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Abstract
Objective. Syntax involves complex neurobiological mechanisms, which are difficult to disentangle
for multiple reasons. Using a protocol able to separate syntactic information from sound
information we investigated the neural causal connections evoked by the processing of
homophonous phrases, i.e. with the same acoustic information but with different syntactic
content. These could be either verb phrases (VP) or noun phrases. Approach. We used
event-related causality from stereo-electroencephalographic recordings in ten epileptic patients in
multiple cortical and subcortical areas, including language areas and their homologous in the
non-dominant hemisphere. The recordings were made while the subjects were listening to the
homophonous phrases.Main results.We identified the different networks involved in the
processing of these syntactic operations (faster in the dominant hemisphere) showing that VPs
engage a wider cortical and subcortical network. We also present a proof-of-concept for the
decoding of the syntactic category of a perceived phrase based on causality measures. Significance.
Our findings help unravel the neural correlates of syntactic elaboration and show how a decoding
based on multiple cortical and subcortical areas could contribute to the development of speech
prostheses for speech impairment mitigation.

1. Introduction

Traditionally, language is analyzed in relation to
four main components: the acoustic level, that is
the physical medium humans naturally exploit to
convey information and its articulatory–phonatory
counterpart; the lexicon, which is the repertoire of

words expressing predicative contents and logical
instructions; syntax, the set of principles to assemble
larger units (phrases) from lexical items, in a recursive
potentially infinite way; semantics, an interpret-
ative component which captures the truth value
conditions for each syntactic structure. However,
since the acoustic and syntactic information are
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Figure 1. Experimental set-up. (A) Example of a set of homophonous sequences (i.e. strings of words with the same sound but
different syntactic structure) used in the experiment. For example, in PULISCE LA PORTA CON L’ACQUA (s/he cleans the door
with water), the phonemic sequence [la’pOrta] (written here as: la porta) is a NP, while in DOMANI LA PORTA A CASA
(tomorrow s/he brings her home), the same sequence is a verb phrase (VP). (B) Mini-region-of-interests (merged across all
subjects) in the dominant (left) and non-dominant (right) hemispheres. Contacts involved in the NP-related network are
highlighted in blue, those involved in the VP processing network are highlighted in red, and those participating in both networks
are colored in purple. Adapted from Artoni et al (2020). CC BY 4.0.

crucially intertwined (Ding et al 2015), even during
inner speech (Magrassi et al 2015, Kayne 2019), isolat-
ing syntax at the electrophysiological level appears to
be an insurmountable empirical task. This is reflected
in the difficulty of developing specific syntax-related
tasks for experimental studies of language neuro-
biology and it is responsible for the relatively lim-
ited knowledge of syntax-related processing in the
brain. Understanding the neural correlates of even
the most basic syntactic operations, such as mer-
ging an article with a noun (N) yielding a noun
phrase (NP) or a pronoun with a verb (V) yield-
ing a verb phrase (VP) remains a crucial challenge
for brain and language research (Grodzinsky and
Friederici 2006).

In a recent study (Artoni et al 2020), we designed
and used a novel protocol aimed at isolating syntactic
information from the acoustic associated inform-
ation by exploiting pairs of sentences containing
homophonous strings (same acoustic information
but completely different syntactic content). Specific-
ally, each pair of stimuli contained the same acous-
tic copy of two homophonous words, which could be
interpreted either as a NP or a VP (figure 1(A)). This
approachwas used to factor out any phonological and
prosodical clue in a complete way, even at the sub-
liminal level. We used this protocol while recording
the related cortical and subcortical activation using
stereo-electroencephalography (SEEG), an invasive
recording technique with unparalleled signal-to-
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noise ratio and recording band-width (Lachaux et al
2003, He et al 2019). Surprisingly, we found that the
effect of the syntactic structure on cortical and sub-
cortical activity was not limited to the brain areas
traditionally associated with syntactic processing (i.e.
Broca’s area and the left posterior temporo-parietal
cortex) as suggested by previous studies (Knösche
et al 1999, Friederici et al 2000, Friederici and Kotz
2003, Nuñez et al 2011, Batterink and Neville 2013,
Griffiths et al 2013,Weber et al 2016, Schell et al 2017,
Friederici 2018, Pylkkänen 2019), but involved mul-
tiple regions in both hemispheres.

The complex mechanisms that led to these results
cannot be fully described by treating the single cor-
tical hubs as segregated structures. In fact, oscillatory
neuronal activity plays an important role in organ-
izing neurons in large-scale networks (Korzeniewska
et al 2008) and high gamma activity arising from one
brain areamay induce high gamma activity in another
cortical region (Engel and Singer 2001, Varela et al
2001, Buzsáki and Draguhn 2004). For this reason,
in this study, we further exploited the SEEG signal
potential to investigate the amplitude, the direction,
and the specific frequencies of the interactions tak-
ing place between brain structures, that is the col-
lection of causal links elicited by different functional
situations known as effective connectivity (Penny et
al 2004). Given the utmost importance of timing,
here we analyzed the directed connectivity patterns
elicited by a stimulus, i.e. the ERC. We investigated
the dynamical evolution of the causal integration in
response to a specific part of the time-varying stim-
uli (sentences)—the response window (RW)—either
the NP or the VP. To reach this aim and to character-
ize and define the different networks involved in the
processing of the syntactic operations yielding a NP
or a VP we used a recently validated pipeline of ours
for the evaluation of ERC in a set RW (Cometa et al
2021).

We also present a proof-of-concept for the decod-
ing of the syntactic category of a perceived sentence
based on causality measures which could contribute
to the future development of speech prostheses for
speech impairment mitigation.

2. Methods

2.1. Human subjects
In total, 23 patients were recruited. All of themunder-
went surgical implantations of intracerebral elec-
trodes for refractory epilepsy (Cossu et al 2015) in the
‘Claudio Munari’ Epilepsy Surgery Center of Milan,
Italy (Munari et al 1994, Cossu et al 2005). The
strategy of implantation was defined purely based on
clinical needs, to locate the epileptogenic zone.

All patients completed all experimental sessions.
During the 24 h before the experimental record-
ing, no seizure occurred, no alterations in the
sleep/wake cycle were observed, and no additional

pharmacological treatments were applied. No lan-
guage or neuropsychological deficits were found
in any patients. Also, no anatomical alterations
were made evident by magnetic resonance. High-
frequency stimulation (50 Hz, 3 mA, 5 sec) through
SEEG electrodes was used to assess language domin-
ance in all subjects. Two patients also underwent a
functional magnetic resonance imaging (fMRI) study
during a language task before the implantation of the
electrodes.

Thirteen patients were excluded from the ana-
lysis. Eight of them exhibited pathological activity
with no background rhythm inmore than 50% of the
SEEG contacts. The others five patients showed no
implanted recording contacts with a task-related sig-
nificant activation in our previous study (Artoni et al
2020). Full demographic data are shown in table S5.

A total of 2186 recording contacts (median 210,
range 168–272) were implanted, divided into 164
electrodes (median 16.5, range 13–19). The num-
ber of contacts in the grey matter was 1439 (65.8%);
586 recording contacts in the language dominant
hemisphere (DH). The DH was implanted in five
subjects (median electrodes 16, range 3–18; median
contacts 210, range 25–225). The non-DH (NDH)
was implanted in six subjects (median electrodes
15, range 14–19; median contacts 208, range 182–
272). SEEG exploration involved both hemispheres
with a preference for the non-dominant side in 1
patient.

Overall, 68 electrodes were implanted in the tem-
poral lobe (26 in DH, 42 in NDH), 43 in the frontal
lobe (22 in DH, 21 in NDH), 22 in the central lobe
(9 in DH, 13 in NDH), and 30 in the parieto-occipital
region (9 in DH and 21 in NDH).

The present study received the approval of the
Ethics Committee of ASST Grande Ospedale Metro-
politano Niguarda (ID 939-2.12.2013) and informed
consent was obtained from all participants.

2.2. Stimuli
The set of stimuli is based on three characterist-
ics of Italian. First, some definite articles are pro-
nounced exactly like some object clitic pronouns
(such as [la] written as la; it can be both ‘the—
fem.sing.’ or ‘her—fem.sing.’). Second, the syntax of
articles and clitic pronouns is very different: articles
precede nouns, complements follow verbs, but object
clitics are placed before the verb. Third, the Italian lex-
icon contains several homophonous pairs of nouns
and verbs, such as [’pOrta] (written porta), which
can either mean ‘door’ or ‘brings’. A set of pairs of
words such as [la ’pOrta] (written as la porta) can
thus be interpreted either as a NP (‘the door’) or a
VP (‘brings her’) depending on the syntactic context
(homophonous phrases). For example, in PULISCE
LA PORTA CON L’ACQUA (s/he cleans the door
with water), la porta is a NP, while in DOMANI LA
PORTA A CASA (tomorrow s/he brings her home),
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la porta is a VP. We used 62 stimuli (table S1, in sup-
plementary information), i.e. with 31 pairs of homo-
phonous phrases.

To be sure to eliminate phonological and prosod-
ical factors, the pronunciation of one homophonous
phrase was copied in the syntactic counterpart. No
other semantic or lexical distinction differentiated the
two types of phrases.

The acoustic stimuli were recorded using a Sen-
nheiser Microphone MH40P48, connected via a
Firewire 400 to an Apple OSX 10.5.8 with a Motu
Ultralight Mk3 sound card. The stimuli were edited
and mastered using Audiodesk 3.02 and Peak Pro7,
respectively. Files were generated in 16 bits, with a
sampling frequency equal to 44.1 kHz; intensity was
normalized to 0 Db and rendered in .wav format. All
sentences were read by the same person, an Italian
native speaker, male, 53 years old.

2.3. Surgical procedure and recording equipment
SEEG electrodes have a diameter of 0.8 mm. They
contain 5–18 recording contacts, which are 2 mm
long and spaced by 1.5 mm. The strategy of implant-
ation was planned on 3D multimodal imaging and
the electrodes were stereotactically implanted with
robotic assistance. After the implantation, cone-
beam computed tomography was acquired with the
O-arm scanner (Medtronic) and registered to pre-
implantation 3D T1-weighted MR images. Sub-
sequently, multimodal scenes were built with the 3D
Slicer software package (Fedorov et al 2012) and
the exact position of each lead was determined both
looking at multiplanar reconstructions and using
the SEEG assistant tool available for 3D Slicer itself
(Narizzano et al 2017). The spatial coordinates of each
lead in individual anatomical space provided by this
tool were then converted into theMNI space coordin-
ate triplet after co-registration of the patients’ space to
the MNI space.

SEEG sampling rate during the experiment was
set to 1 kHz (patients 1–12) or 2 kHz (patients 13–23).
Recordings were carried out using a 192-channels
EEG-1200 (Neurofax, Nihon Kohden). All recording
contacts were re-referenced to two leads in the white
matter, in which electrical stimulations did not pro-
duce any manifestation.

2.4. Recording protocol
Each subject rested in a comfortable armchair. Stim-
uli were delivered using the Presentation software
(Neurobehavioral Systems). Phrases were delivered
via audio amplifiers at the minimum volume for
words to be perceived with ease, according to the
subject. During stimuli delivery, subjects gazed at a
27 inches cross on a screen. A synchronization TTL
trigger spike was sent to the SEEG trigger port at the
beginning of the sentence. Jitter and delays were lower
than 1 ms. The experiment lasted around 30 min,
with no breaks. At the end of each task, subjects

were always able to correctly answer short questions
about the stimuli. A camera was used to control for
eye movement, silence, and any unexpected behavior
from the patients.

2.5. Data pre-processing
An anti-aliasing band-pass filter (0.015–500 Hz) was
applied at the hardware level. Recordings acquired
at 2 kHz were down-sampled to 1 kHz. Channels
from which pathological activity was recorded dur-
ing the task were removed by clinicians. Recordings
were annotatedwith the events triggered by the begin-
ning of each word in all stimulus sentences. Epochs
were extracted from−1.5 s to 4.5 s time-locked to the
beginning of each stimulus. The length of the epochs
always ensured the inclusion of the complete stimu-
lus presentation. Epochs with notable artifacts were
rejected. Recording contacts in white matter have a
lower amplitude and a narrower frequency band with
respect to recording contacts in the greymatter. These
visual clues were used by the clinicians to identify and
exclude the contacts in white matter from subsequent
analysis.

2.6. Cortico-cortical evoked potentials
During the presurgical evaluation, an effective con-
nectivity of the implanted brain areas was assessed for
each subject by evaluating the cortico-cortical evoked
potentials (CCEP) elicited by single-pulse electrical
stimulation (SPES) (Matsumoto et al 2017, Trebaul
et al 2018, Russo et al 2021).

In the condition of eyes open resting wakefulness,
SPESwas delivered through each pair of adjacent con-
tacts, with at 5 mA current intensity, a single pulse
of 0.5 ms (biphasic rectangular stimuli of alternating
polarity), at 1 Hz frequency, for 15 s.

The presence of CCEPs response following a SPES
was visually verified by trained neurophysiologists.

2.7. Stimulus-evoked causality estimation
To estimate the stimulus-evoked directed connec-
tions, recording contacts were first divided into mini-
regions of interest (mini-ROIs). Then, the partial dir-
ected coherence (PDC), a measure deriving from the
Granger causality framework (Granger 1969, Geweke
1982, Baccalá and Sameshima 2001) was computed.
Finally, a non-parametric statistical test was used to
evaluate the significant connections elicited in the
RW, i.e. the part of interest of the stimulus (NP
or VP). This stimulus-evoked causality estimation
pipeline, designed for SEEG data, is proposed in
(Cometa et al 2021).

2.7.1. Mini-ROI extraction
Two SEEG contacts which are very close in space
record almost the same signal. This could lead
to artificially high causality values, which in turn
(being most causality measures normalized quant-
ities) may mask significant causality values between
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distant recording contacts. Thus, for each subject,
the recording contacts showing high correlation coef-
ficients between their time series were combined
into mini-ROIs. Specifically, mini-ROIs are groups
of leads having an averaged across trials coefficient
of determination R2 > 0.8. The prototypical channel
of a mini-ROI was selected as the one showing the
highest linear correlation with the mini-ROI mean
time series.Mini-ROIs groupingwas performed inde-
pendently for each subject. Most mini-ROIs were
populated by just one channel, with the most numer-
ous ones not being populated by more than 3 record-
ing contacts. Not surprisingly, all the recording con-
tacts assigned in a single mini-ROI were spatially very
close and always belonged to the same shaft.

2.7.2. Causality estimation
Within theGranger causality framework, a time series
xj (t) causes another time series xi (t) if knowledge of
past samples of xj (t) reduces the prediction error for
the current sample of xi (t). The relation between xj (t)
and xi (t) can be estimated by fitting a time-varying
multivariate autoregressive (MVAR) model on X(t):

X(t) = [x1 (t) , x2 (t) , . . . ,xD (t)]
T (1)

where D is the total number of channels.
The MVAR model assumes a linear relationship

between the channels in X(t) of the form:

X(t) =−
p∑

k=1

Ak (t)X(t− k)+ e(t) (2)

where Ak (t) is the time-varying DxD MVAR coeffi-
cients matrix, e(t) is a white noise process with cov-
ariance matrixW and p is the model order. The Ak (t)
matrices were derived by using a general linear Kal-
man Filter (Milde et al 2010). To estimate the model
order p, the Bayesian information criterion was used
(Schwarz 1978), resulting in p= 4 for all subjects.

After estimating, trial by trial, the Ak (t)matrices,
the single-trial time-varying PDC(f, t) (Astolfi et al
2008) was computed.

To lower the computational complexity of the
pipeline, PDC time samples were down-sampled by
a factor of 40 (from 6000 samples to 150). Frequen-
cies were averaged into overlapping frequency bins
(width= 50Hz, overlap= 25Hz, range= 0–300Hz).

Subsequent analysis was done only in the ultra-
high gamma frequency range (150–300 Hz), i.e. on
frequency bins from [125–175 Hz] to [250–300 Hz].

2.7.3. Significance during the homophonous phrase
All the next steps of the algorithm were independ-
ently applied for each syntactic structure (NPs or
VPs), each subject, and each frequency band f. Linear
interpolation time-warping was used to align the RW
across all trials (Gwin et al 2011, Artoni et al 2017,
Nordin et al 2019, Do et al 2021). Baseline correc-
tion was then carried out by dividing PDCij (f, t), trial

by trial and for each i, j (i ̸= j) couple independently,
by its mean baseline value. The PDCij (f, t) matrices
were obtained by averaging PDCij (f, t) over trials.
The mean values of the PDCij (f, t) during the RW
were calculated for each pair i, j (i ̸= j) of channels.

We subsequentially performed a statistical test
aimed at identifying the strongest connections within
each subject and only retaining those for subsequent
analysis. We called these strongest connections.

2.7.3.1. Significant connections
The mean values of the PDCij (f, t) during the RW
were compared against a null distribution: to gener-
ate the null (permutation) distribution and to con-
trol for false discovery rate (Nichols and Holmes
2002, Maris and Oostenveld 2007) the time samples
of the PDCij (f, t) were shuffled 1000 times and the
mean values during the RW were re-computed for
each permutation. The maximum mean value across
all channel couples was retained for each permuta-
tion. An arbitrary significance threshold was then set
in order to detect significant connections. For each
pair of recording contacts we calculated the fraction
of instances in the null distribution that were greater
than the mean RW causality occurring between that
pair. The connection was deemed significant if this
value was below the arbitrary significance threshold.
We set the significance threshold to 0.33, being the low-
est one that allowed the arising of at least one signific-
ant connection for either NPs or VPs in every subject,
in at least one of the considered frequency bins (from
[125–175 Hz] to [250–300 Hz]).

It is important to note that the null distribu-
tion can be also computed by shifting the original
time series (Crowther et al 2019) or by randomiz-
ing their phases (Brunner et al 2019), prior to cal-
culating the PDC values. However, in (Cometa et al
2021) we proved that these two alternatives do not
bring any advantage while being more computation-
ally cumbersome.

2.8. Inter-subject analysis
In SEEG experiments, the location of implantation
of the electrodes changes drastically across subjects.
It is therefore very difficult to combine the results
and handle the inter-subject differences. We decided
to use a patchwork approach: we applied all the
steps used to estimate the stimulus-evoked causality
(i.e. mini-ROI extraction, PDC calculation and sig-
nificance assessment) independently for each subject.
The resulting significant connections were combined
across subjects by concatenating them, and the sub-
sequent analysis on their emerging properties were
done on the set of all significant connections arising
from all subjects.

2.9. Latency analysis
To detect the peaks in connectivity during the RW of
the stimuli, the average connectivity time series were
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first smoothed. A Savgol filter was used (Guiñón et al
2007). The polynomial order was set to 2, with nine-
samples long windows. The window size was chosen
as the knee of the curve formed by the sumof absolute
differences between the smoothed time series and the
raw ones for different window lengths. The latencies
were defined as the time instant at which the max-
imum of each smoothed time series occurred, within
the homophonous phrase interval.

2.10. Cortical surface plotting
Mini-ROIs, active directed connections, and active
cortical areas were graphically represented using the
BrainNet Viewer toolbox for Matlab (Xia et al 2013).
Plotting was done using MNI coordinates on a Free-
Surfer fsaverage template (Fischl 2012,Wu et al 2018).

3. Decoding

3.1. RW prediction
The prediction of the phase of the stimulus was car-
ried out on a trial-by-trial basis. The total number
of trials, across all subjects, was 700. All the con-
nections were used. For each subject, all the time-
varying connectivity amplitudes were divided into
overlapping bins of size 20 samples and step 1 sample
and then averaged within each window, resulting
in one value per subject per time window. These
values were fed to a long short-term memory net-
work (LSTM) (Hochreiter and Schmidhuber 1997)
together with the labels corresponding to the stim-
ulus phase (baseline, sentence start, RW, sentence
ending) of the last sample of the corresponding
overlapping window. We used a LSTM instead of a
simpler approach such as the linear regression to not
be bound by the assumptions of independence, nor-
mality and homoscedasticity and for the ability of
the LSTM to exploit the temporal structure of the
input—i.e. the time-varying PDC values—to make a
prediction.

The training was carried out using a leave-one-
subject-out (LOSO) cross-validation procedure. For
each iteration of the LOSO cross-validation proced-
ure, the time-varying connectivity amplitudes for one
subject were held out to be used as the test set,
while the PDC values of the other nine subjects were
used as the training set. Two trials were removed
from the training set and used as the validation
set. The decoder hyperparameters were optimized
according to the performance on the validation set.
Hyperparameter optimization was performed using
a grid-search on [0.00001, 0.0001, 0.001, 0.01] for
the learning rate, [16, 32, 64, 128] for the number of
hidden units of the LSTM, and [0, 0.1, 0.3, 0.5] for
the dropout (i.e. the fraction of weights that are ran-
domly forgot after each training epoch, used to avoid
overfitting).

The resulting best hyperparameters were used to
train the LSTM on the training set. The training pro-
cedure was stopped after 100 epochs. The accuracy
pertaining to each fold was calculated on the held
out test set. The final accuracy was obtained by aver-
aging the accuracies across all folds of the LOSO
cross-validation.

A weighted version of the categorical cross-
entropy (Abadi et al 2015, Ho and Wookey 2020)
was used as the loss function to minimize during the
training of the LSTM, with the weights for each class
inversely proportional to the length of the stimulus
phase.

Code implementation was based on the Tensor-
Flow package for Python (Abadi et al 2015).

3.2. Syntactic content decoding
The prediction of the content of the homophonous
phrases (NP vs VP) was carried out on a trial-by-trial
basis. Only the significant connections were selected,
regardless ofwhether the connectionswere significant
during NPs or VPs processing. For each time point,
a number of values equal to the number of signific-
ant connections were thus retained, corresponding to
the amplitudes of the significant connections during
that instant. A total of seven features were then cal-
culated for each time point: the statistical moments
up to order 4, the median, the maximum, and the
range (the difference between the maximum and the
minimum).

A support vector machine (Cortes and Vapnik
1995) with a radial basis function kernel was trained
for each time point. We preferred a support vec-
tor machine (SVM) instead of a neural network in
order to avoid overfitting, which is a typical problem
of more complex models trained with a low num-
ber of trials. The training was carried out using a
nested cross-validation procedure: (i) LOSO cross-
validation was used to split the dataset into training
(nine subjects) and test set (one subject), and (ii) for
each fold of the LOSO cross-validation, ten fold cross-
validationwas used to furtherly divide the training set
into training and validation set.

The inner validation loop was used to optimize
the decoder hyperparameters and to perform feature
selection through the minimum redundancy max-
imum relevance (Radovic et al 2017) algorithm.

The optimized hyperparameters were: C, i.e. the
cost of misclassification of training instances; and the
free parameter of the radial basis function gamma.
Hyperparameter optimization of was carried out
using a grid search on [0.001, 0.01, 0.1, 1, 10] for C
and [0.001, 0.01, 0.1, 1] for gamma. For each fold of
the outer validation loop (LOSO), the best hyperpara-
meters were set as the C and gamma values which
achieved the best mean accuracy in the inner ten-
fold cross validation loop, thus resulting in a different
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set of hyperparameters for each fold of the LOSO
cross-validation.

For each fold, the accuracy was calculated on the
test set. The time-varying accuracy was obtained by
averaging the accuracies across all folds of the LOSO
cross-validation procedure.

For each time point, the predicted labels were
compared 1000 times with 1000 shuffled versions of
the test set labels (NP or VP) to calculate the chance
level. The procedure was repeated for each fold of the
LOSO cross-validation, resulting in a null distribu-
tion of 1000 × (number of fold) accuracy values. An
exact p-value was obtained by comparing the original
accuracy with the null distribution.

The time-varying p-values were corrected for the
multiple comparisons using a cluster-size-based stat-
istical non-parametric mapping approach (Nichols
and Holmes 2002) and deemed significant if lower
than α = 0.05.

Code implementation was based on the scikit-
learn package for Python (Pedregosa et al 2011).

3.3. Quantification and statistical analysis
The non-normality of the data undergoing statist-
ical testing was assessed using Shapiro–Wilk tests
(Shapiro andWilk 1965). Sizes n1 and n2 of the inde-
pendent samples undergoing Mann–Whitney tests
(Neuhäuser 2011) and the associated U statistics are
reported in the results section asUn1,n2=U. Statistical
significance level α was 0.05. The inter-hemispheric
significant connection that arose in one subject was
not considered in the tests comparing connections
in the DH versus connections in the NDH. Tests
were computed using the scipy package for Python
(Virtanen et al 2020).

4. Results

4.1. NPs and VPs elicit two unique networks
The neural networks elicited by the processing of NPs
and VPs were investigated with SEEG. The data were
recorded from ten Italian-native speaker patients with
no language disorders who underwent surgical oper-
ation for drug-resistant epilepsy. NPs and VPs were
encoded in the same acoustic stimulus and could be
differentiated only by their syntactic context (some
Italian homophonous phrases, such as la porta /la
’pOrta/—that can be interpreted either as a NP—
‘the door’—or a VP—‘[s/he] brings her’). The com-
plete list of stimuli is shown in table S1. After pre-
processing, close recording contacts were arranged
in groups called mini-regions of interest (mini-
ROIs), each represented by a prototypical contact.
The grouping resulted in a total of 396 mini-ROIs in
the left—or DH and 577 mini-ROIs in the right—
or NDH (figure 1(B)). To identify the networks
involved in both NPs and VPs processing (i.e. the
group of mini-ROIs bounded together by causal
relations), we used PDC (Baccalá and Sameshima

2001) and a recently developed pipeline to determ-
ine the significance of ERC elicited by an RW
(Cometa et al 2021).

We restricted the analysis to connections iden-
tified within the ultra-high gamma frequency band
(150–300 Hz). In previous analysis (Artoni et al
2020), the signal recorded in the ultra-high gamma
frequency band showed the greatest differentiation
between NPs and VPs for most of the recording con-
tacts. The pipeline discovered 13 significant connec-
tions for theNP case (2 in theDHand 11 in theNDH)
and 20 connections for theVP condition (6 in theDH,
13 in the NDH, and 1 from the right temporal lobe to
the left temporal lobe).We observed four connections
active for both phrases in the NDH. Of these shared
connections three were intra-temporal (figure 2(A)).
Although the recording contacts were more in the
NDH than in the DH (577 in the NDH and 396 in
the DH), the ratio between the number of signific-
ant connections and the total number of channels
was higher for the NDH (4.16·10−2 for the NDH and
2·10−2 for the DH). The ratio between the number of
channels participating in a significant connection and
the total number of recording contacts in each lobe
was the highest for the temporal lobes (10.83·10−2

for the NDH and 18.59·10−2 for the NDH). For all
the other lobes, this ratio was an order of magnitude
lower. All the significant connections are shown in
table S2.

We compared the estimated connections with the
recorded CCEPs (Matsumoto and Kunieda 2019),
which are an indicator of the presence of a direct
cortico-cortical or cortico-subcortico-cortical ana-
tomical pathway (Matsumoto et al 2004). We restric-
ted the identification of the CCEPs only to pairs of
channels forming significant connections. Out of 33
significant connections, 11 exhibited a CCEP. The
contacts involved in a significant connection and
with a relevant CCEP were placed closer together
than those not showing CCEPs (Mann–Whitney
U22,11 = 53, p< 0.005) (figure 2(B)).

Significant connections may be biased by clusters
of closely placed contacts. Thus, to factor out a pos-
sible effect of this spatial sampling bias, we com-
pared the distribution of the distances between pairs
of contacts showing significant causal connections
with the distribution of the distances between all
channels (figure 2(C)). We did not detect any differ-
ence between the two distributions (Mann–Whitney
U29,47987 = 590819, p= 0.16).

Finally, more significant connections in both NPs
andVPswere found in subjects with electrodes placed
in the NDH, in contrast to those with the DH
implanted (Mann–Whitney U4,5 = 18.5, p < 0.05,
figure 2(D)). This difference was still present even
when normalizing the number of significant directed
connections by the total amount of the possible con-
nections for each subject (Mann–Whitney U4,5 = 18,
p < 0.05). Only one subject had both hemispheres
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Figure 2. VPs engage a wider and more complex network. (A) Lateral and dorsal views of the identified directed connections.
Nodes and edges are highlighted in blue for the noun phrase (NP) processing network, in red for the verb phrase related network,
or purple if shared by both processing systems. (B) Box plots of the distances between the contacts involved in a significant
connection and with a relevant cortico-cortical evoked potential (CCEP) and between those not showing CCEPs. (C) Box plots of
the distances between pairs of implanted contacts, whether a significant connection exists between them (Conn) or not (No
Conn). (D) Box plots of the number of connections in subjects with electrodes in the non-dominant (right) hemisphere and in
those in which only the dominant (left) was probed. The vertical axis is normalized by the total number of significant directed
connections identified across all subjects. (E) Lateral and dorsal views of the active brain zones during NPs (blue) processing, VPs
(red) processing, or both (purple). An active brain zone is a cortical area containing one or more recording contacts that act as
sources or sinks for a certain directed connection. The zoom-in pictures show the left and right insula. (F) Radar plots of the
number of sources (left) and sinks (right) in each cerebral lobe, for the two conditions NP (blue) and VP (red). (G) Box plots of
the distances between contacts involved in a significant connection during NP and VP processing.

implanted and showed an inter-hemispheric connec-
tion (VP, from the right temporal lobe to the left
one).

4.2. VPs engage a wider network than NPs
The recording contacts participating in the NP-
related network or the VP-related network were
not spread across the entire cortical and subcortical

volume but rather clustered in specific brain zones—
i.e. the anatomical parcellation of cortical gyri and
sulci according to the Destrieux atlas (Destrieux et al
2010). In total, 64 brain zones were probed in the
DH and 88 in the NDH. Out of 152 cortical and sub-
cortical areas, 11 were involved in the processing of
both homophonous phrases (2 in the DH and 9 in the
NDH), 12 participated in the processing of the VPs
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Figure 3. Syntax is faster in the dominant hemisphere. (A) Time series of the identified directed connections, in the dominant
(L, top) and non-dominant (R, bottom) hemispheres. Each time series is normalized between 0 and 1. The 0 in the time axis is the
start of the sentence, the colored area represents the homophonous part (or response window—RW). Directed connections that
are significant when listening to noun phrases (NP) have this area coloured in blue, while those significant for verb phrases (VP)
have this area highlighted in red. (B) Box plots of the latencies of the connectivity peaks during the RW in the dominant
hemisphere (left) and in the non-dominant one (right). (C) Scatter plot of latencies of the peaks during the RW as function of the
distances between channel pairs.

alone (6 in the DH and 6 in the NDH) and 6 respon-
ded exclusively toNPs (1 in theDHand 5 in theNDH)
(figure 2(E)).

The connectivity estimated by the PDC is a direc-
ted causal information flow from one recording con-
tact called source to another denoted sink. For NPs,
all the sources were located bilaterally in the temporal
lobes (2 in the DH and 11 in the NDH). For VPs, the
temporal lobes contained 17 sources (5 in theDH and
12 in the NDH). The other three VPs sources were
situated in the right occipital lobe, right frontal lobe,
and left insula (figure 2(F), left). Most sinks, for both
NPs and VPs, were in the two temporal lobes (DH: 2
for NPs and 4 for VPs; NDH: 6 for NPs and 8 for VPs).
Other sinks were in the right insula (1 for NPs, 2 for
VPs), in the right frontal lobe (2 for NPs, 1 for VPs),
right central lobe (1 for NPs), right cingulum (1 for
NPs, 2 for VPs), left frontal lobe (2 for VPs), and left
cingulum (1 for VPs) (figure 2(F), right). The lists of
the cortical and subcortical areas containing sources
and sinks for a given connection are shown in tables
S3 and S4.

Overall, VPs elicited more sources or sinks than
NPs, engaged a higher number of different cortical

and subcortical areas in both hemispheres, with
almost no brain-zone being more active for NPs.

The results show that VPs extended the processing
network beyond the temporal lobes.

Recording contacts that participated in VPs
processing seemed to be located further than
those involved in NPs processing (Mann–Whitney
U13,20 = 93, p= 0.08, figure 2(G)), even if not reach-
ing the statistical significance level α = 0.05.

4.3. Syntax processing is faster in the DH
We then looked at the speed of response, or processing
time, in the DH and NDH. The latencies of the peaks
in the temporal evolutions of the time-varying signi-
ficant causalities were thus compared among hemi-
spheres. We smoothed the time-series with a Savgol
filter in order to overcome the fluctuation of the
neural signal and not altering the main peaks prop-
erties (Guiñón et al 2007, Benda and Volosyak 2019,
Kawala-Sterniuk et al 2020). Then, we considered
only the highest peak, for each smoothed time series,
occurring during the homophonous part of the stim-
uli (figure 3(A)). These peaks arose earlier in the DH
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Figure 4. Connectivity decodes sentence structure.
(A) Confusion matrix for the prediction of the stimulus
phase. (B) Time-varying accuracy of the classification of
NP vs VP. The blue line represents the median of the chance
level, the boundaries of the light blue band are the 5th and
95th percentiles of the chance level distribution. The red
part of the plot is the accuracy significantly above the
chance level (p< 0.005).

(Mann–WhitneyU8,24= 54.5, p< 0.05), for bothNPs
and VPs (figure 3(B)).

The peak latencies in the directed connections
evoked by the homophonous syntagms did not cor-
relate linearly with the distances between the record-
ing contacts involved in those connections (Pearson’s
ρ = 0.07, p = 0.71, figure 3(C)). Moreover, distances
between recording contacts implanted in the DH and
NDH and participating in an active connection were
not statistically different (Mann–WhitneyU8,24 = 83,
p = 0.29). Therefore, the difference in peak latencies
was likely not due to the channel distribution in the
two hemispheres, but rather solely to the syntactic
processing time.

4.4. Connectivity decodes homophonous phrases
Wewere interested in decoding the phase of the stim-
ulus trial to test whether the time evolution of the
PDC values carries information about the time evol-
ution of the stimuli. The general neural connectiv-
ity estimated by the time-varying PDC was able to
determine if the subject was waiting for the sentence
(baseline), listening to the initial part of the sentence,
to the homophonous phrase (RW), or its ending. We
used a LSTM (Hochreiter and Schmidhuber 1997) to
classify the stimulus segments with single-trial accur-
acy equal to 83.75% (the chance level is 38% due to
class imbalance) (figure 4(A)).

We finally extracted time-dependent features only
on the identified significant connections. We used a
SVM (Cortes and Vapnik 1995) to predict the syn-
tactic content of the homophonous phrase in the sen-
tence. The accuracy was significantly above chance
during the RW phase (figure 4(B)).

Both models were evaluated using a LOSO
cross-validation.

5. Discussion

Language comprehension and production, in par-
ticularly syntax processing, are complex and highly
integrated tasks continuously carried out by our
brain, seemingly without effort. Analyzing their
neural correlates thus requires sophisticated tools.
One of the most promising techniques to identify
the different neural processes underlying the syntactic
operations leading to the processing of, for example,
NP or VP is offered by directed connectivity eval-
uation related to the complexity of the large-scale
networks. To our knowledge, this is the first time a
difference in the connectivity elicited by NPs or VPs
processing was identified.

Traditionally, the problem of understanding the
neural correlates of syntax is approached by studying
the effects of brain lesions or with syntax-related
experimental tasks administered during neuro-
physiological and neuroimaging acquisitions con-
taminated by confounding factors such as phonology
or semantics (Vigliocco et al 2011, Friederici et al
2017). Our approach is to leverage NP/VP homo-
phonous phrases. The advantage of our solution is
that we can factor out phonological and morpholo-
gical confounding factors by analyzing these homo-
phonous phrases.

The shift from the analysis of isolated lexical ele-
ments such as bare Vs and Ns vs. syntactic units,
namely VPs and NPs, is obviously a necessary step
toward the goal of capturing syntactic informa-
tion. Lexical elements in isolation contain linguistic
information but these pieces of information are arti-
ficially expressed in single words whereas natural lin-
guistic expressions always involve syntactic compu-
tation. In fact, the stimuli involved syntax in two
directions: first, each homophonous phrase was syn-
tactically connected with other words expressing a
full-fledged sentence; second, each homophonous
phrase contained very different syntactic structures.
More specifically: in NPs the surfacing order of the
two words composing them, namely an article and a
noun, was the same as the underling structure com-
posing it; in VPs, the situation is completely different
and definitely more complex. In all VPs considered
here a transformation called cliticization takes place.
The order of the elements constituting it (a pronoun,
playing the role of the object, and a verb) is reversed
with respect to the canonical order in an SVO lan-
guage like Italian; the canonical position of the object
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is to the right of the verb (Moro 2016). All in all, the
shift from V/N to VP/NP constitutes a necessary and
relevant step towards the final goal of cracking the
underlying code of human syntax.

5.1. Decoding of the syntactic category and
potential applications for BCIs
The information carried by all the directed connec-
tions was able to discriminate between parts of the
sentence. The syntactic category of the stimulus was
discriminable just by looking at the significant con-
nections, showing that restricting the topology ana-
lysis on the few significant connections allows to
decode NPs vs. VPs while keeping a lower computa-
tional complexity. The computational complexity is
one of the key factors that should be controlled in the
development of an online speech decoder.

In recent years, there have been important tech-
nological and methodological advancements in per-
ceived and imagined speech decoding (Martin et al
2018, Panachakel and Ramakrishnan 2021). Recent
works focus on the classification of vowels (Duc and
Lee 2020,Mahmud et al 2020), syllables (Brandmeyer
et al 2013, Correia et al 2015, Archila-Meléndez
et al 2018), words (Ossmy et al 2015, Vorontsova
et al 2021, Proix et al 2022) and complete sentences
(Zhang et al 2012, Chakrabarti et al 2015), distin-
guishing stimuli mainly at the semantic level. The
most advanced online decoding techniques rely heav-
ily on the articulatory representation of syllables
and words in the motor and supplementary motor
cortices (Anumanchipalli et al 2019, Moses et al
2021). However, this approach can only be applied
to patients with intact motor commands, but who
are unable to move the muscles that are necessary
for speech production, which represent a minority
of the patients with speech impairment (Guenther
et al 2009, Wilson et al 2020). Thus, other decoding
strategies that rely on the brain regions that encode
speech are needed (Proix et al 2022).

Here, we decoded the syntactic category of the
homophonous part of the acoustic stimuli exploiting
29 different speech-encoding cortical and subcortical
areas spanning the entire brain. Only recently such
strategy has been used in the decoding of groups of
syllables and words (Proix et al 2022).

However, our approach relies on the time evol-
ution of the connectivity values between recording
contacts. This solution has the advantage of assur-
ing high inter-subject generalizability as shown by the
LOSO validation results: the connectivity features are
independent of the location of the implanted leads,
which may differ from subject to subject. Also, our
method is well suited to be implemented in an online
decoder. Moreover, the signals that drive the decod-
ing are directly entangled to the syntactic represent-
ation of the stimuli rather than their phonological—
and articular—components.

We believe that a decoding strategy that relies
on multiple language-encoding cortical and subcor-
tical areas will drastically improve the performance of
speech prostheses and may be the key missing piece
for the development of this technology. There are,
however, a number of limitations that will need to be
addressed in the future to fully exploit this strategy.
Themost critical among them are: the computational
complexity needed to calculate the causality between
a large number of recording contacts, the need to
cover wide parts of the brain, even if SEEG represents
a very promising technique due to its relatively low
invasiveness (Cometa et al 2022).

5.2. Describing two syntax-related neural networks
We identified a lownumber of significant connections
compared to all the possible ones. This is not surpris-
ing, since the human cortex seems to be sparsely con-
nected (Rosen and Halgren 2022).

We showed that VPs processing, compared to
NPs processing, elicited a significantly higher num-
ber of directed connections, linked together more
brain structures both in the DH and in the NDH,
and involved the activation of a wider cortical and
subcortical network. VPs processing was distributed
beyond temporal lobes, pushing the information
from sources located in the right frontal lobe and
left insula, to sinks in both frontal lobes, anterior
cingulate regions, and right insula. This suggests a
greater network small-worldness for NPs, with a pref-
erence for short-range connections over long-range
ones.

Most of the literature converges on a more exten-
ded cerebral involvement in verb processing than for
nouns (Vigliocco et al 2011, Lukic et al 2021). How-
ever, again, most evidence came from tasks requir-
ing the processing of N/V as words in isolation: this
is the first time an approach based on homophonous
phrases, hence syntax, is used.

Temporal lobes (both in the DH and in the NDH)
seem to be the main hub in which the syntactic oper-
ations leading to NPs or VPs are analyzed and pro-
cessed. For NPs all the information flow started from
these areas, while for VPs 3 out of 20 sources were
placed outside the temporal lobes (with the one in
the right occipital cortex very close to temporal areas).
Also, sinks were mostly located in the temporal lobes.
The important role of the temporal lobes, in particu-
lar of left posterior regions, in syntactic processing is
supported by lesion and imaging evidence (Friederici
et al 2017, Matchin and Hickok 2020).

The comparison of the estimated directed con-
nections with the CCEPs arising between record-
ing contacts showed a partial discrepancy. While
the structural connectivity underlying CCEPs is
well known (e.g. the Human Connectome Pro-
ject) (Van Essen et al 2012), the functional and
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effective connectivity are patterns of highly hetero-
geneous causal relationships that may reflect pro-
cesses occurring duringmany different temporal time
scales (Vincent et al 2007, Shmuel and Leopold 2008,
Honey et al 2009, Matsui et al 2011, Keller et al
2014). The ERC identified here, is thus the expression
of more complex neural processes, for which there
are no unique a priori hypotheses. However, meas-
ures based on the Granger causality framework such
as the PDC used here were shown to describe well
the interactions occurring between coupled neural
populations (Kamiński et al 2001, Cadotte et al
2008).

Interestingly, recording contacts involved in a sig-
nificant connection and showing at the same time
CCEPs were implanted closed together than the pairs
of channels without relevant CCEPs. Indeed, CCEPs
may terminate their propagation early (Logothetis
et al 2010, Keller et al 2014), which is in agree-
ment with the description of CCEPs as supported by
short-range local relations arising from direct hard-
wired connections via cortico-cortical or cortico-
subcortico-cortical pathways (Matsumoto et al 2004).
This suggests that syntax-related processing relies
mostly on long-range connections between cortical
or subcortical areas, expressing network-level neural
synchronization supported by long-range, indirect
structural pathways, typical of high-level cognitive
processing (Salmelin and Kujala 2006).

We attempted to counteract the imbalance of
implanted electrodes in the different lobes and
hemispheres through the use of mini-ROIs and by
applying statistical tests on normalized measures.
However, with magnetic resonance imaging (MRI)
recordings of all subjects, a spatial modeling of the
sampled neural activity could have been used to
handle this issue (Esposito et al 2013, Singer et al
2014).

5.3. The role of the two hemispheres
Earlier peaks in the connectivity time-series in the
DH revealed that the syntax processing elicited by our
stimuli started first in the temporal lobes of the left
hemispheres and then spread to the right cortices. The
directed links from DH to NDH that are necessary to
transfer the information from one hemisphere to the
other were not deemed significant because they were
probably active during all sentence processing, and
so they were masked during the search for the causal
connections with the highest amplitude increase dur-
ing the homophonous part of the stimulus. Also,
only one subject out of ten was implanted in both
hemispheres.

Focal lesion, behavioral, fMRI and electro-
physiological studies provide converging evid-
ence for a dominant role of one hemisphere (the
left in right-handers and in the majority of left-
handers) for most aspects of language processing

(Tzourio-Mazoyer et al 2017). Here we detected
more significant connections arising in the NDH
than in the DH. Focal lesion, behavioral, fMRI
and electrophysiological studies provide converging
evidence for a dominant role of one hemisphere
(the left in right-handers and in the majority of
left-handers) for most aspects of language processing
(for a recent review, see Tzourio-Mazoyer et al 2017).
While speech perception is often considered as a
bi-hemispheric process (Hickok and Poeppel 2000,
Poeppel et al 2008; see however Scott andMcGettigan
2013), syntactic processing is strongly associated with
left hemispheric function (Matchin andHickok 2020,
Grodzinsky et al 2021). Our finding of more signi-
ficant connections arising in the NDH than in the
DH is thus unexpected. Additional work is needed
to better characterize the role of the NDH in syntax
processing.

5.4. Surprisal and other confounding factors
It has not escaped our attention the fact that our
results concerning syntactic structures converge with
parsing as shown by a surprisal analysis (Artoni et al
2020). Syntactic surprisal is related to the expected-
ness of a given word’s syntactic category given its pre-
ceding context and it is based on the frequency of the
occurrence within a Corpus. These models however
are limited and cannot fully capture syntactic depend-
encies as they involve hierarchical relations such as
those expressed in phrases. In our previous paper
(Artoni et al 2020) we showed that surprisal values
could be sorted into VPs and NPs classes at best by
means of Support Vector Machine Analysis with a
score of only 86%; also while significant differences
were found considering the surprisal of the articles
and the clitics no significant difference in surprisal
could be seen between the verbs and nouns, indic-
ating that surprisal alone cannot fully explain VPs
and NPs differences. The unresolved tension between
syntax and surprisal deserves at least three important
remarks: first, surprisal is a measure of the probabil-
ity for a word to occur after another in a given cor-
pus collecting real expressions of a language whereas
modern linguistics aims at understanding what is
not produced in a given language as generated by a
given grammar; second, Markovian chains models,
upon which this kind of surprisal is formalized, have
been proved not to be able to capture the structure
of natural languages (ever since the pioneering work
of Noam Chomsky in the late fifties); third, there
are indeed other models of surprisal involving hier-
archical relations such as those expressed in phrases
but they obviously rely on syntactic structures, such
as the relation between a head and a complement
yielding a phrase, and this does not show that sur-
prisal is sufficient to understand linguistic regularit-
ies: rather it shows that for these regularities to be cap-
tured, syntactic notions must be exploited. Recently,
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deep neural networks were used to model the sur-
prisal (Goldstein et al 2022, Heilbron et al 2022,
Russo et al 2022), showing their ability to explain the
neural activity elicited by sentence processing. These
neural networks merge different linguistic informa-
tion to estimate the surprisal: it would be surprising
if the hierarchical relations and thus the syntactic
information would not have been exploited for this
estimation.

This crucial issue has not been solved yet in the
current debate and we can only expect our work to
contribute to this by offering hints for a future clari-
fication, among other things.

In light of these considerations, although we did
not include any non-syntactic condition in our exper-
iment, we consider unlikely that the response we
observe is not syntactic-specific. This is because,
although it is clear that nouns which refer to objects
(say, table) are semantically poorer even than a rel-
atively simple verb (say, destroy) in that they com-
pletely lack theta-roles such as agent, patient, etc, it
is also true that there are nouns which do come with
the same richness in terms of theta-roles (say, destruc-
tion). The relative simplicity of nouns over the verbs
is still to be understood and this preliminary work
is also to be expanded in that direction, aiming at a
comprehensive distinction between nouns vs. verbs.
Moreover, although it is surely true that verbs comes
with amore complex paradigmwith respect to nouns,
it is not true that the a V is necessarily more com-
plex than a verb from a morphological point of view.
All words exploited here, practically, consist of a lex-
ical morpheme and a functional one. For example,
for nouns: the lexical root port- as in porta (door)
with the singular—feminine morpheme -a; for verbs,
the lexical root port- as in porta (s/he brings) and
the third singular present -a. Strictly speaking, then
themorphological differences were reduced to double
morpheme constructions. All in all, the fact that the
homophonous elements are morphologically com-
parable suggests that the contrast between verbs and
nouns activation is arguably devoted to the oper-
ation of cliticization involving reordering of words
with verbs vs. basic order with nouns. In fact, it
would be very surprising that such a complex oper-
ation as cliticization would not require a higher
activation.

Furthermore, the lexical or semantic differences
present in the stimuli do not systematically reflect
any of the dimensions with a known impact on brain
activity, such as length, syllabic structure, frequency,
familiarity, semantic category, imageability, valence,
arousal, etc.

6. Conclusions

In our previous work (Artoni et al 2020) we iden-
tified the high-gamma activity as the main neural
correlate of syntactic processing. However, we failed

at characterizing the network involved in syntactic
processing. Treating the recording sites and thus the
corresponding cortical hubs as segregated structures
cannot truly describe the neural processes respons-
ible for the syntactic representation of NPs and VPs
in the human brain. Here we expanded the previ-
ous work by considering the set of causal connections
arising between cortical and sub-cortical structures
during syntactic processing. This method allowed us
not only to identify the sites in which such processing
occurs but also to describe how these sites communic-
ate between them. For example, we show a preference
for a posterior-to-anterior pathway for the neural
connections, mainly from the temporal lobes to the
frontal lobes. Knowing how brain structures commu-
nicate when performing a cognitive task may help
clinicians and engineers developing treatments and
technologies for language impairmentmitigation.We
show the plausibility of a decoding strategy that
relies on the temporal evolution of the causal con-
nections calculated between recording channels. This
decoding strategy does not depend on the subject-
specific recording sites, thus allowing a simplification
of the calibration procedure of neuro-prostheses for
language impairment mitigation. Furthermore, we
compared the connections identified using the PDC
with those arising from electrical stimulation, i.e. the
CCEP. This comparison allowed us to hypothesize
the anatomical features supporting the syntax-related
neural networks, i.e. indirect long-range structural
pathways.

In conclusion, these results give an unprecedented
overview of the mechanisms involved in the neural
representation of the syntactic structures as they rep-
resent an important step forward in human language
comprehension, contributing to the full characteriz-
ation of syntactic processing. We showed a specific
brain activity encoding a syntactic distinction, which
is faster in the DH. Since, even from a purely formal
point of view, syntactic processing cannot be com-
pared with other computational systems, language-
related or not (Chomsky 2014, Moro 2014a, 2014b),
it is reasonable to conclude that the network high-
lighted here is not only specific but arguably it is
uniquely dedicated to syntax. We prove that it is pos-
sible to decode the syntactic structure of a phrase
by looking at the connections elicited by speech
processing between multiple cortical and subcortical
areas. This could contribute to the future develop-
ment of speech prostheses for speech impairment
mitigation (Anumanchipalli et al 2019).
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