport-bed reactor design and a proprietary attrition-resistant, high-capacity, re-

generable solid sorbent [418, 419]. In the process, both H2S and COS are removed, yielding sulfur

in the form of SO2. No gas cooling is required prior to the process, making integrating the rest

of the processes efficient. A general process description is available in [418, 419]. In this study,

pressure swing adsorption (PSA) process following the WGD unit for removing CO2 is based on

the work presented in [135], and performance assumptions have been drawn based on a study

investigating hydrogen purification from a gas mixture similar to syngas [420]. The four-column

PSA unit achieved a recovery of 52% at a purity of 99.996 mol% H2, with the productivity of 59.9 mol

H2/kg adsorbent/day. Columns contained layered beds with activated carbon and zeolite with equal

volumes [135, 420]. This recovery rate is relatively conservative, as other studies reported recovery

rates of 71–85% alongside purities of 96–99.5% in a system with the same amount of beds [421]. PSA

for hydrogen purification is typically operated between 10-40 bar [422]. An operating pressure of

30 bar was selected, similar to the one suggested in [133], eliminating the need for re-compression

before injection into the fuel synthesis units. Generally, feed gases containing less than 50 vol%

hydrogen cannot be upgraded in a PSA system economically [423]. For the considered black liquor

stream containing 18wt% solids, this hydrogen concentration was only obtained when the operating

temperature of the gasifier exceeded 700 °C.

As an alternative to purifying the syngas from hydrothermal gasification (HTG) via WGD and PSA,

a selexol stage coupled with PSA is considered in the superstructure. It is possible to capture CO2,

as well as to remove any H2S and COS present in the syngas stream from the gasifier in the selexol

stage, making the installation of the previously-presented sulfur recovery units redundant. Due to

its commercial availability, higher H2S selectivity, capability to completely dehydrate the feed and

moderate energetic demands, the tertiary amine methyldiethanolamine (MDEA) selexol technology

was selected [152]. As it is considered insoluble in the solvent, the hydrogen flow in the feed stream

exits the selexol unit with no losses [152]. Before entering the PSA, the pressure of the gas stream is
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decreased. Given the higher concentration of hydrogen in the inlet stream, higher performance of

the PSA unit is assumed when coupled with a selexol unit.

Catalytic hydrolysis required to convert carbonyl sulfide (COS) present in the gaseous phase to H2S

when syngas from HTG is used in fuel synthesis is modeled after [424, 425]. As the COS hydrolysis

reaction is largely independent of pressure, the syngas is expanded to the same pressure level as

required for subsequent acid gas removal and fuel synthesis.

A.2.5 Lime kiln and lime kiln fuels

The lime kiln model is developed with information available from Adams [144], with the main

premise that the net energy provided from fuel equals the net energy consumed by the lime calcining

process. Further details are available in [144], including the equations applied to describe lime kiln

operation.

Different fuels are considered for providing heat to the lime kiln. Besides natural gas, lignin, bark, and

off-gases of the thermochemical conversion routes are considered. For estimating the combustion

properties of the different fuels, the results of the simulation software Belsim Vali were used. The

lower heating value (LHV) was extracted directly from the simulation, and the adiabatic flame

temperature of burning respective off-gases was estimated using a simple adiabatic burner model.

Radiation temperature was assumed based on a non-adiabatic burner model. As per Kuparinen

and E Vakkilainen [108], additional make-up lime is required when product gas or off-gases are

used in the lime kiln to account for non-process elements. If all of the natural gas used in the lime

kiln is replaced by off-gases, two additional kg of lime per air-dried tons (ADT) of pulp produced

are needed [108]. The specific make-up lime demands are derived for each alternative fuel based

on the respective amounts required to provide heat to the lime kiln. Table A.7 summarizes the

characteristics of the considered lime kiln fuels; the modeling assumptions for the lime kiln are

summarized in Table A.8.

Table A.7: Characteristics of off-gases used as lime kiln fuels.

LHV [kJ/kg] Tflame,adiabatic [°C] add. lime requirement
[kg/kg off-gas]

Off-gas Selexol/PSA 41543 2075 0.060
Off-gas PSA 12827 1877 0.019
Off-gas FT synthesis 31193 2046 0.045
Off-gas methanol synthesis 38527 2070 0.056
Lignin 25753 1443 0.037
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A.2.6 Summary of process model assumptions

The following tables give an overview of the main modeling assumptions included in the process

superstructure and the references the reader may consult for further information on the process

model details. References included in headers are the ones mainly used for modeling a respective

unit, while individual data points might feature additional references.

Table A.8: Kraft pulp mill.

Unit Value References

Pulp mill

Pulp production adt/day 1000 [65]
Black liquor stream kg/s for 1000 adt

pulp/day
14.89 [65]

Bark stream kW bark/adt pulp 33.5 [137]

Lime kiln and chemical recovery [144, 145]

Tcalcination °C 900 [144, 145]
Tproduct °C 300 [426]
Reburn specific heat J/kg/K 989 [144]
CO2 specific heat J/kg/K 919 [144]
Heat of calcination kJ/kg 3270 [144]
Inerts specific heat J/kg/K 1046 [144]
Availability % 85 [426]
Dust loss % 5 private data
Solid content % 73.5 private data
Enthalpy of evaporation kJ/kg 2439 [144]
Na2CO3 in smelt g/kg dry solids black

liquor
278.3 [104]

Shell losses in kiln % of heat input 15 [146]

Table A.9: Electrolysis units.

Unit Value References

Alkaline electrolysis [427]

Water in l/kg H2 15
System efficiency kWhe/kg H2 52

Solide oxide Co-electrolysis [160]

Water in kg/s 1.53
CO2 in kg/s 2.64
Syngas out kg/s 3.01
Oxygen out kg/s 1.16
Electricity in kW 18336
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Table A.10: Black liquor gasification.

Unit Value References

Gasification of black liquor

Hydrolysis [153]

Lignin fraction in organic
biomass

wt %DAF 94

H/C-ratio of lignin molDAF 1.11
O/C-ratio of lignin molDAF 0.33
Effective water content wt% 93

Decomposition of carboxylic salts [417],[134]

Reactor yield - 0.7

Salt separator [157]

Recovery of inorganic cooking
chemicals

% 100 [428]

Organic losses in salt brine % 10 [153]

Hydrothermal Gasification [153]

Reactor temperature °C 700 [429]
Reactor pressure bar 250 [158]
Gas expander isentr. efficiency − 0.8 [158]
Liquid expander isentr. effi-
ciency

− 0.82 [158]

Pressure Swing adsorption (PSA) [135]

Recovery % 52
Purity mol% 99.996
Number of beds - 4
Operating pressure bar 30 [133]
Operating temperature °C 25 [420]
Adsorbent Activated carbon/zeolite

Selexol and Pressure Swing adsorption [133, 152, 153]

Pressure selexol/ PSA bar 70/ 30
Temperature selexol/ PSA °C 25
Recovery H2 selexol % 100
Recovery H2 PSA % 80
Number of beds PSA - 6
Purity mol % 99.997

COS hydrolysis [430]

Temperature °C 220
Pressure bar depending on AGR unit

Warm-Temperature Syngas Desulfurization [418, 419]

Temperature °C 330
Pressure bar 30
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Table A.11: Termochemical conversion pathways of bark.

Unit Value References

Pretreatment [27, 64, 148, 149]

Drying technology - Steam/air drying
Moisture content after drying % 10 (FT) / 20

Gasification [27, 64, 148, 149]

Operating conditions (T,p), agent, steam to dry biomass ratio
Directly heated ENF °C, bar, -,- 1350, 30, oxygen-steam, 0.6
Directly heated CFB °C, bar, -,- 850,1, oxygen-steam, 0.6
Indirectly heated FICFB °C, bar, -,- 850,1, oxygen-steam, 0.5

Gas conditioning [27, 64, 148, 149]

Gas cleaning technology - cold/hot
Gas cleaning temperature °C 150 / 850
Gas cleaning filter pressure
drop

mbar 1000

Gas cleaning flash temperature °C 25
WGS temperature °C 300
CO2 removal - MEA [381]
MEA heat requirements MJ/kg CO2 3.3 (at 150°C, 20% recoverable)
MEA electricity requirements kJ/kg CO2 25

Fuel synthesis [27, 64, 148, 149]

Operating conditions
FT synthesis pressure, tempera-
ture

bar, °C 25,220

DME synthesis pressure, tem-
perature

bar, °C 50,277

methanol synthesis pressure,
temperature

bar, °C 85,315

SNG synthesis pressure, tem-
perature

bar, °C 5,327

Technology and catalyst
FT synthesis Multi tubular fixed bed reactor, Co/Zr/SiO2
DME synthesis Slurry phase reactor , ACZ, HZSM-5
Methanol synthesis Multi-stage fixed bed reactor , Cu/ZnO/Al2O3
SNG synthesis Internally cooled fluidized bed reactor , NiAl2O3

Upgrading [27, 64, 148, 149]

FT upgrading Private data
DME upgrading Flash distillation
Methanol upgrading Flash distillation
SNG upgrading Membranes, PSA

Fuel specifications [27, 64, 148, 149]

FT specification, temperature,
pressure

-, °C, bar Liquid fuels, 25, 1

DME specification, tempera-
ture, pressure

-, °C, bar 99.8 vol%, 25, 1

Methanol specification, tem-
perature, pressure

-, °C, bar 99.4 vol%, 25, 1

SNG specification, tempera-
ture, pressure

-, °C, bar 96 vol%, 25, 50
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A.2.7 Sizing and cost estimations

The equipment cost of a unit is essentially dependent on its size and the required material. The flow-

sheeting models developed for the superstructure help to determine relevant process characteristics,

such as temperatures, pressures and flow rates. Thus, the information available from flowsheeting

allows for connecting the thermodynamic performance of a process to its cost. Investment cost

estimations are performed with the approaches followed by Peduzzi [148]. In their work, whenever

possible, cost estimations for the bare module costs are realized using empirical correlations to

sizing parameters provided by Turton et al. [45] and Ulrich and Vasudevan [164]. The purchase

cost C 0
p of the equipment built in carbon steel and operating under atmospheric pressure can be

generally expressed as:

logC 0
p = K1 +K2 · l og A+K3(log A)2 (A.2)

Ki represents parameters fitted from market studies, and A is the relevant sizing parameter of a

respective unit. From the purchase cost, the direct (equipment, material, labor) and indirect (freight,

overhead, engineering) cost of a unit installation can be estimated, summarized in the bare module

cost CB M [148]:

CB M =C 0
p · [B1 +B2 ·Fp ·FM ] (A.3)

Bi are constants depending on the equipment; the coefficient Fp considers pressure and FM material

characteristics.

When the application of this approach is not possible, capacity factored estimates derived from

literature are used. In this approach, the cost of the equipment is estimated considering a similar

unit for which literature data is available, and CB M is estimated by Equation A.4

CB M =C 0
ref · (

A

A0
ref

)exp · IF (A.4)

C 0
ref represents the base cost and A0

ref the sizing parameter adapted from literature. The extrapolation

factor exp is assumed to be 0.7 if no further information is available [148]. IF defines the installation

factor that represents the cost corresponding to equipment installation. It is worth noting that

due to different assumptions in different literature studies, providing a coherent ensemble of cost

estimations can be challenging. This is one reason why the approach of varying investment cost

estimations when generating results is judged valuable to ensure a variety of configurations to be
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analyzed, independent of potential inconsistencies in cost estimations. The following gives an

overview of the included cost estimations for the main units present in the superstructure and the

related references.

For the dry gasification line, mainly the cost estimates reported by Peduzzi [148] and Gassner

[167] are used, with minor updates. Therefore, they are only briefly summarized hereafter. Bark

pretreatment includes drying, torrefaction, pyrolysis, and if ENF gasification is used, a grinder.

Drying and torrefaction costs are estimated based on the equipment size with correlations provided

in [431]; for more specifications on the assumptions, [148] can be consulted. Pyrolysis follows the

design specifications in [167, 432]. For the ENF gasifier, the capacity factor relationship provided by

A Vogel et al. [433] is used. The included oxygen compressor unit is priced based on the empirical-

based data for centrifugal fans. The FICFB and the CFB gasifiers are priced based on the empirical

volume-price relationship for fluidized beds for the gasification and combustion chambers [148,

167]. The FICFB configuration uses a centrifugal pump and bucket conveyor for supplying water

and transporting biomass, while both configurations require a compressor. For more details on

the gasification equipment assumptions, [167] and [148] can be consulted. The syngas exiting the

ENF gasifier is assumed to be tar-free due to the high operating temperature. For the other gasifiers,

thermal cracking or catalytic reformation are included in the equipment requirements and priced

based on capacity factor estimates reported in [407, 434]. As Peduzzi [148] emphasizes, biomass

gasification units do currently not exist in relevant capacities, which makes the estimation of their

prospective cost particularly difficult and induces uncertainty. As realized in [148], cold gas cleaning

for removing contaminants includes cyclones and a bag filter for residual gas removal, as well as

a wet scrubber. The costs are estimated based on the assumptions provided by C Hamelinck et al.

[407]. In case of gasification at atmospheric pressure, the clean synthesis gas is compressed in a

multi-stage compressor priced according to empirical relationships. The WGS reactor for adjusting

the H2/CO ratio is priced with the estimation in [435]. The cost of the amine scrubber for acid gas

removal are estimated considering data from [148, 434]. In line with the assumptions in [148], the

FT reactor is priced according to the estimate by Hannula and Kurkela [436] for a low-temperature

multitubular fixed-bed reactor operating on a Co-catalyst. The capacity factored estimate is based

on the molar flow of the synthesis gas at the inlet of the reactor. The upgrading section cost is

estimated on the basis of a hydrocarbon processing unit scaled on the produced FT fuel. The

methanol synthesis applies a slurry, fixed bed reactor, assumed to be a vertical vessel for which

empirical cost estimations are applied. For methanation, fluidized bed reactors are considered,

with constant gas velocities at scale-up. For estimating the costs, the approach of Gassner [167] is

followed. For the estimation of the wet gasification line, the approach is based on values reported in

[153] and refined for the individual units mentioned hereafter. Salt separator and hydrolysis units

required prior to SCWG are modeled as jacketed reactors, based on the recommendations in [118,

437]. For gasification, a unit with a fluidized and fixed bed chamber is considered, modeled as a

vertical vessel [438]. The flash in the vapor-liquid separation step following gasification consists of
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radial expanders and a flash drum, modeled as a vertical vessel following the approach in [439, 440].

For acid gas removal following SCWG by means of selexol, the selexol towers are modeled as two

vertical vessels, and their respective packing is modeled following [440, 441]. PSA is also priced as

vertical vessels and tower packing, with the approach followed in [440]. WGD costs are estimated

by assuming the unit to be a vertical vessel, with specifications on the catalyst requirements from

[442]. For solid oxide electrolysis cells (SOECs) and solid oxide fuel cells (SOFCs), investment cost

estimations for commercial scale units from [443] are used. For alkaline electrolysis, the information

provided in [427] is considered.

Summary of capacity factor estimates

Table A.12 summarizes the main capacity factor assumptions applied for the superstructure, as per

Equation A.4. During optimization, linearized versions of all cost functions are used in order to keep

the optimization problem linear, and the actual costs are derived post-computationally using either

the empirical cost functions from [45, 164] or the presented capacity factor correlations.

Table A.12: Capacity factor data used in cost estimations, adapted from [148, 167, 440].

Unita C0
B (MUSD) Unit A0 exp IF Reference

Drying and tor-

refaction

18.76 kUSD m3 1 0.74 1.5 [431]

ENF gasifier 64.36 MW th 432 0.7 1 [433]

Air separation unit 31.43 ton per day 576 0.75 1 [407]

Quench direct 352 kUSD m3/s gas in 3.74 0.7 3 [444]

Tar reformer 3.51 m3/s gas in 76.2 0.65 1.39 [434]

Cyclones 3.38 m3/s gas in 34.2 0.7 1 [407]

Bag house filter 2.14 m3/s gas in 12.1 0.65 1 [407]

Wet scrubber 3.37 m3/s gas in 12.1 0.7 1 [407]

Dry cleaning 38.56 m3/s gas in 74.1 1 1 [407]

monoethanolamine

(MEA)

4.90 kmol CO2/h 542 0.75 1.39 [434]

FT multitubular

fixed bed

12.11 kmol/s gas in 0.9025 0.67 1 [436]

Upgrading 93.60 t/hr crude 333.3 0.7 1 [148]

Lignoboost 384 kUSD kg/s lignin 1 1 1 [124]

Alkaline electroly-

sis

1080 USD kW 1 1 1 [427]

SOEC /SOFCa 2000 USD kW 1 1 1 [443]

a not including stack replacement cost.
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A.3 Supplementary information on the solution synthesis and the case

study

A.3.1 Mathematical formulation of the constraints

The mathematical formulation of the superstructure and optimization in the lower level is adapted

from [88, 163], it has also been applied and described in detail in previous studies, such as [91, 445].

The main aspects are summarized hereafter; for more details, the interested reader may consult the

cited references. For each unit u in the system, energy and mass flow models are built to describe

the conversion in the unit regarding streams, physical properties, mass, and energy balances, and

to obtain the characteristics of the interfaces offered for integration with other units. Presuming

a set of possible units U and a set of possible system states T, binary decision variables yuse
u and

yuse
u,t define whether a unit is installed and whether it is used in timestep t. Continuous decision

variables f mult
u and f mult

u,t describe the size of the installed unit and the level of usage at which it is

operated in each period t. Continuous variables f mult
u are constrained by parameterized upper and

lower bounds F min/max
u . Similarly, the binary decision variables yuse

u and yuse
u,t are limited by Yu that

determines whether a unit is considered for the generation of results. In the superstructure model,

these variables are related to each other by the set of Equations A.5- A.7.

F min
u · yuse

u ≤ f mult
u ≤ F max

u · yuse
u ∀u ∈ U (A.5)

F min
u · yuse

u,t ≤ f mult
u,t ≤ F max

u · yuse
u,t ∀u ∈ U, t ∈ T (A.6)

Yu ≥ yuse
u ≥ yuse

u,t ∀u ∈ U, t ∈ T (A.7)

Requirements for each resource are satisfied by internal production and imports (Equation A.8). The

overall resource balance ensures that import, export, production, and consumption are balanced in

the system, as formulated in Equation A.9. ṁ+
r e,u,t and ṁ−

r e,u,t define the reference mass flow rate of

resource r e consumed (+) and provided (-), respectively, in unit u at timestep t . For each unit, the

mass balance of streams entering and leaving in a timestep t needs to be closed (Equation A.10). It

needs to be noted that for clarity of the following mass balance formulation, both in and outgoing

streams are labeled as resource, with the respective sign (+/-) indicating the direction. In the main

text of this thesis, outgoing resources might be referred to as services (se) provided by the mill. More

detailed information on the mathematical formulation of the superstructure optimization problem

applied in this thesis is provided in [163].
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∑
u

f mult
u,t ·ṁ−

r e,u,t +Ṁ−
r e,t −

∑
u

f mult
u,t ·ṁ+

r e,u,t ≥ 0, ∀r e ∈ RE,∀t ∈ T (A.8)∑
u

f mult
u,t ·ṁ+

r e,u,t +Ṁ+
r e,t −Ṁ−

r e,t −
∑
u

f mult
u,t ·ṁ−

r e,u,t = 0, ∀r e ∈ RE,∀t ∈ T (A.9)∑
r e

f mult
u,t · (ṁ+

r e,u,t −ṁ−
r e,u,t ) = 0, ∀u ∈ U,∀t ∈ T (A.10)

All units are connected to a utility system, enabling the energy demand and supply profile of each

unit to be satisfied, considering their respective temperature-enthalpy profiles. Minimum energy

requirements are calculated applying the Pinch analysis and heat recovery approach presented by

Marechal and Kalitventzeff [53], based on the work of Linnhoff and Hindmarsh [49]. The list of all

stream inlet and outlet temperatures is extracted and ordered to generate the set of temperature

intervals K of the size N k [163]. The energy balance is closed in each temperature interval k

(Equation A.11), and residual heat (Ṙt ,k ) flows from higher to lower temperature levels. Following

thermodynamic feasibility, cascaded heat flows are positive, while values in both the first and the

last interval are zero (Equation A.12). q̇u,t ,k represents the reference heat load for unit u in timestep

t and temperature interval k [88].

∀k ∈ K∑
u

q̇u,t ,k · f mult
u,t + Ṙt ,k+1 − Ṙt ,k = 0 ∀t ∈ T (A.11)

Ṙt ,k ≥ 0, Ṙt ,1 = Ṙt ,N k+1 = 0 ∀t ∈ T (A.12)

In this work, the described mixed integer linear programming (MILP) formulation is further en-

hanced by simultaneous optimization of water and energy developed by Kermani et al. [446], where

the thermal characteristics of water streams are considered for heat integration.

A.3.2 Heat exchange characteristics

Within the mathematical formulation of the optimization problem in the lower-level framework,

the energy and process models relevant to the superstructure are organized in so-called clusters.

Clusters are defined as entities that can exchange resources freely among each other, but heat can

only be exchanged between the different clusters by means of hot water loops or evaporation and

condensation of water in the steam network [65]. Thus, per cluster, the heat cascade is defined, as

described in Section A.3.1. Table A.13 displays the organization of process units in different clusters

for the analyzed system of combined pulp and fuel production, adapted from [65] and enhanced for

considering fuel production.
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Table A.13: Cluster structure in lower-level optimization problem and included process units.

Cluster digester Cluster recovery boiler Cluster fuel production

Washing Evaporator Methanol synthesis
Digester Recovery boiler DME synthesis
Recausticizer Biomass boiler SNG production

FT fuel synthesis
Hydrothermal gasification
Electrolysis

Cluster pulp machine

Pulp machine
Bleaching

A.3.3 Parameter sampling

In order to generate diverse solution space, bounds of binary decision variables that describe

whether a unit is included or not are sampled during solution generation. These process units

include alkaline electrolysis, lignin removal, FT synthesis, DME synthesis, methanol synthesis,

hydrogen selling, electricity selling, and SNG production.

A.3.4 Environmental impact and economic assumptions

Impact factors and economic assumptions are summarized in Tables A.14 and A.15.

Table A.14: Parameters included in the environmental assessment.

Resourcea Unit GWP 100ab

Market for electricity, medium voltage, France kg CO2−eq/kWh 0.079

Market for natural gas, high pressure, France kg CO2−eq/m3 0.391

wood, measured as solid wood under bark, EU

without Switzerland

kg CO2−eq/m3 22.473

Market for quicklime, milled loose, ROW kg CO2−eq/kg 1.232

Market for diesel, (Europe without Switzerland) CO2−eq/kg 0.479

Market for methanol,GLO kg CO2−eq/kg 0.512

Market for dimethyl ether, RER kg CO2−eq/kg 1.283

Market for hydrogen, GLO kg CO2−eq/kg 1.591

Market for lignin [447] kg CO2−eq/kg 0.400

Market for water, decarbonized, France kg CO2−eq/t 0.028

a GLO: global, ROW: rest of world, RER: rest of Europe, b if not declared otherwise from Ecoinvent 3.6 [165],

IPCC 2013.
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Table A.15: Economic parameters.

Parameters Unit Value Reference

Interest rate % 6 own assumption

Expected lifetime years 20 own assumption

Wood price USD/kg 0.093 [448]

Electricity price USD kWh 0.127 [449]

Electricity selling price USD/kWh −0.086 [450]

Natural gas price USD/kWh 0.049 [449]

FT price USD/kg −1.180 [451]

Methanol price USD/kg −0.390 [452]

DME price USD/kg −0.479 [453]

H2 price USD/kg −2.500 [454]

Lignin price (kraft lignin) USD/kg −0.300 [455]

Quicklime price USD/kg 0.1166 [456]

Freshwater price USD/kg 0.001252 [457]

Landfill price USD/kg 0.010 [458]

SNG price USD/kWh −0.075 [455]

A.4 Supplementary information on the results

A.4.1 Typical configurations

In Figure A.1, the offset benefits required for the selected solutions to perform as well as conventional

mill configuration are displayed.
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Figure A.1: Sensitivity of selected solutions towards compensation benefit for avoided fossil emissions (scope
avoided emissions (SAE)), environmental impact (scope environmental impact (SEI)), captured biogenic
carbon (scope captured biogenic carbon (SCB)) and direct avoided biogenic and fossil emissions (scope
avoided direct emissions (SAD)) compared to conventional operation.
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A.4.2 Correlations

The correlations between key performance indicators (KPIs) and parameters are derived for each

typical configuration to assist informed decision-making. Table A.16 shows the parameters with

the highest correlation towards a KPI for each typical configuration. Capital expenditure (CAPEX) is

always dependent on the interest rate and lifetime of equipment, as well as the investment cost of

the most significant units in the respective configuration. For operating expenditure (OPEX) and

total expenditure (TOTEX), more diversity is observed; depending on the activated units of a given

solution, different parameters are more relevant than others. This could serve as an indication for

preferring certain solutions over others, depending on the expected market behavior.

Table A.16: Parameters with the highest correlation to KPIs for each typical configuration.

ID KPI top 1 top 2 top 3

0 OPEX Freshwater price MeOH price H2 price
0 CAPEX Lifetime Interest rate pun,MeOHa

0 TOTEX Freshwater price Lifetime Interest rate
1 OPEX H2 price Freshwater price FT price
1 CAPEX Lifetime Interest rate pun,HTG

1 TOTEX Lifetime Interest rate FT price
2 OPEX Freshwater price FT price DME price
2 CAPEX Lifetime Interest rate pun,DME

2 TOTEX Lifetime Freshwater price Interest rate
3 OPEX Electricity price Freshwater price Nat gas price
3 CAPEX Lifetime Interest rate -
3 TOTEX Elec. selling price Freshwater price Nat gas price [USD/kWh]

a pun,x denotes investment cost of respective unit x.
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B.1 Supplementary material on the methodology

The following Section provides supplementary information on the methodology developed in

Chapter 2.

B.1.1 Definition of steering inputs

In the steering input, parameters to be varied during solution generation and exploration are

defined. NΘ relevant variables of the upper-level framework that influence the decision space of the

lower-level framework are identified, containing the bounds of the continuous (x) and discrete (y)

decision variables of the lower-level framework. The discrete decision variables of the upper-level

frameworkΘy set the upper bound Yu ≥ yuse
u of the installation of independent units in the lower-

level framework and therefore determine whether a unit can be considered for solution generation.

The continuous decision variablesΘx contain the upper bounds of the unit multiplication factor

F max
u ≥ f mult

u for independent units. Independent, in that sense, implies that the unit size is not

directly correlated to the size or operation of another unit. Furthermore, N P lower-level framework

parameters pun that the decision-maker (DM) judges to be subject to uncertainty are identified with

corresponding distributions.

B.1.2 Problem formulation

The following provides supplementary information on the problem formulation.
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Choice of scalarization function

The weighted sum method is widely applied for parameterizing objective functions; a unique

objective function is created, consisting of a weighted sum of objectives. Reported drawbacks of this

method include its inability to show solutions on a non-convex Pareto frontier and its bias toward

extreme solutions [63, 234]. Further reported issues are that selecting weights for objectives can have

counter-intuitive consequences on the results, which might mislead steering attempts in searching

the decision space. Moreover, the weighted sum method requires normalizing all objectives to

a common base, which might require a preliminary specification of upper and lower bounds of

objectives and induce a further bias of the results [234]. Compared to the weighted sum method, the

ε-constraint method can handle convex as well as non-convex Pareto frontiers, does not suffer from

counter-intuitive weight specification, and the variation of the parameterized constraints leads to

a richer and more diverse set of solutions [63, 68, 234]. Therefore, for transforming the problem

into a single-objective formulation, an augmented form of the ε-constraint method is applied, first

introduced by Y Haimes, Lasdon, and Wismer [168], and adapted by Mavrotas [234] [309]. The ε-

constraint method minimizes one objective z⋆ and transforms the others into inequality constraints

characterized by an upper bound ε [234]:

minx,y z⋆(x, y, p) (B.1)

subject to (B.2)

z(x, y, p) ≤ εm,z ∀z ∈ Z \ {z⋆},∀m ∈ M (B.3)

g (x, y, p) ≤ 0 (B.4)

h(x, y, p) = 0, (B.5)

where Z is the set of objectives to be considered, and M is the set of points on the Pareto frontier.

Payoff table calculation

The range of each parameterized objective function in which the upper bounds ε can be varied

needs to be identified when applying the ε-constraint method. In the original ε-constraint approach,

this is done by calculating the individual optima of each objective function. However, this may

lead to weak Pareto-optimal points in case of multiple alternative solutions [234]. In this work, the

payoff table between the different identified objectives and thus the ranges of the ε-constraints

are calculated applying an augmented ε-constraint method [234]. In the augmented ε-constraint

method, lexicographic optimization is used to calculate the ranges of the parameterized objectives.

The objective with the highest priority to the DM’s interest is optimized obtaining mi n(z1) = z∗
1 .

The second function is optimized after adding the constraint z1 ≤ z∗
1 , and mi n(z2) = z∗

2 is obtained.

Both constraints z1 ≤ z∗
1 and z2 ≤ z∗

2 are added as constraints for optimizing z3, until all objective
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functions are treated. This guarantees that the payoff table is built with only Pareto-optimal solutions,

therefore neglecting weak Pareto-optimal ones during solution generation [234] (Figure B.1 on the

right, see dominated ε-bounds).

Sampling approach

After the payoff table is calculated, a sampling algorithm is applied to define the ε-bounds for the

parameterized objective functions. Burhenne, Jacob, and Henze [459] compared different sampling

algorithms and concluded that the Sobol approach [460] provides robust and efficient exploitation

of the search space. The approach has also been explored in [461] and [68]. Sobol sequence sampling

compared to systematic sampling is illustrated in Figure B.1 (left), where the exploration of the search

space in a two-dimensional optimization problem is shown. Compared to applying systematic

sampling, the Pareto frontier can be obtained more efficiently [68]. Therefore, in this work, Sobol

sampling is applied to parameterize the objectives of the multi-objective optimization (MOO) for

the ε-constraint formulation.

B.1.3 Solution generation
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Figure B.1: a) Systematic vs. Sobol sampling of Pareto frontier. Comparison of systematic (red) to
Sobol (blue) sampling approach for performing ε- constraint method minimizing two objectives.
εmin/max are the bounds of the parameterized function z2, z1 is the main objective, adapted from
[68]. b) Acceptance criteria for payoff table calculation. Non-dominated, relaxed, worst economic
scenario payoff table including decision-maker’s tolerance illustrated in black, dominated payoff
table in grey. Sample d1,d3 are accepted and evaluated using ε bounds, d2 is discarded after
calculating the payoff table.
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As mentioned in Section 2.2.1, during solution generation, it is ensured that obtained solutions are

better than the solution generated for the least-favorable market conditions present in the decision

space. For this purpose, the least-favorable set of economic conditions when minimizing total cost

is determined. This means that if the correlation between total cost and a parameter pun is positive,

the parameter is set to its maximum, and if the correlation is negative, it is set to its minimum.

For example, increasing the cost of natural gas increases the total cost, so the former is set to its

maximum. For the selling price of a product, the correlation is reversed, so all costs for sold products

are set to their minimum. For the resulting set of least-favorable economic parameters, the payoff

table containing the bounds of the ε-constraints is calculated. The DM can define a tolerance range

with which obtained results might exceed the calculated worst-case ranges. For each sample in

Θ, the interactive digital twin (InDiT) will check if the obtained payoff table fulfills the criteria of

being in the defined tolerance for at least one of the parameterized objectives (Figure B.1, right).

This means that when minimizing objective z for the payoff table calculation as a single-objective

optimization problem, the result needs to be beyond a defined threshold for the same objective

obtained in the relaxed worst-case scenario. If, for a sample in D1, any of the parameterized single

objective optimizations in the payoff table definition are accepted, the sample is considered for

further solution generation. If all single objective optimizations perform worse than the defined

worst case, the sample is discarded (demonstrated for two objectives in Figure B.1, right).

To avoid the evaluation of infeasible sets of ε-bounds, an early exit mechanism is implemented,

adapted from Mavrotas [234]. Assuming all objectives are to be minimized, if the evaluation of

the mth ε sample is infeasible, it is added to a set of infeasible samples. For each new sample, the

closest infeasible sample is chosen based on the distance between the ε of the first constrained

objective and the respective ε in infeasible samples. Then, if any of the other ε of the sample is

smaller than the respective ε of the infeasible sample, the evaluation is discarded. For example,

let the optimization contain three objective functions, leading to an ε-constraint formulation of

parameterized functions z(x, y)1 ≤ ε1 and z(x, y)2 ≤ ε2. If the closest set of infeasible ε-constraints

is εinfeasible = [ε∗1 ,ε∗2 ], for which it is known that ε∗1 ≥ ε1 and if ε∗2 ≥ ε2, the sample must be infeasible

as well and is thus not evaluated, but instead added to the set of infeasible samples.

B.1.4 Implementation of the solution exploration

The decision exploration is performed using streamlit, an open-source framework for Machine

Learning and Data Science in Python [462] in combination with the pandas library for data analysis

[463] and other Python libraries and packages. The main implementation steps are specified

further in the following paragraph. For displaying the solutions in parallel coordinates, the plotly

express library is used [464]. When calculating the distribution of key performance indicators for

the uncertainty distributions, the equations in 2.3.1 are used with the respective distribution of

parameters. For getting the desired percentile of the distribution and other descriptive statistics, the
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pandas describe function is applied [463]. The rank of the solution is calculated with the TOPSIS

module from [396], which uses a collection of criteria with associated weights and directions as given

in Table 2.1 to calculate the user rank. Detailed information about the mathematical specification of

the TOPSIS calculation is available in [465]. For steering the solution generation, the correlation

between each KPI of interest and the optimizer decision is obtained using the pandas corr function

[463] with the Spearman correlation coefficient [185].

B.2 Supplementary information on the case study
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Figure B.2: Clustering results for both DMs, clustering based on optimizer decisions using k-medoids.
Best-performing solution based on user rank.
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C.1 Supplementary information on data set evolution
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Figure C.1: Evolution of feature space during active learning, reduced to two dimensions.

In each iteration step of the adaptive active learning artificial intelligence (ALAI) design, new samples

are selected, labeled, and added to the data set V based on the uncertainty prediction reported for

the model with the best MSEtest in the previous iteration. This results in a model improvement with

few samples to be labeled, as labels are only generated where they are most needed as ALAI makes

poor predictions, which is – as shown previously – where the reported prediction uncertainty is high.

The resulting order in which samples are labeled in each iteration is displayed for the ammonia

reactor (AR) case study in Figure C.1. The figure shows the features used in the model, reduced to

two dimensions by applying the t-distributed stochastic neighbor embedding visualization tool

from Sklearn [284]. It can be seen that the data points are added in a distributed order, each

iteration contributing to improving the surrogate model performance. It should be noted that, as

the samples for labeling are selected based on the reported uncertainties for the best-performing
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models, it is evident that the best-performing model improves more quickly than the others. It can

be observed that typically the best-performing model for a process stays the same throughout the

iterations, which could indicate that after the initial iterations, only the best surrogate model could

be kept in ALAI for further training, as the others do not show efficient improvement. However, in

the presented study, it was chosen to keep all surrogate models in the evaluation for comparison

and demonstration. In a later version of this method, earlier surrogate model selection after a

certain amount of iterations could be considered to improve the computational speed, as initially

demonstrated in Section 3.1.6
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D.1 Supplementary information on the design space sampling

Table D.1 provides information about the parameter ranges used for the analysis in Chapter 4.

Table D.1: Sampling characteristics of parameter space.

Parameter Description Variationa

pun(u) normalized variation of the investment cost of unit

u ∈U∗, U∗ = hydrolysis, salt separator, hydrother-

mal gasification, sulfur removal, CO2 removal

± 50

pun(u) normalized variation of investment cost of other

units u ∈U , U

± 20 [466]

r un(r ) normalized variation of market price of resources

and services r e ∈ RE , se ∈ SE

± 30

a all parameters sampled with Latin hypercube sampling (LHS) during solution generation and

uniformly distributed for solution exploration.
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E.1 Supplementary information on the superstructure model

In the following, supplementary material on the characteristics of the superstructure considered in

Chapter 5 is provided.

E.1.1 Fuel cell and methanation

Table E.1 summarizes the key modeling assumptions for the fuel cell and methanation models

added to the superstructure.

Table E.1: Solid oxide fuel cell and methanation.

Unit Value Reference

Solide oxide fuel cell [394]

Fmin kWe 250
CH4 in kg/s 1
CO2 out kg/s 2.75
ηelec % 75

Methanation [394]

H2 in kg/s 1
CO2 in kg/s 5.5
SNG out kg/s 2
Electricity in kW 2800

E.1.2 Carbon capture, mineralization, and geological sequestration

The models for direct and indirect mineralization are adapted from Spínola et al. [379] and Ostovari,

Sternberg, and Bardow [383], considering serpentine as possible feedstock to complement residues

201



E

Appendix E. (Chapter 5)

from the mill. Hereafter, the main process modeling assumptions are summarized; details on the

adapted simulation models can be found in [382].

Several reactions take place in the one-stage reactor of direct mineralization. CO2 dissolving in

water is forming carbonate and hydrogen ions.

CO2(g) +H2O(l) −−*)−− H2CO3(aq) −−*)−− H(aq)
++HCO3

−
(aq) −−*)−− 2H(aq)

++CO3
2−

(aq) (E.1)

Mg-silicate leaches from the mineral matrix, facilitated by the presence of hydrogen ions.

M g -silicate(s) +2H(aq)
+ → Mg2+

(aq) +SiO2(aq) +H2O(l) (E.2)

Lastly, magnesium carbonate precipitates [383] (Figure E.1).

Mg2+
(aq) +CO3

2−
(aq) → MgCO3(s) (E.3)

Magnetic separation Grinding Chemical pretreatment

Reactor Solid/liquid separation

Market/Discharge

CO2

Solvents

Serpentine

Minerals from mill

Solvent recovery

MgCO3

Wastewater, SiO2

Figure E.1: Direct mineralization model.

Table E.2: Direct mineralization.

Unit Value Reference

Grinding and magnetic separation [383, 384]

Serpentine in t 2.3
Electricity demand kWh 190
Magnetic material out t 0.2

Carbonation reactor and postprocessing [383, 384]

Operating temperature °C 155
Operating pressure bar 140
MgCO3 out t 1.9
SiO2 out t 0.9
Solvent recovery rate % 90

In indirect mineralization, multiple stages occur; the carbonation reaction is preceded by the
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extraction of magnesium and hydroxide formation. To extract magnesium in the first stage reactor,

ammonium sulfate ((NH4)2SO4) is used, acting as a weak acid.

Mg3Si2O5(OH)4(s) +3(NH4)2SO4(s) → 3MgSO4(s) +2SiO2(s) +5H2O(g) +6NH3(g) (E.4)

The NH3 and H2O react in the vapor phase to produce ammonium hydroxide (NH4OH).

H2O+NH3 −−*)−− NH4OH(g) (E.5)

NH4OH is inducing the precipitation of the hydroxide in the second stage, in a process known as

"pH-Swing". The sulfate is regenerated and recycled to stage 1.

MgSO4(s) +NH4OH(g) → Mg(OH)2 + (NH4)2SO4(s) (E.6)

In the third stage, the magnesium carbonate formation, MgOH2 is reacting with CO2. The reaction

is assumed to take place at 200°C and 25 bar [386].

Mg(OH)2(s) −−*)−− Mg2+
(aq) +2OH−

(aq) (E.7)

Mg2+
(aq) +CO3

2−
(aq) → MgCO3(s) (E.8)

Magnetic separation Grinding

Step 3: Carbonation Solid/liquid separation

Market/Discharge

CO2

Step 1: Mg/Ca
extraction,  leaching

Step 2: Mg/Ca
precipitation

Extraction and leaching
solvents

Reactor

Magnesium

sulfateNH3

Mg(OH)2Solvent recovery
MgCO3

Wastewater, SiO2

Serpentine

Minerals from mill

NH4O4

Figure E.2: Indirect mineralization model.
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Table E.3: Indirect mineralization.

Unit Value Reference

Grinding and Phase 1 reactor: mineral extraction [383, 384]

Serpentine in t 3.9

Electricity demand kWh 63

Ammonium sulfate makeup t 0.3

Phase 2 reactor: hydroxide formation [383, 384]

Operating temperature °C 50

Operating pressure bar 0.5

Phase 3 reactor: carbonation and postprocessing [383, 384]

Operating temperature °C 300

Operating pressure bar 25

MgCO3 out t 2

Carbon capture is modeled as a blackbox model of MEA with specific heat and electricity require-

ments and performance indicators from Heyne and Harvey [381]. For geological sequestration,

compression of CO2 to high-pressure levels for transportation is required. The costs for transport and

storage are provided in Table E.10. Sequestration and MEA modeling assumptions are summarized

in Table E.4.

Table E.4: Carbon capture and sequestration.

Unit Value Reference

CO2 capture technology [381]

Electricity demand kJ/kg CO2 25

Heat demand, temperature MJ/kg CO2, °C 3.3, 150a

CO2/water removal rate % 95

Sequestration

Pressure bar 60 [467]

a 20% of heat are recoverable between 90 and 40°C [381].

E.1.3 Residential district

Table E.5 provides details on heating and photovoltaic (PV) units considered in the superstructure.

The investment costs for the installation of the district heating network (DHN) are calculated using

the approach provided in [468] with specific cost data from Belfiore [469], and average heat loss

assumptions from Masatin, Latõšev, and Volkova [470].
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Two types of district heating networks are considered in the superstructure, a fourth-generation,

medium-temperature water district heating network, operating at supply and return temperatures

of 60°C and 30°C, respectively, as well as an innovative fifth-generation district heating network,

operating on CO2 as the working fluid with supply and return temperatures of 15°C and 13°C. Both

DHN models are adapted from RA Suciu [468].

Table E.5: District model characteristics.

Unit Value Reference

District heating network [394, 471, 472]

Water network, T supply, T return °C 60, 30
CO2 network T supply, T return °C 15, 13
CO2 network pressure bar 50

Conventional heating system

Fuel split in commune heating % 20/40/40 (gas/oil/other) [387]
Efficiency gas boiler % 95 [473]

Photovoltaic [468, 474]

T a °C 15
T ref °C 25
U glass W/m2 29.1
Solar irradiation through PV glass f glass - 0.9
Efficiency ηpv,ref - 0.14
ηpv,variation - 0.001
Electricity provisiona , E−,pv kW 1.66

a for reference area of A=100 m2 and irradiation I=100 W/m2.

For providing the heat at the required temperature levels for space heating and domestic hot water

demands, heat pumps can be installed at the district level; the models are adapted from RA Suciu

[468] and Henchoz et al. [471]. The network is balanced using a central plant that exchanges heat

with the pulp mill and can provide additional heat to the DHN by heat pumping (CO2 network, heat

pump model adapted from RA Suciu [468]) or a conventional boiler operation (water network, boiler

model adapted from [475]). The residential district model is limited by simplifications regarding

temperatures of the demands and their dependency on external conditions.

For modeling transportation efficiencies, the assumptions in Table E.6 are used. The average

transportation demand is summarized in Table E.7, Table E.8 provides the energy content of the fuels

used for the analysis of the transportation demands, further elaborated in Section 5.4.1. Information

on the heating and electricity demands of the district, as well as the weather data is provided in

Table E.9 for average annual data. In Figure E.3, samples of the hourly demand profiles included in

the model are presented, normalized on the respective annual averages.
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Table E.6: Efficiency of transport mediums.

Modelling assumptions Unit Value Reference

in 2019 [476]

Fuel-powered car MJ/pkm 1.78
Electric car kWh/vkm 0.17 [477]
Bus MJ/pkm 1.01
Freight MJ/tkm 2.74

in 2030a

Fuel-powered car MJ/pkm 0.98
Electric car kWh/vkm 0.17 [477]
Bus MJ/pkm 0.56
Freight MJ/tkm 1.51

a assuming linear efficiency improvement from [393].

Table E.7: Shares of passenger vehicles in
France for 2019 and 2030.

Value Unit Commodity Reference

2019 [478]

27 % Gasoline
71 % Diesel

2 % Electricity and others

2030 [392]

16 % Gasoline
24 % Diesel
60 % Electricity and others

Table E.8: LHV and exergy of products and
fuels, in MJ/kga .

Product LHV Exergy

FT fuel 44.81 47.94
Methanol 19.83 21.22
DME 28.83 30.84
SNG 47.89 52.12
Hydrogen 119.70 116.50
Pulp 8.15 9.21
Diesel 42.61 N/A
Gasoline 43.45 N/A
Nat. gas 50.02 N/A

a LHV based on flowsheeting results, exergy cal-
culated with factors provided in [479].
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Figure E.3: Hourly district demands and weather data profiles for one year, adapted from PM Stadler
[388], Middelhauve [389], and Cedric Terrier, Luise Middelhauve, and François Maréchal [480].
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Table E.9: District demands and weather data.

Unit Value Reference

Size and demandsa [388, 389]

Reference size district capita 568
Scaling factor district - 300/150b

Annual average demands per capitaa

Domestic hot water demands kWh 630 [388, 389]
Space heating demand kWh 4080 [388, 389]
Electricity demand kWh 1200 [388, 389]
Personal transport demand pkm 10800 [480]
Freight transport demand tkm/yr 4300 [180]
Public transport demand pkm/yr 4500 [478]

Annual average weather dataa [388, 389]

Global irradiation GI W/m2 135
External temperature Text °C 10.4

a demands and weather data are given as annual average; in the model, data for hourly resolution
is included from the respective references, b yields a city size of 170000 and 85000 inhabitants.

E.1.4 Superstructure properties and constraints

As described in Section A.3.2, process components are organized in clusters, restricting the direct

exchange of heat between units. Heat exchange between clusters can be realized by deploying a

steam network or an organic Rankine cycle. The additional process units considered in this chapter

compared to what was considered in Chapter 1 (Table A.13) are added to the fuel production cluster;

the district is added to a separate cluster.

The overall mathematical formulation of the optimization problem is similar to the one presented

in Chapter 1. When multiple timesteps are considered, such as in the work presented in this chapter,

the following additional constraints are included in the formulation:

• Perspective M: Allowing the selling and buying of electricity in each timestep is controlled

with binary decision variable bound. If the electricity price in a timestep is below the annual

mean, buying is allowed, else selling.

• Perspective S: No restriction on selling and buying based on prices, but no simultaneous

selling and buying of electricity in the same timestep.
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E.2 Supplementary information on parameter space and the solution

synthesis

E.2.1 Complexity reduction by means of time series aggregation

Time series aggregation (TSA) methods have gained remarkable significance in the modeling and

design of a wide range of energy system applications where seasonal, daily, or hourly variations

in demand, supply, or parameter spaces are of importance. A comprehensive review is provided

by Hoffmann et al. [481], investigating TSA methods for modeling energy systems. Schütz et al.

[482] compare aggregation methods based on their performance; it was found that k-medoids is

most reliable when approximating costs of systems by means of TSA, which is also confirmed by

Hoffmann et al. [481].

Input data
pretreatment

K-medoids clustering

Solving of aggregated
problem  satisfied? Solving operation with

full time series

  satisfied? 

n= n+1 n= n+1

n= 2

no

yes

no

yes Number of clusters
used for solution
generation = n

Figure E.4: Proposed algorithm for determining the required number of clusters, adapted from
Middelhauve et al. [483], Baumgärtner et al. [484], and Bahl et al. [485].

For determining the required number of clusters for analyzing the above-described superstructure

adequately, a systematic method for bounding the error of the aggregation in the objective function

is followed, as proposed by Baumgärtner et al. [484] and Bahl et al. [485] and further developed by

Middelhauve et al. [483]. In each iteration of the incremental increase of TSA resolution, an upper

and lower bound of the objectives are evaluated until a convergence criterion on the gap is met.

The lower bound is derived from solving the relaxed problem, whereas the upper bound is defined

as the solution of the operating problem in consideration of the complete time series and fixed

unit sizes given by the relaxed solution [483–485]. Another convergence criterion is considered, in

which the relaxed solution of a proposed number of clusters n is compared to the previous solution

for n −1 clusters. Only when a defined convergence criterion is reached, the operating problem is
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evaluated for the full-time series, fixing the unit decisions to the findings of the relaxed solution.

The procedure for TSA is displayed in Figure E.4.

E.2.2 Parameter sampling and time-dependency

For the consumed resources r e ∈ RE and provided services se ∈ SE , the nominal prices and impact

indicators displayed in Table E.10 and Table E.11 are included. As mentioned in Section 5.4.2

and described in detail in Chapter 2, samples are drawn twice from the parameter space, once

for solution generation and once during solution exploration. For sampling when generating and

exploring solutions, LHS is applied for all parameters that are not assumed to be time-dependent.

Table E.12 gives an overview of the parameter variations considered in both sampling steps, not

including time-dependent parameters such as electricity and fuel prices as well as the impact factors

of electricity.

Table E.10: Nominal values of key economic parameters considered in solution generation and
exploration.

Parameters Unit Value Reference

Interest rate % 6
Expected lifetime years 20
Wood price USD/kg 0.093 [448]
Pulp price USD/kg 0.882 [486]
Electricity pricea USD kWh 0.105 [487]
Natural gas price USD/kWh 0.026 [488]
FT price USD/kg 1.108 [451]
Methanol price USD/kg 0.390 [452]
DME price USD/kg 0.470 [453]
SNG price USD/kWh 0.075 [489]
H2 price USD/kg 2.500 [454]
Quicklime price USD/kg 0.117 [456]
Freshwater price USD/kg 0.0012 [457]
Landfill price USD/kg 0.0013 [458]
CO2 sequestration: transport USD/kg/250 km 4 [490]
CO2 sequestration: storage USD/kg 11 [491]
Waste heat to district heating USD/kWh 0.075 [492]
Diesel priceb USD/l 1.439 [493]
Gasoline priceb USD/l 1.515 [493]
Residential heating mixc USD/kWh 0.0689 [468]

a annual mean, variation with electricity price from [494], b annual mean, variation with
WTI crude oil price from [495], c current energy mix for heating and cost adapted from
[468].

For the time-dependency of energy commodities, the historical behavior of natural gas, electricity,

and crude oil is considered. In the superstructure model, it is assumed that SNG prices follow trends

of natural gas, whereas prices of liquid fuels follow the crude oil prices [496]. Annual means and

the references for time-dependent data are provided in Table E.10 for prices and Table E.11 for the
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Table E.11: Emission factors from Ecoinvent 3.6 [165], IPCC 2013, GWP 100a.

Name Unit GWP 100a

Market for electricity, France (FR)a kgCO2−eq/kWh 0.042
Market for natural gas, high pressure, FR kgCO2−eq/m3 0.391
Market for pulpwood, softwood, measured as solid wood under bark;
European Union (EU) without Switzerland (CH)

kgCO2−eq/m3 23.119

Market for quicklime, milled loose, rest of world (ROW) kgCO2−eq/kg 1.232
Market for diesel, EU without CH kgCO2−eq/kg 0.479
Market for methanol, global (GLO) kgCO2−eq/kg 0.512
Market for DME, rest of Europe (RER) kgCO2−eq/kg 1.283
Market for hydrogen, GLO kgCO2−eq/kg 1.591
Market for water, decarbonised, FR gCO2−eq/kg 0.028
Market for sulfate pulp, ROW kgCO2−eq/kg 0.479
Treatment of sludge from pulp and paper production, EU without CH kgCO2−eq/kg 1.117
Market for soil pH raising agent, as CaCO3, GLO kgCO2−eq/kg 0.091
treatment of ash from paper production sludge, residual material
landfill, EU without CH

kgCO2−eq/kg 0.009

Market for petrol, low sulphur, EU without CHb kgCO2−eq/kg 1.021
Market for heat, central or small-scale, natural gas, EU without CHb kgCO2−eq/kg 0.077
Market for heat, central or small-scale, other than natural gas, EU
without CHb

kgCO2−eq/kg 0.200

Ammonium sulfate production, RER kgCO2−eq/kg 1.852
Market for sodium chloride, brine solution, GLO kgCO2−eq/kg 0.126
Market for sodium bicarbonate, GLO kgCO2−eq/kg 1.313
Market for ammonia, RER kgCO2−eq/kg 1.996
Oxidation of butane RER kgCO2−eq/kg 0.742
Cement production, Portlandc , EU without CH kgCO2−eq/kg 0.856

a average, from [346, 494], b impact of transport fuels and district heating demands only considered in system
perspective, c considered for SiO2 at 95%.

Table E.12: Sampling characteristics of parameter space.

Parameter Description Variationa

pun(u∗) Normalized variation of investment cost of unit u∗ ∈U∗, U∗ = hydrol-
ysis, salt separator, hydrothermal gasification, sulfur removal, CO2

removal

± 50

pun(u) Normalized variation of investment cost of other units u ∈U \U∗ ± 20 [466]
i un(r e, se) Normalized variation of impact of resources r e ∈ RE and services

se ∈ SE , except for electricity
± 20

r un(r e, se) Normalized variation of market price of resources r e ∈ RE and services
se ∈ SE , except for electricity, natural gas, SNG and liquid fuelsb

± 20

a all parameters sampled with LHS, b SNG, natural gas are considered to follow natural gas trends, liquid fuels are
considered to follow crude oil prices.
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impact factor of electricity.

For including the time-dependent variation in the superstructure model for solution generation, the

available historical, time-dependent data is varied by two parameters: one that shifts the observed

data either up or down and one that adds noise to the observed data points. The noise added follows

a normal distribution with the standard deviation equaling half of the observed standard deviation

in the historical data. The newly-obtained data is clustered based on the required number of

clusters determined by TSA and used as input for each formulated problem solved by the lower-level

framework.

To ensure realistic data points are used for result generation, a literature review on correlations

between electricity, crude oil, and natural gas prices is conducted. Historically, natural gas and

refined petroleum products have been used as close substitutes in power generation and industry,

leading to natural gas prices tracking the prices of crude oil [497]. A strategic statistical analysis of

the integrated energy market in Europe is addressed by Bencivenga, Sargenti, and D’Ecclesia [497],

investigating the short-run relationship between oil, natural gas, and electricity in the European

energy markets, and identifying possible long-run equilibrium relationships. Correlation analysis

presented itself as non-effective due to the non-stationarity of the data, but cointegration was able

to detect a relationship between the individual commodities [497]. In 2014, a report requested by the

European Parliament was released, investigating the dependencies in the European energy market

[498]. Electricity prices tend to vary considerably throughout Europe and generally show a moderate

correlation to oil price developments. Different Merit-order curves in different countries lead to

different electricity prices, and market integration into a single electricity market in Europe has not

yet been fully achieved [498]. Generally, oil product prices such as diesel and gasoline are strongly

related to crude oil prices because of the high share of feed-stock costs in their production [498].

The main pathway of high oil prices being translated into gas and electricity prices was originally

induced by the still dominant practice of indexing gas prices to oil prices, prevalent in most gas

supply contracts in Europe. It was found that even though gas and oil suppliers share common

fundamental price drivers, if oil indexation is absent, gas and oil prices are often decoupled [498].

Recently, an increasing share of studies has addressed the inter-dependencies of actors in the energy

market, especially encouraged by the increasing price volatility in the energy commodity markets,

addressing risk management in the financial sector and the increasing interest in clean energy

technology [499–501].

To acknowledge both time-dependent price and impact variation and inter-dependencies between

commodity prices in this study, the covariance of electricity prices regarding oil, natural gas prices,

and environmental impact are calculated for different temporal resolutions. Between the electricity

price and the impact, a positive correlation can be observed, meaning that more expensive electricity

can be associated with a higher impact. For the oil and natural gas prices, no strong correlation is

observed, even though both are mainly driven by the same components [496]. Reasons for this might
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be the different time-resolution of the obtained data, as well as the much more dynamic character

of the electricity price that makes observations on correlation on an hourly basis challenging. Daily

and biannual data reveal higher correlations, but since the data set used in this study is supposed to

represent typical hours, this information is not adequate to draw conclusions.

Therefore, a ratio-based approach is applied instead of relying on the covariance, where oil and

natural gas prices are sampled as previously described. A sample is accepted if the ratios between

electricity price, gas price, and oil price are within the observed proportions in the historical data

set. Obtained samples are then used to scale the energy prices included in the superstructure model.

The price for SNG and natural gas is scaled with the sampled data for natural gas, liquid fuel prices

with the crude oil price, and electricity prices with the electricity price sample. The applied ratios

for acceptance are displayed in Table E.13.

Table E.13: Accepted ratios for sampling commodity prices, based on historical normalized prices.

Ratios [%] Electricity price Oil price Natural gas price

Electricity price 1 40-800 90-120
Oil price - 1 60-115
Natural gas price - - 1

E.2.3 Country-specific data

Country-specific data used to extrapolate the analysis to the European level is provided in Table

E.14.
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E.3 Supplementary information on the results

E.3.1 Perspective M

Figure E.5: Biogenic carbon pathways in pulp mill. Orange represents paths that are required for
pulp production but may vary in size, light orange represents additional options of carbon paths
that can be explored by the optimization.

Figure E.5 gives an overview of possible biogenic carbon pathways in the pulp mill. The following

provides supplementary information on the results obtained for perspective M.

Overview solutions performance

Figure E.6 shows the economic performance for obtained unique configurations binned on carbon

efficiency and its variations in the analyzed market conditions. Overall, CAPEX is increasing with

efficiency increase. There is no clear trend for TOTEX on the binned data, as OPEX is varying greatly.

This is further illustrated in Figure E.7, where the variation of OPEX and CAPEX in all configurations

are displayed on binned carbon efficiency.

In that regard, Figures E.8a and E.8b show the distributions of TOTEX and EI for all unique solutions

in the considered economic and environmental scenarios of perspective M. With increasing carbon

efficiency, impact generally decreases, while for TOTEX, different performances can be observed for

a set of EI and carbon efficiency, depending on the configuration.

To understand what parameter variations drive the performance of a certain configuration in the

analyzed market, the correlations between economic KPIs and the parameters considered to be

subject to uncertainty are analyzed using the Spearman correlation coefficient [185]. For a solution

with a ∆TOTEX 95% close to zero, so a solution that is almost not as profitable as the reference

operation of the mill, the impact of changes in the parameters on ∆TOTEX is visualized. TOTEX is

strongly correlated to the interest rate, the lifetime, and the electricity price. Figure E.9 shows that

TOTEX is increasing with an increasing interest rate, and decreasing with increasing lifetime and
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Figure E.8: Obtained Pareto frontier in the uncertain parameter domain.

electricity price, suggesting that in the considered solution, the mill is a net exporter of electricity.
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Figure E.9: Variations of TOTEX in the uncertainty domain of the market and the investment.

Profitable energy selling prices

To show the costs of energy in obtained configurations, the provided energy is plotted against prof-

itable selling prices. Figure E.10a shows the amount of energy sold in each unique configuration and

the range of selling prices required in a respective configuration to be as profitable as conventional

operation in the analyzed scenarios in D2. The color indicates the amount of carbon stored in the

form of fuel compared to all carbon stored in the form of fuel and sequestration. The higher the

share of carbon stored in the form of fuel compared to all carbon stored, the lower the energy selling

price, as the expenses for equipment to perform sequestration do not need to be compensated

by selling fuel. Varying shares of carbon stored for similar amounts of energy sold arise from the

fact that hydrogen is also considered as fuel and does not contribute to the carbon balance. When

offsetting the higher expenses occurring for a configuration with a projected carbon offsetting
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benefit, a similar picture evolves (Figure E.10b). The offsetting benefit is calculated based on the

avoided direct biogenic and fossil carbon emissions compared to the reference operation. Overall,

with an increasing share of carbon emissions avoided, the range of required compensation benefits

decreases, while no clear trend is observable between the form in which carbon is stored and the

required offsetting prices.
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Figure E.10: Energy prices and carbon offset. a) Profitable energy price for achieving the same
economic performance as conventional operation, b) Profitable carbon offset for achieving the
same economic performance as conventional operation.
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Figure E.11: Selling and buying behavior for electricity of Pareto-optimal solutions for one scenario
in D1.

Figure E.11 shows the electricity buying and selling behavior over time for solutions obtained for

one scenario D1, each line representing one configuration on the Pareto frontier of this scenario.

The electricity price is indicated in black. Compared to the energy provision in the conventional mill

operation, indicated by the grey line, a significant shift towards storage is provided, overall lowering

the environmental impact of the mill compared to conventional operation.

Characteristics of typical configurations

Table E.15 provides details on the typical solutions identified in Section 5.6.1.
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Correlations of key performance indicators

Figure E.12 summarizes the performance of the typical configurations on EI and TOTEX regarding

robustness towards variation in economic and environmental parameters, as well as the correspond-

ing efficiencies. For each KPI, a rank is computed for evaluating the typical configuration. The rank

expresses how often a configuration performs better than the others in the parameter uncertainty

domain D2. Energy, exergy, and system efficiency are not affected by the considered parameter

variation; thus, one configuration outperforms the others for all of the observed parameter space.

For TOTEX and EI, different configurations are preferable depending on the parameter assumptions,

leading to a rank distribution that quantifies how likely a solution is to outperform others. The

robustness rank expresses how often a configuration occurs in the near Pareto-optimal domain

in the parameter space D2. All ranks are expressed as the relative number of times they dominate

others in D2 compared to how often they could be dominating.

Figure E.12: Performance of cluster representatives regarding KPIs.

The robustness rank is negatively correlated to TOTEX and EI, meaning that the ID with the highest

robustness rank has the lowest combined score of TOTEX and EI. Correlations between the analyzed

KPIs are displayed in Table E.16. Besides robustness in KPIs, the cluster size can be considered

to evaluate how competitive a configuration might be compared to others. As displayed in Figure

E.12, the obtained clusters have 7 to 18 cluster members. The cluster with the lowest robustness

rank has the smallest size (ID 4), indicating that the robustness measure seems to be adequate to

identify solutions that perform well for a wide range of the parameter space considered for solution

synthesis. Identified correlations between KPIs of interest are displayed in Table E.16.
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Table E.16: Correlations of KPIs, derived with the Spearman correlation coefficient [185].

Correlations ID r robust ηcarbon ηenergy ηex ηsystem EI TOTEX

ID 1.00 -0.26 1.00 0.14 -0.09 -0.32 -0.94 0.66
r robust -0.26 1.00 -0.26 -0.54 0.60 0.47 0.20 -0.14
ηcarbon 1.00 -0.26 1.00 0.14 -0.09 -0.32 -0.94 0.66
ηenergy 0.14 -0.54 0.14 1.00 -0.77 -0.47 0.14 -0.54
ηex -0.09 0.60 -0.09 -0.77 1.00 -0.03 -0.03 0.43
ηsystem -0.32 0.47 -0.32 -0.47 -0.03 1.00 0.12 -0.09
EI -0.94 0.20 -0.94 0.14 -0.03 0.12 1.00 -0.83
TOTEX 0.66 -0.14 0.66 -0.54 0.43 -0.09 -0.83 1.00

Environmental impact of provided energy

The EI of the provided energy in the typical configurations is derived (Equations E.9-E.11). For this

purpose, the EI arising from importing resources (E I resources,+) and emissions on-site (E I on−site) are

allocated to the products pulp and energy, based on their exergy content. Energy products comprise

electricity, liquid, and gaseous fuels. The specific environmental impact ei for providing one kWh of

energy is calculated by dividing the impact allocated to energy products (E I energy,−) by the overall

amount of energy provided Enenergy,−. The cost for providing one kWh of energy is derived based on

the difference between the TOTEX in a respective configuration and the conventional configuration,

not considering revenues from selling energy products, divided by the difference in energy provided

(∆En−)(Equation E.12).

E I pulp,− = (
E I resources,++E I on−site) E xpulp,−

E xpulp,−+E xfuels,−+E xelectricity,− (E.9)

E I energy,− = (
E I resources,++E I on−site) E xfuels,−+E xelectricity,−

E xpulp,−+E xfuels,−+E xelectricity,− (E.10)

ei energy,− = E I energy,−

Enenergy,− (E.11)

cenergy,− = ∆T OT E X without energy products

∆En− (E.12)

For deriving the country-specific costs and impact factors of the respective final energy mixes in

En− (cenergy,country, ei energy,country ), country-specific data for costs and impact factors of final energy

products e in E (ccountry
e , ei country

e ) are taken into account (Equations E.13- E.17). For fuels, the

same environmental impact factors are assumed for all countries; for electricity, country-specific

factors ei electricity,country are used. Country-specific costs and impact factors used for the analysis

are provided in Table E.14; energy and exergy content of products are given in Table E.8.
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En− =
E∑
e

En−
e (E.13)

cenergy,country =
∑E

e En−
e · ccountry

e

En−,total
(E.14)

ei energy,country =
∑E

e En−
e ·ei country

e

En−,total
(E.15)

r impact,country = ei energy,−

ei energy,country ·100 (E.16)

r cost,country = cenergy,−

cenergy,country ·100 (E.17)

Sensitivity analysis on the cost of energy provision and storage

To further explore the behavior of the costs for providing energy in the obtained typical configu-

rations, sensitivity analysis is performed. Over the course of a year, the mill can either be a net

exporter or a net importer of electricity (Equation E.18). In case the mill is a net exporter of electricity,

E net is smaller than zero and the mill can be seen as part of the power generation system that can

provide electricity at a certain price. If the mill is a net importer of electricity, E net is greater than

zero, and the price of imported electricity for which it is profitable for the mill to import and store a

certain amount of energy can be determined. In both cases, the amount of electricity stored E stored

is defined as the minimum between the total amount of electricity imported and exported (Equation

E.19).

E net =
T∑

t=1
Ė+ · t op

t −
T∑

t=1
Ė− · t op

t (E.18)

E stored = mi n(|
T∑

t=1
Ė+ · t op

t |, |
T∑

t=1
Ė− · t op

t |) (E.19)

To determine at which price it is profitable for the mill to provide, consume or store a certain amount

of electricity, ∆TOTEX, defining the economic state in which a configuration becomes as profitable

as the conventional operation of the mill, is set to zero, and the competitive selling, buying or storage

price is derived in relation to interest rate and fuel price variations for all cluster representatives.

The TOTEX is composed of the operating expenditure, containing revenues and costs of operation,

as well as the investment costs, which are a function of the equipment lifetime n and interest rate i ,

summarized in the annuity factor τ. In Equations E.20- E.28, the electricity price for which ∆TOTEX

equals zero is expressed as a function of the assumed interest rate and fuel prices. OPEX is composed

of a varying (v) and a non-varying (nv) component, where the varying component is dependent

on the assumed fuel and electricity costs. In Figure E.13, the obtained celec,net is shown in relation

to varying interest rates and fuel prices. For the configurations that are net exporters, the lowest
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celec,mill at which the mill can provide electricity to the system is derived. For the remaining solutions,

the maximum celec,system of the energy system that the mill can pay for performing similar to the

conventional configuration is calculated. Further information about the parameter ranges included

in the analysis is provided in Tables E.18 and E.17.

∆T OT E X = ∆(OPE X +C APE X ) = 0 (E.20)

OPE X = OPE X nv +OPE X v (E.21)

OPE X v = OPE X fuel +OPE X elec (E.22)

C APE X = f (C inv,τ) (E.23)

τ= (1+ i )n −1

(1+ i )n · i
(E.24)

celec,net = ∆C inv/τ+OPE X nv −OPE X ref −Enfuel · c fuel

−E net (E.25)

∆C inv = C inv −C inv,ref (E.26)

if E+ ≥ 0 :

celec,net = celec,system (E.27)

else :

celec,net = celec,mill (E.28)

Table E.17: Reference cost considered in the sensitivity analysis of cost indicators.

Cost parameter Value Reference

celec 0.0781 USD/kWh [487]
coil,crude 0.058 USD/kWh [505]
cpulp 0.883 USD/kg [486]

Table E.18: Parameter variations considered in the sensitivity analysis of cost indicators.

Cost indicator c elec c fuel,a i

celec,net N/A 80-600% 0.01-0.13
LCOP 50-500% 80-1000% N/A
∆celec,buy−sell 50-500% 80-600% N/A
LCOP pulp 50-500% 80-600% N/A
∆C inv,i 50-500% 80-600% N/A

a fuel price variations are shown in relation to the reference
crude oil price in Table E.17.

In the presented calculation, the results are biased by the fact that the prices of electricity are derived

with E net, which might be small, even if large amounts of electricity are stored, as in ID 1. Therefore,

alternative cost indicators are identified, and the performance of the obtained solutions is analyzed
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Figure E.13: Profitable net electricity prices celec,net in relation to interest rate and prices of fuel.
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for varying cost parameters.

As one alternative cost measure, the levelized cost of production (LCOP) is calculated for producing

a certain amount of electricity, in relation to the parameterized electricity purchase price and fuel

prices. Thus, in this calculation, import and export of electricity are accounted for separately and

not summarized in E net; and they are both subjected to different prices celec,buy for importing and

LCOP for producing (Equation E.29).

LCOP = ∆C APE X +OPE X nv −OPE X ref +E+ · celec,buy −Enfuel · c fuel

E produced
(E.29)

∆C APE X = C APE X −C APE X ref (E.30)

Furthermore, the highest difference between the selling and buying electricity prices the mill can

be subjected to for still being as profitable as the conventional operation is derived in relation to

the selling price of electricity and fuels. ∆celec,buy−sell indicates how much more expensive buying

electricity can be compared to selling (Equations E.31- E.34).

∆celec,buy−sell = − ∆C APE X +∆OPE X nv −∆E− ·−celec,sell −Enfuel · c fuel

∆E+ − celec,sell (E.31)

∆OPE X nv = OPE X nv −OPE X nv,ref (E.32)

∆E− = E−−E−,ref (E.33)

∆E+ = E+−E+,ref (E.34)

Economic performance compensation can also be allocated to the pulp price. Equation E.35

describes the relative LCOP required compared to a reference price of pulp cpulp,ref for a solution to

be as profitable as conventional operation for varying fuel and electricity prices.

LCOP pulp = 1

M pulp,− · cpulp,ref

(
∆T OT E X −OPE X pulp −OPE X fuel −OPE X elec,sell (E.35)

−E− · celec,sell −Enfuel · c fuel
)

Lastly, the relative increase in capital available for investment compared to the investment made

in the reference configuration (∆C inv,i ) is calculated as a function of the electricity and fuel price

(Equation E.36).

∆C inv,i = C inv,available

C inv,ref = −
(
τ(i )

(
OPE X nv −OPE X ref +E net · celec −Enfuel · c fuel

)+C inv,ref
)

C inv,ref
(E.36)
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Table E.18 provides an overview of the cost indicators and the considered parameter variations on

which sensitivity analysis was performed. The reference cost used to calculate the cost indicators

are given in Table E.17. Figures E.14 - E.18 provide the detailed results of the sensitivity analysis

summarized in Section 5.6.1.
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Figure E.14: LCOP in relation to fuel and electricity import prices.
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Figure E.15: ∆celec,buy−sell in relation to fuel and electricity export prices.
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Figure E.16: LCOP pulp in relation to fuel and electricity export prices.
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Figure E.17: C inv,0.02 in relation to fuel and electricity export prices.
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Figure E.18: C inv,0.08 in relation to fuel and electricity export prices.

229



E

Appendix E. (Chapter 5)

E.3.2 Perspective S

Choice of residential district size

For determining an adequate size of the district to be considered for integration, the performance of

conventional mill operation is analyzed with different district sizes, allowing for no conventional

heating of the district. The sensitivity analysis reveals that for the assumed heating demands (Table

E.5), a city size of 170000 inhabitants could theoretically be heated by the mill, given the mill is

operating in a conventional mode without fuel production and other additional process units. For

the study presented in Chapter 5, a district size of 85000 is chosen to allow for the analysis of trade-

offs between the provision of different energy commodities. However, it needs to be noted that

the outcomes of the study, specifically the reported expenses or emission reduction potentials per

inhabitant, are largely linked to the district size.

Configurations perspective S

The optimization results for Perspective S with a district size of 85000 inhabitants are presented in

Table E.19. The configurations that are discussed further in Chapter 5 are highlighted in grey.
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Appendix E. (Chapter 5)

European perspective

(a) Electrical grid today (b) Defossilized electrical grid

Figure E.19: System cost for installing identified configuration, allocated to inhabitants, expressed in number
of big macs.

Besides the analysis performed in Section E.3.2, the cost for installing the system configuration

ID 6 at all available mills in a country is allocated to the inhabitants. Thereby, the overall system

cost is considered, disregarding the cost of internal exchanges between stakeholders. The Big Mac

Index is applied to relate the cost per capita to a country-specific index. The Big Mac Index was

introduced by The Economist in 1986 as a guide to explore whether a currency is at its correct level

[506]. Figure E.19a and E.19b show the total annual system cost allocated to the inhabitants of a

country, expressed in a number of big macs this cost is worth. Negative values denote that people

save money and can theoretically buy more big macs. In Nordic countries, the cost per capita is

particularly low, which is in line with the offset cost per ton of CO2 previously derived.

Figure E.20 shows the effects the realization of a given configuration would have on the country

level for all obtained configurations, considering both electrical grids analyzed. Configurations

selected by the internal optimization are marked in red, and the one manually selected based on the

emission reduction potential in blue. It is observable that the promising configurations selected

by the internal optimization perform preferably compared to others regarding the analyzed KPIs

in large parts of Europe, and that for configurations with higher emission avoidance potential in

France (e.g., ID 20), performance across European countries differs strongly.
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E.4 Design references

0 10 20
Solution ID

8

6

4

2

0
De

lta
 e

m
iss

io
ns

 [%
]

0 10 20
Solution ID

20

15

10

5

0

5

10

15

20

Co
st

 p
er

 c
ap

ita
 [#

Bi
g 

m
ac

s]

0 10 20
Solution ID

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Co
st

 C
O 2

 o
ffs

et
 [c

os
t/S

C]

BE
BG
CZ
DE
EE
ES
FR
HR
IT
HU

NL
AT
PL
PT
SI
SK
FI
SE
NO
CH
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(b) Defossilized electrical grid.

Figure E.20: Performance of all obtained system configurations across Europe. Configurations
selected by the internal optimization are indicated in red, and the manually selected one in blue.

E.4 Design references

Icons for describing the superstructure development used in Chapter 5 were extracted from Flaticon:

www.flaticon.com.

Table E.20: Author acknowledgments of icons from Flaticon.

Icons Author’s website hyperlink

Solar panel icon, electric pole icon, worker icon,
boiler icon, paper stack icon, tree icon

Freepik

Bus icon Hight Quality Icons
Car icon fjstudio
Electric car icon, truck icon kosonicon
House icon Kiranshastry
Building icon, power generation icon Smashicons
Fuel icon Those Icons
Factory icon monkik
People icon Vitaly Gorbachev
Solar panel icon Khoirul Huda
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