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Abstract
Atypical aspects in speech concern speech that deviates from what is commonly considered

normal or healthy. In this thesis, we propose novel methods for detection and analysis of these

aspects, e.g. to monitor the temporary state of a speaker, diseases that manifest in speech,

or people that have trouble producing speech. To overcome data scarcity, most methods in

this thesis depend on auxiliary resources; to comply with clinicians, prior knowledge and

explainability are taken into account.

In the first part of this thesis, we augment methods that aim to directly assess atypical speech

with convolutional neural networks (CNN). With the goal of inducing prior knowledge about

atypical speech into CNNs, we present findings in the context of Alzheimer’s disease detection

and severity estimation: We demonstrate that filtering the waveforms to focus on voice-source-

related frequencies and increasing the input segment length to capture prosody has beneficial

effects. Additionally, we explore incorporating phonetic knowledge into CNNs: By using CNN-

based models trained for articulation prediction that are fine-tuned on continuous sleepiness

estimation. Furthermore, we propose methods for detecting and estimating breathing im-

pairments in people with Parkinson’s disease. We compare hand-crafted features that model

voice-source information and embeddings extracted from CNNs and find they are well-suited.

The second part of this thesis presents a novel method for intelligibility assessment of people

with dysarthria. Intelligibility is a clinical measure of the severity of dysarthria. Typically as-

sessed as an aggregate over a set of utterances by a speaker, we emulate the subjective listening

tests by performing utterance verification using phonetic features on all of a speaker’s utter-

ances, aggregate them into the speaker’s intelligibility score, and demonstrate this scheme’s

robustness through several variations. The same scheme was applied to emulate a human

listening test, where listeners had to differentiate between before and after lip filler surgery.

The intelligibility assessment scheme is extended into pronunciation feedback: Expected pro-

nunciation is modeled by training one hidden Markov model per phoneme on healthy speech.

Given a prompt and its corresponding dysarthric utterance, we can estimate by how much a

phoneme deviates from its expected pronunciation and give a phoneme-level assessment.

Keywords: convolutional neural networks, articulatory features, Alzheimer’s disease, degree

of sleepiness, Parkinson’s disease, speech intelligibility, dysarthria
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Résumé
Les aspects atypiques de la parole signifient la parole qui s’écarte de ce qui est considéré

comme normal ou sain. Dans cette thèse, nous proposons de nouvelles méthodes de détection

et d’analyse de ces aspects, par exemple pour surveiller l’état temporaire d’un locuteur, les

maladies qui se manifestent dans la parole ou les personnes qui ont du mal à produire la

parole. Pour maitriser la pénurie des données, la plupart des méthodes de thèse dépendent

de ressources auxiliaires ; pour se conformer aux cliniciens, les intuitions humaines et des

méthodes interprétables sont prises en compte.

Dans la première partie de cette thèse, nous augmentons les méthodes qui visent à évaluer

directement la parole atypique avec des réseaux de neurones convolutifs (CNN). Dans le

but d’induire des connaissances préalables sur le discours atypique dans les CNN, nous

présentons des résultats dans le contexte de la détection de la maladie d’Alzheimer et de

l’estimation de la gravité : nous montrons que filtrer des signaux pour se concentrer sur les

fréquences liées à la source vocale et augmenter la longeur de segment d’entrée pour capturer

la prosodie ont des effets bénéfiques. De plus, nous explorons l’intégration des connaissances

phonétiques dans les CNN : en utilisant des modèles basés sur des CNN entraînés pour le

prédicteur d’articulation, qui sont affinés sur l’estimation continue de la somnolence. De

plus, nous proposons des méthodes de détection et d’estimation des troubles respiratoires

des personnes atteintes de la maladie de Parkinson. Nous comparons les fonctionnalités

artisanales qui modélisent les informations de source vocale et les intégrations extraites des

CNN et constatons qu’elles sont bien adaptées.

La deuxième partie de cette thèse présente une nouvelle méthode d’évaluation de l’intelli-

gibilité des personnes atteintes de dysarthrie. L’intelligibilité est une mesure clinique de la

sévérité de la dysarthrie. Généralement évalués comme un agrégat sur un ensemble d’énoncés

par un locuteur, nous émulons les tests d’écoute subjectifs en effectuant une vérification

d’énoncé sur tous les énoncés d’un locuteur, les agrégeons dans le score d’intelligibilité de

l’orateur et démontrons la robustesse de ce schéma à travers plusieurs variations. Le même

schéma a été appliqué pour émuler un test d’écoute humaine, où les auditeurs devaient faire la

différence entre avant et après la chirurgie de remplissage des lèvres. Le schéma d’évaluation

de l’intelligibilité est étendu à un retour de prononciation : la prononciation attendue est

modélisée en entraînant un modèle de Markov caché par phonème sur une parole saine. Nous

pouvons estimer de combien un phonème s’écarte de sa prononciation attendue et donner

une évaluation au niveau du phonème.
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Mots-clés : réseaux de neurones convolutifs, caractéristiques articulatoires, maladie d’Alzheimer,

degré de somnolence, maladie de Parkinson, intelligibilité de la parole, dysarthrie
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Zusammenfassung
Atypische Aspekte in Sprache meinen Sprache, die von dem abweicht, was allgemein als

normal oder gesund angesehen wird. In dieser Doktorarbeit schlagen wir neue Methoden zur

Detektion und Analyse dieser Aspekte vor, z.B. den vorübergehenden Zustand eines Sprechers,

Krankheiten, die sich in der Sprache manifestieren, oder Menschen die Schwierigkeiten beim

Sprechen haben. Um Datenknappheit zu kompensieren, sind die meisten Methoden in dieser

Arbeit auf Hilfsressourcen angewiesen; Um den Klinikern zu helfen, werden menschliche

Intuitionen und Erklärbarkeit der Methoden berücksichtigt.

Im ersten Teil dieser Arbeit ergänzen wir Methoden, die darauf abzielen, atypische Sprache

direkt mit Convolutional Neural Networks (CNN) zu erfassen. Mit dem Ziel, Wissen über atypi-

sche Sprache in CNNs zu induzieren, präsentieren wir Ergebnisse im Zusammenhang mit der

Erkennung und Schweregradschätzung von Alzheimer: Wir zeigen, dass das Filtern der Signale

den Fokus auf stimmquellenbezogene Frequenzen legt und längere Eingangssegmente erleich-

tern dem Modell Prosodie zu erkennen, was positive Auswirkungen auf die Ergebnisse hat.

Darüber hinaus untersuchen wir die Einbeziehung von phonetischem Wissen in CNNs: Durch

die Verwendung von CNN-basierten Modellen, die für Artikulationsprädiktor trainiert wurden

und auf kontinuierliche Schläfrigkeitsschätzung trainiert werden. Des Weiteren schlagen wir

Methoden zur Erkennung und Einschätzung von Atembeeinträchtigungen bei Menschen

mit Parkinson vor. Wir vergleichen Merkmale, die extrahierte Sprachquelleninformationen

modellieren mit Merkmalen aus CNNs, und finden, dass beide gut geeignet sind.

Der zweite Teil dieser Arbeit stellt eine neue Methode zur Bewertung der Verständlichkeit von

Menschen mit Dysarthrie vor. Die Verständlichkeit ist ein klinisches Maß für den Schweregrad

der Dysarthrie. Typischerweise als Aggregat über eine Reihe von Äußerungen eines Sprechers

bewertet, emulieren wir die subjektiven Hörtests, indem wir alle Äußerungen eines Sprechers

einzeln Verifizieren, und das in eine Verständlichkeitsbewertung des Sprechers aggregieren.

Wir zeigen die Robustheit dieses Schemas durch mehrere Variationen. Das gleiche Schema

wurde angewendet, um einen menschlichen Hörtest zu emulieren, bei dem die Zuhörer

zwischen vor und nach einer Lippenfüller-Operation unterscheiden mussten. Die Methode

zur Bewertung von Verständlichkeit wird zu einem Sprech-Feedback erweitert: Die erwartete

Aussprache wird modelliert, indem ein Hidden-Markov-Modell pro Phonem auf gesunder

Sprache trainiert wird. Zwischen einem Prompt und der dysarthrischen Äußerung können wir

abschätzen, um wieviel ein Phonem von seiner erwarteten Aussprache abweicht, und eine
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Zusammenfassung

Bewertung auf Phonemebene abgeben.

Stichwörter: Convolutional Neural Networks, Artikulationsmerkmale, Alzheimer, Parkinson,

Sprachverständlichkeit, Hidden Markov Modell, Dysarthrie
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1 Introduction

Atypical aspects in speech concern speech that deviates from what people consider healthy

normal speech. Depending on the strength of atypical aspects, they may reduce how in-

telligible speech is to the communication partner. Atypical aspects can stem from short-

term speaker states, from difficulties with language or from any part of our complex speech-

production process. The human speech signal can be used as a biological signal that can be

translated to biomarkers reflecting the phenotype of certain diseases, that manifest in speech.

Estimating these biomarkers offers the possibility of early detection, monitoring, and better

treatment of diseases. Compared to other biomarkers, capturing speech signals is cheap and

scalable and therefore has a large potential. Population screening for diseases is already part

of many healthcare systems (e.g. cancer screening); detection of atypical aspects in speech

can complement these screenings. Successful screening methods will save the healthcare

system money, and prolong lives, since there are diseases for which no cure exists, such as

Alzheimer’s disease, Parkinson’s disease, or cancer. The ideal scenario is illustrated in Figure

1.1 (generated with Stable Diffusion1): Screening and therapy should be available from the

comfort of our living room.

1.1 Motivation

Atypical aspects are often highly individual and vary even from day to day. This makes it

harder for human raters such as clinicians to rate/grade them. The medical context further

comes with particular challenges, such as respecting the ethics and privacy of speakers. Auto-

matic methods offer the potential to personalize speech analysis. In this thesis, the following

challenges are addressed:

1. Data scarcity, since speech is subject to data protection regulation, and in a clinical field

requires a physician’s or phonetician’s labeling, making it expensive. Self-reporting error

is an alternative, but it might be error-prone and not accepted by clinicians.

1https://github.com/CompVis/stable-diffusion
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Introduction

Figure 1.1: Screening scenario of “an older person doing an exercise on a tablet sitting in her
cozy living room” created with Stable Diffusion.

2. The definition of atypical speech and how it relates to normal speech. Labels of atypical

speech based on a clinician’s opinion. Normal speech is usually collected from speak-

ers without any known atypicality. However, speech is highly individual, making the

definition of an expected pronunciation or speaking style challenging.

3. Explainability is expected from methods in a clinical scenario so that physicians and

clinicians trust them. Likewise, end-users need to understand the results of the analysis.

The goal of this thesis is to develop novel methods for the detection and analysis of atypical

aspects in speech that address these challenges.

1.2 Contributions

Regarding the above-mentioned challenges, this thesis contributes to the following research

questions:

1. We explore methods to induce human knowledge and intuitions about diseases into

raw waveform CNN models. For Alzheimer’s detection, we show that CNNs benefit from

zero frequency filtering the signals before feeding to the network (Cummins et al., 2020).

Further, we discovered that CNNs benefit from longer input segments, experimentally,

we find 4 seconds to be optimal (Villatoro-Tello et al., 2021). To overcome data scarcity,

we pre-trained CNNs to predict articulatory features, then fine-tuned them to predict

sleepiness in speech, which yielded improvements (Fritsch et al., 2020).

2. For breathing impairment detection in Parkinson’s disease patients, we find that statis-

tics of features that describe the vocal vibrations as well as statistics of CNN-based

embeddings work well (Vásquez-Correa et al., 2021).
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1.3 Thesis outline

3. For dysarthric intelligibility estimation, we propose a new scheme that emulates a

human listening test by comparing dysarthric utterances to healthy reference and

estimating the deviation in a phonological posterior space (Fritsch and Magimai-Doss,

2021). This concept also verifies the results of an A-B listening of recordings from before

and after lip-filler surgery and evaluates synthetic pathological speech (Halpern et al.,

2021).

4. We propose an HMM-based method for modeling healthy speech to detect pronuncia-

tion errors in speakers with dysarthria. The method allows a phoneme-based analysis at

accuracies above 80%.

1.3 Thesis outline

Figure 1.2 shows a schematic overview of this thesis. Below, the thesis organization is briefly

described.

Chapter 2 provides a background to this thesis. It introduces some re-occurring terminology,

overviews speech production, different types of atypical speech, and overviews atypical speech

analysis literature.

Chapter 3 describes our proposed methods to induce prior knowledge and intuitions about

diseases into raw waveform CNN models. We present findings on Alzheimer’s disease and

sleepiness estimation.

Chapter 4 presents a comparison of methods to detect breathing impairment in Parkinson’s

disease patients. It describes a study of different types of features.

Chapter 5 presents novel methods to estimate dysarthric intelligibility that emulates human

listening tests.

Chapter 6 presents a novel pronunciation assessment method that models healthy pronuncia-

tion with HMMs to detect pronunciation errors in speakers with dysarthria.

Finally, Chapter 7 concludes the thesis and discusses future work.
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Figure 1.2: Schematic overview of this thesis.
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2 Background

This chapter introduces topics, that provide a background for the following chapters. We start

by explaining some re-occurring terms (cf. Section 2.1), then give a short overview of how

speech is produced in Section 2.2 and conclude with Section 2.4 on introducing some popular

approaches to atypical/paralinguistic speech assessment.

2.1 Terminology

In the upcoming chapters, some terms will be used that we would like to introduce beforehand:

Atypical speech: Speech that deviates from normal healthy speech. Atypical aspects are

noticeable aspects that go beyond the large degree of variability of speaking styles (Stemmer

et al., 2010).

Paralinguistics: A part of meta-communication that refers to the non-verbal aspects of

communication, such as prosody, emotions, and other temporary speaker states and traits.

Paralinguistics lies at the intersection of speech and social sciences.

Intelligibility: Can be defined as what is understood by the listeners of a phonetic realization

(Yorkston et al., 1996). In the context of disorders, De Bodt et al. (2002) defines it as a combina-

tion of the main dimensions of speech production: voice quality, articulation, nasality, and

prosody. Intelligibility is also used in the context of speech transmission or speech synthesis.

Phonation: The process of passing air from the lungs through the vocal folds to produce

speech sounds through quasi-periodic vibration (Titze and Martin, 1998).

Phoneme: A unit of sound of a language that allows distinguishing one word from another.

The phonemes of a language constitute the minimal set of symbols needed to describe the

pronunciations of all words in that language.

Phone: An acoustic realization of a speech sound. A Phone is any distinct speech sound and,

as opposed to phonemes, not specific to any language.
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Chapter 2. Background

Phonetic transcription: This form of transcription uses a sequence of phones to describe the

uttered speech.

Articulatory features: Articulatory features are characteristics of phones that refer to how

the articulators are positioned during the production of a phone (cf. Section 2.2). They can

be measured by means of an articulograph, but are in this thesis only derived from acoustic-

articulatory prediction.

2.2 Speech production – phonetic summary

Figure 2.1: Human vocal apparatus used to produce speech (Wikimedia, 2023).

Figure 2.1 illustrates the human vocal apparatus used to produce speech. Speech production

is a complex process that involves many body parts, yet is mostly controlled subconsciously.

Humans self-assess their speech through hearing; together, production and perception create

a so-called feedback loop. For accurate articulation, many body parts have to cooperate

correctly to transfer a message. Air from the lungs is sent, creating the right amount of air

pressure, to create the right air vibration (called phonation) through the trachea to the larynx.

The larynx has two vocal folds (Story, 2002). During respiration, the vocal folds are in an

abducted position (separated), leaving a gap between them which is called the glottis. During

phonation, the vocal folds adduct (move together), narrowing the glottis. This makes the

subglottal pressure build up below the vocal folds. When the pressure is high enough, the vocal

folds are forced to separate and the air stream is allowed to flow through the process. Once the

pressure has dropped, the vocal folds close back together. The subglottal pressure then builds

up again. This repeated process of opening and closing the glottis is called the glottal cycle and

is the basis of phonation. The rate of closure is typically referred to as fundamental frequency.

The fundamental frequency (F0) of the voice can be altered by the muscles surrounding the

vocal folds. However, when the vocal folds are in an abducted position, they do not vibrate

and there is no phonation, and unvoiced sounds can be produced (Titze and Martin, 1998).

The wave that passed through the vocal folds next goes through the vocal tract. It passes
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2.2 Speech production – phonetic summary

through the laryngeal cavity, the pharynx, the oral cavity, and the nasal cavity. The vocal tract

modulation shapes the sound wave and determines the resonances of the sounds, called

formant frequencies. The most conscious modulation is happening in the oral cavity, with the

jaw, tongue, and lips.

Articulation: The outcoming sound depends on the shape of the cavities and on how much

and where they are narrowed. These are broadly categorized into manner of articulation,

degree or height of constriction, and the place of constriction determines the place of articula-

tion (Ladefoged and Johnson, 2014). Naturally, articulation is continuous and not discrete but

it helps us to describe the sounds. An overview can also be found in the Appendix Table A.1.

In the following, we will give a short overview of the most important articulatory categories,

phonemes are denoted in ARPABET notation (Klautau, 2001).

Manner of articulation: describes the way of constriction in the pharyngeal and oral cavity

when producing consonants. Several categories can be distinguished (Ladefoged and Johnson,

2014): Plosives are stop sounds; the airflow is shortly interrupted, followed by a short burst

of air release, e.g. /p/, /b/, /k/, /t/, /d/. Fricatives are sounds characterized by a turbulent

air stream caused by a small gap in the vocal folds. Examples are /f/, /v/, /s/, /z/, /S/, /Z/.

Laterals are sounds by which an air stream passes along one or both sides of the tongue. An

example is /l/. Trills are sounds characterized by vibrations between the tongue and the place

of articulation, e.g. /r/. Nasals main characteristic is a lowered velum that connects the oral

and nasal cavities creating resonances. Examples of nasals are /m/, and /n/. Approximants

are produced with articulators approaching each other to create turbulent airflow, and closely

resemble vowels. Examples are /j/ or /w/.

Place of articulation: or the place of constriction in the vocal tract, can be distinguished into

the following categories: labial, where the lips make contact, e.g. /m/, /p/ or /b/. labiodental,

a constriction between the lower lip and teeth, e.g. /f/ or /v/, dental, where the tongue touches

the teeth. e.g. /th/, alveolar, where tongue tip touches the alveolar ridge, e.g. /t/, /s/, /n/, /d/,

/l/, /z/, /r/, retroflex are sounds, where the tongue has a curled shape backward behind the

alveolar ridge, e.g. /r/ and velar are sounds, where the back part of the tongue touches the

velum, e.g. /N/,/k/,/g/, /r/, /x/ and /G/.

Height of articulation: When producing vowels, the resonance frequencies of voiced sounds

are modulated by the vocal tract, oral and nasal cavity. Oral articulators are place of an

elevation of the tongue, the rounding of the lips, and the opening of the velum. Vowels with a

high position of the tongue and narrow opening between the pharynx and oral cavity include

/i/ or /y/. Examples of vowels with a low position of the tongue and wide opening are /a/ or

/o/. For vowels, four heights are commonly distinguished: high, mid-high, mid-low, and low.
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Chapter 2. Background

2.3 Atypical aspects in speech

This thesis covers studies on speech which differs from normal healthy normal, hence atypical

speech. These atypical aspects can stem from a variety of causes, such as neurological diseases,

and psychological disorders, such as depression. In the following, we will give a high-level

overview of the types of atypical speech in this thesis:

Parkinson’s disease is a neurodegenerative disease that affects the motor system. It is char-

acterized by tremors, rigidity, bradykinesia, and postural instability (Bloem et al., 2021). The

speech of patients with Parkinson’s disease is often characterized by a monotone voice, re-

duced loudness, reduced pitch range, reduced speech rate, reduced prosody, reduced intelligi-

bility, and reduced articulation. To date, there is no cure, but there are treatment options, such

as medication, which could be monitored by speech analysis. Overall severity is commonly

evaluated on the Unified Parkinson’s Disease Rating Scale (UPDRS) (Goetz et al., 2008) which

only contains one item on speaking capabilities. Speaking deficits are commonly rated on the

modified version of the Frenchay Dysarthria Assessment (m-FDA) scale (Vásquez-Correa et al.,

2018), in which a total of 13 items are evaluated. Seven aspects of the speech are rated, includ-

ing breathing, lips movement, palate/velum movement, laryngeal movement, intelligibility,

and monotonicity.

Alzheimer’s disease is a neurodegenerative disease that affects the memory and cognitive

functions (Scheltens et al., 2016). Alzheimer’s disease is known to rather affect language,

resulting in reduced vocabulary, more hesitations reduced speech rate. To date, there is no

cure, but medication to alleviate the symptoms could be monitored by speech analysis. AD is

frequently assessed on the Mini-Mental State Examination (MMSE), a 30-point questionnaire

on daily tasks to measure cognitive impairment (Folstein et al., 1975).

Sleepiness is a temporary speaker state, which can occur in healthy and sick people. Although

sleepiness is a multi-modal phenomenon, it manifests in speech. Typically, sleepiness affects

articulation and leads to slurred, less crisp pronunciation, mispronunciation, and effects on

speech quality such as tensed, nasal, or breathy speech.

Lip filler surgery is a cosmetic procedure that is used to increase the volume of the lips. The

procedure is performed by injecting a filler, such as hyaluronic acid into the lips. After surgery,

speaking needs to be adjusted and could lead to less crisp plosives. Medical professionals are

interested in the success of the surgery, which can only be performed after local anesthesia

has worn off.

Dysarthria is a collective term for neurological motor speech disorders. It is broadly character-

ized by reduced articulation, reduced intelligibility, reduced speech rate, and reduced prosody.

Dysarthria can be caused by a variety of neurological diseases, such as Parkinson’s disease,

stroke, multiple sclerosis, cerebral palsy, muscular dystrophy, brain injury, brain tumor, and

others. Speech intelligibility assessment of people with dysarthria, typically performed by

therapists, could be supported by automatic methods (Duffy, 2012).
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2.4 Literature overview of atypical speech ananlysis

Voice disorders are a collective term for disorders of the voice (Ramig and Verdolini, 1998).

They are broadly characterized by reduced loudness, reduced pitch range, reduced prosody,

reduced intelligibility, and reduced articulation. Voice disorders can be caused by a variety of

neurological diseases, such as Parkinson’s disease, stroke, multiple sclerosis, cerebral palsy,

muscular dystrophy, brain injury, brain tumor, and others. Speech intelligibility assessment

of people with voice disorders, typically performed by therapists, could be supported by

automatic methods.

Cleft lip and palate is a congenital opening in the upper lip and palate. It can be treated with

surgery, but it requires speech therapy, as people’s speech is often characterized as breathy,

hoarse, nasal, and low intensity (Schuster et al., 2006).

Laryngectomy is a surgical procedure to remove (parts of) the larynx due to cancer. As a result,

subjects can have trouble breathing, swallowing, and producing voiced sounds which has a

significant impact on intelligibility. However, the larynx can be partially restored. With the

help of speech therapy, rehabilitation options include esophageal speech, tracheoesophageal

speech, and the use of an electrolarynx (Pereira da Silva et al., 2015).

2.4 Literature overview of atypical speech ananlysis

In atypical speech analysis, the relevant information is often overlaid on the content of the

message. Besides prior knowledge, it is often not clear, what information is relevant for the task

or may differ across classes/labels. Figure 2.2 illustrates the standard building blocks of speech

analysis. Approaches can be differentiated by the speech material used, e.g. spontaneous

speech, sustained vowels, or read text. Regarding feature extraction, we broadly differentiate

conventional speech analysis (cf. Section 2.4.1) and neural network-based approaches (cf.

Section 2.4.2). For an assessment, features are input to a classifier or regressor. Choices range

from simple methods, such as k-nearest neighbors (Arjmandi and Pooyan, 2012), or Gaussian

mixture models (GMMs) (Dibazar et al., 2002; Godino-Llorente et al., 2017), The most popular

choice are support vector machines (SVMs) (Arjmandi and Pooyan, 2012; Bocklet et al., 2013),

since they perform well at low sample sizes and high-dimensional vectors or random forests

(Noroozi et al., 2017). Neural networks have also been used as classifiers, e.g. by (Berus et al.,

2018).

Feature extraction Classification/
regression Output

Recording

Figure 2.2: Simplified schematic of speech analysis.
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2.4.1 Conventional speech analysis

One challenge was and is to find a fitting representation for a task. Most conventional speech

analysis methods are based on spectrum short-term spectrum-based processing. A crude

solution has been acoustic low-level descriptors, such as mel-frequency cepstral coefficients

(MFCCs) or perceptual linear prediction (PLP) coefficients (Hönig et al., 2005). Tanner et al.

(2005) use statistics of long-term average spectra to assess voice characteristics before and

after dysphonia treatment, which was extended by Smith and Goberman (2014) to measure

voice characteristics of Parkinson’s patients. To assess the changes in speech production from

Parkinson’s disease, Skodda et al. (2011) calculated the values of the first two formants from

each vowel to analyze the vowel articulation by computing triangular Vowel Space Area (tVSA).

tVSA has also been used to detect vowel articulation problems after oral surgery in (van Son

et al., 2018). In (Vásquez-Correa et al., 2017b), Parkinson’s disease was classified by analyzing

the relationships between tVSA and other acoustic features from sustained vowel articulation.

Relevant information can also lie at the transition of sounds: In (Orozco-Arroyave et al., 2015),

the authors analyze voiced-unvoiced transitions to detect Parkinson’s disease in spontaneous

speech, the segments are modeled with MFCCs and spectral energies and fed into an SVM.

Since most short-term processing methods yield features for short segments, they need to

be aggregated into a per-utterance representation. Additionally, data is typically labeled on

a per-utterance basis or per-speaker basis. Commonly, statistical functionals such as mean,

standard deviation, skewness, kurtosis, and percentiles are computed, e.g. in (Bocklet et al.,

2013; Orozco-Arroyave et al., 2014b). A very exhaustive solution was proposed by Schuller et al.

(2013) that is typically referred to as the ComParE 2013 features: A feature set composed of 4

energy-related features (e.g. zero-crossing-rate), 55 spectral features (e.g. energy of different

frequency bands), 6 and voicing features (e.g. F0, jitter and shimmer) can be aggregated into a

per utterance representation by calculating a large variety of statistical functionals, forming

a 6373-dimensional vector. This representation still serves as a baseline for paralinguistic

tasks such as emotion recognition (Trigeorgis et al., 2016), Parkinson’s disease (An et al., 2015)

and even COVID-19 detection (Schuller et al., 2021). This idea was refined into the Geneva

Minimalistic Acoustic Parameter (GeMAPS) feature set. An extended version, eGeMAPS,

that contains cepstral features and formant-based features totals 88 features (Eyben et al.,

2016). As per the name, this more minimalistic feature set contains 18 features, of which

statistical functionals are computed, resulting in a 62-dimensional vector. Besides statistical

functionals, utterance-level representations can be derived from bag-of-audio-word (BoAW)

(Liu et al., 2010; Schmitt and Schuller, 2017). BoAW representations are typically derived

from a clustering algorithm, such as k-means, with a fixed number of centroids. This is

followed by vector quantization: Features are built by creating histograms of feature vectors’

closest centroids. BoAW representations are robust, time-invariant, and non-reconstructable,

which is good for privacy. i-vectors are another popular representation. Originally developed

for speaker verification, i-vectors follow a generative approach: MFCCs are modeled with a

Gaussian mixture model (GMM) i-vectors are then extracted through total variability analysis

(Dehak et al., 2010). They were used for sleepiness estimation in (Ravi et al., 2019).
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2.4.2 Neural network based speech analysis

More recently, deep learning-based methods have been applied for representation learn-

ing: x-vectors are utterance-level speaker embeddings from a neural network that is trained

on speaker classification (Snyder et al., 2018). Another popular approach is auto-encoder

embeddings: In (Freitag et al., 2017), a sequence-to-sequence denoising RNN-autoencoder

called auDeep-based embeddings is proposed. The authors propose to average frame-level

representations to obtain an utterance-level representation. In (Vasquez-Correa et al., 2020),

a CNN-based auto-encoder is trained on healthy speech data. These auto-encoder embed-

ding representations are then extracted for training a separate pathological speech classifier.

Another category of representations is pre-trained self-supervised embeddings, that were

developed for speech recognition, such as wav2vec 2.0 (Baevski et al., 2020). Similarly, frame-

level embeddings have to be aggregated into utterance-level representations before they are

fed to a classifier.

For end-to-end modeling, one main challenge is to avoid over-fitting, since neural networks

are ’data-hungry’. Common neural-network regularization is done with dropout, pooling, or

residual connections. In Bhati et al. (2019), LSTM Siamese networks were proposed for patho-

logical speech detection. Siamese networks are trained on pairs of input and share weights

in the first layers, which is beneficial to extract features that are problem-discriminative and

robust to non-relevant information. Another option is reducing the number of trainable

parameters. Since CNNs are common in speech analysis, dilated convolutions can be used

instead (Yu and Koltun, 2015): As applied in Li et al. (2019) for emotion recognition, dilated

convolutions use the size receptive field, but skipping values. A recent line of research is

fine-tuning pre-trained models. This was proposed for example for emotion recognition in

Chen and Rudnicky (2021).

2.5 Summary

In this chapter, we overviewed areas of research that are relevant to our work. We began with

re-occurring terminology in Section 2.1, followed by a description of the speech production

mechanism and articulation in Section 2.2. In Section 2.3, we gave the reader a basic idea of

the different types of atypical speech that are part of this thesis. In Section 2.4, we overviewed

the literature on atypical speech analysis.
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3 Inducing knowledge into raw wave-
form CNNs

Neural network-based atypical speech assessment can be carried out with different architec-

tures. System choices, such as type of input, layer type, number of layers, and cost function

can lead to a variety of model characteristics. In this chapter, we opted for a neural network

framework that assumes minimal prior knowledge about the problem. By directly using the

raw waveform as input, the CNN network can learn to extract features instead of feeding

hand-crafted features, e.g. spectrograms, which may not perfectly suit the task. This approach

has also been widely adopted for representation-learning, e.g. for wav2vec (Schneider et al.,

2019).

In this chapter, we investigate the impact of different design choices. To effectively estimate

speech production parameters, different aspects of the raw waveform CNN framework can

be exploited. We propose different methods, that improve efficiency by following different

intuitions about a certain speech production parameter to be estimated.

In Section 3.2 we investigate integrating prior knowledge to improve Alzheimer’s assessment.

In Section 3.3, we investigate integrating phonetic knowledge as a pre-training scheme for

sleepiness estimation. The networks trained in this section will also be used in Chapter 5.

3.1 Raw waveform convolutional neural networks

In this section, we describe the raw waveform CNN architecture used in the following chapters.

Originally developed for speech recognition (Palaz et al., 2013), raw waveform 1D-CNN is a

versatile architecture. A similar architecture has been applied to other tasks, such as speaker

verification (Muckenhirn et al., 2018), speaker recognition (Ravanelli and Bengio, 2018), gen-

der identification (Kabil et al., 2018), detection of spoofing of speaker verification systems

(Muckenhirn et al., 2017) or depression detection (Dubagunta et al., 2019). Additionally, popu-

lar raw waveform CNN applications include wavenet (van den Oord et al., 2016), and recently,

it is applied in self-supervised learning for models such as wav2vec (Schneider et al., 2019). In

the following, we will demonstrate, how the raw waveform CNN architecture can be used for
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Chapter 3. Inducing knowledge into raw waveform CNNs

an atypical speech assessment.

In Figure 3.1 we illustrate the framework: the network consists of a filter stage, which itself con-

sists of n convolution layers (conv), maximum pooling (maxp) and relu activations followed

by a multilayer perceptron (mlp). At the output, the CNN predicts a score per input segment,

where for (i) classification, a sigmoid output is used for binary classification and a softmax

output layer for multi-class problems, which results in a posterior probability, for which we

typically compute the loss with a (binary) cross-entropy loss function, and for (ii) regression,

a linear output layer is used typically, which results in a score, computing the loss from a mean

squared error (mse) loss function. We train randomly initialized models; a batch-size of 256

has proven a robust parameter. We mainly used the Adam optimizer (Kingma and Ba, 2014).

For training, we use a decaying learning schedule which halves the learning rate between 10−3

and 10−7 whenever the validation loss stopped reducing. For every input segment, the model

outputs a score. These scores are then averaged to get the per-utterance score.

Raw waveform
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... Filter stage x N
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Output
per wseq

Figure 3.1: Illustration of the proposed CNN architecture. wseq : input segment, N f : number
of filters, kW : kernel width, dW : kernel shifts.

Figure 3.1 also illustrates the processing at the first convolution layer. kW denotes the kernel

width in samples, dW denotes the stride or kernel shift in samples, wseq is the segment of

speech that is processed at one time frame and nF is the number of filters in the convolution

layer. In Palaz et al. (2019); Muckenhirn et al. (2018), it has been found that, by modifying

kW , different information related to the speech production mechanism can be learned. More

precisely, if kW covers a signal length of about 20 ms (segmental), the first convolution layer

tends to model voice-source-related information. Similarly, if kW covers a signal of about 2

ms of length (sub-segmental), the first convolution layer tends to model vocal tract system-

related information, such as formant information. We chose the input segment length as

wseq = 250ms (the average length of a syllable) and the shift as d w = 10ms unless specified

otherwise.

Architectures: Table 3.1 presents the architectures used. We differentiate based on the first

convolution layer kernel width: Depending upon the length of the filters in the first convo-

lutional layer, we distinguish (a) sub-segmental modeling (subseg), where kW = 30, span

over 2ms, equivalent to less than 1 pitch period, and (b) segmental modelling (seg), where
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3.2 Alzheimer’s assessment

kW = 300 spanning 20ms, equivalent to 1 to 5 pitch periods. The AF-CNN architecture uses

sub-segmental modeling, see Section 3.3. The classification stage consists of one hidden layer

with 100 units.

Table 3.1: CNN architectures. N f : number of filters, kW : kernel width, dW : kernel shifts, MP :
max-pooling.

Model Layer Conv MP
N f kW dW

subseg 1 128 30 10 2
2 256 10 5 3
3 512 4 2 -
4 512 3 1 -

seg 1 128 300 100 2
2 256 5 2 -
3 512 4 2 -
4 512 3 1 -

3.2 Alzheimer’s assessment

Alzheimer’s disease primarily affects cognitive functions (cf. 2.3), and has successfully been

assessed through analysis of language, typically manual transcripts (cf. Section 3.2.1). In this

section, we investigate the potential of raw waveform CNNs to assess Alzheimer’s disease from

speech and whether text-based systems can benefit from a fusion.

Dementia is a neurodegenerative disease and cause of major disability in the elderly pop-

ulation worldwide, with at least 10 million new cases reported every year (World Health

Organization, 2018). Alzheimer’s Disease (AD) is the most common cause of dementia (World

Health Organization, 2018; Alzheimer’s Association, 2017). Automatic early diagnosis systems

promise to help alleviate this societal burden with timely and optimal management.

In the following, some experiments were conducted as part of a collaboration with project

partners from the Training Network on Automatic Processing of PAthological Speech (TAPAS) –

a Horizon 2020 Marie Skłodowska-Curie Actions Innovative Training Network European Train-

ing Network. In (Cummins et al., 2020), we compared different contemporary acoustic- and

linguistics-based systems and explore combining the information learned and the potential

gains of multi-modal systems.

3.2.1 Related works

The literature on Alzheimer’s classification can be broadly divided by modality; text-based

approaches have been proven successful. In an early work by Fraser et al. (2016) the authors

show that linguistic features yield stronger performances in Alzheimer’s detection. In (Fritsch

et al., 2019), we showed that evaluating transcripts on two different language models, one built
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Chapter 3. Inducing knowledge into raw waveform CNNs

from control and one from Alzheimer’s transcripts, yields high discriminatory power. Other

linguistic systems utilize Global Vectors (GLoVe) word embeddings (Pennington et al., 2014) or

hierarchical attention neural network (Yang et al., 2016).

Among the submissions to the 2020 Interspeech ADReSS challenge, the best performing system

(Yuan et al., 2020) proposed using BERT and ERNIE models that were fine-tuned to perform

the classification task. In addition to the sequence of word embeddings, a forced alignment

was used to add symbols for different pause lengths, which at a granularity between 3 and 6

different symbols improved performance (e.g. short, medium, and long pauses). In (Koo et al.,

2020) propose a comparison of pre-trained word embeddings, of which Transformer-XL yields

better performance than the openAI’s GPT, even though being significantly bigger. Overall,

word-level embeddings from pre-trained language models have been used by a majority of

participants, while not much creativity was shown in using the audio data.

For acoustic systems, in paralinguistic scenarios, baselines frequently include Bag-of-Audio

Words (BoAW) system (Schmitt and Schuller, 2017). Additionally, we propose to test a Siamese

network (Bromley et al., 1994) as well as Convolutional Neural Network. At the time of publica-

tion, these three systems have not been used for Alzheimer’s recognition.

3.2.2 Proposed approach

We propose to compare three different state-of-the-art acoustic methods as well as two text-

based methods. Additionally, we examine if a fusion between acoustic and text-based systems

yields performance improvements, which would mean that they model complementary infor-

mation.

Among the three acoustic approaches, we proposed were: i) MFCC-based BOAW, that have

proven to robustly summarize acoustic characteristics on an utterance level, ii) SiameseNet,

which share CNN layers for feature extraction and that is trained with a contrastive loss, iii) a

1-D CNN end-to-end system that is trained on raw waveform, as described in Section 3.1. On

top of feeding the 1-D CNNs the raw signals, we propose to guide the network toward focusing

on voice source information. Towards that, we filter the signal with a zero frequency filter (cf.

Section 3.2.3). This filtering technique has already been successfully applied to depression

detection in Dubagunta et al. (2019).

We deployed two text-based systems: (i) a bidirectional LSTM network followed by an attention

layer (bi-LSTM-ATT) and (ii) a bi-directional hierarchical attention neural network (bi-HANN),

which is motivated by the hierarchical structure of language applies attention layers at word

and at sentence layers is a state-of-the-art text-based method (Pan et al., 2019).
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3.2.3 Zero frequency filtering

Zero frequency filtering (ZFF) is an algorithm designed for epoch extraction (Murty and

Yegnanarayana, 2008). An epoch is the instant of significant excitation of the vocal folds,

meaning in the glottal closure instance (in voiced sounds). Theoretically, the impulse-like

excitation characteristics in the time domain spread across all the frequencies equally well

represented in the frequency domain. The occurrence of the excitation impulses can therefore

be found as a deviation from the center frequency in a narrowband. The advantage of choosing

a zero frequency resonator filter is that the time-varying vocal-tract system does not affect the

discontinuities at 0 Hertz. The algorithm aims to remove these time-varying characteristics

of the vocal tract information from the signal that way, instead of modeling this information

explicitly. By putting two cascaded resonators at 0 Hz, the effect of vocal tract resonances is

minimized and the excitation signal can be extracted. A trend removal operation is necessary

to counteract the effects of the exponential growth/decay of the two 0 Hz resonators.

3.2.4 Database

The ADReSS challenge organizers provided audio data and corresponding transcripts per-

forming the Cookie Theft picture description task as well as meta-data such as age and gender

(Luz et al., 2020). The organizers provided a train and test set. Unfortunately, no standard

development set was proposed, which is why participants that proposed less compute-heavy

systems reported leave-one-speaker-out cross-validation results of the training set, whereas

others had to create their own folds for cross-validation. The challenge proposes a binary

classification task of AD, evaluated in terms of accuracy and F1-score, and a regression task of

estimating the patients’ score on the Mini-Mental State Exam (MMSE) (Folstein et al., 1975),

evaluated in terms of RMSE. The audio data was available in two different forms: full speech

files and segmented speech chunks. The segmented chunks were generated by applying a

log-energy threshold-based voice activity detector. The average length of a full recording is

2min24 and that was segmented into on average 24.86 segments.

Table 3.2: ADReSS database statistics.

Train Test
Gender [m/f] 24/30 11/13
Age 66.9±6.3 66.4±6.6
MMSE 17.0-±5.5 19.5±5.3
Length 2h09 1h06

3.2.5 Systems

We compare our proposed approaches to the best baselines from the challenge organizers.

The best performing acoustic system was ComParE features (cf. 2.4) fed into an SVM/SVR with

rbf kernel for classification/regression respectively. The best-performing linguistic system is a

17



Chapter 3. Inducing knowledge into raw waveform CNNs

feature set based on parts-of-speech tags that are again fed into an SVM/SVR with rbf kernel.

In our comparison of acoustic systems, we propose to use three different approaches: (i)

MFCC-based Bag-of-Audio-Words (BoAW) with 125 centroids, that are fed into an SVM/SVR

with a linear kernel for classification/regression task respectively, (ii) a CNN-based Siamese

Network trained on 16-second input segments of log-Mel spectrograms and (iii) raw waveform

CNNs with 250ms input segments of either raw audio or ZFF signals. We train our models on

the full recordings. The architectures used can be found in Table 3.1. As described in Section

3.1, we use a sigmoid output and a binary cross-entropy loss function for the classification

task and linear output with MSE loss.

The two text-based approaches are (i) bi-LSTM-ATT and (ii) bi-HANN. Both used 100-dimensional

GloVe word embeddings and a maximum word number of 200 per transcript to obtain a fixed-

length representation.

3.2.6 Results

In Table 3.3, we compare our systems to the challenge baseline systems on a 10-fold cross-

validation. On the classification task, most of our proposed acoustic systems outperform the

baseline both on train and test set, while the acoustic baseline has a strong RMSE result of 6.14.

We observe that the SiameseNet performs similarly to our own proposed raw waveform CNNs.

Raw waveform CNNs compare well to the other acoustic methods. Our main finding was

that ZFF signals showed a better performance than raw audio, even though Alzheimer’s is not

known to affect voice source, but has effects on prosody, e.g. in terms of self-consciousness

and emotions. As expected, the text-based bi-LSTM-Att and bi-HANN networks outperform

all acoustic methods. In the last row, we present the result of a late fusion. For the classification

task, we propose a majority voting of our four best systems. For regression, we proposed a

weighted average of scores, where the weights are determined on the development set. On the

test set, for both classification and regression, late fusion yielded performance gains over the

linguistic system, especially for the classification result.

Overall, in our comparison, acoustic get outperformed by linguistic methods, which is unsur-

prising given human transcripts are provided. Small gains were found when fusing acoustics

and linguistics approaches.

3.2.7 Increasing input segment length

To explore the full potential of raw waveforms for Alzheimer’s recognition, this work was con-

tinued to improve performance. In the previous section, we used a sub-segmental architecture

with input segments of 250ms of ZFF signals. Based on this result, we explore longer input

segments. As shown in Table 3.4, it was found that at the same configuration, an input segment

length of 4 seconds yields optimal performance for the classification task. Presumably, longer

input lengths better capture prosodic differences in Alzheimer’s language. These results were
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Table 3.3: A comparison of the proposed approaches on the ADReSS Challenge training and
test set. Results are the average performance across a nine-fold cross-validation.

Dev Test
Baselines Acc. F1 RMSE Acc. F1 RMSE
ComParE .565 - 7.29 .625 - 6.14
Linguistic .768 - 4.38 .750 - 5.20

Approach
BOAW125 MFCC .630 .623 7.05 .563 .561 6.88
SiameseNet .628 .731 – .708 .708 –
Raw signal CNN subseg .652 .721 10.1 .657 .731 12.05
Raw signal CNN seg .713 .762 8.89 .562 .667 8.93
ZFF signal CNN subseg .741 .780 7.58 .667 .692 6.67
ZFF signal CNN seg .684 .751 7.58 .583 .643 6.75
bi-LSTM-Att .842 .842 5.49 .813 .812 4.66
bi-HANN .827 .826 4.86 .729 .726 4.74
Fusion - Maj. / W-avg .831 .829 7.64 .852 .854 4.65

published in another fusion study (Villatoro-Tello et al., 2021).

Table 3.4: ADReSS test performance with a sub-segmental architecture and ZFF signal input at
different input segment lengths.

Dev Test
Input length Acc F1 RMSE Acc F1 RMSE
.250s .741 .780 7.58 .667 .692 6.67
1s .703 .754 7.91 .667 .652 9.12
4s .722 .764 7.67 .792 .821 7.06
8s .750 .787 8.73 .625 .667 8.26

In (Villatoro-Tello et al., 2021), we fused acoustic systems with a new text-based approach:

subjects’ lexical availability of a class is quantified on a per-transcript level. Lexical Availability

(LA) is psycho-linguistics-inspired and identifies the most accessible vocabulary of the inter-

viewed subject. A feature vector is constructed from the available lexicon of subject, as well

as its correlation to the average representation for a class. Notably, this representation is not

neural network-based. When feeding these representations to a logistic regressor, an accuracy

of .87 was achieved. When late-fusing of these results and the best result reported in Table 3.4,

an improved accuracy of .90 could be achieved, which is highly competitive with the results

reported by other challenge participants. Within this publication, in addition to Alzheimer’s

this assessment, the same experimental setup was applied to a depression detection task and

yielded a significant improvement. This validates the approach’s usefulness on cognitive tests.
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3.3 Integrating speech production knowledge

Speech-based degree of sleepiness estimation is an emerging research problem. In this section,

we investigate raw waveform CNNs to estimate the degree of sleepiness. Within this approach,

we also propose the integration of speech production knowledge through transfer learning.

3.3.1 Related works

Assessing sleepiness is relevant in scenarios, such as in preventing accidents or in evaluating

when to recommend a break. Furthermore, sleep deprivation increases the mortality risk.

To put this relevance into perspective: in 2016, the American think tank RAND reported an

estimated US$138 billion damage to the Japanese economy (2.92% of its GDP) caused by

sleepiness at work, which is why companies, among other things, offer incentives to sleep

more than six hours per night (Hafner et al., 2016). Although sleepiness is a multi-modal

phenomenon, speech is one of the cheapest modalities that can be captured, most notably in

a non-intrusive manner. Sleepiness can be subjectively assessed on the Karolinska Sleepiness

Scale (KSS) (Shahid et al., 2011), which ranges from 1 (extremely alert) to 9 (very sleepy) in

steps of one. In this work, we focus on developing objective or automatic methods to predict

sleepiness.

In the literature, estimating sleepiness has been addressed by investigating acoustic factors.

Traditionally, baseline systems used a large number of general-purpose low-level descriptors

(LLDs) such as short-term energy, short-term spectrum, voice-related features, and their

functionals, as in (Schuller et al., 2019). In (Schuller et al., 2014), Schuller et al. reviewed con-

tributions to the Interspeech 2011 Speaker State Challenge on sleepiness estimation, which

is labeled in terms of KSS. Sleepiness is considered a medium-term speaker state, meaning

effects that usually last a few hours. It is expected to generally affect motor coordination pro-

cesses and the cognitive processing of speech. This manifests in terms of changes in prosody

such as monotonic and flattened intonation, in shifted speech rate (Krajewski et al., 2010;

Vogel et al., 2010), in articulation, such as slurred, less crisp pronunciation, mispronunciation

(Bratzke et al., 2007) and in speech quality such as tensed, nasal, or breathy speech (Kostyk

and Rochet, 1998). Hönig et al. (2014) analyzed the LLDs extracted from the Interspeech

2011 Speaker State Challenge sleepiness data. They found that male sleepiness correlated

more with spectral changes such as less canonical pronunciation, whilst female sleepiness

correlated more with lowered F0.

More recently, as part of the Interspeech 2019 ComParE challenge, histogram representations

of clustered LLDs, known as bag-of-audio-words (BoAW), and feature representations from

sequence-to-sequence auto-encoders (S2SAE) trained on Mel-spectrograms were studied

(Schuller et al., 2019). In (Gosztolya, 2019) the authors created utterance-level Fisher vectors by

training a GMM on frame-level MFCCs, which are used for classification with SVM. Similarly,

Wu et al. (2019a) investigated the extraction of Fisher vectors from a large variety of acoustic

features. In (Elsner et al., 2019), the authors investigated raw waveform CNNs including data
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augmentation, such as inputting reverse samples, adding noise or using noisy labels. Yeh

et al. (2019) presented a system that uses frame-level eGeMaps features that were input to a

BLSTM-CNN network with attention. For data augmentation, an adversarial auto-encoder

was used to generate synthetic samples.

Additionally, border cases, e.g. samples with low and high KSS scores, that are intuitively more

relevant to detect, were selected for an additional classifier to be used for score fusion. Wu

et al. (2019b) aimed to address the ordinality of the KSS labels and introduce an ordinal triplet

loss that is used to train binary classifiers for each label individually. Ravi et al. (2019) used

between-frame entropy, a measure that correlates with speech rate, to detect outliers, and

create utterance-level iVectors from voice quality features.

While the above-mentioned contributions investigated many relevant acoustic aspects and

address issues such as the ordinality of the KSS labels or the imbalance of a data set to solve

sleepiness estimation as a classification/regression problem, acoustic-phonetic changes in

sleepy speech have not yet been considered. Therefore, our goal is to study whether speech

production differences from a phonetic perspective can be captured for degree of sleepiness

estimation, inspired by Dubagunta and Magimai-Doss (2019).

3.3.2 Proposed approach

We propose to estimate sleepiness with raw waveform CNNs. Our initial experiments are

performed with the raw waveform framework (cf. Section 3.1). To tackle data scarcity, we

develop a pre-training method that induces phonetic knowledge into CNNs. Intuitively, a

model that is trained is able to predict articulatory features from speech should perform well

on sleepiness estimation. Based on common phonetic representation (cf. Section 2.2), we

pre-trained four models, namely on (i) height of articulation, which refers to the position of

the tongue, (ii) manner of articulation refers to the way of constriction in the pharynx and

oral cavity, (iii) place of articulation refers to where the constriction is happening, and (iv)

vowels, is a model that only predicts vowels. We propose to fine-tune these models as well as

combining their output scores to find out if they model complementary information.

3.3.3 Data and experimental protocol

The continuous sleepiness sub-challenge corpus was part of the Interspeech 2019 ComParE

challenge (Schuller et al., 2019). The corpus is also referred to as the Düsseldorf Sleepy

Language Corpus and was created at the Institute of Psychophysiology, Düsseldorf and the

Institute of Safety Technology, University of Wuppertal, Germany. It consists of 5564 utter-

ances (5 hours 59 minutes) in the training set, 5328 utterances (5 hours 44 minutes) in the

development set, and 5570 utterances (5hours 58minutes) in the test set from a total of 915

subjects (364 females, 551 males) aged 12 to 84 years with a mean age of 27.6 ± 11.0. Record-

ings happened between 6 pm and midnight; each speaker provided between 15 minutes and
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1 hour of speech. No speaker IDs, speaker gender, or age information are provided. Speech

data consists of different reading and speaking tasks as well as narrative speech. The material

was recorded in quiet rooms using a microphone/headset/hardware setup and providing a

prompt with the tasks on a computer. According to the KSS scale, the labels range from 1 to

9. True labels were averaged between self-assessment and two expert ratings. Spearman’s

cross-correlation coefficient, denoted as ρ, is used as the evaluation metric.

3.3.4 Systems

We compare our systems to the following baselines, from which we report the best-performing

systems: (i) the ComParE 2013 feature set fed into an SVR, (ii) ComParE 2013 feature set

quantized with BoAW with 500 centroids, (iii) S2SAE-embeddings with -70dB clipping fed into

SVR, as well as a score-fusion of these three systems.

We used the raw waveform-based CNN framework as described in Section 3.1 with an input

segment length wseq of 250ms. Even though sleepiness has 9 ordinal labels, we opted for a

cross-entropy loss. Similar to the baseline system studies reported in (Schuller et al., 2019), we

conducted studies with two experimental setups: (a) train the CNNs on the training data and

test on development data and (b) train the CNNs on both training and development data and

test on the test set. In each case, 5% of the data was used for cross-validation.

In addition to segmental and sub-segmental architecture, as introduced above, Table 3.5

shows the AF-CNN architecture, a sub-segmental model, that slightly differs in kernel widths

and number of filters. The classification stage consists of one hidden layer with 100 units.

Table 3.5: CNN architectures for AF predictor. N f : number of filters, kW : kernel width, dW :
kernel shifts, MP : max-pooling.

Model Layer Conv MP
N f kW dW

AF-CNN 1 80 30 10 3
2 60 7 1 3
3 60 7 1 3

3.3.5 Integrating speech production knowledge

As discussed in Section 3.3.3, sleepiness can induce changes in the articulation process, i.e.

in the speech production process resulting in slurred speech, and less crisp or incorrect

pronunciation. In order to integrate articulatory information into our models, we investigated

a transfer learning framework where the CNN is first trained to predict articulatory features

(AFs) within four broad categories, namely, manner of articulation (e.g. degree of constriction),

place (of constriction), height (of the tongue) and vowel. These AFs are inspired by recent work

on articulatory feature-based speech recognition (Rasipuram and Magimai.-Doss, 2016). To
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predict the degree of sleepiness, we use the AF-initialized CNNs, replace the output layer with

an output layer consisting of the nine sleepiness categories and train those models. Figure 3.2

summarizes this procedure. Knowledge from the 4 AF categories is utilized to initialize 4

separate CNNs, which are fine-tuned on the sleepiness data. We hypothesize that such an

initialization helps to exploit articulatory differences due to sleepiness.

AF predictors are trained based on knowledge that maps phones to AFs. With such mapping,

one can train acoustic-to-AF predictors by using an alignment of transcribed speech. The

challenge data is not transcribed, so we used the AMI corpus (Carletta et al., 2005), which

consists of 77 hours of speech. From this data, we used Kaldi to train HMMs for context-

dependent phones, where the HMM states were jointly modeled by using subspace GMMs.

The corresponding frame-to-phone alignments and the phone-to-AF mappings were then

used to train the above-mentioned four AF-CNNs. The model architecture is similar to sub-

segmental architecture and is described in Table 3.1 as AF-CNN, except in this case, the single

hidden layer MLP contains 1024 hidden units.

We then adapted the resulting four AF-CNNs on the sleepiness data.
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Figure 3.2: Overview of transfer learning for sleepiness prediction from CNNs that were initially
trained to predict articulatory features.

Posterior vector fusion with an MLP: We also investigated combining different systems. For

that, we used an MLP to fuse scores from different systems. The MLP had one hidden layer

with 128 nodes with ReLU activation, a dropout layer with 10% and the output layer predicts

the nine sleepiness categories.

3.3.6 Results

Table 3.6 compares the performance of the proposed systems with the baseline systems

provided as part of the challenge and systems reported as part of the challenge. It is important

to mention that the challenge allowed only five trials on the test set, hence only five test results

for the proposed systems are reported.

On the first experimental setup i.e. training on the training set and evaluating on the develop-

ment set, it can be observed that the proposed raw waveform modeling methods perform com-

parably to the best baseline systems and systems reported as part of the ComParE challenge.

23



Chapter 3. Inducing knowledge into raw waveform CNNs

Table 3.6: Results of all the presented CNNs on the ComParE 2019 sleepiness challenge data in
Spearman’s cross-correlation coefficient ρ. A + denotes a fusion using an MLP.

ComParE 2019 Baseline systems Dev Test
ComPar E2013 Schuller et al. (2019) .251 .314
COMPARE2013Bo AW500 Schuller et al. (2019) .250 .304
S2S AE−70dB Schuller et al. (2019) .261 .310
3-best Fusion Schuller et al. (2019) - .343
Competition systems
Elsner et al. (2019) .290 .335
Yeh et al. (2019) .373 .369
Wu et al. (2019b) .343 -
Ravi et al. (2019) .300 .331
Gosztolya (2019) .367 .383
Wu et al. (2019a) .326 .365
Proposed raw waveform CNNs
subseg .280 .201
seg .274 .222
Proposed AF-CNNs
hei g ht .267 -
manner .292 -
pl ace .262 -
vowel .295 .312
Proposed fusion
manner +pl ace + vowel 304 -
manner +pl ace .311 -
manner + vowel .317 .325
manner + seg .315 -
manner + vowel + seg .319 -
manner + seg +ComPar E .329 -
manner + seg +Bo AW500 .344 .321

We can observe that score fusion leads to improvement in performance. Thus, indicating that

different CNNs are capturing complementary information. When comparing on the second

experimental setup, i.e. training on train and development set and evaluating on the test set,

we can see that the raw waveform CNNs not necessarily generalize well. However, the AF-CNN

and fusion systems generalize well. This shows that integrating speech production knowledge

is indeed aiding in predicting degree of sleepiness and yields comparable systems.

Besides the proposed systems, Elsner et al. (2019) and Wu et al. (2019b) investigated modeling

raw waveform using CNNs for the sleepiness challenge. In (Wu et al., 2019b), a system based on

CNN-BLSTM yielded significantly poor results. In (Elsner et al., 2019), it was found that a CNN-

based system using a considerably longer window of speech input, more precisely 1.5 s speech,

without data augmentation yielded a competitive system. In our case, the raw waveform-

based CNNs without modeling speech production knowledge model 250 ms of speech at the
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input. This difference could possibly explain low performance on the test set. However, when

integrating speech production knowledge, although the CNN hyperparameters were chosen

from previous speech recognition studies, we can observe that with 250 ms speech input, we

yield competitive systems. This suggests that raw waveform CNNs and AF-CNNs are modeling

different information.

3.3.7 Analysis

We performed a confusion matrix analysis of the results obtained in the first experimental

setup. Figure 3.3 in (a) shows the confusion matrix of our system manner + vowel , under (b)

shows the system that performed best on the development set: BoAW2000 (BoAW2000 is not

in Table 3.6 we picked systems based on best test performance). Unlike the baseline system

(Schuller et al., 2019), it can be observed that classifications are spread over all degrees of

sleepiness. We have the highest accuracy for KSS ratings of 3 and 8, meaning that our system

is able to differentiate the extreme sleepiness categories well. In contrast, accuracy is lower for

KSS ratings between 4 and 6, which are naturally difficult to distinguish. Moreover, the highest

number of predictions are reasonably spread along the diagonal. KSS label 1 is not correctly

classified, presumably because of a lack of samples – at least 5 times less in both training and

development set than KSS labels 2 to 8. In general, we found similar trends in other systems

that we investigated.
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C was optimised during the development phase. For the Baby
Sounds Sub-Challenge, we upsampled the minority classes in
order to balance the five classes in the training (and develop-
ment) sets; for the Styrian Dialects Sub-Challenge, training and
development sets were not fused as the development set is con-
siderably smaller in size owing to the sparseness of the data.
Apart from this, the pipelines are basically the same, except
from the fact that a linear Support Vector Regression is used
for the Continuous Sleepiness Sub-Challenge and confidences
are computed for the Orca Activity Sub-Challenge, as the area
under the ROC curve is used as a metric.

Each Sub-Challenge package includes scripts that allow
participants to reproduce the baselines and perform the testing
in a reproducible and automatic way (including pre-processing,
model training, model evaluation on the development set, and
scoring by the competition and further measures).

This year, we provide the three above outlined approaches
to Computational Paralinguistics: besides the usual COMPARE
features plus SVM, we employ for the third time BoAW plus
SVM, and for the second time sequence-to-sequence autoen-
coder (AUDEEP) learnt acoustic features, classified with an SVM,
leaving, however, end-to-end learning from the raw time signal
out. The same way as in the last two years, we chose the high-
est results on test for defining the baselines, irrespective of the
corresponding results on development, in order to prevent partic-
ipants from surpassing the official baseline by simply repeating
or slightly modifying other constellations that can be found in
Table 2. A fusion of the three models has been made by Majority
Voting for the Styrian Dialects and Baby Speech Sub-Challenges
and by taking the mean of the outputs for the Continuous Sleepi-
ness and Orca Activity Sub-Challenges.

As can be seen in Table 2, for the Styrian Dialects Sub-
Challenge, the baseline is UAR = 47.0 %, for the Continuous
Sleepiness Sub-Challenge, it is Spearman’s ⇢ = .343, for the
Baby Sounds Sub-Challenge, it is UAR = 58.7 %, and for the
Orca Activity Sub-Challenge, it is AUC = .866. Note that there
is no ‘official’ baseline for Dev!

Figure 1 displays a ‘good’ confusion for the Baby Sounds
Sub-Challenge (high frequencies in most of the diagonal cells)
and the difficulty of the other tasks (low frequencies in some of
the diagonal cells, high frequencies in some of the off-diagonal

cells). Laughing is very sparse and it might therefore not be
possible to model it robustly enough; in contrast, Non-canonical
might show too much variability and similarity to the other
classes. For the Styrian Dialects Sub-Challenge, UrbanS as
majority class with mixed characteristics, by that possibly dis-
playing greatest variance, is classified best; NorthernS seems
to be least distinct from the other two varieties. In the SLEEP
corpus, the extreme labels 1, 2, 8, 9, and to a slightly lesser
extent, 3 and 7, are underrepresented – maybe less distinct – and
cannot be modelled robustly; the classes in the middle – 4, 5, and
6 – are more frequent and confused with each other, and they
attract the sparse, extreme labels, cf. the uniformly colour-scaled
columns for 4, 5, and 6.

4. Concluding Remarks
This year’s challenge is new by four new tasks (Styrian Dialects,
Continuous Sleepiness, Baby Sounds, and Orca Activity, all
of them highly relevant for applications). We further featured
sequence-to-sequence autoencoder-based audio features by the
AUDEEP toolkit using deep learning for audio classification
for the second time as baselines and the popular OPENXBOW
toolkit. For all computation steps, scripts are provided that can,
but need not be used by the participants. We expect participants
to obtain better performance measures by employing novel (com-
binations of) procedures and features including such tailored to
the particular tasks.
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Figure 1: Confusion matrices on the development set; overall number of instances per task given in Table 1. For each Sub-Challenge, the
individual approach/hyperparameters performing best on the dev set were chosen, i. e., AUDEEP with a clipping threshold of -70 dB and
optimised complexity for the Styrian Dialects task, BoAW with a codebook size of 2 000 and optimised complexity for the Continuous
Sleepiness task, and COMPARE with a complexity of 10�4 for the Baby Sounds task. In the cells, absolute number of cases is given, and
percent of ‘classified as’ of the class displayed in the respective row; percentage also indicated by colour-scale: the darker, the higher.

2381

(a) manner + vowel (b) BoAW2000

Figure 3.3: Confusion matrix of the score fusion from the CNNs manner and vowel as well
as the baseline system BoAW2000 (cf. Table 3.6).

To get an impression of what frequency regions the first convolutional layer is focusing on, we
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Chapter 3. Inducing knowledge into raw waveform CNNs

computed the cumulative frequency response (CFR) as follows (Palaz et al., 2019):

Fcum =
N f∑

k=1
Fk /||Fk ||2 (3.1)

N f denotes the number of filters and Fk is the frequency response of filter fk . Figure 3.4

compares the CFR for raw waveform-based systems. In both subseg CNN and seg CNN

frequency regions around 1000 Hz or below are given emphasis.
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Figure 3.4: Cumulative frequency responses of first convolutional layer from raw waveform
CNNs.

Figure 3.5 shows the CFR for AF-CNNs after adaptation/training on sleepiness challenge

data to estimate the degree of sleepiness. It can be observed that there are differences in the

information modeled by the CNNs for different AFs. However, in general, the emphasis on

frequency regions is similar to CNNs trained for speech recognition task (Palaz et al., 2019).

Furthermore, when compared to raw waveform CNNs (Figure 3.4), the CFRs are very different,

i.e. emphasis is given to frequencies above 1000 Hz that are associated with the articulation

aspect of speech. This indicates that indeed the raw waveform CNNs and AF-CNNs are

focusing on different information. In addition, it also explains the performance gains obtained

when fusing these systems.
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Figure 3.5: Cumulative frequency responses of first convolutional layer from AF-CNNs.
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3.4 Summary

3.3.8 Conclusions

This section reviews different approaches for estimating the degree of sleepiness. Our investi-

gations showed that integrating phonetic knowledge yields better systems when compared

to simply modeling raw waveforms. Among the AF-CNNs, the manner CNN and vowel CNN

yield the best systems. Especially a score fusion of the manner + vowel models, as well as

manner+seg+BOAW500, hence a fusion with a baseline system yield competitive performance.

Our analysis of the first convolution layer shows that raw waveform CNNs and AF-CNNs focus

on different frequency information, hence capture complementary information. This could

be exploited through score fusion.

3.4 Summary

In this chapter, we explored how to induce knowledge into raw waveform convolutional neural

networks. The following three main lines of results emerged: (i) Filtering signals was shown to

let the CNN focus on specific aspects. Similarly, (ii) setting the kernel width of the CNN lets the

model focus on either source or vocal tract information of speech. For Alzheimer’s assessment,

a combination of both neural and non-neural systems yielded particularly competitive results.

Finally (iii) pre-training the CNN on prediction of articulatory features was successfully shown

to be effective when fine-tuning on degree sleepiness estimation, which affects articulation.

This unique pre-training method can be useful for tasks related to articulation in low-resource

scenarios.
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4 On modeling glottal source infor-
mation for breathing impairment
assessment in Parkinson’s disease
In this chapter, we propose a pilot study on breathing impairment assessment from the

speech of Parkinson’s disease patients. Parkinson’s disease produces several motor symptoms,

including different speech impairments that are known as hypokinetic dysarthria. Symptoms

associated with dysarthria affect the main dimensions of speech such as articulation, prosody,

intelligibility, and also phonation. Studies in the literature have mainly focused on the analysis

of articulation and prosody because they seem to be the most prominent symptoms associated

with dysarthria severity. However, phonation impairments also play a significant role in

evaluating the global speech severity of Parkinson’s patients. Phonation is the process of

passing air through the vocal folds to produce speech sounds through quasi-periodic vibration.

In this chapter, the goal is to find methods that can model this signal and what features

are suitable to represent it. Therefore, this chapter proposes an extensive comparison of

different methods to automatically evaluate the severity of specific breathing impairments in

Parkinson’s patients. The considered methods include: (i) the computation of hand-crafted

features, (ii) CNN-based models trained in an end-to-end manner, (iii) neural embeddings

from the CNN models that are in-domain, and (iv) neural embeddings from out-of-domain

pre-trained models. Implicitly, we built on the previous Chapter 3, in which we applied CNN

framework to model articulation and prosody tasks. In the following, we conduct experiments

to automatically classify between speakers with low versus high breathing impairment severity

due to the presence of dysarthria and also to evaluate the severity of the breathing impairments

on a continuous scale, posed as a regression problem.

4.1 Problem statement & related works

Parkinson’s disease (PD) is a neurological disorder characterized by the progressive loss of

dopaminergic neurons in the midbrain. It affects approximately 10 million people worldwide,

with a doubling of the global burden over the past 25 years because of the increase in longevity

of people thanks to modern medicine methods (Dorsey et al., 2018). PD produces different

motor and non-motor symptoms in patients. Motor symptoms include tremor, slowed move-

ment, rigidity, bradykinesia, and lack of coordination, among others. Approximately 70-90%
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Chapter 4. On modeling glottal source information for breathing impairment assessment
in Parkinson’s disease

of PD patients develop a multidimensional speech impairment called hypokinetic dysarthria

(Logemann et al., 1978; Ho et al., 1998), which manifests itself typically in the imprecise artic-

ulation of consonants and vowels, mono loudness, mono pitch, inappropriate silences and

rushes of speech, dysrhythmia, reduced vocal loudness, and harsh or breathy vocal quality. All

these symptoms affect the phonation, articulation, prosody, and intelligibility aspects of the

speech of PD patients (Rusz et al., 2011; Knuijt et al., 2017; Vásquez-Correa et al., 2018).

Dysarthria severity is usually evaluated with perceptual scales such as the Frenchay dysarthria

assessment (Enderby and Palmer, 2008), or the Radboud dysarthria assessment (Knuijt et al.,

2017), which evaluate different speech dimensions such as phonation, articulation, prosody,

resonance, among others. Different studies in the literature have focused on the automation

of the evaluation process of these speech dimensions in order to assess the global dysarthria

severity of patients. Most of those studies have mainly focused on the automatic analysis of

articulation and prosody because they seem to be the most prominent symptoms associated

with dysarthria severity. Articulation impairments have been modeled with speech features

based on the vowel space area (Rusz et al., 2013), formant frequencies, voice onset time

(Montaña et al., 2018), the energy content in onset transitions (Orozco-Arroyave, 2016), and

recent models based on convolutional neural networks (CNNs) (Vásquez-Correa et al., 2017a)

and posterior probabilities of certain phonemic classes (Cernak et al., 2017; Moro-Velazquez

et al., 2019). Prosody deficits have been commonly evaluated with features related to pitch,

intensity, and duration (Bocklet et al., 2013; Norel et al., 2020).

Despite the fact that articulation and prosody are the most studied speech dimensions in

hypokinetic dysarthria, phonation impairments also play a significant role in evaluating the

global speech severity of PD patients. Phonation symptoms are related to the stability and

periodicity of the vocal fold vibration, and difficulties in the process of producing air in the

lungs to make the vocal folds vibrate. Different phonation deficits appear in PD patients’

speech, including differences in glottal noise compared to healthy speakers, incomplete vocal

fold closure, and vocal folds bowing, which are typically characterized by measures such as

noise-to-harmonics ratio, glottal-to-noise excitation ratio, and voice turbulent index, among

others (Tanaka et al., 2011). Additional phonation features include perturbation measures

such as jitter, shimmer, amplitude perturbation quotient (APQ), pitch perturbation quotient

(PPQ), and nonlinear dynamics measures (Arias-Vergara et al., 2017; Travieso et al., 2017),

as well as features extracted from the reconstruction of the glottal source signal such as the

quasi-open quotient, the normalized amplitude quotient, and the harmonic richness factor

(Kadiri and Alku, 2019; Novotnỳ et al., 2020; Narendra and Alku, 2020). However, it is not

clear whether these traditional features are able to properly characterize specific phonatory

impairments that appear in the speech of PD patients because they are usually only considered

to classify PD vs. healthy control (HC) speakers.
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4.2 Modeling glottal source information

4.2 Modeling glottal source information

The ground hypothesis for breathing parameter assessment through glottal source information

is that the rate of vocal fold oscillations is largely determined by the subglottal pressure (Alku,

2011). The increased rigidity of vocal folds affects glottal signals; therefore, we propose to

use filtering to obtain glottal signals and analyze them. Then, phonatory impairments in PD

patients can be evaluated using different feature extraction strategies on raw waveforms as

well as the following non-exhaustive selection of filtering methods.

4.2.1 Filtering methods

We considered the following methods to reconstruct the glottal source information:

1. Iterative and/or Adaptive Inverse Filtering (IAIF)(Alku, 1992) is based on linear predic-

tion (LP) filters that are computed in a two-stage procedure. This method is based on

iterative refinement of both the vocal tract and the glottal components. The glottal

excitation is obtained by canceling the effects of the vocal tract and lip radiation by

inverse filtering. A Matlab implementation of this method is available online 1.

2. Glottal closure/opening instant estimation forward-backward algorithm (GEFBA), which

is based on detecting instants of significant excitation (epochs) for high-resolution glot-

tal activity detection (Koutrouvelis et al., 2015). GEFBA estimates the instants of glottal

closures for determining the boundaries of glottal activity by assuming that two consec-

utive voiced regions differ by a distance greater than twice the maximum pitch period.

A Matlab implementation of this method is available online 2.

3. Zero frequency filtering (ZFF), as already described in Section 3.2.3, ZFF is designed for

epoch extraction and aims to remove all the influence from the vocal tract system in the

speech waveform.

Figure 4.1 shows the difference between the raw speech waveform, the IAIF and GEFBA

methods used to reconstruct the glottal signal, and the ZFF signal. These four signals are used

to evaluate the phonation impairments that appear in PD patients.

4.2.2 Perturbation features

Perturbation features are used to model abnormal patterns in the vocal fold vibrations. Pertur-

bation features can be extracted from the raw speech waveforms and from the ZFF signals.

The feature set includes seven descriptors: (1-2) Jitter and shimmer to describe temporal

perturbations in the fundamental frequency and amplitude of the speech signal, respectively

1https://github.com/covarep/covarep/blob/master/glottalsource/iaif.m
2http://cas.tudelft.nl/data/richard/GEFBA.zip
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Figure 4.1: Different signals extracted from the phonation of a sustained vowel /ah/ are
considered to evaluate the phonation impairments from PD patients. Blue dots indicate the
detected GCIs.

Arias-Vergara et al. (2017). (3) APQ, which aims to measure the long-term variability of the

peak-to-peak amplitude of the speech signal, by using a smoothing factor of 11 voiced periods.

(4) PPQ to measure the long-term variability of the fundamental frequency, with a smoothing

factor of five periods. (5-6) The first and second derivatives of the fundamental frequency con-

tour, and (7) the log energy as a measure of loudness. Four statistical functionals are calculated

per descriptor (mean, standard deviation, skewness, and kurtosis), forming a 28-dimensional

feature vector per utterance.

4.2.3 Glottal features

Glottal features are computed over the reconstructed glottal signals using the IAIF and the

GEFBA methods. Glottal features are focused on specific parts of the glottal cycle such as

the opening and closing phases. The proposed feature vector comprises nine descriptors:

(1) the temporal variability between consecutive GCIs, (2-3) the average and variance of the

Open Quotient (OQ), which is the ratio of the duration of the opening phase and the duration

of the glottal cycle. (4-5) the average and variance of the Normalized Amplitude Quotient

(NAQ), which is defined as the ratio of the maximum of the glottal flow and the minimum of

its derivative. (6-7) the average and variance of H1H2, which is the difference between the

first two harmonics of the glottal flow signal. Finally (8-9) are the average and variance of the

Harmonic Richness Factor (HRF), which is the ratio of the sum of the harmonics amplitude
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and the amplitude of the fundamental frequency. These features are computed for every

glottal cycle in segments with 200 ms length in order to measure short-term perturbations

of the glottal flow. Finally, similar to the perturbation features, four statistical functionals

are calculated per descriptor (mean, standard deviation, skewness, and kurtosis), forming a

36–dimensional feature vector per utterance.

The source code to extract the IAIF-based glottal signals and to compute the perturbation and

glottal features is available online for the research community via the DisVoice toolkit3.

4.3 Experimental study

We propose a pilot study to evaluate how to assess breathing impairment by modeling glottal

source information. Towards that, we use propose different signals/filtering techniques,

different feature extraction strategies, and classifiers/regressors for automatic evaluation. We

perform our study on a subset of the PC-GITA corpus (cf. Section 4.3.2).

4.3.1 Proposed approach

Towards breathing impairment assessment in Parkinson’s disease patients, we propose to

compare hand-crafted features and raw-waveform CNN models. As hand-crafted features, we

consider (i) perturbation features, that are extracted from either raw speech waveforms or the

ZFF signals, and (ii) glottal features extracted from the IAIF and GEFBA reconstructed glottal

signals. For end-to-end modeling, we propose raw waveform CNNs as introduced in Section

3.1, which can be trained on, the raw speech waveforms, IAIF signals, GEFBA signals, or ZFF

signals.

We conduct our experiments in a 10-fold cross-validation strategy. All systems are trained to

solve either the classification problem (low vs. high phonation impairments) or the regression

problem (severity of the phonation impairment). All systems are applied to the three problems

described in Section 4.3.2, namely breathing duration, breathing capacity, and global breathing

impairment. The latter is the combination of the breathing duration and capacity scores.

4.3.2 PC-GITA corpus

The proposed systems are evaluated on the PC-GITA corpus (Orozco-Arroyave et al., 2014a).

The data comprises utterances from 50 PD patients and 50 HC subjects, Colombian Spanish

native speakers. The participants were asked to pronounce 10 sentences, six diadochokinetic

(DDK) exercises, one text with 36 words, the sustained phonation of vowels, and a mono-

logue. All patients were evaluated by a neurologist expert according to the MDS-UPDRS-III

scale (Goetz et al., 2008), and they were recorded in ON state. The dysarthria severity of

3https://github.com/jcvasquezc/DisVoice
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the participants was evaluated according to the m-FDA scale (Vásquez-Correa et al., 2018),

which consists of 13 items and evaluates seven aspects of the speech including breathing, lips

movement, palate/velum movement, laryngeal movement, intelligibility, and monotonicity.

Each item ranges from 0 to 4 (integer values), thus the total score ranges from 0 (healthy

speech) to 52 (completely dysarthric). Two items of the m-FDA scale are related to phonation

impairments of the patients and include breathing duration (BD) and breathing capacity (BC)

when participants pronounce sustained phonation of vowels and DDK tasks (cf. item 1 and 2

in Appendix B of (Vásquez-Correa et al., 2018)). The ratings of such items are used to evaluate

the proposed models. We consider as well the global m-FDA breathing impairment score,

which combines information about BD and BC (it ranges from 0 to 8). For this study, we

only considered data from the phonations of sustained vowels and DDK tasks, which were

the recordings used by the phoniatrician to label the phonation severity of the participants.

Table 4.1 shows clinical and demographic information from the participants of this study.

Table 4.1: Demographic information from the participants in this study. BD: breathing dura-
tion, BC: breathing capacity.

PD (n=50) HC (n=50) PD vs. HC F vs. M
Sex (F/M) 25/25 25/25 - –
Age 61.0 (9.3) 61.0 (9.4) 0.49a 0.29
Years since diagnosis 10.6 (9.1) - - –
MDS-UPDRS-III 37.7 (18.1) - - –
MDS-UPDRS-speech 1.3 (0.8) - - –
Total m-FDA 28.8 (8.3) 8.5 (7.4) ≪0.005a 0.28a

m-FDA-BD 2.6 (1.0) 1.0 (0.9) ≪0.005a 0.21a

m-FDA-BD (high/low) 37/13 8/42 ≪0.005b 0.71b

m-FDA-BC 2.5 (0.9) 0.7 (0.7) ≪0.005a 0.25a

m-FDA-BC (high/low) 37/13 2/48 ≪0.005b 0.12b

m-FDA breath 5.1 (1.7) 1.7 (1.4) ≪0.005a 0.18a

m-FDA breath (high/low) 40/10 8/42 ≪0.005b 0.84b

ap-values calculated using Mann-Whitney U tests
bp-values calculated using Chi-squared tests

The m-FDA labels for BD and BC are converted into high/low scores based on a threshold

(median value of the scores assigned to the patients). Those subjects with scores lower than

two are assigned low phonation severity. Conversely, subjects with an item higher or equal

to two are labeled as patients with high phonation impairments. Hence, we decided to solve

either a regression problem on the full range of the m-FDA sub-scores or a classification

problem to evaluate low vs. high phonation impairment. The distribution between PD and

HC subjects and the assigned m-FDA labels are gender-balanced (all p-values> 0.05) and

age-balanced (Spearman’s correlation between age and m-FDA scores are lower than 0.2 with

all p-values> 0.05). Hence, the influence produced by demographic data on our problem can

be discarded.
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4.3.3 Systems

The extracted perturbation and glottal features were used to train an SVM classifier for the

classification task and an SVR, both with a Gaussian kernel. The SVM/SVR hyperparameters C

and γ were optimized in a randomized-search strategy (Bergstra and Bengio, 2012) based on

the development set accuracy.

The 1-D CNN models are consistent with what is described in Section 3.1. We deploy an

architecture consisting of four 1D convolutional layers, followed by a 10-dimensional hidden

layer and an output layer. In order to guide the learning procedure, the first layer’s filters’ kernel

length is relevant. As distinguished in Table 3.1, the sub-segmental (filter length < 1 pitch

period) is applied in this work, since it tends to rather focus on source-related characteristics

(Dubagunta et al., 2019). The classification task was trained with a binary cross-entropy loss

function and a sigmoid function at the output; the regression task with mean-squared-error

loss and a linear output function. In both cases, the starting learning rate is 1e −3, which is

halved after an epoch in which the validation loss did not reduce. Early stopping method was

used to stop the training.

4.3.4 Results

All results are shown in Table 4.2. Note, that even though classification and regression results

are presented in the same line, the systems are trained separately. The results obtained

classifying high vs. low phonation impairments are shown in the left half of Table 4.2. In

general, the best results are observed using perturbation features computed either from the

raw speech waveform or from the ZFF signals. Regarding the two methods for glottal source

estimation, higher accuracies are observed with the glottal signals computed using the GEFBA

method. The accuracies obtained with the raw waveform CNNs are not as high as expected.

However, note that moderate results are observed when the CNNs are trained with the ZFF

signals.

The accuracy to assess breathing duration ranges from 56 to 79% depending on the considered

method. The highest accuracy is obtained with the computation of perturbation features over

the ZFF signals. Similar accuracies are observed with the raw speech waveform. The highest

accuracy for the breathing capacity (84%) is obtained as well with the perturbation features,

but in this case computed upon the raw speech waveform, followed by the perturbation

features computed upon the ZFF signals. Finally, the accuracy for the assessment of global

breathing impairments ranges from 54 to 76%. Similar accuracies are observed with the

perturbation features computed upon the raw speech waveform and the ZFF signals.

The results about the continuous evaluation of the phonation impairments of the partici-

pants using a regression approach are presented in the right half of Table 4.2. The results are

presented in terms of Pearson’s correlation coefficient (r ), Spearman’s correlation coefficient

(ρ), and mean absolute error (MAE). Strong correlations are obtained for the three addressed
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Table 4.2: Results of classification and regression of different breathing impairments in PD
patients.

Signal Features ACC [%] F-score SENS [%] SPEC [%] r ρ MAE
m-FDA Breathing duration

Raw Perturbation 78 77 80 76 .659 .662 0.86
Raw CNN 65 52 47 80 .379 .427 1.12
IAIF Glottal 71 70 62 78 .436 .444 1.00
IAIF CNN 60 28 26 89 .016 -.034 1.46
GEFBA Glottal 76 75 64 85 .426 .457 1.00
GEFBA CNN 56 37 44 66 .214 .182 1.43
ZFF Perturbation 79 78 73 84 .591 .603 1.00
ZFF CNN 70 57 56 83 .075 .076 1.86

m-FDA Breathing capacity
Raw Perturbation 84 83 77 89 .660 .659 0.86
Raw CNN 65 43 35 83 .354 .315 1.31
IAIF Glottal 65 62 51 74 .308 .429 1.00
IAIF CNN 43 34 54 40 .003 -.039 1.44
GEFBA Glottal 72 71 74 70 .460 .510 1.00
GEFBA CNN 44 19 29 54 -.121 -.109 1.45
ZFF Perturbation 80 79 79 80 .659 .683 0.89
ZFF CNN 69 42 37 89 .125 .102 1.67

m-FDA Global Breathing impairments
Raw Perturbation 76 75 69 83 .732 .741 1.40
Raw CNN 56 53 56 55 .352 .341 1.27
IAIF Glottal 60 59 48 71 .129 .474 2.00
IAIF CNN 54 54 77 32 .065 .098 1.58
GEFBA Glottal 71 70 65 77 .528 .620 1.91
GEFBA CNN 49 47 57 43 -.029 .024 1.34
ZFF Perturbation 76 76 77 75 .673 .714 1.54
ZFF CNN 66 55 52 79 .260 .250 1.62

problems, especially using the perturbation features computed upon the raw speech wave-

forms and the ZFF signals. Similar to the classification results, the correlations observed

with the raw waveform CNNs are not as high as expected; however, this can be explained

by the little amount of data and the reduced variability of the labels to solve the regression

problems. In addition, the results observed with the glottal signals estimated with the GEFBA

method outperformed the ones obtained with the glottal signals estimated with the classic

IAIF algorithm. Particularly, the best result is observed for the assessment of the global motor

performance (ρ=0.741) probably because this is the scale with more variability in the labels (it

ranges from 0 to 8), as compared to the breathing duration and breathing capacity, which only

range from 0 to 4.
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4.3.5 Analysis

In order to verify our initial hypothesis of estimating subglottal pressure through glottal signals,

we are interested what the CNN’s first convolutional layer filters are modeling. In Figure 4.2, we

plotted the cumulative frequency response of the first layer filters of the models, as introduced

in Equation 3.1 in Section 3.3.7. We plotted the CFR of the four models’ global breathing

impairment classification. We observe, that the raw and ZFF filters emphasize frequencies

below 1kHz, which is desired. The frequency responses of IAIF and GEFBA on the hand have

basically flat responses, so the models are not learning any specific structural information

from the signals.
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Figure 4.2: Cumulative frequency response of the first layer filters of the CNNs.

4.4 Neural embeddings for breathing parameter estimation

In the previous section, hand-crafted features outperform end-to-end CNN models. For a

CNN-based assessment, we average the predictions of the CNNs into an utterance-level score.

However, these systems could lack statistical information. Therefore, we investigated how

statistical functionals of neural embeddings perform on breathing impairment assessment.

4.4.1 Proposed approach

We propose to use statistical functionals of neural embeddings as features for breathing

parameter estimation. End-to-end modeling might lack statistical information, since output

scores are averaged, meaning the decisions are averaged. However, embeddings, that are

extracted before the decision-making may contain more relevant information. Therefore, we

propose two kinds of neural embeddings: (i) task-dependent neural embeddings from raw-

waveform CNN that are trained on the respective task from raw and ZFF signals, selected based

on their good performance. In addition, we deploy embeddings from a CNN-based model that

is trained to predict the actual breathing signal, which is referred to as UCL-SBM, and (ii) task-

independent neural embeddings from general-purpose pre-trained models. We propose to use
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VGGish embeddings and Wav2vec2.0 embeddings. From every embedding representation, the

same four statistical functionals as for the hand-crafted features are calculated per descriptor:

mean, standard deviation, skewness, and kurtosis. The resulting feature vector is then fed into

an SVM/SVR for classification/regression. The experimental setup is unchanged: We perform

10-fold cross-validation.

4.4.2 Systems

The following embeddings are input to an SVM for classification and to an SVR for regression.

In both cases, we use a radial basis function kernel and choose hyperparameter C based on

the best validation performance.

Raw Embeddings from the 1-D CNN model trained on raw waveforms are extracted from the

10-dimensional last hidden layer before the activation. When calculating 4 functionals per

dimension, a 40-dimensional feature vector per utterance is formed. Since convergence in the

training of the CNN models can vary throughout the folds, we opted to pick embeddings from

the fold with the best metrics on the validation set.

ZFF: Likewise, from the 1-D CNN model trained on ZFF signals we extracted 10- are extracted

from the 10-dimensional last hidden layer before the activation to form a 40-dimensional

feature vector per utterance. Since convergence in the training of the CNN models can vary

throughout the folds, we opted to pick embeddings from the fold with the best metrics on the

validation set.

UCL-SBM: In Nallanthighal et al. (2021), the authors train a CNN-based model to predict the

actual breathing signal based on the UCL-SBM dataset (Schuller et al., 2020), which consists

of free speech data and the corresponding breathing signals measured with a chest-sensor.

The dataset contains about 3 hours of recordings. Notably, the architecture of this model is

the exact same is for our own CNN-models (cf. Table 3.1). Input to the model are overlapping

3-second chunks of raw speech waveforms as input; a mean squared error loss is applied.

From this model, we extract the 10-dimensional last hidden layer embeddings on a per-frame

basis to form a 40-dimensional feature vector per utterance.

VGGish: is an embedding representation, trained on the popular VGG-16 architecture, that

consists of 13 CNN and 3 dense layers. It is trained on the AudioSet dataset for acoustic scene

classification. This dataset has 5.24 million hours of data, and a cross-entropy loss function is

used. We extract 128-dimensional vectors per 1-second inputs of log mel spectrograms from a

bottleneck layer right before the output (Hershey et al., 2017). In a post-processing step, a PCA

transformation is applied, and the embeddings are quantized to 8-bit 4.

Wav2vec2.0: is a self-supervised pre-trained model for speech recognition (Baevski et al., 2020).

It consists of filter stage of 5 CNN layers followed by a transformer architecture. We extract

4https://github.com/tensorflow/models/tree/master/research/audioset/vggish
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embeddings from the wav2vec2.0 base model that is trained 53k hours of unlabeled data and

fine-tuned on 960 hours of Librispeech. We extract 768-dimensional frame-level embeddings

of the 6th transformer layer (out of 13), thus from the middle. Wav2vec2.0 embeddings have

become a popular choice for paralinguistic tasks, as for example assessed in the SUPERB

benchmark, where embeddings from self-supervised models dominate the leaderboard in

2022 (Yang et al., 2021).

4.4.3 Results

Table 4.3 shows our results: On the classification tasks, we observe that the task-dependent

embeddings (raw, ZFF, and UCL-SBM) outperform the task-independent embeddings. The

best results are obtained with the raw embedding, where we achieve an improvement of 14%

absolute when classifying breathing duration, 13% when classifying breathing capacity, and

17% on the global breathing impairment compared to the end-to-end modeling. However,

these improvements could not be translated into improvements in the regression task. On

the regression task, the best embedding is the UCL-SBM embedding, which however still falls

short of the hand-crafted features. Notably, wav2vec2.0 embeddings fail completely even

though successful on other tasks.

Table 4.3: Results on classification and regression of breathing impairments in PD patients
with statistical functionals of neural embeddings of dimension Di m.

Embedding Di m ACC [%] F-score SENS [%] SPEC [%] r ρ MAE
m-FDA Breathing duration

Raw 10 84 82 84 84 .177 .171 1.36
ZFF 10 69 64 61 76 .111 .113 1.39
UCL-SBM 10 64 61 67 61 .368 .361 1.22
VGGish 128 63 54 51 73 .277 .283 1.34
Wav2vec2.0mi d 768 55 0 0 100 .003 .002 1.52

m-FDA Breathing capacity
Raw 10 82 74 71 89 .153 .148 1.40
ZFF 10 70 54 49 83 .062 .067 1.43
UCL-SBM 10 65 46 40 83 .400 .393 1.32
VGGish 128 65 46 41 82 .356 0.37 1.29
Wav2vec2.0mi d 768 61 0 0 100 .001 .002 1.59

m-FDA Global Breathing impairments
Raw 10 83 82 .81 .84 .211 .193 1.31
ZFF 10 68 66 64 73 .111 .102 1.35
UCL-SBM 10 64 65 71 58 .373 .369 1.23
VGGish 128 64 60 56 72 .370 .376 1.20
Wav2vec2.0mi d 768 52 0 0 100 .003 .005 1.57
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4.5 Summary

We performed a pilot study to evaluate the severity of different breathing impairments that

appear in PD patients due to the presence of hypokinetic dysarthria. Our initial hypothesis

was to filter signals to obtain glottal signals and analyze them. In our results, we show that

this is not necessary, since both hand-crafted feature-based systems and CNN-based systems

performed mostly best on raw waveforms, closely followed by ZFF-signal-based systems.

Additionally, we studied different embedding representations and showed that task-dependent

embeddings outperform task-independent embeddings. We also showed that the advantage

of feature-based systems over CNN-based systems could be compensated by computing more

statistics from embeddings. CNN-based systems might suffer from the lack of data, but might

be more robust to noise. When investigating the performance of pre-trained embeddings,

we found that embeddings from a system trained to predict breathing signals worked well,

since the task is very similar, but would probably benefit from fine-tuning. Task-independent

off-the-shelf embeddings fall behind, notably trained on orders of magnitude more data, but

may require fine-tuning on in-domain data.

Overall, we were able to discriminate between low vs. high breathing impairments with up to

83% accuracy and global breathing impairment regression with a Pearson’s correlation of up

to .732. The global breathing impairment rating is a combination of two ratings: Breathing

duration impairment, which we demonstrated to solve in a classification with up to 82% accu-

racy, and regression with a Pearson’s correlation of up to .659. Breathing capacity impairment

classification was solved with up to 82% accuracy, regression with a Pearson’s correlation of up

to .660.
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5 Intelligibility estimation: a divergence
from healthy speech

Intelligibility is the ability of a listener to understand the message conveyed by a speaker.

Intelligibility is a subjective measure, which is usually assessed by listening tests. In this

chapter, we propose a novel approach to estimating the intelligibility of atypical speakers. We

propose to emulate subjective listening tests: Typically, listeners transcribe a recording or

compare it to a prompt. Based on that, the uttered speech recording can be classified as correct

or incorrect. Clinicians aggregate multiple such decisions, e.g. for severity categorization. A

speaker’s intelligibility is estimated as the percentage of correct words uttered, averaged over

the decisions of one or multiple listeners. In this chapter, for atypical intelligibility assessment,

we propose to compare words to the same word uttered by control speakers. We replace a

listener with a speaker and thereby take advantage of the production-perception feedback loop.

Implicitly, we measure if or by how much a recorded word deviates from what is considered

normal or healthy speech, i.e. a divergence. Along this paradigm, we investigated several

variations in terms of the speech signal representation and the amount of healthy speech used.

In this chapter, we demonstrate this approach on a corpus of dysarthric speech in Section 5.3

and on a small sample of lip filler surgery recordings in Section 5.4 to confirm the results of a

listening test.

5.1 Related work

Previous work on objective dysarthric speech intelligibility assessment can be broadly grouped

into two categories:

i) assessment without explicit use of linguistic information: Legendre et al. proposed pre-

diction of intelligibility using amplitude modulation spectra (Legendre et al., 2009). Falk

et al. (2011) investigated modeling of short- and long-term temporal dynamics information.

In (Falk et al., 2012), a signal processing-based composite measure was proposed, inspired

by the notion that intelligibility can be expressed as a linear combination of perceptual di-

mensions phonation, nasality, articulation and prosody (De Bodt et al., 2002). Janbakshi

et al. proposed the P-ESTOI measure (Janbakhshi et al., 2019a), which builds upon the
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speech intelligibility measures short-time objective intelligibility (STOI) (Taal et al., 2011)

and extended-STOI (Jensen and Taal, 2016). Different subspace-based methods such as

iVector-based (Martínez et al., 2015), use of spectral subspaces extracted through principal

component analysis or approximate joint diagonalization (Janbakhshi et al., 2019b) have also

been proposed. The subspace methods assess intelligibility by measuring the deviation or

distance between the control speech and dysarthric speech in the trained subspace.

ii) assessment based on explicit use of linguistic information: Kim et al. (2015) proposed an

approach where automatic speech recognition (ASR) with a confusion network is used to ob-

tain "phone-to canonical-phone" mappings. These mappings are summarized in per-speaker

histograms for a defined set of words and are then used to estimate an intelligibility score

for each speaker. Middag et al. (2009) proposed an approach where the dysarthric speech is

aligned using an ASR system to obtain phone probabilities or phonological feature probabili-

ties based confidences. These confidences are then accumulated over a specified group of

phones for each speaker to estimate an intelligibility score. Finally, ASR system accuracy-based

intelligibility assessment has also been investigated (Ferrier et al., 1995; Martínez et al., 2015).

In recent years, phone posterior feature-based speech assessment approaches have emerged,

where sequences of phone posterior probabilities obtained from reference speech and test

speech are matched for (a) speech codec and transmitted speech intelligibility assessment

(Ullmann et al., 2015a), (b) synthesized speech intelligibility assessment (Ullmann et al.,

2015a), and (c) degree of nativeness assessment (Rasipuram et al., 2015). We took inspiration

from these works.

5.2 Proposed utterance verification-based speech intelligibility as-

sessment

In a clinical setting, speech intelligibility can be assessed through an isolated word pronuncia-

tion test, where a speaker pronounces a set of isolated words, and the speech intelligibility

is measured as a percentage of correctly identified words by human listeners (Duffy, 2012;

Kent et al., 1989). We propose to emulate this listening test by comparing a speaker’s test

utterance to control utterances and then perform utterance verification, i.e. deciding if it was

pronounced correctly. Towards that, we need to measure the similarity (Section 5.2.1) between

two utterances and then make a decision as described in Section 5.2.2. As a representation, we

opt for phonetic posterior features, which are known for being speaker- and noise-invariant.

5.2.1 Sequence matching with dynamic time warping

The similarity of two utterances can be obtained by matching sequences of feature repre-

sentations with dynamic time warping (DTW) (Sakoe and Chiba, 1978). The match between

two sequences of features Z = (z1, · · ·zn , · · ·zN ) and Y = (y1, · · ·ym , · · ·yM ), where N denotes the

number of frames in sequence Z and M denotes the number of frames in Y. The dynamic
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programming recursion is as follows:

L(m,n) = l (ym ,zn)+min[L(m −1,n),

L(m,n −1),L(m −1,n −1)] , (5.1)

where, l (ym ,zn) is the local match score. We conduct the majority of our experiments using

the symmetric Kullback-Leibler divergence between ym and zn ,

l (ym ,zn)=1

2
· [

D∑
d=1

ym,d log
ym,d

zn,d
+

D∑
d=1

zn,d log
zn,d

ym,d
], (5.2)

where D is the dimension of the feature vector Y and Z. L(m,n) is the accumulated match

score at (m,n). The dynamic programming results in a global match score L(Mk , N ), which is

then normalized by the path length. Figure 5.1 illustrates DTW for ease of imagination.

Reference

Posterior Extractor

z1 zm zM

L(M,N)

Test

Posterior Extractor

yN
yn

y1

Figure 5.1: Illustration of dynamic time warping (DTW) between two sequences Z and Y to the
global match score L(M , N ).

In the literature, it is well known that comparison of probability distributions using KL-

divergence and other measures such as Bhattacharya distance is equivalent to hypothesis

testing and yields an estimate of log-likelihood ratio (Kailath, 1967; Blahut, 1974). The global

match score L(M , N ) is a sum of KL divergence valuesbetween posterior probability distribu-

tions on the best matching path normalized by the path length. So, L(M , N ) can be interpreted

as an estimate of the log-likelihood ratio of the test utterance being the same as the reference

utterance, through which utterance verification can be carried out. This notion is further

exploited in Section 5.3.4.
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5.2.2 Utterance verification based on DTW match score

It can be argued that when speech is unintelligible, the uttered word tends to map to a word

other than the target word. As a result, the listeners are not able to identify the target word. This

could be formulated as an utterance verification problem, i.e. testing the hypothesis whether

the speech utterances Y and Z correspond to the same word or not. A similar understanding

has been recently applied to assess the intelligibility of text-to-speech synthesis systems

(Ullmann et al., 2015b).

In order to decide if an utterance is pronounced correctly, we need to apply a threshold on

L(M , N ). As illustrated in Figure 5.2, the threshold is determined in the following manner:

1. Creating same word utterance pairs from the control speakers’ data, matching them,

and obtaining a distribution of global match score for the same word hypothesis;

2. Creating different word utterance pairs from the control speakers’ data, matching them,

and obtaining a distribution of global match score for NOT the same word hypothesis;

and

3. Determining the threshold at the intersection of the two distributions, referred to as

T hri nter or at the center of the two means of the histogram, referred to as T hrcen .

0 1 2 3 4 5 6 7 8
L(M, N)

0.00

0.02

0.04
Same-word
Different-word
Thrinter

Thrcen

Figure 5.2: Distribution of same and different-word pair scores L(M , N )

Intelligibility estimation: Every speaker’s intelligibility is estimated as the percentage of words

that are identified as correct through utterance verification.

5.3 Dysarthric speech intelligibility assessment

To validate the proposed utterance verification-based speech intelligibility assessment method

on a dysarthric speech database: the UA-Speech corpus. We propose to match utterances in

posterior feature space. A set of experiments will compare different representations as well as

the two introduced thresholds T hri nter and T hrcen . To comply with the experimental setup

in the literature, the utterance verification thresholds T hri nter and T hrcen are obtained using

only recordings from the control speakers.
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5.3.1 Posterior feature estimators

Speech representations vary greatly depending on the application. For dysarthric intelligibility

assessment, we require a representation that describes the acoustic-phonetic production of

a speech sound. In this work, we use posterior features, which are probability distributions

over the phonetic space. In order to investigate the suitability of different representations, we

investigated different posterior feature estimators. Broadly, we differentiate between phone

posterior space and broad phonetic or articulatory feature (AF) space. Common to these

representation spaces are i) They use probability distributions, which means divergence-

based distance metrics are most suitable. ii) They are predicting a realization of speech sounds

and therefore ideally should be noise-invariant as well as speaker-invariant. Typically, these

estimators are trained on amounts of data larger than what is available in a clinical setting, we

therefore use estimators trained on auxiliary data, which may be considered a convenience.

Phone posterior space: This representation is commonly used as features in speech recog-

nition, and is trained from a frame-to-phoneme alignment. Our representation consists of

45-dimensional context-independent phoneme posterior probabilities estimated by an off-

the-shelf multilayer perceptron (MLP). The MLP takes as input 39-dimensional perceptual

linear predictive cepstral features with a frame size of 25 ms, a frameshift 10 ms, and a nine-

frame temporal context (i.e. four frames preceding and four frames following). The MLP had a

single hidden layer with 5000 units. The output layer consisted of 44 English phonemes (based

on the UniSyn dictionary) and silence, i.e., D = 45. The MLP has been trained on 232 hours

of conversational telephone speech (8kHz) with the QuickNet tool (Johnson et al., 2004) by

minimizing the frame-level cross-entropy.

AF space: There are different ways to represent phonemes as articulatory features, e.g. as bi-

nary features (Chomsky and Halle, 1968) or multi-valued features (Ladefoged, 1993). Similar to

phone posterior features, they are trained from a frame-to-phoneme alignment. However, in-

stead of predicting phonemes, a mapping from phones to AF is used as targets of the predictor.

We conducted studies with both binary features and multi-valued AF representations:

AFbi nar y space consists of 18 binary valued AF predictors, namely for, {pause, consonantal

back, anterior, open, close, nasal, stop, continuant, lateral, flap, trill, voice, strident, labial,

dental, velar, vocalic }. In the Phonet toolkit1 (Vásquez-Correa et al., 2019), these AFs are

modeled by 18 off-the-shelf recurrent neural networks (RNN) based binary classifiers, i.e.

D = 18×2. The RNNs take as input log energies of 33-dimensional Mel filterbank energies.

The RNN classifiers have been trained on 17 hours of clean FM podcasts in Mexican Spanish

with a cost function based on cross-entropy. For more details, related to the mapping between

Spanish phones and the AFs and training of RNNs can be found in (Vásquez-Correa et al.,

2019).

AFmul ti−manner space consists of nine "manner of articulation" category AFs, namely, {silence,

1https://github.com/jcvasquezc/phonet
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aspirated, approximant, nasal, voiced-fricative, voiced-stop, stop, vowel}. These AFs were

modeled by an off-the-shelf convolutional neural network (CNN) that takes raw waveform as

input and predicts the posterior probabilities of the nine manner of articulation category AFs,

i.e. D = 9. The CNN has been trained on the 77 hour AMI corpus (Carletta et al., 2005) with a

cost function based on cross-entropy. The mapping between the English phones and the AFs

was based on previous work on automatic speech recognition (Rasipuram and Magimai.-Doss,

2016). For further details about the architecture and training of the CNN, the reader is referred

to Fritsch et al. (2020).

5.3.2 UA-Speech corpus

The Universal Access (UA)-Speech database (Kim et al., 2008) consists of 15 English speakers

with cerebral palsy (11 males, 4 females) and 13 healthy speakers (9 males, 4 females). Each

impaired and control speaker has uttered 765 isolated words in total: 155 isolated words

repeated 3 times and 300 isolated words spoken only once. In total, all cerebral palsy patients

provided about 3 hours of speech; the control speakers were 1 hour and 45 minutes. In the

database, each subject’s intelligibility score has been obtained by having five naive listeners

(native speakers of American English) transcribe the isolated words and then calculate the

average number of correct transcriptions. The subjective intelligibility scores of the patients

range from 2% to 95%. Similar to the previous works (Janbakhshi et al., 2019a,b), we use the

5th channel recordings for our experiments. An energy-based voice activity detection using

Praat (Boersma, 2001) was used to extract the speech segments.

5.3.3 Results and analysis

Among the related works mentioned in Section 5.1, some were carried out on the UA-Speech

database, and serve as baselines for our work. Table 5.1 shows Pearson’s correlation (r ) and

Spearman’s correlation (ρ) between subjective and objective intelligibility on the UA-Speech

database.

Table 5.1: Related works on the UA-Speech database. Pearson’s correlation (r ) and Spearman’s
correlation (ρ) between subjective and objective intelligibility of the speakers with dysarthria
only.

r ρ

P−ESTOI (Janbakhshi et al. (2019a)) .94 .94
Composite measure (Falk et al. (2012)) .94 .89
iVectors (Martínez et al. (2015)) .91 -
Discriminant analysis (Paja and Falk (2012)) .92
Spectral subspace (Janbakhshi et al. (2019b)) -.83 -.88
Temporal dynamics (Falk et al. (2011)) .87 .85
Word accuracy−based (Martínez et al. (2015)) .89 -
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Table 5.2 shows the results where an IntScor e was estimated for all 15 dysarthric speakers in

the database. Under each of the correlation values, a p-value testing the hypothesis that the

two sets of data are uncorrelated is also provided (p-values testing for a hypothesis test whose

null hypothesis is that two sets of data are uncorrelated1).

It can be observed that the proposed approach consistently yields high Pearson’s and Spear-

man’s correlation coefficients for all the posterior feature spaces. Also, all the results are

statistically significant. It is interesting to note that the choice of threshold does not influence

the proposed approach’s performance. Furthermore, the proposed approach consistently per-

forms comparably to or better than the baseline approaches. As a point of reference regarding

performance, we refer to Table 5.1.

Table 5.2: Pearson’s correlation (r ) and Spearman’s correlation (ρ) between subjective and
objective intelligibility at thresholds T hrcen and T hri nter . p-values are presented in Italics
font.

Posterior feature space T hrcen T hri nter

r ρ r ρ

Phone .939 .939 .950 .957
3.94e-7 2.31e-7 5.52e-8 2.29e-8

AFbinary .918 .885 .922 .885
1.88e-6 1.13e-5 1.27e-6 1.32e-5

AFmulti−manner .922 .910 .917 .894
1.01e-6 2.42e-6 1.43e-6 6.82e-6

In the above results, all 13 control speakers are used as references for a test utterance. However,

less might be necessary, a lower number of control recordings would even be a desirable

feature. Hence, we test the influence of reducing the number of references by randomly

selecting K control speakers per each test utterance. In the same vein, we propose to replace

healthy recordings with synthetic speech. Given today’s advances, it is possible to generate

synthetic speech at a high degree of naturalness. We used an off-the-shelf neural TTS system

Tacotron2 (Shen et al., 2018). The synthesizer has been originally trained on the LJSpeech

corpus2, which is an annotated English corpus including 13,100 short audio clips of a single

speaker reading passages from 7 non-fiction books. The system has been rated with a mean

opinion score of 4.526± 0.066 on a scale of 1 to 5. During synthesis, each word from the

UA-Speech word list was converted into a phoneme sequence based on CMUDict3. For more

information about the TTS system, the reader is referred to (Shen et al., 2018). In Table 5.3, we

present the results for the proposed approach using a single synthetic control speaker. It can

be observed that the performance is comparable to the results obtained using the 13 control

speakers.

Figure 5.3 summarizes the ideas presented above, showing the Pearson’s and Spearman’s corre-

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
2https://keithito.com/LJ-Speech-Dataset/
3http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Table 5.3: Pearson’s correlation (r ) and Spearman’s correlation (ρ) between subjective and
objective intelligibility from a single-synthetic-control. p-values are presented in Italics font.

Posterior feature space T hrcen T hri nter

r ρ r ρ

Phone .924 .942 .931 .961
1.44e-7 8.08e-7 1.14e-8 4.46e-7

AFbinary 0.827 .893 .822 .885
1.40e-4 7.23e-6 1.68e-4 1.13e-5

AFmulti−manner .937 .906 .930 .912
2.40e-7 3.09e-6 4.78e-7 2.13e-6

lation when the number of control speakers K is reduced from 13 to 1 (selected randomly), as

well as the results with a single synthetic reference. It can be observed that the performance is

pretty stable when K is reduced, even when selecting one single control speaker for intelligibil-

ity assessment, except for AFmul ti−manner . This indicates that, in the proposed approach, the

number of control speakers can be reduced considerably, without affecting the performance.
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Figure 5.3: Pearson’s correlation and Spearman’s correlation when the number of control
speakers K is varied from 13 to 1. Synth refers to the case of single synthetic reference.
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5.3 Dysarthric speech intelligibility assessment

The proposed approach estimates an intelligibility score IntScor e, i.e. percentage of words

correct for each speaker with dysarthria, which can be directly related to the subjective

listening score, without any intermediary mapping or regression. Fig. 5.4 shows the Pearson’s

correlation plot overlaid for the different systems, along with root-mean-square error (RMSE)

between listener percentage word accuracy and the IntScor e (presented in the legends);

each marker represents one speaker. It can be observed that phone space and AFmul ti−manner

space are predicting well high intelligibility regions, while AFbi nar y is predicting comparatively

well the low intelligibility regions. As a consequence, although AFbi nar y is not the best in

terms of r and ρ, it yields the best RMSE of 16.9%. We observe this trend even in the case

of synthetic control speech, denoted as Synth AFbi nar y . This is promising as we have not

used any dysarthric speech data to build any part of the assessment system. In the previous

studies, on the same data set, RMSE ranging from 12% to 18.6% have been reported with the

use of dysarthric speech data to build the intelligibility prediction models (Falk et al., 2012;

Martínez et al., 2015). Overall, the analysis indicates that IntScor e estimation needs to be

further improved for low intelligibility regions to take advantage of its interpretability. This is a

part of our ongoing work.

5.3.4 Probabilistic utterance verification based on DTW match score

In Section 5.2.2, we propose atypical utterance verification by determining a threshold from

in-domain data (or synthetic speech). In order to further reduce the necessary amount

of healthy/in-domain speech, we propose a probabilistic approach: As mentioned in Sec-

tion 5.2.1, the global match score L(M , N ) is a sum of KL-divergence-values along the best path

and can be interpreted as an estimate of the log-likelihood ratio of the test utterance being

the same as the reference utterance. Thus, the log-likelihood ratio estimate can be converted

into a posterior probability of the test utterance being the same as the reference utterance by

applying a logistic function:

Pc = L

1+e−k(x−x0)
(5.3)

where L is the supremum, x is the log-likelihood ratio L(M , N ), x0 is the function’s midpoint

and k the growth rate. In practice, we set L = 1, x0 ≈ 1.2 is approximately the middle of

the same-word distribution in Figure 5.2 and serves to move the y-interception point to the

positive side, and k = 1. Figure 5.5 shows the logistic function used to convert L(M , N ) into a

posterior probability.

Finally, for atypical utterance verification, a posterior probability of a test utterance is consid-

ered correctly pronounced when Pc ≤ .5 and rejected otherwise. Consistent with the previous

experiments on the UA-Speech dataset, every utterance is matched against the same word

uttered by the 13 control speakers, the resulting posterior probabilities are averaged, and

the average posterior probability is used as the final verification score. Table 5.4 shows the
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Chapter 5. Intelligibility estimation: a divergence from healthy speech
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Figure 5.4: Pearson’s correlation plot obtained from proposed intelligibility assessment sys-
tems. Synth refers to the case of a single synthetic control.
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Figure 5.5: Logistic function used to convert a DTW match score L(M , N ) into a posterior
probability.

proposed probabilistic atypical utterance verification results. The results are consistent with

the previous results, where the phone space and AFmul ti−manner space are performing better

50



5.4 Analysis of acoustic differences after lip filler surgery

than the AFbi nar y space. The results also demonstrate that with the proposed probabilis-

tic approach it might be possible to reduce the necessary amount of in-domain recordings,

given an estimate of the same-word distribution’s midpoint is available, e.g. from a different

experiment with the same representation.

Table 5.4: Pearson’s correlation (r ) and Spearman’s correlation (ρ) between subjective and
objective intelligibility from posterior estimates. p-values are presented in Italics font.

Posterior feature space T hrPc

r ρ

Phone .854 .965
4.90e-5 6.11e-9

AFbi nar y .550 .594
3.33e-2 1.94e-2

AFmul ti−manner .781 .781
5.73e-4 5.75e-4

5.3.5 Non-posterior representations for utterance verification

While the previous sections have demonstrated the effectiveness of the proposed approach

with posterior representations, in the paralinguistic field, many representations are used,

which we propose to investigate briefly. Mel frequency cepstral coefficients (MFCC) (Hönig

et al., 2005) are one of the most common representations for speech analysis. Additionally,

we used the wav2vec 2.0 representation (Baevski et al., 2020), an embedding representation

developed for speech recognition and trained in a self-supervised manner on large amounts

of unlabeled speech data. We used the wav2vec 2.0 base model1, which is a 768-dimensional

representation. Table 5.5 shows the results of estimating intelligibility with the aforementioned

representations. Since the representations are no longer probability distributions, we change

the distance metric. MFCCs perform well, when multiple healthy references are available,

but fail, once synthetic speech is used as a reference. Unexpectedly, wav2vec 2.0 yields a bad

performance with euclidean and cosine distances.

5.4 Analysis of acoustic differences after lip filler surgery

In this section, we validate the proposed approach on a different atypical speech aspect, where

systematic changes occur in a particular part of speech production system. In collaboration

with Univ.-Prof. DDr. Kurt Alexander Schicho from the Medical University of Vienna (MUV)2,

we investigated the effects of cosmetic lip filler surgery on speech production. This pilot study

aimed to propose a method to determine whether cosmetic lip filler surgery is altering speech

production capabilities, e.g. due to loss of sensation in the lips and the effect on producing

plosives. To that end, we contrast a subjective listening test with the proposed objective

1https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md
2https://schicho-medical.at
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Chapter 5. Intelligibility estimation: a divergence from healthy speech

Table 5.5: Pearson’s correlation (r ) and Spearman’s correlation (ρ) between subjective and
objective intelligibility estimates for non-posterior representations. DM denotes the distance
metric. p-values are presented in Italics font.

Representation T hri nter DM
r ρ

MFCC .923 .940 euclidean
9.23e-07 1.75e-07

Synthetic ref. MFCC .514 .669 euclidean
4.99e-2 6.37e-3

wav2vec 2.0 -.558 -.501 euclidean
3.05e-1 5.71e-2

wav2vec 2.0 -.290 -.175 cosine
2.935e-1 5.31e-1

intelligibility assessment: i) an A-B listening aiming to see, if German native listeners can

distinguish between before and after surgery (cf. Section 5.4.2) and ii) an automatic method:

the average distances of recordings of the same speaker before and after surgery compared to

the distance of recordings of different speakers (cf. Section 5.4.3).

5.4.1 Data

For our studies, MUV provided recordings from 11 women before and after having undergone

cosmetic lip filler surgery. All 11 subjects read the following 5 minimal pairs:

Table 5.6: Minimal pairs for MUV data collection.

1 Baum Traum
2 Vater Pater
3 Nüsse Küsse
4 See Tee
5 Lampe Tante

Additionally, all subjects read the following text passage from Hermann Kant’s novel Lebenslauf,

zweiter Absatz: Erzählungen" (Kant, 2011). The recrodings were segmented into 7 phrases:

5.4.2 A-B listening test

To identify any difference in pronunciation capabilities are perceivable, an A-B preference test

was conducted. Only Austrian and southern German native speakers were selected as listeners.

A total of 20 listeners participated. Listeners were asked to pick a preference in terms of clarity

of pronunciation. Even though the instruction was to choose a preference, some participants

opted not to pick any, which, in the analysis, will be considered as "no preference". The test

started with an example of minimal pairs and sentence reading, where the listeners know A
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5.4 Analysis of acoustic differences after lip filler surgery

Table 5.7: Text passage for MUV data collection from Hermann Kant’s novel Lebenslauf, zweiter
Absatz: Erzählungen".

1 Ich saß auf dem Dach und konnte alles genau sehen:
2 die vier verstaubten Männer in der Buchenlaube,
3 meine Mutter und die Frau mit der Ziege,
4 meine kleine Schwester Alida hinter dem Schattenmorellenspalier,
5 den Festzug mit Blumen und Fahnen in der kleinen sandigen Sprache und Judith,

die Königin.
6 Die Königin stand ganz alleine auf dem sauber geharkten Weg zwischen dem

Steingarten und der Dahlienreihe.
7 Sie wartete auf den König.

is the stimulus before, and B is the one after "some form of treatment". Following, 33 tests

are provided, two read sentences and one minimal pair that were randomly selected from

all recordings of all 11 subjects. Every time the test is opened, both the order of the tests was

randomized, and so were before and after behind the A and B stimuli. For the evaluation, we

confirmed the conscientiousness of listeners, meaning that we would exclude listeners that

picked only A or B.

Overall, a Wilcoxon signed-rank test for the null hypothesis3, we observed a p-value of

p = .6524, whereas a Student’s t-test4 gives a p-value of p = .5141, when the expected popu-

lation mean is set to the number listeners divided by two (popmean = 10). Hence, it can be

concluded that there is no observable difference between before and after the lip filler surgery.

Evaluation per speaker: To test, whether listeners could discriminate significantly between

before and after on a per-speaker-level, we evaluated significance tests per speaker: To all

20 listeners For every subject of the study, 3 tests were given, so 60 tests per speaker. Table

5.8 shows p-values that were obtained with a Student’s t-test, where the expected population

mean is again the number of listeners divided by two (popmean = 10).

Table 5.8: Table 1: Student’s t-test of the preference test per speaker; per speaker, 3 samples
were given to 20 listeners.

Speaker 1 2 3 4 5 6 7 8 9 10 11
p-value .6256 .9096 .9096 .5 .3440 .5 .8304 .8304 .2048 .7422 .2048

Finally, in Figure 5.6, we visualized the listeners’ preferences in a bar plot. As for the hypothesis

testing, preferences were aggregated over 3 tests per 20 listeners, in total 60 tests per speaker.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html
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Figure 5.6: Percentage of preference in an A-B listening test per speaker and in total.

5.4.3 Utterance verification-based assessment

In addition to the listening test, we proposed an automatic analysis method: Following the

approach described in Section 5.2, we proposed to assess whether a subject’s speech after

surgery deteriorates from before’s by matching considering the utterance before as reference

and matching the utterance after the surgery to obtain a distance. As a point of reference,

we match the all same utterances from before the surgery to different speakers’ recordings

of the same phrase before the surgery. The hypothesis is, that if the distance between the

before and after of the same speaker is lower than the distances to different speakers, i.e. inter-

speaker-variability, we can assume that the surgery went well. We acknowledge that comparing

matching scores of entire sentences is a crude approach. Therefore, in the following, the results

on the minimal pairs as our main indicator, but report the results on the sentences for the

sake of completeness.

The experiment is carried out in phone posterior space (cf. Section 5.3.1) and the SKL distance

metric is applied since we observed consistent performance with it. Figure 5.7 shows his-

tograms of all distances between same-speakers before to after as all as distances of different

speakers of the same word. Over the histogram, a normal distribution was overlaid to better

visualize the mean and standard deviation of the two sets of distances. Figure 5.7 (a) shows

these same histograms for individual minimal pair recordings, Figure 5.7 (b) for read sen-

tences. In both figures, same-speaker distributions have a lower mean than different-speaker

distributions, which confirms the results of the listening test, that after the surgery no acoustic

differences are perceivable.

Analogous to the listening test analysis, we also tested whether the difference between same-

speaker and different-speaker distances differ on a speaker level. Figure 5.8 shows the average

same-speaker- and different-speaker distances per speaker. We observed that consistently the

same-speaker distances are lower than the different-speaker distances. From this, we again
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Figure 5.7: Histogram of same-speaker- and different-speaker SKL-distances.

conclude no noticeable acoustic differences between before and after the surgery.
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Figure 5.8: Averages of same-speaker- and different-speaker SKL-distances.

5.5 Summary

In this chapter, we presented a novel approach for atypical intelligibility assessment. Framing

intelligibility assessment as a divergence from healthy speech and solving it through utterance

verification is novel and intuitive. Both individual matching score distances and aggregated

intelligibility scores are explainable to clinicians, which is an advantage over other existing

approaches.

The approach was evaluated on two small but typical-size datasets. On the UA-Speech dataset,

we achieved competitive results, while not requiring any training, and by using auxiliary

posterior estimators. Notably, our approach is not limited to the used representation, meaning

that with an improved representation (and the right distance measure) it can be improved in

the future. Additionally, we showed, how simple and robust the method is to reducing the

amount of control recordings. As a consequence, the same idea could be applied to an open

research question: For cosmetic lip filler surgery, we verified the results of an A-B listening test.

Implicitly, in both cases, we close the production-perception loop by replacing a listening test

with examples of control speech.
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6 Pronunciation assessment of atypical
speech

This chapter extends Chapter 5 by proposing a method for pronunciation assessment. We

again rely on the notion that atypical speech can be measured as a deviation from healthy

control speech. We propose a method, that again compares atypical utterances to a reference

sequence, which allows us to determine which sub-word units, i.e. phonemes, are pronounced

correctly and which are not. A sub-word unit pronunciation assessment is an upgrade of

the need of end-users. Speech therapists and patients want to identify speaking deficits to

improve specific speech production aspects.

6.1 Related works

Different methods have been proposed for pronunciation assessment. In the field, second

language (L2) learning and assessment for people with speaking disorders are the two main

use cases that are considered. In the following, we briefly overview popular methods.

Traditionally, goodness of pronunciation (GOP) has been used for evaluating pronunciation

assessment (Witt and Young, 2000). Based on a phoneme alignment, a GOP value can be com-

puted for every phoneme. GOP is defined as the duration-normalized posterior probability

ratio (sometimes also likelihood ratio) between the realized phone and the expected/canonical

phone:

GOP (p) ≈ log
P (p|o; ts , te )

maxq∈Q P (o|q ; ts , te )
/N F (p) (6.1)

Given an expected phoneme p, the observation o, ts and te are the start and end time of the

phoneme and N F (p) the length of phone p. P (o|q); ts , te are the likelihoods of phone q . Q is

the set of all possible phones. The maximum likelihood is computed over all possible phones.

The GOP value is then used to determine whether a phoneme is pronounced correctly or not.

To make an assessment, a phone-based threshold is proposed as T hrp = µp +σp . Another

generic option of setting a threshold is based on an equal error rate, as done in (Wei et al., 2022).
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GOP, in the context of L2 learning, is also adopted with end-to-end ASR systems, for example

by Zhang et al. (2020) with a CTC-based ASR system, which outputs character sequences and

GOP is computed based on that. In (Korzekwa et al., 2021), the authors propose a system for

second language learners. For word-level correctness assessment, the authors propose to train

a neural network in an end-to-end manner. For phoneme-level feedback, the authors propose

to append a phoneme-recognizer that outputs the predicted sequence.

A variety of methods on pathological intelligibility estimation is proposed in (Middag, 2012):

Based on an ASR-alignment, phonological features as input to different regression methods

are proposed (e.g. linear regression and support vector regression) to estimate intelligibility

for all speakers in a dataset. Requiring to train on a certain number of speakers is a drawback

of this method. Additionally, even though speech production variables like articulation and

phonation quality are predicted, no phoneme-level assessment is attempted. In (Quintas

et al., 2022), the authors are estimating the intelligibility of head and neck cancer patients by

force-aligning speech, and separately training one Siamese network on similarity estimation

for 16 different consonants. Intelligibility is estimated based on the similarity scores.

6.2 Proposed Kullback-Leibler divergence-based Hidden Markov

Models

In order to model healthy speech, we propose to use a Hidden Markov Model (HMM) with

a Kullback-Leibler divergence cost function (KL-HMM). We propose to train HMMs per

phoneme on control recordings, which will serve as a reference. In the following, we elu-

cidate the KL-HMM training:

In the context of hybrid HMM/ANN speech recognition, HMMs are used for acoustic sequence

modeling, while neural networks ANN are used to predict posterior probability distributions,

e.g. over context-independent phones, typically denoted as a, belonging to an observation x:

p(a|x). Traditionally, HMMs were parametrized with Gaussian mixture models that emit the

likelihoods of observations. In Aradilla et al. (2007) a modification was proposed: a posterior-

based HMM model, where the target parametrization is categorical probability distributions.

As observations, posterior probability distributions are used. The HMM’s cost function is a KL

divergence cost function between observation and categorical distributions:

K L(y ||z) =
K∑

k=1
yk log

yk

zk
(6.2)

where y and z are two probability distributions, and K is the number of states in the HMM.

The KL divergence is a measure of the difference between two probability distributions. To

train an HMM, KL-divergence is minimized:
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6.2 Proposed Kullback-Leibler divergence-based Hidden Markov Models

Jθ = min
θ

T∑
t=1

K L(yθt ||zt ) (6.3)

The parameters of the KL-HMM are estimated with the Viterbi EM algorithm by minimizing Jθ:

For training, i) data is segmented uniformly according to the phonetic transcriptions, ii) target

distributions are computed to minimize the KL-divergence according to the segmentation, iii)

training data is segmented to minimize the global cost function using the Viterbi algorithm.

Steps ii) and iii) are repeated until convergence of the cost function.

In practice, the following resource is required: Training utterances with phonetic transcriptions

according to a lexicon; we use the phonemes as phonetic units. Per phonetic unit, we train a

3-state HMM; each state’s target posterior distribution gets updated, and states are not tied to

particular observation but are only characterized by their target posterior. We’re not making

use of the HMM’s transition probabilities.

z1,1

L(M,N)

Test

Posterior Extractor

yN
yn

y1

z1,2 z1,3 zm,2 zm,3zm,1

KL-HMM

L1

Lm

Figure 6.1: Alignment to KL-HMM’s phonetic units through DTW path.

When a word’s phonetic unit’s Kl-HMM-target posterior distributions (per phonetic transcrip-

tion) are concatenated together, we obtain a test utterance’s expected sequence. Matching the

two is illustrated in Figure 6.1. For all test frames belonging to one KL-HMM phonetic unit, the

local distances can be accumulated and path-length-normalized to obtain a distance between

that phonetic unit and frames in the test utterance (cf. L1 and Lm in Figure 6.1). Thus, we

get an alignment for the test utterance as well as a distance between the KL-HMM reference
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Chapter 6. Pronunciation assessment of atypical speech

phoneme sequence and corresponding frames of the test utterance. These phoneme-level

scores can then be used for ’phoneme-verification’ – in contrast to the previous utterance

verification. On a side note: The individual phoneme-level distances sum up to the total

match score L(M , N ).

6.3 Experimental study on UA-Speech

As an initial experiment and extension of the results in Chapter 5, we trained a KL-HMM on

the UA-Speech database (cf. Section 5.3.2). We perform this experiment in phone posterior

space (cf. Section 5.3.1) since it yielded the best results in Chapter 5. Note, that we used both

male and female speakers for training the HMM models. The intersection-point threshold is

obtained by creating same-word and different-word pairs between KL-HMM sequences and

control speech. For testing, only one reference is available: the KL-HMM posterior sequence.

Same as in Section 5.2, intelligibility is estimated as the number of words that are considered

pronounced correctly. The performance presented in Table 6.1 is comparable to the results

in Chapter 5. The result demonstrates, that we can model control speech with a KL-HMM.

However, on UA-Speech, we can only evaluate performance globally, since the individual

utterances were not annotated in terms of how pronunciation was realized.

Table 6.1: Pearson’s correlation (r ) and Spearman’s correlation (ρ) between subjective and
objective intelligibility estimates on UA-Speech with a KL-HMM reference model. p-values
are presented in Italics font.

T hri nter

r ρ

Phone KL-HMM .936 .910
1.79e-7 2.42e-6

6.4 Experimental study on Torgo

We conducted a set of experiments on the Torgo dataset. Torgo has recordings of speakers

with dysarthria and phonetic transcription for most utterances, which allows a word-level

and phoneme-level assessment. The main goals of this experimental study on Torgo are

(i) utterance verification-based intelligibility assessment, and (ii) performance evaluation

of phoneme-level pronunciation assessment. Both can be performed with either a data-

driven threshold T hri nter or a non-data-drive threshold by converting distances into posterior

probabilities and using T hrPc = .5. For (i) we distinguish the following decision levels:

Global: One global threshold for utterance-verification-based intelligibility estimation (cf.

Section 5.2) on Torgo. We use the experimental same setup as in Chapter 5, but with the Torgo

database.

Word: In order to improve the utterance-verification-based intelligibility estimation setup
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proposed in Chapter 5, we propose an initial variation: Instead of using a global utterance

verification threshold, we propose to use one for every unique word in the database. This

seems reasonable because therapists let their patients practice a fixed set of words. The word-

specific thresholds are obtained by creating same-word and different-word pairs from control

speech. In Torgo, that means creating word pairs for 600 individual words. Figure 6.2 shows

an example of the histograms for two similar words, where both distributions and thresholds

differ slightly, which lets us expect performance gains.
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(a) Word: feet (b) Word: feed

Figure 6.2: Histogram of same and different-word pair scores L(M , N ) for two words in the
Torgo database.

Phoneme: For pronunciation assessment on the Torgo dataset, we train KL-HMMs on Torgo’s

control utterances. Based on the obtained alignment (cf. Figure 6.1) between KL-HMM and

test sequence obtained through DTW and the phoneme-level thresholds. Same-phoneme dis-

tances are obtained by matching control utterances to the corresponding KL-HMM sequence.

Different-phoneme distances can be obtained for every phoneme, by matching the KL-HMM

test sequence to words that only differ in that phone, hence having a Levenshtein distance of

1 in terms of phonetic transcription.

6.4.1 Dataset

Torgo: The Torgo corpus of dysarthric speech (Rudzicz et al., 2012) contains English recordings

from 15 speakers, of which 8 are severely dysarthric speakers and 7 control speakers. For

our experiments, we included only the isolated word recordings. Of all isolated words, from

control speakers, we further exclude those without a transcription; from the dysarhtric group,

we only include recordings for which a perceived phonetic transcription is available, since

it is needed for evaluation. A word is considered pronounced correctly when the target and

perceived pronunciation are the same. That leaves a total of 600 unique words. Table 6.2

overviews the number of utterances for control and dysarthric speakers. The speakers with

dysarthria have cerebral palsy (CP) or amyotrophic lateral sclerosis (ALS), covering a wide

range of intelligibility levels. We used cmu-dict pronunciation dictionary for our experiments.
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Table 6.2: Torgo corpus statistics of utterances that are isolated words and that have a phonetic
transcription.

# Utterances Length
Control 4359 2h32min
Dysarthric 897 30 min

6.4.2 Results

Utterance verification-based intelligibility assessment: Table 6.3 summarizes the results on

Torgo of word-level intelligibility assessment at different decision-levels. We are not reporting

correlations, since only 7 speakers have contributed isolated words and correlations wouldn’t

be statistically significant. We instead report root mean squared error (RMSE) between the

estimate and annotated global intelligibility, as well as word accuracy (WAC) as the percentage

of utterances that are identified correctly as mispronounced/correctly pronounced. Overall,

the probability threshold T hrPc consistently outperforms T hri nter . Contrary to our expec-

tation, we do not observe performance gain when performing utterance verification with

a word-specific threshold. With a phoneme-specific threshold, where a word is considered

wrong when one of its phonemes is mispronounced, we observe slightly more robust results.

Yet, a phoneme-specific threshold is less computationally heavy than one per word and offers

other advantages.

Table 6.3: RMSE and word accuracy (WAC) between subjective and estimated intelligibility on
Torgo.

Reference Threshold Decision-level RMSE WAC [%]
Recordings T hri nter global 49.24 45.30
Recordings T hrPc global 19.54 74.91
Recordings T hri nter word 53.60 40.07
Recordings T hrPc word 21.47 77.30
KL-HMM T hri nter phoneme 19.78 62.20
KL-HMM T hrPc phoneme 22.09 77.64

Phoneme-level pronunciation assessment: In order to measure the performance of the

phoneme-level pronunciation assessment, we directly assess performance on a phoneme

level. We use the posterior-based threshold T hrPc = .5. We calculate phoneme accuracy,

precision, and recall between our target and perceived pronunciation and our decisions.

Table 6.4 shows overall performance. Over all speakers and all phonemes, we achieve a 77%

accuracy.

Table 6.4: Accuracy, precision and recall of phoneme-level pronunciation assessment in Torgo.

Accuracy [%] Precision [%] Recall [%] Count
77.03 97.59 78.42 2680
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6.5 Experimental study on COPAS

6.4.3 Analysis

Based on the results in Table 6.4, we split the phonemes into different groups and analyze the

performance of the system in different groups. In Figure 6.3, we show accuracy, precision,

recall, and count for the phonetic group’s nasals, plosives, fricatives, approximants, and vowels.

On accuracy and recall, we observe lower performance of 55% for nasals but accuracies above

80% for the remaining phonetic groups.
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Figure 6.3: Phoneme-level performance for different phonetic groups in Torgo, as well as total
count of phonemes used in the analysis.

6.5 Experimental study on COPAS

In this experimental study, we use the Dutch COPAS dataset, because it is a large dataset

with a variety of pathological speech and thereby gives a stronger supporting argument to

our proposed approach. We follow the same experimental design as in Section 6.4, meaning

we are interested in (i) utterance verification-based intelligibility assessment, and (ii) perfor-

mance evaluation of phoneme-level pronunciation assessment. We apply either a data-driven

threshold T hri nter or a non-data-driven threshold by converting distances into posterior

probabilities and using T hrPc = .5. Again, for (i) we distinguish the following decision levels:

global, word, and phoneme.
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Chapter 6. Pronunciation assessment of atypical speech

6.5.1 Dataset

COPAS: Dutch corpus of pathological and normal speech (COPAS) is a database of speech

recordings published by Van Nuffelen et al. (2009). For our experiments, we use the iso-

lated word recordings called Dutch Intelligibility Assessing (DIA) which is a designed list of

consonant-vowel-consonant words. We consider words, for which a perceived pronunciation

was annotated. A word is considered pronounced correctly when its target pronunciation and

perceived pronunciation are the same. In total, COPAS has 319 speakers of different groups

of which we include: healthy speech as references and 7 impaired groups: voice disorder,

cleft, articulation disorders, laryngectomy, glossectomy, and dysarthria. Our final word list

which is both in train and test contains 715 different words. The pronunciation dictionary was

provided by the publishers of the dataset.

Table 6.5: COPAS corpus statistics of utterances that are isolated words and that have a
phonetic transcription.

Group # Speakers # Utterances Avg. Intelligibility
Voice Disorder 8 400 88
Larynx 37 1846 75
Dysarthria 87 4349 80
Cleft 38 1849 86
Articulation Disorder 3 150 94∑

173 8594 84.6

Control 78 5836 94

6.5.2 Results

Since we evaluate our approach on 173 speakers, we measure performance in terms of Pear-

son’s correlation r, Spearman’s correlation ρ, RMSE between true and estimated global in-

telligibility, and WAC as the percentage of utterances that are identified correctly as mispro-

nounced/correctly pronounced. As a baseline, we consider results from Middag (2012), who

trained a linear regressor from phonological features on the entire speaker set of the COPAS

DIA set in a cross-validation evaluation. The authors achieve a Pearson’s correlation of r = .814

and an RMSE of 7.71 (cf. Table 8.1 in Middag (2012)).

Utterance verification-based intelligibility assessment: The experiments presented in Table

6.6 are conducted in phone posterior space. We choose it because it has proven to perform well

and neglect the language mismatch - COPAS is dutch - our phone posterior representation

is trained on English data. Our overall best results achieved are a Pearson’s correlation of

r= .357, RMSE of 17.68 and a WAC of 77.54%. We achieve lower WAC with KL-HMM references,

presumably because different pronunciation variations can be compensated better with

multiple human references that are more indicative than one single ’average’ reference. The

baseline performance far exceeds our result. However, their method trains a regressor instead

of our method of counting and only allows a global estimate, and no utterance-level feedback
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to give to speakers.

Table 6.6: Pearson’s correlation r, Spearman’s correlation ρ, word accuracy (WAC), and RMSE
between subjective and estimated intelligibility on COPAS.

Reference Threshold Decision-level r ρ RMSE WAC [%]
Recordings T hri nter global .2991 .1993 18.72 69.15
Recordings T hrPc global .3008 .2282 35.82 53.95
Recordings T hri nter word .314 .2311 22.97 63.28
Recordings T hrPc word .351 .289 17.68 77.54
KL-HMM T hri nter phoneme .357 .294 26.34 57.28
KL-HMM T hrPc phoneme -.058 -.001 79.09 20.75

Phoneme-level pronunciation assessment: On top of the global intelligibility, we present

our results on the performance of phoneme-level pronunciation assessment. We used the

intersection-point threshold T hri nter . On average, we observe a performance drop of 5-10%

when compared to the results on Torgo. Typically, a larger number of samples has a larger

variance, hence is more difficult. Per-group, the lowest phoneme accuracy is achieved for the

laryngectomy group, which also has the lowest average intelligibility of 75, whereas the groups

with intelligibility above 80 achieve accuracies around 70% (cf. Table 6.5). This could mean

increased difficulty in stronger severity disabilities.

Table 6.7: Accuracy, precision, and recall of phoneme-level pronunciation assessment in
COPAS.

Accuracy [%] Precision [%] Recall [%] Count
Voice disorder 69.92 92.27 71.07 1145
Laryngectomy 63.74 86.91 69.27 5130
Dysarthria 70.27 92.28 73.89 11951
Cleft 72.26 94.48 75.59 5303
Articulation disorders 68.71 99.25 69.34 430

Av g . 68.98 93.04 71.83
∑= 20949

6.5.3 Analysis

Finally, in Figure 6.4, we illustrate performances for every group but differentiate between

phonetic groups. We use the result achieved with T hri nter . We observe, consistently over

the disorder groups, nasals have the lowest accuracy between 50 %and 60%, followed by

approximants. Plosives and fricatives are recognized with an accuracy of around 70%, while

for vowels it ranges 80% to 90%. The same trends can be seen in precision and recall. One

potential reason for the lower performance in nasals could be that, as discussed in Section 2.1,

nasality is one of the four main intelligibility dimensions, and a representation more tuned to

nasality is necessary.
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Figure 6.4: Phoneme-level performance for different phonetic groups of the groups of speakers
in COPAS, as well as total count of phonemes used in the analysis per group.

6.6 Summary

In this chapter, we extended our novel utterance verification approach for intelligibility as-

sessment by varying the decision level and observe good results when it is word-specific. We

introduced a new way to model control speech with phoneme KL-HMM models. Again, we

implicitly approached pronunciation assessment as a divergence from healthy speech, yet

now on phoneme-level. We demonstrated the effectiveness of this method on two datasets:

Torgo, a set of recordings from English-speaking people with dysarthria, as well as COPAS,

a set of recordings from dutch-speaking people with different speech production disabili-

ties. By demonstrating good performance on both datasets, we confirmed the robustness of

the approach across languages while still using auxiliary resources for estimating posterior

representation.
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7 Conclusion and future directions

Analysis of atypical aspects in speech is a challenging and very interesting research topic. It

includes social and medical knowledge in the analysis of human speech production. The

goal of the thesis was to propose novel methods for detection and analysis that are tailored

to the problem just as much as to the needs of the end users. We focused on guiding the

learning of CNN-based architectures, to improve performance as well as to better cope with

the low-resource aspect that is common in atypical speech assessment. For intelligibility

estimation, we introduced a new scheme that is interpretable. The method is extendable to

phoneme-level pronunciation feedback and should therefore be appealing to both clinicians

and patients.

In Chapter 3, we investigated inducing knowledge into CNNs for classifying and measuring the

severity of Alzheimer’s disease. We found a shorter first-layer kernel width to be more suitable,

as well as using a filter, the ZFF, to pre-filter signals before feeding them to the networks to

be more efficient than using the unfiltered raw waveform. In research collaborations, we

discovered that a late fusion of acoustic and text-based systems yields performance gains,

indicating that they model different information. For the degree of sleepiness estimation, we

applied the CNN framework as well, where the initial performances were sub-par. However, a

pre-training scheme to predict articulatory features helped. Finally, when combining different

models, we achieved a robust estimate.

In Chapter 4 we investigated phonation assessment in a breathing impairment task of Parkin-

son’s patients. We compared hand-crafted features that model voice-source information, as

well as feeding the signals into raw waveform CNN models. Input to all systems were different

filtered signals. We found that CNNs learn good embedding representations. Functionals of

these embeddings outperform hand-crafted features. Furthermore, we found that breathing

impairment may not need to be analyzed in glottal signals, since raw and ZFF signals yielded

the best systems.

In Chapter 5 we measured intelligibility, a popular clinical measure of the severity of patholog-

ical speech. It is an aggregate over a set of utterances of a speaker, and we, therefore, proposed
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to deal with it as such. We implicitly emulate human listeners’ assessments. We proposed

verifying the correctness of the pronunciation of every utterance and aggregating those de-

cisions into the intelligibility score. The verification of utterances is performed in different

auxiliary-resource acoustic-phonetic posterior spaces. Overall we found that it compares well

to other methods in the literature. Several variations, e.g. in terms of the amount of control

speech demonstrated the approach’s robustness. Additionally, we were able to demonstrate,

that the same idea can be applied to confirm the results of an A-B-listening test on recordings

of before and after lip-filler surgery.

In Chapter 6, we extended the idea of intelligibility estimation to pronunciation assessment.

Instead of verifying words, we propose to verify phonemes, and can therefore give pronuncia-

tion feedback with high accuracy. We supported our proposed approach with experiments on

two datasets. We discovered the accuracy varies across phonetic groups. Specifically, nasals

are assessed less accurately.

Regarding the general limitations of the proposed approaches, we acknowledge that even

though the objective nature of automatic methods is an advantage, they will in the near future

rather serve as a second opinion. Pronunciation assessment can be used for patients wanting

to exercise at home. Still, these patients have to be supervised by trained therapists.

In the following, we propose possible directions for future research:

• The detection of pathologies in speech so far focused on directly classifying from

utterance-level representations. In our opinion, analysis can be improved by taking

a more holistic approach: A combination of speech dimensions, such as articulation,

nasality, phonation, and prosody. This could lead to better objective assessments that

are also more interpretable.

• The proposed methods for intelligibility estimation and pronunciation assessment may

benefit from better auxiliary speech representations, e.g. self supervised learning-based

representations. In this work, we investigated representations that were not fine-tuned

in a task or domain specific manner (e.g., phonetic classification). So, a question that

emerges for future research is: to what extent the proposed methods can benefit from

task or domain specific adaptation?

• We believe that the presented method for pronunciation assessment is suitable for

speech therapy, but future work is needed to bring performance up to an applicable

level. This could also be done through more threshold tuning, e.g. per group, or even

personalized.
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A Phoneme-to-articulation mapping

Table A.1 shows a phoneme-to-articulatory feature map. It is mapping all 54 English phonemes,

in ARPABET notation (Klautau, 2001), to 5 articulatory categories. The categories are manner,

place, height, and vowel. The mapping is based on Rasipuram and Magimai.-Doss (2016). We

note, that such a mapping is not unique.

Table A.1: Knowledge-based phoneme-to-articulatory feature map used in Section 3.3.5.

Phoneme Manner Place Height Vowel
sil sil sil sil sil
aa vowel back low aa
ae vowel mid-front low ae
ah vowel mid mid ah
ao vowel back mid-low ao
aw1 vowel mid-front low aw1
aw2 vowel mid-back high aw2
ax vowel mid mid ax
axr approximant retroflex mid consonant
ay1 vowel back low ay1
ay2 vowel mid-front high ay2
b voiced-stop labial max consonant
ch stop front max consonant
d voiced-stop alveolar max consonant
dh voiced-fricative dental max consonant
eh vowel mid-front mid eh
el approximant lateral very-high consonant
em nasal labial max consonant
en nasal alveolar max consonant
er vowel mid mid er
ey1 vowel front mid-high ey1
ey2 vowel mid-front high ey2
f fricative labial max consonant
g voiced-stop dorsal max consonant
hh aspirated unknown max consonant
ih vowel mid-front high ih
iy vowel front very-high iy
jh voiced-stop front max consonant
k stop dorsal max consonant
l approximant lateral very-high consonant
m nasal labial max consonant
n nasal alveolar max consonant
ng nasal dorsal max consonant
ow1 vowel back mid ow1
ow2 vowel mid-back high ow2
oy1 vowel back mid-low oy1
oy2 vowel mid-front high oy2
p stop labial max consonant
r approximant retroflex mid-low consonant
s fricative alveolar max consonant
sh fricative front max consonant
t stop alveolar max consonant
th fricative dental max consonant
uh vowel mid-back high uh
uw vowel back very-high uw
v voiced-fricative labial max consonant
w approximant back very-high consonant
y approximant front very-high consonant
z voiced-fricative alveolar max consonant
zh voiced-fricative front max consonat
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