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“Has the rain a father, or who has begotten the drops of dew?

From whose womb did the ice come forth, and who has given birth to the frost of heaven?”

— Job, 38, 28–29
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Abstract

Snowfall is an essential component of the hydrological cycle, as it is involved in most precipi-

tation on Earth, either directly as snow falling to the ground or indirectly as rain melted from

snow. At the same time, the ice phase of clouds and precipitation is a key contributor to the

Earth’s radiative budget, making it a crucial aspect of climate-oriented research. Properly mod-

eling snowfall for weather and climate applications requires knowledge of the “microphysics of

snowfall”, that is, a microscale description of snow particles and of the mechanisms by which

they form, grow, and decay. Among different approaches to studying snowfall microphysics,

remote sensing techniques and, in particular, meteorological radars, offer decisive insights.

The interpretation of radar variables reveals information on the microphysical properties of

hydrometeors over large spatial areas and in the vertical dimension. In addition to standard

scalar variables, the Doppler spectrum measured by vertically-pointing radars allows separat-

ing the radar echo of hydrometeors as a function of their downward velocity. This discloses

how radar signals are distributed between large, fast-falling, and small, slow-falling particles,

and enables more refined analyses of snowfall.

The goal of this thesis is to investigate the microphysical properties and processes of snowfall

by relying primarily on measurements from radars transmitting at different frequencies and

on radar Doppler spectra. First, a multi-sensor dataset of in situ and remote sensing measure-

ments of snowfall is presented, which was collected during the ICE GENESIS campaign in the

Swiss Jura Mountains in January 2021. Methodological developments are then introduced,

making use of cutting-edge machine-learning techniques to retrieve cloud and snowfall prop-

erties from remote sensing measurements. Specifically, one algorithm is developed to estimate

the liquid water path, i.e., the integrated liquid water content in the atmospheric column,

from radiometer brightness temperature. This quantification of atmospheric liquid water

is of high relevance to snowfall studies, as microphysical processes are largely affected by

mixed-phase conditions, wherein ice particles coexist with supercooled liquid water droplets.

We then propose a novel framework to retrieve a number of snowfall microphysical proper-

ties from dual-frequency radar Doppler spectra, relying on a two-step, physics-driven deep

learning approach. In comparison with existing methods, this framework relaxes the need

for certain prior assumptions on microphysical properties, or on perfect beam alignment

and non-turbulent atmosphere. The retrieval is evaluated against in situ measurements from
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Abstract

ICE GENESIS, and the encouraging—albeit not perfect—results pave the way for advanced

characterizations of snowfall properties on larger datasets. Finally, we focus on a specific

snowfall event of ICE GENESIS. Through a detailed analysis of multi-frequency and Doppler

spectral measurements, we propose interpretations of the complex signatures observed, which

reveal the occurrence of distinct ice production and growth processes.

Altogether, this thesis contributes to an improved characterization of snowfall microphysics

through different perspectives, with (i) an open-access multi-sensor dataset of measurements

in snowfall, (ii) new methodological tools to retrieve cloud and snowfall properties, (iii) a case

study that underlines the relevance of radar measurements to improve our understanding of

microphysical processes.
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Résumé

Les chutes de neige ont un rôle essentiel dans le cycle hydrologique. Elles contribuent de

façon significative aux précipitations sur Terre – dont plus de la moitié sont sous forme de

neige, ou de pluie issue de neige – et permettent de constituer en hiver un réservoir d’eau

douce dans les régions montagneuses, sous la forme du manteau neigeux. En outre, dans

l’atmosphère, les nuages en phase glace ou mixte ont un rôle radiatif majeur, et pourtant

encore mal compris. Dans ce contexte, en vue d’améliorer les modèles météorologiques et

climatiques, il est nécessaire de s’intéresser à la « microphysique des chutes de neige », c’est-

à-dire de décrire avec précision les particules de neige et les processus qui gouvernent leur

formation et leur croissance. Les radars météorologiques offrent un éclairage précieux sur

cette question, en renseignant sur les propriétés microphysiques des hydrométéores à travers

de grandes étendues spatiales. En complément des variables radar usuelles, le spectre Doppler

mesuré à incidence verticale permet de distinguer la contribution des particules au signal

radar en fonction de leur vitesse de chute. En révélant les différences d’écho radar entre les

petites particules, à faible vitesse terminale, et les gros flocons tombant rapidement, ce spectre

permet d’affiner les analyses microphysiques.

Cette thèse est consacrée à l’étude de la microphysique des chutes de neige au moyen de

mesures radars à deux fréquences et de spectres Doppler. Une première partie du manuscrit

présente le jeu de données issu de la campagne ICE GENESIS, qui s’est tenue dans le Jura

suisse en janvier 2021, avec des mesures in situ et par télédétection. Nous présentons ensuite

des développements méthodologiques utilisant des techniques d’apprentissage automatique

pour quantifier les propriétés de la neige à partir de mesures de télédétection. Plus précisé-

ment, un premier algorithme est mis en place pour estimer la quantité d’eau liquide dans

une colonne atmosphérique à partir de mesures d’un radiomètre. Dans le cadre de l’étude

des chutes de neige, il est en effet primordial de quantifier l’eau nuageuse surfondue, qui

influence fortement les processus microphysiques. Ensuite, nous présentons une nouvelle

méthode d’apprentissage profond permettant d’estimer certaines propriétés microphysiques

de la neige à partir de spectres Doppler double-fréquence. Cette restitution est évaluée grâce

aux mesures in situ de ICE GENESIS; sans être parfaits, les résultats sont encourageants et

ouvrent la porte à une caractérisation détaillée des propriétés microphysiques de la neige sur

des jeux de données plus volumineux. La dernière partie de cette thèse porte sur l’étude d’un
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Résumé

épisode neigeux précis de ICE GENESIS. Une analyse poussée des mesures double-fréquence

et des spectres Doppler permet de dégager des interprétations microphysiques, et de révéler

que différents processus sont impliqués dans la formation des cristaux de glace au cours de

cet événement.

Dans l’ensemble, cette thèse participe à une meilleure caractérisation de la microphysique

des chutes de neige à partir de mesures radar, et ce à travers différents prismes : par la

collecte d’un jeu de données partagé à la communauté scientifique, par des développements

méthodologiques permettant de quantifier les propriétés de la neige nuageuse et précipitante,

et par un éclairage qualitatif sur les processus microphysiques apporté à travers une étude de

cas.
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List of acronyms and symbols

The following table lists the most important acronyms and notations of physical or mathe-

matical quantities used throughout the thesis. For acronyms and symbols of physical and

mathematical quantities (e.g., LWP, ρhv ), the most frequently used unit is given ([-] if the

quantity is dimensionless). For other abbreviations (e.g., ERA5), the unit field is left empty.

Symbol/ Acronym Units Description

2D-S 2-dimensional stereo probe

αa [m2−βa ] Prefactor of snow area-size power law

βa [-] Exponent of snow area-size power law

θ3dB [◦] or [rad] 3-dB (half-power) beam width

λ [m] or [mm] Radar wavelength

µ [-] Shape parameter of the gamma distribution

ν [GHz] Radar frequency

ρb [g m−3] Hydrometeor bulk density

ρhv [-] Co-polar correlation coefficient

am [kg m−bm ] Prefactor of snow mass-size power law

A [m2] Cross-section area of a particle

Ar [-] Hydrometeor aspect ratio

ASL Above mean sea level

bm [-] Exponent of snow mass-size power law

c0 [m s−1] Speed of light in vacuum

CDP-2 Cloud droplet probe

COSMO Consortium for Small-scale MOdeling

COSMO-1 COSMO model at 1-km horizontal grid resolution

D [m] Maximum dimension of hydrometeor

D0 [m] Mean diameter of a negative exponential PSD

DFR [dB] Dual-frequency reflectivity ratio (unless specified,

X- and W-band)

DDA Discrete dipole approximation

DSD Drop size distribution

ECMWF European Center for Medium-range Weather

Forecasts

e.m. electromagnetic
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List of acronyms and symbols

ERA5 Fifth generation of the ECMWF atmospheric re-

analyses dataset

FMCW Frequency-modulated continuous wave

GPS Global positioning system

HATPRO Humidity And Temperature PROfiler

HM Hallett-Mossop

HVPS High-volume precipitation spectrometer

ICE-POP International Collaborative Experiment for

PyeongChang Olympic and Paralympics

ICNC [m−3] Ice crystal number concentration

INP Ice nucleating particle

IQR Interquartile range

IWC [kg m−3] Ice water content

IWV [kg m−2] Integrated water vapor

JFJ Jungfraujoch

LCDF La Chaux-de-Fonds

LW Liquid water

LWC [kg m−3] Liquid water content

LWP [g m−2] Liquid water path

MASC Multi-Angle Snowflake Camera

MDV [m s−1] Mean Doppler velocity

MMD [mm] Median mass diameter

MPC Mixed-phase cloud

MRR Micro Rain Radar

MSE Mean squared error

MXPol Mobile X-band Polarimetric radar

NCEP National Centers for Environmental Prediction
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1 Introduction and background

1.1 Motivations

Snowfall is a phenomenon of extraordinary complexity, which is fascinating to observe both

from a neophyte’s perspective and in the view of illustrious scientists (Kepler, 1611; Descartes,

1637). In addition to offering a fine spectacle with a compelling variety of snow crystals and

snowflakes, snowfall is an essential ingredient of atmospheric processes and of the hydrolog-

ical cycle. Its understanding is hence crucial for fields ranging from weather forecasting to

water resources management through modeling of and adaptation to climate change.

Snowfall at ground level is mostly confined to high latitude or high altitude environments,

and is only occasionally observed in the wintertime at lower altitudes and latitudes. However,

snowfall is involved in around 60% of the total precipitation amount and half of precipita-

tion events* worldwide, whether as snow falling down to the ground or as rain melted from

snow (Field and Heymsfield, 2015; Heymsfield et al., 2020). In middle and high latitudes, this

proportion exceeds 80% of events. During wintertime, snow accumulates in mountainous

regions, allowing for the natural build-up of freshwater reservoirs. The snowpack, which

melts away in warmer seasons, contributes to a sustained water supply year-round, and is

thus a critical element of the surface water balance and of our hydrological resources, with

further implications on e.g., hydroelectric power generation. From the point of view of weather

forecasting services, monitoring precipitation through quantitative estimates, together with

accurately predicting its occurrence and intensity, are substantial challenges that also have a

strong societal impact (Lazo et al., 2009).

Besides these effects at ground level, ice hydrometeors also hold an important role throughout

the journey of water at higher levels in the atmosphere. Ice clouds have, for instance, a signifi-

cant role in the global radiative balance through their contribution to infrared radiation (Lynch,

1996; Sullivan and Voigt, 2021). More generally, clouds are consistently identified as the most

important source of uncertainty and spread in climate models (as pointed out in the latest

reports of the Intergovernmental Panel on Climate Change, Boucher et al., 2013; Arias et al.,

*> 1 mm day−1
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2021), in spite of great progress in modeling skill that was recently achieved. Among the un-

knowns that remain to characterize the radiative contributions and feedbacks of clouds, is how

liquid and ice hydrometeors coexist at negative temperatures within so-called mixed-phase

clouds (MPCs, Sun and Shine, 1994; Curry et al., 1996). In MPCs, ice crystals and supercooled

liquid droplets are generated or depleted—depending on atmospheric conditions—and inter-

act with one another. This ultimately affects cloud phase partitioning and, in turn, the impact

of MPCs on the Earth’s radiation budget (McCoy et al., 2016; Matus and L’Ecuyer, 2017), with

a competition at the global scale between a net warming effect of the ice clouds, and a net

cooling effect of liquid water clouds (Li and Le Treut, 1992; Murray et al., 2021).

On a different note, snowfall events can have sizable socio-economical repercussions. Sig-

nificant traffic perturbations, or damage due to snow buildup on power lines, are frequently

reported when snow storms hit populated areas (e.g., Poots, 2000). Signal attenuation in wet

or melting snow can cause severe deteriorations in telecommunications (Bellon et al., 1997).

From the perspective of the aviation industry, cold atmospheric conditions bring numerous

safety-related challenges, with the risk of aircraft icing in supercooled or mixed-phase clouds

being a well-known example (Cao et al., 2018). Likewise, ice crystal icing, associated with

flying in high-altitude regions near deep convective systems (Hallett and Isaac, 2008), leads to

the ingestion of ice crystals by jet engines and subsequent engine damage (Haggerty et al.,

2019). Snowfall has also been reported to induce in-flight power interruptions, while at ground

level, snow accretion on aircraft is an additional threat during takeoff (Rasmussen et al., 1999;

Taszarek et al., 2020).

For all these purposes—ranging from weather forecasting to aircraft design and engineering—

an accurate quantification and modeling of snowfall is needed, which requires knowledge of

snowfall processes across scales. In particular, it is necessary to understand the mechanisms

that take place at the microscale, i.e., at the scale of each snow particle. Depending on

the atmospheric conditions where the particle forms and grows, it may undergo different

processes, and ultimately have strikingly different physical properties in terms of e.g., shape,

size, or mass. The study of this microphysics of snowfall addresses the following questions:

How are ice and snow particles formed? By which processes do they grow, or decay? How

can one quantitatively describe and model a single snow particle, or an ensemble of snow

particles?

This thesis investigates how remote sensing measurements, and in particular, those from

meteorological radars, can be used to better characterize snowfall properties and gain insight

into the microphysical processes that take place in the ice and mixed phase of clouds and

precipitation.

2



1.2 Snowfall microphysical processes and properties

1.2 Snowfall microphysical processes and properties

A casual observer of snowfall would inevitably notice the stunning variety of geometrical

shapes and aspects that snow particles can take on. This is well illustrated in literature

classifications of ice crystal types, which can have up to 80 or 121 categories (Magono and

Lee, 1966; Kikuchi et al., 2013). This diversity results from slight differences in the history of

each particle, and from the specific atmospheric conditions they encountered during their

formation and growth, along their fall trajectory.

1.2.1 Large-scale drivers of snowfall

Before delving into the microphysical processes that determine how snow particles form and

grow, let us briefly recall the main ingredients of snowfall and the typical situations where

they are found. At the risk of stating the obvious, snowfall takes place when atmospheric

conditions are both cold and moist: the occurrence of such conditions largely depends on the

geographical location, through the latitude, altitude, distance to water bodies, and regional

atmospheric and moisture circulation. From a synoptic perspective, snowfall may result

from the uplifting of air masses through frontal activity or convergence (DeWalle and Rango,

2008), and can be fostered by smaller-scale vertical motion associated with e.g., radiative

cooling—which sustains mixed-phase clouds—or thermodynamic instabilities leading to

convective-type clouds (Kulie et al., 2016). Terrain features have a determining influence; they

may lead, for instance, to lake effect snowfall, as in the North American Great Lakes region

(Wilson, 1977). In mountainous regions, orographic effects play a decisive role in enhancing

snowfall through various processes (Passarelli and Boehme, 1983; Roe, 2005; Houze, 2012;

Chow et al., 2013), ranging from simple orographic lifting, which triggers condensation and

precipitation formation, to more complex mechanisms such as flow blocking effects (Reeves

and Lin, 2007), or the seeder-feeder mechanism (Choularton and Perry, 1986). The latter

describes a configuration where ice particles precipitating from a high-level seeding cloud

grow efficiently by accretion of cloud water as they fall through a lower-level, often orographic,

feeding cloud (e.g., Proske et al., 2021), leading to an enhanced precipitation flux.

Having in mind the large-scale drivers of snowfall, we now provide an overview of the main

small-scale processes that affect the microphysical properties of snowfall, from the formation

of ice crystals to their growth and decay. This introduction to snowfall microphysics is based

on Lohmann et al. (2016), Libbrecht (2005), and Pruppacher and Klett (2010), along with

additional sources mentioned throughout the text.

1.2.2 Ice nucleation

At temperatures below ∼−38◦C, ice particles may form through the homogeneous freezing of

supercooled liquid water (SLW) droplets or solution droplets. This mechanism typically takes

place at high altitudes, where such low temperatures are reached, as in cirrus clouds or in
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convective clouds with a sufficient vertical extent. At warmer temperatures, the energy barrier

of homogeneous nucleation cannot be overcome in the atmosphere, and ice crystals are

formed through heterogeneous nucleation, which involves activated ice nucleating particles

(INPs). INPs are aerosol particles with specific surface properties, upon which water molecules

can assemble into ice structures. They correspond to only a small fraction of aerosols (one in

105 or 106); for comparison, concentrations of cloud condensation nuclei are typically more

than a thousand times greater (Rogers et al., 1998). Different paths may lead to the formation

of ice crystals via heterogeneous nucleation, depending on whether it occurs via the freezing

of a supercooled droplet that already contains an active INP (immersion freezing), or upon

the collision of an INP with a supercooled water droplet that subsequently freezes (contact

freezing). Other nucleation mechanisms exist, although less frequently observed, through

condensation freezing or direct vapor deposition onto an INP.

It results that, at temperatures ranging from ∼-38◦C to 0◦C, the primary production of ice

crystals is limited by the availability of both water vapor and INPs. It is noteworthy that most

primary ice production processes require previously-formed cloud droplets and hence, satu-

rated conditions with respect to (w.r.t.) liquid water, which correspond to high supersaturation

over ice*.

1.2.3 Growth and decay processes

Once an ice germ is formed, it may undergo different growth processes, depending on the

surrounding temperature and supersaturation, and on the presence of other ice or liquid

particles.

Vapor deposition

The first process through which the ice embryo will grow in size is through the deposition of

water vapor onto it. Ice particles that have only grown through vapor deposition are referred to

as pristine crystals. Because of the highly supersaturated environment in which an ice crystal

is formed, these initial stages of depositional growth are highly efficient. Two main growth

regimes exist for the crystallographic arrangement of water molecules in ice: either in the form

of columns with a hexagonal base, or as hexagonal planar crystals (cf. Fig. 1.1 and Fig. 1.2a

and b). Experimental studies have shown that temperature and humidity control the direction

of crystallographic growth and hence the shape of the growing crystal, as illustrated in the

diagram of Fig. 1.1.

At very cold temperatures, the preferred direction of growth of the ice crystals is not well

differentiated, meaning crystals may grow in either columnar or planar directions depending

on the saturation level. In warmer conditions, the regime is mainly constrained by temperature:

*This comes from the fact that at a same subfreezing temperature, the equilibrium vapor pressure of water
vapor w.r.t. ice is less than that w.r.t. liquid water.
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between roughly -20◦C and -10◦C, crystals grow in planar shapes, which can range from solid

plates at low supersaturation to stellar dendrites when supersaturation is high. Between -10◦C

and around -5◦C, dominant growth is in the columnar direction, with needle-like crystals

growing when the availability of water vapor is high, and solid prisms when it is merely above

the level of saturation w.r.t. ice. As temperatures reach warmer values (T≳ −3◦C), planar

growth is dominant again. When a pristine ice crystal, which has grown in given temperature

and humidity conditions, is moved to (or, in the atmosphere, precipitates into) a different

environment, the properties of crystal growth in this new environment are combined with

the original shape. This accounts for the formation of crystals with singular shapes, such as

“capped columns”, which originally grew as columnar crystals, whose ends developed into

plate-like crystals when they settled into warmer temperatures, in still saturated conditions.

When ice crystals grow in an environment where the humidity exceeds the liquid water

saturation level (black line in Fig. 1.1), this usually entails that they coexist with SLW droplets.

Such conditions are favorable for the Wegener-Bergeron-Findeisen (WBF) process (Wegener,

1911; Bergeron, 1935; Findeisen, 1938), which describes a positive feedback in depositional

growth: ice crystals grow very efficiently because of the high humidity content, which brings

the latter down to a level that is still above the saturation w.r.t. ice, but lower than that w.r.t.

liquid water. This causes liquid droplets to evaporate, which in turn increases the vapor

content and feeds the depositional growth of ice crystals. This growth of ice crystals at the

expense of SLW droplets is essential to the thermodynamics of mixed-phase clouds: because of

the WBF effect, MPCs are intrinsically unstable and eventually become fully glaciated, unless

an independent mechanism enhances the saturation (e.g., by sustaining sufficient vertical

motion, Korolev and Mazin, 2003; Korolev, 2007a or by radiative cooling, Morrison et al., 2012).

Figure 1.1: Snow crystal morphology diagram established by Nakaya (1954), republished from Libbrecht
(2005); permission conveyed through Copyright Clearance Center, Inc.
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Riming

Another important snowfall growth process in supersaturated conditions (over liquid water) is

riming, whereby a supercooled liquid droplet collides with, and subsequently freezes onto, a

snow particle. For riming to commence, both the ice crystals and the supercooled droplets

should be large enough to enable efficient collection (resp. ≳ 100 µm, ≳ 10 µm, Pruppacher

and Klett, 2010, Chapters 14 and 16): riming thus occurs at later stages in the growth of a crystal

compared to vapor deposition. Various degrees of riming may be observed, leading to crystals

with barely deformed shapes (slightly rimed particles), or to heavily rimed, quasi-spherical,

graupel particles (Fig. 1.2d).

As SLW droplets are accreted onto a snow particle, the latter becomes rounder (more spherical)

and both its mass and its bulk density increase, which results in an enhancement of its terminal

velocity. These microphysical changes lead to an increased total precipitation flux (Grazioli

et al., 2015; Garrett and Yuter, 2014) and can influence the spatial distribution of precipitation

(Saleeby et al., 2011), by altering the fall trajectories compared to unrimed, slower-falling

particles. As ice particles rime and scavenge cloud SLW droplets, they also contribute to

the wet deposition of aerosols (Poulida et al., 1998); at the same time, they accelerate the

glaciation of MPCs through the depletion of SLW droplets. Riming additionally plays a role in

the production of secondary ice particles, as will be detailed further on (Sect. 1.2.4), which

reinforces its prominent role in cold precipitation processes. For these reasons, riming has

been the subject of active research in recent years, both in terms of its modeling (e.g., Leinonen

and Szyrmer, 2015; Kalesse et al., 2016) and the characterization of its occurrence (e.g., Moisseev

et al., 2017; Kneifel and Moisseev, 2020).

Figure 1.2: Images of the main snow particle habits: pristine crystals ((a) columnar and (b) hexagonal
planar), (c) aggregates, and (d) graupel particles. Pictures are from the Multi-Angle Snowflake Camera
(MASC). Source: Praz et al. (2017), Fig. 3, cropped and adapted, used under CC BY 3.0.
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Aggregation

The last of the main snowfall growth mechanisms, aggregation, occurs when ice crystals collide

with each other and become entangled, leading to a single, larger, snowflake (Fig. 1.2c). Such

aggregates include a large variety of snow particles and cover a broad range of sizes, from

roughly 1 mm up to several centimeters, depending on the number and size of the elementary

crystals they are composed of, and on their arrangement. Aggregation usually results in a mild

acceleration of terminal velocity, as an effect of the increase in particle size, although not to

the extent that riming does (Mitchell and Heymsfield, 2005).

While vapor deposition and riming are growth processes by which the ice water content (IWC,

i.e., the mass of ice per unit volume of air) increases, through a mass transfer from the vapor

or liquid phase to ice, aggregation per se does not result in changes of IWC. Rather, it leads to

a rapid increase in the size of snow particles and reduces the total number concentration of

ice particles, while keeping IWC unchanged. Note that aggregates can also rime when they

precipitate through SLW-containing cloud layers, leading to large and dense rimed aggregates.

In fact, some studies have suggested that, because of their larger size, aggregates are more

likely than individual crystals to collect SLW droplets. This implies that when saturation over

water is met and SLW cloud droplets are present, aggregation can indirectly lead to an increase

in IWC by facilitating riming (Houze and Medina, 2005).

For aggregates to form, two main ingredients are required: on the one hand, a sufficient

sticking efficiency which makes the crystals adhere together once they collide; on the other

hand, the actual occurrence of collisions between ice crystals. The first ingredient is primarily

constrained by temperature: two distinct temperature ranges are associated with an enhanced

sticking efficiency, each of which involving different mechanisms. Aggregation efficiency is

highest at near-zero temperatures (T≳−5◦C), as identified by Hobbs et al. (1974); Heymsfield

et al. (2015). This is attributed to the formation of a quasi-liquid layer on the surface of ice

crystals in this temperature range, which in turn increases their stickiness (Hobbs et al., 1974;

Furukawa et al., 1987; Rosenberg, 2005). This warm aggregation regime leads to the largest

snow aggregates. Another, secondary maximum in aggregation efficiency is reported around

-15◦C, while aggregates are virtually never observed below this temperature (Hobbs et al., 1974).

This second aggregation mode is related to the depositional growth of dendritic crystals at this

temperature (when the saturation level is high), which enables mechanical aggregation: with

their branched structure, dendrites are likely to interlock and form aggregates even at cold

temperatures (Heymsfield, 1986; Connolly et al., 2012).

Other elements foster the formation of aggregates by affecting the second ingredient, i.e.,

the likeliness of collisions between ice particles. Turbulence is thought to be favorable for

aggregation, as it increases the collision probability between particles (Houze and Medina,

2005; Sheikh et al., 2022). It has also been suggested that bigger particles, with a larger

collection efficiency, are more likely to collide and clump together with another particle,

leading to a positive feedback during aggregation (Phillips et al., 2015).

7



Chapter 1. Introduction and background

Decay processes: melting and sublimation

As detailed above, snow particles can grow into different shapes through various processes

depending on the temperature, saturation, and availability of liquid water. The decay of

snow particles usually happens through a phase transition, either via their sublimation—in

subsaturated conditions—or through their melting into raindrops—when they reach positive

temperatures.

Snowfall sublimation is a significant process, mainly because of the reduction of surface

precipitation it may lead to. In certain regions of Antarctica, for example, low-level sublimation

caused by strong katabatic winds has an important impact on snow accumulation at the

ground, which is both essential and difficult to model (Grazioli et al., 2017). More generally,

virga, which include sublimating snowfall but also evaporating rainfall, are a challenge for the

quantification of worldwide precipitation (Wang et al., 2018).

The melting of snowfall into rain is naturally a prominent mechanism, as it is involved in

most midlatitude rainfall (Heymsfield et al., 2020). Additionally, melting snowfall can modify

precipitation patterns and mesoscale atmospheric dynamics as a consequence of diabatic

cooling within the melting layer (Wexler et al., 1954), which causes pressure and wind per-

turbations (Heffernan and Marwitz, 1996). Although modeling studies have helped gain

insight into particle-scale melting mechanisms (Szyrmer and Zawadzki, 1999; Leinonen and

von Lerber, 2018), unresolved questions remain about the microphysical processes occurring

slightly above and within the melting layer, such as the actual importance and quantification

of aggregation and breakup (Fabry, 1995; Li and Moisseev, 2019; Fujiyoshi, 2023).

1.2.4 Secondary ice production

High ice crystals number concentrations (ICNC) are sometimes measured in circumstances

where temperatures are too warm for homogeneous nucleation to occur, and where INP

concentrations are too low to account for the formation of all the ice crystals through hetero-

geneous nucleation (Mossop et al., 1970; Hobbs and Rangno, 1985; Lloyd et al., 2015; Pasquier

et al., 2022). This observation has led scientists to investigate the occurrence of secondary

ice production (SIP) processes, through which one preexisting ice particle may induce the

formation of more ice crystals via secondary mechanisms, also referred to as ice multiplication

processes. Ice crystals that form through these processes can then grow by vapor deposition,

riming, and aggregation, just like crystals formed through primary nucleation. In MPCs, the

ICNC enhancement—sometimes of several orders of magnitude—caused by SIP is an essential

feature: when the number of ice crystals is increased, the depletion of SLW droplets through

the WBF process or riming is facilitated, which accelerates the glaciation of the cloud (Field

et al., 2016) with ultimately an impact on the radiative properties (Young et al., 2019). The

resulting precipitation is also affected, in terms of both its spatial distribution and its intensity,

in a way which is still debated (Field et al., 2016; Sullivan et al., 2018; Luke et al., 2021; Dedekind

et al., 2021, 2023).
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Experimental and observational studies have identified distinct processes by which SIP can

occur (Field et al., 2016; Korolev and Leisner, 2020). Most of them are active in mixed-phase

environments as they require the presence of SLW droplets and/or rimed particles. Figure 1.3

(Korolev and Leisner, 2020) illustrates through a conceptual diagram the three processes that

are usually considered the most frequent and significant, as listed below.

• The Hallett-Mossop (HM) rime splintering mechanism (Hallett and Mossop, 1974)

occurs as supercooled cloud droplets or drizzle/rain drops rime onto ice particles and

generate ice splinters in the process. HM is active between -8◦C and -3◦C, with a

maximum efficiency around -5◦C, and in the presence of small (< 13 µm) and large

(> 25 µm) droplets. The physics of the process is still debated (Korolev and Leisner,

2020, and references therein). Some hypotheses relate it to the growth of column-like

crystals at these temperatures, which would favor the formation of splinters as SLW

drops collide and freeze onto the rimer. Others have suggested that stress build-up

within the accreted droplets, caused by different temperatures between the rimer and

the freezing drop, may lead to their fragmentation. The collision velocity between the

rimer and SLW droplets could also play a role in the efficiency of the process (Saunders

and Hosseini, 2001).

• When supercooled drops freeze through heterogeneous freezing onto an INP or upon

contact with an ice particle, they can shatter into several ice fragments due to the

differential pressure resulting from the formation of an outer ice shell on the drop

(e.g., Takahashi and Yamashita, 1977; Phillips et al., 2018). This droplet shattering

process requires the presence of drizzle-size drops of at least 50 µm (Wildeman et al.,

2017); certain studies have suggested that the process is more efficient for larger drops

(≳ 300 µm, Lauber et al., 2018; Keinert et al., 2020; Kleinheins et al., 2021), that could

break up into a larger number of fragments. Contrary to HM, it does not seem restricted

to a clearly-established temperature range as it was reported to occur at both cold (<-

15◦C, Korolev and Leisner, 2020) and warmer temperatures, with the recirculation of

raindrops above the melting layer (Korolev et al., 2020; Lauber et al., 2021).

• Ice-ice collisions, facilitated in turbulent regions or when ice particles have different

settling velocities, can also produce secondary ice fragments (Takahashi et al., 1995;

Vardiman, 1978; Schwarzenboeck et al., 2009). This collisional breakup mechanism is

thought to be a substantial source of secondary ice particles in certain environments,

such as wintertime alpine clouds (Dedekind et al., 2021), particularly under the frequent

seeder-feeder cloud configurations observed in the Alps (Proske et al., 2021; Georgakaki

et al., 2022), although its underlying physical mechanisms are not fully understood

or constrained yet (Korolev and Leisner, 2020). The presence of rimed particles is

considered an important ingredient (Phillips et al., 2017a,b), based on the intuition that

these particles, with their higher mass and fall speed, are more likely to cause efficient

breakup during high-kinetic-energy collisions with other ice particles.
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Figure 1.3: Conceptual illustration of the main SIP processes. The scale is not respected. Adapted from
Korolev and Leisner (2020), licensed under CC BY 4.0; the color scheme was changed for consistency
with further sketches in the manuscript.

There exist other SIP processes, which have been the subject of fewer experimental and

model-based studies to this date. They include the fragmentation of snow particles during

sublimation (Bacon et al., 1998), the generation of ice splinters caused by a thermal shock

associated with latent heat release during riming (King and Fletcher, 1976a,b), or the activa-

tion of INPs in transient high supersaturation around freezing drops, where heterogeneous

nucleation would be locally enhanced (Korolev and Leisner, 2020).

1.2.5 Describing and modeling snowfall

After this overview of the main snowfall processes, where we also touched upon certain

qualitative properties of snow particles—such as their arrangement in aggregates or their

degree of riming—we introduce quantitative ways to describe the microphysical properties of

snowfall. This is essential for actually parameterizing snowfall in weather and climate models.

In this section, we also lay the ground for some formal concepts and notations used in further

chapters of this thesis.

Particle size distribution

The particle size distribution (PSD), which refers to the distribution of the number concentra-

tion of hydrometeors according to their diameter, is widely used to characterize precipitation

microphysics. Working with the PSD first raises the question, quite complex in the case of snow

particles, of how particle size is defined. Possible metrics include the maximum diameter,

melted diameter, or mean volume diameter. The choice of this definition should be specified

whenever a quantitative description of snowfall is undertaken, and the most adequate choice

might depend on the applications. In this thesis, unless specified otherwise, we define the

diameter or size of a snow particle, D [m] (sometimes noted Dmax in ambiguous cases), as its

maximum dimension. This is consistent with many datasets and models used across snowfall
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studies (e.g., Mech et al., 2020; Grazioli et al., 2022, to cite just two).

A frequently used mathematical formulation of the PSD N (D) [m−4] is the negative exponen-

tial distribution (Eq. 1.1, Marshall and Palmer, 1948), which is a reasonable approximation

to describe snow particle populations (Morrison et al., 2005; Heymsfield et al., 2008). It is

particularly convenient as it is described with only two parameters (mean diameter D0 and

prefactor N0, related to the total number concentration NT = N0 D0 [m−3]), and its moments

are easily computed analytically (Straka, 2009). In reality, snowfall PSDs can deviate from this

exponential distribution, with either super- or sub-exponential behaviors; this can be partly

taken into account by considering a modified gamma (Eq. 1.2, Petty and Huang, 2011) or a

gamma distribution (Eq. 1.2 with γ= 1). We refer the reader to textbooks such as Straka (2009)

for more detail on the parameterization of PSDs.

N (D) = N0 exp

(
− D

D0

)
(1.1)

N (D) = N0,g Dµ exp

(
−

(
D

D0,g

)γ)
(1.2)

The total hydrometeor number concentration is easily obtained as the integral* of the PSD,

NT = ∫ +∞
0 N (D)dD. Additionally, it is sometimes useful to define a characteristic size to

describe a hydrometeor population. A few commonly used quantities (Straka, 2009), which

will be occasionally mentioned in this thesis, include: the number-concentration-weighted

mean diameter D0, which is the first moment of the PSD; the mass-weighted mean diameter;

the median mass (resp. volume) diameter MMD (resp. MVD) such that half of the mass

(resp. volume) of hydrometeors is contained in particles smaller than MMD (resp. MVD); the

effective diameter De f f , defined as the ratio of the third to the second moment of the PSD.

Geometrical properties

Modeling snow particles, whether for radiative transfer purposes or from a mechanical per-

spective (e.g., Jiang et al., 2019; Aguilar et al., 2021), sometimes requires making simplify-

ing assumptions on their shape and geometry. Snowflakes are frequently approximated as

spheroids, with either a prolate or an oblate shape; the former is suitable for columnar or

needle-like crystals, while the latter is used for planar crystals and aggregates. From this

spheroid assumption, the aspect ratio Ar [-] of the particles is computed as the ratio of particle

dimension along the rotational axis, divided by the dimension in the orthogonal direction

(Ar > 1 for prolate, Ar < 1 for oblate particles). Depending on the context, other definitions of

the aspect ratio may be used, like the ratio of minor to major axis length (Garrett et al., 2015),

in which case Ar < 1 for all particles. Riming, and to a lesser extent aggregation, bring the

snow particles’ aspect ratio closer to 1 (with both definitions) as they become more spherical.

*The bounds of the integral are here for a generic PSD; in reality, true D values range from the minimum
particle size DM I N > 0 to the size of the largest particle, DM AX <+∞
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Other parameters used to describe snow particles in a geometrical sense include the area

ratio (cross-section area of the particle in a given direction, divided by the area of the disk

of diameter D, Heymsfield and Westbrook, 2010). When considering an ensemble of snow

particles, one can be interested in how the geometrical parameters are distributed vs. particle

size; in that sense, area–size relations may, for instance, be fitted and are usually of the type

A =αaDβa , where A [m2] is a cross-section area, and αa and βa are size-independent power

law coefficients.

Mass-related properties

Quantitative precipitation estimation (QPE) is a crucial aspect of precipitation studies. From

a microphysical perspective, QPE requires knowledge of the PSD but also of the mass of

individual particles. Many studies have focused on quantifying the bulk density* ρb [g m−3] or

the mass m [g] of snow particles, through size-dependent relationships that follow a power

law m = am Dbm (Locatelli and Hobbs, 1974; Mitchell et al., 1990; Brown and Francis, 1995; Rees

et al., 2021, to list a few). The exponent bm [-] and prefactor am [g m−bm ] can vary significantly

depending on the particle type and its riming degree (e.g., Mason et al., 2019; Grazioli et al.,

2022). bm is sometimes referred to as the fractal dimension; it is close to 3 for heavily rimed,

spherical particles such as graupel, and is usually of the order of 2 for unrimed particles.

Building upon these considerations on particle mass and density, a parameterization of

particle fall speed is also needed to model precipitation and, in particular, snowfall rate.

Here again, multiple empirical studies were conducted in order to fit size-dependent models

of terminal velocity. Khvorostyanov and Curry (2002) used a pseudo-power-law approach

with size-dependent coefficients; more specific to snow, Heymsfield and Westbrook (2010)

introduced a widely used expression that takes into account the mass and the area ratio of

the particles. It is worth noting that turbulence is also thought to influence particle fall speed

through sweeping or loitering processes, which are still debated, and not accounted for in

most models (Garrett and Yuter, 2014; Li et al., 2021a).

*usually defined as the mass of the particle divided by the volume of its enclosing spheroid
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1.3 Meteorological radars and their application to snowfall studies

1.3.1 Different approaches to studying snowfall microphysics

Advancing knowledge in cloud and precipitation microphysics is a multi-faceted challenge.

While the focus of this dissertation is on remote sensing, and in particular on radar mea-

surements, this is one, among numerous, approaches to studying snowfall microphysics.

Ultimately, leveraging the information gained through different viewing angles is essential.

This subsection briefly outlines the main tools to investigate snowfall microphysics—in situ

observations, laboratory experiments, physical models, and remote sensing observations—to

highlight how they can complement each other.

In situ observations are instrumental to characterize hydrometeor microphysical properties,

including but not limited to their size, geometry, mass, or number concentration (Baum-

gardner et al., 2017; McFarquhar et al., 2017). In situ sensors onboard scientific aircraft can

provide information on microphysical properties at various altitudes and temperature levels.

Imaging probes are used to collect grayscale or binary images of individual hydrometeors; the

combination of probes with different and overlapping size ranges gives a robust and complete

picture of snowfall properties in a given volume. Other sensors are designed to measure bulk

quantities such as total condensed water content (TWC), LWC or IWC [g m−3], which integrates

with the information on individual particles gathered by the imagers (e.g., Schwarzenboeck

et al., 2000). At ground level, instruments like the Multi-Angle Snowflake Camera (MASC,

Garrett et al., 2012, 2015; Grazioli et al., 2022) have been designed to gain a more refined un-

derstanding of the geometry of snow particles. The MASC consists of three coplanar cameras

that take simultaneous grayscale pictures of a falling snowflake, 36◦ apart. Thanks to these

different views, it is possible to identify a particle’s type (e.g., aggregate, columnar crystal, Praz

et al., 2017) and reconstruct its 3-D geometry and estimates of its mass (Leinonen et al., 2021).

Recent developments have paved the way for even more advanced in situ measurements of

hydrometeor properties such as mass and bulk density (Rees et al., 2021), which are still the

subject of high uncertainties.

Laboratory experiments can investigate thoroughly snowfall microphysical processes and

their underlying physical mechanisms. They allow for a quantification of the efficiency of the

processes and of their dependence on external parameters, such as temperature or saturation

(e.g., Nakaya, 1954; Magono and Lee, 1966; Hallett and Mossop, 1974; Mitra et al., 1990, among

many). Experimental studies are thus invaluable to gain a quantitative understanding of

the processes, which in turn is required for the parameterization of numerical models (e.g.,

Aguilar et al., 2021; Köbschall et al., 2023). One major caveat comes from the high challenge of

replicating in the laboratory realistic atmospheric conditions; experimental results are thus

sparse, and deviations from one study to another can be significant (e.g., in the case of SIP

studies, Korolev and Leisner, 2020).
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Numerical modeling provides an alternative perspective and is especially useful to understand

how processes across scales—from the microphysical to the synoptic scale—interplay. High-

resolution modeling, made possible by increased computational resources, has been used

to improve process understanding in various contexts (e.g., Vignon et al., 2019; Sotiropoulou

et al., 2020; Georgakaki et al., 2022; Gehring et al., 2022). Nonetheless, possible discrepancies

between model outputs and observations are difficult to interpret, as the microphysical param-

eterizations rely on a number of hypotheses, to which models may be sensitive (Sotiropoulou

et al., 2021).

Remote sensing observations are a complementary source of information. Although indirect,

these measurements provide insights into cloud and precipitation processes over spatially

extended areas, in contrast with point measurements of in-situ instruments. Passive sensors

such as microwave radiometers allow monitoring integrated quantities like precipitable water

vapor and liquid water path (LWP, e.g., Löhnert and Crewell, 2003), the latter being relevant for

studies of mixed-phase systems, for instance, to detect the presence of SLW clouds. More detail

on the retrieval of atmospheric liquid water and water vapor from microwave radiometers is

in Chapter 3 of this manuscript. Active remote sensing, mostly with meteorological radars,

opens up other possibilities in snowfall studies, both for identifying hydrometeor properties

and for investigating production/growth/decay processes. In the following, we detail the

principles of meteorological radars, and how radar measurements can be used to study

snowfall microphysics.

1.3.2 Principles of weather radar

This section and the following are based on Fabry (2015), Kumjian (2018), and Ryzhkov and

Zrnic (2019), to which the reader is referred for more detail.

The technique of radar, standing for RAdio-Detection And Ranging, was first developed for

military purposes as a tool to detect, and possibly identify and monitor, a distant target. Its

use became prominent during the Second World War, first to detect raiding airplanes from

ground-based stations, then directly on board military aircraft, after decisive technological

improvements made the instrument portable. Soon, it was observed that, besides aircraft,

other types of echoes were detected, that corresponded to precipitation cells. In the following

decades, meteorological radars became widely used by operational weather services, for the

quantification and nowcasting of precipitation, and by atmospheric scientists, as they opened

up possibilities to study clouds and precipitation over large spatial areas: columns of the

atmosphere in the case of vertical profilers, or 3-D volumes for scanning instruments.

Radio-detection and ranging

The basic principle of a (pulsed) meteorological radar is the following (see Fig. 1.4). First, a

pulse of electromagnetic (e.m.) wave with frequency ν [Hz] (and corresponding wavelength
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λ [m]) is generated and emitted by the transmitter, then focused into a beam, in a specific

direction, by the antenna. The electromagnetic wave interacts with the targets it encounters

along its path—here, hydrometeors. As a result of this interaction, part of the pulse is backscat-

tered towards the radar, and collected through the receiver. By measuring the time interval t [s]

between the emission and reception of the pulse, and knowing that the e.m. wave propagates

at the speed of light in vacuum c0 [m s−1], reduced by the refractive index of air n > 1, the

range r [m] can be inferred, defined as the distance between the radar and the target: r = c0 t
2n .

By comparing the power and phase of the returned and the emitted signal, variables can be

computed that inform on the properties of the hydrometeors encountered within the radar

volume.

The maximum distance within which meteorological targets can be unambiguously detected

(maximum unambiguous range) is controlled by the time interval between each emitted pulse,

through the pulse repetition frequency (PRF [s−1]). The radar resolution volume V [m3] is

determined by the beam shape, the range, and the radial resolution dr , which in turn depends

on the pulse duration τ [s] (dr = c0τ
2n ). Specifically, in the case of a Gaussian antenna pattern,

with a half-power beam width θ3dB [rad]:

V =π

(
θ3dBr

2

)2 dr

2ln(2)
(1.3)

In contrast with pulsed radars, Frequency-Modulated Continuous Wave (FMCW) radars

transmit power continuously, with the frequency of the e.m. wave varying according to a

modulation pattern (e.g., sawtooth). In this configuration, the range cannot be directly inferred

from the time elapsed between emission and reception of the e.m. wave, the latter being

continuously emitted. Instead, the difference in frequency between the returned and emitted

signals is used to derive both the range and Doppler velocity* of the targets; this computation

relies, in particular, on two Fourier transforms of the sampled received signal (e.g., Jankiraman,

2018). The FMCW technology requires more advanced signal processing algorithms, but offers

several advantages in terms of hardware, as it requires, for instance, much less powerful

transmitters.

Different types of meteorological radars and operation modes

Depending on the purpose, meteorological radars with different frequencies are used. Op-

erational radars used in meteorological services are usually at S- or C-band, corresponding

respectively to ν ∼ 3 GHz (λ ∼ 10 cm) and ν ∼ 6 GHz (λ ∼ 5 cm), and occasionally X-band

(ν∼ 10 GHz, λ∼ 3 cm). For research purposes, X-band radars can be used, as well as higher

frequencies typically up to W-band (ν∼ 100 GHz, λ∼ 3 mm).

Following the context, radars are operated in different modes. In a PPI (Plan Position Indica-

tor), the elevation angle is fixed and the azimuth varies from 0◦ to 360◦. At low elevations, this

*See Sect. 1.3.4
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type of scan provides information on the horizontal extent of a precipitating system. It is used

in operational radars, which aim to monitor precipitation in a 3D volume: in practice, the

radars execute a series of PPI scans at different elevations. An RHI (Range-Height Indicator)

scan is performed at a constant azimuth, by varying the elevation angle; it measures a vertical

cross-section and informs on the vertical structure of precipitation, which is of high interest

in process-oriented studies. When the radar does not scan but remains at a fixed azimuth

and elevation, this corresponds to a profiling mode. It is commonly used for vertical profiling,

either in a zenith (e.g., for ground-based) or a nadir (e.g., for spaceborne radars) configuration.

Measurements from ground-based zenith profilers can be visualized as Height–Time Indica-

tors (HTI) that give insight into the vertical structure of a precipitating system as it overpasses

the sensor.

Figure 1.4: Schematic illustration of the radar principle, with notations introduced in the text. Certain
radars are additionally equipped with a radome (not shown here) that protects the antenna.

The radar equation

As the e.m. wave propagates away from the source, the power density diminishes with the

geometric spreading of the beam. The same happens with the backscattered signal as it

propagates back to the radar. Combined with information on the radar properties such as

antenna gain and aperture, a first generic form of the radar equation is obtained (Eq. 1.4),

which describes the two-way propagation to and from the target. Here, Pt (resp. Pr ) [W]

denotes the transmitted (resp. received) power, G [-] is the gain of the antenna (defined as

the ratio of the radiation intensity in the beam direction, to the radiation intensity that would

be produced if the power were isotropically radiated), and Σ [m2] is the total backscattering

cross-section of the targets in the radar volume.

Pr

Pt
= G2λ2

(4π)3r 4Σ (1.4)
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In the case of hydrometeors, Σ is the sum of the contributions of all the individual targets

within the resolution volume V , and can be rewritten as Σ=V η, where the reflectivity η [m−1]

defines the volumetric scattering properties of the targets. If N (D) [m−4] denotes the PSD (cf.

Sect. 1.2.5), and σb(D) [m2] is the backscattering cross-section of a single particle of maximum

dimension D , then η can be written as:

η=
∫ +∞

0
σb(D)N (D)dD (1.5)

The backscattering cross-section σb(D) depends on the size D of the hydrometeors, but also

on their dielectric properties through the dielectric factor |K |2 [-], and on the radar wavelength.

|K |2 is primarily affected by the phase of the scatterers. In solid ice, |K |2 = 0.18, and |K |2
decreases for snow particles with decreasing density. The dielectric factor of liquid water |Kw |2
is also sensitive to wavelength, and to a second order to temperature. For usual operational

radar frequencies (e.g., at C-band and 20◦C), |Kw |2 = 0.93 (for comparison, at Ka-band and at

20◦C, |Kw |2 = 0.90). When the hydrometeors are much smaller than the wavelength (D <<λ),

this is known as the Rayleigh scattering regime. In these conditions, σb is approximated with

a simple expression:

σb(D) ≈ π5

λ4 |K |2D6 (1.6)

Bringing together Equations 1.3,1.4, 1.5 and 1.6, assuming the targets within the resolution vol-

ume are Rayleigh scatterers—i.e., well characterized by the Rayleigh scattering approximation—

a new formulation of the radar equation is obtained (Eq. 1.7). All the constants and radar

parameters (such as τ, λ, θ3dB) are summarized as a constant C0, and we introduce the radar

reflectivity factor Z [mm6m−3] defined as Z = ∫ +∞
0 N (D)D6dD . It follows that:

Pr

Pt
= C0

r 2 |K |2Z (1.7)

Building up on this, for any type of hydrometeor we define the equivalent radar reflectivity

factor Ze [mm6m−3] through the following equation, where |Kw |2 is the dielectric constant of

liquid water:
Pr

Pt
= C0

r 2 |Kw |2Ze (1.8)

When the hydrometeors are liquid water drops within the Rayleigh scattering regime, Ze = Z .

In the general case and in the absence of attenuation, the equivalent radar reflectivity factor is

expressed as:

Ze = λ4

π5|Kw |2
∫ +∞

0
N (D)σb(D)dD (1.9)

From here on, the equivalent radar reflectivity factor is shortened as “reflectivity”. In practice,

Ze is often expressed in logarithmic units, with 1dBZ = 10log10(1mm6m−3). We saw that

under the Rayleigh scattering assumption, Ze is proportional to the sixth-order moment of

the PSD (Eqs. 1.6 and 1.9): this means that it is sensitive to the total number concentration

(NT ), and even more to the presence of large hydrometeors in the resolution volume (i.e., the
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tail of the PSD). As a result, in snowfall microphysical studies, large or increasing Ze values are

interpreted as a sign of enhanced particle concentrations and/or of efficient particle growth,

by vapor deposition, riming, or aggregation.

1.3.3 Dual-polarization

The polarization of an e.m. wave refers to the oscillation plane of its electric component (see

Fig. 1.4). Dual-polarization radars operate on both horizontal and vertical linear polarizations,

either through simultaneous transmission and reception or through alternate transmission/re-

ception on each channel. Alternatively, the radar can also transmit at a single polarization

and receive in both channels (e.g., Rose and RPG, 2018). When the radar transmits a pulse in

a certain polarization, the return signal measured at this same polarization is referred to as

the co-polar signal, while the cross-polar signal is the return signal received in the orthogonal

polarization, when available. Dual-polarization variables are derived by combining power

or phase information measured in each channel (as a co-polar and/or a cross-polar signal);

they inform on the geometrical and density properties of hydrometeors and can be used to

study snowfall microphysics, as briefly outlined below. Dual-polarization radars are also used

operationally by weather services for e.g., more accurate precipitation nowcasting and QPE.

We refer the reader to Ryzhkov and Zrnic (2019) or Kumjian (2013a) for further detail.

• Differential reflectivity ZDR [dB]. This is the difference, in the logarithmic space, of the

reflectivity measured at the horizontal and vertical polarization. It is independent of the

hydrometeor number concentration (to the extent that NT is high enough that Ze values

can be measured). At low elevations (≲ 45◦), ZDR is sensitive to the bulk density and to

the aspect ratio of the hydrometeors; it increases as particles become more oblate or

prolate, and decreases for sphere-like particles. In snowfall, high (≳ 2 dB) or increasing

ZDR values typically reveal depositional growth of pristine crystals, while low (≲ 1 dB)

or decreasing ZDR is interpreted as a sign of aggregation or riming (Grazioli et al., 2015;

Giangrande et al., 2016; Planat et al., 2021).

• Differential phase shift,ψd p [◦], and specific differential phase shift Kd p [◦ km−1]. ψd p

is the difference in the phase of the return co-polar signals in horizontal and vertical

polarization, and is the sum of different contributions:

ψd p =φd p +δbs +ψd p,0 (1.10)

whereφd p is the phase shift due to the difference in the forward propagation velocities of

the two waves, δbs is the differential backscattering phase delay (equal to 0 for spherical

or Rayleigh scatterers), andψd p,0 is the initial phase shift. Kd p is half the range derivative

of φd p , and illustrates how the electromagnetic wave is slowed down by hydrometeors,

in the vertical and horizontal planes; it is sensitive to the aspect ratio and number

concentration of the particles. In snowfall microphysical studies, Kd p enhancement
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can be used to track the formation of new ice particles through primary or secondary

processes (Andrić et al., 2013; von Terzi et al., 2022; Dedekind et al., 2023).

• Co-polar correlation coefficient ρhv [-]. This is the correlation of the co-polar signals

measured at the horizontal and vertical polarization. It reflects the uniformity of the

targets in their shape and size. High ρhv is observed, for example, in light rain or dry

snow, while lower ρhv is measured in the melting layer where hydrometeor properties

are highly non-homogeneous. ρhv is also used to identify and remove unwanted signals

such as background noise and ground clutter, which typically have low correlation.

• Linear depolarization ratio LDR [dB]. It is available when the radar is operated with

alternate transmission/reception on each channel. The LDR measures the ratio of the

cross-polar to the co-polar return signal: i.e., if the radar transmits at horizontal po-

larization, LDR = ZV −ZH (in logarithmic units) where ZV (resp. ZH ) is the reflectivity

measured at vertical (resp. horizontal) polarization. The depolarization phenomenon,

whereby a target backscatters part of the signal at the orthogonal polarization, arises

when the shape of the target is asymmetric with respect to the direction of propagation

of the e.m. wave. Unlike most previously-listed variables (except ρhv ), LDR can also

be used with vertically-pointing radars. LDR is relevant to snowfall studies as it allows

identifying different types of ice and snow particles. High LDR values (≳−15 dB) reflect

the presence of prolate crystals (needles or columns, e.g., Oue et al., 2015; Luke et al.,

2021), or of melting particles (Ryzhkov and Zrnic, 2019). Conversely, very low (≲−30 dB),

or even below-noise-floor LDR values reflect the presence of particles that are “disk-like”

in the radar view, such as liquid water droplets or planar crystals (Ryzhkov and Zrnic,

2019). The latter, however, usually result in slightly higher LDR values. Aggregate or

rimed snowflakes may lead to medium-low values of LDR depending on their composi-

tion, geometry, and orientation. When the radar is operated in simultaneous transmit

and receive mode, an alternate variable can be derived, sometimes referred to as the

slanted LDR (SLDR, e.g., Myagkov et al., 2016; Rose and RPG, 2018), which yields similar

interpretations (Matrosov et al., 2012; Galletti et al., 2014). It is computed by represent-

ing the transmitted and received signal in a rotated polarization basis: the e.m. signal

simultaneously transmitted at horizontal and vertical polarizations can be seen as a

45◦-rotated linearly polarized wave*; the equivalent co- and cross-polar components

of the return signal can then be computed using an adequate rotation matrix (see e.g.,

Myagkov et al., 2016).

Taking advantage of the distinct polarimetric signatures of different hydrometeor types, dual-

polarization variables are commonly used for radar-based classifications of hydrometeors

(Straka et al., 2000). In particular, a semi-supervised classification algorithm was developed by

Besic et al. (2016) and extended to additionally quantify the proportions of hydrometeor types

in the radar resolution volume (Besic et al., 2018). Although it is not the primary focus of this

thesis, this method brings valuable information for process-oriented snowfall studies.

*if the transmission phase difference between the H and V channels is 0◦
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1.3.4 Radar Doppler spectrum

Doppler velocity

The notorious Doppler effect refers to the frequency shift of a wave caused by relative motion

between its source and the observer. In the case of meteorological radars, the Doppler effect

induces a change in the frequency of the returned signal compared to the emitted wave when

the hydrometeors have a radial motion away from or toward the radar. In practice, the Doppler

velocity vDOP [m s−1] of the target is computed via the rate of change of the phase difference

φ [rad] between the return signal and a reference signal in phase with the emitted pulse.

∆φ [rad] denotes the change of φ between two successive pulses. As detailed in Fabry (2015),

Chapter 5:

∆φ=−4πn

λ

vDOP

PRF
(1.11)

When the target consists of multiple particles, with each different radial velocities, the radar

measures the reflectivity-weighted mean Doppler velocity (MDV), together with the spectrum

width (SW [m s−1]), which informs on the spread of the targets’ Doppler velocities within the

radar volume; the next subsection will come back to this. By convention, unless otherwise

specified, positive Doppler velocity corresponds to motion away from the radar.

∆φ can only be measured unambiguously within [-π, π]; this has implications on Doppler

velocity measurements, for which aliasing occurs if the target velocity exceeds a critical Nyquist

velocity (vN Y Q = λ
4n PRF). This means that, for instance, targets moving away from the radar

with a velocity v > vN Y Q cannot be distinguished from targets moving toward the radar with

a velocity v −2 vN Y Q . Increasing the PRF mitigates this problem, but is detrimental to the

maximum unambiguous range (see Sect. 1.3.2); depending on the context and purpose of

the measurements, finding a trade-off between these two effects may be challenging. This is,

however, not a major issue in the case of zenith profilers, which are used to study clouds and

precipitation within a relatively narrow range (rarely above the tropopause, i.e., ∼ 10 km above

sea level).

When the radar is vertically pointing, the Doppler velocity of a target corresponds to its fall

speed, which is the sum of its terminal velocity* and vertical air motion. This is remarkably

interesting for microphysical studies of precipitation, as the terminal velocity of particles is

related to their size and bulk density: large raindrops fall faster than drizzle drops, heavily

rimed aggregates fall faster than small and pristine ice crystals. Following this rationale,

MDV is frequently used to detect the presence of rimed particles in zenith-pointing radar

measurements of snowfall (e.g., Kneifel and Moisseev, 2020). Note that for an ensemble of

particles, the MDV—which, we recall, is the reflectivity-weighted mean Doppler velocity—is

also affected by the particle size distribution and scattering properties at the chosen radar

wavelength, with typically a dominant contribution of the larger particles to the MDV.

*this is valid in the case of small targets like hydrometeors, which are small enough that they reach their
terminal velocity very fast in still air
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Doppler spectrum and microphysical interpretations

When a succession of pulses is emitted by the radar and backscattered by the targets in a

resolution volume at range r , a time series of return power values Pr (t) is sampled. With

a discrete Fourier transform on this time series, the distribution of power as a function of

frequency shift is computed. From this, relating power to reflectivity through Eq. 1.8, and

frequency shift to Doppler velocity with Eq. 1.11, the radar Doppler spectrum is obtained,

which represents the reflectivity-weighted distribution of Doppler velocities in the resolution

volume. From here on, we express the Doppler spectrum as a spectral reflectivity (sZe ), whose

units in the logarithmic scale we note dBsZ (defined as 1 dBsZ = 10log10(1 mm6m−3(m s−1)−1)).

With this frequency-domain perspective, MDV and SW are readily computed as the mean and

standard deviation of the Doppler spectrum. Throughout this thesis, Doppler spectrum (pl:

spectra) refers to the measurement at a given (time, range) gate, and the stack of spectra at

all range gates at a given time is denoted as the Doppler spectrogram. Note that this name

convention is used here for clarity, but it may not be universal.

We will now focus on spectra measured by vertically-pointing profilers (e.g., Lhermitte, 1987;

Kollias et al., 2002; Luke and Kollias, 2013; Kneifel et al., 2016). In that case, the shape of the

Doppler spectrum is primarily defined by the PSD and the microphysical properties of the

hydrometeors, which determine their backscattering cross-section and terminal velocity. The

next paragraph will detail how this microphysics-driven spectrum is then affected by atmo-

spheric dynamic conditions and the parameters of the radar. Focusing on the microphysical

interpretation, the Doppler spectrum allows separating the contribution of slow-falling—

typically small—vs. fast-falling—typically large or dense—particles to the total reflectivity.

As a first-order approximation, the spectrum results from the snowfall PSD, weighted by the

backscattering cross-section of the particles, and shaped by the velocity–size relation; it is

thus extremely rich in terms of microphysical information. The Doppler spectrum was already

used by Atlas et al. (1973), Gossard (1994), Gossard et al. (1997), Babb et al. (1999), Williams

and Gage (2009), to retrieve rainfall or cloud drop size distributions from radar measurements.

In a qualitative perspective, wider, or more/less skewed spectra, can be the sign of changes

in the underlying PSD that may correspond to aggregation or new ice production processes

(Giangrande et al., 2016).

A specific signature occasionally observed in Doppler spectra deserves special attention. In

certain cases, the Doppler spectrum deviates significantly from a Gaussian shape (Fig. 1.5a)

to a point where several modes are visible (see for example, Fig. 1.5b and c). These modes,

or spectral peaks, may be well separated or almost merged. Either way, they suggest that

hydrometeor populations with different microphysical properties coexist within the same

resolution volume, and that they have sufficiently different PSDs and/or density properties

that their fall velocities are differentiated (Zawadzki et al., 2001; Verlinde et al., 2013). The

moments of each mode (e.g., their Doppler velocity, spectral width, and reflectivity) may

then be derived and analyzed to determine the hydrometeor types that are present. For

example, SLW cloud droplets, because of their very small size (< 50 µm), have both near-zero

21



Chapter 1. Introduction and background

terminal velocity and very low reflectivity (e.g., Ze ≲ −20 dBZ) and are typically identified

as a Doppler peak with these characteristics (Shupe et al., 2004; Kalesse et al., 2016; Li and

Moisseev, 2019), as in Fig. 1.5b. This highlights the potential of Doppler spectra to study MPCs

(Rambukkange et al., 2011). Figure 1.5c illustrates a quite different situation where both modes

have similar reflectivity, which is more challenging to interpret without further information.

When available, spectral polarimetric measurements can help refine the analysis, especially

through the spectral LDR, e.g., to identify fingerprints of columnar crystals in a spectral peak

(Oue et al., 2018; Luke et al., 2021).

Figure 1.5: Examples of W-band Doppler spectra (27 January 2021, la Chaux-de-Fonds, Switzerland).

Contamination by non-microphysical effects

In reality, the purely microphysical spectrum is affected by atmospheric dynamic conditions—

turbulence, horizontal and vertical wind—in a way that depends on the settings and param-

eters of the radar itself—sensitivity, beam width, or sampling frequency (e.g., Protat and

Williams, 2011; Williams et al., 2016). In this section, we briefly go through the main causes of

data contamination by non-microphysical effects. We review how they affect radar measure-

ments and in particular the Doppler spectrum, in terms of its velocity span, its shape, and its

amplitude. Figure 1.6 illustrates these effects, following their numbering in the list below, with

(a) a sketch of the mechanism and (b) the impact it has on the spectrum.

1. Turbulence leads to small-scale eddies, with small up- and downdrafts that modify the

downward velocity of particles. This increases the spread of the Doppler velocities within

the radar volume and results in broader spectra, with larger SW. Such broadening can be

detrimental to microphysical interpretations, and even smear out possible multi-modalities.

2. Broadening due to horizontal wind. Since the beam width is not 0◦, the horizontal motion

of the hydrometeors (due to horizontal wind) results in a radial component, away from

or toward the radar on either side of the beam. This again results in a broadening of the

Doppler spectrum, with an enhanced SW; this effect is all the more significant that the

beam width is large. See Shupe et al. (2008) for a general discussion on the causes of spectral

broadening, including the effects of turbulence and horizontal wind.

3. Vertical air motion, i.e., up- and downdrafts. Uniform vertical air motion vai r results in a

translation of the spectrum’s velocity span by vai r , and a similar shift of MDV. As a result,
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1.3 Meteorological radars and their application to snowfall studies

the Doppler velocity differs—possibly significantly—from the terminal velocity, and this

hampers microphysical interpretations.

4. Shift due to horizontal wind, in case of imperfect vertical alignment. When the beam is

not perfectly aligned with the vertical, the horizontal wind does not just cause a symmetrical

broadening of the spectrum (increase of SW, item 2), but also a general shift (change of

MDV, similar to item 3), which is equal to its radial component at the center of the beam.

5. Non-uniform beam filling. It is another consequence of beam broadening when the

resolution volume is large enough that it may contain different types of hydrometeors (e.g.,

Kumjian, 2013b), or when gradients in hydrometeor number concentrations or sizes are

present (Tanelli et al., 2002). Furthermore, the resolution volume is in reality a complex

entity; contributions of hydrometeors may differ depending on their location at the center

of the beam or at the edges, and on the beam shape itself. These effects may lead to

spectrum broadening or other types of spectral deformations. In the context of vertically

pointing radars, however, these artifacts are of secondary importance; the range resolution

is typically rather high, and the beam broadening is limited (because of the short range,

and because radars with narrow beams are often used).

6. Attenuation of the e.m. wave is a common issue in radar meteorology, which impacts

reflectivity-based products. Its effect on the Doppler spectrum is to decrease sZe of a

constant value (in logarithmic units), for all velocity bins where a signal is present. One

aspect of this concern is radome attenuation (6a), due to the deposition of a liquid water or

wet snow layer on the radome; this causes an attenuation of the measurements at all ranges.

Another aspect is attenuation along the path, due to e.m. absorption by atmospheric gases

or hydrometeors (6b). Depending on the radar frequency and scan mode, and on the

precipitation structure, this may be a more or less crucial issue. For vertically-pointing

radars measuring at only short ranges, attenuation is mostly a problem for high frequencies

such as W-band. There, liquid water (rain or cloud water) is the dominant source of

attenuation, although the effect of atmospheric gases and ice hydrometeors should also be

considered (Kneifel et al., 2015). In snowfall or MPCs, attenuation of lower frequencies (e.g.,

X-band) is usually small (Kneifel et al., 2015).

7. Miscalibration or drifting calibration may be due to changes in the internal noise of the

system, related to temperature or pressure variations, or to aging components. Miscalibra-

tion results in an offset of the spectral reflectivity values (constant for all range gates and

velocity bins, similar to 6a). It can be mitigated through automatic calibration routines (e.g.,

Küchler et al., 2017) or by regularly conducting an absolute calibration of the instrument

with appropriate reflectors or target simulators (e.g., Toledo et al., 2020; Schneebeli et al.,

2020).

8. Radar sensitivity (a) and noise (b) Along this line of measurement uncertainties related

to signal processing and hardware challenges, the issue of radar sensitivity should also be

mentioned. Internal (and atmospheric) noise sets a lower limit on the return power (8a),
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below which meteorological echoes cannot be detected: this is the (range-dependent) sen-

sitivity. Radars with higher frequencies are typically more sensitive than lower frequencies,

although this is controlled by multiple factors (Fabry, 2015, Chapter 13). Internal noise

and discretization during signal processing further induce a noisiness of the spectrum (8b),

which can be mitigated by increasing the sampling frequency and the integration time

(Acquistapace et al., 2017).

9. Aliasing or velocity folding, mentioned earlier, results from the ambiguity in the measure-

ment of phase; it occurs when the Nyquist velocity cutoff is too low for an unambiguous

measurement of the Doppler velocity. In the case of vertically-pointing radars in snowfall,

this is only an issue in highly turbulent cases or in the presence of strong up- or downdrafts.

In most cases, with usual radar settings, the fall speed of snow particles is within the Nyquist

range.

Figure 1.6: (a) Illustration of the main causes of uncertainty and data contamination by atmospheric
and hardware-related effects; (b) Idealized examples of how these affect the Doppler spectrum (the
spectra are drawn for illustrative purposes and do not correspond to real data). The numbering
corresponds to the list given in the text.
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1.3.5 Using radars with different frequencies

Principle of multi-frequency approaches

Combining measurements from radars with different frequencies to study snowfall micro-

physics was first proposed by Matrosov et al. (1992), and may be considered as a breakthrough

contribution to this field. It relies on the fact that hydrometeors, as they grow to larger sizes,

transition to non-Rayleigh scattering regimes at millimeter wavelengths, while they remain

Rayleigh scatterers at larger wavelengths. In what follows, we use W- and X-band as examples

for the high and low frequencies, as these will be used in further chapters. Figure 1.7a illus-

trates this concept for the simple case of spherical water drops. In this example, a drop with

diameter < 1 mm would be in the Rayleigh scattering regime both at X-band (λ= 3.2 cm) and

at W-band (λ= 3.2 mm). By contrast, a larger 1.6 mm liquid water drop behaves as a Rayleigh

scatterer at X-band but is within the Mie oscillation regime at W-band (Kollias et al., 2002).

In terms of the radar equivalent reflectivity factor (Fig. 1.7b), this leads to Ze,X = Ze,W for

ensembles of small particles, and Ze,X > Ze,W for large targets which are no longer W-band

Rayleigh scatterers, and for which Ze,W no longer increases as they grow but rather plateaus.

Let the dual-frequency ratio of reflectivity be defined as DFR [dB] = Ze,X −Ze,W with Ze,X and

Ze,W in dBZ; then DFR ≈ 0 dB for small particles and DFR increases with particle size (dashed

gray curve). Importantly, unlike Ze,X and Ze,W , DFR does not depend on particle number

concentration, but solely on size- or density-related microphysical properties.

Figure 1.7: (a) Normalized backscattering cross-section as a function of the scattering parameter
(circumference divided by wavelength), simulated with Mie equations for liquid water spheres; the
complex refractive index* is taken from Sadiku (1985) for ν= 100 GHz; two examples are shown of drops
with different diameters, illustrating their normalized cross-section at X- and W-band. (b) PAMTRA
simulations of Ze,X , Ze,W , and corresponding DFR, for an exponential PSD of snow particles with
varying D0, using the default implementation of SSRGA and a constant NT = 500 m−3.

*very little sensitivity of this curve to ν is noted
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Multi-frequency retrievals of snowfall microphysics

The scattering properties of real snow particles are by far more complex than those of liquid

spheres, described by the Mie scattering theory. The interaction of the e.m. wave with snow

particles is affected by their size, but also their dielectric properties and their internal structure

(e.g., Kumjian, 2018). Efforts have been devoted to the construction of more accurate radiative

transfer models that aim to simulate, for a given frequency, the reflectivity of snowfall particles

depending on their microphysical properties. Calculations based on the discrete dipole

approximation (DDA; Draine and Flatau, 1994; Liu, 2004; Kuo et al., 2016; Lu et al., 2016) can

simulate σb for particles with a highly complex geometry, but these methods come with high

computational costs. The self-similar Rayleigh-Gans approximation (SSRGA) is a popular tool

to calculate the backscattering cross-section of an ensemble of snow particles; it describes the

self-similar structure of snow aggregates with a power law whose coefficients depend on the

elementary crystal types (Hogan and Westbrook, 2014; Hogan et al., 2017; Ori et al., 2021), and

was found to yield accurate and computationally-efficient scattering simulations.

Fig. 1.7b shows an example of snowfall reflectivity modeled with an advanced radiative transfer

model (Passive and Active Microwave TRAnsfer model, PAMTRA, Mech et al., 2015, 2020) using

the SSRGA. Here, to simulate each reflectivity value, the mass–size relation of Brown and

Francis (1995) is used (am = 0.0185 g m−1.9, bm = 1.9, with the notations of Sect. 1.2.5) and

an exponential PSD is assumed, whose mean D0 is varied while keeping NT constant. One

can see the expected behavior where the DFR grows from 0 dB to large values (∼ 20 dB) as D0

increases. This illustrates that, assuming a prior knowledge of snowfall microphysical and

scattering properties, the DFR can serve to retrieve a characteristic particle size (e.g., Matrosov,

1998; Hogan et al., 2000; Liao et al., 2016). While the DFR is primarily affected by particle

size, it is also sensitive to the riming degree, or fractal dimension, of the snow particles (Stein

et al., 2015; Battaglia et al., 2020). From a qualitative perspective, increasing DFR values are

therefore interpreted as a sign of enhanced snowfall growth, possibly caused by aggregation

or riming. The use of three well-chosen radar frequencies (e.g., W, Ka, X), instead of two, has

shown promise to disentangle the contributions of particle size and mass to the reflectivity and

DFR. Signatures of riming and aggregation were thus distinguished in a triple-frequency space

(Kneifel et al., 2011; Kulie et al., 2014; Leinonen et al., 2018; Chase et al., 2018). Most of the cited

studies, however, still rely on certain strong microphysical hypotheses, for example regarding

the mass–size relation, with assumptions ranging from the use of a fixed parameterization to

more flexible yet still constraining models like the “filling-in” hypothesis (Mróz et al., 2021a).

Multi-frequency Doppler spectra

In view of the previous sections, combining multi-frequency and Doppler spectral techniques

appears like a promising avenue: this could make use of the refined information contained

in the spectrum (on particle fall speeds and PSD, among others), and of the Rayleigh/non-

Rayleigh behavior of large or densely rimed particles observed through multi-frequency

measurements. For the purpose of snowfall microphysical retrievals, such an approach could
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allow reducing the number of required a priori assumptions. Research in this direction first

consisted in using not only dual-frequency reflectivity information but also dual-frequency

Doppler velocity and higher-order spectral moments, as in the studies of Liao et al. (2008),

Matrosov (2011), Szyrmer and Zawadzki (2014) or Maahn and Löhnert (2017). Taking advan-

tage of the full Doppler spectrum measured at two or more frequencies was investigated in

rain by Tridon and Battaglia (2015); Tridon et al. (2017); Mróz et al. (2020), and in snowfall by

Kneifel et al. (2016) and Barrett et al. (2019).

The transition of scattering regime at higher frequencies is visible in dual-frequency Doppler

spectra (e.g., X- and W-band) with the following signature. Slow-falling particles are Rayleigh

scatterers, and contribute to similar spectral reflectivity at both wavelengths: sZe,W (v) ≈
sZe,X (v) for v → 0 m s−1. On the other hand, larger, fast-falling particles are no longer Rayleigh

scatterers for the higher frequency and thus have a smaller spectral reflectivity than for the

lower frequency: sZe,W (v) < sZe,X (v) for increasing |v |. This means that for well-aligned

vertically-pointing radars with similar resolution volumes, the Doppler spectra at both fre-

quencies should “match” on the low-velocity side, and diverge for large velocities, as illus-

trated in the simulated example of Fig. 1.8a. This was leveraged by Barrett et al. (2019), who

retrieved full empirical PSDs from spectral dual-frequency reflectivity ratios computed on

triple-frequency Doppler spectra, assuming known mass–size and velocity–size relations.

Figure 1.8: PAMTRA simulations of Doppler spectra at X- (9.4 GHz) and W-band (94 GHz). Micro-
physical configuration: exponential PSD with D0 = 1.7 mm, NT = 500 m−3, mass–size coefficients
am = 0.0185 g m−1.9 and bm = 1.9, area size coefficients αa = π

4 and βa = 2, default SSRGA coefficients
and velocity–size relation of Heymsfield and Westbrook (2010). Turbulent broadening is computed
using an eddy dissipation rate of 5×10−4 m2/3s−1. Sensitivity at 1 km: -20 dBZ for W-band, -10 dBZ
for X-band. (a) Half-power beamwidth θ3dB,X = θ3dB,W = 0.53◦, radial wind wX = wW = 0 m s−1. (b)
Half-power beamwidth θ3dB,X = 1.8◦, θ3dB,W = 0.53◦, radial wind wX = 0.1 m s−1, wW = 0 m s−1.

In reality, when two radars of different frequencies are used to measure Doppler spectra,

the uncertainty described in Sect. 1.3.4 (Fig. 1.6) increases significantly. Figure 1.8b is a

simulated example of how different beam widths and a small misalignment causing a radial

wind difference of 0.1 m s−1 can deform the dual-frequency spectra. Following Orr and Kropfli

(1999), this apparent radial wind could result, for instance, from a horizontal wind of 15 m s−1

and a tilt angle of 0.4◦ off the vertical* (in the azimuth direction of the horizontal wind). Here,

*The apparent radial wind resulting from a horizontal wind u and a downwind tilt angle α is w = u sin(α)
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the spectral signature of the transition to non-Rayleigh scattering for larger hydrometeors at

W-band, which was well visible in Fig. 1.8, can no longer be seen, although the microphysics is

unchanged. Similar artifacts may arise from both absolute and relative miscalibration, from

differential attenuation, beam mismatching, differential beam broadening, or differential

velocity offsets resulting from imperfect beam alignment. Workarounds were proposed (e.g.,

Li and Moisseev, 2019, for differential attenuation), but are not always possible to implement.

Because of these measurement-related challenges, performing a direct inversion like Barrett

et al. (2019) is only rarely possible. In such cases of data contamination, a direct computation

of the dual-frequency spectral reflectivity ratio is difficult to interpret and may be dominated

by artifacts. These measurement-related uncertainties are an important challenge that should

be addressed when designing generic algorithms to retrieve microphysical information from

dual-frequency Doppler spectrograms, as will be discussed in more detail in Chapters 4 and 5.

1.4 Deep learning techniques

In this section, we briefly diverge from snowfall microphysics and remote sensing retrievals to

introduce certain methodological concepts and techniques that will be put to use in further

chapters. Artificial intelligence, relying on machine learning techniques, has led to major

advances in the past decades, across virtually all scientific fields. Its potential in atmospheric

sciences as a whole is largely recognized (e.g., Reichstein et al., 2019; Bauer et al., 2021; Chantry

et al., 2021) as it opens up possibilities for precipitation and weather forecasting (Shi et al.,

2017; Schultz et al., 2021), quantitative precipitation estimation (Wolfensberger et al., 2021) or

climate modeling (Rasp et al., 2018). Snowfall studies are not excluded from the dissemination

of machine learning techniques, and remote sensing of snowfall, in particular, has benefited

from these advancements. Machine-learning-based estimations of snow accumulation (in

5 or 20 minutes intervals) from vertically-pointing K- or X-band radar measurements were

recently proposed by King et al. (2022a,b). Deep learning was also applied to the study of

microphysical properties and processes, specifically, to the detection of riming from zenith

radar profiler data by Vogl et al. (2022), or to the retrieval of snowfall descriptors by Chase et al.

(2021).

In what follows, we provide a succinct introduction to the main concepts behind deep learning

techniques and their implementation. We will concentrate on the specific example of artificial

neural networks, which are at the root of today’s most popular machine learning tools, and

which are used in this thesis. For more detail, the reader is referred to the textbook by Chollet

(2017), and to articles such as Chase et al. (2022a,b) where a review of machine learning

principles and techniques is proposed.
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Basic principles

Machine learning can be very generally described as a statistical approach to fit a function

f , which maps an input x to an output y , and for which there is no known analytical expres-

sion. In the case of supervised machine learning, which is our focus from here on, the fit is

performed on a dataset of known (x∗, y∗). The purpose of this fit is commonly classification,

where y is discrete, as in the case of image classification, or regression, where y takes values

in a continuous domain. In that sense, one can say that linear, polynomial, or logarithmic

regressions are already an early form of machine learning.

Neural networks are powerful tools that allow approximating a great variety of functions,

with f that can be e.g., non-linear, discontinuous, or with a high-dimensional input and/or

output. They rely on so-called neurons, which are simple building block functions, defined as

follows and illustrated in Fig. 1.9a. A neuron takes as input a set of features x̂ , computes an

affine combination of these (each feature is multiplied with a weight w , and a global bias b is

added), and passes it through a given activation function fa to generate an output ŷ . A widely

used activation function is the rectified linear unit ReLU, defined as ReLU : x 7→ max(x,0). A

“network of neurons” (neural network, NN, Fig. 1.9b) contains multiple neurons, arranged

into a stack of layers; the outputs of the neurons in a given layer are used as input features by

the neurons of the next layer. Ultimately, the NN provides a mapping f̃ from the initial input

layer (containing the input x) to an output layer which has the mathematical dimension of

the output y . The layers in-between are the internal or hidden layers. When all the weights

and biases in each neuron are varied, f̃ can span a large range of functions, meaning the NN

can approximate very diverse functions. Note that when ReLU is used, the mapping generated

by the NN is a continuous piecewise linear function (e.g., Goujon et al., 2022).

Figure 1.9: Schematic illustration of (a) an individual neuron, and (b) a neural network, following the
notations defined in the text. In the example shown in (b), the input x has dimension n +1 while y is
2-dimensional; this is purely illustrative as x and y may be of any dimension. The width of the arrows
illustrates the weight of each feature.

Given a NN architecture that produces a mapping f̃ , the task of the learning algorithm is to

ensure that f̃ is a good approximation of the true f . This is done by relying on training data,

taken among the available known (x∗, y∗), and adjusting the NN to minimize a loss function

computed on these data. This loss metric (which can be, for instance, the mean squared
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error) essentially measures the distance between the prediction ỹ∗ = f̃ (x∗) and the target y∗;

thus, it characterizes the quality of the approximation on the training dataset. The key step

consists in modifying the NN parameters (weights and biases of every neuron) to reduce the

loss; this relies on (i) the backpropagation algorithm, through which the gradient of the loss

is computed with respect to each parameter. Then, the parameters are updated following a

gradient descent scheme (ii). Steps (i) and (ii) are iterated until the loss no longer decreases. In

practice, this basic framework is adjusted and optimized through different algorithms, which

include, for example, splitting the data randomly into batches at each step to make the task

more computationally tractable. These methods are implemented in various software codes

such as keras (Chollet, 2015) or pytorch (Paszke et al., 2019).

When building and training a machine learning model, it is good practice to split the known

(x∗, y∗) into three datasets: the training, validation, and testing sets. The machine learning

model is trained on the training set. The validation set is used to tune the hyper-parameters;

in the case of a NN, these define the architecture of the NN (e.g., number of layers, number

of neurons per layer). After the convergence of this training/tuning procedure, the model is

implemented on the independent testing set for a final evaluation. This strategy ensures that

the model does not excessively overfit the training data, i.e., learn certain behaviors which are

specific to the points of the training set and do not correspond to the mapping f itself.

Deep learning

The phrase deep learning refers to neural networks with multiple hidden layers. These net-

works have a greater number of tunable parameters, and can in principle be adjusted to

represent a wider scope of functions. Deep learning has made it possible to tackle more ad-

vanced problems and work with high-dimensional inputs. In particular, a specific type of deep

neural network has been instrumental to certain applications, where the input consists of

images, such as image classification or image processing tasks: convolutional neural networks

(CNN, Lecun et al., 1998) use convolution kernels to combine a pixel with its neighbors, instead

of considering each pixel independently in the input layer. This allows for the detection of spa-

tial features such as edges, corners, or smooth areas, and has brought about major advances

in image-based machine-learning problems.

Using deeper networks comes with certain challenges. In particular, deeper stacks of layers

make the back-propagation step more delicate, as the gradient of the loss with respect to

parameters in the early layers of the model becomes very small: this issue of vanishing

gradients makes the training inefficient. Techniques were proposed to mitigate it, such as

the use of batch normalization steps (Ioffe and Szegedy, 2015), residual blocks with skipped

connections (He et al., 2016), or modified routines to initialize the NN parameters (Glorot

and Bengio, 2010). We shall not review these methods in detail; what should be noted is, that

they do not actually improve the expressiveness or the complexity of the neural network, but

strongly facilitate the training process.
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1.5 Objectives and outline of the thesis

The previous sections have outlined the relevance of meteorological radars to study snowfall

microphysics in clouds and precipitation. The microphysics of snowfall is compound, both in

terms of the processes involved (i.e., the physical mechanisms at play in the formation and

growth of snow particles) and in terms of the microphysical properties themselves (i.e., the

geometry, size, internal structure of individual particles, and how these are distributed in an

ensemble of particles). Multi-frequency radar measurements and Doppler spectra provide

valuable insights into these questions. However, using radar to estimate snowfall properties

is an ill-posed problem, as different sets of microphysical properties may translate into simi-

lar radar observations. To constrain this, most currently available radar-based retrievals of

snowfall microphysics (Sect. 1.3.5) rely on a number of prior assumptions regarding the fractal

dimension of the particles, their bulk density, or their shape. Further obstacles to quantitative

radar retrievals of snowfall microphysical properties come from measurement uncertainties

and contamination by non-microphysical effects. For instance, previous studies based on

Doppler spectra commonly require non-turbulent atmospheric conditions; such assumptions

come at the risk of overlooking the intrinsic variability of snowfall and misrepresenting some

of its properties.

A specific challenge comes from mixed-phase environments, in which snow particles are

present along with SLW droplets. Liquid water droplets contribute to significant path atten-

uation which deteriorates high-frequency radar signals; it is thus fundamental to quantify

atmospheric liquid water in order to assess the reliability, and possibly correct, the radar

measurements. At the same time, SLW plays an essential role in snowfall microphysics, for

instance through WBF, riming, or SIP mechanisms; these microphysical processes are of high

relevance to clouds and precipitation research and still subject to many unknowns.

This thesis aims to take a step forward in the joint use of Doppler spectra and multi-frequency

radar measurements to study snowfall microphysics. To address this multifaceted problem, a

quantitative retrieval of snowfall properties is proposed, along with qualitative perspectives

on the fingerprints of microphysical processes in radar data. For these studies, we will rely on

multi-sensor observations with a focus on, but not limited to, dual-frequency and Doppler

spectral radar measurements. The data mostly stem from a dedicated field campaign, ICE

GENESIS, that was conducted in the Swiss Jura Mountains in early 2021. The central question

around which this work revolves is, how can we characterize, using remote sensing, the micro-

physical properties and processes of snowfall? To address this question, our investigations

can be summarized through a few main objectives:

• Develop a framework for the retrieval of snowfall properties in the atmospheric column

from dual-frequency Doppler spectra;

• Characterize the presence of SLW in clouds and mixed-phase precipitating systems;

• Gain insight into snowfall processes through their signatures in radar data.
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The thesis is structured as follows. In Chapter 2, the setup of the ICE GENESIS deployment and

the dataset collected during the campaign are presented. Chapter 3 focuses on the estimation

of liquid water path, as well as integrated water vapor, from microwave radiometer brightness

temperature measurements. This characterization of the liquid phase in clouds will then serve

in further chapters, to correct for W-band attenuation, and to study snowfall processes in

mixed-phase conditions. In Chapter 4, we introduce a deep-learning framework to retrieve

snowfall properties from X- and W-band Doppler spectrograms, with a minimal number of

prior assumptions. In Chapter 5, we implement the proposed approach on the ICE GENESIS

dataset and evaluate its results against collocated in situ measurements. A statistical analysis

of the snowfall properties retrieved during ICE GENESIS is then outlined. Chapter 6 sheds a

more qualitative light on a chosen case study of the campaign, where we investigate persistent

multimodal spectral signatures, in which secondary ice production is likely to play a role. A

concluding discussion and perspectives on open questions are presented in Chapter 7.
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2 ICE GENESIS: Synergetic aircraft, ground-
based, remote sensing and in situ measure-
ments of snowfall microphysical properties

This chapter describes a measurement campaign that was conducted in the Swiss Jura moun-

tains from December 2020 to March 2021. The experiment was designed and conducted as a

part of ICE GENESIS, a multi-partner project within Horizon 2020. The text is adapted from

the published article:

• Anne-Claire Billault-Roux∗, Jacopo Grazioli∗, Julien Delanoë, Susana Jorquera, Nico-

las Pauwels, Nicolas Viltard, Audrey Martini, Vincent Mariage, Christophe Le Gac,

Christophe Caudoux, Clémantyne Aubry, Fabrice Bertrand, Alfons Schwarzenboeck,

Louis Jaffeux, Pierre Coutris, Guy Febvre, Jean-Marc Pichon, Fabien Dezitter, Josué

Gehring, Aude Untersee, Christophe Calas, Jordi Figueras i Ventura, Benoit Vie, Adrien

Peyrat, Valentin Curat, Simon Rebouissoux, Alexis Berne (2023). ICE GENESIS: Syn-

ergetic aircraft, ground-based, remote sensing and in situ measurements of snowfall

microphysical properties. Bulletin of the American Meteorological Society, 104(2), E367–

E388, doi: 10.1175/BAMS-D-21-0184.1.

Anne-Claire Billault-Roux and Alexis Berne prepared and deployed most of the instruments

on the ground-based site, and ensured their operation during the campaign. A.-C. B.-R.

processed the data of MXPol and WProf. Jacopo Grazioli processed MASC measurements and

coordinated exchanges between the co-authors. A.-C. B.-R. and J.G. analyzed the data and

wrote the manuscript with input from co-authors and supervision from A. B.
∗: Equal contribution of the first two authors to this work.

2.1 Summary

An international field experiment took place in the Swiss Jura in January 2021 as a milestone of

the European ICE GENESIS project, which aims to better measure, understand, and model the

ice/snow particle properties and mechanisms responsible for icing of rotorcraft and aircraft.
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The field campaign was designed to collect observations of clouds and snowfall at a prescribed

range of temperatures (-10◦C to +2◦C). The suite of in situ and remote sensing instruments

included airborne probes and imagers on-board a Safire ATR 42 aircraft, able to sample liquid

and ice particles from the micron to the millimeter size range, as well as icing sensors and

cameras. Two 95 GHz Doppler cloud radars were installed on the Safire ATR 42, while six

Doppler weather radars operating at frequencies ranging from 10 to 95 GHz, and one lidar,

were ground-based. An operational polarimetric weather radar in nearby France (Montancy)

complements the coverage. Finally, observations of standard meteorological variables as

well as high-resolution pictures of falling snowflakes from a multi-angle snowflake camera

were collected at the ground level. The campaign showed its full potential during five multi-

hourly flights where precipitation was monitored from cloud to ground. The originality of this

campaign resides in the targeted specific temperature range for snowfall and in the synchro-

nization between the ground-based remote sensing and the aircraft trajectories designed to

maximize the collection of in situ observations within the column above the radar systems.

2.2 Introduction - the ICE GENESIS project

The aviation industry faces numerous safety-related challenges in cold atmospheric condi-

tions, related to aircraft icing or the ingestion of ice crystals by jet engines. To comply with

certification requirements addressing these risks, aircraft and helicopter manufacturers need

to substantiate that each engine and its air inlet system can safely operate in snow, both falling

and blowing, without adverse effects on engine operation. The available regulatory documents

define approximations of conditions to be tested: concerning snowfall and blowing snow, the

Federal Aviation Administration (FAA) in the Advisory Circular AC29-2C and Acceptable Means

of Compliance AMC25.1093 prescribes temperature conditions between -9◦C and +2◦C. How-

ever, there are no validated engineering tools (test facilities and numerical tools) available to

support the design of air inlet systems by assessing the risk of snow accretion or accumulation

within this temperature range. Demonstration is thus performed at the end of the program

development during certification flights, and any issue found at this stage of the development

can lead to significant delays and costs. In order to secure future program development and

certification, there is a need to better characterize the microphysical properties of snowfall

particles or particle populations (number, mass, fractal dimension, density, sphericity, ice

water content, to list a few), to support the development of engineering tools and de-risk

design before in-flight demonstration.

The measurement efforts presented here are tailored to provide observations of snowfall

properties at this temperature range, slightly extended to [-10, +2]◦C, with the primary motiva-

tion to cover this important industrial need, as a contribution to the work package 5 (WP5)

of the international project ICE GENESIS (https://www.ice-genesis.eu/). Within WP5, the

main objective is to quantify the microphysical properties of snow crystal populations during

snowfall; these data will then serve to specify snow properties to be generated in icing wind

tunnels (WP7) and simulated in numerical tools (WP10).
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2.2 Introduction - the ICE GENESIS project

Different precipitation and heat transfer processes take place between -10◦C and +2◦C, depend-

ing on the population of ice particles, relative humidity and availability of supercooled liquid

water (Stewart et al., 2015). Their proper understanding and characterization (Grabowski et al.,

2019; Morrison et al., 2020) is a challenge beyond aircraft industrial concerns, in particular for

the development of more accurate numerical weather and climate models.

The ICE GENESIS WP5 campaign is a multi-sensor experiment featuring ground-based and

airborne, remote sensing and in situ measurements, which took place from December 2020 to

March 2021, with an enhanced observation period during a two-week timeframe in January

2021. The added value of airborne radars onboard aircraft equipped with in situ sampling

instruments has been documented (Protat et al., 2007; Wang et al., 2012; Houze et al., 2017), as

well as the synergy between ground-based weather radars and airborne instruments (Bousquet

et al., 2015; Murphy et al., 2020). In the ICE GENESIS campaign, we consistently aimed to

collect in situ data of snowfall in the predefined temperature range and at the same time

sample the entire column of precipitation from cloud to ground with different remote sensing

instruments. The setup was specifically designed to optimize the synergy of the various sensors

by ensuring sequential aircraft overpasses over the ground site, between higher altitudes

corresponding to the -10°C temperature level down to lower altitudes at maximum +2°C.

Other campaigns with similar setups featuring ground-based and airborne sensors have fos-

tered the improvement of precipitation quantification and the development and validation

of new retrieval algorithms (e.g., Currier et al., 2017; Leinonen et al., 2018; Chase et al., 2018;

Mason et al., 2018). OLYMPEX (Houze et al., 2017) was for instance designed to study pre-

cipitation at the interface between ocean, coastal and mountainous areas and had a clear

target to support and improve satellite-based observations; GCPEX (Skofronick-Jackson et al.,

2015) was dedicated to retrieving snowfall processes and properties with the similar aim of

improving satellite estimates of precipitation; IMPACTS (McMurdie et al., 2022) investigated

North American East Coast snowstorms and the variability of their characteristics across

scales (from microphysics to large-scale precipitation patterns); BAECC (Petäjä et al., 2016)

was devoted to the study of clouds and aerosols in Finland.

The novelty of the ICE GENESIS experiment comes from its specific target on snowfall micro-

physics at mild and well-defined temperatures, and from the synergy—in terms of collocation,

altitudinal range, and high resolution—between remote sensing and in situ instruments.

Thanks to those features, the dataset presented here will bring new opportunities to improve

the representation of snowfall properties and processes, with scientific applications extending

well beyond aircraft design and related industrial challenges.
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2.3 Data

2.3.1 Campaign location and sampling strategy

The location of the field campaign was chosen based on practical and climatological con-

straints. One objective was to maximize chances of observing snowfall at ground level, to

allow for the use of ground-based in situ instruments and to reduce attenuation issues caused

by rainfall for the ground-based weather radars. At the same time, the terrain should allow

flights down to relatively low heights above ground to ensure that the airborne measurements

sample the appropriate mild temperature range (-10◦C to +2◦C) as close as possible to the

ground site. Based on these criteria, it was decided to set up the field campaign in the city of La

Chaux-de-Fonds (LCDF) in the Swiss Jura, at an altitude of 1020 m above mean sea level (ASL),

with on average 28 days of snowfall and 330 mm total precipitation per meteorological winter*.

The ground-based sites, which included remote sensing and in situ sensors as detailed in

Sect. 2.3.2, were located within and in the near vicinity of the city airport Les Éplatures, i.e., at

the valley floor (Fig. 2.2). Although this is not the primary focus of the experiment, the location

of LCDF in complex terrain also opens up the possibility to observe and study orographic-

induced precipitation processes: in spite of a relatively modest elevation (max 1700 m ASL),

the Jura Mountains benefit from orographic enhancement of precipitation (Foresti et al., 2018).

The French ATR 42 environmental research aircraft of SAFIRE (2017), whose instrumental

payload is described in Sect. 2.3.3, was stationed in the closely located Dijon airport (France),

30 minutes flight time from LCDF. Potential flights were identified a few days ahead following

a daily weather briefing, jointly conducted by MeteoSwiss and Météo-France. Flight strategies

and schedules were then finalized a few hours before the flights on the basis of the latest

weather forecast and assessment of flight conditions. The flight plans included relatively short

(15–25 km) legs in the vicinity of the ground instruments (with occasional longer ∼40 km legs),

following the main direction of the terrain (northeast-southwest) as can be seen on Fig. 2.1b.

The sampling legs were performed at different constant-altitude flight levels as sketched on

Fig. 2.1a, which were chosen depending on the temperature profile and within the authorized

flight paths, constrained by the topography. Below the minimum sector altitude (MSA), the

aircraft followed approach trajectories as published in IFR (Instrument Flight Rules) charts.

The altitude range of each flight is referenced in Table 2.4. This strategy was preferred to other

possible vertical sampling manoeuvres (e.g., Lagrangian spiral descent) due to operational

and terrain constraints.

This measurement setup in the vicinity of an airport ensured that the aircraft could sample

down to low heights (∼100 m above ground) while ensuring almost perfect collocation with

the ground-based instruments deployed at the airport. This also allowed the aircraft to adjust

the altitude of its flight levels in order to sample precisely the target conditions. Given the

objective of the campaign, this flexibility is a strong added-value in comparison with other

experiments relying on instruments deployed at fixed altitudes (e.g., Barthazy et al., 1998).

*December-January-February, compiled from MeteoSwiss automatic measurements 1980–2020
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2.3.2 Ground-based data sources

The main ground measurement site (site 1 of Figs. 2.1 and 2.2), within the airport Les Éplatures,

comprised a suite of remote sensing instruments: a high-sensitivity X-band Doppler spectral

profiler (ROXI, Viltard et al., 2019), a K-band Doppler spectral profiler (MRR-PRO; see, e.g.,

Löffler-Mang et al., 1999; Ferrone et al., 2022), a dual-polarization W-band Doppler spectral

zenith profiler complemented with an 89 GHz radiometer (WProf, Küchler et al., 2017), an

additional W-band profiler (BASTA-mobile, Delanoë et al., 2016), and a scanning system (BALI)

composed of a W-band radar (mini-BASTA, Delanoë et al., 2016) and a 808 nm micro-pulse

lidar (SLIM, adapted from Mariage et al., 2017). BALI performed hemispherical scans during

aircraft flights, along the direction of the flight track.

Figure 2.1: (a) Schematic illustration of the combination of remote sensing measurements collected
during typical flights. (b) GPS trajectories of the aircraft during all flights of the campaign; flights are
numbered as in Table 2.4. The black dashed-line rectangle delineates the area shown in Fig. 2.2; the
white star corresponds to site 1; the yellow triangle shows the location of the Montancy radar. The
light-gray dashed line indicates the Swiss-French border. Map: Swiss Map Raster 500 and SwissALTI3D,
Federal Office of Topography swisstopo; BDALTI, Institut national de l’information géographique et
forestière (IGN-F).
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Table 2.1: Details of ground sensors deployed during the measurement period and the available data.
All radar profilers were cross-calibrated (detail in Sect. 2.4), but no attenuation correction is performed
at this stage. L2 data refer to files containing at least one variable obtained as output of a retrieval
method rather than directly provided by the instrument.

Name/Description Acronym Deployment Measured and retrieved quantities

W-band Doppler
profiling cloud radar

WProf Jan 14 – Feb 1 L0: Radar Doppler spectra (dual-
polarization) / L2: radar moments
(Ze , MDV, SW), slanted LDR, esti-
mates of LWP and IWV (Chapter 3,
Billault-Roux and Berne, 2021).

Weather station
coupled to WProf

WProf-AWS Jan 14 – Feb 1 Temperature, pressure, relative hu-
midity, wind speed

K-band Doppler
profiling radar

MRR-PRO Dec 14 – Mar 27 L0: Radar Doppler spectra / L2:
radar moments (Ze , MDV, SW),
processed following Ferrone et al.
(2022)

X-band Doppler
profiling radar

ROXI Dec 18 – Jan 28,
Feb 18 – Mar 27

L0: Radar Doppler spectra / L1:
radar moments (Ze , MDV, SW)

W-band profiling
radar

BASTA-
mobile

Dec 18 – Mar 27 L1: Radar moments (Ze , MDV)

W-band scanning
radar + 808 nm lidar

BALI
(mini-BASTA +
SLIM)

Dec 18 – Mar 27 L1: Radar moments (Ze , MDV),
lidar backscatter (hemispherical
RHIs)

X-band scanning
polarimetric radar

MXPol Jan 13 – Mar 27 L0: vertical PPI radar Doppler spec-
tra (dual-polarization), L2: RHIs
with radar moments (Ze , MDV, SW,
ZDR [calibration with Ferrone and
Berne, 2020],φd p , Kd p , ρhv , Schnee-
beli et al., 2014) and hydrometeor
classification with demixing (Besic
et al., 2018)

Multi-angle snowflake
camera

MASC Dec 14 – Mar 15 Gray-scale images of snow particles
and classification of hydrometeor
type (Praz et al., 2017; Grazioli et al.,
2022)

3-D sonic
anemometer

CSAT3 Dec 14 – Mar 27 High resolution measurements of 3-
dimensional wind field

MeteoSwiss automatic
weather station

MCH-AWS - Standard atmospheric parameters,
weighing rain gauge and snow
height measurements

Météo-France
operational radar in
Montancy

MTCY - PPIs with radar moments (Ze , ZDR ,
Kd p , ρhv , MDV, SW)
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Two secondary sites, site 2 and site 3, completed the setup. 500 m away along the landing track,

within the enclosure of an operational weather station of MeteoSwiss (site 2), a Multi-Angle

Snowflake Camera (MASC, Garrett et al., 2012; Grazioli et al., 2022) and a sonic anemometer

(CSAT-3) were installed. The weather station complements the measurements with standard

atmospheric variables as well as 10-minute precipitation accumulation and snow height.

Finally, an X-band polarimetric radar (MXPol, e.g., Schneebeli et al., 2013) was deployed

4.8 km away from the airport at site 3, and performed 5-minute scanning cycles with 4 RHI

scans—alternating in Fast Fourier Transform and Dual Pulse Pair mode—in the direction of

the main site (site 1) as well as one vertical bird bath PPI scan, for a posteriori differential

reflectivity (ZDR ) calibration. The setup is summarized in Table 2.1 and illustrated in the map

and pictures in Fig. 2.2. An operational C-band polarimetric radar of Météo-France, located in

Montancy, 36 km to the NE of LCDF, performs routine volume scans at low elevations, thus

providing additional large scale coverage of precipitation systems in the area of interest.

Figure 2.2: Map of the locations of the ground-based measurement sites of the field campaign, and
pictures of the instruments deployed on each site. Acronyms of the instruments are defined in Table 2.1.
The yellow short-dashed line indicates the direction of RHIs performed by MXPol. A white dashed line
shows the approach line of ATR 42 during the overpasses, and coincides with direction of hemispherical
RHI performed by BALI. The location of the sites is as follows: site 1: 47.085N, 6.797E, 1019 m ASL;
site 2: 47.083N, 6.792E, 1017 m ASL; site 3: 47.102N, 6.856E, 1122 m ASL; Montancy: 47.369N, 7.019E,
913 m ASL. Map: SwissALTI3D and SwissTLM3D, Federal Office of Topography swisstopo; BDALTI,
Institut national de l’information géographique et forestière (IGN-F).
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2.3.3 Aircraft data

An instrumental payload was integrated on the aircraft allowing for both in situ measurements

and remote sensing of snowfall conditions, as summarized in Table 2.2 and depicted in Fig. 2.3.

A set of in situ imagers (optical array probes) allowed to observe hydrometeors across the

full size spectrum: the 2D-S and CIP probes cover the smaller snow particle sizes, while

PIP and HVPS can capture nominal particle sizes up to 6.4 mm and 19.2 mm, respectively.

Measurements of snow bulk properties were performed using hot-wire probes: a ROBUST

probe (e.g., Grandin et al., 2014; Strapp et al., 2008) which measures the total condensed

water content (TWC), a Nevzorov probe which discriminates between ice and liquid water

content, and the LWC-300 which measures LWC only (see e.g., Baumgardner et al., 2017;

McFarquhar et al., 2017, for a comprehensive reference of the instruments). The payload also

included a counterflow virtual impactor (CVI, Anderson et al., 1994; Schwarzenboeck et al.,

2000) specifically adapted to measure TWC in snowfall conditions with large hydrometeors.

A CDP-2 scattering probe was installed for droplet size and concentration measurements.

Lastly, a snow accretion monitoring device was specifically conceived for the campaign and

integrated on the aircraft. It consists of a de-iced cylinder and a dedicated camera to record

potential snow accretion during the flights and collect data for subsequent validation of

numerical tools within ICE GENESIS.

Figure 2.3: Details of the instruments deployed on the Safire ATR 42 aircraft. Acronyms are defined in
Table 2.2.
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Table 2.2: Instrumental configuration of the Safire ATR 42: microphysical probes and remote sensing
instruments. Mass related quantities of ice crystals (ice water content and median mass diameter) are
retrieved from imagers (2D-S, CIP, PIP, HVPS) following Leroy et al. (2016): these are estimates rather
than measurements.

Name Acronym Measured and retrieved quantities

Aircraft probes - GPS, altitude, pressure, true air speed, static air temperature,
heading

Dew-point and condensation
hygrometers

ACH Absolute and relative humidity

Cloud droplet probe CDP-2 Cloud droplet size distribution (range 3–50 µm), LWC, total
droplet number concentration, median volume diameter

2D-Stereo 2D-S PSD (range 10 µm–1.28 mm), mass size distribution, total
number concentration (NT ), median mass diameter (MMD),
black-and-white images

Cloud imaging probe CIP PSD (range 25µm–1.6 mm), mass size distribution, NT , MMD,
black-and-white images

Precipitation imaging probe PIP PSD (range 100 µm–6.4 mm), mass size distribution, NT ,
MMD, black-and-white images

High volume precipitation
spectrometer

HVPS PSD (range 150 µm–1.92 cm), mass size distribution, NT ,
MMD, black-and-white images

Counterflow virtual impactor CVI-Snow TWC
ROBUST WC-3000 hot-wire probe ROBUST TWC
Nevzorov hot-wire probe Nevzorov TWC, LWC
LWC-300 hot-wire probe LWC-300 LWC
Accretion monitoring device AccrS Images of snow accretion on rod

Sideward-looking W-band radar BASTA L1: radar moments (Ze , MDV)
Upward- and downward-looking
multi-antenna W-band radar

RASTA L0: Radar Doppler spectra, L2: radar moments (Ze , MDV) and
retrieved 3-dimensional wind field (Bousquet et al., 2016).

The aircraft payload also comprised a combination of two multi-antenna W-band radars.

RASTA (RAdar SysTem Airborne) is a multi-beam 95 GHz Doppler spectral cloud radar (Plana-

Fattori et al., 2010; Delanoë et al., 2013) with one nadir-looking and three non-colinear upward-

looking antennas allowing for the retrieval of the 3-dimensional wind field after correction of

aircraft motion. BASTA (Bistatic rAdar SysTem for Atmospheric studies, adapted from Delanoë

et al., 2016) is a FMCW sideward-looking 95 GHz Doppler radar, whose purpose is to derive

cloud and precipitation properties at the altitude of the aircraft up to 10 km horizontal range,

thus complementing the vertical profiles measured by RASTA. The technical characteristics of

all ground-based and airborne radars are summarized in Table 2.3.
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Table 2.3: Properties and parameters of the ground-based and airborne radars. Note that WProf
uses three chirps, whose ranges are as follows: chirp 0, 104–998 m; chirp 1, 1008–3496 m; chirp 2,
3512–8683 m. When applicable, the properties for each chirp are separated by “/”. BASTA-mobile,
mini-BASTA and airborne BASTA operate three modes sequentially (two for the latter) with varying
range resolutions; when applicable, the properties for each mode are separated by “/”.

Name Frequency
[GHz]

Transmission 3-dB beam
width [◦]

Sensitivity at
2 km [dBZ]

Time
resolution [s]

Range
resolution [m]

Nyquist velocity
[m s−1]

WProf 94 FMCW 0.53 -41 5 7.5/ 16/ 32 10.8/ 6.92/ 3.3
MRR 24 FMCW 1.5 -9 30 20 6
ROXI 9.48 pulsed 1.8 -19 5 50 11
BASTA-mobile 94.68 FMCW 0.4 -38/ -42/ -44 1 12.5/ 25/ 100 10/ 5/ 5
mini-BASTA 95.82 FMCW 0.8 -34/ -37/ -40 1 12.5/ 25/ 100 10/ 5/ 5
MXPol 9.41 pulsed 1.3 -18 5-min scan

cycle
75 39 / 7.96

Airborne
BASTA

94.56 FMCW 0.9 -15.5/-22. 0.5/1 12.5/25 10

Airborne
RASTA

94.95 pulsed 0.8 -28 0.5 30 15.8

2.3.4 Dataset

The data collected during the experiment cover two nested time frames. The ground-based

instruments (Sect. 2.3.2) were deployed for a longer period (mid-December 2020 to end of

March 2021, see Table 2.1). Within this time interval, an enhanced observation period took

place during the second half of January when the Safire ATR 42 scientific aircraft joined the

continuous ground-based observations, providing the multi-instrument setup illustrated in

Fig. 2.1. The flights took place between 22 January and 30 January. Overall, measurements

from 14 hours of flight above the ground site were recorded, comprising a total of 100 flight

legs. Table 2.4 summarizes this enhanced observation period, during which the full synergy

between in situ and ground-based instruments was achieved. We hereafter focus on this

period, as it is the main added value of the measurement setup presented.

The synoptic situation during this time of the year was dominated by a succession of lows over

northwestern Europe, which maintained mostly dynamic and wet conditions over Switzerland

after a few dry days (18–21 January). Between 23 January and 27 January, the weather was cold

enough to bring snowfall at ground level, while the last days of January were characterized

by warmer temperatures with rainfall at ground level and a melting layer around 1500 to

2000 m ASL. 140 mm of total precipitation were recorded during this period (22–30 January)

during about 120 hours of precipitation of which 70 hours with snowfall at the ground level at

the airport site.
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Table 2.4: Summary of flight data during the enhanced observation period of January 2021. The
time indicates take-off and landing. The temperature range sampled by the aircraft during the legs is
included.

Flight reference,
date and time [UTC]

Synoptic situation No. of
legs

Altitude of legs:
min—max [m ASL]

Temperature range:
min—max [◦C]

F04
Jan 22 13:40–17:20

Cold front approaching from
the northwest associated with
a trough extending from
Norway to southern France

18 1310 — 3214 -8.1 — +2.8

F05
Jan 23 12:30–16:30

Post-frontal showers activated
by a short-wave trough

22 1238 — 2706 -12.5 — +1.7

F06
Jan 27 13:30–17:00

Behind a trough extending
from Norway to Greece;
passage of a jet streak in a
northwesterly flow

18 1244 — 3329 -9.1 — +0.47

F07
Jan 28 08:50–12:05

Passage of a warm front
associated with a low over the
North Atlantic

14 1811 — 3300 -9.0 — +2.3

F08
Jan 30 10:30–15:30

Passage of a cold front and a
short-wave trough associated
with a low over the Celtic Sea

28 1511 — 3660 -9.3 — +1.6

Figure 2.4 summarizes the intense observation period through a selection of ground-based

in situ and remote sensing data. The W-band radar data reflect the succession of multiple

precipitation systems over LCDF, with both shallow and deep cloud layers. These precipitation

events were associated with ground temperatures ranging from -6◦C at the coldest, to +6◦C at

the warmest. In terms of snowfall microphysical properties, Fig. 2.4c displays the hydrometeor

classification output from MASC images (from Praz et al., 2017): the snow particle populations

captured by the MASC were dominated by graupel-like and aggregate particles apart from

small particles*. The apparent melting proportion, estimated from MASC images together

with the hydrometeor types, correlates rather well with the measured ground temperatures,

i.e., higher proportions of melting particles are identified at time steps with temperatures

slightly above 0◦C.

*A hydrometeor class used for all the hydrometeors too small to be reliably assigned to a given class.
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Figure 2.4: Overview of the enhanced observation period (measurements including aircraft overpasses).
(a) Height–time plot of Ze from the vertically pointing W-band profiler (WProf). (b) Average hourly
temperature at ground level (only during precipitation) color coded for positive and negative tempera-
tures; the bar plot (right y-axis) shows the hourly precipitation (source: MeteoSwiss). (c) Time evolution
of hydrometeor types recorded by the MASC near ground level and average proportion of particles
showing melting morphology (MASC data averaged over 1 h consecutive intervals). Only MASC data
collected at temperatures lower than 2◦C are shown and hourly time intervals with at least 5 particles
recorded. Hatched areas correspond to time intervals with 2-meter temperatures higher than 2◦C.

From an aircraft perspective, diverse snowfall conditions and microphysical properties were

sampled during the five flights, as illustrated in Table 2.4 and Fig. 2.5. In terms of snow habit,

rimed and fragile aggregates were the dominant particle types identified in PIP images (Jaffeux

et al., 2022), followed by columnar crystals and graupel. The morphological classification from

the airborne 2D-S (Jaffeux et al., 2022, , shown in Fig. 2.5c) reveals microphysical properties

and processes at small scale (Dmax ≤ 1280 µm, i.e., which excludes most aggregates), and can

thus help identify regions where ice production (primary or secondary) is occurring.
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Figure 2.5: (a) Violin plots (i.e., featuring a kernel density estimation of the underlying distribution)
of the TWC (CVI measurement) and MMD (calculated from 2D-S and PIP, Leroy et al. (2016)) for the
different flights. (b) Hydrometeor classification from PIP images (size range: 2–6.4 mm), all flights
merged. (c) Proportion of hydrometeor types in 2D-S images as a function of altitude, during each
flight (size range: 300–1280 µm), with the mean temperature profile measured by the aircraft. Note that
the morphological classes are slightly different between the two probes. The white line shows where
the mean temperature profiles crosses 0◦C, a rough indicator of the start of the melting layer below
which the classification is less reliable. *: Out-of-focus water droplets are still classified as such, but
their size is overestimated (e.g., Korolev, 2007b; Vaillant De Guélis et al., 2019); this class therefore also
includes droplets smaller than 300 µm.
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2.4 Data showcase: 27 January flight

In this section we will focus, as a showcase, on the flight taking place on 27 January, which, as

we shall see, was well representative of the ICE GENESIS target conditions. Chapter 6 of this

thesis is dedicated to an in-depth analysis of the microphysical processes occurring during a

subset of this event.

Synoptic and observational overview

At 12 UTC on 27 January 2021, LCDF was located behind a trough directing a strong north-

westerly flow over Switzerland (Fig. 2.6b). A warm front associated with a deep low pressure

system over the North Atlantic (Fig. 2.6a) led to stratiform precipitation with an increase of the

snowfall line from ground level to about 2000 m ASL. This synoptic event brought a total of

35 mm of precipitation at the measurement site (from 03 UTC on 27 January to 15 UTC on 28

January), with a transition from the solid to the liquid phase around 21:30 UTC.

Figure 2.6: Synoptic map on 27 January at 12 UTC from ERA5 data (Fifth generation of atmospheric
reanalyses of the European Center for Medium-Range Weather Forecasts). (a) Relative humidity at
700 hPa (shading) and mean sea level pressure (contours; units: hPa). The blue, red, and purple lines
represent the cold, warm, and occluded fronts, respectively (analysis based on 850 hPa temperature,
mean sea level pressure, and satellite images). (b) Equivalent potential temperature at 850 hPa (shading)
and geopotential height at 500 hPa (contours; units: dam). Yellow stars indicate LCDF.

Flight overpasses of the ATR 42 occurred between 14 UTC and 16 UTC, with 18 flight legs

performed between 1300 and 3300 m ASL, i.e., between 280 and 2300 m above ground. The

TWC was up to 0.54 g m−3 (Table 2.4), and the temperature measured by the aircraft ranged

from -9◦C to +1◦C (cf. mean temperature profile in Fig. 2.5 and its temporal evolution in

Fig. 2.7f). At the same time, near-ground air temperatures ranged between -0.2◦C and 0.5◦C,

with wet bulb temperatures always below 0◦C due to the relative humidity around 90%. This

event is therefore a perfect showcase for the objectives of the campaign: precipitation was
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sampled in near-melting conditions with the top of the melting layer roughly at the ground

level, where the MASC occasionally captured images of melting snowflakes (Fig. 2.10).

Figure 2.7 provides entire time series of several ground radar products during the time of

the ATR 42 flight, whereas Fig. 2.8 highlights airborne and ground based observations during

about 5–10 minutes corresponding to one single flight leg performed just before 14:30 UTC.

Cloud signatures in the radar data (Fig. 2.7a and 2.7b) indicate the presence of several cloud

layers, with high-level clouds (6–8 km above ground) above lower layers extending to 3–5 km

above ground, visible for instance between 14:30 and 15:30 UTC. Active generating cells can

be observed in the W-band data between 3 and 5 km, especially after 15:00.

The PIP-based classification of hydrometeor types, for particles with Dmax > 2 mm (Jaffeux

et al., 2022), indicates the dominant particle type to be aggregates (rimed: 29% and fragile:

24%), followed by columnar crystals (20%) and graupel (20%), over the 97’836 non-truncated

particles in that size range sampled during the legs of this flight. The 2D-S classification of

small particles (Dmax <1.28 mm, cf. Fig. 2.5) reveals a dominant presence of columnar crystals

in the region 2–3 km ASL, i.e., 1–2 km above ground; the temperature range in this region is

within that of columnar crystal growth and presumably secondary ice production (-10 to -3◦ C,

e.g., Hallett et al., 1958) which suggests that ice production and growth by vapor deposition are

occurring at those altitudes. The MMD (derived from 2D-S and PIP measurements, cf. Fig. 2.5),

a statistical indicator of the particles mass-weighted size which is particularly relevant for

aircraft industry applications (e.g., Leroy et al., 2016), was between 1 and 3 mm during this

flight, with maximum values up to 5 mm.

Insights from complementary measurements

Figures 2.7, 2.8 and 2.10 highlight the complementarity of the joint airborne and ground-based,

remote sensing and in situ instruments. In Fig. 2.7, precipitation processes are illustrated

using different ground instruments: the high-sensitivity W-band profiler (WProf) allows

for measurements up to cloud tops (∼9.6 km ASL) and it is complemented by X-band data.

The added-value of multi-frequency radar measurements is well established for the study

of snowfall properties and processes (cf. Chapter 1 and e.g., Matrosov, 1998; Kneifel et al.,

2015; Mróz et al., 2021a, to list a few). Increasing values of the X- and W-band dual-frequency

reflectivity ratio (DFR), resulting from a complex interplay of microphysical processes (Mason

et al., 2019), typically reveal the growth, within the particle size distribution, in particle size,

mass, and/or density (Liao et al., 2016). This is visible in the time series of Fig. 2.7e at 13:45 UTC

(2–3 km ASL), 14:15 UTC (2–3 km ASL), and 14:50 UTC (1–2 km ASL) with DFR > 15 dB. It should

be noted that the radar measurements, especially at W-band, are affected by attenuation,

resulting from the presence of wet (and to a lesser extent, dry) snow, supercooled liquid water,

and/or water vapor (e.g., Kneifel et al., 2015; Protat et al., 2019), as well as from the presence of

liquid water on the antenna or radome of certain radars*.

*This is not the case for WProf, which is equipped with blowers (Küchler et al., 2017).
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Figure 2.7: Radar time series during the ATR 42 flight on 27 January, 13:30–16:30 UTC. The three top
panels display WProf zenith measurements: (a) reflectivity Ze , (b) mean Doppler velocity MDV, and
(c) slanted linear depolarization ratio SLDR. (d) ZDR measured by MXPol (the RHIs are remapped
to a Cartesian grid and vertical profiles are extracted at a horizontal distance corresponding to the
location of the airport (±250 m), using only elevations below 45◦). (d) Dual-frequency reflectivity ratio
DFR, derived from ROXI and WProf data; the aircraft trajectory is overlaid, color-coded with the air
temperature measured by the aircraft; dashed lines indicate time steps of aircraft overpasses. In panels
a–e: vertical lines indicate the time frame (14:19–14:27 UTC) of Fig. 2.8. (f) Air temperature profile
sampled by the aircraft during the flight, time is color-coded.
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Without correction, quantitative analyses of the DFR should be conducted with care. A

qualitative interpretation of spatio-temporal features, such as the fall streaks mentioned earlier,

remains, however, relevant. Here, these regions also feature relatively low (∼ -25 dB) slanted

LDR (Fig. 2.7c), which are compatible with riming or aggregation processes. Combining

observations of reflectivity-based variables to mean Doppler velocity allows to further refine

the identification of snowfall growth mechanisms (e.g., Mason et al., 2018; Oue et al., 2021).

For instance, the fall streak extending from 1 to 3 km around 14:35 UTC displays relatively high

DFR (∼8 dB) and low SLDR (∼-25 dB), together with a large MDV (∼-1.5 m s−1), which could

indicate a riming occurrence. In situ observations and Doppler spectra collected in this time

frame (not shown here) support this hypothesis.

Another noticeable feature is the bright band around 600–800 m above ground, visible in Ze ,

SLDR, DFR and ZDR between 13:30 and 14:00 UTC, and from 15:30 to 16:30 UTC. Airborne

temperature data—color-coded on the aircraft trajectory in Fig. 2.7e, and shown in Fig. 2.7f—

confirm the presence of a temperature inversion, leading to near-zero temperatures both near

ground and in the layer of enhanced reflectivity. The bright band is thus the signature of a

partial melting layer whereby an air parcel with positive temperatures—resulting from the

warm front arrival—is overlying a colder region where partially melted hydrometeors freeze

again. This refreezing process may be partly responsible for the enhanced Doppler velocities

observed below these layers, which are characteristic of dense, fast-falling particles.

Figure 2.8: Overview of an aircraft overpass of the measurement site from ground based and airborne
data sources. (a) Vertical profiles of Ze collected by multiple data sources (ground-based and airborne
radars) between 14:25 and 14:26 UTC. (b) Flight path (14:19–14:27 UTC) of the ATR 42 with airborne
RASTA Ze ; airborne BASTA Ze in the horizontal plane is also shown (projection to ground level for
visualization purposes). The location of the ground based instruments is indicated by a black triangular
marker. (c) Time series of TWC sampled by the CVI. (d) MMD and mass–size exponent bm retrieved
from 2D-S and PIP (Leroy et al., 2016). (e) Example of a Doppler reflectivity spectrogram collected
by WProf at the same time step; the broad spectrum around 1.5 km ASL is caused by the wake of the
aircraft; the missing data above 4.5 km ASL is due to the smaller Nyquist velocity in this chirp.
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The detailed spatio-temporal structure of precipitation can be visualized as in Fig. 2.8, by

focusing on a shorter time frame during an overpass of the aircraft on the instrumented site.

Reflectivity measurements from the airborne RASTA (vertical profiles), and BASTA (horizontal

profiles) radars are shown on the same image (Fig. 2.8b). In situ measurements of TWC along

the aircraft trajectory, displayed in Fig. 2.8c, qualitatively match expected behaviors: larger

TWC values are observed when the aircraft crosses regions with enhanced radar reflectivity.

Comparing TWC to retrievals of MMD and exponent bm of the mass-dimensional relation

(retrieved from 2D-S and PIP probes with an integrated mass constraint from the TWC, fol-

lowing Leroy et al., 2016), in Fig. 2.8d, brings additional information about how the mass is

distributed over the population of particles as well as some indications on active microphysical

processes. For instance, aggregation can increase MMD, and riming can increase bm from

typical values around 2 to values almost reaching 3. The inspection, visual or automatic,

of actual hydrometeor images, eventually allows backing up these interpretations case by

case. Note that the calculated bm exponent is just a time-dependent value, retrieved for any

heterogeneous mixture of size-dependent particle morphologies observed during each second

of the flight. When approaching longitude close to 7◦ (Fig. 2.8d), exceptionally low bm values

were retrieved with increasing 2D-S concentrations of numerous elongated columns and a

simultaneous decrease in PIP large particle concentrations, giving significant weight to the 2D-

S columns in the computation of bm . Some understanding of the larger-scale spatio-temporal

precipitation structures can be gained when complementing these observations with a PPI of

the operational radar in Montancy, as shown in Fig. 2.9.

Figure 2.9: Ze PPI (at 2.2◦ elevation) from the operational radar of Montancy (FR) at 14:30, coinciding
with the time step shown in Fig. 2.8. The white marker indicates the location of site 1; the magenta path
is the aircraft trajectory in this time frame; circles are drawn at 10 km range distances from the radar.

The reflectivity profiles of all radars at the time step of the overpass are displayed in Fig. 2.8a.

For this analysis, the ground-based profilers (X- and W-band) and airborne (RASTA) radars

were cross-calibrated, relying on the mini-BASTA as a reference, which had absolute calibration

following Toledo et al. (2020). This calibration transfer was performed using a set of cloud
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profiles carefully selected to avoid disparities caused by differences in sensitivity or scattering

regime (Toledo Bittner, 2021, Jorquera et al., 2023). For the cross-calibration of RASTA, the

profiles were selected from time steps when the aircraft overpassed the ground site. Doppler

spectra, as shown in Fig. 2.8e (same time step), reveal additional features such as secondary

modes in the particle size distributions (here between 2 and 2.7 km ASL, and between 3 and

4 km ASL), indicative of the coexistence of different hydrometeor populations within the same

radar resolution volumes.

Figure 2.10: (a) A few HVPS images are shown, for time steps at which the aircraft was within 250 m
horizontal distance of the radars. (b) 2-D density plot, of X- and W-band collocated Ze observed by
ROXI and WProf, respectively, during the entire time frame of the aircraft flight presented in Fig. 2.7.
(c) MASC image triplets collected at ground level at three different time steps, with information about
near-ground temperature and wet-bulb temperature. Particles identified as melting by the method
of Praz et al. (2017) are highlighted with a cyan frame. MASC and HVPS images are contextualized to
points of (b) by extracting the Ze,X and Ze,W at the nearest valid (time, range) gate: for the MASC (red
triangles), this corresponds to the 3rd radar gate (150 m above ground); for the HVPS (circles), to the
altitude of the aircraft above ground.

In Fig. 2.10, we take a closer look at pictures from airborne (HVPS) and ground-based (MASC)

imagers, relating them to remote sensing measurements. The (Ze,X , Ze,W ) scatterplot illus-

trates the deviation from the Rayleigh scattering regime at W-band for high reflectivities,

corresponding to large particles—here again, a quantitative interpretation is delicate in the

absence of attenuation correction. HVPS and MASC images from a few time steps are matched

to points of the (Ze,X , Ze,W ) scatterplot: it is noteworthy that aggregates with a maximum

dimension of about one centimeter (red markers labeled as 2 and 3) are observed by the MASC

at time steps with high Ze and high DFR close to the ground; similarly, small particles visible

in the HVPS correspond to low DFR (point A), and increasingly bigger aggregates to larger

DFR (B and C). This should of course be handled with care since the radar moments reveal

information on statistical distributions corresponding to much larger volumes than sampled

by the HVPS or the MASC.
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2.5 Conclusions

The measurements conducted during the ICE GENESIS field campaign aim to give momen-

tum to snowfall microphysics research focused on processes and properties at temperatures

ranging from -10◦C to +2◦C. The combination of remote sensing, in situ, ground-based, and

aircraft measurement techniques, was designed to sample clouds and precipitation through

the entire column and at different scales: from the large sampling volumes of radar to the

depiction of individual hydrometeors by in situ imaging probes. The experimental set-up

and aircraft sampling strategy were designed to maximize the overpasses above the ground

site and hence the joint in situ and remote sensing measurements. This chapter provides a

detailed overview of the field experiment and a few examples of preliminary analyses.

The examples shown above were selected to demonstrate the potential of the dataset. Data will

be used to answer specific technical questions coming from the aviation sector: statistics of de-

tailed microphysical snow properties (e.g., mass–size relation, morphological class, dry or wet

snow, crystal density, sphericity) at the given temperatures are needed as a fundamental input

for accretion simulations and laboratory experiments. At the same time, underlying scientific

questions will be investigated. The setup is ideal to improve existing or develop new retrievals

of snowfall rate and snowfall microphysics from remote sensing measurements (at single-

or multi-frequency and polarization) and to validate those with in situ observations, with

reuse potential for satellite-based products. The collocated polarimetric measurements and

multi-frequency Doppler spectral profiles can be jointly used for process-oriented analyses.

The abundance of in situ data provides ground truth for hydrometeor classification algorithms

based on remotely sensed observations (e.g., Besic et al., 2016, 2018). This is of particular inter-

est to operational weather services with the presence of the Montancy radar of MeteoFrance at

close range. Investigations in this direction have already started. The data will be important in

the field of numerical weather prediction, for example for the improvement and validation of

microphysical schemes in meteorological models, through the comparison of model outputs

with in situ measurements or radar retrievals in a region of complex orography.

The measurement campaign is a milestone in the broader context of ICE GENESIS. It will

support the parameterization of snowfall thermo- and aerodynamic models, and the sim-

ulations of snow accretion performed by other working groups within the project, with the

long-term goal being, as a bridge between research and industrial needs, to use the retrieved

microphysical properties to develop engineering tools and de-risk system design early in the

development process.
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3 Integrated water vapor and liquid water
path retrieval using a single-channel ra-
diometer

This chapter presents an algorithm to retrieve an estimate of the liquid water path and in-

tegrated water vapor from 89 GHz radiometer measurements. It is based on the postprint

version of the article:

• Anne-Claire Billault-Roux and Alexis Berne (2021): Integrated water vapor and liquid

water path retrieval using a single-channel radiometer. Atmospheric Measurement

Techniques, 14(4), 2749-–2769, doi: 10.5194/amt-14-2749-2021.

The algorithm was designed and evaluated on various datasets by Anne-Claire Billault-Roux

with input and supervision from Alexis Berne.

3.1 Summary

Microwave radiometers are widely used for the retrieval of liquid water path (LWP) and inte-

grated water vapor (IWV) in the context of cloud and precipitation studies. This chapter intro-

duces a site-independent retrieval algorithm for LWP and IWV, relying on a single-frequency

89 GHz ground-based radiometer. We use a statistical approach based on a neural network,

which is trained and tested on a synthetic dataset constructed from radiosonde profiles

worldwide. In addition to 89 GHz brightness temperature, the input features include surface

measurements of temperature, pressure, and humidity, as well as geographical information

and, when available, estimates of IWV and LWP from reanalysis data. An evaluation of the

algorithm is conducted to assess its accuracy, sensitivity to radiometer calibration, stability

across geographical locations, and the importance of the various input features. The algorithm

is shown to be quite robust, although its accuracy is inevitably lower than that obtained with

state-of-the-art multi-channel radiometers, with a relative error of 18% for LWP (in cloudy

cases with LWP > 30 g m−2) and 6.5% for IWV. The highest accuracy is obtained in midlatitude

environments with a moderately moist climate, which are more represented in the training
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dataset. The new method is then implemented and validated using real data that were col-

lected during a field deployment in Switzerland and during the ICE-POP 2018 campaign in

South Korea.

3.2 Introduction

One of the core challenges in cloud and climate research is the monitoring, quantification,

and modeling of cloud liquid water, which contributes significantly to radiative processes on a

global scale. Additionally, from the perspective of snowfall microphysical studies, identifying

the presence of supercooled liquid water during a snowfall event is of paramount importance

as it drives the riming of snow particles and is involved in the most important secondary

ice production processes. In this perspective, highly accurate methods were developed to

retrieve liquid water path (LWP) as well as integrated water vapor (IWV) from microwave

radiometer measurements, relying on the fact that water in its liquid and vapor phases is the

main atmospheric contributor to brightness temperatures in millimeter wavelengths, outside

of the oxygen window.

The quantitative retrieval of LWP from ground-based or satellite measurements of bright-

ness temperature (TB) at a single-millimeter wavelength is an underdetermined, or ill-posed,

problem. TB results from the radiative contribution of gases and hydrometeors across the

atmospheric column and depends on the vertical profile of temperature. To lift this underde-

termination, state-of-the-art retrievals of LWP and IWV rely on multi-frequency radiometers,

which measure TB in several microwave channels. This allows for the separation of the con-

tributions of water vapor and liquid water (e.g., Westwater et al., 2001) and, to some extent,

for a retrieval of the full profile of liquid water content and humidity in the atmospheric

column (Löhnert et al., 2004). It should be noted that IWV retrievals with similar accuracy

are commonly obtained using GPS sensors, as first proposed by Bevis et al. (1994), but this

technique does not allow for the joint retrieval of LWP.

Multi-frequency instruments, however, are not always available. Küchler et al. (2017) demon-

strated that a radiometer channel at 89 GHz could be added to a 94 GHz cloud radar, thus

allowing for collocated measurements of radar variables and brightness temperature, paving

the way for an improved understanding of cloud and precipitation physics. Küchler et al. (2017)

proposed a method to derive LWP estimates from single-frequency brightness temperature,

and the present study builds on those findings.

Two approaches are commonly considered to retrieve LWP and IWV from microwave radiome-

ter measurements, as described in Turner et al. (2007) and Cadeddu et al. (2013). The first

method relies on the reconstruction of atmospheric profiles with a physical model that is

iterated until modeled TB values match the measured ones. Although this method is formally

the most accurate (Turner et al., 2007), it requires more than one radiometer frequency to lift

the fundamental underdetermination of the retrieval. The other way to tackle the problem is

to derive statistical relationships between TB and LWP and/or IWV based on synthetic datasets
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constructed using atmospheric profiles from a given location. This approach has been widely

used for both ground-based and satellite applications, with varying degrees of complexity in

the statistical fitting algorithms (linear, quadratic, logarithmic fits, or using neural network

architectures, Karstens et al., 1994; Löhnert and Crewell, 2003; Mallet et al., 2002; Cadeddu et al.,

2009). The retrieval coefficients that are computed with this method are usually site-specific

since they incorporate during the learning or regression stage the climatological features at

the location of the dataset. The geographical range within which a site-specific algorithm

would be reliable is difficult to estimate, especially if the orography of the region is complex,

as highlighted by Massaro et al. (2015). In general, implementing a site-specific algorithm in

a location with a different climatology is likely to yield erroneous retrievals (Gaussiat et al.,

2007). In order to implement such an algorithm at another site, a new parameterization should

be developed using a suitable dataset; but there might not always be enough reliable data

available for this purpose. In order to avoid this lengthy process, and in the case of instruments

that are intended to be deployed in various locations, a site-independent algorithm is more

adequate (Liljegren et al., 2001).

We present a new site-independent statistical method for the retrieval of both LWP and IWV

that relies on a single radiometer frequency. The regression is performed through a neural

network, whose input consists of brightness temperature at 89 GHz, surface meteorological

variables, and geographical information. Those additional input features are shown to be

especially key to the retrieval of IWV. Although this new method comes with a loss of precision

in comparison with state-of-the-art multi-frequency retrievals, its advantage is to be applicable

in any location with constrained uncertainty.

The next section describes the data used in the different steps of this study, from the design

stages to the validation of the method. Section 3.4 outlines the forward model used to build the

synthetic dataset on which the LWP and IWV retrieval algorithms are trained. In Sect. 3.4, the

design of the algorithms is detailed, and the results on the synthetic dataset are reviewed and

analyzed in Sect. 3.6. An independent validation of the method is presented in Sect. 3.7 using

two contrasted datasets that were collected during field deployments in Payerne (Switzerland)

and in the Taebaek mountains (South Korea). A summary and conclusions are provided in

Sect. 3.8.

3.3 Data

This work is based on two types of data: a multiyear collection of radiosonde observations

across the world (for training and testing of the retrieval algorithms), and sets of measurements

from an 89 GHz radiometer deployed in various regions during field campaigns limited in

time.
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3.3.1 Radiosonde dataset

The design of a statistical algorithm requires a large dataset on which to fit the desired model.

Here, this dataset was built using radiosonde profiles collected in over 180 stations throughout

the world, available through the University of Wyoming portal (Oolman, 2020). In total, ∼ 106

radiosonde profiles are used from 20 years of data (2000–2019). It was ensured that the data

included radiosonde stations from all climatic regions covering a wide range of altitudes

(0 to 4000 m ASL). However, lack of available data in some areas inevitably results in an

unbalanced dataset, in which polar and tropical areas are underrepresented compared to

midlatitudes, especially Europe. The possible impact on the performance of the algorithm is

further discussed in Sect. 3.6.

A quality check of the radiosonde profiles was performed on the relevant variables (pressure P ,

temperature T , relative humidity RH) through the following steps. The atmospheric column

was split into nine ranges of altitudes; in each of these altitudes ranges, the minimum and

maximum P , T , RH were extracted from all radiosoundings. Outliers were removed with a 10−4

quantile (upper and lower quantile, determined after a visual inspection of the distributions).

In total, 6395 profiles were flagged and removed. It was ensured that this routine did not result

in the systematic removal of some geographical locations. Following this step, the vertical

profiles of P , T , RH were used as input to the forward model, as described in Sect. 3.4. The

vertical extent of the profiles ranges from 1 to 50 km, with a 25% quantile at 11 km, meaning the

profiles largely cover the lower troposphere. The vertical resolution is relatively low (0.37 km

on average).

3.3.2 Field deployments

In the validation stage of this work, the proposed algorithm is implemented on real 89 GHz

radiometer data that were collected during campaigns described below.

Instrument

The main instrument that was used for the implementation of the algorithm is the radar–

radiometer system of Radiometer Physics GmbH (RPG) described in Küchler et al. (2017), and

referred to as WProf. It consists of a 94 GHz FMCW cloud radar with an 89 GHz radiometer

channel, which allows for joint active and passive retrievals of cloud and precipitation. In

the data presented here, WProf was deployed together with a weather station that provided

surface measurements of temperature, pressure, and relative humidity.

Payerne 2017

The first dataset on which the new algorithm was evaluated stems from a field deployment

in Payerne (Switzerland) at 450 m ASL in late spring 2017 (15 May–15 June). As a means of
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comparison, data from the Swiss federal office of meteorology and climatology (MeteoSwiss)

were used. The MeteoSwiss facilities in Payerne comprise a multi-frequency radiometer* with

tipping-curve calibration, HATPRO (Humidity And Temperature PROfiler, Rose et al., 2005;

Löhnert and Maier, 2012; RPG Radiometer Physics GmbH , 2014), which provides state-of-

the-art retrievals of LWP (resp. IWV) with a nominal accuracy of 20 g m−2 (resp. 0.2 kg m−2).

During this deployment, both WProf and HATPRO measured brightness temperatures with

a high temporal resolution of the order of a few seconds. The instruments were located

approximately 65 m apart; this distance is small enough that it should generally not affect the

comparison of the retrieved values from the two instruments. However, it cannot be ruled

out that in some rare cases, a cloud might overpass one of the radiometers but not the other,

leading to a discrepancy in the measured brightness temperatures.

In addition, radiosondes are launched twice daily in Payerne by MeteoSwiss, allowing for the

direct computation of IWV values, which are used as a further source of validation for the IWV

retrieval algorithm.

ICE-POP 2018

The second dataset on which the new algorithm was tested comes from the ICE-POP 2018

campaign, which took place in South Korea during the 2017–2018 winter in the context of

the 2018 Olympic and Paralympic winter games in Pyeongchang. A description of the data

is presented in Gehring et al. (2021). During this campaign, the weather was generally cold

and dry; nine precipitation events were recorded, and occasional fog was present (about 25

occurrences during the campaign timeframe). WProf was deployed from November 2017 to

April 2018 in Mayhills, 50 km southeast of Pyeongchang, at 789 m ASL. This allows for an

implementation of the algorithm in a different context than Payerne, i.e., in winter and in a

fully different geographical setting, at a lower latitude and closer to the sea.

In this case, contrary to Payerne, no independent measurements of LWP are available; ra-

diosondes launched every three hours provide a means of comparison for IWV retrievals,

although only with a lower spatial and temporal resolution.

3.4 Forward model

A large amount of data is required to develop a robust statistical algorithm. For this purpose,

the radiosonde data described in Sect. 3.3.1 were used to build a synthetic dataset. A two-step

forward model was implemented, first to identify clouds in each radiosounding and derive the

corresponding liquid water content (LWC) profile, then to compute the resulting 89 GHz TB.

The different steps of this forward model are illustrated as a flowchart in Fig. 3.1.

*measuring in 7 channels at K-band, from 22.3 to 31.4 GHz, and in 7 channels at V-band, from 51 to 58 GHz
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Figure 3.1: Illustration of the different steps of the forward model. It takes as input radiosonde data and
outputs, on the one hand, IWV and LWP values, and on the other hand, simulated 89 GHz TB.

3.4.1 Cloud liquid model

To derive LWC from radiosonde profiles of atmospheric variables, we used the cloud model

of Salonen and Uppala (1991). Cloud boundaries are identified when the relative humidity

exceeds a threshold RHc [-], which depends on pressure and temperature according to Eq. 3.1.

RHc = 1−αs σ (1−σ) [1+βs (σ−0.5)] (3.1)

Here, σ= P
Pg

, with P and Pg respectively denoting atmospheric pressure at the current level

and at the ground. Corrections from Mattioli et al. (2009) are used for the coefficients αs and

βs of the Salonen model. Within the detected cloud layers, the LWC profile is then calculated

with Eq. 3.2:

LWC(h,T ) = w0

(
h −hb

hr

)as

fs(T ), (3.2)

where fs(T ) = 1 + csT for T ≥ 0 and fs(T ) = exp(csT ) for T < 0, with T in °C; as = 1.4,

cs = 0.04 °C−1, w0 = 0.17 g m−3, hr = 1.5 km, and h and hb respectively denoting the height

above the surface and the height of the cloud base. There are some limitations to assuming a

single universal cloud model, which may fail to capture specific cloud properties in certain

environments; more sophisticated and accurate models could be defined on a local geograph-

ical scale to counter this (e.g., Pierdicca et al., 2006). However, given the stated objective of

this study to design a non-site-specific algorithm, it was considered preferable to assume a

single universal liquid cloud model in spite of its potential drawbacks.

A further caveat of the cloud model is related to the relatively low resolution of the radiosonde

profiles used as input (see Sect. 3.3.1); this might result in a misrepresentation of the cloud

layers in their detection and their vertical extent. In order to ensure that this forward model

generated the least possible bias, its results were compared against LWP values from ERA5

reanalysis data (Hersbach et al., 2020). Even though the model might fail, on a given occurrence,

to reproduce the actual liquid water profile in the atmospheric column, it should not produce a

significant bias on average. This condition ensures that the synthetic dataset used for training
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our algorithm contains realistic—if not real—profiles; this should therefore not degrade the

quality of the retrieval. This cloud model was chosen over other commonly used ones (Decker

model, Salonen model without correction; see Mattioli et al., 2009) because it was found

to produce the least bias when compared to ERA5 LWP values (mean bias of 14 g m−2 vs.

26 g m−2 (resp. -24 g m−2) for the unadjusted Salonen model (resp. the Decker model with a

95% threshold). Inevitably, when using this criterion for the choice of the cloud liquid model,

it is assumed that reanalysis values of LWP are themselves bias-free, which may, in turn, be

questioned, especially in extreme environments (e.g., Lenaerts et al., 2017).

3.4.2 Radiative transfer model

For each profile of atmospheric variables and LWC, ground-level brightness temperatures at

89 GHz are simulated using the Passive and Active Microwave TRAnsfer Model (PAMTRA; Mech

et al., 2020). As input to the radiative transfer calculations, vertical profiles of temperature,

pressure, hydrometeor mixing ratio (computed from LWC), and water vapor mixing ratio

are used. Gaseous absorption is calculated using the default parameters in PAMTRA, i.e.,

with the model proposed by Rosenkranz (1998) and modifications from Liljegren et al. (2005)

and Turner et al. (2009). Liquid water absorption is modeled according to Ellison (2007). It

should be kept in mind that some irreducible uncertainty remains tied to the choice of these

parameters in the radiative transfer model.

The cloud droplet size distribution (DSD) is chosen as a monodisperse distribution with

radius rc = 20 µm following Cadeddu et al. (2017), and scattering calculations are performed

with Mie equations, assuming spherical particles. Let us note here that the exact choice of

the DSD has little impact on TB modeling as long as the droplets can be approximated as

Rayleigh scatterers for the given frequency, since the emission cross section in this regime

is quasi-linearly related to the particle volume. When the droplet size deviates from this

regime, for instance as droplets grow larger near the onset of precipitation, then the Rayleigh

approximation falls short and higher-order terms in the Mie equations become non-negligible,

which alters the modeling of TB (e.g., Zhang et al., 1999). This implies that the algorithm

will output biased results when applied to rainfall cases, and should not be trusted in those

circumstances. This shall be considered an intrinsic limitation to the algorithm.

There is no clear-cut relation between LWP values and the occurrence of precipitation, al-

though the general trend is that higher LWP is related to more likely rain: as such, deviation

from the Rayleigh regime is likely in high-LWP cases. In order to have a more rigorous grasp

on when and how this drawback might affect the retrieval, criteria from Karstens et al. (1994)

were used. In their study, the authors distinguished three types of liquid water clouds based

on the value of LWC at a given altitude; for each category of cloud, a different characteristic

radius is chosen for the DSD. Mie effects can start to become an issue in the second category

of clouds (cumulus congestus), which they identify when LWC > 0.2 g m−3; in our dataset, the

atmospheric profiles in which this LWC threshold is exceeded in at least one gate have, on
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average, a total LWP≥ 830 g m−2, and around 2% of the entire dataset fall into this category.

Taking the third category (cumulonimbus) with LWC > 0.4 g m−3, this applies to 1% of the

entire dataset and the average LWP threshold increases to 1400 g m−2. Those values can

serve as a benchmark to identify LWP values at which Mie effects can start contaminating

the retrieval. However, edge cases can also exist in which the total LWP is quite low, but a

small layer of nearly precipitating or drizzling cloud still contaminates the retrieval without

featuring an extremely high total LWP.

Finally, the forward model presented here does not include the contribution of ice clouds

and snowfall. While the radiative emission of ice and snow particles has a minor influence on

brightness temperature at microwave frequencies when compared to that of liquid droplets

and water vapor and is in general negligible, solid hydrometeors do contribute to microwave

brightness temperature, for instance through the backscattering of surface radiation. Kneifel

et al. (2010) suggest that this effect could be notable during snowfall, depending on the

microphysical properties of snow particles (increasing with their size). The present study does

not take this process into account and could therefore yield biased results during intense

snowfall events.

3.5 Design of the IWV and LWP retrieval algorithms

3.5.1 Input features

When a single frequency is available for the measurement of TB, the ill-posedness of the

problem can be partially relieved by including other available information in the measurement

vector (input of the retrieval). In this study, several categories of variables were included in

the input features. The first category consists of TB and higher-order polynomials (up to the

fourth degree) and is expected to have the greatest importance in the retrieval of LWP. The

effect of higher-order polynomial terms is discussed in Sect. 3.6. In order to simulate realistic

measurements, random Gaussian noise was added to the modeled brightness temperatures,

with a mean and standard deviation of 0 and 0.5 K, respectively; those values were identified by

Küchler et al. (2017) as the characteristics of the measurement noise of their 89 GHz radiometer.

Secondly, surface measurements are included (temperature, sea-level pressure, and relative

humidity); in the case of the radar–radiometer setup that is used here, those measurements are

available through the collocated weather station. The third class of input features comprises

geographical descriptors: latitude, longitude, and altitude. The day of the year is also included

in this group of features as a means to account for seasonal variability in atmospheric and

meteorological conditions. When available, a fourth category is added that contains ERA5

reanalysis data (precipitable water and liquid water, Hersbach et al., 2020; Copernicus Climate

Change Service, 2020). The spatial and temporal resolution of these reanalysis data is too

low for them to be held as ground truth, but they can serve as a reasonable rough estimate

and thus bring some improvements to the statistical learning process. Those four groups of

features are used for the retrieval of both IWV and LWP. In the case of LWP, an additional input
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feature is also considered, which is the output of the IWV retrieval algorithm. The impact of

each of those feature groups on the retrieval will be discussed in Sect. 3.6.

3.5.2 Dataset preprocessing

Rain events should be excluded from the training set since they are out of the algorithm range

of validity, as explained in Sect. 3.4. Profiles with LWP > 1000 g m−2 are removed (i.e., in the

range of heavy rain according to Cadeddu et al., 2017, and in view of the discussion conducted

in Sect. 3.4.2). The resulting dataset contains ∼ 106 profiles (see Fig. 3.2a) and is used without

further modifications for the design of the IWV retrieval algorithm.

Figure 3.2: Distribution of the target variables, (a) IWV and (b) LWP, in the synthetic dataset, after
preprocessing.

Further preprocessing for LWP dataset

For the LWP retrieval, additional preprocessing is needed, since the forward model produced

a large majority of clear-sky cases. If left as such, the training phase would result in a strong

bias of the retrieval toward low LWP values (a bias of ∼ 100 g m−2 for LWP > 400 g m−2 was

noted in the development stages of the algorithm): this is a common artifact in statistical

learning algorithms as an effect of an unbalanced training set. In order to avoid this, the

dataset was subsampled so that clear-sky and cloudy cases (up to 600 g m−2) would be equally

represented; this threshold results from a trade-off between bias reduction and preservation

of overall accuracy. The resulting histogram is shown in Fig. 3.2, and the resulting LWP dataset

contains ∼ 105 profiles. In the case of IWV, the distribution is also not uniform, but it is affected

by a much smaller asymmetry than the initial LWP dataset. After some trials, it was considered

preferable to use the full IWV dataset rather than go through subsampling steps, which did

not seem to bring significant improvements. We note that the additional preprocessing that

was necessary for the LWP retrieval algorithm led us to design two separate algorithms rather

than a single one that would retrieve IWV and LWP at once. Indeed, while the LWP retrieval is

mostly relevant in cloudy cases, IWV can show some significant variability in clear-sky cases,

which should therefore not be excluded from the training stage.
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3.5.3 Statistical retrieval using a neural network

After preprocessing, the LWP and IWV datasets were randomly split into training, validation,

and testing sets (70%–15%–15%) and normalized using the mean and standard deviation of

each input feature in the training set. The validation set is used for tuning the hyperparameters

of the neural network (NN), while the final evaluation metrics are computed on the testing

set. A densely connected NN architecture was chosen over linear regression and decision-

tree-based retrieval techniques as it was found to produce more reliable results with higher

accuracy than the former, and it is less prone to overfitting than the latter. The algorithm

was designed using the Keras library in Python (Chollet, 2015). The NN was trained through

mini-batch gradient descent using the RMSprop optimizer, which allows for learning rate

adaptation and is often used for statistical regression problems (Chollet, 2017).

Figure 3.3: Structure of the retrieval algorithms. Some versions of the LWP retrieval include, among the
input features, the output of the IWV retrieval. Note that the IWV and LWP algorithms are trained on
different datasets.

Table 3.1: Main parameters of the neural networks and training process.

Target Neurons Layers Cost function Optimizer Activation Epochs Batch size

IWV 120 7 Mean squared error RMS prop ReLU 70 512
LWP 150 6 Mean squared error RMS prop ReLU 90 512

Figure 3.3 and Table 3.1 summarize the final architecture and relevant parameters of the

algorithm. These include the description of the NN (number of neurons and hidden layers) and

training parameters such as the batch size and number of epochs, i.e., the number of iterations

through the entire dataset during the learning phase. Different versions of the algorithm

were trained using various sets of input features to assess the importance of each category

(discussed in Sect. 3.6). We ensured that the training set is large enough that overfitting would

not be an issue with the chosen NN architecture (cf. training curve in Fig. 3.4): the error on

the validation set quickly drops with the size of the training set, then plateaus with a slight

decrease.
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Figure 3.4: Learning curves for the LWP retrieval, showing the root mean squared error (RMSE) on
training and validation set with varying training set size. Shaded areas correspond to the interquartile
range calculated over 50 realizations of random splitting of the dataset into training and validation sets,
bold lines are the median.

3.6 Results on the synthetic dataset

In this section, the algorithm is evaluated on the synthetic dataset (testing set) through differ-

ent criteria. Overall, results are encouraging and the retrieval appears to be robust in spite of

some shortcomings, which will be discussed here. Additionally, the importance of the various

input features on the retrieval of IWV and LWP is assessed.

3.6.1 Error curves

Figure 3.5 illustrates the distribution of the error on the testing set for the best version of the

algorithm, which is the one that uses the full set of input features. In Fig. 3.5c (resp. Fig. 3.5d),

the target variables IWV (resp. LWP), are binned into intervals on which the RMSE is calculated.

This illustrates the behavior of the algorithm across the entire range of values rather than

summarizing the performance with a single metric such as total RMSE, which can conceal

specific behaviors related to the distribution of the target variable in the dataset. Along the

same line, we emphasize that comparing total RMSE values to those from other studies should

be done carefully because they strongly depend on the dataset from which they are calculated.

In a similar way, Fig. 3.5e (resp. Fig. 3.5f) illustrates the distribution of the mean bias across

the range of IWV (resp. LWP) values. For reference, the definitions of the error metrics that we

use here and further on are recalled in Table 3.2.

Table 3.2: Error metrics. X is either LWP or IWV; N is the size of the considered dataset. X⃗pred and

X⃗target are length-N real positive vectors with the values of predicted (i.e., retrieved) and target values,
respectively. To compute the relative error, Xtarget,k = 0 g m−2 is excluded from the dataset.

Root mean squared error (RMSE) Relative error Bias Correlation coeff. (R)[
1
N

∑N
k=1

(
Xpred,k −Xtarget,k

)2
] 1

2 1
N

∑N
k=1

|Xpred,k−Xtarget,k |
Xtarget,k

1
N

∑N
k=1

(
Xpred,k −Xtarget,k

)
Pearson
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Figure 3.5: Results of the retrieval algorithms on the synthetic testing dataset. The best versions of
the algorithms are presented, i.e., the ones which use the full set of input features. (a) Distribution of
predicted vs. target IWV. (b) Distribution of predicted vs. target LWP. The size N of the testing set is
indicated as well as relevant error metrics (RMSE, mean bias, R). (c) Distribution of RMSE on IWV vs.
target IWV, binned into intervals of 4 kg m−2. (d) Distribution of RMSE on LWP vs target LWP, binned
into intervals of 50 g m−2. (e) Same as (c) but with mean bias. (f) Same as (d) but with mean bias.

Figure 3.6 shows how this total error, quantified with the RMSE (left panels) and the correlation

coefficient (R, right panels), is affected by the addition or removal of input features. For each

set of input features, a full tuning of the algorithm was performed (on the validation set), and

the results that are presented correspond to those from the tuned version (i.e., best on the

validation set) when implemented on the testing set.

IWV algorithm

Overall, the IWV retrieval algorithm yields an RMSE of 1.53 kg m−2 for the testing set, which

corresponds to a relative error of 6.5%. For comparison, the ERA5 data alone have a higher

RMSE (3.4 kg m−2) for the same dataset. Looking at Fig. 3.5a, c, and e, it comes across that the

retrieval performs quite well over the full range of IWV values, and the error distribution is
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Figure 3.6: Global error metrics (RMSE in a, c; R in b, d) computed on the testing set for different
versions of the (a,b) IWV and (c,d) LWP retrievals. Each bar shows the result of a version whose input
features are specified in the label. For example, “ERA-IWVpred-Geo-Surf” corresponds to the version
of the LWP retrieval algorithm that uses the following categories of input features: ERA5 variables, IWV
obtained from the IWV retrieval, geographical information, and surface measurements. The bars are
sorted with increasing RMSE. For the IWV retrieval, the accuracy of the algorithm is compared to that
of reanalysis data alone (dashed lines).

relatively homogeneous. For high IWV values, however, a significant negative bias is present

(as large as -6 kg m−2). Because such high values are underrepresented in the dataset, they are

not well captured during the statistical learning stage, which leads to a systematic underesti-

mation. However, these are by definition border cases for which a decrease in accuracy is to

be expected.

Figs. 3.6a–b suggest that the IWV retrieval is significantly improved by the addition of multiple

input features. The highest accuracy is obtained with the full set of input features. Including

solely TB measurements in the input deteriorates the RMSE to nearly 6 kg m−2. If only one

input feature were available, all the versions would predict worse results than those given by

reanalysis data. Including TB in the retrieval does not lead to the same leap in accuracy as for

LWP (discussed in the following subsection); however, excluding TB from the input features

degrades the RMSE to 2.56 kg m−2, i.e., +67% error, which clearly shows that brightness

temperature incorporates additional relevant information into the retrieval.
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An analysis was conducted to identify the importance of higher-order polynomials in the

algorithm, a summary of which is in Fig. 3.7. It was found that the most accurate retrieval

is obtained by including TB and T 2
B . If higher-order terms are added, this slightly reduces

the accuracy of the retrieval and also degrades its robustness to TB miscalibration (Fig. 3.7c).

On the other hand, including only TB, while it makes the algorithm slightly more stable, has

lower accuracy. Hence, the IWV results presented here and in the following sections are those

obtained using TB and T 2
B .

Figure 3.7: Effect of higher-order TB polynomials on the IWV retrieval, through (a) RMSE and (b) R on
the testing set. (c) Change in RMSE when a constant TB offset is added to the testing input, simulating
radiometer miscalibration.

LWP algorithm

The LWP retrieval has an RMSE of 86 g m−2 at best for the testing set (training set: 84 g m−2,

validation set: 86 g m−2). This corresponds to a relative error of 29% (testing set). Let us

underline the fact that the subsampling performed on the dataset for the retrieval of LWP is

applied to training, validation, and testing sets: the results that are presented here are therefore

computed on the testing set with a truncated distribution—i.e., after subsampling. If clear-sky

cases are removed using 30 g m−2 as a threshold value, following Löhnert and Crewell (2003),

the relative error is 18%. As already mentioned, the total RMSE values given here should be

taken with care since they depend on the dataset distribution. For comparison, when the

retrieval is implemented on the full dataset, i.e., without the subsampling step, the total RMSE

drops to 40 g m−2. The RMSE is here again rather homogeneous across the range of LWP

values (Fig. 3.5d); however, there is a small bias of around 20 g m−2 for low LWP values (visible

in Fig. 3.5f), which are slightly overestimated, while there is an underestimation of large LWP

(> 800 g m−2), with a negative bias down to -100 g m−2. Both biases result from an effect

of regression towards the mean, which is intrinsic to statistical algorithms. The significant

negative bias for large LWP values is enhanced by the lack of data in this range. It is likely

acceptable because it would correspond mostly to rain cases (light to moderate), which the

retrieval does not aim to capture; yet this highlights once again that those cases are out of the

algorithm scope and that retrievals with high LWP would not be quantitatively trustworthy.

The analysis of the importance of higher-order terms in the case of LWP retrieval shows that

the best results are obtained by using TB polynomials up to the fourth order (see Fig. 3.8),
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and this does not significantly affect the sensitivity of the retrieval to errors in TB. In the LWP

retrieval results shown here and further, “TB” implies that TB polynomials up to the fourth

order are used.

Figure 3.8: Effect of higher-order TB polynomials on the LWP retrieval, through (a) RMSE and (b) R on
the testing set. (c) Change in RMSE when a constant TB offset is added to the testing input, simulating
a miscalibration of the radiometer.

Figure 3.6c and Fig. 3.6d show that for the LWP retrieval, input features other than TB only

bring second-order improvements, while they were shown to be crucial in the IWV retrieval.

For instance, the addition of reanalysis data significantly improves the IWV retrieval, but

only in a relatively minor way does it increase LWP accuracy. In contrast, excluding TB from

the input features leads to an RMSE near 200 g m−2 and R < 0.7, i.e., to values that make

the retrieval virtually non-relevant. This confirms that while environmental descriptors are

well correlated with IWV, they are not sufficient to provide a reasonable estimate of LWP, for

which microwave radiometer measurements are necessary. An additional reason for this high

dependence on TB is that LWP at a given location can have large temporal variability due to

cloud dynamics in the atmospheric column, which might not always be captured in the time

series of surface atmospheric variables, nor by ERA5 reanalyses, which have a comparatively

low spatial and temporal resolution.

Still, the accuracy of the algorithm drops severely when no features are considered other than

brightness temperature (RMSE = 140 g m−2). This suggests that, although of second-order

importance when taken individually and somehow redundant when all used together, the

secondary input features are efficient in incorporating statistical trends and climatological

information into the retrieval during the training phase.

Adding IWV prediction as an input feature to the LWP retrieval has a very minor impact.

For clarity, it was only included in Fig. 3.6c in the best-case scenario and not for every other

combination of input features. This is not surprising, since it is itself the output of an algorithm

that relies on essentially the same input features. However, the slight improvement that is

seen can be understood by recalling that the IWV retrieval algorithm was trained on a much

larger dataset, which includes in particular a larger number of clear-sky cases (see Sect. 3.4).
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3.6.2 Sensitivity to instrument calibration

In order to assess the robustness of the algorithm with respect to potential radiometer miscali-

bration or calibration drift, TB offsets were added to the testing dataset before implementing

the retrieval. Figure 3.9 illustrates the behavior of the algorithm when such a miscalibration

with a constant offset is present (varying from 0 to 5 K). Figure 3.9a shows that a 5 K offset in TB

results in a 30% increase in RMSE for the IWV estimations, which is non-negligible. Ensuring

proper radiometer calibration thus seems crucial in constraining the error of this retrieval. For

comparison, the 89 GHz radiometer presented in Küchler et al. (2017) has a nominal accuracy

of 0.5 K after calibration. If the calibration cannot be ensured and if there is no means to

correct for miscalibration (of > 3 K), it is preferable for the IWV retrieval to use the algorithm

that does not rely on TB, shown with the black dashed line.

Figure 3.9: RMSE on the testing set of the different versions of the (a) IWV and (b) LWP retrieval, after
addition of a constant T B offset in the input. Dashed lines show the retrievals without T B in the input
features.

In terms of relative impact, the LWP algorithm is less affected (Fig. 3.9b) with an increase

in the RMSE of less than 10% for an offset of 5 K in TB, which makes it reasonably stable

to inaccuracy of TB measurements. The different versions are affected in a similar way by

TB offsets. However, the algorithm that includes the prediction of IWV in the input features

diverges faster than the others. This is understandable because the error in TB propagates

through the “IWVpred” input feature, in addition to the TB features themselves. Therefore, in

the case of uncertain calibration, more robust results would be obtained without including

this feature.
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3.6.3 Geographical distribution of the error

One of the motivations of this study was to design an algorithm that could be used across the

globe with a constrained uncertainty. Figure 3.10 illustrates the geographical distribution of the

error for LWP and IWV retrievals, using the synthetic radiosounding dataset. Two approaches

were used to assess this error: first, RMSE values were calculated on all data available for each

location, excluding LWP greater than 1000 g m−2. Second, the RMSE was normalized by the

mean value of LWP (IWV) for each site, excluding low values (LWP < 20 g m−2, i.e., using a

conservative threshold to exclude clear-sky cases). This normalized error is different from the

relative error; rather, it gives an idea of how large the RMSE of the retrieval is, compared to the

average values observed at a given location.

Figure 3.10: Geographical distribution of the error on the synthetic dataset. (a) Total RMSE on IWV. (b)
Normalized error (defined in the text) on IWV. (c) Total RMSE on LWP. (d) Normalized error on LWP. For
(c) and (d), clear-sky as well as strong rainy cases are removed (LWP < 20 g m−2 and LWP > 1000 g m−2).
The size of the disks represents the mean value of IWV or LWP at each site, while the color codes for the
error of the retrieval.

From the non-normalized error (left panels in Fig. 3.10), it comes across that most high-

latitude and midlatitude locations have a constrained RMSE (around 20–60 g m−2 on LWP),

while tropical sites are not as well captured, with RMSE exceeding 120 g m−2 (on LWP) in some

locations. The temperature and humidity conditions, as well as the intense precipitation that

typically occurs in those regions, are probably responsible for this discrepancy. Cases with

high LWP are more common under such climatic conditions, and it was observed in Sect. 3.6.1

that the accuracy of the algorithm decreases in that range. Furthermore, tropical climates are

underrepresented in the dataset as fewer data are available from these regions in comparison

with midlatitudes: their specificity might therefore not be fully captured during the learning
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stage of the algorithm. This accounts at least partly for the enhanced error over the Indian

peninsula and southeastern Asian islands.

The normalized error (Fig. 3.10b and d) shows that the error is, overall, of the same order of

magnitude across the globe. A few regions do stand out from this analysis, which correspond

to arid climates: the stations of Dalanzadgad (Mongolia), Salalah (Oman), Minfeng (China,

north of Tibet), and Jeddah (Saudi Arabia) all have a normalized error in LWP higher than 0.7

and are in the desert. Similarly, the IWV retrieval performs poorly, in terms of normalized error,

in cold environments where the absolute humidity is low, such as in Sermersooq (Greenland).

In such regions, our algorithm is not sensitive enough to accurately capture the fine variations

of atmospheric vapor and liquid water content; if detailed studies of those areas were to be

conducted, more than one radiometer frequency would likely be necessary, along with specific

training sets on which to perform the statistical learning, as was done in the Arctic by Cadeddu

et al. (2009).

3.7 Evaluation on two contrasted datasets

As a further step in the validation process, the algorithm was applied to data from two cam-

paigns involving WProf: first in Payerne, Switzerland, then near Pyeongchang, South Korea

(see Sect. 3.3 for the full description of the datasets). In both cases, the output of the retrieval is

compared against values estimated through other methods, either a multi-channel radiometer

or, in the case of IWV, radiosonde data.

3.7.1 Payerne 2017

IWV retrieval

The results of the new IWV retrieval algorithm are compared to those from the MeteoSwiss

operational radiometer HATPRO and to radiosonde-derived values. From Figs. 3.11a and c it

appears that the IWV retrieval has relatively limited spread but has a constant bias (-1.8 kg m−2),

visible in both the comparison against HATPRO (Fig. 3.11a) and radiosonde-derived measure-

ments (Fig. 3.11c). This might be due to a bias in ERA5 IWV data during this timeframe over

the region (-4.1 kg m−2), which is visible in ERA5 records during the entire campaign (not

shown) and the investigation of which is beyond the scope of this study. This bias points to

one of the drawbacks of the IWV retrieval algorithm, which is sensitive not only to radiometer

miscalibration but also to possible biases in other input variables; these can be difficult to

detect and monitor, as in the case of ERA5 values in Payerne. In spite of this, the top panels

in Fig. 3.12 (error vs. HATPRO measurements) and Fig. 3.13 (error vs. value derived from

radiosounding) show that, overall, the implementation of the different versions of the algo-

rithm on the Payerne dataset agrees with the conclusions from the testing set results: more

features lead to an enhanced precision of the retrieval. The accuracy drops when only one or

two groups of input features are included, but no single group of features seems to increase
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the accuracy alone. One notable difference exists between Fig. 3.12b and Fig. 3.13b: in the

latter, higher R (and similar RMSE) is actually obtained from the algorithm that does not use

TB in input than with the full set of input features. This may be surprising at first, but can

be understood by taking a closer look at the results: the algorithm without TB leads to IWV

values that are smoother and less sensitive to short-time variations. Such fluctuations are

not reflected in the comparison against radiosonde data, for which a 30 min averaging was

implemented. When variations over short time frames are considered, the inclusion of TB

improves the retrieval (Figs. 3.12a, b).

Figure 3.11: Comparison of (a) IWV and (b) LWP retrieved over Payerne with the new algorithm, using
the full set of input features, against the HATPRO retrieval. (c) IWV retrieved from the new algorithm
and from HATPRO vs. radiosonde measurements; a 30-minute time averaging is used for the radiometer
measurements. The size of the dataset (N ) is indicated, as well as relevant error metrics (RMSE, mean
bias, R).

LWP retrieval

Figure 3.11b shows that LWP values retrieved with the new algorithm are in overall agreement

with those obtained with HATPRO, although a larger spread is observed than in the IWV

retrieval. A saturation effect can be seen near precipitation onset when LWP values from

HATPRO exceed 600 g m−2. Additionally, outliers are visible as vertical and horizontal bars

close to the axes, for which two hypotheses are considered. One is that the distance between

the two instruments was big enough that in some cases a liquid water cloud would overpass

one of the two instruments but not the other. Hence, HATPRO would measure a nonzero LWP,
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while WProf would indicate a clear sky or vice versa. Secondly, measurement artifacts also

cannot be excluded, e.g., due to the persistence of a liquid water film on the radome of either

radiometer after precipitation or due to condensation.

Figure 3.12: Error of the new retrieval algorithms over Payerne compared to HATPRO retrievals. (a)
RMSE and (b) R of retrieved IWV. (c) RMSE and (d) R of retrieved LWP. Each bar shows the result of a
version whose input features are specified in the label. In (a), (b), the black dashed line shows the error
of ERA5 IWV. In (c), (d), the dashed lines show the results of K17A and K17B, as defined in the text.

For comparison, the method described in Küchler et al. (2017) was implemented (hereafter

referred to as K17) by performing a quadratic regression on a dataset consisting solely of

radiosonde profiles collected in Payerne, and constructed with the same steps as described

in Sect. 3.4. A first version proposed by the authors (K17A) relies on a measurement vector

consisting of TB, T 2
B , and the IWV estimate from reanalysis data IWVERA5 and IWV2

ERA5. Another

version (K17B) includes only TB and T 2
B . RMSEs of those quadratic regressions, computed on

the Payerne synthetic dataset (19720 profiles) are of 21 and 43 g m−2, respectively, similar to

the values obtained by the authors using radiosonde data from De Bilt (the Netherlands), i.e.,

15 and 44 g m−2.

K17A and K17B were applied to the Payerne campaign dataset, and their results are compared

to those of our algorithm in Fig. 3.12. The error metrics are calculated using HATPRO values

72



3.7 Evaluation on two contrasted datasets

as a reference. The algorithms perform in a similar way, with slightly better results for the

new algorithm when at least one of the secondary input features is included. We recall that

K17A and K17B were specifically tuned on Payerne data, while the new algorithm was trained

globally on a dataset that did not comprise any radiosonde profile from Payerne.

Figure 3.13: Results of the IWV retrieval in Payerne compared to radiosonde measurements. (a) RMSE;
(b) R. The radiometer measurements are averaged over 30 minutes. For comparison, the dashed lines
illustrate the error of HATPRO (green) and ERA5 (black) vs. radiosonde-derived IWV.

3.7.2 ICE-POP 2018

As detailed in Sect. 3.3, the South Korean deployment of WProf in 2017–2018 also offers an

opportunity to compare results from the IWV retrieval to IWV from radiosonde measurements.

The analysis of the TB time series showed that a miscalibration of the radiometer led to

unrealistic—negative—values for which a correction had to be implemented, through the ad-

dition of a constant offset to TB measurements. The value of this offset (20 K) was determined

by computing theoretical brightness temperatures from clear-sky radiosonde profiles during

the campaign and comparing them to measured TBs, following the approach of Ebell et al.

(2017). This is only a first-order correction whose output should be taken with care, especially

after the analysis in Sect. 3.6.2, which underlined the importance of TB accuracy for our IWV

retrieval.

After this correction, the IWV retrieval gives consistent results (Fig. 3.14), with a total RMSE

that is slightly lower than that obtained from the testing dataset (1.25 kg m−2). Better results

are obtained when more secondary input features are used, as was the case with the results on

the synthetic dataset in Sect. 3.6. The algorithm largely relies on non-radiometric features,

and even more so in cold and dry environments like that of ICE-POP, where IWV is low. In

fact, slightly better results are surprisingly obtained with all input features except brightness
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temperature. The miscalibration of the radiometer, which may not have been perfectly cor-

rected by the addition of a constant offset, might emphasize this error. Note that this also

corresponds to what was noted in Payerne: when the results are averaged over 30 minutes,

brightness temperature brings little, if any, improvement to the results. TB is relevant when

a higher temporal resolution is considered (see Sect. 3.7.1)—for which no comparison was

available during ICE-POP—or when ERA5 data are significantly off. In ICE-POP, however,

the algorithm is consistently outperformed by ERA5 products (Fig. 3.14), which have both

a lower RMSE and a higher R, making the algorithm less relevant for the study of IWV in

this specific campaign. The high accuracy of ERA5 during ICE-POP also explains the high

correlation coefficient R of the retrieval that uses ERA5 and geographical input features: since

the geographical parameters are constant, the temporal variability is that of the reanalysis

data, and therefore the correlation coefficient of the retrieval is close to that of ERA5 data

alone. Let us highlight that although reanalysis data outperform the retrieval for ICE-POP, this

was not the case in Payerne nor in the full radiosonde dataset, for which the algorithm has

a higher accuracy than ERA5 values. Possibly, the dry and cold weather that was observed

during the ICE-POP campaign featured little short-term variability and was associated with

stable atmospheric conditions that were particularly well captured in ERA5 reanalyses.

Figure 3.14: Error of the IWV retrieval during the ICE-POP campaign with different versions of the
algorithm. (a) RMSE; (b) R . The error metrics are computed against IWV from radiosonde profiles, after
30 minutes of temporal averaging in the radiometer data. The dashed line shows the error of IWV from
ERA5 reanalysis data.

Snowfall events during the campaign, as well as occasional fog, can also bias the retrieval by

enhancing brightness temperature. The analysis of the ICE-POP data was taken a step further

to explore this point; it reveals that the IWV retrieval is most reliable in non-precipitating

or cold conditions. To visualize this, periods with no precipitation are identified in WProf

radar measurements as time steps with low radar reflectivity (Ze <-10 dBZ) in all the lower

gates (first kilometer above the radar). Temperature time series are provided by the weather

station coupled to WProf. Figure 3.15 shows the scatter plot of the error, for the algorithm

that includes all input features, with the following convention to differentiate dry from pre-
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cipitating conditions: black triangles correspond to dry time steps and circles to time steps

labeled as precipitation, with color indicating surface temperature. As expected (Sect. 3.4), the

algorithm yields a larger bias in rain—i.e., when precipitation is identified and T > 0◦C—but

also during snowfall events with relatively warm temperatures close to 0◦C. Changes in the

dielectric properties of snowflakes during the melting process can explain this increased error;

additionally, as described by Kneifel et al. (2010) and recalled in Sect. 3.4, large snow particles

(such as aggregates forming at relatively mild temperatures) could have a non-negligible

contribution to brightness temperature, which might explain the enhanced error in those

cases.

Figure 3.15: Scatter plot of retrieved IWV vs. IWV computed from radiosonde profiles. The algorithm
used for the retrieval is the one with the full set of input features. Dry conditions are identified with
W-band Ze in the first kilometer above the radar (with a -10 dBZ threshold), and are coded as black
triangles; precipitating conditions are denoted with circles. The color indicates the surface temperature.

3.8 Conclusions

A new site-independent method was designed for the retrieval of LWP and IWV. In addition

to 89 GHz brightness temperature, additional input features are used for the retrieval, such

as surface atmospheric variables (temperature, pressure, and humidity) and information on

the geographical location and season. The retrieval framework relies on a neural network

architecture, which was trained and tested on a synthetic dataset built from radiosonde profiles

worldwide. The geographical distribution of the error shows that the algorithm performs better

in midlatitudes and regions with a moderate climate than in areas with extreme climates (either

arid or very moist), which include both tropical and polar regions that are not well represented

in the training dataset due to lack of available data. Also, the forward model that was used

should most likely be revised in order to finely capture the atmospheric conditions in such

specific environments.

The algorithm was then applied to two contrasting datasets, one reflecting summertime

weather conditions in Switzerland and the other winter conditions in South Korea. For this
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application, measurements from the RPG cloud radar–radiometer system were used. In

Payerne, the new LWP retrieval was found to perform slightly better than the method proposed

by Küchler et al. (2017) for the same instrument, although the latter algorithm was specifically

trained using radiosonde data from Payerne. When compared to radiosonde measurements

of IWV, the IWV retrieval was found to be less accurate than that of a state-of-the-art multi-

channel radiometer (HATPRO), although both instruments yield errors within the same order

of magnitude. In the South Korean winter dataset, the IWV retrieval proved relatively robust

in spite of a slight bias during some snowfall events that could be related to the scattering

properties of snow particles, which were not taken into account in the forward model. In the

case of ICE-POP, reanalysis data were actually more accurate than the IWV retrieval when

compared with radiosonde measurements, but their temporal resolution remains low, which

makes the use of the algorithm still relevant for retrievals for which a high temporal resolution

is desired.

Further steps in the improvement of the current algorithm would include coupling information

from the radar and the radiometer channel (Ebell et al., 2010; Cadeddu et al., 2020). The

detection of clear-sky cases with radar (Mätzler and Morland, 2009) could help monitor the

calibration of the radiometer and introduce TB offsets for correction when necessary (Ebell

et al., 2017). If available through a separate sensor such as a GPS receiver, independent IWV

measurements could be included in the algorithm, possibly leading to an enhanced precision

of the LWP retrieval. Radar moments could be used to distinguish cloudy from drizzling or

rainy cases, similar to the approach used by Cadeddu et al. (2020), and to select appropriate

DSDs for each case to account for non-Rayleigh scattering by precipitating droplets. However,

forward modeling of radar data requires further assumptions on microphysical properties

and atmospheric conditions, for which generalization to a global geographical scale is a real

challenge.

Overall, the LWP and IWV retrieval methods that were designed within this study were shown

to be robust when applied to both synthetic and real datasets, although their performance

is inevitably lower than that of multi-channel radiometers specifically designed for LWP and

IWV retrievals. The accuracy is improved by including surface and geographical information,

as well as reanalysis data if available, among the input features. The new algorithms should

be seen as a valuable tool to monitor atmospheric liquid water and vapor in the context of

radar–radiometer studies. They are non-site-specific and thus do not require further tuning

before use at a new site, which makes them easy to implement, and their accuracy is well

characterized. In the context of this thesis, further chapters will leverage the LWP retrieval in

the framework of both quantitative and qualitative snowfall studies.
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4 Dual-frequency spectral radar retrieval
of snowfall microphysical properties: a
physics-driven deep learning inversion
framework
This chapter introduces a deep learning framework for the retrieval of snowfall microphysical

properties from dual-frequency Doppler spectra. It is based on Sections 1–4 and Appendices

of the article:

• Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas

Viltard and Alexis Berne (2023): Dual-frequency spectral radar retrieval of snowfall

microphysics: a physics-driven deep-learning approach. Atmospheric Measurement

Techniques, 16(4), 911–940, doi: 10.5194/amt-16-911-2023.

The study was designed by Anne-Claire Billault-Roux and Alexis Berne, with input from

Gionata Ghiggi. The radar data were prepared by Audrey Martini, Nicolas Viltard and Anne-

Claire Billault-Roux.

4.1 Summary

The use of meteorological radars to study snowfall microphysical properties and processes is

well established, in particular via a few distinct techniques: the use of radar polarimetry, of

multi-frequency radar measurements and of the radar Doppler spectra. We propose a novel

approach to retrieve snowfall properties by combining the latter two techniques, while relaxing

assumptions on, e.g., beam alignment and non-turbulent atmosphere. The method relies on a

two-step deep learning framework inspired from data compression techniques: an encoder

model maps a high-dimensional signal to a lower-dimensional latent space, while the decoder

reconstructs the original signal from this latent space. Here, Doppler spectrograms at two

frequencies constitute the high-dimensional input, while the latent features are constrained

to represent the snowfall properties of interest. The decoder network is first trained to emulate

Doppler spectra from a set of microphysical variables, using simulations from the radiative
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transfer model PAMTRA as training data. In a second step, the encoder network learns the

inverse mapping, from real measured dual-frequency spectrograms to the microphysical

latent space; in doing so, it leverages with a convolutional structure the spatial consistency of

the measurements to mitigate the ill-posedness of the problem.

4.2 Introduction

In recent years, retrievals of snowfall microphysical properties from radar measurements

have been successfully conducted via a few distinct techniques. On the one hand, multi-

frequency measurements have been extensively explored, combining measurements from

a shorter and a longer wavelength radar (e.g., W- and X-band). The dual-frequency ratio

of radar equivalent reflectivity factors (DFR = DFRX ,W = Ze,X − Ze,W , [dB]) can be used to

identify populations of snow particles with a larger size, or with a higher degree of riming, thus

indicating regions of enhanced snowfall growth (see Chapter 1, Sect. 1.3.5 and e.g., Matrosov

et al., 1992; Matrosov, 1998; Szyrmer and Zawadzki, 2014; Liao et al., 2016; Battaglia et al.,

2020). In a triple-frequency space, studies were able to identify distinct signatures for riming

and aggregation and to even retrieve estimates of fractal dimension during parts of snowfall

events (e.g., Kneifel et al., 2011; Kulie et al., 2014; Leinonen et al., 2018), which were later

confirmed through comparison with in-situ airborne data (Chase et al., 2018; Nguyen et al.,

2022). Similar retrievals, focusing on snow particle bulk density, were achieved using only two

frequencies, but leveraging information contained in the mean Doppler velocity in addition to

radar reflectivity (Mason et al., 2018). Bringing this a step further, Mróz et al. (2021a) retrieved

IWC, mean mass-weighted diameter, and riming degree from triple-frequency reflectivity

and Doppler velocity measurements. In the case of scanning radars, additional polarimetric

information can be included, for a more refined geometrical characterization of snow particles

(e.g., Bukovčić et al., 2018; Matrosov et al., 2020 or Tetoni et al., 2022; Oue et al., 2021, where

polarimetric and multi-frequency measurements are combined).

On the other hand, studies have been conducted relying not solely on radar moments but on

the full Doppler spectrum, which encloses more information on microphysical properties and

the particle size distribution (PSD) than scalar moments (e.g., for rainfall and cloud retrievals,

Atlas et al., 1973; Gossard, 1994; Gossard et al., 1997; Babb et al., 1999; Williams et al., 2016).

In a qualitative perspective, by observing wider, more skewed, or even multi-modal spectra,

signatures of specific microphysical processes such as riming or aggregation can be identified

(e.g., Shupe et al., 2004; Verlinde et al., 2013; Kalesse et al., 2016).

The combination of multi-frequency and Doppler spectral techniques for snowfall microphys-

ical retrievals was investigated by Kneifel et al. (2016) and Barrett et al. (2019) (see Chapter 1,

Sect. 1.3.5). In practice, substantial difficulties arise from imperfect measurements or con-

tamination by turbulent broadening (see Chapter 1, Sect. 1.3.4); as a result, direct inversions

using traditional methods like Barrett et al. (2019) are only rarely possible. In this chapter,

we introduce a physics-driven deep learning framework to retrieve snowfall microphysics
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from dual-frequency Doppler spectra, while partly relaxing constraints on turbulence or beam

alignment, as well as reducing the number of prior assumptions on snowfall microphysical

properties in comparison with the cited studies.

A general overview of the retrieval framework and its theoretical foundation is presented in

Sect. 4.3. Section 4.4 describes the synthetic and real datasets used to train the neural networks

in the inversion model. In Sect. 4.5, we detail the technical implementation of the framework

and verify its convergence. Chapter 5 is then dedicated to the implementation of the proposed

framework on the ICE GENESIS dataset, for validation against aircraft in situ measurements,

and for a statistical characterization of snowfall microphysics during the campaign.

4.3 Theoretical framework

This section introduces the theoretical components required to understand the proposed

retrieval framework and provides an overview of its general structure.

4.3.1 Doppler spectra: forward model

As detailed in Chapter 1, the shape of the Doppler spectrum measured by a vertically pointing

profiler in snowfall results from a combination of several factors (e.g., Doviak and Zrnić, 1993;

Kollias et al., 2002; Luke and Kollias, 2013; Kneifel et al., 2016). It is primarily defined by the

snowfall PSD and the microphysical properties of the snow particles which determine their

backscattering cross-section and terminal velocity; this microphysical spectrum is additionally

affected by atmospheric dynamic conditions (turbulence, horizontal wind, and vertical wind)

in a way that depends on the settings and parameters of the radar itself (e.g., sensitivity and

beam width). The true measured spectrum is further perturbed by instrument noise. Under-

standing how those parameters (microphysical, environmental, instrument-related) translate

into a measured Doppler spectrum is delicate: it involves complex radiative transfer models

to compute the radar backscatter of snow particles, and it also requires an understanding of

snowfall aerodynamic properties for e.g., the parameterization of velocity–size relations. In

this work, we use the radiative transfer code PAMTRA (Mech et al., 2020) as a forward model,

as it is particularly suited to simulate full Doppler spectra and provides an implementation

of several scattering models, such as the SSRGA (see Chapter 1, Sect. 1.3.5). Details on how

PAMTRA is used and parameterized in this study are presented in Section 4.4.1.

4.3.2 Approach to the inverse problem

Assuming a forward model, denoted f , is known—which, given a set of properties x , outputs

realistic Doppler spectra y—the aim of the retrieval is to solve the following inverse problem:

from real observed spectra yr , estimate the underlying microphysical properties xr (see, e.g.,

Maahn et al., 2020, for a discussion on inverse problems). Here the subscript “r ” denotes real
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values as opposed to synthetic or modeled quantities.

In a mathematical language, solving the inverse problem means estimating g = f −1. This

is, in general, not possible, as f is usually not an invertible mapping. Workarounds can be

developed, for example through lookup tables (e.g., Leinonen et al., 2018). Alternatively, one

can seek xr as the minimizing argument of a cost function (such as the squared error ||yr −
f (x)||2), which can also include a regularization term (e.g., Mason et al., 2018); this boils down

to a minimization problem which can then be solved iteratively with, for instance, a gradient

descent algorithm. From a Bayesian perspective and under additional assumptions (Gaussian

probability distributions), this corresponds to the popular optimal estimation framework

(Rodgers, 2000; Maahn et al., 2020), which is widely used across atmospheric science to

solve moderately linear inverse problems. Although this alleviates some requirements of f ,

it can only be implemented if f is differentiable, and if the computation of its gradient is

tractable, either analytically or numerically. This classical Bayesian approach faces some

further limitations, which include but are not limited to, the need to linearize the forward

operator in order to compute its Jacobian or to explicitly assume prior values for x .

Machine learning techniques offer the possibility to tackle inverse problems in a different way,

with a statistical rather than an analytical approach. Note that, as pointed out by Geer (2021),

the overarching framework in both cases ultimately remains that of Bayesian probabilities,

viewed through different prisms. The typical machine learning route to solve an inverse

problem (e.g., Chase et al., 2021) has the following structure: the available forward model is first

used to create a large synthetic dataset {(xs,k ; ys,k = f (xs,k )), k = 1..N }, with the “s” subscript

denoting synthetic values and N the size of the dataset. Then, a machine learning model is

trained on this dataset to learn a statistical relation between y and x , i.e., an approximation of

the inverse mapping g̃ . Ultimately, this produces a gate-to-gate inversion of the problem which

can be implemented on real data. This approach has been successfully used for atmospheric

retrievals, for example by Piontek et al. (2021) to detect volcanic ash clouds, by Vogl et al. (2022)

to estimate riming occurrences from radar measurements, or by Chase et al. (2021) to retrieve

snowfall properties from airborne or satellite radars. The LWP retrieval algorithm introduced

in Chapter 3 also falls within this category. One major limitation of this direct gate-to-gate

method is when the problem itself is ill-posed, e.g., when several values of x may yield similar

outputs y ( f is not injective): in such cases, the retrieval may yield arbitrary outputs.

The proposed approach, illustrated in Fig. 4.1, partly mitigates this issue. It is inspired by auto-

encoder architectures (sometimes referred to as a non-linear variant of principal component

analysis, Kramer, 1991; Hinton and Salakhutdinov, 2006), which use neural networks (NN) to

perform a powerful nonlinear dimension reduction: an encoder NN maps a high-dimension

signal to a low-dimension latent space, while the decoder NN learns to reconstruct an approxi-

mation of the original signal from the latent space. Such tools are relevant for atmospheric

sciences and in particular in the context of climate studies, which handle complex, high-

dimensional signals (Behrens et al., 2022). In our case, dual-frequency Doppler spectrograms

constitute the high-dimensional signal, and the aim is to constrain the dimensions of the
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latent space to contain microphysical descriptors of snowfall. One original aspect of the ap-

proach presented here is that it incorporates physical knowledge by using a physics-informed

decoder.

• In a first step, the decoder is designed to reconstruct dual-frequency Doppler spectro-

grams given snowfall descriptors. In practice, a neural network is trained on a synthetic

dataset of (xs ; ys = f (xs )). Instead of learning an inverse mapping, it simply learns to

emulate the forward model: taking microphysical and atmospheric variables (xs ) as

input, it outputs Doppler spectra (ys ). This model, which we refer to as the decoder

and denote as f̃ , is thus a differentiable emulator of PAMTRA. When applied not to a

single set of microphysical descriptors but to a stack (of multiple range gates) at once,

it is denoted with uppercase F̃ . The synthetic dataset on which the decoder is trained

should include a wide range of realistic parameters, to not induce bias in the further

steps.

• The encoder is trained in a second step: it ingests the radar data (dual-frequency Doppler

spectrograms), and is optimized to retrieve the latent snowfall properties which, when

passed through the decoder, minimize the reconstruction error with respect to the

input data. For this step, we shift our attention to a real (i.e., not synthetic) dataset

of full dual-frequency Doppler spectrograms Yr ; the aim is to retrieve the underlying

profiles of latent variables Xr . The capital letter denotes that e.g., Yr is a vertical stack

of yr . The encoder NN, G̃ , is trained on this real dataset: it takes as input the Doppler

spectrograms Yr , and its output X = G̃(Yr ) has the same dimension as the number of

latent features, times the number of range gates. X is passed on to the decoder F̃ , which

outputs a reconstructed spectrogram Y . Training is performed by optimizing G̃ in order

to minimize the reconstruction error ||Y −Yr ||2.

At the end of the training, i.e., when the pipeline has converged, F̃ ◦G̃(Yr ) ≈ Yr and the output

of the encoder X̃r = G̃(Yr ) should be close to the true profile of microphysical descriptors Xr .

The architecture of the decoder and encoder will be detailed in the following (Sect. 4.5),

but one key property should already be underlined. The retrieval operates on the full dual-

frequency Doppler spectrograms at once, rather than on each gate independently: the idea

is to synergistically make use of the spatial structure of the measurements to reduce the ill-

posedness of the inverse problem. By “spatial structure”, or “spatial consistency”, we refer to

the fact that the spectrogram might be continuous, smooth (i.e., spectra at nearby ranges are

similar), or on the contrary have some abrupt changes (e.g., in the case of high shear, where

neighboring spectra might be very different). By constraining the retrieval to output a profile

of microphysical variables with a similar spatial structure, we restrain the number of degrees of

freedom. This is handled by the architecture of the encoder NN, which contains convolution

kernels: thanks to this feature, the model can capture the vertical structure of the Doppler

spectrograms, and propagate this information in a way that the output profiles are themselves

spatially consistent. Note that while the issue of ill-posedness is mitigated, it is not entirely
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resolved, as there may remain an intrinsic under-determination. Nevertheless, we believe that

this implicit use of the measurement spatial features in the retrieval is a key contribution of

this work. To support this, a brief discussion of alternative methods is proposed in Appendix B.

To conclude this overview of the framework, we highlight that while it was presented for the

specific case of Doppler spectrograms and snowfall microphysics, its structure is generic and

could potentially be applied to other retrieval problems with similar properties: a complex

forward model that is not directly invertible, with slightly ill-posed features that hamper point-

wise retrievals. One intrinsic limitation which should be already underlined is that the method

is trained on the data of interest and cannot be directly used on any given measurements.

Figure 4.1: Schematic illustration of the method. The notations are those of Sect. 4.3. The upper right
box illustrates that the decoder NN is trained to emulate a forward radiative transfer model. The lower
box shows the full pipeline where the pretrained decoder is used to reconstruct full spectrograms based
on the microphysical properties output by the encoder NN.
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4.4 Data

4.4.1 Synthetic dataset

As mentioned above, the first step of the framework consists in training a decoder NN on a

synthetic dataset containing sets of microphysical and atmospheric variables and the corre-

sponding spectra. The focus of this section is the generation of this dataset.

Forward model assumptions

To build this synthetic dataset, PAMTRA is run by prescribing snowfall microphysics through

several parameters. These parameters are the snowfall properties that the algorithm will then

learn to retrieve.

The definitions of the microphysical descriptors are summarized in Table 4.1. The PSD is

assumed to be a negative exponential distribution (N (D) = N0 exp(−D/D0), see Chapter 1,

Eq. 1.1), whose size parameter D0 is prescribed; we recall that, as in the rest of this thesis,

the size or diameter of a particle is defined as its maximum dimension, D = Dmax . For

an exponential PSD, D0 is equal to the number-concentration-weighted mean diameter

(shortened as “mean diameter”); the effective diameter (ratio of the third to the second

moment of the PSD), often relevant for radiative transfer models, is De f f = 3D0. The choice of

an exponential shape for the PSD was made to restrict the degrees of freedom of the retrieval

and keep the computational expense tractable; it is nonetheless a strong underlying hypothesis

of the framework in its current version (discussed in Sect. 5.6.4). Mass–size and area–size

relations are considered to be power laws, whose prefactors and exponents are prescribed

as in Chapter 1, Sect. 1.2.5: m = amDbm , A = αaDβa . The velocity parameterization is the

one proposed by Heymsfield and Westbrook (2010), and relies on these mass– and area–size

relations. The aspect ratio Ar is then specified, defined here as equal to the particle dimension

along the direction of the radar beam (here, vertical) divided by maximum dimension (Ori

et al., 2021), which implies Ar ≤ 1 for both oblate and prolate particles. Particles are considered

to be oriented with their maximum dimension in the horizontal plane. The ice water content

(IWC) is finally assigned. Note that the total number concentration is implicitly prescribed

through the definition of IWC, D0, and am and bm . In addition, the noise level (or sensitivity)

is specified, since it is required to simulate realistic Doppler spectra; in practice, it only

depends on the range and on the radar properties and is not related to other microphysical or

atmospheric quantities.

Individual spectra are simulated through PAMTRA for an altitude of 1000 m ASL, using a

standard (PAMTRA default) atmospheric profile with a temperature randomly chosen in [-

20◦C, 1◦C]. Spectra are then simulated at X- and W-band independently. The radar settings

for these simulations (frequency, beamwidth, velocity resolution, velocity range, sensitivity)

should have the same values as those of the radars on which the retrieval is implemented

(Sect. 4.4.2). In the current version of the algorithm, attenuation is not taken into account in

83



Radar retrieval of snowfall microphysics: a deep learning framework

Table 4.1: Microphysical, atmospheric and radar parameters

Name Description

IWC Ice water content
D0 Mean diameter (assuming exponential PSD)
bm Exponent of the mass–size power law
am Pre-factor of the mass–size power law
βa Exponent of the area–size power law
αa Pre-factor of the area–size power law
Ar Aspect ratio (see Sect. 4.4.1)

Tur bX Broadening X-band
Tur bW Broadening W-band
W i nd X Radial wind X-band
W i ndW Radial wind W-band
Lnoi se X Noise level at X-band
Lnoi seW Noise level at W-band

the PAMTRA simulations.

Scattering calculations are performed using the SSRGA, using the coefficients made available

by Ori et al. (2021) through the SnowScatt model. These parameters were grouped by types of

particles in order to match the four main categories used to sample the training set: planar

crystals, columnar crystals, aggregates, and graupel. The SSRGA in general, and here the

simulations of Ori et al. (2021), are mostly targeted on aggregates, so it was decided to include

e.g., columnar aggregates in the columnar category, with the reasoning that when the size

regime is that of columnar crystals, the scattering properties would approach those of the

individual particles. While this rationale could be debated, it would most likely not trigger

diverging results since the SSRGA collapses to the Rayleigh approximation for small particles,

meaning the exact values of coefficients then have little impact. After grouping the particles

into the different categories, the coefficients κSSRG A and βSSRG A are then averaged within

each group, for each size bin, as shown with the black lines in Fig. 4.2.

These assumptions on scattering properties are not flawless, and constitute a bottleneck in

our method, as in virtually any attempt at radar-based retrievals. In particular, the current

implementation of PAMTRA (28/01/2023) allows for the parameterization of only two coeffi-

cients of the SSRGA (κSSRG A , βSSRG A), while current literature suggests that more coefficients

should be used (γSSRG A and ζSSRG A ; see Hogan et al., 2017, for detail on the coefficients); fur-

thermore, the variability of the scattering parameters shown, for instance, in Ori et al. (2021)

or in Fig. 5 of Leinonen et al. (2018), was neglected when the parameters were sampled (black

lines vs. colored lines in Fig. 4.2). Strictly speaking, it is also not valid to assume a single set of

scattering coefficients in SSRGA computations for an entire particle size distribution, since the

coefficients are size-dependent. However, as underlined in Ori et al. (2021), the coefficients

do not change significantly for large particles, while for small particles, as mentioned earlier,
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the SSRGA simplifies to Rayleigh scattering regardless of the coefficient values, which makes

this assumption altogether reasonable. It should also be kept in mind that the SSRGA would

fail to represent large graupel particles, although Ori et al. (2021) suggests that its validity

extends to particles with a relatively high riming degree. All in all, these assumptions can

thus naturally be questioned. We, however, believe that it was reasonable to use the simplest

possible parameterization for the initial development of the method and, in particular, to use

a common SSRGA framework for all scattering calculations, leaving possible improvements of

the forward model to future work.

Figure 4.2: Colored lines: SSRGA coefficient computed in Ori et al. (2021) for a given particle type (as
a function of Dmax ) for (a) κSSRG A and (b) βSSRG A . Black lines: average coefficient when grouping by
particle type, used for sampling the training set.

Sampling the forward model inputs

When generating the synthetic training set, a trade-off has to be defined: if the dataset is

too narrow, that is, if it does not cover a large enough range of values and combinations

for the microphysical descriptors, this will cause a bias in the retrieval; conversely, if the

range of values is much too large, this will hamper the training process, for it will include

unrealistic values. To meet this trade-off, it was chosen to parameterize PAMTRA by sampling

the microphysical properties using a large observational dataset collected using the MASC

during 10 field deployments. These data were organized into a database, MASCDB, by Grazioli

et al. (2022). We follow the method presented by the authors (Grazioli et al., 2022, Sect.

“Technical Validation”) to derive, from the database, the microphysical parameters required

in the forward model (Sect. 4.4.1, Table 4.1). For each category of particle (aggregates, planar

crystals, columnar crystals, and graupel) and for each microphysical parameter, a skewnorm

distribution is fitted to the empirical histogram calculated from the database, shown in Figs. 4.3

and 4.6. When generating the training set, the microphysical properties are then randomly

sampled from those distributions. Note that in practice, the PSD should also be truncated

to a realistic size range; the minimum size is taken to be 10 µm and the maximum size is the

largest diameter in MASCDB for a given particle type.
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Figure 4.3: Histograms of the microphysical parameters in the MASC database. PC: planar crystals, AG:
aggregates, CC: columnar crystals, GR: graupel

This way, all parameters are sampled independently, with the exception of am andαa for which

we applied a different method. As pointed out in Grazioli et al. (2022), a strong correlation

exists between am and bm , and between αa and βa ; thus, empirical fits are used from which

am (resp. αa) is sampled for a given bm (resp. βa), with the addition of randomness using

the RMSE of the fit (Figs. 4.4 and 4.5). In doing so, we avoid including completely unrealistic

(am ,bm) or (αa ,βa) pairs in the synthetic dataset, which would be detrimental to the overall

framework.

Figure 4.4: Relation between exponent and prefactor of mass–size relations for different particle
types, computed using MASCDB. Literature values are added for comparison. HK87: Heymsfield and
Kajikawa (1987); Mitch90: Mitchell et al. (1990), LH74: Locatelli and Hobbs (1974); SCH10: Schmitt and
Heymsfield (2010); Mitch96: Mitchell (1996).
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Figure 4.5: Same as 4.4 but for area–size relation. Literature values are added for comparison. Mitch96:
Mitchell (1996); HM03: Heymsfield and Miloshevich (2003).

The definition of aspect ratio Ar is slightly different between the MASC dataset and the SSRGA

parameterization: in the former, it is equal to the ratio of minor axis length to major axis length

(Garrett et al., 2015), while the latter—as mentioned earlier—defines it as particle dimension

along the direction of the radar beam, divided by maximum dimension. After some empirical

exploration, it was decided to use nonetheless the histograms from MASCDB, given that the

distributions were quite broad, indicating that this difference in definition should not bias

the retrieval. This is also consistent with the fact that particles are modeled in PAMTRA with

their larger dimension aligned with the horizontal axis. IWC is the only microphysical quantity

of Table 4.1 for which MASCDB does not provide estimates. It was decided, based on the

literature (Noh et al., 2013) and preliminary analyses of aircraft in situ measurements during

ICE GENESIS, to sample it from a negative exponential distribution with a mean of 0.5 g m−3.

Generation of the training set

Each item of the dataset is generated through the following procedure.

1. A particle type is randomly sampled among the four aforementioned types. Given the

large variety that exists within the aggregate category, as observed in MASCDB, it is given

more weight in the sampling procedure (aggregates: 40%; planar crystals: 20%; graupel:

20%; columnar crystals: 20 %).

2. Microphysical descriptors are randomly sampled using the MASC-based distributions.

3. PAMTRA is run on these descriptors, under the previously stated assumptions. The cor-

responding Doppler spectra are computed for 9.48 and 94 GHz (frequency of the radars

used in this study, see Sect. 4.4.2), with 512 bins and a Nyquist velocity of 6.92 m s−1.
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4. Then, turbulent broadening and spectrum shift due to radial wind are added, with

randomly sampled values, different for X- and for W-band. Including these variables

will allow the retrieval to handle possible velocity offsets in the X- and W-band spectra

caused by beam misalignment, or differences in spectral broadening due to the dif-

ferent beam widths. While these could be computed directly in PAMTRA, it was more

computationally efficient to implement them in post-processing in a vectorized way.

• The radial wind parameter accounts for the velocity shift of the spectrum that

could be caused by vertical wind and beam misalignment. It is randomly sampled

within [-2, +2] m s−1, i.e., in the typical range of vertical wind in non-convective

precipitation.

• The broadening parameter is the size of the Gaussian broadening kernel which

includes the effect of turbulent eddies and other possible causes of symmetrical

broadening (e.g., horizontal wind, beam width). It is computed by randomly

sampling a value of atmospheric turbulence, represented by the eddy dissipation

rate (sampled from a negative exponential distribution with 10−3 m2 s−3 mean,

consistent with literature standards, e.g., Sharman et al., 2014). The resulting

broadening is derived following Shupe et al. (2008, Eq. 4); the radar settings (e.g.,

beam width) used in these equations are those of the W- and X-band radars used

in this study, described in Sect. 4.4.2.

5. Finally, for computational reasons, X- and W-band spectra are both reduced to 256

points through bin averaging.

Ultimately, each item of the synthetic dataset contains an input vector with 13 dimensions

(see Table 4.1) and the corresponding simulated Doppler spectra (X- and W-band) with 256

bins each. Figure 4.6 illustrates the distribution of the non-microphysical input features (i.e.,

other than those shown in Fig. 4.3) in the synthetic dataset. We underline that this dataset

contains information only at the scale of the simulated radar sampling volume at a given range

gate—not full spectrograms.
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Figure 4.6: Same as Fig. 4.3, for the other descriptors (not from MASCDB) in the synthetic dataset.

4.4.2 X- and W-band Doppler spectrograms

In this section, we present the experimental dataset used in the second part of the pipeline, for

the training of the encoder. Data from the X- and W-band vertically-pointing Doppler radars

ROXI and WProf are used, which were located at les Éplatures airport, in la Chaux-de-Fonds,

during the ICE GENESIS campaign (see Chapter 2). The properties and settings of both radars

are recalled in Table 4.2. As an important pre-processing step, the radars were cross-calibrated

and an attenuation correction was implemented at W-band (similarly to Kneifel et al., 2015),

as detailed here.

Table 4.2: Properties and parameters of WProf and ROXI during ICE GENESIS. WProf uses three chirps,
with ranges as follows: chirp 0: 104-998 m, chirp 1: 1008-3496 m, chirp 2: 3512-8683 m; when applicable,
the properties for each chirp are separated by "/". The maximum range of ROXI is 6.4 km.

WProf ROXI

Frequency (GHz) 94 9.4
Transmission FMCW, simultaneous transmit/receive pulsed

3-dB beam width (◦) 0.53 1.8
Sensitivity (dBZ) [at range (km)] -45 [0.5] / -41 [2] / -39 [5] -19 [2]

Time resolution (s) 5 3
Range resolution (m) 7.5 / 16 / 32 50

Nyquist velocity (m s−1) 10.8 / 6.92 / 3.3 11
Velocity resolution (m s−1) 0.02 / 0.014 / 0.013 0.1
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X-band calibration drift

An issue was encountered with the calibration of ROXI, which was found to be fluctuating

in time, for a reason that is not fully clarified yet. We believe that it could be related to a

hardware artifact causing the output power or received secondary wave trains to fluctuate; the

investigation of this issue is beyond the scope of this work. In addition to these calibration

variations, the occasional presence of wet snow on the antenna was found to affect the

measurements, despite frequent manual removal. In order to correct for this, we used ZH

profiles of MXPol (extracted from RHIs remapped to a Cartesian grid, at the horizontal distance

corresponding to the location of ROXI) as a reference. Although these are collected at a lower

time resolution, they were sufficient to correct for the calibration fluctuations and wet snow

antenna attenuation.

W-band attenuation correction

Once the X-band data is considered reliable enough, we focus on the correction of W-band

attenuation by following the method described in Kneifel et al. (2015):

• Gaseous attenuation: atmospheric profiles are taken from hourly COSMO-1 analyses

(Consortium for Small-scale Modeling, 2017, run with a 1-km horizontal grid resolution),

and the corresponding profile of gaseous attenuation is computed using PAMTRA.

• Snowfall attenuation: We use a baseline Ze,X –IWC relation (IWC = 0.015 Z 0.44
e,X , Kneifel

et al., 2015; Boudala et al., 2006, with Ze,X in linear units) to estimate the profile of snow

and ice content, and the corresponding attenuation profile is obtained considering that

ice attenuates around 0.9 dB km−1 (g m−3)−1 (Nemarich et al., 1988).

• SLW attenuation: this is likely the most crucial and the most error-prone step, con-

sidering that no measurements of the LWC profile are available. We make use of LWP

estimates retrieved from measurements of the 89 GHz radiometer coupled to WProf

(Chapter 3), and, for lack of more refined information, we assume a uniform LWC profile

in the cloud/precipitation column, identified as all range gates with Ze,W >−30 dBZ. The

corresponding attenuation profile is then computed with PAMTRA, using the COSMO

atmospheric profile and assuming a monodisperse cloud drop size distribution with a

diameter of 20 µm. As for the brightness temperature simulations of Chapter 3, there is

little to no sensitivity to this choice of distribution as long as the liquid drops are can be

approximated as Rayleigh scatterers, which is the case for cloud droplets.

The mean two-way path-integrated attenuation (PIA) for each of these categories is respec-

tively 0.3, 0.4 and 1.7 dB, on the entire dataset used. Additional details are provided in Ap-

pendix A to verify the self-consistency of this approach. W-band reflectivity and Doppler

spectrograms are then corrected using the cumulative attenuation profiles. In a final step,

as in Dias Neto et al. (2019), the reflectivity values at X- and W-band are cross-corrected by
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selecting areas close to cloud top and with low reflectivity, and correcting WProf with the

mean reflectivity offset in these regions (regions within 1 km of cloud top and Ze,X <−3 dBZ

were used; if a lower Ze,X threshold is used, too few points are available). This relies on the

assumption that near cloud top, small ice crystals (with low reflectivity) are approximated by

Rayleigh scattering at both frequencies, for which the DFR is 0 dB.

A further note should be added regarding one event in the dataset (22 January) which featured

rain at ground level during a few hours before a transition to snowfall in the evening. Here,

step 3 of the method described could not be implemented because the LWP retrieval is

contaminated by low-level rain. The other steps were performed similarly, and only data above

the melting layer was used for the retrieval. Overall, this mitigates attenuation-related issues

but cannot eliminate them. In particular, the presence and amount of SLW is difficult to assess

and correct accurately.

Data remapping

After these post-processing steps, the spectrograms of both radars are remapped to a common

grid, by averaging in time (with a resolution of 20 s), interpolating in range (resolution of

50 m), and average-binning the velocity to the same bins as the synthetic dataset, with 256

bins and a velocity cutoff vN yq = 6.92 m s−1. Only time frames with detectable signal in both

frequencies are used, leading to a total of ∼ 9000 profiles, corresponding to around 45 hours of

measurements, collected between 22 January and 28 January.

4.5 Deep learning inversion framework

This section details the implementation of the two-step framework outlined in Sect. 4.3. For

designing and training both the decoder and the encoder NNs, the PyTorch library is used

(Paszke et al., 2019).

4.5.1 The decoder: a differentiable emulator of PAMTRA

The first part of the framework consists in developing a differentiable emulator of PAMTRA by

designing a deep learning model and training it on the synthetic dataset (Sect. 4.4.1). If viewed

in perspective with the technique of auto-encoders, this means learning the “decoder”, which

maps the latent space—containing the physical variables—to the high-dimensional mea-

surement space—the spectra. It was chosen to train the X- and W-band decoders separately

rather than use a single NN emulating both simultaneously; indeed, the two frequencies may

have slightly different smoothness or amplitude features, which justifies the use of distinct

architectures. Each decoder takes as input a vector of dimension 10 containing IWC, D0, bm ,

am , βa , αa , Ar , Tur bν, W i ndν and Lnoi seν, where ν is either X or W. They output Doppler

spectra with 256 points.
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Decoder architecture

The decoder model, whose architecture is illustrated in Fig. 4.7a, is designed as a NN with a

first part composed of fully-connected layers and a second part composed of convolutional

layers. More precisely, since the aim of this decoder is to increase dimensionality (from

10 to 256), we use one-dimensional transposed convolutions which are well suited for this

purpose (Zeiler et al., 2010). Since transposed convolutions alone can create artifacts, they are

combined with linear upsampling layers and standard convolutions, which ensure a smooth

output. In order to improve the training of the model, residual blocks (He et al., 2016) are used,

which contain skip connections and batch normalization steps (Ioffe and Szegedy, 2015). In

a nutshell, these techniques help mitigate issues caused by the depth of the model: they do

not per se improve the expressiveness of the NN, but they facilitate the training process. For

instance, the skip connections (illustrated in Fig. 4.7) allow to propagate information from

earlier layers to further stages of the neural network, and this reduces the risk of gradients

vanishing to zero during training (Balduzzi et al., 2017).

Decoder training

The synthetic dataset described in Sect. 4.4.1 is split into training, validation and testing

sets (80%–10%–10%). The input features are normalized using the statistics of the training

dataset, with the mean and standard deviation of each variable. For certain variables, the

natural logarithm is used instead of the original value, in order to have more homogeneously

spread distributions: this is the case for IWC, am and αa . The network is trained using the

Adam optimizer (Kingma and Ba, 2015), with mean square error (MSE) as a loss metric,

and with Xavier normal initialization of weights and biases (Glorot and Bengio, 2010). In

addition, the learning rate is periodically decreased with a scheduler. The network and

training hyperparameters are summarized in Table 4.3. It was observed that the spectra output

by the NN could have a tendency to slightly underestimate the peak values, because of a

flattening effect common in methods that use MSE as a loss metric. To counterbalance this,

we add to the main loss a secondary loss calculated as the MSE on the part of the spectrum

close to its peak (above 50% of its amplitude).

4.5.2 The encoder: retrieving a profile of latent variables

In the second part of the framework, another deep neural network, the encoder, learns the

inverse mapping. Taking as input dual-frequency spectrograms (i.e., an array of shape Nr g ×
256×2, with Nr g the number of range gates), it outputs vectors in the latent space, of shape

Nr g ×13, 13 being the total number of latent dimensions retrieved, as detailed in Table 4.1. In

this section, we refer to the first dimension as the range dimension, to the second one as the

feature dimension, and to the last one as the channel dimension.
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Figure 4.7: Architecture of (a) decoder and (b) encoder neural networks. In (a), the architecture of the
W-band decoder is shown; that of X-band is extremely similar with only slightly different kernel widths.
Skip connections indicate that the output of a given layer is kept and added further on to the output of
a residual block. Color coding indicates the type of each layer. The size of each layer, defined as the
dimension of its output, is indicated; when not stated, the layer is the same size as the previous one (to
the left). Note that for display reasons the velocity dimension is represented in the vertical in panel
(a) and along the horizontal direction in panel (b). The activation function is applied after each layer,
except before batch normalization.

Encoder architecture

The neural network designed for this part uses two-dimensional convolutions, which allow

reducing the feature dimension from 256 to 13. In order to keep the range dimension constant

(equal to Nr g ), padding is used, which means artificially increasing the size of the array,

by replicating the items in the first and last position along the range dimension, before

performing the convolution. Similar to the decoder architecture, residual blocks with skip

connections and batch normalization steps are used. Additionally, average pooling along the

feature dimension is performed after each residual block. The size of the convolution kernels

along the range dimension gives a sense of the scale at which we can expect meaningful

spatial correlation, both in the latent space and in the measured spectrograms. It is, however,

not directly interpretable: as the NN contains stacks of convolution layers, the field of view
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progressively increases with the model’s depth; the output of the NN at a given range gate is

influenced not only by its closest neighbors but also by range gates which are further away.

The full architecture of the encoder is displayed in Fig. 4.7b.

Encoder training

The encoder is trained using the radar data presented in Sect. 4.4.2. The spectrograms are

normalized using the same statistics as in the decoder part (means and standard deviations

of the synthetic training set spectra). Rather than using the entire Doppler spectrograms

(Nr g = 100) as one training item, chunks of the spectrograms are used with Nr g = 25, and are

sampled in the following way: the first chunk corresponds to ir g = 0..24, the second chunk to

ir g = 5..29, the third to ir g = 10..34, etc., with ir g being the range gate index. The dataset is then

randomly shuffled at each epoch during training. Rearranging the dataset in this way makes

training both more tractable, thanks to the smaller size of each item, and more robust, due to

the data augmentation, which helps avoid local minima during the training process. During

training, the encoder output is passed as input to the X- and W-band decoders, which output

reconstructed spectrograms. The reconstruction loss is the MSE between the reconstructed

(S̃W ,S̃X ) and the original spectrograms (SW , SX ): Loss = (S̃X −SX )2+(S̃W −SW )2. The encoder

parameters are then updated at each step to minimize this loss, here with the Adam optimizer

(Kingma and Ba, 2015). Training parameters are reviewed in Table 4.3. It is important to note

that the decoder parameters are frozen at this step: only the encoder is being learned; this

differs from classical auto-encoder models, for which the decoder and encoder are learned

simultaneously.

Table 4.3: Hyperparameters of the encoder and decoder neural networks.

Hyperparameter Decoder Encoder

Activation ReLU ReLU
Range of kernel sizes (range dim. × vel. dim) 1× (2−7) 3× (3−7)

Number of input channels 1 2
Number of inner channels 30 30

Number of linear layers 3 0
Number of neurons in linear layers 60 -

Total number of parameters 35000 150000
Padding mode replicate replicate

Loss MSE MSE
Optimizer Adam Adam
Batch size 250 15

Number of epochs 3 200
Learning rate (initial) 1e-3 1e-3

Optimizer epsilon 1e-8 1e-6
Scheduler step / rate 0.6 / 0.2 90 / 0.5

Parameter initialization Xavier Xavier
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Estimates of the latent features are then obtained from the output of the encoder, after inverse

normalization and exponential transform for those variables whose logarithm was used as

input to the decoder (see Sect. 4.5.1). To prevent occasional convergence toward unrealistic

values in the latent space (e.g., D0 < 0 mm), an additional constraint was incorporated into

the loss term to penalize latent values outside of a manually defined range; for a given feature

x with realistic bounds xmi n and xmax , this secondary loss reads: Lsec (x) = 1(x<xmi n ) × (x −
xmi n)2 +1(x>xmax ) × (x −xmax )2. *

4.5.3 Ensemble approach for uncertainty quantification

In order to estimate the uncertainty of the retrieval, an ensemble approach is used: several

runs are performed for both the decoders and the encoder, each trained independently with

random weight and bias initialization (Glorot and Bengio, 2010). In the end, a total of 50 runs

are used to compute mean values and standard deviations for each retrieved latent variable.

This is an important point, as it both ensures a greater robustness of the retrieved values,

which are less likely to reflect local minima, and provides an uncertainty estimate for the

retrieval. This is especially relevant given the under-determination of the problem: with

this ensemble approach, we can illustrate the uncertainty related to the remaining intrinsic

ill-posedness of the model. On the downside, this implies a lengthier process since training is

a computationally demanding task that typically takes a few hours on a standard GPU.

4.6 Results: training convergence and accuracy

This section is dedicated to the evaluation of the pipeline and the verification of its conver-

gence, which is a necessary step before examining the retrieved latent variables themselves.

4.6.1 Decoder

The training of the decoder networks was successful, with the loss function decreasing with

the number of batches perused until it plateaus. It was verified that increasing the training set

size did not result in a change of this plateau value, meaning that the training dataset was large

enough for the chosen NN complexity. Since the loss function (MSE on normalized spectra), is

not easily interpretable to assess the performance of the model, another metric was defined to

quantify the overlap of two spectra (Eq. 4.1). O(S, S̃) is equal to 1 (100%) when the spectra are

identical, and to 0 when they are completely disjoint. Figure 4.8 can be helpful to understand

this definition.

O(S, S̃) = 0.5

[∫ vN Y Q
−vN Y Q

min[S∗(v), S̃∗(v)]d v∫ vN Y Q
−vN Y Q

S∗(v)d v
+

∫ vN Y Q
−vN Y Q

min[S∗(v), S̃∗(v)]d v∫ vN Y Q
−vN Y Q

S̃∗(v)d v

]
(4.1)

*1(x<xmi n ) is equal to 1 when x < xmi n and to 0 otherwise.
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• Here, S is the reference spectrum (target), and S̃ is the model output (whose quality we

want to assess).

• S and S̃ are offset as S∗ = S −min(S) and S̃∗ = S̃ −min(S), where min(S) is the global

minimum of S; i.e., we substract min(S) to both S and S̃. S∗ and S̃∗ are introduced

to bring the base level of the target spectrum to 0, otherwise, the integrals would be

dominated by the noise rather than the signal. Note that both spectra are offset with the

same value (min(S)), which allows to identify discrepancies in the absolute reflectivity.

• The first term of the sum in O(S, S̃) is the hatched area divided by the blue area (Fig. 4.8);

the second term is the hatched area divided by the pink area. Both terms are needed

to account for cases when S̃ would be broader than S (i.e., when S̃ would overlap S

completely), and when S̃ would be narrower than S (i.e., S̃ overlapped by S).

Figure 4.8: Illustration of the overlap metric. The spectra were created for illustration purposes and are
not part of the dataset. In this example, the value of the overlap metric is 0.65 (65%).

Examples of model outputs on the synthetic testing set are shown in Fig. 4.9. On the synthetic

testing set, the overlap for X-band (resp. W-band) is of 90.7% (resp. 94.8%), as an average

over five different runs with random initialization. This reflects a good, although not perfect,

performance of the algorithm. Looking at a few examples of individual spectra, it comes

across that the model has a slight tendency to underestimate the peak of the spectrum (see,

for example, the X-band spectrum chosen in Fig. 4.9b), despite the secondary loss that was

used; however, the rather good overall agreement between target and output spectra suggests

this is not a critical issue. Additionally, we observe that performance is slightly worse for X-

than for W-band spectra, in spite of some efforts to adjust the neural network architectures

independently to improve the accuracy of each model. This could be related to the fact that

W-band spectra have a lower noise level, meaning the actual signal (the peak) occupies a larger

part of the spectrum than for X-band, which could in turn facilitate learning.
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Figure 4.9: Examples of results on the synthetic testing set of the decoders, showing the decoder output
(dashed red) and the target PAMTRA-generated spectrum (black line) at (a) W- and (b) X-band. The
examples were chosen to reflect some of the typical behaviors and possible artifacts that were observed;
the X- and W-band examples do not correspond to the same microphysical properties.

4.6.2 Encoder

Training of the encoder is also successful: the full pipeline is able to reconstruct original

spectrograms in a satisfactory manner, as is visible in Figure 4.10. Only W-band spectrograms

are shown but results are visually very similar at X-band. The overlap metrics are slightly below

the ones of the decoder alone (86% and 91% for X- and W-band spectrograms, respectively).

This slight decrease can be expected for several reasons: first, the real spectrograms include

high-shear regions with significant turbulent broadening (which can be visually identified

as regions with suddenly much wider spectra, along with variable velocity, e.g., in Fig. 4.10

below 500 m), which the model cannot be expected to resolve perfectly. Then, some time

steps include bimodal spectra (e.g., 2.5 km–3.5 km) which the pipeline in its current state is

not able to replicate. When looking only at spectrograms with moderate apparent turbulence

(e.g., 0.5 km–1.5 km), and strict unimodality, the overlap metrics are similar to the decoder.

Finally, it is also empirically observed that in some cases (Fig. 4.10e) the model can slightly

underestimate the peak of the spectrograms, which is a propagation of the decoder behavior.

As an important safety check, it is also verified that running PAMTRA on the latent variables

also leads to spectrograms close to the original ones (Fig. 4.10c).

Let us point out at this stage that, unlike most machine learning models, which are trained on

a dedicated dataset and then implemented on independent data, the encoder is here trained

directly on the data of interest. Indeed, the aim is not to create a generic model that can

be used to retrieve microphysical variables from any dual-frequency spectrogram: rather,

the aim is to find the latent variables which minimize the reconstruction error on specific

measurements. The encoder can learn any relevant feature from the input data to achieve

this goal. In that sense, overfitting the data, which can be an issue in usual machine learning

problems, is not a concern when training the encoder. It is, however, preferable to train the
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Figure 4.10: Examples of W-band spectrograms: (a) measured, (b) reconstructed through the pipeline,
and (c) reconstructed in PAMTRA from the learned latent features. Corresponding spectra from selected
altitudes are displayed in (d), (e), and (f); they are indicated with dashed white lines in the spectrograms.
The reconstruction of X-band spectrograms (not shown) is of similar quality.

model on a large enough dataset rather than just a few spectrograms: this reduces the risk

of converging toward local minima that would correspond to non-physical combinations of

microphysical parameters.

4.7 Conclusions

In this chapter, we introduced a new method for the retrieval of seven microphysical properties

of snowfall from dual-frequency Doppler radar spectrograms. The approach relies on a two-

step deep learning framework: a decoder network serves as a differentiable gate-to-gate

emulator of a known radiative transfer model, while the encoder network learns to map

the Doppler spectrograms to full profiles of microphysical variables. To our knowledge, no

previous method allows for the joint retrieval of these descriptors with this high spatial and

temporal resolution. In addition, the proposed method allows, through its design, to overcome

some usual challenges of Doppler spectral retrievals, like the need for perfectly vertical beam

alignment, or the requirement of very low turbulence.

This chapter was dedicated to setting up the theoretical framework and detailing the deep

learning models. It was then verified that the decoder and encoder networks converge and

have reasonable accuracy. The next chapter will assess the quality of the framework by focusing

on the accuracy of the retrieved microphysical variables themselves. For this purpose, we will

make use of the multi-sensor measurements in the ICE GENESIS dataset.
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5 Dual-frequency spectral radar retrieval
of snowfall microphysical properties: im-
plementation and evaluation on the ICE
GENESIS dataset
In close connection with Chapter 4, this chapter focuses on the implementation of the pro-

posed deep learning microphysical retrieval framework on the ICE GENESIS dataset. The text

is adapted from Sections 5–7 of the published article:

• Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas

Viltard and Alexis Berne (2023): Dual-frequency spectral radar retrieval of snowfall

microphysics: a physics-driven deep-learning approach. Atmospheric Measurement

Techniques, 16(4), 911–940, doi: 10.5194/amt-16-911-2023.

The implementation of the retrieval on the dataset, the comparisons of retrieved to in situ

values, and the sensitivity analyses, were conducted by Anne-Claire Billault-Roux with input

and supervision from Alexis Berne. Aircraft in situ data were processed by Louis Jaffeux.

5.1 Summary

The retrieval framework presented in Chapter 4 is implemented on X- and W-band data from

the ICE GENESIS campaign. The accuracy of the retrieval is assessed through comparisons

with collocated aircraft in situ measurements during three precipitation events. An overall

good agreement is found with, however, a bias in retrieved D0 values. The main limitations of

the method are discussed, together with its sensitivity to the underlying assumptions.

Statistics of retrieved snowfall microphysical properties during ICE GENESIS are then pre-

sented and analyzed. Overall, the proposed framework opens up possibilities for a detailed

characterization of snowfall microphysics on larger datasets, with the seven retrieved micro-

physical descriptors of snow particles providing relevant insights into snowfall processes.
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5.2 Introduction

In the previous chapter, a new deep-learning-based framework was introduced to retrieve

microphysical properties of snowfall from dual-frequency Doppler spectrograms. It relies

on a two-step architecture inspired from auto-encoder neural networks. The microphysical

descriptors are viewed as the dimensions of a latent space to which the spectrograms can be

mapped. The decoder neural network emulates a physical radiative transfer model, which

generates Doppler spectra from a set of snowfall properties. The encoder NN ingests dual-

frequency spectrograms and maps them to the latent space, from which the pre-trained

decoder produces reconstructed spectrograms; the encoder is trained by minimizing the

reconstruction error. It was verified that both the decoder and the encoder neural networks

were trained adequately. The former was trained, validated, and tested on a synthetic dataset;

it reproduces accurately the spectra generated with a physical scattering model (PAMTRA). The

training of the encoder also converges, and the spectrograms reconstructed by the pipeline

are a reasonably good approximation of the original measurements.

ICE GENESIS (Chapter 2), with its multi-sensor, ground-based and airborne suite of in situ

and remote sensing instruments, provides a rare opportunity to validate the approach more

thoroughly and assess the accuracy of its underlying assumptions. In this chapter, we discuss

the implementation of the algorithm on the ICE GENESIS dataset in a qualitative and quan-

titative way, using data presented in Sect. 5.3. Comparisons of retrieved properties against

reference measurements are conducted in Sect. 5.4 and 5.5; in Sect. 5.6, we identify the main

limitations of the framework in its current state. We finally illustrate (Sect. 5.7) its results on

45 hours of cloud and precipitation measurements during ICE GENESIS, and provide some

statistical perspectives on the snowfall microphysics that were sampled during the campaign.

5.3 Data for model evaluation

In this section, we detail the components of the ICE GENESIS dataset that are used for the

assessment of the retrieval. They include ground-based and airborne radar products, as well

as in situ aircraft measurements.

5.3.1 Polarimetric radar

The polarimetric X-band scanning radar MXPol (Schneebeli et al., 2013), deployed 4.8 km

away from the main site, performed routine range-height indicator (RHI) scans in direction

of ROXI and WProf. Hydrometeor classification with demixing (Besic et al., 2016, 2018) was

implemented on these measurements to estimate the proportions of hydrometeor types in

the sampled volume. From the RHIs, remapped to a Cartesian grid, profiles are extracted over

the main site with a horizontal resolution δx =±500 m, using only elevation angles below 45

degrees. The time series of hydrometeor classification extracted in this manner will be used

qualitatively as an independent tool to assess the performance of our microphysical retrieval.
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5.3.2 Aircraft in situ measurements

The airborne in situ data are particularly valuable for the quantitative evaluation of the retrieval.

In this work, we use airborne measurements from three flights of the Safire ATR 42 (22, 23,

and 27 January), with data from several probes (see Chapter 2). First, the CVI provides a

measurement of TWC, and the CDP-2 measures LWC; from those quantities, an estimate

of IWC is obtained as IWC = TWC−LWC. Two imaging probes are also used, the 2D-S and

the PIP, sampling respectively from 10 µm to 1.28 mm and 100 µm to 6.4 mm. From these

images, the method of Leroy et al. (2016) is used to compute the PSD and derive the following

microphysical descriptors: mean aspect ratio*, mass–size power law coefficients, and area–size

power law coefficients. In order to estimate the D0 parameter, an exponential distribution

is fitted to the PSD (leaving out small particles with Dmax < 800 µm, since it was empirically

noted that these did not always follow this exponential behavior). This approach was chosen

rather than computing moments from the in situ PSDs, as those could potentially be affected

by the size cutoff at 6.4 mm, while the slope of the distribution is expected to be a more

robust indicator. For the mass–size parameters, in addition to the CVI closure method of

Leroy et al. (2016), another method is used for particle-by-particle mass reconstruction based

on Baker and Lawson (2006); the methods are respectively denoted as “CV I ” and “BL”. All

aircraft-based microphysical descriptors are computed using 5-second running averages of

the measurements.

5.3.3 Airborne radar retrieval

The aircraft was also equipped with an upward-looking W-band radar, RASTA, from which

values of IWC are derived following Delanoë et al. (2007), and hereafter denoted with the

“R AST A” subscript. In order to compare IWCR AST A to in situ measurements, the closest valid

radar gates are used, which correspond to a vertical distance of 150 to 250 m above the aircraft.

For the comparison between airborne RASTA retrievals and our inversion model, only time

steps when the aircraft overpasses the ground site are used, i.e., when the aircraft is within a

1 km horizontal distance to the ground site (distance chosen to allow for a sufficient number

of points in the comparison).

*The aircraft in situ aspect ratio is defined as the ratio of minor axis length to maximum dimension of the
particle’s 2D projection.
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5.4 Qualitative assessment of the retrieval

5.4.1 Microphysical parameters

This section presents a qualitative perspective on the retrieval results, based on a snowfall

event that took place on 23 January 2021. Figure 5.1 features height–time plots of selected

radar variables (left column) and retrieved microphysical descriptors (right). The radar data

include Ze,X , DFR, MDVW and SWW , as well as the hydrometeor classification from MXPol.

It is noteworthy that the latter classification, derived from polarimetric variables, is fully

independent from WProf and ROXI spectrograms. The microphysical variables included in

the right panels are IWC, D0, bm , βa , and Ar . The variables am and αa , not shown, are highly

correlated with respectively bm and βa (see e.g., Fig. 5.6).

Figure 5.1: Height–time plots of radar measurements and microphysical retrievals. The left panels
contain radar data: (a) Ze,X ; (b) DFR; (c) W-band MDV; (d) W-band SW; (e) MXPol hydrometeor
classification with demixing showing the proportion of the three main particle types identified: here
aggregates, rimed particles and crystals; (f) time series of retrieved LWP (Chapter 3). The right panels
feature microphysical retrievals: (g) Ice water content; (h) Size parameter D0; (i) Area–size exponent βa ;
(j) Aspect ratio Ar ; (k) Mass–size exponent bm . The temperature contours are from COSMO-1 hourly
analyses.
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A first general observation is the persistence of spatiotemporal structures visible in the radar

data, like the fall streaks, in the microphysical fields. While the pipeline implicitly took into

account the spatial consistency of the measurements (through the use of convolutions), the

temporal features are never used in the training of the model. It is thus reassuring that the full

spatiotemporal features are well captured by the retrieval.

The retrieved values are also fairly consistent with the physical interpretation that stems from

the radar measurements. IWC correlates quite strongly with Ze,X values, i.e., large IWC values

are retrieved for high reflectivity measurements (e.g., around 15:10 and 15:50 UTC). The size

parameter D0 also matches the intuition, with small diameters near cloud top, and some

localized pockets with large values such as around 15:10 between 1 and 2 km range, which

correspond to regions of large DFR. The D0 time series also agrees seemingly well with the

hydrometeor classification that tends to identify aggregates in regions where D0 is larger (with,

for example, the same fall streak around 15:10 UTC).

The βa exponent of the area–size relation is smaller when Ze,X and DFR are low, which is

compatible with small non-disk-like particles such as columnar crystals, while larger values

could indicate aggregates or rimed snowflakes.

Somewhat more noisy are the mass–size exponent bm and the aspect ratio Ar , although

their values and spatial trends still seem reasonable. They are rather correlated, which is not

unrealistic: particles with an aspect ratio near 1 are rounder and thus closer to spheres, which

in turn, have a bm close to 3. Indications of riming in the hydrometeor classification (visible as

yellowish-red regions) roughly correspond to regions with larger Ar and bm , as expected from

rimed particles (e.g., 15:10 between 0.5 and 1 km, 15:50 between 0 and 1.5 km, 16:00 around

1 km). Additionally, small values of bm and Ar are retrieved near cloud top, consistent with

pristine crystals, while fall streaks where high D0 values point to aggregation (15:00 to 15:20)

also have medium-high bm and Ar . A few time steps stand out with large values of Ar and bm ,

coinciding with regions where large SW and variable MDV suggest strong turbulence (16:00,

1 km). In such high-turbulence cases, the retrieval cannot be expected to perform perfectly as

the shape of the spectra is then largely dominated by turbulent broadening.

Let us add a few words about correlations between certain variables. As mentioned before,

some expected consistent behaviors are observed in the retrieval like the apparent correlation

between bm and Ar , or between D0 and βa . This is not in any way enforced by the pipeline,

since those variables are prescribed independently when generating the training set. The

situation is different with the correlations between am and bm (and αa and βa), which are

also expected: when building the training set (see Sect. 4.4.1), these variables were sampled in

a correlated way—with some noise included—to avoid completely unrealistic combinations,

and this may therefore influence the retrieval. However, the correlation between these vari-

ables is not explicitly enforced during the training of the encoder: it is therefore reassuring to

see that the model output still follows the expected behavior.

103



Radar retrieval of snowfall microphysics: implementation and evaluation

5.4.2 Other retrieved variables

In addition to the microphysical descriptors, the latent features comprise other quantities

which are required by the pipeline in order to reconstruct the spectrograms (Table 4.1). These

are not designed to serve a proper physical interpretation, but their behavior should still

be assessed. The noise level is only related to instrument properties and range, and not to

microphysical or atmospheric processes. As visible in Figs. 5.2a and b, the noise level estimates

are exactly what could be expected and reflect the evolution of the radar sensitivity with range.

At W-band, the abrupt change of sensitivity around 900 m range is due to the change of chirp.

Some artifacts are visible (Fig. 5.2b, 16:00 at 1 km), in the same regions of Fig. 5.1 where the

other retrieved values visually also appeared less reliable. This is likely related to the presence

of strong turbulence in these areas, which can be expected to affect the retrieval accuracy.

Figure 5.2: Height–time plot of additional retrieved variables: Noise level at (a) X- and (b) W-band;
Radial wind at (c) X- and (d) W-band; Broadening at (e) X- and (f) W-band. Note that different colorbars
are used in panels (a) and (b), and in panels (e) and (f).

The radial wind estimates serve to artificially correct for shifts of the Doppler spectra caused

either by vertical wind (up- or downdrafts), by contamination due to horizontal wind in the

case of imperfectly vertical radar beams, or by biases in the velocity–size relation of the forward

model. Their interpretation as a physical atmospheric quantity should be avoided. However,

it is rather reassuring to see in Fig. 5.2c and d that the X- and W-band radial winds have a

satisfactory cofluctuation: the opposite would be a problem since the MDV time series of

both radars are rather similar (not shown). Likewise, the broadening parameters are similar

in X- and W-band, and also somewhat follow SW (Fig. 5.1d). We recall that the broadening

parameters are not expressed in physical units, but as the size of the Gaussian kernel that

results in the observed broadening; they include all the broadening causes (not just turbulence,

but also e.g., horizontal wind) and are rather a side product of our retrieval than descriptors

of actual atmospheric dynamics. Nonetheless, a reasonable agreement is found (not shown)

when comparing these values to broadening estimates derived through classical methods

(Borque et al., 2016; Shupe et al., 2008), which rely on the temporal variations of MDV and on

wind profiles.
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5.5 Comparison to in situ data

In this section, we take a step further in the evaluation of the retrieval by performing quantita-

tive comparisons with airborne in situ measurements.

5.5.1 Ice water content

Figure 5.3 illustrates the retrieval results of ice water content in comparison with in situ

estimates. The IWC time series are displayed, first as a height–time plot to which the aircraft

trajectory is added (Fig. 5.3a), then along the aircraft trajectory to which retrieval outputs

are overlaid at time steps of overpasses (Fig. 5.3b). The comparison is overall good, with

satisfactory cofluctuations as well as reasonable quantitative agreement. For reference, we

also display IWCR AST A (Delanoë et al., 2007, see Sect. 5.3), which appears to fluctuate slightly

more.

Figure 5.3: (a) Height–time plot of IWC retrieval, to which the aircraft trajectory is overlaid (altitude as a
function of time); aircraft IWC values at time steps of aircraft overpasses (horizontal distance smaller
than 1 km) are shown as scattered points with the same colormap. Dashed vertical lines indicate
when the aircraft is within 500 m of horizontal distance to the radars. (b) Time series of water content
measured by the aircraft (TWC and TWC−LWC) and overlaid radar retrieval.

In Fig. 5.4a, the scatterplot of retrieved vs. measured IWC combines the results from the

three flights; the points are color-coded with Ze,X to illustrate that large IWC corresponds

to large reflectivity, as expected and already noted in the qualitative analysis. The error bars

illustrate the ensemble spread (standard deviation) of the retrieval realizations as described

in Sect. 4.5.3. This scatterplot confirms the robustness of the retrieval results and their good

correlation to the measured IWC (R = 0.87 in logarithmic scale), with, however, the existence

of a slight bias toward low values (-0.19 in logarithmic scale). Surely, the spread of the values

remains substantial, but it should be kept in mind that, even at times of overpasses, the aircraft

is not perfectly collocated with the radar measurements, and that the sampled volumes are
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not identical: the radar resolution volume is of the order of 103 −104 m3, while the aircraft

sampling volume is around 10−2 m3.

Figure 5.4: Scatter plots of retrieved vs. aircraft measurement of (a) IWC and (b) size parameter D0.
Each point corresponds to a time step when the aircraft is within 1 km horizontal distance to the radars.
Three flights are used (22, 23, and 27 January). The color indicates corresponding (a) Ze,X and (b) DFR.
The black vertical lines indicate the standard deviation of the retrieval ensemble.

5.5.2 Size parameter D0

Aircraft measurements do not provide a variable that can directly be compared to the D0

retrieved through our method. Hence, we use the values of D0 derived from the exponential fit

of the in situ PSDs (Sect. 5.3). In order to monitor the validity of this approach, the correlation

coefficients of the fits are also included in the time series, and are typically very high (often

R2 > 0.9, Fig. 5.5b). Our retrieval is superimposed to the time series in Fig. 5.5, and compared

to the in situ values in Fig. 5.4b using all available flights. While this was not perceptible in the

qualitative analysis, D0 retrievals actually show a strong bias (+1.3 mm) when compared to

aircraft measurements, leading to an overestimation of particle size. Possible causes for this

behavior are investigated in Section 5.6. This being noted, the cofluctuation between retrieved

and in situ D0 is nonetheless good (R = 0.74), which gives confidence that the retrieval is still

appropriate for process-oriented studies: there, even more than the actual values, the changes

and evolution of particle size can indicate the occurrence of specific snowfall growth or decay

mechanisms.
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Figure 5.5: As for 5.3, but for D0. (b) also includes R2 from the exponential fit to the aircraft PSD.

5.5.3 Mass–size and area–size relations

Mass–size and area–size power law coefficients are explicitly computed from the aircraft

measurements and can therefore be compared to our retrieval. However, the time series of

these aircraft quantities are highly noisy and thus point-to-point comparisons did not appear

meaningful; it was therefore preferred to perform a statistical analysis. We thus compare the

histogram of bm (resp. βa) estimated from aircraft observations during each flight (except

for the part of the flight to and from the campaign location), to the histogram of retrieved

bm (resp. βa) above the radars, during the time frame of the flights and in the altitude range

sampled by the aircraft, which excludes, for instance, regions near cloud top.

Figure 5.6: Histograms of (a) mass–size and (b) area–size exponents. Scatter plots of (c) mass–size and
(d) area–size exponent to prefactor, from retrieval and aircraft measurements (Sect. 5.3)
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The histograms of bm agree rather well (Fig. 5.6a), with a similar mode around 2.2, although

fewer values below 2 are retrieved from the radar measurements. In Fig. 5.6b, the histograms

again have relatively close peak values (around 1.6 for the retrieval and 1.7 for the aircraft).

There however, and for bm to a lesser extent, the histogram of retrieved values is much

narrower than the aircraft one. This is not too surprising, given the noisiness of the aircraft

measurements and considering that the volume sampled by the PIP and 2D-S probes is much

smaller than the radar volume—which automatically increases the variability and flattens the

distribution. With this in mind, these histograms support a rather good consistency of the

retrieval with the aircraft measurements. In addition, we verify that the relations between am

and bm (resp. αa–βa), retrieved and measured, are consistent: this is visible in Fig. 5.6c (resp.

d), where the scatter plots of am vs. bm (resp. αa vs. βa) are overlaid. Although not perfect,

the match is reasonable. Let us highlight that once again, retrieved βa values are narrower,

consistent with the histograms.

5.5.4 Aspect ratio

The last microphysical variable for which we can perform a comparison is the mean aspect

ratio: similarly to the mass–size exponent, Fig. 5.7a displays the histogram of retrieved and

aircraft values. A significant difference is visible in the modes, with the aircraft values around

0.45 and the retrieval mode around 0.6; this, however, is consistent with the difference in the

definitions of aspect ratio in each case. We recall that the aspect ratio retrieved through our

pipeline is Ar,v defined as the ratio of particle dimension along the vertical to maximum di-

mension, whereas the aircraft measurement is Ar,⊥, the ratio of minor axis length to maximum

dimension. Relating both quantities is not directly possible without having additional informa-

tion on particle orientation, but an intuition can be gained from Fig. 5.7b, where the relation

between Ar,v and Ar,⊥ is shown for particles randomly oriented within a certain angle (90◦

corresponds to completely random orientation). Using the relations of Fig. 5.7b, a transformed

histogram is included in Fig. 5.7a, showing the equivalent aircraft Ar,v assuming ellipsoidal

particles with random orientation within 75◦: it fits rather well with the retrieval. While this is

not per se rigorous, it gives a qualitative understanding of the observed discrepancy.

Figure 5.7: (a) Histogram of retrieved and aircraft-measured aspect ratio. (b) Illustration of the relation
between Ar,⊥ and Ar,v for particles with random orientation within a given angle θ; the various quanti-
ties are sketched in the bottom right of panel (b).
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Note that the aspect ratio values derived from the in situ images are themselves bias-prone,

due to the projection of three-dimensional particles in a two-dimensional space (Jiang et al.,

2017). This bias would, however, be opposite to what is observed here, and is likely not

dominant in our study. Another element to consider is that aspect ratio is assumed to be

the same across the particle size distribution, which may well be an oversimplification; in

particular, smaller particles may have smaller aspect ratios than aggregates, which would

affect the aircraft-derived quantity differently than the radar-based estimate.

5.6 Discussion

While the results are overall encouraging, the previous section highlighted some points that

call for further discussion. This section investigates the sensitivity of the pipeline to certain

key hypotheses and, in particular, identifies possible causes for the D0 bias.

5.6.1 Sensitivity to miscalibration and differential attenuation

One limitation of our framework is that it requires a good calibration of the radars, both abso-

lute and relative, as well as an independent correction of attenuation. As detailed in Sect. 4.4.2,

the issue of attenuation was tackled by implementing a correction of W-band reflectivity based

on estimates of gaseous, snowfall and liquid water attenuation. This correction method is,

however, error-prone, and we cannot exclude that reflectivity biases are present in the data.

The presence of supercooled liquid water cloud layers or wet snow can be particularly difficult

to identify and quantify, while attenuating strongly millimeter-wavelength signal (with e.g.,

path-integrated attenuation up to 5 dB for a liquid water path of 500 g m−2, Kneifel et al.,

2015). To assess the possible impact of inaccurate calibration or attenuation correction on the

retrieval, we investigate its sensitivity to reflectivity offsets, both absolute and relative.

Fig. 5.8 shows the mean bias of retrieved IWC and D0, computed as the mean difference

between retrieved values and aircraft measurements, when a constant offset in reflectivity

is added to the input X- and W-band spectrograms. The following behavior is observed, in

accordance with previous qualitative observations: IWC is especially sensitive to X-band

reflectivity (as illustrated in Fig. 5.8b and by the rather horizontal color gradient in Fig. 5.8a).

Rather, D0 is more sensitive to differential offset, i.e., to changes in DFR (as illustrated in

Fig. 5.8d and by the rather diagonal color gradient in Fig. 5.8c).

While this Ze calibration is undoubtedly a key factor in the uncertainty of the algorithm, it

does not appear to cause extreme divergence in the retrieval: the changes in D0 and IWC

shown in Fig. 5.8, while not negligible, are also not massive. In particular, Ze miscalibration

solely could not explain the observed D0 discrepancy: changing the DFR of -6 dB only brings

down the bias from 1.3 mm to around 1.0 mm.
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Figure 5.8: (a) Heat map of IWC bias as a function of X- and W-band Ze offset; the bias is computed
using the aircraft values as reference. (b) Different visualization showing IWC bias as a function of Ze,X

offset. (c) As for panel (a) but for D0. (d) As for panel (b) but for D0 bias as a function of DFR offset.

We note (not shown) that shifting the spectra by constant or relative velocity offsets, to mimic

one of the effects of radar mispointing, only minimally affects the retrieval of microphysical

properties, and mostly translates into changes in the retrieved radial wind.

5.6.2 Training set limitations

Another aspect of our framework that could cause a bias in the retrieval is if the training set

is too narrow. While special attention was paid to this potential issue as the microphysical

parameters were sampled from the MASC database, there is likely still room for improvement.

In particular, the size cutoff for good-quality images in the MASC is quite high and very

few particles with a diameter below 0.5 mm are accurately captured. For reference, Fig. 5.9

illustrates the histogram of D0 derived from MASC measurements (Grazioli et al., 2022) and by

the aircraft 2D-S and PIP probes during the ICE GENESIS campaign. The limitation is apparent:

the aircraft is able to capture much smaller particles, but not beyond a certain size, while

the MASC can detect large snowflakes but very few small particles. Along the same line, we

underline that the MASC can only provide observations of precipitating particles at the ground

level; although the instrument was deployed in numerous locations and temperature ranges,

it may not be sufficient to capture the full spectrum of in-cloud microphysical properties. The

framework would thus probably benefit from training the decoder on a larger dataset, that

includes a better representation of this smaller particle range. It is yet unlikely that this will

entirely resolve the size bias, for there is still an overlap between the aircraft-measured size

range and that on which the model was trained.
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Figure 5.9: Histogram of D0 from aircraft measurements during ICE GENESIS (red) and from MASC
measurements (MASCDB).

5.6.3 Scattering model

Surely one of the strongest hypotheses on which the pipeline was built is the parameterization

of the scattering model in forward simulations. As explained in Sect. 4.4.1, the default version

of PAMTRA was used which to this date (28/01/2023) assumes constant values for certain

parameters of the SSRGA, and allows changing two coefficients (κSSRG A and βSSRG A , see

Hogan and Westbrook, 2014 and online documentation, Mech et al., 2015). Several studies

suggest that more parameters are in fact needed and that their values can vary significantly

(e.g., Leinonen et al., 2018; Ori et al., 2021) depending on particle type and shape, among

others.

To get an empirical sense of how this could affect the retrieval, the approach described here-

after was followed. First, a few time and range gates were randomly selected from the dataset.

The corresponding retrieved values were then modified by adding a D0 offset ranging from

-1.5 to +2 mm, and PAMTRA simulations were run on the microphysical parameters obtained

(using the same settings as in Sect. 4.4.1). Parallel to that, the PAMTRA code was slightly

adjusted to allow for modification of the four literature coefficients of the self-similar Rayleigh–

Gans approximation (κSSRG A , βSSRG A , γSSRG A , ζSSRG A); new simulations were run for the

selected time and range gates, keeping the retrieved microphysics unchanged but randomly

changing the SSRGA parameters within ±10% of their original values. As seen in Sect. 4.4.1,

this is well within the typical variability of the coefficients calculated from simulating various

types of particles. The influence of modifications of (i) D0 and (ii) SRRGA coefficients was

measured by the change in the (total) dual-frequency ratio. The obtained results are illustrated

in Fig. 5.10 (see details in the caption): they suggest that moderate changes in the SSRGA

parameters could have an impact similar to varying the size parameter by approximately 1 mm

(-0.6 to +1.5 mm), which is a significant change. Taking this investigation a step further, the

influence of each of the four parameters can be computed independently by following the

same steps but modifying only one coefficient: it appears that the output is most sensitive to

βSSRG A and γSSRG A , which each cause amplitude changes corresponding to ∆D0 of at least
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±0.4 mm. Obviously, this empirical analysis cannot be directly translated into a quantitative

interpretation, yet it highlights that the scattering model can have a substantial influence on

the retrieval. This leads us to believe that the D0 bias observed when comparing our retrieval

to aircraft measurements is partly caused by an inaccurate or insufficient parameterization

of the radiative transfer model. In order to remedy this effect, a forward model with a more

subtle parameterization is likely required when designing the decoder training set; a more

accurate description could be obtained by using, for instance, pre-computed databases of

scattering properties calculated based on the DDA (e.g., Kuo et al., 2016; Lu et al., 2016).

Figure 5.10: Colored lines with scattered points: ∆DFR caused by adding a diameter offset ∆D0 on
microphysical descriptors of selected (time, range) gates. Horizontal lines: for each of these (time,range)
gates, maximum ∆DFR (positive and negative) caused by a modification of the SSRGA coefficients
within ±10%. For each selected (time,range) gates, the intersection of the horizontal and colored lines
gives a ∆D0 value which causes the same change in DFR as a change in SSRGA coefficients (worst case).
Dashed vertical lines show the mean of these ∆D0 values.

5.6.4 Shape of the particle size distribution

Another underlying hypothesis that was made when designing the pipeline and defining the

set of microphysical descriptors was to consider only exponential PSDs. This choice was

made to keep a minimal number of retrieved parameters at this stage. Yet, it is known that

multi-frequency signatures, on the one hand, and Doppler spectra, on the other hand, are

both affected by PSD shape (e.g., Mason et al., 2019; Barrett et al., 2019, respectively). Here, we

conduct a similar analysis as in the previous subsection: this time, since changes in the PSD

shape mostly influence the shape of the spectrum, we focus on the skewness of the W-band

spectrum (instead of the DFR) as a metric to understand how modifying the shape of the PSD

could influence the retrieval. A gamma distribution was assumed (N (D) = N0Dµ exp(−D/D1),

e.g., Petty and Huang, 2011), constraining D1 by keeping the effective diameter constant

(De f f = 3D0) and varying the shape parameter µ in the range [-2, +5] as observed in snowfall

(Mason et al., 2019). Figure 5.11 illustrates that changes in the PSD shape may have a similar

effect on W-band spectrum skewness as varying D0 of approximately 1 mm (-0.9 to +1.5 mm).

Here again, this observation is mainly qualitative and cannot be directly used to quantify the
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influence of PSD shape on the retrieved microphysical descriptors, but it does underline that

considering more complex distributions would be necessary to further refine the framework,

and that the assumption of an exponential behavior may also have a role in the observed D0

bias.

Figure 5.11: Colored lines with scattered points: relative change in W-band skewness γW (∆γW /γW )
caused by adding a diameter offset ∆D0 on microphysical descriptors of selected (time, range) gates, if
assuming an exponential PSD. Horizontal lines: for each of these (time,range) gates, maximum relative
change in γW caused by a modification of the PSD shape (assumed a gamma distribution, µ in the
range [-2, +5]); the maximum relative increase (resp. decrease) in skewness, in full line (resp. dashed) is
consistently obtained for µ= 5 (resp. µ=−2). For each selected (time,range) gate, the intersection of
the horizontal and colored lines gives a ∆D0 value which causes the same relative change in γW as a
change in PSD shape (worst case). Dashed vertical lines show the mean of these ∆D0 values.

In addition to these important hypotheses—SSRGA scattering model and assumption of ex-

ponential size distributions—we recall that other modeling choices were made during the

design of the synthetic dataset and the underlying physical framework, such as assumptions

on particle orientation and velocity–size relation, among others (see Sect. 4.4.1). These are

inevitably a simplification of the physical reality and may thus also influence the retrieval.

Another point should be briefly mentioned regarding small particles, which are Rayleigh scat-

terers at both X- and W-band. This means that, if a population is composed entirely of small

particles, the influence of particle size and number concentration is hardly distinguishable

in the spectrograms. The ill-posedness of the problem is reinforced and the retrieval could

be expected to have a reduced accuracy, even if the training set and scattering model were

improved.
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5.7 Snowfall microphysical properties during ICE GENESIS

Having in mind the encouraging results as well as the limitations of the retrieval, and being

aware of how its output may be affected by residual underlying assumptions, we now focus

on the results obtained on the ICE GENESIS dataset. Specifically, we take a closer look at the

microphysical properties retrieved during the ∼45 hours of available spectral dual-frequency

measurements in precipitation (from 22 to 27 January). Note that the estimation of snowfall

microphysical properties from cloud to ground, thanks to this radar-based retrieval, was

relevant to the ICE GENESIS project as it complements the more detailed, but much sparser,

aircraft in situ measurements. Figure 5.12 illustrates the time series on which the algorithm

is run and the retrieved IWC. As detailed in Chapter 2, a succession of precipitation events

were observed, with varying intensity (visible in Ze,X ), duration (widespread precipitation or

showers), and vertical structure (with echo top ranging from ∼1 km to 5 km above ground).

Figure 5.12: Height–time plots of (a) Ze,X and (b) retrieved IWC during the precipitation events on
which the retrieval was implemented.

In Fig. 5.13, we analyze in bulk the retrieved microphysical descriptors, first by considering

their distribution in altitude (panels a–e), then as a function of temperature T (panels f–j).

For the latter, temperature profiles over la Chaux-de-Fonds were extracted from COSMO-1

analyses run by MeteoSwiss at an hourly resolution. The 2-dimensional histograms shown

in these plots rely on all the available retrieved values (corresponding to the time series of

Fig. 5.12). For consistency with expected values, D0 was corrected using the bias computed

from the comparisons with in situ measurements (1.3 mm, Sect. 5.5); this is mainly for il-

lustrative purposes. We highlight that this statistical analysis of microphysical properties

during ICE GENESIS can only point to some basic trends; in reality, these properties result

from production, growth and decay processes that depend on the large-scale and mesoscale

features of the precipitating system (such as the vertical extent and structure of the cloud, the

moisture level, the availability of SLW, among others), which may vary significantly between

events as seen in Fig. 5.12. The lowest range gates (500 m above ground) were excluded, as

frequently contaminated by enhanced near-ground turbulent broadening.
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Figure 5.13: (a) Distribution of range gates with valid precipitation signal in the dataset; (g) Distribution
of temperatures in the range gates with precipitation signal. Statistics of retrieved microphysical
properties, in the form of 2-dimensional density plots; (b)–(f), as a function of range; (h)–(l), as a
function of temperature (values from COSMO-1 analyses). Full lines indicate the median values in
a given altitude or temperature bin; dashed lines show the 25% and 75% quantiles. D0 values were
corrected with a 1.3 mm offset.

In terms of general behavior, we note a smooth increase of IWC downwards (Fig. 5.13b), which

reflects the expected growth of snow particles as they settle, either by vapor deposition or

riming. Although sublimation is possible during snowfall events, it is unlikely to always take

place at the same altitude (at least in terrains like the Jura) and thus would not be visible in

those statistics. In terms of temperature, a similar trend is observed, with IWC increasing quite

regularly with T ; note that the irregular feature around -7◦C, also visible in other variables, is

related to the distribution of temperatures in the (time, range) gates studied (Fig. 5.13g), and

does not reflect a microphysical mechanism.

The characteristic size D0 also has a trend that increases downward (Fig. 5.13c), again compat-

ible with the classic snowfall growth processes, although less smoothly than IWC. Comparing

density plots of IWC and D0 as a function of temperature (Fig. 5.13h and i) may give some

intuition on this point. While IWC increases relatively smoothly with temperature, D0 grows

only slightly at low temperatures, with a more significant enhancement around -15◦C. This

is especially visible in the interquartile range and in the 75% quantile (which increases from

0.75 mm around -17◦C to 1.25 mm around -13◦C) and in the heat map itself, where large values

around 2 mm are only present below the -15◦C isotherm. We suggest that this effect is related

to dendritic growth occurring around these temperatures (in saturated conditions), which is

in turn favorable for the formation of aggregates (see Chapter 1). Aggregation alone does not
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lead to an augmentation of IWC, but of the particle sizes; this could explain the significant

increase of D0, with only mild gain in IWC, in this temperature range. Another rapid increase

of D0 occurs at temperatures above -5◦C, which can again be attributed to the highly efficient

aggregation in this warmer range (Hobbs et al., 1974).

When taking a closer look at the other variables, one can see that the fractal dimension bm

has a relatively low dependence on temperature, but still tends to increase with increasing

temperature, and more visibly with decreasing altitude, especially below 2 km above ground

(Fig. 5.13d, j). The aspect ratio behaves similarly, in a slightly more correlated way with altitude

and temperature, with rounder particles retrieved at lower altitudes (higher temperatures),

which is compatible with aggregation and riming processes (Fig. 5.13f, l). The latter, while

not strictly confined to a precise temperature range, is mostly expected at relatively mild

temperatures, where mixed-phase conditions are more frequent (e.g., LWC inflexion around

-18◦C in Korolev et al., 2003; < 10% of clouds containing liquid droplets for T< −20◦C in

Hogan and Kew, 2005). Riming might be responsible for a minor inflexion of bm and Ar

around -20◦C (Fig. 5.13h and j); another increase slightly above -15◦C, and again around

-5◦C, could be due to aggregation. It is not certain that the slightly decreasing trend of bm

(and to a lesser extent of Ar ) from -35 to -20◦C is statistically significant, given that fewer

data come from this temperature range. Nonetheless, pure depositional growth may result

in such a signature: at very cold temperatures, vapor deposition is not very efficient (cf.

slow increase of D0), leading to particles which are less elongated—if growing in a columnar

direction—and less extended in the planar directions—if they grow as planar crystals—than at

warmer temperatures, and therefore more sphere-like (higher bm). As temperature increases,

a possibly higher atmospheric vapor content allows for more active depositional growth of

crystals into oblate or prolate shapes, depending on the growth direction.

Finally, the behavior of the area–size exponent βa with altitude and temperature can be

summarized as follows (Fig. 5.13e, k): it is relatively constant and shows little spread at low

temperatures (high altitudes); a slight increase is noted for T >−20◦C which may correspond

to occasional riming, and another enhancement is visible at the aggregation temperatures

(-15 and -5◦C levels).

Note that these interpretations are based solely on a few snowfall events of the time-restricted

ICE GENESIS dataset and should therefore not be directly generalized. The implementation

of the algorithm on lengthier and possibly more diverse datasets would eventually allow to

support this analysis in a more robust way.
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5.8 Conclusions

The algorithm introduced in Chapter 4 could be assessed thoroughly by confronting the

retrieved quantities to in situ aircraft measurements which were conducted during the 2021

ICE GENESIS campaign. Overall, the comparisons with in situ data are highly encouraging

and support the validity of the framework, as good cofluctuations and similar statistics are

reported. Certain discrepancies were nonetheless observed: in particular, the retrieved values

of the size parameters are affected by a bias (+1.3 mm), for which possible explanations were

proposed. They point to limitations in the training set itself (in which small particles are

under-represented) and to assumptions in the scattering model (which relies on the SSRGA)

or the parameterization of the PSD (as an exponential distribution). These analyses open

up for possible improvements of the retrieval, particularly along the line of radiative transfer

modeling.

Meanwhile, in spite of these limitations, the method can provide relevant insights into snowfall

properties from the perspective of process-oriented studies whose focus is typically the relative

spatial and temporal evolution of microphysical variables, rather than their exact numerical

values. Building up on this, we analyzed the results of the retrieval on 45 hours of precipitation

collected during ICE GENESIS. Rough trends were described that are consistent with the

occurrence of distinct snowfall growth processes (depositional growth, riming, aggregation) in

certain altitude or temperature ranges during the campaign.

The approach could potentially be extended to retrieve other variables and further alleviate

the baseline microphysical assumptions. For instance, the restrictive hypothesis of exponen-

tial PSDs, whose limitations were discussed in Sect. 5.6.4, could be relaxed by considering

gamma or modified gamma distributions and retrieving their additional shape parameter(s). A

retrieval of the scattering coefficients themselves could eventually be considered; alternatively,

more accurate scattering calculations based on the DDA may be used when building the

training dataset. We also recalled that one drawback of the algorithm in its current state is that

it relies on attenuation-corrected data. Future improvements of the method could include the

retrieval of an attenuation profile, used to correct the spectrograms within the pipeline itself

in a recursive way.

It should be kept in mind that the addition of new parameters increases the computational

cost of the algorithm but also its ill-posedness, and that two-frequency Doppler spectro-

grams may not be sufficient to resolve it. Given the convincing results obtained recently with

triple-frequency data (such as the retrieval of snowfall properties from triple-frequency radar

moments proposed in Mróz et al. (2021a), or studies of Mróz et al. (2021b), and von Terzi et al.

(2022) where triple-frequency spectra are used to study the melting and dendritic growth

layers, respectively), it is likely that our method would gain in robustness and precision were a

third frequency to be included. Further extensions could also incorporate spectral polarimet-

ric variables, which could help retrieve more accurately certain geometrical properties of the

hydrometeors.
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The theoretical pipeline itself is an important contribution of this work, for it can be im-

plemented in other settings and for different types of inverse problems. One fundamental

difficulty of such problems is often their ill-posedness: several combinations of physical pa-

rameters can yield similar observations. The proposed approach mitigates this by learning

information from the spatial structure of the data thanks to convolutional neural networks.
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6 Distinct secondary ice production processes
observed in radar Doppler spectra: insights
from a case study

This chapter presents a case study of the ICE GENESIS campaign, where signs of secondary

ice production are analyzed with Doppler spectral and dual-frequency radar measurements.

The text is adapted from the submitted manuscript:

• Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons

Schwarzenboeck, Pierre Coutris, Athanasios Nenes, Alexis Berne (2023): Distinct sec-

ondary ice production processes observed in radar Doppler spectra: insights from a case

study. Under review for Atmospheric Chemistry and Physics, doi: 10.5194/egusphere-

2023-478.

The processing and analysis of the radar measurements were performed by Anne-Claire

Billault-Roux with input and supervision from Alexis Berne. Josué Gehring provided valuable

insights in the analysis of the synoptic context. Paraskevi Georgakaki conducted the WRF

simulations with input from Athanasios Nenes. Louis Jaffeux, Pierre Coutris and Alfons

Schwarzenboeck processed and analyzed the aircraft observations.

6.1 Summary

Secondary ice production (SIP), particularly within mixed-phase clouds, has an essential

role in cloud and precipitation microphysics and has been the subject of active research in

recent years. Substantial insights were gained by combining experimental, modeling, and

observational approaches. Remote sensing instruments, and among them meteorological

radars, offer the possibility to study clouds and precipitation in extended areas over long time

periods, and are highly valuable to understand the spatio-temporal structure of microphysical

processes. Multi-modal Doppler spectra measured by vertically-pointing radars reveal the

coexistence, within a radar resolution volume, of hydrometeor populations with distinct prop-

erties; as such, they can provide decisive insight into precipitation microphysics. This chapter
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leverages polarimetric radar Doppler spectra as a tool to study the microphysical processes

that took place during a snowfall event on 27 January 2021, in the Swiss Jura Mountains, during

the ICE GENESIS campaign. A multi-layered cloud system was present, with ice particles

sedimenting through a supercooled liquid water (SLW) layer in a seeder-feeder configuration.

Building on a Doppler peak detection algorithm, we implement a peak labeling procedure

to identify the particle type(s) that may be present within a radar resolution volume. With

this approach, we can visualize spatio-temporal features in the radar time series that point to

the occurrence of distinct mechanisms at different stages of the event. By focusing on three

30-minute phases of the case study, and by using the detailed information contained in the

Doppler spectra, together with dual-frequency radar measurements, aircraft in-situ images,

and simulated profiles of atmospheric variables, we narrow down the possible processes

which can be responsible for the observed signatures. Depending on the availability of SLW

and the droplet sizes, on the temperature range, and on the interaction between the liquid

and ice particles, various SIP processes are identified as plausible, with distinct fingerprints in

the radar Doppler spectra. A simple modeling approach suggests that the ice crystal number

concentrations likely exceed typical concentrations of ice nucleating particles by one to four

orders of magnitude. While a robust proof of occurrence of a given SIP mechanism cannot

be easily established, the multi-sensor data provides various independent elements each

supporting the proposed interpretations.

6.2 Introduction

Mixed-phase clouds (MPCs), in which ice crystals and snow particles coexist with supercooled

liquid water (SLW) droplets, have a key role in the atmosphere both in terms of their impact on

the Earth’s radiation budget (McCoy et al., 2016; Matus and L’Ecuyer, 2017) and on precipitation

processes (Mülmenstädt et al., 2015). MPCs are intrinsically unstable structures: without a

sustained source of SLW, the liquid phase tends to be depleted through the Wegener-Bergeron-

Findeisen process or riming (Korolev et al., 2017), leading to a full glaciation of the cloud. They

are, however, very frequently observed (e.g., in the Arctic, Intrieri et al., 2002, or in orographic

terrain, Lohmann et al., 2016) and there exist several means by which the liquid water content

is sustained: frontal or orographic lifting of the air masses, for instance, are associated with

vertical velocities sufficient to maintain supersaturation with respect to liquid water (Korolev

and Field, 2008; Georgakaki et al., 2021); small-scale vertical motion caused by turbulence

(Field et al., 2014), as well as cloud top radiative cooling (Morrison et al., 2012), also enable the

formation of supercooled cloud droplets.

Among the processes that occur in the mixed phase, the production of ice through secondary

processes has received substantial attention in recent years. Secondary ice production (SIP)

is thought to increase the ice crystal number concentration (ICNC) by up to several orders

of magnitude, which impacts the phase partitioning in MPCs (Atlas et al., 2020) and the

resulting overall radiation budget (Sun and Shine, 1994; Young et al., 2019) and precipitation

(Dedekind et al., 2021, 2023). Chapter 1, Sect. 1.2.4 listed the known SIP processes (Field et al.,
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2016; Korolev and Leisner, 2020), among which three are considered as dominant: Hallett-

Mossop (HM) rime splintering (Hallett and Mossop, 1974) active between -8◦C and -3◦C;

droplet shattering upon freezing (Takahashi and Yamashita, 1977; Phillips et al., 2018), which

requires at least drizzle-size drops (Wildeman et al., 2017; Lauber et al., 2018; Keinert et al.,

2020; Kleinheins et al., 2021); collisional breakup, facilitated in turbulent regions and in the

presence of rimed particles (Vardiman, 1978; Takahashi et al., 1995; Schwarzenboeck et al.,

2009; Phillips et al., 2017a,b).

Proof of SIP mostly stems from in situ observations showing that measured ICNCs considerably

exceed values that would result from primary ice nucleation, controlled by the concentration

of active INPs (Mossop et al., 1970; Hobbs and Rangno, 1985; Lloyd et al., 2015; Pasquier et al.,

2022). Additional evidence was obtained in refined setups, which could verify that some snow

crystals did not contain an INP (Mignani et al., 2019), and must have been generated through

SIP. Such measurements remain sparse and these approaches are difficult to implement for

a statistical characterization of SIP processes and their spatial and temporal dynamics. By

contrast, remote sensing observations, although indirect, provide invaluable complementary

insight into processes occurring in the entire atmospheric column. As seen in Chapter 3 of

this thesis, microwave radiometers allow estimating integrated quantities like the LWP, which

is relevant to monitor the formation and evolution of MPCs (e.g., Ramelli et al., 2021). Time

series of radar moments can convey further information on snowfall growth and decay—

through the reflectivity, Ze —or the on occurrence of riming, visible through enhanced mean

Doppler velocity (MDV). As discussed in the previous chapters, radar Doppler spectra from

vertically-pointing profilers allow separating the contribution of fast- and slow-falling particles

in the radar echo (e.g., Kollias et al., 2002; Luke and Kollias, 2013; Kneifel et al., 2016). Multi-

modal Doppler spectra are the sign that hydrometeor populations with different microphysical

properties are present in the same radar volume (Zawadzki et al., 2001; Shupe et al., 2004;

Kalesse et al., 2016). Depending on the properties of each peak (e.g., reflectivity and Doppler

velocity), they may indicate that SLW droplets are present (Kalesse et al., 2016), or that new ice

is formed. Additional information can be leveraged, when available, from spectral polarimetric

measurements through the spectral linear depolarization ratio (LDR, e.g., Oue et al., 2018; Luke

et al., 2021). While radar measurements alone are not sufficient to actually demonstrate the

occurrence of SIP, some signatures can be identified that reasonably suggest such processes

(Lauber et al., 2021; Luke et al., 2021; Li et al., 2021b).

In this study, we focus on a snowfall event that took place during the ICE GENESIS campaign

on 27 January 2021, during the passage of a warm front. A seeder-feeder configuration was

observed, whereby ice particles sedimented through a SLW-containing cloud layer. Doppler

spectra with persistent multi-modalities extending over several kilometers were recorded,

pointing to the occurrence of complex microphysical processes. This is further supported by

in situ aircraft observations of ice and snow particles. An in-depth analysis of signatures in

the multi-sensor data and of atmospheric profiles obtained with high-resolution numerical

modeling suggests that SIP was possibly taking place through different mechanisms. The

data and instrumentation are presented in Sect. 6.3, and the methods used for the analysis
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of the multi-modal spectra are detailed in Sect. 6.4. An overview of the event is provided in

Sect. 6.5 with the synoptic context and an outline of the main observations. We then focus

(Sect. 6.6) on three time frames where different signatures are observed, for which we propose

interpretations.

6.3 Data and instrumentation

In this work, multi-sensor measurements are used to investigate microphysical processes

during a snowfall event of the ICE GENESIS campaign, which was presented in Chapter 2

(Billault-Roux et al., 2023a). We recall that the deployment took place in La Chaux-de-Fonds

(LCDF), at an altitude of 1020 m ASL which will be hereafter used as a reference: unless

specified otherwise, altitudes will be expressed as a range, i.e., in m or km above ground level.

6.3.1 Ground-based remote sensing

The central instrument used in this study is the dual-polarization W-band cloud profiler

WProf (see Chapter 2), whose settings were recalled in Table 4.2, Chapter 4. First moments

(radar equivalent reflectivity factor Ze,W and mean Doppler velocity MDV) are used as well

as full Doppler reflectivity spectra. The spectral slanted linear depolarization ratio (SLDR) is

computed from the Doppler spectra measured in horizontal and vertical polarization and the

covariance spectrum (Galletti et al., 2014; Myagkov et al., 2016). Note that the spectral SLDR

measurements are only valid if the cross-polar component of the received signal exceeds the

noise level in the corresponding channel (Matrosov and Kropfli, 1993; Radenz et al., 2019).

Attenuation due to water or snow accumulating on the radome is not considered an issue, as

blowers were active during the entire measurement period, keeping the surface of the radome

dry and snow-free. For this study, the W-band data that we use are otherwise not corrected for

path attenuation (see further on, Sect. 6.6). In addition to the radar variables, WProf allows

retrieving estimates of LWP through the brightness temperature measured by a joint 89-GHz

radiometer (Küchler et al., 2017; Chapter 3). As discussed in Chapter 3, the error on retrieved

LWP (∼18%) increases during snowfall due to the radiative contribution of snow particles to

the measured brightness temperature, but general trends in LWP are nevertheless considered

reliable.

In this study, we also use data from the X-band zenith profiler ROXI (Viltard et al., 2019). A

cross-calibration of the radars was performed using independent measurements from the

scanning X-band radar MXPol, which had absolute calibration during the campaign (see

Chapter 4, Sect.4.4.2, or Billault-Roux et al., 2023b). X-band reflectivity (Ze,X ) values are

interpolated to the time and range resolution of WProf and used for computation of the

dual-frequency ratio of reflectivity (DFR).
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6.3.2 In situ aircraft measurements

In situ measurements were conducted at various altitude levels by the scientific aircraft SAFIRE-

ATR42, equipped with an extensive set of probes as listed in Chapter 2 and, in particular, three

different optical array probes which are used in this work. The high-volume precipitation

spectrometer (HVPS) (resp. precipitation imaging probe, PIP, and 2D-Stereo, 2D-S) collected

images of particles with diameters ranging from 150 µm to 1.92 cm (resp. 100 µm to 6.4 mm,

10 µm to 1.28 mm). An automatic classification algorithm (Jaffeux et al., 2022) allows identify-

ing particle habits from 2D-S and PIP images. In addition, cloud liquid water content (LWC) is

estimated with a cloud droplet probe (CDP-2, Faber et al., 2018), which samples droplets up to

50 µm.

6.3.3 WRF model runs

Simulations of the case study were run with the Weather Research and Forecasting (WRF)

model, version 4.0.1. Three two-way nested domains were used in a downscaling approach,

with a horizontal resolution of respectively 12, 3, and 1 km (Fig. 6.1). The initial conditions and

lateral forcing were obtained from the 6-hourly National Centers for Environmental Prediction

(NCEP) Global Final Analysis (FNL) dataset at 1◦×1◦ grid resolution. Other static fields were

obtained from default WRF pre-processing system datasets at a resolution of 30-arc-seconds

for both the topography and the land use fields. A grid spacing of 97 vertical eta levels was used,

with a refined resolution of ∼100 m up to mid-troposphere, following Vignon et al. (2021).

Figure 6.1: WRF simulations of vertically-integrated water content, with geopotential height at 500 hPa
(contours; unit: dam) at 12 UTC on 27 January. The white dot indicates LCDF. The dashed boxes show
the nested domains.
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The double-moment microphysical scheme of Morrison et al. (2005) (M05) was employed,

following the implementation of Georgakaki et al. (2022) (control run in the latter study).

As the cloud droplets are represented with a single-moment approach in the M05 scheme,

a constant droplet number concentration has to be considered. Here we set it to 50 cm−3,

consistent which CDP-2 measurements during the case study of interest. Additional physics

options include the implementation of the Quasi-Normal Scale Elimination (QNSE) planetary

boundary layer scheme (Sukoriansky et al., 2005), the Noah land surface scheme and the Rapid

Radiative Transfer Model for General Circulation Models (RRTMG) radiation scheme to model

the shortwave and longwave radiative transfer. The Kain-Fritsch cumulus parameterization

is also activated in the 12-km resolution domain. Atmospheric variables in the innermost

domain were output with a 5-min time resolution, starting on 25 January at 12 UTC, allowing

for a sufficient spin-up time before the onset of precipitation at the ground site in the early

morning hours of 27 January. It was verified that the simulated WRF surface meteorological

variables agreed reasonably well with weather station measurements (Fig. 6.2). The WRF

simulations are used in this study to provide high-resolution temperature, wind and humidity

profiles, to gain an understanding of the mesoscale processes and how they may contribute to

snowfall microphysics over LCDF.

Figure 6.2: WRF simulations and observations (source: MeteoSwiss) of surface meteorological variables:
(a) 2 m temperature; (b) 2 m relative humidity; (c) 10 m wind speed; (d) 10 m wind direction.

6.4 Methods

6.4.1 Doppler spectra peak finding algorithm

In order to perform a systematic identification of multi-modalities in Doppler spectra, an

automatic peak identification routine was implemented. The pyPEAKO code (Kalesse et al.,

2019) was used after adjustment to our dataset. The algorithm is trained on a manually-

labeled dataset, consisting of 300 WProf spectra for each chirp (no improvement was noted

when including more spectra), randomly sampled from 27 January 2021 (12 UTC to 23 UTC).
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pyPEAKO was then trained on these data, leading to the following optimal values for the

parameters detailed in Vogl and Radenz (2022): a time averaging window of size 1, a height

averaging window of size 1, a smoothing span of 0.5, a minimum peak width of 0.1 m s−1 and

a prominence threshold of 0.75 dBZ. After this training step, the algorithm was run on the

entire event to label peaks at all (time, range) gates. It was verified that the algorithm yielded

similar results as an alternative method where sums of Gaussian-shaped peaks are fitted to

the Doppler spectra (Gehring et al., 2022). In addition to the location of each peak, pyPEAKO

determines its edges; this way, moments (Ze , MDV) can be computed for each identified mode,

as well as the SLDR and the signal-to-noise ratio (SNR). Peaks with a low SNR (<−15 dB) are

discarded from our analysis. Eventually, for each time and range gate, a number of valid peaks

is estimated, for which the radar variables are stored.

6.4.2 Identification of hydrometeor types in multi-modal spectra

To refine the interpretation of multi-modal Doppler spectra, an approach similar to the one of

Luke et al. (2021) is implemented. The purpose is to classify the secondary modes when two

or more peaks are identified in the spectra. Here and further, the primary mode, sometimes

referred to as the rimer, denotes the peak with the largest Doppler velocity, while the secondary

modes are all the slower-falling modes; this distinction between primary and secondary peaks

is purely velocity-based and independent of reflectivity values. To identify the type of particles

that cause a Doppler spectral mode, the spectral LDR, or spectral SLDR, is highly relevant. As

pointed out in e.g., Oue et al. (2015); Luke et al. (2021), high (S)LDR values in zenith-pointing

measurements imply either the presence of prolate (needle-like or columnar) crystals, or,

when visible only in a restricted altitude range, of melting particles (Ryzhkov and Zrnic, 2019).

Conversely, extremely low, or even below-noise-floor (S)LDR values reflect the presence of

particles that are symmetrical with respect to the electromagnetic propagation direction,

i.e., “disk-like” in the radar view, such as liquid water droplets or planar crystals (Ryzhkov

and Zrnic, 2019). Note, however, that the latter are usually associated with slightly higher

(S)LDR values. Other types of snow particles such as aggregate snowflakes or rimed particles

may lead to medium-low values of (S)LDR depending on their composition and geometry.

By examining not only (S)LDR but also the other radar variables, additional insights can be

gained. For instance, cloud droplets are often identified by their signature in the form of a

narrow, low-reflectivity peak with Doppler velocity close to zero (Li and Moisseev, 2019; Li

et al., 2021b; von Terzi et al., 2022).

The proposed approach aims to combine the information contained in spectral variables

(MDVm , Ze,m , SLDRm of the secondary peaks, where the subscript “m” indicates that the

quantities correspond to a single spectral mode) in a comprehensive manner, to facilitate the

visualization and interpretation of spatio-temporal features of Doppler modes. When at least

two peaks are detected, the following decision tree is applied to the secondary peaks to classify

them into a particle type (we recall that only peaks with SNRm > -15 dB are considered):
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• SLDRm > -20 dB: columnar crystals.

• SLDRm < -28 dB and Ze,m < -18 dBZ and MDVm >−0.6 m s−1: cloud liquid water droplets.

• SLDRm < -25 dB and not classified as cloud liquid water: disk-like particle, a category

which may include planar crystals (pristine or rimed) or large droplets.

• Secondary mode not classified in the prior categories: other. This may include, for instance,

aggregates or other rimed particles.

The threshold values were chosen based on the literature (e.g., for SLDR: Oue et al., 2018; Luke

et al., 2021, for Ze : Kogan et al., 2005, for MDV: Li and Moisseev, 2019; von Terzi et al., 2022)

after adjustments based on a few individual spectra from our case study. In particular, for

Doppler velocity, using a stricter threshold led to discarding some profiles that were affected

by radial air motion (e.g., downdrafts). The SLDR threshold used to detect columnar crystals is

also rather low compared to studies where values up to -16 dB are sometimes used (Oue et al.,

2018); this choice was made to improve the spatial consistency of the detection. Note that

possible attenuation of W-band reflectivity caused for instance by liquid water cloud layers

may affect minimally the output of this classification, in the identification of cloud liquid

droplets vs. disk-like particles. However, the results of the classification show overall little

sensitivity to the selected threshold values: only the exact spatial and temporal extent of the

regions identified as containing one type of particles are affected by these thresholds, but not

per se the existence of these regions, their general behavior, or their approximate location.

Figure 6.3 shows an example of secondary mode labeling where two main categories are

identified: columnar crystals and cloud liquid droplets. This time step was chosen as it

corresponds to an overpass of the aircraft above the ground site and offers the opportunity to

validate the proposed classification. In general, a single spectrogram should not be interpreted

as the trajectory or history of a particle population: the particles in the lower layers do not

necessarily originate from the upper layers, and this can be misleading in heterogeneous or

non-stationary systems. In periods with reasonable temporal homogeneity as is the case here,

however, one can still look for signatures of processes in Doppler spectrograms. Alternatively,

fall streak tracking can be implemented (e.g., Kalesse et al., 2016; Pfitzenmaier et al., 2017).

This method can also have shortcomings, as it relies on wind profiles estimated from model

data or interpolated radiosoundings; it also requires to neglect directional wind shear, which,

in this case study, seemed an overly strong assumption (with the presence of at least one layer

of significant directional shear, not shown).

In the reflectivity spectrogram (Fig. 6.3a) one can identify the rimer, precipitating from higher

regions and progressively reaching high fall velocities (|MDVr i mer | > 2 m s−1). As it accelerates

between 3 and 2 km, it coexists with a population of hydrometeors whose signature is a narrow

mode with low reflectivity, negligible fall velocity, and a low, even below noise level, SLDR

(Fig. 6.3b) : this is a likely signature of SLW, and the fact that the primary mode accelerates

at the same time, suggesting riming, supports this interpretation. Below 1.8 km, a secondary

mode with much higher reflectivity, spectral width, and most strikingly high SLDR is visible:
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this would correspond to columnar or needle-like crystals and is labeled as such by our

classification routine. Simultaneous aircraft measurements at 1700 m support this reading:

in the HVPS images (Fig. 6.3c), a few large heavily rimed or graupel particles can be seen, as

well as numerous columnar particles and aggregates of needles or columns. The independent

PIP-based morphological classification (for particles larger than 2 mm, Jaffeux et al., 2022)

shown in Fig. 6.3d also confirms this partitioning, with 18% of rimed particles (graupel and

rimed aggregates), 36% of columnar crystals and 42% of aggregates which are labeled as either

made of columns and needles or as fragile, i.e., made of weakly bounded crystals).

Figure 6.3: (a) Doppler spectrogram with peak labeling. (b) Corresponding SLDR spectrogram; the
white area is where the cross-polar signal is below the noise level, but where the co-polar signal is
strong enough that a SLDR higher than -18 dB would be detected; the gray area is where both the
cross-polar signal is below noise level and the co-polar signal is too low for a SLDR up to -18 dB to be
measurable. In (a) and (b), the temperature contours are interpolated from WRF simulations. (c) HVPS
image from the time step when the aircraft overpasses the radar, at 1700 m AGL; orange particles are
flagged by the built-in probe software as possibly shattered. (d) Habit classification from PIP images
at the same time step. HP: hexagonal planar crystals; GR: graupel; RA: rimed aggregates, FA: fragile
aggregates, CA: aggregates of columns, CC: columnar crystals.

6.5 Overview of the case study

The synoptic situation on 27 January 2021 is described in Chapter 2, Sect. 2.4, and illustrated

with the corresponding charts in Fig. 2.6. During this event, a warm front associated with a

deep low-pressure system over the North Atlantic (Figure 2.6a) led to stratiform precipitation

in LCDF, in a northwesterly flow configuration. At the surface, an increase of temperatures was

observed in two stages, first in the morning of 27 January, then on 28 January at 06 UTC (see

for instance, Fig. 6.2). Between these two time frames, the surface temperature was roughly

around or slightly above 0◦C; snowfall was observed at the ground until 21 UTC on 27 January.
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6.5.1 Radar time series

Height–time plots of WProf reflectivity and mean Doppler velocity are displayed in Fig. 6.4.

Here we point out a few distinct features visible in these time series. A low-level cloud layer per-

sists throughout the event around 800–1000 m above ground, visible at first (before 10:30 UTC)

in the Ze,W and MDV fields (panels a and b), then as a persistent layer with multi-modal spectra

through which ice particles from higher levels sediment (panel c). Collocated zenith-pointing

lidar measurements available between 11 and 12 UTC (panel d) confirm the presence of cloud

liquid water droplets in this region, identified as a layer with strong lidar backscatter above

which the signal is extinct. Around a similar altitude, and slightly later, a layer of enhanced re-

flectivity can sometimes be observed (∼12:30, ∼15:30–16:15, ∼19:10–19:50 UTC). This reveals

the presence of a partial melting layer related to the onset of the warm front, during which

a warm air mass with slightly positive temperature overlays, then replaces, a cooler air mass

with negative temperature (e.g., Emory et al., 2014). This temperature inversion is confirmed

by aircraft measurements of air temperature (see Chapter 2).

Figure 6.4: Time series of WProf radar moments on 27 January. (a) Ze ; (b) MDV; (c) number of modes
detected with pyPEAKO (Kalesse et al., 2019), with overlaid temperature contours (WRF simulations).
(d) Height-time plot of lidar backscatter (note that the extent of y-axis is smaller than (a)–(c)); after
13:30 UTC (gray zone), the lidar was performing hemispherical RHI scans, i.e., the range does not
correspond to height above ground. An SNR threshold (-8 dB) is applied in panels (b) and (c). Data
collection was interrupted from 16:30 UTC to 18:57 UTC due to a power outage; the later stage of the
event, after 19:00 UTC, is included to show the persistence and eventual decay of the cloud system.
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Another noticeable feature that comes across from the radar time series is the presence of

multiple—at least three—cloud layers, which are first distinct in the hours before 12 UTC, and

then merge in the radar signature as particles precipitate from the higher clouds through the

lower ones, in a seeder/feeder configuration. This is particularly visible in the time frame 11:40

to 12:05 UTC, between 3 and 5 km above ground: snow particles formed in the overlaying cloud

(4–6 km) precipitate above a feeder cloud (extending from 2 to 3 km), which they reach around

11:55 UTC causing a reflectivity enhancement. The enhancement at this altitude continues to

be observed after this, which leads to believe that the seeding mechanism persists, as external

or possibly in-cloud seeding (Proske et al., 2021). This interpretation is reinforced by the

analyses conducted in the following sections.

One of the most striking observations is the persistent Doppler spectral multimodality which

has a significant extent in both height (2 to 3 km) and time (from 14:50 to at least 21:00 UTC,

assuming that there is a degree of continuity during the time period where data are missing).

The rest of the investigation will focus on the multi-modal features during this time frame.

The results of the labeling procedure described in Sect. 6.4.2 are shown in Fig. 6.5, focusing

on a shorter time frame. In Fig. 6.5a, (time, range) gates where a secondary population

is labeled as one of the four types (columnar, cloud LW, disk-like, other) are visualized as

semi-transparent colored layers: this way, the spatial and temporal signatures of the different

hydrometeor populations and their coexistence can be analyzed. One noticeable feature in

this time series is the lower-level liquid cloud (sometimes labeled as disk-like particles), which

corresponds to the pre-existing low-level cloud already visible from ∼08:00 UTC. The presence

of liquid water does not seem restricted to this layer, as cloud liquid is detected between 1.5

and 3 km from ∼14:45 to ∼16:30 UTC, which confirms the existence of a high-level feeder

layer. Another striking observation is the detection of columnar crystals, at first in a restricted

altitude range around 1.5 km (∼13:15 to 15:00 UTC), then in most range gates below 1.8 km

(15:00 to 20:30 UTC). One can observe other spatially and temporally consistent structures

which are labeled as a certain particle type. For instance, a disk-like mode is identified either

in restricted altitude ranges (e.g., 15:00 UTC, ∼2 km) or in vertically-extended but short-lasting

cells (e.g., 16:20 UTC). In what follows, we focus our analysis on specific time frames where

different signatures are observed and seem to reveal different microphysical processes.

6.6 Insights into microphysical processes

From the inspection of Fig. 6.5, it was decided to focus on the signatures observed during

three time frames: 14:50–15:20 UTC, 15:25–15:45 UTC, and 16:05–16:30 UTC. By investigating

more precisely the radar and in situ measurements during those phases, we narrow down

possible interpretations for these microphysical fingerprints.
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Figure 6.5: Time series covering a subset of the event where the multi-modal features are the most visible.
(a) Secondary mode labeling visualized in the following way: for each of the four types considered,
a boolean array is defined which is true at (time, range) pixels where a secondary mode is classified
as this type; these four layers are then superimposed as semi-transparent layers with different colors.
Temperature contours from WRF simulations. To reduce the noisiness, a pixel is colored if at least two
of its neighbors are labeled with the same type. Height–time plots of (b) Ze,W , (c), Ze,X and (d) DFR. (e)
LWP time series. The dark boxes indicate the three time frames on which Sect. 6.6 focuses.

6.6.1 Phase 1, 14:50–15:20 UTC: Rime splintering

The first time frame stands out by the presence of a rimer population, a supercooled liquid

cloud layer, and a population of columnar crystals, as visible in the time series of Fig. 6.5a.

Figure 6.6 summarizes these features through the statistics (median and interquartile range

IQR) of Ze,W (a) and MDV (b) of each mode during this time frame, together with the number

of peaks (c). Figure 6.6d–e illustrate an example of Doppler spectrogram (respectively sZe

and spectral SLDR) where the most representative features were visible at once. The range

dimension is restricted to the region between 1 and 4 km to focus on the area of interest.

From Fig. 6.6a–b it can be seen that the SLW mode (denoted CLW1) has, as expected, both low

reflectivity (<−20 dBZ) and low Doppler velocity (between -0.3 and 0.1 m s−1). In the upper
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levels, the primary mode (R1) has a faint signature, with low reflectivity (-30 to -20 dBZ), which

decreases from ∼4 to ∼3 km; this may reflect sublimation within a drier layer underneath a

seeder region, confirmed by the profile of relative humidity with respect to ice simulated with

WRF (not shown). Ze,R1 (the subscript refers to the hydrometeor population detected) then

increases downwards below 3 km (-15◦C), while MDVR1 increases only slightly (of ∼0.5 m s−1).

This may correspond to a region of planar depositional growth, consistent with the tem-

perature range. When R1 reaches the CLW1 layer around 2.4 km (-10◦C), Ze,R1 continues

to increase and MDVR1 accelerates up to ∼-1.5 m s−1, which indicates riming (Kneifel and

Moisseev, 2020), consistent with the interpretation of CLW1 as liquid droplets. Further down,

the columnar mode (CC1) is detected, roughly below 2 km. In Fig. 6.6c, the median of the

number of peaks is shown; it illustrates that the three modes (rimer, supercooled droplets,

column/needle-like crystals) indeed coexist and do not correspond to different time steps.

Collocated in situ observations are available during an overpass of the ATR42 at 15:05 UTC,

1400 m: 2D-S and HVPS images (Fig. 6.7a) reveal large graupel particles as well as column- or

needle-like crystals, while the CDP-2 confirms the presence of supercooled cloud droplets,

with an LWC around 0.1 g m−3. These observations support the interpretation of the types of

particles corresponding to each mode (heavily rimed R1, pristine CC1, and droplets CLW1).

Figure 6.6: (a) Ze , (b) MDV median profiles (with IQR in shaded area) of the different mode types
labeled following Sect. 6.4.2, during the time frame 14:50–15:20 UTC. Range gates where the modes
were detected less than 25% of the time are discarded. (c) Median profile (and IQR) of the number of
peaks identified with pyPEAKO. (d) (resp. (e)) Example of reflectivity (resp. SLDR) spectrogram collected
during this time frame (15:01:06 UTC), with the modes found and labeled through the methods of
Sect. 6.4. Temperature contours from WRF simulations.

These signatures and the temperature range in which they are observed (slightly above -8◦C)

suggest that SIP through rime splintering (HM process) may be active: CC1 would result from

the splinters produced during the riming of CLW1 onto R1 when temperature exceeds -8◦C. It

is likely that the HM process is active during most of the event after ∼14:30 UTC, as suggested
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by the persistence of a columnar mode exactly below the -8◦C isotherm during this phase

(Fig. 6.5). We chose to focus specifically on the 14:50–15:20 UTC time frame to analyze this

mechanism since the signatures in the rest of the event are entangled with other processes, as

will be discussed further.

Hypothesis of secondary ice production

Radar measurements are not sufficient for an unequivocal identification of SIP occurrence,

since those can only be proven through a comparison of ICNC and INP concentrations close

to cloud top, obtained with in situ aerosol measurements (e.g., Järvinen et al., 2022) or with

Raman lidars (Wieder et al., 2022). In regions where the atmospheric conditions are typically

pristine and INP concentrations quite low, the reflectivity of secondary spectral modes can be

used to identify SIP: this is the approach of Luke et al. (2021) where a reflectivity threshold is

used (-21 dBsZ), above which the authors consider that the ICNC must be high enough that

only ice multiplication processes can account for it. In our case, these thresholds are well

exceeded, with the spectral reflectivity of the secondary mode reaching -10 dBsZ in Fig. 6.6d

and exceeding 0 dBsZ at other time steps. However, for a more quantitative approach, we

follow the generic method of Li et al. (2021b), hereafter LI21, to assess whether we can support

the hypothesis that the secondary mode indeed originates in SIP.

The goal is to demonstrate that, if this mode were generated through primary ice production

(heterogeneous nucleation, since temperatures are greater than -38◦C), it would require INP

concentrations that exceed the expected ones. The steps are as follows (the detail of the

equations is provided in Appendix C):

1. Identification of a region as the source of the new ice population: we suppose that it is

generated at altitudes slightly above the upper limit of the detected radar signal (here,

between 1850 and 2050 m).

2. Simulate the growth by vapor deposition of crystals generated in this region, assuming

saturation with respect to liquid water. In this step, particle mass (m), size (maximum

dimension D), and terminal velocity (vt ) are modeled using equations of diffusional

growth (e.g., Hall and Pruppacher, 1976 or Pruppacher and Klett, 2010, Chapter 13).

We assess the accuracy of this modeling step by verifying that the obtained terminal

velocity vt agrees with that of CC1 (Appendix Sect. C.2). Assuming columnar growth, we

obtain (Appendix Fig. C.1a–c) a crystal mass of 0.90 to 2.4 µg corresponding to D ∼ 0.12–

0.33 mm, at 1.6 km above ground (vt ∼0.29–0.46 m s−1). This range of values is obtained

by varying the generation height (see step 1) and the aspect ratio of the particles.

3. Estimate the ice water content (IWC) of the secondary mode using literature Ze –IWC

relations (e.g., IWC = 0.137 z0.643
e after Liu and Illingworth, 2000, with ze in mm6m−3

[such that Ze = 10 log10(ze )] and IWC in g m−3). Using the 25% and 75% quantiles of the

Ze profile (-16 to -8 dBZ), this gives an IWC of 0.012 to 0.042 g m−3 at 1.6 km. Similar

results are obtained with the relations of Aydin and Tang (1997); Boudala et al. (2006).
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Note that such Ze –IWC relations are, however, associated with rather high uncertainty

(e.g., -50% to +100% errors reported in Liu and Illingworth, 2000).

4. A rough estimate of the resulting ICNC is then obtained as ICNC = IWC
m , i.e., here ICNC∼

7–50 L−1 at 1.6 km, using the IQR of IWC and the mass estimate obtained earlier.

5. This estimate is compared to typical INP concentrations at the temperature range where

the ice particles were assumed to be generated (here, -8 to -10◦C). For this, statistics of

INP concentrations measured at the high altitude Jungfraujoch (JFJ) measurement site

(3580 m ASL, approximately 100 km southeast of LCDF) in free tropospheric conditions

are taken from Conen et al. (2022). During two years of measurements, Conen et al. (2022)

observed concentrations of active INPs at -10◦C and -15◦C ranging from 1.0×10−3 L−1

to 1.6 × 10−2 L−1. While no INP measurements are directly available for the event

of interest, measurements of the total aerosol number concentration indicate a low

aerosol loading on this day (below the lower 10% quantile of the 2020-2021 winter,

compiled from condensation particle counter data available through Tørseth et al., 2012,

at http://ebas-data.nilu.no/, last access: 7 March 2023): the concentration of active INP

on 27 January are thus unlikely to be significantly outside of the statistical bounds of

Conen et al. (2022). An other estimate of INP concentrations may be derived from the

temperature-dependent relation mentioned in DeMott et al. (2010), which gives values

of 0.3 to 0.4 L−1 at -8 to -10◦C. As underlined by DeMott et al. (2010), this relation has a

large uncertainty, and is presumably less trustworthy than the INP statistics at JFJ.

This approach gives ICNC estimates higher by one to four orders of magnitude compared to

expected INP concentrations, which supports the SIP hypothesis. While these estimates are

valuable, they are prone to a quite high error as several hypotheses are involved in each step of

the method, such as where the ice particles are generated, the mass-dimensional relations

used, geometrical description, ventilation coefficients, to list a few (see Appendix C). We can

also note that possible riming of the crystals (after they have grown to a sufficient size) would

not be adequately modeled by this approach, which considers exclusively depositional growth.

All these hypotheses inevitably contribute to an uncertainty propagation which it is both

challenging to quantify and to reduce. Without further information on INP concentrations

during this specific event, it remains difficult to make strict assertions on the occurrence of

SIP through the HM process, although it appears as a reasonable hypothesis in view of the

observed signatures and results of the LI21 method.
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Figure 6.7: HVPS and 2D-S images for the three time frames: (a) 15:05 (b) 15:40 and (c) 16:20 UTC.
Panels (a) and (b) correspond to overpasses over the radar. The scale of the HVPS images is indicated at
the top. The vertical bar in the 2D-S images corresponds to 1.28 mm. The orange particles were flagged
by the HVPS built-in software as possibly affected by shattering within the probe. Circled are examples
of particles discussed in the text: liquid droplets/drops (blue), heavily rimed particles (purple), spicules
(red), (fragments of) pristine dendritic crystals (green).

6.6.2 Phase 2, 15:25–15:45 UTC: New ice production in high-LWC region

From 15:25 to 15:45 UTC, a mode labeled as “disk-like” (DL2) is persistently identified be-

tween 1.8 and 2.2 km. Figure 6.5, from a time series perspective, and Fig. 6.8a–b from a

statistical summary perspective, suggest that DL2 is below a layer of SLW droplets, and above

a population with higher SLDR (labeled either as “columnar” or as “other”). Following the

rationale of Sect. 6.4.2, the low SLDRDL2 (<−25 dB) together with relatively high reflectivity

(Ze,DL2 >-10 dBZ, Fig. 6.8) and MDVDL2 (down to -0.5 m s−1 ) of this peak suggests that it is

composed of either planar crystals or larger supercooled droplets (drizzle). Fully resolving

this question is challenging, but a few steps can be achieved to improve the understanding of

these microphysical signatures.
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Figure 6.8: (a) Ze , (b) MDV median profiles (with IQR in shaded area) of the different mode types
labeled following Sect. 6.4.2, during the time frame 15:25–15:45 UTC. Range gates where the modes
were detected less than 25% of the time are discarded. (c) Black lines (values on bottom x-axis):
profiles of Ze,X (full) and Ze,W (dashed); purple line (values on upper x-axis): DFR profile. (d) Profile
of the number of peaks identified with pyPEAKO. (e) (resp. (f)) Example of reflectivity (resp. SLDR)
spectrogram collected during this time frame (15:36:28 UTC), with the modes found and labeled
through the methods of Sect. 6.4. Temperature contours from WRF simulations.

Presence of liquid droplets

Several independent observations point to the presence of liquid water in this region, suggest-

ing that the secondary mode DL2 is at least partly caused by liquid water droplets. The first

element is the increase in fall velocity of the rimer mode (R2), from 1 to 2 m s−1 between 2.5

and 2 km. This increase already begins in the region of the cloud droplet mode (2.5 - 2.8 km),

but continues below. Fall velocities of this order (e.g., larger than 1.5 m s−1) typically indicate

riming (Kneifel and Moisseev, 2020) and consequently suggest the presence of supercooled

droplets. Secondly, the LWP time series (Fig. 6.5e) reaches remarkably large (> 800 g m−2)

values during this time frame. While the LWP retrieval does not inform on the altitude of the

liquid cloud layers, it does confirm the presence of SLW in this period. Lastly, we can leverage

the collocated X-band measurements, shown in Fig. 6.5 with both Ze,X (panel c) and DFR

(panel d). DFR is often used in radar-based studies of snowfall microphysics as a proxy for

particle size (as mentioned in earlier chapters of this dissertation), but it can also serve as

a way to quantify W-band attenuation (Hogan et al., 2005; Tridon et al., 2020). In the time

frame on which this subsection focuses, high DFR (>10 dB) coinciding with relatively low

Ze,X (∼5 dBZ) are observed up to echo top, while low DFR values are expected in such regions

where crystals are usually in an early growth phase. This suggests that the enhanced DFR is

not related to the presence of large particles but rather to an abrupt attenuation of the W-band

signal,caused by a layer with significant LWC. Fig. 6.8c illustrates the median DFR profile

between 15:25 and 15:45 UTC and confirms what was observed in the time series, with a DFR

that increases in the region where DL2 is present, and does not decrease to 0 dB near echo
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top, suggesting that the increase is related to W-band attenuation. As DFR values are low in

the bottom part of the profile, little to no attenuation is expected in this region, meaning that

most of the SLW droplets would be in the region of DL2.

These elements are evidence that a population of liquid water droplets is at least partly

responsible for the DL2 signature. The question is then, whether we can quantify the properties

of the liquid droplets in this region. For this, we can combine the information from 1/ Ze,DL2

and MDVDL2, both of which would be related to the size of the drops (assuming DL2 consists

only of liquid water), and 2/ the attenuation caused by DL2, which reflects the total LWC (if all

droplets are small enough to be within the Rayleigh scattering approximation). We use the

radiative transfer model PAMTRA (Mech et al., 2020) to simulate the attenuation and reflectivity

of a cloud/drizzle population as a function of the LWC and the drop size distribution. A gamma

distribution is assumed, with a shape parameter µ taken in the range -0.5 to 5 (Bringi et al.,

2003). Simulations are run by varying µ as well as the LWC and the effective diameter De f f ,

which is the ratio of the third to the second moment of the PSD. The median volume diameter*

Dv can be inferred from the effective diameter as in e.g., Straka (2009); Ulbrich and Atlas

(1998). Absorption and scattering coefficients are calculated with Mie theory, with the liquid

water refractive index following Turner et al. (2016). Then, attenuation due to hydrometeors

as well as radar reflectivity at W-band are modeled for a temperature of -10◦C. Figure 6.9

illustrates the results.

Figure 6.9: PAMTRA simulations of a gamma distribution of liquid droplets with varying parameters
(µ = -0.5..5, De f f = 10..300 µm, LWC = 0.01..2 g m−3). (a) Specific attenuation due to liquid water vs.
LWC, color-coded with Dv , (b) Ze,W vs. Dv , color-coded with LWC. The black dashed lines indicate the
bounds of DL2.

We then rely on the measurements of DL2 as constraints on reflectivity (between -15 and

-2 dBZ), attenuation (between 4 and 6 dB km−1) and mean Doppler velocity (0.15 m s−1 <
|MDV| < 0.5 m s−1). With a simple look-up table approach, this translates into bounds on LWC

and Dv : 0.9 g m−3 < LWC < 1.4 g m−3, and 35 µm < Dv < 70 µm. These bounds are quite rough,

in particular since we considered that only liquid droplets (i.e., no ice crystals) contributed

to Ze,DL2. They do, nonetheless, highlight the presence of significant LWC and likely of large

(> 50 µm) droplets, although this is not sufficient to claim that DL2 consists solely of liquid

drops.

*such that half of the volume of water is contained in droplets smaller than Dv
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New ice formation

In fact, some signs suggest that the “disk-like” DL2 mode may also contain non-liquid particles.

Although they are relatively large and with non-negligible fall velocity, the liquid drops do not

precipitate to the ground, or else the attenuation would occur at lower altitudes: hence the

liquid content is somehow depleted. Riming is likely not the only process through which this

happens, as the DL2 mode does not vanish away in the lower regions, but slowly evolves into

a higher-SLDR (> -25 dB) mode (pointing to aggregate or column-like snow particles). This

implies that some ice crystals are formed within this “disk-like” region, and coexist with liquid

droplets.

To support this, in Fig. 6.10, we look at an individual time step instead of global statistics.

There, DFR increases only toward the upper part of DL2: this suggests that, at this time step,

the LWC of the lower region is only moderate, and that SLW drops are not the only population

contributing to the reflectivity.

Figure 6.10: (a) Ze , (b) MDV profiles of the different mode types labeled following Sect. 6.4.2, at
15:27:53 UTC. (c) Black lines (values on bottom axis): profiles of Ze,X (full) and Ze,W (dashed); purple
line, with values on upper x-axis: DFR profile. (d) (resp. (e)) Reflectivity (resp. SLDR) spectrogram
collected at the same time step, with the modes found and labeled through the methods of Sect. 6.4.
Temperature contours from WRF simulations.

These elements point to the production of non-columnar ice crystals between 1.8 and 2.5 km,

i.e., -7 to -12◦C, through heterogeneous freezing of the cloud droplets and/or by SIP. Among

the supposedly prominent SIP mechanisms, rime splintering would be unlikely because of the

cold temperatures at the top of DL2; given that drizzle-size drops (> 50 µm) might be present,

droplet shattering appears as a possible mechanism, although collisional breakup cannot be

excluded altogether.

Unfortunately, no aircraft overpasses took place directly in this region (1500 m– 2500 m), but
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one overpass at 15:40 UTC at 1100 m is still instructive (Fig. 6.7b). In the 2D-S images, one can

identify (red frames) columnar crystals that grew onto rather large spherical or semi-spherical

particles. These are likely frozen drops or fragments of frozen drops, which were formed

within the DL2 region: they then served as germs for crystal growth by vapor deposition, with

temperatures just above -10◦C favoring columnar growth. Similar structures were reported

by Korolev et al. (2020) in conditions where droplet shattering was suspected. Such shapes

could also explain the only moderately high SLDR values measured in the region of columnar

growth. In addition to these spicules with “lollipop” shapes, a few images of large drops are

collected by the 2D-S (blue frames in Fig. 6.7b); a precise estimate of droplet size is difficult to

make based on these images due to possible diffraction by out-of-focus drops (Korolev, 2007b;

Vaillant De Guélis et al., 2019). These in situ images are compatible with the analysis, that

drizzle-size liquid droplets are involved in the formation of new ice particles in the region of

the DL2 mode. They also suggest that collisional breakup would not be the dominant process,

as no signs of fragments of crystals are apparent (Ramelli et al., 2021).

Overall, the above elements suggest droplet shattering as a possibly active mechanism given

1/ the high LWC reflected by W-band attenuation (detected through high DFR values), 2/ the

presence of large droplets inferred from the enhanced reflectivity and increase in Doppler

velocity of the secondary mode, 3/ the signs of ice formation within this DL2 mode, 4/ the in

situ observations which reveal (fragments of) frozen droplets upon which crystalline growth

occurred, 5/ the temperature range, which is compatible with droplet shattering but not HM.

However, because the liquid droplet and new ice signatures are intertwined in DL2, it is very

challenging to disentangle them further to reliably narrow down the dominant microphysical

process—primary or secondary ice production. We employ the LI21 method as in Sect. 6.6.1,

to get a rough estimate of the potential discrepancy between INP and ICNC. Assuming the

formation of ice particles around 2450 to 2500 m and subsequent growth by vapor deposition

and sedimentation (see Appendix C, Fig. C.1d–f), at an altitude of 2200 m the particles would

have grown to a mass of 2.9 – 26 µg (maximum dimension 0.37 to 2.5 mm, terminal velocity

0.31 to 0.42 m s−1). The IWC retrieved from Ze,DL2 values (-15 to -7.7 dBZ, assuming this time

that Ze,DL2 is dominated by ice crystals) would range from .019 to 0.054 g m−3, which in the

end leads to an estimation of ICNC in the order of 0.7 to 20 L−1. The spread is significant due

to the uncertainties in modeling particle habit in this temperature range (-12 to -9◦C), where

the dominant growth mode shifts from planar to columnar; for this reason, both habits were

considered in the simulations leading to a large spread in the modeled masses and sizes. The

retrieved ICNC are here again above the typical active INP concentrations in this temperature

range measured at JFJ (Conen et al., 2022), although the discrepancy is slightly less obvious

than in the first case (still one to four orders of magnitude higher than JFJ statistics, but within

zeros to two orders of magnitude compared to the temperature-based estimate). We highlight

that the reflectivity values used here are affected by significant attenuation; in that sense, the

ICNC estimates that we give are rather conservative. If Ze values are corrected from 4 dB

of attenuation (see Sect. 6.6.2), slightly higher ICNC are obtained ranging from 1 to 30 L−1.

However, it was now assumed that the Ze,DL2 values are dominated by ice crystals rather than
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liquid droplets (by contrast with the previous paragraph): overall, these results do not allow

for a clear-cut demonstration of SIP occurrence. It is possible that droplet freezing (upon

INP immersion, or collision with ice crystals), and not necessarily shattering, is at least partly

responsible for DL2.

If droplet shattering were taking place, it might, in any case, not be highly efficient in the pro-

duction of secondary ice crystals. Indeed, Korolev and Leisner (2020) and studies mentioned

therein (e.g., Lauber et al., 2018) suggest that the efficiency of droplet shattering upon freezing

increases as the supercooled drops become larger. Our analysis, although it does point to the

possible presence of droplets with a diameter sufficient to cause shattering of the droplets

upon freezing, does not provide evidence that very large drops (e.g., > 300 µm) are present. In

these conditions, droplet shattering might only be moderately efficient in the sense that only

a few fragments would be generated per freezing drop, leading to a modest enhancement of

ICNC through SIP, consistent with the retrieved estimates.

Formation of large droplets

The seeder-feeder configuration, involving a SLW feeding cloud layer with top around 3 km,

seems to be an essential driver of the microphysical signatures discussed up to now. Even

though the persistence of mixed-phase system is frequently acknowledged in the literature

(Lohmann et al., 2016), it is instructive to investigate the mechanisms behind the maintenance

of the supersaturation over liquid water in the feeder cloud, and the occasional formation of

drizzle-sized drops as discussed above. For this purpose, the WRF simulations of the event

provide relevant insights into the origin of the air masses and the supercooled liquid clouds. A

cross-section along the main wind direction (315◦) at 15:20 UTC is shown in Fig. 6.11, together

with a time series of simulated ice and liquid water content. One first observation from the

time series is its rather good agreement with the radar measurements and some of the baseline

interpretations that were proposed (Sect. 6.5.1): the presence of a warm nose as a sign of the

warm front onset, visible in the converging contours of potential temperatures slightly below

1 km (especially clear before 12 UTC), and the corresponding low-level liquid water cloud

which persists around 1 km with a slowly decreasing altitude (see Sect. 6.5.1). More specifically,

the time series also indicates the presence of a higher-level supercooled cloud (with a top at

3 km), which act as a feeding layer for ice crystals precipitating from above. This SLW cloud

is present in the WRF simulation starting around 12:00 UTC and decaying in strength after

16:00 UTC. LWC is highest around 15:00 UTC with values exceeding 0.5 g m−3 around 2.5 km,

which is compatible with the radar-based interpretations conducted above (although with a

slight temporal shift).

The cross-section (Fig. 6.11b–d) helps us understand the origin of the enhanced LWC. It

appears related to a combination of large-scale moisture supply—associated with the warm

front extending from the Northern Atlantic—with a local enhancement due to orographic

lifting over the Jura, efficient since the northwesterly flow is approximately orthogonal to the

mountain range. This is confirmed by the vertical velocity field (Fig. 6.11c), with updrafts
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visible in upsloping areas, and in the cross-section of the liquid water mixing ratio (Fig. 6.11b)

which is enhanced above the ridge of the Jura around 3.5 km ASL (2.5 km above ground).

In Fig. 6.11d, the moist Richardson number (Ri, which is the ratio of buoyancy to wind shear,

is used to characterize atmospheric stability, Hogan et al., 2002) at this location indicates

a slight dynamic instability (Ri ∼0.6) near cloud top; this low-Ri region seems to cover a

large spatial extent and roughly corresponds to the upper cap of the mesoscale cloud (i.e.,

windward of the Jura). While these values are not strictly speaking descriptive of a strong

dynamic instability (for which a typical threshold is Ri ≤ 0.25), they suggest that shear-driven

turbulence and/or isobaric mixing may be present and contribute to sustaining the LWC of

the cloud, and possibly inducing the formation of larger droplets (Korolev and Isaac, 2000;

Pobanz et al., 1994; Grabowski and Abade, 2017). Overall, the WRF analysis shows that the

saturation over liquid water and formation of cloud droplets is triggered by a combination of

orographic and frontal lifting, with a possible contribution from shear-induced mixing that

favors the formation of larger drops between 15:00 and 15:30 UTC, as modeled in WRF and

observed in our analysis.

Figure 6.11: (a) Time series of IWC simulated in WRF over LCDF (includes ice, snow, and graupel),
with LWC in blue contours. (b) (resp. c, d) 15:15 UTC cross-section in direction of the main wind
(315◦) with cloud and rain content (resp. vertical wind, moist Richardson number). In all panels, the
brown contours indicate the potential temperature; in (b), (c), (d) wind barbs indicate wind speed and
direction following standard conventions (in knots) and the black dashed line corresponds to the 0◦C
isotherm. The vertical dashed red line indicates the location of LCDF.
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6.6.3 Phase 3, 16:05–16:30 UTC: New ice production in turbulent regions

From 16:05 to 16:30 UTC, another type of process appears to be happening. In Fig. 6.5, in-

stead of being confined to a fixed altitude range like DL2, the mode labeled as “disk-like”

during this time (DL3) seems to be generated at distinct time steps and at specific heights

(between 2.5 and 3 km), and then precipitate to lower altitudes. Such spatio-temporal struc-

tures are also visible in the later stage of the event between 19:00 and 20:00 UTC. This creates

fall streak structures, which can be seen in both the classification and the reflectivity time

series of Fig. 6.5. As DL3 precipitates, it coexists with other modes (e.g., columnar crystals

or liquid cloud droplets) while remaining well separated from these. In the supplementary

material (available at https://egusphere.copernicus.org/preprints/2023/egusphere-2023-478/

egusphere-2023-478-supplement.zip), a video is included showing the evolution of the Doppler

spectra during these fall streak time steps; for comparison, similar animations of phases 1

and 2 are also included. It clearly illustrates that DL3 is generated in a region of atmospheric

turbulence and updrafts; its formation stops when the turbulence and updraft cease, and the

hydrometeor population that was formed then settles downwards.

This is summarized through the statistics and the sample spectrum shown in Fig. 6.12. There,

the statistics are computed on the entire time frame (16:05 to 16:30 UTC), except for DL3 from

which we specifically extracted the fall streak patterns, identified as regions when Ze,DL3 >
−10 dBZ. To identify turbulent regions, an estimate of the turbulence eddy dissipation rate

(EDR) was derived following Shupe et al. (2008), which combines the variance of the MDV

(here, of the rimer mode, MDVR3) with information on horizontal wind and wind shear (here,

from WRF simulations). Fig. 6.12b illustrates that DL3 is detected just below a region of updraft

(seen in a reduction of the rimer MDV) and turbulence (visible in the EDR), between 2.8 and

3.1 km. In the upper region of DL3 (2.7 km), the mode sometimes coexists with SLW droplets,

while lower down it is present along with columnar crystals (Fig. 6.12a, b, d). While these are

not the main focus of this subsection, we can hypothesize that they are formed through rime

splintering at temperatures warmer than -8◦C, similar to Sect. 6.6.1.

In terms of radar variables, DL3 combines low SLDRDL3 values (< -25 dB) with relatively

high Ze,DL3 (up to 5 dBZ when looking at individual fall streaks), and MDVDL3 around -0.5 to

-1 m s−1. This suggests that it is composed of planar ice crystals (or such low-depolarization

ice particles) rather than liquid droplets, which would be expected, for instance, to have

larger fall velocities for this level of reflectivity (e.g., Ze -V relations for identification of drizzle

Luke et al., 2021, and their Supplementary Material). The temperature range in the region

where this mode is formed (-15 to -12◦C) is compatible with planar growth of crystals by

vapor deposition. It is worth noting that the DL3 signature differs from the ones typically

observed in the dendritic growth layer, in which a small updraft, an increase in reflectivity,

and a persistent spectral bimodality are often reported (von Terzi et al., 2022), and which is

occasionally observed during this case study (see for instance, Fig. 6.4, around -15◦C between

15:00 and 16:30 UTC, or the spectrogram in Fig. 6.12 around 3.1 km). By contrast, DL3 is

generated in stronger and more localized updrafts (e.g., 2.8 km in Fig. 6.12e). We note that a
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similar interpretation emerges when examining the Doppler spectrograms along slanted fall

streaks—rather than the vertical stack of spectra at a single time step— obtained by following

Kalesse et al. (2016) (not shown).

Figure 6.12: (a) Ze median profiles (with IQR in shaded area) of the different mode types labeled
following Sect. 6.4.2, during the time frame 16:05–16:30 UTC. Range gates where the modes are detected
less than 25% of the time are discarded. (b) Same with MDV (on the bottom x-axis); the turbulent EDR
estimated from the rimer mode (Shupe et al., 2008) is shown with the purple line (median and IQR;
values on the top x-axis). (c) Black lines, with values on bottom x-axis: median profiles of Ze,X (full)
and Ze,W (dashed); purple line, with values on upper x-axis: median DFR profile (and IQR). (d) Median
profile (and IQR) of the number of peaks identified with pyPEAKO. (e) (resp. (f)) Example of reflectivity
(resp. SLDR) spectrogram collected during this time frame (16:18:08 UTC), with the modes found and
labeled through the methods of Sect. 6.4. Temperature contours from WRF simulations.

An unambiguous identification of the microphysical process(es) leading to the formation of

this mode is once again difficult. SIP is possibly responsible for DL3: the high reflectivity

of the new ice mode, only a few range gates below it is formed, indicates a relatively high

concentration of ice crystals which would exceed typical values of INP concentrations in this

temperature range. This concurs with previous observations of ice multiplication occurring

within generating cells leading to fall streak structures (Ramelli et al., 2021). With the LI21

approach, we focus here on a single DL3 fall streak (16:17–16:20 UTC) and consider that

particles are formed between 2.7 and 2.85 km (see Appendix C Fig. C.1g–i). At a height

of 2.5 km, they would have grown (assuming plate-like or dendritic crystals) to a mass of

9.5 to 35 µg (D ∼0.82 to 2.8 mm); the IWC estimate from Ze,DL3 values (-4.1 to 1.4 dBZ)

ranges from 0.074 to 0.17 g m−3 and the resulting ICNC = 2 to 20 L−1 once again exceeds

the typical active INP concentration (1.0–16×10−3 L−1 following Conen et al., 2022, 0.5 to

0.6 L−1 with the temperature-only relation of DeMott et al., 2010). As in phase 2, the attenuated

reflectivity values are used here, so this would rather underestimate the true ICNC. Similar to

the previous sections, these values are subject to uncertainty and should be taken with care,

but nonetheless, support the hypothesis that DL3 originates in SIP.

The updrafts and turbulence which contribute to the formation of DL3 also generate SLW
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droplets: this is seen, for instance, in Fig. 6.12e, and in the LWP time series (Fig. 6.5e) where

peaks in LWP occur when the DL3 cells/fall streaks are formed. However, the LWC in this

region does not cause significant W-band attenuation like was observed in Sect. 6.6.2 and must

therefore be lower. This is especially true when looking at the end of the time frame of interest,

after 16:15 UTC in Fig. 6.5: there is then no DFR increase toward cloud top. Additionally, when

the liquid cloud droplets generated by these updrafts are visible as a distinct mode—which is

not always the case, since strong turbulence can broaden the spectra to a point where several

peaks are merged into one—like in Fig. 6.12e, it is rather narrow and has a low reflectivity

(∼-20 dBZ), which is rather a sign of small cloud droplets than of drizzle-size drops. With these

elements in mind, droplet shattering upon freezing does not seem the most likely process for

the DL3 signatures.

On the contrary, ice multiplication through collisional breakup might be a plausible explana-

tion. In the turbulent updraft region, supercooled droplets may form, onto which the primary

population can start riming; meanwhile, in these turbulent eddies, collisions of these newly

rimed particles would be favored (Pruppacher and Klett, 2010, Chapter 14; Sheikh et al., 2022)

either with one another or with the still pristine ones (Phillips et al., 2017b), leading to the

formation of DL3 particles. These fragments would subsequently grow by vapor deposition

(efficient because of the supersaturated conditions), by aggregation, and/or eventually by

riming if they reach large enough sizes (∼100 µm, e.g., Pruppacher and Klett, 2010, Chapter 14).

R3 and DL3 would then separate in the Doppler spectra below the turbulent region due to

their different settling velocities (e.g., Ramelli et al., 2021).

The ATR42, unfortunately, did not overpass the radars at a time step when DL3 fall streaks are

observed, and we must therefore make cautious interpretations of the in situ observations

during this time frame. HVPS images at 16:20 UTC at 1700 m (Fig. 6.7c) reveal a population of

slightly rimed particles, together with a few still pristine dendrites and fragments of dendrites,

a clear sign to invoke the presence of the collisional breakup mechanism. The latter two

might correspond to the DL3 population (either as pristine dendrites that grew onto small

fragments, or directly as fragments generated during breakup), and thus endorse the proposed

interpretation, also considering that there are no signs of shattered drops. Yet, we underline

again that the link between the in situ and radar observations remains hypothetical, as they

are not collocated.

6.7 Conclusions

In this work, we investigated snowfall microphysical processes during the passage of a warm

front in the Swiss Jura Mountains, involving a multi-layer, mixed-phase cloud system. The

analyses were primarily based on the measurements of a W-band spectral profiler, together

with in situ observations from the ATR42 aircraft which performed overpasses above the

ground site, as well as LWP and dual-frequency radar measurements (X- and W-band) to quan-

tify atmospheric liquid water. Multi-peak Doppler spectra were observed for several hours
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and over several kilometers in height above ground, suggesting the occurrence of a number of

microphysical processes involving different hydrometeor populations. We proposed a labeling

method that allows for the systematic identification of certain hydrometeor types in these

Doppler spectra, making use of the spectral polarimetric variables. Specifically, supercooled

cloud droplets were distinguished from columnar crystals, and from disk-like particles that

may include drizzle-size drops or planar crystals. This way, it became apparent that various

hydrometeor habits were causing the multi-modality at different heights and time steps of

the event. Three time periods stood out, during which the multi-modality was attributed to

distinct processes. In each case, secondary ice production appeared as a likely cause for the

formation of the new spectral peak(s). Looking into the Doppler spectra in more detail, we

proposed interpretations of the mechanisms during the different time frames.

Figure 6.13: Conceptual sketch of the proposed interpretations for the microphysical signatures during
the different time frames: (a) 14:50–15:20 UTC, (b) 15:25–15:45 UTC, (c) 16:05–16:30 UTC. Note that HM
is also indicated in the lower layers in (b) and (c), as it is suspected to occur throughout the event (see
Sect. 6.6.1).

The presence of a seeder-feeder configuration seemed to play an essential role in the micro-

physics of the event. During the three phases, ice crystals precipitated through a SLW layer

around 2-3 km above ground, whose presence was identified through cloud radar Doppler

spectra, confirmed by WRF simulations and consistent with LWP estimates. In the first phase,

the interaction between the rimer and the SLW cloud led to the formation of columnar ice

particles at temperatures warmer than -8◦C, pointing to HM rime splintering (Fig. 6.13a), while

no new ice formation was detected at colder temperatures during this time frame. The second

phase (Fig. 6.13b) was associated with an enhancement of the SLW layer, in terms of both

LWC and droplet sizes, with the formation of drizzle-size drops. In these conditions, droplet

freezing—either through INP immersion, or upon collision of a drop with an ice crystal—

and/or shattering may have been active, and involved in the emergence of a new spectral

mode below −10◦C. Lastly, new ice formation was observed at cold temperatures (≲−12◦C),

144



6.7 Conclusions

toward the top of the SLW cloud region, in localized generating cells associated with strong

updrafts and turbulence; these ingredients would favor the riming of the seeding population,

and SIP through ice-ice collisions between these newly rimed particles (Fig. 6.13c). The result-

ing signatures are rather complex, and were narrowed down by combining dual-frequency,

Doppler spectral radar measurements, and in situ images.

A simple modeling method following Li et al. (2021b) (detailed in Sect. 6.6.1 and Appendix

C) was implemented for each of these phases and suggested that primary ice production

through heterogeneous nucleation could not explain alone these signatures (especially phases

1 and 3), with ICNC estimates exceeding expected INP concentrations by one to four orders

of magnitude, hence supporting the SIP hypothesis. This discrepancy is in agreement with

previous observations in orographic clouds, especially under seeder-feeder configurations

(e.g., Lloyd et al., 2015; Georgakaki et al., 2022). Uncertainties related to this modeling are, how-

ever, substantial: it involves assumptions on ice microphysical properties such as geometry,

mass–dimensional or velocity–size relations, on Ze -IWC relations, and on INP concentrations,

which may vary significantly.

All in all, the interpretation of these processes remains hypothetical: an unambiguous demon-

stration of the occurrence of SIP via a specific process is a challenge that would require

more in-situ measurements across scales, to get a full picture of INP availability and of the

interactions between ice (and liquid) particles. Additionally, the information derived from

zenith-pointing instruments remains insufficient to grasp the horizontal variability within

the precipitating system; it is, for instance, challenging to fully characterize the impact of the

orographic terrain in the observations. What remains clear is that different signatures were

visible in the remote sensing measurements, calling for distinct interpretations of their possi-

ble causes. This also demonstrates the relevance of radar and, in particular, of high-sensitivity

Doppler spectral measurements, to investigate in a detailed way the microphysics of clouds

and precipitation. Further studies could include, on the one hand, more involved multi-sensor

approaches to confirm the occurrence of SIP, and on the other hand, a generalization of the

methods introduced here to gain insights into how frequently such microphysical processes

are observed at a given location.
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7.1 Summary and discussion of the results

Snowfall is an essential weather and climate variable, which is at the root of most precipitation

on Earth and hence a key component of hydrological resources. Understanding what takes

place at the microscale in the solid phase of clouds and precipitation is a necessary step to

take to model snowfall and precipitation, as well as quantify accurately how clouds affect

the Earth’s radiative budget. At the same time, snow particles can take on an extraordinary

variety of geometries, sizes, or internal structures, and they undergo diverse production and

growth mechanisms depending on the way they interact with one another and on the atmo-

spheric conditions. Because of this heterogeneity, many unknowns remain tied to snowfall

microphysics.

This thesis focused on leveraging multi-frequency and Doppler spectral measurements from

zenith-pointing radars to improve the characterization of snowfall microphysics, both from

the angle of microphysical properties and from that of snow particle growth, decay, and

production processes. In the following, we recall the main results from the different chapters

and summarize how they each contributed to this overarching goal.

• ICE GENESIS: a multi-sensor snowfall dataset

The ICE GENESIS campaign, presented in Chapter 2, took place in the Swiss Jura in January

2021 and was designed to collect observations of snowfall at temperatures between -10◦C and

+2◦C. It included a ground-based set-up, with meteorological radars operating at different

frequencies, and an airborne instrumented platform sampling in situ measurements at various

altitudes over the ground site.

The ICE GENESIS field campaign is a data-oriented contribution on the route to an improved

characterization of snowfall microphysics. With its diverse suite of ground-based and airborne

remote sensing and in situ probes, it paves the way for studies of snowfall across scales. The in

situ imaging instruments, whether airborne or ground-based, inform on detailed geometrical

properties of individual snow particles. Conversely, the meteorological radars reveal statistical
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information on the microphysics of snow particle populations in the entire atmospheric

column. The synergy between ground-based remote sensing and airborne in situ instruments

is one of the highlights of the campaign: it allows for bridging the gap between the indirect

but spatially extended measurements of the former, and the refined but spatially restricted

observations collected by the latter.

In the context of this thesis, the ICE GENESIS dataset fueled the research conducted in Chap-

ters 4 to 6, by providing not only radar measurements, the starting point of our investigations,

but also in situ measurements against which to validate the retrieved estimates of snowfall

properties (Chapter 5) or the proposed microphysical interpretations (Chapter 6).

• Liquid water path retrieval from radiometer measurements

Chapter 3 introduces a simple deep learning method to retrieve LWP and IWV from 89 GHz

radiometer measurements complemented with additional features, including surface meteoro-

logical variables, geographical information and, when available, reanalysis data. Through this

approach, the retrieval algorithm can be implemented on measurements from diverse locations

with a well-characterized uncertainty (18%).

Readily available estimates of LWP are valuable to cloud scientists, for whom the monitoring

of MPCs, and the modeling of processes that drive their formation, persistence, and decay are

important questions. Besides these cloud-focused applications, characterizing atmospheric

liquid water is a necessary detour to take to study snowfall microphysics, for several reasons.

A first way in which the monitoring of column-integrated liquid water during snowfall pertains

to snowfall microphysical studies is for the detection of riming, which significantly modifies

the microphysical properties of individual snow particles, by making them more sphere-like,

and by increasing their mass and terminal velocity. Secondly, and along the same direction,

SLW and/or rimed snow particles are involved in the dominant known SIP mechanisms, which

in turn may affect precipitation patterns and amounts as well as cloud radiative properties

(Young et al., 2019; Luke et al., 2021), and are the subject of active research.

Lastly, monitoring cloud liquid water is important to radar meteorologists working with

millimeter-wavelength instruments, as it is a significant source of signal attenuation in these

frequency bands. LWP estimates allow for a quantification of uncertainty in reflectivity-based

radar products (Tridon and Battaglia, 2015); this is indispensable for further interpretations of

radar measurements and even more so for quantitative retrieval-oriented works. This aspect

is leveraged in Chapter 4, where we use the LWP estimates to correct for W-band liquid water

attenuation, also detailed in Appendix A.
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• Retrieval of snowfall microphysical properties: framework design and evaluation

In Chapter 4, a novel deep learning framework is introduced to retrieve snowfall microphys-

ical properties from dual-frequency Doppler spectrograms. The algorithm is implemented

(Chapter 5) on the ICE GENESIS dataset and evaluated against in situ measurements, showing

promising results in spite of discrepancies in the retrieval of size descriptors, for which likely

causes are discussed.

The potential of multi-frequency radar measurements, on the one hand, and of radar Doppler

spectra, on the other hand, for snowfall studies, has long been recognized (Matrosov et al., 1992;

Shupe et al., 2004; Luke and Kollias, 2013). When attempting to combine both approaches for

actually retrieving snowfall properties from dual-frequency (e.g., X- and W-band) Doppler

spectra, substantial challenges are faced due to the conjunction of measurement errors,

differential attenuation, and atmospheric dynamic effects, which make the inverse problem a

highly ill-posed one.

The deep-learning based perspective which we bring on this problem helps relieve some of

these fundamental difficulties and mitigate the ill-posedness. The proposed approach can

be implemented on radars with different beam widths and imperfect vertical alignment in

conditions of (moderate) atmospheric turbulence: this is a novelty compared to previous stud-

ies, where retrievals were conducted on selected events with low, if not zero, turbulence (e.g.,

Barrett et al., 2019). Extending the conditions where snowfall properties are retrieved from

dual-frequency Doppler spectra means that a more diverse range of atmospheric conditions

can be sampled, leading to possibly less biased and consequently more robust characteriza-

tions of microphysical properties.

Our method additionally relaxes a number of microphysical assumptions on snowfall proper-

ties, in comparison with existing retrievals (e.g., Szyrmer and Zawadzki, 2014; Liao et al., 2016;

Barrett et al., 2019; Tetoni et al., 2022; Mróz et al., 2021a), and a total of seven different statistical

descriptors of microphysical properties are estimated. One important premise which is largely

relieved, is the prior assumption on a mass-dimensional relation, previously often assumed

constant (e.g., Barrett et al., 2019; Tetoni et al., 2022). Given the broad variety of habits that

snow particles can take on, capturing this mass-related information within a retrieval is crucial.

Certain hypotheses remain and the comparisons with in situ measurements indicate that

certain biases in the retrieved variables are present, as discussed in detail in Chapter 5.

In spite of these biases, and after having constrained them, the proposed framework could be

used to derive basic statistics on how snowfall properties are distributed in the atmospheric

column. In that sense, the implementation of the retrieval on the ICE GENESIS dataset, at the

end of Chapter 5, gives a flavor of what could be obtained if the method were to be used on

larger datasets. Within the framework of the ICE GENESIS project, this statistical character-

ization was combined with detailed in situ quantification of the snow particle geometrical

properties, for a both precise and spatially distributed description of snowfall microphysics.
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• Gaining insights into snowfall microphysical processes from a case study

In Chapter 6, possible signatures of different secondary ice production processes are identified

during a case study of the ICE GENESIS campaign, where a seeder-feeder configuration prevailed.

The analysis relies primarily on dual-polarization W-band Doppler spectra, complemented

with X-band reflectivity as well as in situ aircraft observations and profiles of atmospheric

variables from WRF simulations.

A quantitative characterization of snowfall microphysical properties, as explored in Chapters 4

and 5, is essential, but not sufficient to capture a full picture of snowfall microphysics as it

does not address the question of the processes through which snow particles are formed, grow

or decay. By focusing on a specific case study, Chapter 6 illustrates how radar observations

can be used to study complex, entangled microphysical processes. The retrieval of snowfall

properties designed in Chapter 4 could not be directly implemented on this event because of

the strong multi-modalities in the Doppler spectra which are, to this stage, not captured by

the retrieval framework. Nonetheless, dual-frequency and spectral radar measurements were

decisive in identifying possible microphysical processes, as they provided a comprehensive

spatio-temporal view into the precipitating system.

It is found that within short time intervals, distinct mechanisms of ice production took place,

as evidenced by different fingerprints in the observations. The varying strength of the liquid

water supply, controlled by synoptic and terrain-related features, was a likely driver of these

microphysical processes. In phases with rather modest LWC, HM rime splintering was proba-

bly occurring at temperatures warmer than -8◦C; when the LWC was greater and associated

with larger-sized droplets, signatures could be explained by droplet freezing and/or shattering

upon freezing, at colder temperatures. Finally, unstable atmospheric conditions with localized

turbulent updrafts favored yet another type of microphysical fingerprint which might be

attributed to SIP through collisional breakup.

Summary of the contributions

Figure 7.1 summarizes how the different chapters contribute to addressing the overarch-

ing theme of snowfall microphysics, and specifically our central question: how can remote

sensing, in particular dual-frequency and Doppler spectral radar measurements, be used to

characterize snowfall properties and processes?

The first aspect is the dataset collected during ICE GENESIS, shared with the scientific commu-

nity, and which opens up new possibilities for snowfall microphysical studies. Then, the novel

microphysical retrieval framework that we developed allows for a quantitative description of

snowfall properties in the entire atmospheric column, and paves the way for an advanced

characterization of how these properties are distributed in altitude or depending on atmo-

spheric conditions. Lastly, we demonstrate the possibility to gain insights into snowfall

microphysical processes, and in particular into the diversity of ice production mechanisms,

through the analysis of Doppler spectral and dual-frequency radar measurements. The re-
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trieval of LWP is an important milestone that contributes both to the correction of radar

measurements prior to retrieving snowfall properties, and to the identification of mixed-phase

conditions from a process-oriented perspective.

Figure 7.1: Overview of the different projects conducted during this thesis, organized as chapters. Gray
arrows indicate how methods or data from one project are used in other chapters. The figures are taken
from the different chapters to recall the main results and/or methodological developments.

7.2 Open questions and perspectives

In this last section, we discuss the main limitations of the studies conducted during this thesis,

along with perspectives for future work, ranging from technical extensions of our work to

more open questions.

• Spectral radar retrieval of snowfall properties: improvements and extensions

The shortcomings of the deep-learning-based snowfall retrieval were discussed in length in

Chapter 5. A few directions were identified for future improvements of the framework; they

include an extension of the training set and a more refined parameterization of the forward

model, which would take into account diverse PSD shapes and more accurate scattering

calculations.

Beyond these technical considerations, other avenues may be explored in further develop-

ments of the retrieval. Using Doppler spectrograms at a third frequency (e.g., Ka-band), would
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likely be helpful to capture information on bulk density and PSD shape (Leinonen et al., 2018;

Mason et al., 2019; Mróz et al., 2021a). Relevant extensions would also enable the framework

to ingest multi-modal Doppler spectra, and accordingly retrieve microphysical properties of

several coexisting populations of snow particles. Note that this comes with certain challenges,

as spectral peaks may not be well separated in the measurements of both radars due to dif-

ferential beam broadening; an increase in computational costs could become an additional

concern requiring non-trivial optimizations.

A natural further step to take would be implementing the retrieval, possibly with some of the

afore-mentioned adjustments, on a larger dataset of multi-frequency Doppler spectrograms.

For this purpose, longer time frames should be considered than that of ICE GENESIS. Including

data collected at diverse geographical locations would also enable a more statistically-relevant

characterization of snowfall properties. One possibility would be to complement the ICE

GENESIS dataset, which reflects snowfall in mild orography, with data from flatland regions

(e.g., Dias Neto et al., 2019), and possibly high-latitude environments (e.g., Petäjä et al., 2016),

to capture the diversity of snowfall properties. Along the line of the preliminary statistics

derived on the ICE GENESIS dataset at the end of Chapter 5, an extended implementation

of the retrieval would allow addressing a number of scientific questions, for example: how

frequently and under what conditions do aggregation, riming, or dendritic growth occur—

identified through D0, mass–size coefficients and/or aspect ratio, and temperature profile

information.

Another direction which could yield promising results, is the implementation of the two-step

deep learning framework, not on full Doppler spectrograms, but on time series of multi-

frequency radar moments. This entails letting go of the detailed information contained in the

spectra, and possibly reducing the number of retrieved variables; in return, it would allow

for snowfall retrievals on much broader datasets. Collecting full Doppler spectra comes with

high storage costs, and is mostly done during restrained campaigns, while radar moments are

more widely used and may be available in more diverse settings. Fruitful comparisons of our

framework to existing moment-based retrievals (Chase et al., 2021) may open up directions for

improvements with, further down the road, possible applications also for satellite retrievals of

precipitation microphysics.

• Improving the quantification of liquid water in the atmospheric column

Although snowfall is the primary focus of this thesis, supercooled liquid water and mixed

phase clouds are recurrently mentioned throughout this dissertation. The microphysical

processes of snowfall are tightly linked to the presence of supercooled water droplets, whose

quantification is thus of prominent importance.

The vertically-integrated information provided by the LWP is coarse, and does not provide

detail on the structure of SLW cloud layers in the atmospheric column. The fact that the

validity of our LWP retrieval drops in raining conditions is also a drawback, as it implies that it

cannot be used to study snowfall processes above the melting layer in cases of cold stratiform
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rainfall. To overcome these limitations, retrieving information on the full vertical profile of

liquid water content would be beneficial. It would greatly improve the correction of W-band

attenuation, resulting in higher accuracy of subsequent snowfall retrievals (Chapters 4 and 5).

From a process-oriented perspective, a detailed LWC profile would be a robust help to detect

the onset of riming and/or of SIP.

Full LWC profiles can be obtained with multi-frequency radiometers (Rose et al., 2005), but

these are not always available, and in particular, were not part of the ICE GENESIS setup. With

the instrumental configuration used in this dissertation, a possibility would be to revisit the

dual-frequency spectral radar retrieval to obtain an additional estimate of attenuation and/or

LWC profiles. The latent space would contain, as new dimensions, LWC and/or attenuation

values at each range gate, from which a cumulative attenuation profile would be computed

to correct W-band spectrograms within the pipeline itself; meanwhile, the single-channel

LWP retrieval would serve as a constraint on the vertical integral of LWC. Information on the

detailed structure of the liquid cloud layers may also be obtained from the spectra through

independent methods such as the machine-learning based algorithm proposed by Schimmel

et al. (2022).

• Systematic studies of SIP processes

The analysis conducted in Chapter 6 illustrates how signatures of complex microphysical

processes can be disentangled by making use of the rich information in Doppler spectral and

multi-frequency radar measurements. In addition to the detailed analysis of a few short time

frames, we also proposed tools to study the coexistence of different hydrometeor popula-

tions in radar volumes—specifically, with a four-class labeling method based on the spectral

moments and (S)LDR of individual Doppler peaks. Luke et al. (2021) laid the ground for

systematic studies of SIP using radar Doppler spectra in the Arctic, and showed the impor-

tance of studying not only the better-known HM process but also other SIP processes, as they

notably found a frequent occurrence of droplet shattering. One limitation of their study was to

identify secondary ice particles primarily through high spectral LDR values: this disregards SIP

processes occurring at temperatures colder than the columnar growth regime, which would

generate low-LDR crystals. Implementing more detailed peak classification routines, such as

that introduced in Chapter 6, could be relevant to characterize SIP occurrence in more diverse

atmospheric conditions (Korolev et al., 2020, 2022).

Further work would also investigate whether the various signatures identified in this individual

case study are statistically significant. Possible questions to be addressed are: Is the signature

which we attributed to HM always observed, when a rimer population falls through a SLW layer

at temperatures above -8◦C? Under what circumstances do localized updrafts / generating

cells produce a secondary mode, as observed in the later stages of our case study, and what

causes these updrafts? What is the impact of these processes on the depletion of cloud liquid

water, and on surface precipitation fluxes? What role does the orography play in the emergence

of such seeder-feeder configurations?
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• Bringing together properties and processes

Taking a few steps back, we open up the discussion to broader perspectives and examine how

radar-based studies of snowfall microphysics may contribute to the more general objective

of improving the parameterization of ice/ mixed-phase clouds and snowfall in weather and

climate models. Modelers are interested both in the quantitative description of snow particles,

and in the physical mechanisms that drive their evolution along their fall trajectory. Quantita-

tive precipitation forecasting is a good example, where knowledge of e.g., snowfall PSD and

bulk density, and of the processes by which they are modified, are required to lay down the

physical equations predicting snow- or rainfall rate at the ground and the spatial distribution

of precipitation.

Bridging the gap between quantitative retrievals and qualitative process-oriented studies is not

easily done. As illustrated in Chapter 6 with the implementation of the LI21 SIP identification

method, combining a physical modeling of snowfall processes with radar measurements

comes with uncertainties that propagate across the model and are difficult to constrain. This

highlights the interest of possible future work in this direction, to develop mathematical

frameworks that would facilitate the integration of physics-based modeling and observations.

Meanwhile, novel insights may stem from high-resolution numerical modeling, which can

help bring together remote sensing studies of snowfall properties and processes (e.g., Vignon

et al., 2019; Oue et al., 2020; Vignon et al., 2021; Gehring et al., 2022). By defining hypothe-

ses on the physical processes that take place, putting them into equations, and resolving

them numerically, one can compare the simulated physical quantities to those retrieved from

measurements, and thus validate or rule out the underlying initial hypotheses. Conversely,

statistics may be derived from remote sensing retrievals to describe, for instance, how micro-

physical properties depend on e.g., temperature, humidity, altitude, or how they are correlated

with each other. These can then serve for model verification, to endorse hypotheses or param-

eterizations, or on the contrary, point to discrepancies and loopholes in numerical models

(Ori et al., 2020; Trömel et al., 2021; Shrestha et al., 2022). Ultimately, knowledge gained from

remote sensing approaches—possibly combined with in situ observations and even laboratory

experiments—fosters the development of more accurate microphysical parameterizations of

numerical weather models, which in turn serve an improved understanding of observations at

all scales.

• Deep learning for clouds and precipitation

Finally, a few words may be added to emphasize the role of machine-learning-based tech-

niques in future work on snowfall microphysics and more generally, on clouds and precipi-

tation. We pointed out in Chapters 4 and 5 that, besides the retrieval of snowfall properties

that it enables, the framework that we proposed may be of interest to a broader audience,

as it could be transposed to other inversion problems. This also highlights the relevance of

deep learning as a tool in atmospheric sciences as a whole. On a first level, machine learning

offers an undeniable potential to perform efficient non-linear approximations, as in the LWP
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retrieval of Chapter 3. Beyond this, it also opens up new ways to address problems which are

difficult to solve with classical methods, either because of their underdetermination, or due to

their high-dimensionality (Behrens et al., 2022), the large size of the datasets, and the resulting

computational costs.

Deep learning methods come with shortcomings. They commonly raise skepticism because of

their lack of interpretability, and their incapacity to assimilate physical constraints. Nonethe-

less, thriving research in recent years has shown many ways in which these obstacles can be

mitigated, either by improving model stability and explainability (Brenowitz et al., 2020; White

et al., 2022) or by incorporating physical knowledge into the models (Beucler et al., 2021).

Substantial efforts are devoted to bringing together machine learning and physical knowledge,

by designing new models and new frameworks, with promising outlooks (McGovern and

Broccoli, 2022). Atmospheric remote sensing, whether ground- or satellite-based, with the

abundant data it makes available, will likely participate to and benefit from the development

of such data-driven frameworks.
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A Consistency of the attenuation correction

In this Appendix section, we come back on the attenuation correction of WProf measurements

which was implemented in Chapter 4, to verify its consistency. Specifically, we consider two

possible attenuation correction methods: the first approach (Method 1) is the one described

in Chapter 4, Sect. 4.4.2, which follows Kneifel et al. (2015); an alternative approach is also

tested as detailed below (Method 2), relying solely on COSMO-1 analyses.

Method 1

• Gaseous attenuation: atmospheric profiles are taken from hourly COSMO-1 analyses

(Consortium for Small-scale Modeling, 2017), and the corresponding profile of gaseous

attenuation is computed using PAMTRA.

• Snowfall attenuation: a baseline Ze,X –IWC relation (IWC = 0.015 Z 0.44
e,X , Kneifel et al.,

2015; Boudala et al., 2006, with Ze in mm6 m−3) is used to estimate the profile of snow

and ice content; the corresponding attenuation profile is obtained considering that ice

attenuates around 0.9 dB km−1(g m−3)−1 (Nemarich et al., 1988).

• Liquid water attenuation: we use the LWP retrieved from 89 GHz radiometer measure-

ments (following Chapter 3), and assume a uniform LWC profile in the cloud/precipita-

tion column (range gates with Ze,W >−30 dBZ). The corresponding attenuation profile

is then computed with PAMTRA using the COSMO-1 profiles of standar atmospheric

variables.

Method 2

• Gaseous attenuation: atmospheric profiles are taken from hourly COSMO-1 analyses,

and the corresponding profiles of gaseous attenuation are computed using PAMTRA.

• Snowfall attenuation: profiles of ice, snow and graupel mixing ratio are also taken from

COSMO-1 analyses; the corresponding attenuation profile is modeled with PAMTRA

using Mie scattering, with a constant mass–size relation (am = 0.0185 g m−1.9, bm = 1.9)

and a single exponential PSD with D0 = 0.5 mm; there is little sensitivity to this choice as

attenuation by ice particles is typically small in comparison with liquid water.
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• Liquid water attenuation: profiles of cloud water mixing ratio from COSMO-1 analyses

are used. The corresponding attenuation profile is computed with PAMTRA under the

same assumptions as Method 1 (namely, monodisperse cloud drop size distribution

with a diameter of 20 µm).

To verify the consistency of the attenuation correction, the profiles of atmospheric variables

as well as snow and liquid water content derived in Methods 1 and 2 are input to PAMTRA to

simulate brightness temperature at 89 GHz. The agreement between simulated and measured

TB is a sanity check that the total path-integrated attenuation (PIA) is appropriately modeled:

indeed, as attenuating targets are also emitters, TB and PIA are intrinsically related. We

underline that this check does not allow to assess the quality of the modeled attenuation

profile, but only provides column-integrated information.

Figure A.1: Comparison of measured and simulated TB at 89 GHz using the profiles of Methods 1
and 2. (a) Timeseries of TB; time frames where rain was observed at the ground are indicated as
hatched gray zones. (b) Scatter plot of TB simulated with Method 1 vs. measured. (c) Scatter plot of TB

simulated with Method 2 vs. measured (a 10-minute temporal average of the measurements is used in
panel (c) to account for possible timing inconsistencies; no significant difference is visible when using
instantaneous values).

Figure A.1a shows the time series of measured and simulated TB (with the profiles recon-

structed through Methods 1 and 2), and the corresponding density plots (Fig. A.1b and c).

Method 1 yields an RMSE of 10 K (R = 0.98, scatter plot of Fig. A.1b), while lower accuracy

results from Method 2 (RMSE = 43 K, R = 0.6, Fig. A.1c). This is likely due to the high temporal

variability of TB , which is difficult to capture from COSMO-1 hourly data. Note that even with

Method 1, the accuracy decreases in rainy cases with high TB; this was anticipated as both the

LWP retrieval and the TB modeling used here only consider cloud profiles, and their validity

drops in rain.
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Naturally, in the case of Method 1, the LWP estimate itself depends on measured brightness

temperature, so the agreement is expected, but this self-consistency is reassuring. This overall

supports the choice of the first method over the second: even though the COSMO-based

approach allows for a refined LWC profile instead of a uniform one, it does not result in

sufficiently reliable total attenuation / brightness temperature simulations to be considered

preferable.

As a side remark, to further exploit the link between microwave emission and absorption,

we note that TB may directly be used to estimate the PIA. This is in essence similar to the

results of Tridon and Battaglia (2015), who found that W-band PIA was closely related to the

LWP retrieved with an independent microwave radiometer. We use the COSMO-1 profiles,

through which we simulate both PIA (through Method 2) and TB: Fig. A.2 shows the good

(quadratic) correlation between the two quantities. The parameterization of this relationship

is likely dependent on the geographical location and atmospheric profile, but the correlation

obtained on the time frame of ICE GENESIS data where WProf was deployed (330 hours) is

high (R = 0.996 with a quadratic fit): this indicates a good robustness of this relationship

even within relatively diverse wintertime atmospheric conditions in La Chaux-de-Fonds. This

relation may thus be used to obtain a rough estimate of the PIA, directly computed from TB ,

in order to assess the importance of attenuation during a given snowfall event. It does not,

however, inform on how attenuation is distributed in the atmospheric column.

Figure A.2: 2-way PIA and TB simulated with PAMTRA using COSMO-1 profiles at an hourly resolution
(14 - 31 January 2021) over la Chaux-de-Fonds. The linear fit is PIA2−way = 0.04994TB −0.4841, with
an RMSE of 0.25 dB and R = 0.987; the quadratic fit is PIA2−way = 0.0001421T 2

B +0.02933TB +0.00766
(RMSE = 0.15 dB, R = 0.996).
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B Comparison of the snowfall retrieval to
other frameworks

In this Appendix, we discuss the microphysical retrieval pipeline that was developed in Chap-

ter 4 in comparison with other possible approaches. It is adapted from the Appendix of the

article:

• Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas

Viltard and Alexis Berne (2023): Dual-frequency spectral radar retrieval of snowfall

microphysics: a physics-driven deep-learning approach. Atmospheric Measurement

Techniques, 16(4), 911–940, doi: 10.5194/amt-16-911-2023.

B.1 Gate-to-gate deep learning inversion

One of the motivations to use the architecture proposed in Chapter 4 is the ill-posedness of the

problem, which is an obstacle to direct inversion methods that would take as input Doppler

spectra at a given range and output corresponding microphysical properties. We believe that

the framework we introduced partly mitigates this underdetermination by ingesting the full

spectrograms (in a convolutional neural network), instead of operating on individual spectra.

To support this, we also implemented a “gate-to-gate” inversion, through a deep learning

framework trained on the same synthetic dataset as the one used to train the decoder. It

essentially consists in learning the inverse of our decoder, similar to the approach of Chase

et al. (2021), i.e., directly fitting an approximation of the inverse mapping, g̃ . The notations

used here are those of Chapter 4, Sect. 4.3.

This time, the input consists of dual-frequency spectra, and the output is the set of microphys-

ical and atmospheric descriptors (same as Table 4.1). The architecture, illustrated in Fig. B.1,

is virtually the same as the encoder (Fig 4.7b), except that 2-dimensional convolutions are

now 1-D: the neural network is not trained on full spectrograms but on single-gate spectra,

thus the range dimension is equal to 1.

After training and tuning, the model is applied to the ICE GENESIS dataset. Figure B.2 shows

the same variables as in the left panels of Fig. 5.1, retrieved through this direct inversion.
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Figure B.1: (a) Architecture of the gate-to-gate deep learning retrieval. (b) Detail of the residual block
composition. The notations are those of Chapter 4.

Overall, the order of magnitude of the variables is similar to that obtained with the new

pipeline, and the very general spatio-temporal structure is also visible. This is reassuring since

it suggests that the training dataset was appropriate and indeed captured the scope of possibly

observed spectra. However, it is also apparent that the retrieved variables are substantially

noisier than through our method, reflecting the ill-posedness issue. When comparing these

retrieved results with aircraft in-situ measurements, as done in Section 5.3, we obtain for

example R = 0.59 for IWC (instead of R = 0.87). Some variables also reach unrealistic values,

e.g., negative values of D0.

Figure B.2: Comparison of timeseries for three examples of variables (IWC, D0 and Ar ) retrieved
through the proposed framework (left panels) or a direct deep-learning retrieval (right panels). Note
that the colorbars may differ (adjusted to reflect at best the variability in each field).
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B.2 Alternative approach

We briefly mention an alternative approach that could be used, which lies halfway between

classical Bayesian optimal estimation and the framework we introduced. If a differentiable

approximation of the forward model is known ( f̃ ), another way to look for Xr is to find

the minimizing argument of ||F̃ (X )−Yr ||2 using gradient descent; a regularizing term can

be added to ensure, for instance, the spatial continuity of X or to enforce some degree of

spatiotemporal smoothness. This requires only one deep learning model instead of two, and

could thus seem more appealing, but the approach of Chapter 4 was preferred. Indeed, by

actually learning an approximation of the inverse mapping G̃ and doing so on a large dataset,

the risk of reaching a local minimum in X is reduced. Our method also does not require any

explicit prior assumption on X , or on any property of the latent space, like spatial smoothness;

rather, it is constrained by the spatial structure of the observed signal itself.
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C Details on the implementation of LI21

In this Appendix, we detail the equations used in Chapter 6 with the implementation of the

SIP identification method proposed by Li et al. (2021b). The text is adapted from the Appendix

of the submitted manuscript:

• Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons

Schwarzenboeck, Pierre Coutris, Athanasios Nenes, Alexis Berne (2023): Distinct sec-

ondary ice production processes observed in radar Doppler spectra: insights from a case

study. Under review for Atmospheric Chemistry and Physics, doi: 10.5194/egusphere-

2023-478.

C.1 Diffusional growth model

To model the growth of ice crystals by vapor deposition, we implement the ventilated diffusion

growth model presented in Pruppacher and Klett (2010), Ch. 13, following e.g., Hall and

Pruppacher (1976), relying on the following equation:

dm

d t
= 4πC Si fv

( Ls
Rv T −1) Ls

Kai r T + Rv T
es,i ceDv

(C.1)

Here and below, all values are given in SI units unless specified otherwise. T is the air tem-

perature, Si is the supersaturation over ice; assuming conditions of saturation with respect to

liquid water, it is equal to:

Si = (es,l i q (T )−es,i ce (T ))/es,i ce (T ) (C.2)

where es,l i q (T ) and es,i ce (T ) are respectively the saturation vapor pressure over liquid water

and over ice (e.g., Huang, 2018). Ls is the latent heat of sublimation (Yau and Rogers, 1989):

Ls = (2834.1−0.29(T −273.15)−0.004(T −273.15)2)×103 (C.3)
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Kai r is the thermal conductivity of air, Rv is the gas constant of water vapor and Dv is the

molecular diffusion coefficient of water vapor in air (Pruppacher and Klett, 2010, Ch. 13), with

P denoting the pressure, T0 = 273.15 K and P0 = 1013.25 hPa:

Dv = 0.211×10−4
(

T

T0

)1.94 P0

P
(C.4)

fv is the ventilation coefficient, which depends on particle habit: in this study we used the

equations of Pruppacher and Klett (2010), Ch. 13, and Ji and Wang (1999) for columnar (CC),

plate-like (PLATE) and dendritic (DEN) crystals:
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(C.6)

fv,DE N = 1+0.35463

(
X
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)
+3.55333

(
X

10

)2

(C.7)

where X = Sc
1
3 Re

1
2 depends on the Schmidt number Sc = 0.632 and the Reynolds number

Re = ρa L∗v
µa

with ρa and µa the density and dynamic viscosity of air. Re in turn relies on

a spheroidal model of the ice crystals (prolate for needle-like particles, oblate for planar

particles) with L∗ the effective aerodynamic size defined as the ratio of the spheroid total

surface areaΩsph to the perimeter Psph of its projection normal to the flow:

L∗ =
Ωsph

Psph
(C.8)
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π
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π
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(C.10)

Psph,obl =πD (C.11)

Psph,pr ol =πD(1− 1

4
e2 − 3

64
e4 − 5

256
e6 − 89

8192
e8 − 231

32768
e10) (C.12)

where e2 = 1− A2
r for oblate spheroids and e2 = 1− 1

A2
r

for prolate spheroids, D is the particle

maximum diameter, Ar is the aspect ratio (Ar > 1 for prolate, Ar < 1 for oblate spheroids).

The capacitance C is also a function of particle geometry, for which we again followed Prup-
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pacher and Klett (2010), Ch. 13:

Cobl =
D

√
1− A2

r

arcsin(
√

1− A2
r )

(C.13)

Cpr ol =
D

Ar

√
A2

r −1

ln(Ar +
√

A2
r −1)

(C.14)

We additionally use parameterizations of mass–size and velocity–size relations to propagate

Eq. C.1 and model the growth of the ice crystals during their fall:

v = av,m mbv,m

(
P1

P

)0.35

(C.15)

v = av,d Dbv,d

(
P0

P

)0.35

(C.16)

m = amDbm (C.17)

where P1 = 8.8×104 Pa, and av,m , bv,m , av,d , bv,d , am , bm are geometry-dependent coefficients

listed in Table C.1. For columnar crystals: Eq. C.15 and the coefficients are from Kajikawa

(1976); for planar crystals (plates and dendrites), Eq. C.16 and coefficients from Heymsfield

and Kajikawa (1987).

Crystal type Ar av bv av,d bv,d am bm

COL2 2 107 0.271 - - 0.00929 1.8
COL4 4 162 0.302 - - 0.0185 1.9
COL8 8 66 0.271 - - 0.00427 1.8
DEN 0.1 - - 5.01 0.48 0.0232 2.29

DEN2 0.1 - - 3.29 0.11 0.242 2.53
PLATE 0.2 - - 29.5 0.68 1.78 2.81

Table C.1: Coefficients of the velocity–size (v = av,m mbv,m or v = av,d Dbv,d ) and mass–size (m =
am Dbm ) relations, where m is the mass of the crystal, D its maximum dimension and v its terminal
velocity. SI units are used.

C.2 Comparison of modeled and estimated terminal velocity

The adequacy of the growth model and microphysical parameterization is verified by com-

paring the modeled terminal velocity to an estimate of the true one (vt ), shown in Fig. C.1. In

the first implementation of the LI21 method in Sect. 6.6.1, this is done by considering as in Li

et al. (2021b) that cloud SLW droplets are passive air motion tracers; the settling velocity of

the ice particles is then estimated as vt ,CC 1 = MDVCC 1 −MDVC LW 1. In the case of Sect. 6.6.2,

there is no detected cloud SLW mode that would be fully separated from DL2; to correct for the

possible effect of vertical air motion on MDV, we follow Luke et al. (2021) and use the velocity
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at the edge of the spectrum, corrected with 0.2 m s−1 as a rough estimate of typical turbulent

spread (the resulting velocity correction is va). In the last phase, the significant air motion

and absence of a consistently detected SLW mode make the estimation of vt much more

difficult; Fig. C.1i illustrates the large difference between MDVDL3 and vt ,DL3 =MDVDL3 −va .

The estimation of air motion as in Luke et al. (2021) used here to compute va is less reliable

due to the greater spectral broadening in this turbulent region; as a result, the comparison of

modeled vs. estimated vt cannot be conclusive (Fig. C.1i). Note that possible riming of the

crystals having grown to a sufficient size would not be adequately modeled by this approach,

which considers exclusively depositional growth, and would also influence significantly the

terminal velocity of the particles.

Figure C.1: Diffusional growth and terminal velocity modeled with the LI21 approach for the various
phases (phase 1: (a)–(c), phase 2: (d)–(f), phase 3: (g)–(i)). Panels (a), (d), (g): modeled crystal maximum
dimension; panels (b), (e), (h): modeled crystal mass (cf. Sect. C.1); panels (c), (f), (i): modeled vt , with
measured MDV and estimated vt (cf. Sect. C.2, median and interquartile range are shown).
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« La neige ne se décrit pas, aussi je la laisse en blanc. »

— Henry Russell, Souvenirs d’un montagnard

Signs of secondary ice production occurring in an orographic cloud? Photograph of graupel
and columnar crystals observed on 10 December 2022 in Chamonix, France.
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