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Abstract— Predicting 3D human poses in real-world scenar-
ios, also known as human pose forecasting, is inevitably subject
to noisy inputs arising from inaccurate 3D pose estimations and
occlusions. To address these challenges, we propose a diffusion-
based approach that can predict given noisy observations. We
frame the prediction task as a denoising problem, where both
observation and prediction are considered as a single sequence
containing missing elements (whether in the observation or
prediction horizon). All missing elements are treated as noise
and denoised with our conditional diffusion model. To better
handle long-term forecasting horizon, we present a temporal
cascaded diffusion model. We demonstrate the benefits of our
approach on four publicly available datasets (Human3.6M,
HumanEva-I, AMASS, and 3DPW), outperforming the state-of-
the-art. Additionally, we show that our framework is generic
enough to improve any 3D pose prediction model as a pre-
processing step to repair their inputs and a post-processing
step to refine their outputs. The code is available online:
https://github.com/vita-epfl/DePOSit.

I. INTRODUCTION

Robots and humans are poised to work in close proximity.
Yet, current technology struggles to read and anticipate the
motion dynamics of humans. Predicting 3D human poses
enables a safe co-existence between humans and robots,
with direct applications in social robotics [13], autonomous
navigation [38], assistive robotics [57], [59], and human-
robot interaction [9], [30].

Predicting a sequence of future 3D poses of a person
given a sequence of past observed ones, also referred to as
human pose forecasting, is a challenging task since it must
combine spatial and temporal reasoning to output multiple
plausible outcomes. Previous models have yielded satisfac-
tory results [39], [36], yet they fail to produce acceptable
outcomes in noisy settings. Minor offsets from detection
methods or partial occlusions of body parts can drastically
impact the prediction accuracy.

Denoising Diffusion Probabilistic Models (DDPMs) [25]
are one type of generative models that can denoise input
signals iteratively. Motivated by this property, we propose a
diffusion model that explicitly handles noisy data input so
that it not only predicts accurate and in-distribution poses,
but can also be used in the wild. As depicted in Figure 1, we
construct a full sequence of observation and future frames
where noise is placed in the missing observation elements
and future poses. Our model denoises this sequence in several
steps and produces the correct predictions. Naively predict-
ing all future frames simultaneously results in inaccurate
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Fig. 1: Our proposed conditional diffusion model denoises
the input sequence sT over T steps by simultaneously 1)
predicting poses for the future frames and 2) repairing the
noisy observations in the case of partial occlusion (first col-
umn), missing whole frame (second column), or inaccurate
observations (third column). The large yellow circles depict
the Gaussian noise we consider for unavailable joints, which
gradually become smaller and fit into the correct locations.

predictions in later frames. Hence, we propose a model
comprised of two temporally-cascaded diffusion blocks. The
first block predicts the short-term poses and repairs the noisy
observations (if applicable), while the second block uses
the output from the former as a condition to predict the
long-term poses. We also leverage our model in a generic
framework that can improve the performance of state-of-the-
art prediction models in a black-box manner. To this end,
we use our diffusion-based model as a pre-processing step
to repair the observations providing pseudo-clean data for
the prediction model to make more reliable predictions. Our
model can then be used as a post-processing step to further
refine these predictions.

To summarize, our contributions are three-fold:
• We frame the 3D human pose prediction task as a

denoising problem.
• We propose a two-stage diffusion model outperforming

the state-of-the-art in both clean and noisy observation
settings.

• We introduce a generic framework that leverages our
model through pre-processing (repairing the input) and
post-processing (refinement), which can enhance any
pose prediction model.
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Fig. 2: Overview of our Temporal Cascaded Diffusion (TCD). The short-term diffusion block (top) takes the observed
sequence padded with random noise and predicts short-term human poses in K frames. The predicted sequence along with
the observation padded with random noise is given to the long-term diffusion block (bottom) to predict for all P frames.

II. RELATED WORK

Predicting a sequence of future center positions at a
coarse-grained level [29], [48], [5] or a sequence of bounding
boxes [8], [49] have been extensively studied in the literature.
However, in this work, we focus on a more fine-grained
prediction, namely 3D pose. Recurrent Neural Networks
(RNNs) have been widely used [20], [27], [42], [12], [21],
[14] as they are capable of capturing the temporal depen-
dencies in sequential data, and later networks with only
feed-forward networks were introduced [31]. Subsequently,
Graph Convolutional Networks (GCNs) were proposed to
better capture the spatial dependencies of body poses [41],
[17], [39], [33]. Separating temporal and spatial convo-
lution blocks [36], and trainable adjacency matrices [54],
[64] are among other proposed ideas. Attention-based ap-
proaches have recently gained interest for modeling human
motion [43], [46] and showed a huge improvement with
spatio-temporal self-attention module [39]. Our proposed
model also incorporates attention. While various works have
employed context information [11], [23], [15], social interac-
tions [1] or action classes [2], [10] as conditions, this paper
focuses on conditioning solely on the observation sequences.

Deterministic models [39], [36] offer satisfactory predic-
tion accuracy, yet they lack the ability to generate diverse
and multi-modal outputs compared to stochastic models [63],
[4], [3], [52], [35], [40], [60]. In this category, Variational
AutoEncoders (VAEs) have been widely adopted due to
their strength in representation learning [45], [63], [4], [3].
Generative models, particularly diffusion models, have been
recently utilized to model data distributions with remarkable
results in image synthesis [18], [50], image repainting [34]
and text-to-image generation [51], [47]. Recently, they have
been used for time-series imputation [55], i.e., filling in
missing elements. However, it was not explored for human
motion. To the best of our knowledge, we are the first to
propose a diffusion model for human pose prediction, which
outperforms both stochastic and deterministic models.

Previous models perform poorly with partial noisy obser-
vations. A multi-task learning approach has been recently
suggested in [16] to address this issue, by implicitly disre-

garding noise in the data. We provide detailed comparisons
with [16], and show that explicitly denoising the input
leads to a generalizable solution, and that our temporally-
cascaded diffusion blocks better capture the spatio-temporal
relationships in the poses. Furthermore, we present a generic
framework that can be used to improve any existing state-
of-the-art model in a black-box manner.

III. METHOD

In this section, we first describe the notations and condi-
tional diffusion blocks, which are the fundamental elements
of our model. We then present our model and finally intro-
duce our generic framework.

A. Problem Definition and Notations

Let X = [X−O+1, X−O+2, . . . , X0, X1, . . . , XP ] ∈
R(O+P )×J×3 be a clean complete normalized sequence
of human body poses with J joints in O frames of ob-
servation and P frames of future. Each joint consists of
its 3D cartesian coordinates. The availability mask is a
binary matrix M ∈ {0, 1}(O+P )×J×3 where zero deter-
mines the parts of the sequence that are not observed due
to occlusions or being from future timesteps. Note that
the elements of M corresponding to P future frames are
always zero. With this notation, the observed sequence
X̃ = [X̃−O+1, X̃−O+2, . . . , X̃0, X̃1, . . . , X̃P ] is derived
by applying the element-wise product of M into X and
adding a Gaussian noise ε ∼ N (0, I) in non-masked area
X̃ = M � X + (1 − M)ε. The model predicts X̂ =
[X̂−O+1, X̂−O+2, . . . , X̂0, X̂1, . . . , X̂P ] and the objective is
lowering |X̂ −X| � (1−M) given X̃ .

B. Conditional Diffusion Blocks

We propose a conditional diffusion block, inspired by [55],
which contains multiple residual layers. Each layer consists
of two consecutive transformers with the same input and
output shapes. The first (temporal) transformer is responsible
for modeling the temporal behavior of data. Its output is then
fed to the second (spatial) transformer to attend to the body
pose within each frame.
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Fig. 3: An illustration of the pre-processing and post-processing framework. The pre-process diffusion block denoises the
noisy observation sequence. The repaired observation is then given to a frozen predictor. The output of the predictor model
is passed to TCD to perform the post-processing step and refine its predictions.

At training time, a Gaussian noise with zero mean and
pre-defined variance is added to the input pose sequence s0

to make a noisier version s1. This process is repeated for T
steps such that the output sT will be close to a pure Gaussian
noise in the non-masked area:

q(st|st−1) =M�st−1+(1−M)�N (st;
√
1− βtst−1, βtI),

(1)
where q denotes the forward process, and βt is the variance
of the noise in step t, determined using a scheduler. We use
the cosine noise scheduler in our formulations, which was
first introduced in [44]:

βt = 1− f(t)

f(t− 1)
, f(t) = cos2

(
t/T + c

1 + c
· π
2

)
, (2)

where c is a small offset and is set to 0.008 empirically.
The cosine noise scheduler provides a smoother decrease
in input quality than other popular schedulers, such as
quadratic and linear [44], enabling more accurate learning of
step noise variances in our problem. The network learns to
reverse the diffusion process and retrieve the clean sequence
by predicting the cumulative noise that is added to st as
described in DDPM [25].

At inference time, the model begins with an incomplete
and noisy input sequence sT , where Gaussian noise is put
in the non-masked area and observed data in the masked
area. Subsequently, the model iteratively predicts the poses
sT−1, . . . , s0 through an iterative process by subtracting the
additive noise learned during training from the output of the
preceding step, until a clean output approximating the ground
truth is obtained.

C. Temporal Cascaded Diffusion (TCD)

We illustrate our main model, which consists of a short-
term and a long-term diffusion blocks, in Figure 2. The
short-term block takes X̃ as input and predicts the first K
frames of the future [X̂1 . . . X̂K ], along with the observation
frames [X̂−O+1 . . . X̂0]. The long-term block is tasked with
predicting the remaining frames of the future [X̂K+1 . . . X̂P ],
utilizing both the observation and the output of the short-term
block. Note that during training, both blocks are trained using
ground-truth input; however, at inference time, the average
of five samples of the short-term block is supplied to the
long-term block.

Cascading two diffusion models improves overall and
particularly long-term forecasting due to the division of
the complex task. In other words, the short-term prediction

block focuses on predicting a limited number of frames, and
thanks to its accurate short-term predictions, the long-term
prediction block acquires more data, thus allowing it to focus
its capacity on longer horizons.

D. Pre-processing and Post-processing

Given a frozen pose prediction model, we can enhance its
performance through pre-processing by repairing its input se-
quence, and through post-processing by refining its outputs.
This framework is illustrated in Figure 3.

a) Pre-Processing: Since most of the existing pose
prediction models are unable to handle noisy observations,
we present a simpler version of our model that serves
as a pre-processing step for denoising the observations
only. This module takes the noisy observation sequence
[X̃−O+1, X̃−O+2, . . . , X̃0] as input and outputs a repaired
sequence [X̂−O+1, X̂−O+2, . . . , X̂0]. The architecture of this
model is similar to TCD, yet predicting within a single
stage, with both the input and output sequences containing
O frames. Our precise repair strategies allow any pose
prediction models trained on complete datasets to predict
reasonable poses in noisy input conditions.

b) Post-Processing: Furthermore, we want to im-
prove the prediction results of existing models. We
feed the results of any black-box pose prediction
model [X̃1, . . . , X̃P ] concatenated with repaired observation
[X̂−O+1, X̂−O+2, . . . , X̂0] as the input to our TCD and
retrain it to predict better. The initial prediction acts as
the starting point that is gradually shifted toward the real
distribution by our post-processing.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: We evaluate the performance of all ap-
proaches on four widely-used 3D pose prediction datasets:

Human3.6M [26] is the largest benchmark dataset for
human motion analysis, comprising 3.6 million body poses.
It consists of 15 complex action categories, each performed
by seven actors individually. The training set comprises
five subjects, and the validation and test sets comprise two
different subjects. We train our models on all action classes
concurrently. The original 3D pose skeletons in the dataset
consist of 32 joints, but different subsets of joints have been
used in previous works to represent human poses. To ensure
a fair and comprehensive comparison, we consider three
different settings for the dataset as follows:



Human3.6M [26] HumanEva-I [53]

Model ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ ADE ↓ FDE ↓

Pose-Knows [58] 461 560 522 569 269 296
MT-VAE [61] 457 595 716 883 345 403
HP-GAN [6] 858 867 847 858 772 749
BoM [7] 448 533 514 544 271 279
GMVAE [19] 461 555 524 566 305 345
DeLiGAN [22] 483 534 520 545 306 322
DSF [62] 493 592 550 599 273 290
DLow [63] 425 518 495 531 251 268
Motron [52] 375 488 – – – –
Multi-Objective [35] 414 516 – – 228 236
GSPS [40] 389 496 476 525 233 244
STARS [60] 358 445 442 471 217 241
TCD (ours) 356 396 463 445 199 215

TABLE I: Comparison with stochastic models on Human3.6M [26] Setting-A and HumanEva-I [53] at a horizon of 2s.

• Setting-A: 25 observation frames, 100 prediction
frames at 50 frames per second (fps), with the subset
of 17 joints to represent the human pose;

• Setting-B: 50 observation frames, 25 prediction frames
down-sampled to 25 fps, with the subset of 22 joints to
represent the human pose;

• Setting-C: 25 observation frames, 25 prediction frames
down-sampled to 25 fps, with the subset of 17 joints to
represent the human pose.

AMASS (Archive of Motion capture As Surface
Shapes) [37] is a recently published human motion dataset
that combines 18 motion capture datasets, totaling 13,944
motion sequences from 460 subjects performing various
actions. We use 50 observation frames down-sampled to 25
fps with 18 joints, as in previous studies.

3DPW (3D Poses in the Wild) [56] is the first dataset with
accurate 3D poses in the wild. It contains 60 video sequences
and each pose is described with an 18-joint skeleton, similar
to the AMASS dataset. We use the official instructions to
obtain training, validation, and test sets.

HumanEva-I [53] includes three subjects captured at 60
fps. Each person has 15 body joints. We remove the global
translation and use the official train/test split of the dataset.
The prediction horizon is 60 frames (1 second) given 15
observed frames (0.25 seconds), similar to [40].

2) Other Implementation Details: We train our models
using the Adam optimizer [28], with a batch size of 32 and
a learning rate of 0.001. The learning rate is decayed by a
factor of 0.1 at 75% and 90% of the total epochs. Our model
consists of 12 layers of residual blocks and 50 diffusion steps
by default. In TCD, the length of short-term prediction K is
set to 20% of the total prediction length P . Each transformer
has 64 channels and 8 attention heads.

3) Evaluation Metrics: We measure the Displacement
Error (DE), in millimeters (mm), over all joints in a frame.
Then, we report the Average Displacement Error (ADE),
which is the average DE across all prediction frames, and/or
the Final Displacement Error (FDE), which is the DE in
the final predicted frame. We also report the multi-modal
versions of ADE (MMADE) and FDE (MMFDE), follow-
ing [40]. We additionally report ADE for the missing joints

of the observation frames in the repairing task (r-ADE).

B. Baselines

We compare our model with several recent methods,
including stochastic [40], [63], [52], [35], [60] and deter-
ministic approaches [42], [31], [41], [39], [36], [54], [64]
when possible. Note that some methods are not open-source
and have different settings than ours. We also include Zero-
Vel as a competitive baseline. Zero-Vel is a simple model that
predicts the last observed pose for all future frames.

C. Comparisons with the State of the Art

We separate our experiments into three different settings:
we first compare to other stochastic approaches, then to
deterministic ones, and finally evaluate on noisy scenarios,
with missing or noisy observation data.

1) Comparisons with Stochastic Approaches: We evaluate
our model on two datasets, Human3.6M [26] Setting-A
and HumanEva-I [53], and compare it with other stochastic
approaches in Table I. Each model is sampled 50 times given
each observation sequence. TCD (ours) clearly outperforms
all previous works in terms of accuracy of the best sample
(as measured by ADE and FDE) and multiple samples (as
measured by MMADE and MMFDE).

2) Comparisons with Deterministic Approaches: We then
compare our model to deterministic approaches on Hu-
man3.6M [26] Setting-B, tabulated in Table II. To compare
with deterministic models, our model is sampled five times,
and the best sample is considered. Our proposed model sur-
passed previous works in the short-term and with a marked
margin in the long-term, thanks to our two-stage prediction
strategy. The detailed results of our model’s performance
on all categories of Human3.6M, along with comparisons
with models that are not reported in standard settings,
can be found in the appendix. We have also included the
results of two previous state-of-the-art models that have been
post-processed by our generic framework at the bottom of
Table II. Note that as the input data is complete, we only add
post-processing (TCD) to their outputs. The improvements
from our framework are non-negligible and can even beat
our original model. Our two-stage prediction reveals a more



Model 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 23.8 76.0 107.4 121.6 131.6 136.6
Res. Sup. [42] 25.0 77.0 106.3 119.4 130.0 136.6
ConvSeq2Seq [31] 16.6 61.4 90.7 104.7 116.7 124.2
LTD-50-25 [41] 12.2 50.7 79.6 93.6 105.2 112.4
HRI [39] 10.4 47.1 77.3 91.8 104.1 112.1
PGBIG [36] 10.3 46.6 76.3 90.9 102.6 110.0
TCD (ours) 9.9 48.8 73.7 84.0 94.3 103.3

HRI [39] + TCD (ours) 10.3 47.3 72.9 83.8 94.0 102.9
PGBIG [36] + TCD (ours) 10.2 46.1 72.4 83.6 93.9 102.8

TABLE II: Comparison with deterministic models on Human3.6M [26] Setting-B in FDE (mm) at different horizons.

AMASS [37] 3DPW [56]

Model 560ms 720ms 880ms 1000ms 560ms 720ms 880ms 1000ms

Zero-Vel 130.1 135.0 127.2 119.4 93.8 100.4 102.0 101.2
convSeq2Seq [31] 79.0 87.0 91.5 93.5 69.4 77.0 83.6 87.8
LTD-10-25 [41] 57.2 65.7 71.3 75.2 57.9 65.8 71.5 75.5
HRI [39] 51.7 58.6 63.4 67.2 56.0 63.6 69.7 73.7
TCD (ours) 49.8 54.5 60.1 66.7 55.4 61.6 67.9 73.4

TABLE III: Comparison with deterministic models on AMASS [37] and 3DPW [56] in FDE (mm) at long horizons.
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Fig. 4: Qualitative results on Human3.6M [26] Setting-B.
The left part of each row shows the input observation, while
the right part displays the predicted poses superimposed on
the ground truth.

pronounced benefit for longer horizons, which suggests that
starting with a better initial guess can better shift the pose
sequence toward the real distribution.

Substantial long-term improvement can be observed in
AMASS [37] and 3DPW [56] as well. Similar to previous
works, we train our model on AMASS and measure the FDE
on both datasets. The comparison with models reporting in
this setting is in Table III. Note that for faster training, K = 0
was considered in this experiment.

Qualitative results on Human3.6M are shown in Figure 4.
Predictions from our model are displayed along with pre-
dictions from several baselines and are superimposed on
the ground-truth poses for direct comparison. Our model
has successfully learned the data distribution, resulting in

accurate and realistic poses; for instance, the hand movement
is natural when the feet move while HRI has fixed hands and
PGBIG has a momentum that avoids large hand movements.
Moreover, post-processing can be used to further refine the
predicted pose and shift it toward the ground truth.

3) Comparisons on Noisy Observation Data: We now
examine the performance of models in the realistic scenario
of noisy observations, since occlusions and noise are com-
monly seen in practice. To simulate occlusions, we remove
40% of the left arm and right leg from the observations of
Human3.6M Setting-B, both during training and evaluation.
The results in the top half of Table IV show that the state-
of-the-art models perform inadequately when the observation
is noisy, whereas our model achieves results close to those
of the clean input observation. Our pre-processing module
repairs the observation sequences before feeding to the
state-of-the-art models and Zero-Vel, resulting in significant
improvements in forecasting performance. MT-GCN [16]
was designed to provide accurate predictions in incomplete
observations. We compared our model to it and some other
prior models and present the results on Human3.6M Setting-
C in the first column of Table V. Our model achieved a
remarkable improvement of 33.2mm in FDE at 1s horizon
(30% improvement) over MT-GCN. It should be noted that
the models in the upper part of the table received repaired
sequences using MT-GCN’s own preprocessing, while the
rest received noisy sequences.

We analyzed the performance of our model in several
occlusion patterns masks M that are applied to input data:

• Random Leg, Arm Occlusions: leg and arm joints are
randomly occluded with a probability of 40%;

• Structured Joint Occlusions: 40% of the right leg joints
for consecutive frames are missing;

• Missing Frames: 20% of the consecutive frames are
missing;

• Gaussian Noise: Gaussian noise with a standard devia-



Model 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 84.9 138.2 169.9 184.2 193.7 198.2
HRI [39] 65.2 104.5 130.0 141.6 151.1 157.1
PGBIG [36] 67.0 107.1 132.1 143.5 152.9 158.8
TCD (ours) 11.2 51.3 75.4 85.4 95.4 104.5

Pre(ours) + Zero-Vel 24.1 76.3 107.6 121.7 131.7 136.7
Pre(ours) + HRI [39] 11.4 48.6 78.3 92.7 105.0 112.8
Pre(ours) + PGBIG [36] 11.1 47.9 77.2 91.7 103.5 110.8
Pre(ours) + TCD (ours) 10.8 49.9 74.4 84.9 95.1 104.2

TABLE IV: Comparison on noisy observation data and pre-
processed observation data (Pre(ours)+) on Human3.6M [26]
Setting-B in FDE (mm) at different horizons.

Model
Random

Leg, Arm
Occlusions

Structured
Joint

Occlusions

Missing
Frames

Gaussian Noise
σ = 25 σ = 50

R+TrajGCN [41] 121.1 131.5 – 127.1 135.0
R+LDRGCN [17] 118.7 127.1 – 126.4 133.6
R+DMGCN [32] 117.6 126.5 – 124.4 132.7
R+STMIGAN [24] 129.5 128.2 – – –

MT-GCN [16] 110.7 114.5 122.0 114.3 119.7
TCD (ours) 77.5 77.2 80.5 81.9 84.9

TABLE V: Comparison on noisy observation data on Hu-
man3.6M [26] Setting-C in FDE (mm) at a horizon of 1s. The
upper part of the table contains models that received repaired
sequences (R+), while the lower part contains models that
received noisy sequences.

Train and Test Missing Ratio

Model 10% 20% 30% 40%

MT-GCN [16] 109.4 / 8.6 110.5 / 13.7 112.3 / 18.7 114.4 / 24.5
TCD (ours) 77.1 / 2.2 77.2 / 2.3 77.6 / 2.6 79.1 / 2.9

TABLE VI: Results of motion prediction and sequence re-
pairing on Human3.6M [26] Setting-C with varying amounts
of randomly occluded joints in input data in FDE (mm) at a
horizon of 1s / r-ADE (mm) of missing elements.

tion of σ = 25 or σ = 50 is added to the coordinates
of the joints, and 50% of the leg joints are randomly
occluded.

The results of training and evaluating our model on these
observation patterns, in FDE at a prediction horizon of 1
second on Human3.6M Setting-C, are presented in Table V.
Our model outperformed previous works in different patterns
of occlusions and noises in input that can occur in the real
world. Furthermore, we observed that missing 5 consecutive
frames is more challenging than missing a part of the body in
10 consecutive frames, as the network can recover the latter
with spatial information.

To have a thorough comparison with MT-GCN, we trained
four models by varying the percentage of joints randomly re-
moved from the pose observation sequence. The performance
of sequence repairing (r-ADE of the occluded observation
sequence) and motion prediction (FDE at 1-second horizon)
is presented in Table VI. Our model exhibited a negligible
error of 2.9mm in repairing with up to 40% of all joints
missing, whereas MT-GCN exhibited an error of 24.5mm.
Indeed, our model achieved more than 31% lower FDE
compared to MT-GCN in forecasting.

D. Ablations Studies

Here, we investigate different design choices of the net-
work and report ADE on Human3.6M [26] Setting-B. For
faster training, only a fifth of the dataset was utilized in this
section. The full model yielded an ADE of 63.3mm. When
predicting in one stage, without any subdivisions, the ADE
increased to 65.5mm due to erroneous predictions in longer
time frames. Conversely, when predicting in three stages, i.e.,
20%, 20%, and 60%, the performance dropped to 66.9mm,
as cascading multiple stochastic processes leads to either
random outcomes or a lack of diversity. This illustrates the
efficacy of two-stage prediction. Another important factor
is the length of short-term prediction. In our experiments, a
prediction of P = 25 frames was made with K = 5. A lower
K = 2 reduced the benefits of two-stage prediction (ADE of
65.1mm). On the other hand, a higher K = 10 made short-
term prediction more difficult, leading to an increased ADE
of 66.6mm.

We tested a quadratic scheduler instead of our cosine
scheduler and it increased ADE by 1mm. Our full model
employed 12 residual layers in its diffusion blocks; how-
ever, decreasing this number to 4 resulted in a decrease
in performance by 3mm. We refrained from utilizing more
than 12 residual layers due to the considerable negative
influence on the sampling time. Moreover, we conducted
several experiments on the architecture of the transformers
and found that spatial transformer and time transformer both
facilitated the learning of spatio-temporal features of the pose
sequence. Eliminating either of these resulted in an ADE of
74.5mm and 261.1mm, respectively.

V. CONCLUSION

In this work, we proposed a denoising diffusion model for
3D human pose prediction suitable for noisy input observa-
tions occurring in the wild. Our model predicted future poses
in two stages (short-term and long-term) to better capture
human motion dynamics, achieved superior performance
compared to the state-of-the-art on four datasets, including
both clean and noisy input settings. We then leveraged
it to create a generic framework that is easily applicable
to any existing predictor in a black box manner in two
steps: pre-processing to repair the observations and post-
processing to refine the predicted poses. We have applied it
to several previous predictors and enhanced their predictions.
The high computational complexity of diffusion models is a
well-known challenge, and future studies may explore ways
to accelerate the model’s performance without sacrificing
accuracy.
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APPENDIX

Here, we extend our comparisons in Section IV-C.2:
1) We compared our model’s performance with the mod-

els that reported ADE in Table VII. Our setting was
changed to predict 25 frames given 10 observation
frames on the Human3.6M dataset down-sampled to 25
fps with the subset of 22 joints (Setting-D), following
the settings of [64]. The evaluation of the models was
conducted on all actions except walking together. Our
model outperforms those GCN-based models.

Model 80ms 160ms 320ms 400ms 560ms 1000ms

Zero-Vel 18.1 28.7 46.9 54.6 67.7 93.3
STSGCN [54] 10.2 17.3 33.5 38.9 51.7 77.3
GAGCN [64] 10.1 16.9 32.5 38.5 50.0 72.9
TCD (ours) 7.4 14.0 27.7 33.9 44.7 66.5

TABLE VII: Comparison with deterministic models on Hu-
man3.6M [26] Setting-D in ADE (mm) at different prediction
horizons.

2) We conducted another experiment to compare our
model’s performance with others that reported their
results on Human3.6M Setting-E, as shown in Table
VIII. In this setting, 25 frames are predicted given 10
observation frames down-sampled to 25 fps with the
subset of 17 joints. Our model outperformed others,
particularly in longer horizons.

Model 80ms 160ms 320ms 400ms 560ms 1000ms

Zero-Vel 17.1 31.9 54.8 63.8 78.3 100.0
LDRGCN [17] 10.7 22.5 45.1 55.8 – 97.8
MPT [33] 8.3 18.8 39.0 47.9 65.3 96.4
TCD (ours) 8.3 18.8 37.8 44.9 55.9 76.9

TABLE VIII: Comparison with deterministic models on Hu-
man3.6M [26] Setting-E in FDE (mm) at different prediction
horizons.

3) In Table II, we compared the performance of different
models on Human3.6M [26] Setting-B. The detailed
results on all categories are reported in Table IX.
We observe that in almost all categories, ours beats
previous models.



Scenarios Walking Eating Smoking Discussion
Model 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 33.9 109.8 145.9 154.4 150.7 140.2 16.5 55.3 81.3 94.4 100.7 102.1 17.3 57.1 80.3 91.4 98.1 101.1 24.5 76.8 108.7 123.5 131.5 135.3
Res. Sup. 23.2 61.0 71.6 72.5 76.0 79.1 16.8 53.5 74.9 85.9 93.8 98.0 18.9 57.5 78.1 88.6 96.6 102.1 25.7 80.0 109.5 122.0 128.6 131.8

convSeq2Seq 17.7 56.3 72.2 77.2 80.9 82.3 11.0 40.7 61.3 72.8 81.8 87.1 11.6 41.3 60.0 69.4 77.2 81.7 17.1 64.8 98.1 112.9 123.0 129.3
LTD 12.3 39.4 50.7 54.4 57.4 60.3 7.8 31.3 51.5 62.6 71.3 75.8 8.2 32.8 50.5 59.3 67.1 72.1 11.9 55.1 88.9 103.9 113.6 118.5
HRI 10.0 34.2 47.4 52.1 55.5 58.1 6.4 28.7 50.0 61.4 70.6 75.7 7.0 29.9 47.6 56.6 64.4 69.5 10.2 52.1 86.6 102.2 113.2 119.8

PGBIG 10.6 36.6 49.1 53.0 56.0 58.6 6.3 28.7 49.2 60.4 68.9 73.9 7.1 30.1 49.2 58.9 66.4 71.2 9.9 50.9 86.2 102.3 112.8 118.4
Ours 9.9 35.7 44.1 46.2 49.8 53.6 6.1 29.0 44.5 52.0 59.2 65.1 6.6 31.4 47.6 55.2 62.4 68.1 9.6 54.9 85.7 96.2 103.6 110.9

Scenarios Directions Greeting Phoning Posing
Model 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 18.8 64.4 91.6 103.8 114.9 121.1 30.8 97.3 130.6 144.8 156.3 160.5 19.9 66.8 96.5 111.0 121.6 127.5 24.7 87.2 132.4 157.9 179.8 195.0
Res. Sup. 21.6 72.1 101.1 114.5 124.5 129.5 31.2 96.3 126.1 138.8 150.3 153.9 21.1 66.0 94.0 107.7 119.1 126.4 29.3 98.3 140.3 159.8 173.2 183.2

convSeq2Seq 13.5 57.6 86.6 99.8 109.9 115.8 22.0 82.0 116.9 130.7 142.7 147.3 13.5 49.9 77.1 92.1 105.5 114.0 16.9 75.7 122.5 148.8 171.8 187.4
LTD 8.8 46.5 74.2 88.1 99.4 105.5 16.2 68.7 104.8 119.7 132.1 136.8 9.8 40.8 68.8 83.6 96.8 105.1 12.2 63.1 110.2 137.8 160.8 174.8
HRI 7.4 44.5 73.9 88.2 100.1 106.5 13.7 63.8 101.9 118.4 132.7 138.8 8.6 39.0 67.4 82.9 96.5 105.0 10.2 58.5 107.6 136.8 161.4 178.2

PGBIG 7.2 43.5 73.1 88.8 100.5 106.1 13.4 63.1 100.4 117.7 130.5 136.1 8.4 38.3 66.3 82.0 95.4 103.3 9.8 56.5 101.5 127.8 149.9 165.3
Ours 7.0 46.9 70.6 79.8 90.7 100.3 13.0 68.8 98.2 106.2 116.4 126.1 8.0 39.6 65.1 77.3 88.8 98.0 9.0 59.7 99.5 120.3 138.5 154.1

Scenarios Purchases Sitting Sitting Down Taking Photo
Model 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 27.0 80.6 112.1 127.2 139.7 148.0 17.0 56.0 85.2 101.0 114.4 122.7 24.5 74.8 111.0 129.6 144.4 155.1 17.0 57.2 88.4 105.2 118.3 127.2
Res. Sup. 28.7 86.9 122.1 137.2 148.0 154.0 23.8 78.0 113.7 130.5 144.4 152.6 31.7 96.7 138.8 159.0 176.1 187.4 21.9 74.0 110.6 128.9 143.7 153.9

convSeq2Seq 20.3 76.5 111.3 129.1 143.1 151.5 13.5 52.0 82.4 98.8 112.4 120.7 20.7 70.4 106.5 125.1 139.8 150.3 12.7 52.1 84.4 102.4 117.7 128.1
LTD 15.2 64.9 99.2 114.9 127.1 134.9 10.4 46.6 79.2 96.2 110.3 118.7 17.1 63.6 100.2 118.2 133.1 143.8 9.6 43.3 75.3 93.5 108.4 118.8
HRI 13.0 60.4 95.6 110.9 125.0 134.2 9.3 44.3 76.4 93.1 107.0 115.9 14.9 59.1 97.0 116.1 132.1 143.6 8.3 40.7 72.1 90.4 105.5 115.9

PGBIG 12.9 60.1 95.6 111.1 123.1 130.6 9.0 42.5 74.7 91.3 105.2 114.0 14.5 58.0 95.7 114.9 130.1 140.8 8.1 40.1 72.0 90.2 105.2 115.4
Ours 12.1 60.9 88.9 100.0 112.3 123.3 8.7 43.8 71.3 85.2 98.5 108.1 14.1 61.3 94.2 110.3 124.6 135.7 8.2 42.6 70.5 84.8 96.5 106.9

Scenarios Waiting Walking Dog Walking Together Average
Model 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms 80ms 320ms 560ms 720ms 880ms 1000ms

Zero-Vel 21.8 72.4 104.6 117.1 125.8 130.3 37.0 99.6 126.7 140.9 154.9 160.8 26.5 85.9 116.5 121.8 123.1 122.7 23.8 76.0 107.4 121.6 131.6 136.6
Res. Sup. 23.8 75.8 105.4 117.3 128.1 135.4 36.4 99.1 128.7 141.1 155.3 164.5 20.4 59.4 80.2 87.3 92.8 98.2 25.0 77.0 106.3 119.4 130.0 136.6

convSeq2Seq 14.6 58.1 87.3 100.3 110.7 117.7 27.7 90.7 122.4 133.8 151.1 162.4 15.3 53.1 72.0 77.7 82.9 87.4 16.6 61.4 90.7 104.7 116.7 124.2
LTD 10.4 47.9 77.2 90.6 101.1 108.3 22.8 77.2 107.8 120.3 136.3 146.4 10.3 39.4 56.0 60.3 63.1 65.7 12.2 50.7 79.6 93.6 105.2 112.4
HRI 8.7 43.4 74.5 89.0 100.3 108.2 20.1 73.3 108.2 120.6 135.9 146.9 8.9 35.1 52.7 57.8 62.0 64.9 10.4 47.1 77.3 91.8 104.1 112.1

PGBIG 8.4 42.4 71.0 84.6 95.6 103.2 19.9 72.8 105.5 119.4 135.5 146.1 8.8 35.4 54.4 61.0 64.8 67.4 10.3 46.6 76.3 90.9 102.6 110.0
Ours 7.9 46.2 74.1 84.8 93.4 101.4 18.9 74.7 101.9 111.5 126.3 139.6 8.5 36.0 48.5 49.9 53.3 57.9 9.9 48.8 73.7 84.0 94.3 103.3

TABLE IX: Comparison with deterministic models on Human3.6M [26] Setting-B in FDE (mm) at different prediction
horizons in different actions. The best results are highlighted in bold, and the second-best ones are marked with underscores.


