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Abstract

This research presents a framework to identify and integrate typical districts in a national energy

system to assess the impact of decentralized energy hub configurations. The framework includes

a two-step global sensitivity analysis to determine the model’s most influential parameters and ex-

plore the districts’ solution space. The application of the framework on 10 representative districts of

Switzerland reveals a variety of configurations for the built environment. Integrating these solutions

into the national model indicates a 15% increase in annual costs due to a higher space heating de-

mand of the built environment. The decentralized approach focuses on the deployment of PV within

urban areas with a third of the total capacity of the centralized approach, while the distribution of

decentralized technologies is the same for both models. The impact of feed-in tariff variation allows

for identifying a levelized cost of electricity within each district. Districts in urban areas have a lower

levelized cost of electricity than those in rural areas due to higher PV penetration. Overall, this frame-

work provides insights into the potential to deploy renewable energy sources at the district level and

the required investments to reach energy independence and carbon neutrality in the country.
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Chapter 1

Introduction

In March 2023, the Intergovernmental Panel on Climate Change (IPCC) published the synthesis re-

port of their Sixth Assessment Report (AR6) with the following press release head line: Urgent climate

action can secure a livable future for all. One single sentence grasps the amplitude of the situation.

Throughout their report the IPCC provides a panel of possible solutions to reduce greenhouse gases

(GHG) emissions which are the primary causes of global warming. Among those solutions, the en-

ergy supply strategy has a significant emissions reduction potential and illustrates itself as one of the

most feasible mitigation options. Indeed, accounting for 73% of global emissions in 2020 [1], the

energy sector has great potential to reduce its impact through the development of renewable energy

(RE) and energy efficiency improvement. Within the sector, the built environment represented more

than a third of the final energy demand in 2018 and represents an excellent opportunity for the de-

ployment of RE [2].

Incorporating renewable energy sources into the building stock is a change of paradigm for the cur-

rent energy system, which is predominantly operated from a centralized perspective. This central-

ized approach relies on a limited number of large energy conversion units supplying the majority of

the energy demand. The widespread adoption of renewable energy sources in buildings significantly

disrupts this system by enabling a decentralized energy supply. Therefore, a coordination between

distributed investments and centralized actors is needed to promote a feasible energy transition.

Due to the complexity of this coordination, the development of large-scale models to investigate the

impact and feasibility of such transformation are a key-point to enable a successful transition. They

can support decision makers by informing on the impact of new technologies or policies on the cur-

rent system. Moreover, this approach promotes fair solutions since the interests of local stakeholders

are included in the design of the whole system.

In conclusion, a transition of the energy sector in place is crucial to mitigate the effects of global

warming. A decentralized energy supply strategy based on the penetration of renewable energy

within the built environment is proposed as a major solution. Such transformation of the system
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must be assessed by models to provide optimal pathways towards carbon neutrality.
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Chapter 2

State of the art

This chapter assesses the current state-of-the-art regarding energy system modelling (section 2.1).

Secondly, the application of global sensitivity analysis (GSA) to energy system model is presented in

section 2.2. Additionally, diverse clustering techniques are addressed in section 2.3. And finally, the

gaps and contributions of the project is presented (section 2.4).

2.1 Energy system modelling

Energy models are mathematical formulations of energy systems. They help characterising the be-

haviour of a given energy system under different inputs and constraints. And play a crucial role in

guiding the ongoing transition towards carbon-free energy systems as they allow decision-makers to

assess the impact of their choices on the system in place. The solutions provided by energy models

can be optimal or not, it depends on their mathematical formulation. There exists two main family

of models: simulation, and optimization model. A simulation model is transformed into an optim-

ization model when a degree of freedom is introduced, eg. an input parameter is not fixed, it then

become a variable. The problem’s purpose is to identify which numerical value of the variable will

fulfill the optimality criterion. The optimality criterion of a problem is defined by its objective func-

tion, f.e., minimizing the GHG emissions or maximizing the self-sufficiency of a system.

Both of these objectives are used to obtain carbon-neutral systems. Although, studies have shown

that achieving the decarbonization of the current system requires a significant restructuration and a

deeper electrification of the energy mix, with solar and wind power expected to become the primary

source of low-carbon electrical power [3, 4, 5]. Moreover, the decentralization and intermittency of

those technologies bring new challenges such as managing the electricity distribution, stabilizing

the power grid, and storing energy. Additionally, the multiplication of energy vectors across systems,

such as electricity, heat, oil, waste, biomass, and hydrogen, increases the complexity of reaching op-

timal configuration and operation of the system. Hence, it is common to consider a reduced number

of energy vector to fulfill a specific demand. For example, a district heating network can be fed by

waste valorization without considering a possible implementation of solar thermal, heat pump (HP)

3



or boiler unit. Likewise, most models focus on one specific energy sector (electricity, heat, mobility,

etc.) and do not account for cross-sectoral synergy [6].

Finally, on a more general aspect, the system’s scale varies substantially. As described by the IPCC

[7], an energy system is defined as “all components related to the production, conversion, delivery,

and use of energy”. Following this definition, an energy system ranges from a simple HP to a national

power grid. However, a large share of the literature focus on building energy system as the sector

accounts for 31% of the final energy demand and has a high potential to reduce its GHG emissions

[4].

2.1.1 Scale of energy systems

Building, district, and large-scale energy systems are the most prevalent scales for an energy system.

Large-scale models range from a state or a province to an entire continent. Each scale has a specific

role to play in the overall energy system, and requires different approaches and strategies to op-

timize its energy usage and minimize environmental impacts. While building-scale systems seek at

supplying their service needs with high reliance and cheap energy cost. District-scale systems aim at

improving energy efficiency between buildings, increase renewable penetration and decrease infra-

structure usage, and large-scale systems prioritize efficient transmission and distribution of energy

across vast geographic regions and accounts for centralized technologies.

Furthermore, systems can be aggregated to a larger scope (systems-in-systems approach), f.e. build-

ings can be assembled to construct a district representing an energy system by itself. Middelhauve

[8] uses the term of energy renewable hub to describe such configuration, where the buildings rep-

resent micro energy hubs and are assigned to one macro hub, the district. This kind of configuration

represents the future of energy system as the tendency is towards decentralized systems with the de-

velopment of RE, such as wind and solar technologies [9, 10, 11]. The macro hub addition allows to

consider centralized technologies that reduce cost and GHG emissions of the community due to an

economy scale [8]. However, such system requires high interconnectivity between micro hubs and

energy carriers (fuel cell, gasification process, etc.) to help tackle the stochasticity of RE alongside an

optimal operation of the system.

The optimization of the system operation is computationally demanding, so typical periods are in-

troduced to mitigate the complexity. Moreover, an optimal network exchanges schedules should

consider the objective of the micro hub in himself and the objective of the entire community. The

two objectives might be conflicting therefore a trade-off between the two systems has to be identi-

fied by the model. Hence the value to define embedded systems in order to consider a multi-scale

optimal solution of the global system.
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The limitation of aggregated system is the number of micro hubs as the consideration of multiple

network nodes is computationally demanding [12]. In this regard, large-scale energy systems model

the demand in a top-down perspective, using pre-defined aggregated energy demand profiles. In the

case of building energy systems the approach is bottom-up, i.e. the energy demand is based either on

statistical data or physical model. Whereas, the energy demand, in the case of large-scale energy sys-

tem, is defined in a top-down perspective. The top-down method implies that the energy demand

is often derived from socio-economic indicators. Therefore, the energy consumption can only be

defined at the aggregated level, leaving out specifics about the energy system [13].

2.1.2 Resolution of energy systems

The spatial resolution of a large-scale energy system is a key feature of the system. It defines the

different energy technologies available, energy vectors and the possibility to optimize the system op-

eration, as the model characterization is related to its discretization [5, 6, 14]. Jalil-vega et al. [15]

have analyzed the effect of spatial resolution on a large-scale energy system. They concluded that

its impact was related to the homogeneity of the region, i.e., a heterogeneous region would be better

captured by a thin resolution. Furthermore, their results highlighted that finer resolution improved

the network design when using optimization models. In the same fashion, Aryanpur and al [16] have

underlined in a review that using a single region to represent a national-scale system did not seize

optimally the characterization of heterogeneous region. In this prospect, it is necessary to find a

trade-off between spatial resolution and computational time. A suitable method is to define arche-

types of meaningful scale to represent heterogeneous systems with a fine resolution. The following

sub-sections discuss various sub-system resolution for large-scale energy system.

Building

Since the built environment accounted for a third of the final energy demand in 2019 [4], it is neces-

sary to define large-scale energy system with a building-scale resolution [17]. Moreover, the built en-

vironment is quite heterogeneous as it can be spread across multiple meteorological zone, construc-

tion decades, density construction, etc. hence the importance to define representative archetypes.

Kotzur et al. [18] have developed a bottom-up model based on residential building stock. They have

deployed an aggregation algorithm to define archetype buildings. Their configuration and operation,

which included the buildings interaction, were then optimized to acquire cost effective solution. The

archetypes solutions were extrapolated to represent the German building stock. The model was val-

idated with a case study and emphasized the importance of photovoltaic (PV) and HP deployment

to reduce GHG emissions. However, those new technologies tended to increase the electricity avail-

ability gap between summer and winter.

De Jaeger et al. [19] explored building clustering using complete-linkage which is an agglomerative

hierarchical method. The input data were geospatial data and provided acceptable result to model

5



the peak and annual energy demand. Stadler et al. [20] built 9 variations of three typical buildings,

each with a different construction year, resulting in a different energy demand as the building en-

velope is correlated to the construction year. The buildings were then individually optimized and

extrapolated to represent the built environment of Switzerland. None of the aforementioned studies

considered the buildings interaction, which is representative of the current literature.

District

The use of isolated buildings to define energy demand does not consider the buildings interactions

within the district. Several studies [8, 21, 22] presented such systems as macro energy hubs where

each building is a micro energy hub, all controlled to optimally design and operate at the macro

scale. They are also referred to as distributed energy systems in the literature and have been found to

contribute significantly to support sustainable growth by promoting sustainable energy access, re-

ducing GHG, creating jobs, and enhancing energy security [23, 24, 25, 26]. As discussed in the review

on district-scale energy system by Allegrini et al. [27], there has been a significant improvement of

models and tools used to analyze such system. In regard to the district scale, they found that multi-

energy grids are critical technologies to improve RE penetration, as balancing demand and supply

across the network improved load matching and resource utilisation.

In their paper, Morvaj et al. [28] performed an optimization of a district scale energy system com-

posed of twelve buildings. For each building, an optimal design and operation have been identified

and a district heating network associated was optimized to reduce the total expenditure (TOTEX)

and the GHG emissions. Their results showed that the decentralization and the increase of energy

conversion units availability helped to reduce objectives. Maroufmashat et al. [22] highlighted the

importance of considering multiple energy hubs to observe significant cost and GHG emissions re-

duction. Their case study has showed that the implementation of distributed combined heat and

power (CHP) units was limited while operating an electricity grid with low CO2 emissions. And that

the operation of interconnected energy hubs can significantly increase the robustness of the power

grid, e.g., mitigation of congestion and ensuring reliability. Therefore the consideration of district

systems within wider scale system can be beneficial to improve their optimal objectives.

On the other hand, increasing the size of the considered district has a direct impact on the compu-

tational time of the model resolution [29, 30]. Therefore, the use of district scale system to model

large-scale energy system become infeasible in term of computational power. Hence, new solving

methods are needed to improve optimization efficiency without reducing spatial and temporal res-

olution, which oversimplifies the problem [30, 31]. Instead, the use of archetype is an efficient way

to reduce the computational cost. Eggiman et al. [32] attempted to define neighborhood archetypes,

using various feature combinations, and up-scaling technique to define a national-scale energy sys-

tem. However, the clustering steps of the building stock did not deliver acceptable results, which led

to the definition of archetypes by an expert.
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Geospatial cluster

Another resolution scale is the geo-cluster, which is interpreted as a region in which the selected in-

dicators (features) are homogeneous. The GE2O project, supported by the European Commission,

has defined a panel of energy efficient solutions for each identified geo-cluster in Europe. For their

identification, both technological and non-technological aspects of the region, such as the wind gen-

eration potential and the age distribution, were considered [33]. Kuster et al. [34] defined 118 differ-

ent geo-clusters within Europe, accounting for 16 parameters such as building types, climate, and

socio-economic indicators. They have developed two tools to help users select appropriate techno-

logies for their location by providing case studies with a similar environment. Slaymaker et al. [35]

defined a national model based on interconnected region. The study provided a method for discret-

izing space using geographic data clustering. The geographical characteristics used were wind, solar

and photovoltaic potential, as they are location dependent. As well as demographic characteristics

such as population density, urban, agricultural, ecological areas, and distance to the power grid.

2.2 Global sensitivity analysis

The previous section emphasized the importance to develop large-scale energy system models to

mitigate climate change. In addition it should even consider sub-systems to ensure a multi-scale

optimal system and improve its objective function. However, the resolution of embedded systems

would be computationally demanding. In this prospect, the large-scale system should have access

to a panel of representative solutions of the sub-system to efficiently integrate them in its scope. To

provide representative solutions it is necessary to explore the solution space of the sub-system. There

exists several method to do so, such as multi-objective optimization, global sensitivity analysis, etc..

The further section discusses the application of GSA in the context of energy systems.

Sensitivity analysis (SA) is a powerful tool to assess the effect of input parameters on the model out-

put. There exist two main types of SA: local and global. The most common method is the local sens-

itivity analysis (LSA), which evaluates the sensitivity by varying one parameter at the time around

a specific value. Even though, its ease of implementation makes it popular, the sampling scheme

does not scan the entire space of input parameters. This gap is filled by the GSA, which explore the

solution space by varying several parameters at once. It can thus record the interactions between

parameters.

Most of current models assume a perfect knowledge of the input parameters. This absence of un-

certainty characterizes them as deterministic models [24]. However, various aspects such as cur-

rent policy, renewable energy production and economic trends show that there are always some

uncertainties to consider. Therefore, specific models are developed to consider such randomness:

stochastic model. However, the resolution of the latter is computationally expensive. An alternative
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to stochastic model is the application of SA to deterministic models as proposed in [36, 37]. Indeed,

given the sensitivity of the model for uncertain parameters, it is possible to assess the general beha-

vior of the model without extensive modifications.

A review on SA methods for building energy systems has been performed by Tian et al. [38] and em-

phasizes the importance of choosing the right method. They concluded that the choice should be

based on the following criteria: research purpose, computational cost of energy models, number of

input variables and familiarity with the methods. Another review has been performed by Wester-

mann and Evins [39], 57 studies on building design were analyzed, focusing on: objective, sampling

strategy and surrogate model type. Among all studies only 16 included a SA of the model. Their

sampling strategies were primarily based on latin hypercube sampling, and only 3 used an optimiz-

ation model, highlighting the low implementation of SA in optimization models.

Liu et al. [37] developed a framework to assess the uncertainty and sensitivity of district energy sys-

tems. The framework includes a two-stage SA. First, a screening method filters out non-influential

parameters to reduce computational cost. Secondly, the sensitivity of the influential parameters was

evaluated with a GSA. The methodology has been further validated with a case study of a distrib-

uted energy system (DES) in China, which indicated that the overall cost is more sensitive to some

variables than others, including energy carriers price and the efficiency of thermoelectric generators.

Mavromatidis et al. [36] have applied the same methodology to a DES. The screening method used

to identify the most influential parameters was the Morris method. It has been coupled with a So-

bol sequence to obtain a proper sampling of the solution space for the final sensitivity analysis. The

results showed that the variation from the system optimal cost came from energy carriers’ prices and

energy demand patterns. Concerning the installed units, a combination of heat pumps, cogenera-

tion units and boiler achieved the lowest cost, and a phase-out of CHP was required to reduce GHG

emissions.

Finally, Østergård et al. [40] have used a SA to explore multidimensional design space to help decision

making regarding sustainable building design. The identical framework presented as presented in

[36] has been used and provided a portfolio of possible building conception. The author developed

a tool to select optimal designs based on specific parameter ranges.
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2.3 Clustering

Once the solution space is explored it is necessary to identify typical solutions with the use of clus-

tering algorithms, as the solution space can be composed of several thousands of optimizations.

Clustering is used to explore data sets and determine their structure. It reassembles data points that

have similar attributes into a cluster. Aggregation techniques are classified into two types: super-

vised and unsupervised (machine) learning. The supervised methods are given an object that has

previously been tagged; their goal is to create an algorithm that will link a new object to a label. Un-

supervised learning, also known as clustering, on the other hand, is not labeled. The algorithm must

identify the groups (clusters) based on the features of each data point. The number of clusters is not

necessarily specified by the user. As labels are not pre-identified with unsupervised learning, it is

considered more difficult than supervised learning. Unsupervised learning methods can be further

divided into two sub-categories: hierarchical and partitional clustering. The partitional algorithms

separate the input data space in k clusters. Whereas, the hierarchical clustering method grows a tree-

shaped structure of the data, also called dendrogram, to form nested sets of data.

A clustering algorithm can be expressed as a minimization problem in which the objective function

represents the sum of the distances between each data point within the same cluster [41]. Lloyd et al.

[42] have proposed the K-means clustering technique. It identifies k clusters among the data points

using the algebraic mean as the cluster center and minimizes the intra-cluster distance. There ex-

ist many different methods to define the cluster center such as K-medoids using the most centered

point as the cluster center [43] or K-medians using the median as the cluster center [44].

However, to perform well, these methods require a convex data space, a property which is inherent

from the energy model formulation. Consequently, more robust algorithms based on density clus-

tering are essential to aggregate arbitrary shaped data. The data distribution can come from several

density functions and with different parameters [45]. Thus, Cheeseman and Sutz [46] have developed

AUTOCLASS, an algorithm to detect clusters based on the distribution of the data. Ester et al. [47]

have developed a density-based method named density-based spatial clustering of applications with

noise (DBSCAN), which is able to detect non-convex shapes among large data sets. Campello et

al. [48] have proposed a hierarchical version of DBSCAN named hierarchical density-based spatial

clustering of applications with noise, which proved to be more robust to outliers.

The application of the aforementioned algorithms in the context of district energy systems is rare.

One can mention the study published by Felsmann et al. [49], which examined multiple clustering

techniques such as Single-Linkage, DBSCAN and OPTICS on a district heating network. The res-

ults showed that the GHG robustness outperformed the other algorithms. In order to identify typical

buildings Stadler [31] has used the K-medoid technique to determine archetypes building among the

entire Swiss building stock. The K-medoid was preferred to K-mean as it produced more robust res-

ults and identify existing buildings, not a fictive central cluster [50].
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Since the choice of the clustering method is a problem in itself, it is a good practice to introduce

a cluster validation index to compare several algorithms. Arbelaitz et al. produced an exhaustive

comparison of cluster validation indices [51]. 30 indices were compared over several sets of con-

figurations. The researchers created a tool to find the best suited index for a specific application,

although the Silhouette index often performed the best. Moulavi et al. [52] introduced a novel index

to evaluate the quality of density-based clustering as most of the validation index are developed for

globular clusters.

Table 2.1: Literature overview on the resolution of large-scale energy system. The resolution indic-

ates at which scale the investment or the demand profiles were considered. The labels el ec refers to

electricity. The pre-selection of conversion units, the use of energy demand profiles or the genera-

tion of scenarios are three approaches to assume the value of a variable and to fix it as a parameter.

The column on interdependent systems refers to whether the study considered inter subsystems de-

cisions in the methodology or in the analysis.

Case study Method Integration Analysis

Scope Resolution Model Sampling Solution identification Multi-energy Extrapolation
Interdependent

systems
Tariff Impact Reference

Region Building LP ✗ Scenario Elec/gas Profiles ✓ ✗ [53]

City Building Simulation ✗ Single solution Elec Typical buildings (expert knowledge) ✓ ✗ [54]

Country Building MILP ✗ Scenarios Heat/elec/gas Typical buildings ✗ ✗ [18]

Country City MILP ✗ Scenarios Elec/H2 Profiles ✗ ✗ [55]

City City MILP ✗ Single solution Elec ✗ ✗ ✓ [56]

Country Building MILP ✗ Single solution Gas/elec
Typical weather and

buildings (expert knowledge)
✗ ✗ [31]

Country Building MILP Morris & Sobol Clustering Elec/gas/heat Typical districts ✓ ✓ This study

2.4 Gaps and contributions

Most of researches focusing on large-scale energy system use pre-defined or even constant demand

profiles; assuming a certain technological integration and missing on the opportunity to model new

consumption habits or life style variation. Some attempt to build bottom-up national model based

on building archetypes without considering possible synergies within the built environment nor

between the national scope and the building scope. Additionally, the exploration of solution space

regarding district energy system is poorly studied. The majority of the studies consider scenarios to

represent diverse solutions of the district but none consider an holistic strategy to define typical con-

figurations based on its solution space.

This project aims to build a soft-link between a district and a national model in order to incorporate

an optimal built environment. To do so the definition of optimal configurations for districts rep-

10



resentative of the country are necessary. This implementation will provide the tools necessary to

address the following research questions:

• What are the typical investment and operation configurations in district energy systems?

– Identification of the most influential parameters in the decision making

– Exploration of the solution with a reduced number of optimizations and extraction of

typical configurations

• How local energy systems decisions can be integrated in the national infrastructure?

– Definition of a national energy system model based on a building-scale resolution

– Validation of the national model based on the built environment

– Impact assessment of a decentralized investment in the built environment

• What is the impact of the feed-in tariff of PV electricity on the national system configuration?

– Determination of a threshold feed-in price of electricity for the deployment of decentral-

ized PV production

– Impact of the deployment of decentralized PV production on the national infrastructure

– Effect of the tariff condition on the selection of district configurations
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Chapter 3

Methodology

This chapter presents the distinct steps used to generate the results. First, a novel framework able

to define typical technological solutions of a district energy system is presented. The framework is

composed of a global sensitivity analysis to explore the solution space, which is then clustered to

identify typical solutions. Subsequently, the methodology describes the modification performed on

a national scale energy system optimizer to consider the district solutions. And finally, the typical

districts used for the case study are presented.

3.1 Identification of typical district configurations

3.1.1 Solution space exploration

In order to identify robust typical solutions, it is primordial to explore the entire solution space. How-

ever, this can become an untrackable task as the solution space’s size is directly related to the model

complexity. The following methodology is based on the publication of Saltelli et al. [57] which as-

sesses the state-of-the-art of GSA. A sensitivity analysis can be decomposed in four steps:

1. Identification: k input parameters of the model are selected

2. Sampling: the input parameters space is discretized by N samples

3. Evaluation: the model outputs are computed for each sample

4. Comparison: some metrics are derived from the N outputs of the model for the k parameters

As a sensitivity analysis can be quite expensive in term of optimizations, Saltelli recommend using a

screening method to identify the most influential parameters of the model within a minor number

of evaluations. Hence, the used methodology is a two-fold sensitivity analysis. The primary SA used

as a screening is the method of Morris and the secondary SA is the variance-based Sobol method.
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Figure 3.1: Scheme of the two-step GSA composed of first the Morris method as a screening and then

the Sobol method is applied on the most influential parameters

Morris

The screening method allows to qualitatively compare the influence on the model output of a large

number of parameters with a few evaluations [58]. The method discretizes the input parameters

space, which is a k-dimensional hypercube, into a p-level grid, where k is the number of independent

input parameters and p is a sampling parameter. Then, it performs a one-step-at-the-time method,

i.e. it randomly modifies an input parameter by ±∆ to generate r trajectories.

Then, it evaluates the elementary effect (EE) of the ith input factors (EEi ) as a function of the model

output Y = f (X1, ...,Xn), see Equation 3.1. The EE can be interpreted as a local partial derivative,

thereby it represents the sensitivity of the model at a specific point w.r.t the input parameter.

EEi = [Y (X1,X2, . . . ,Xi−1,Xi ±∆, . . .Xk)−Y (X1,X2, . . . ,Xk)]

∆
(3.1)

Where ∆ is defined as a function of p: ∆= p
2(p−1) and can be considered as the size of the discretiza-

tion mesh . The total number of model evaluations amounts to k(k+1), where r is suggested between

4-10 [57]. The choice of p and r has to be made jointly to ensure that the k dimensions and their

interactions are correctly sampled, Saltelli proposed p = 4 and r = 10 [59] whereas Morris used r = 4

in [58], which seems to be the minimum usable value.

In its original work, Morris proposed the computation of the mean µi (Equation 3.2) and standard

deviations σi (Equation 3.4) of the elementary effect distribution for each parameter i. However,

by doing so, the positive and negative effects cancel each other out, which would falsely influence

the results of the mean value. Thus, the method has been improved by Campolongo et al. [60], by

considering the absolute mean elementary effect µ∗
i (Equation 3.3).

µi = 1

r

r∑
j=1

EE j
i (3.2)

µ∗
i = 1

r

r∑
j=1

|EE j
i | (3.3)

σ2
i =

1

r−1

r∑
j=1

(
EE j

i −µi

)2
(3.4)
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Figure 3.2: Illustration of a k-dimensional hypercube, with k = 2 and a four-level grid (p = 4) [57]. The

arrows represent the 8 points required to estimate the EE of X1.

Those indicators allow to compare the input parameters between each other. A small absolute mean

value means a non-influential parameter. The standard deviation reflects the interaction between

parameters: a high value means that the output is strongly dependent to the sampling point, i.e. to

the other values of the input parameters. Conversely, a low value of σ indicates that the elementary

effect is not subject to vary with different parameters values.

The representation of the mean absolute value of the EEs and their standard deviation makes it easy

to identify to which group the parameter belongs. As represented on Figure 3.3, one can see the

different zones and the line (x = y) separating quadrant 1 that defines whether parameters interact

together or not. The different zones can be defined as follows:

1. Non-influential parameters

2. Influential, non-interacting parameters

3. Influential, interacting parameters

4. Influential parameters

The comparison of µ and µ∗ gives an extra insight in the monotony of the model. If the model output

increases with an augmentation of the parameter. The EE will stay positive thus µ∗ and µ will have a

similar value, whereas if the EE changes sign regularly its cumulative will be lower, i.e. µ will be lower

than µ∗.
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Figure 3.3: Identification of the typical zone on the µ∗−σ plane

Sobol

The Sobol method is a variance-based sensitivity analysis named after the mathematician Ilya M.

Sobol. The method is developed in [57, 61] and uses Sobol’s recommendation on the sequencing of

quasi-random numbers. However, Saltelli extended her work in [62] to reduce the error rate when

computing the sensitivity index.

Sensitivity indices

The method evaluates two different sensitivity indices, the first one is the first-order sensitivity coef-

ficient (Equation 3.5). It results from the ratio of the variance of the output mean, considering all

parameters except the ith, and the variance of the output. The secondary sensitivity coefficient is the

total effect index, i.e. first and higher-order sensitivity coefficient (Equation 3.6).

Assuming: Y = f (X1, ..., Xn) is the model output, X∼i symbolizes all parameters but Xi , EX∼i (Y | Xi ))

is the mean of Y for every possible X∼i and finally the variance VXi is calculated for all values of Xi .

Si =
VXi

(
EX∼i (Y | Xi )

)
V (Y )

(3.5)

ST i =
EX∼i

(
VXi (Y | X∼i )

)
V (Y )

= 1− VX∼i

(
EXi (Y | X∼i )

)
V (Y )

(3.6)

The first-order coefficient consider only its own effect on the output value, but not the possible

higher-order effect with other parameters. The total-order effect index evaluates the effect of a para-
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meter considering all possible interactions with other parameters. Meaning that a parameter with

a value of ST = 0 can be considered as non-influential on the output Y . The total number of model

evaluations is N (k +2) with N being typically between 500 and 1000 [57], it is suggested to choose a

power of two.

3.1.2 Clusters detection

This subsection describes the steps to obtain the typical system configurations of a district using the

configurations obtained via the Sobol sampling. First, the data have to be standardized, as the results

further used to perform the clustering can have a difference of several order of magnitude. Then,

the chosen features are discussed and the aggregation method used for this data set are presented.

Finally, the clusters are filtered to obtain representative configurations of the solution space.

Standardization of the data & features selection

The chosen standardization technique is the Z -score, see Equation 3.7. Each features Xi of the data

set is standardized as follow:

Zi = Xi −µi

σi
(3.7)

where µi is the mean, σi the standard deviation of the feature Xi .

The features chosen for the clustering process consist in a combination of economic and technical

attributes. Those features include the capital expenditure (CAPEX) and operational expenditure

(OPEX) as key performance indicators. Additionally, the installed capacity of energy conversion and

storage units is included in the clustering as it plays a significant role in determining the district con-

figuration. When it comes to the exchange between the district and the network, both the yearly total

and peak energy supply and demand for natural gas (NG) and electricity are taken into account.

Aggregation techniques

The selection of the aggregation technique, i.e. the clustering method, is a delicate task which highly

influence the results outputs. The choice is based on the methodology described in [63]. As the

solution space is non-convex usual clustering techniques such as k-mean, k-medoid, etc. would

produce non-optimal results. This property is inherent from the energy system formulation which is

a mixed integer linear programming (MILP). Therefore, such techniques are only used to get a sense

of the optimal number of cluster. The chosen algorithm is the DBSCAN which aggregates data points

based on the density of the data set. The method uses the notion of core points to define a cluster.

Points are defined as core points of one specific cluster when they can reach a minimum of minPts

neighbours within a ϵ distance. Hence the algorithm is used with a fine tuning of its hyperparameter

ϵ and a selection of clusters representing at least 5% of the samples.
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3.2 Integration of a built environment into a national model

The district scale energy system optimizer used within this project is a Renewable Energy Hub Op-

timizer (REHO), developed in [31, 64, 65]. Regarding the national energy model, EnergyScope (ES) is

used to select an optimal collection of district energy system configuration [6]. This section presents

the evolution of both tools and the adaptations to link the micro-energy management within REHO

to a national energy system modelled by ES.

3.2.1 Renewable Energy Hubs Optimizer

REHO is a MILP model which evolved with several publications. The initial model was proposed by

Luc Girardin in [65] which optimized a building energy system. This model had a unique feature in

that the data for the buildings was represented in the form of a GIS. Making it easier to connect to

multiple databases and access on site measurements. Paul Stadler further improved the model with

modern conversion and storage technologies in its paper on the impact of model predictive control

on building energy systems [20]. Finally, Middelhauve et al. [8] proposed a novel decomposition

strategy to reduce computational time of the district optimization to allow a centralized optimiza-

tion of the district in reasonable time among other contributions.

The tool optimizes a district energy system fulfilling electricity and heat demand (space heating and

domestic hot water) with energy conversion and storage units (Table 3.1) fuelled by an electricity and

a natural gas district grid. The space heating (SH) demand is defined by a 1R1C model of the build-

ing detailed by [65]. The demand-supply schedule is optimized on an hourly timescale using typical

periods representing an annual time series. Energy and mass balance equations coupled with a heat

cascade represents the majority of the constraints.

The model can be optimized in two distinct ways: centralized and decentralized. The decentralized

approach optimizes each building individually and then aggregates all buildings within the district

using postprocessing. On the contrary, the centralized strategy design and operate all buildings indi-

vidually and the exchanges within the district networks in a single optimization, reducing total cost

and GHG emissions of the system.

Regarding the modelling language, REHO core optimization code is a mathematical programming

language (AMPL) which is run via a Python wrapper. The wrapper is critical since it enables: the

connection to the GIS database, pre- and post-processing for the cluster identifications. Moreover,

the data adaptation (subsection 3.2.3) is also performed using Python.
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Table 3.1: District energy system technologies, table from [8].

technology input stream output stream reference unit

energy conversion technologies

natural gas boiler natural gas heat [kWth]

heat pump ambient heat, electricity heat [kWe]

electrical heater electricity heat [kWth]

PV panel solar irradiation electricity
[
kWp

]
energy storage technologies

thermal storage SH heat heat
[
m3

]
thermal storage DHW heat heat

[
m3

]
3.2.2 EnergyScope

ES is a model for strategic energy planning of regional and national energy systems. Firstly, presented

by Moret and al [31] the model has known many iterations [66, 67]. The last iteration of the model

accounts for several energy carrier grid layers, multi-energy, and multi-sector demands. It allows to

point-out precisely which grid level is critical for various scenario.

The model is operated on twelve typical periods representing months. The energy balance is achieved

between the end use demand (EUD) of the consumer and the output of energy conversion or stor-

age units converting resources. The EUD are divided in four distinct sectors: households, services,

industry, and transportation. The demand is further discretized within each sector in categories such

as electricity at various voltage, heat demand at low or high temperature, etc.

In terms of coding language, ES is coded in AMPL and can be launch without any additional program.

However, in this project as it is necessary to load the districts configurations an R wrapper is used to

load the district configurations and post-process the results.

3.2.3 Data adaptation

In order to enable the connection between the two models some adaptation are required such as

temporal transformation and upscaling. Indeed, the original demand profiles of ES are fulfilled by the

districts configurations. Therefore, ES can selected which configurations are the most cost-effective

in its regard, ie. which technologies should be deployed at the district level. Regarding the temporal

adaptation, the generated results produced by REHO are composed of 10 typical day (TD). These TD

can be relocated on an annual time series and aggregated to produce monthly results matching ES

18



inputs data. Finally, as the typical districts represent the whole country, one must adapt the demand

in consequence. This is achieved by using an upscaling factor defined by the ratio of the total energy

reference area (ERA) of the clustered districts to the ERA of the district itself.

3.2.4 Additional photovoltaic potential

Originally, ES has a decentralized PV potential deployment at the LV level to meet the electrical

demand of industry, services and households. However, as the introduced districts meet only the

households demands and that the original decentralized PV potential is set to zero, the other sectors

cannot meet theirs demands with decentralized solar energy. Therefore, in order to provide decent-

ralized solar energy to each sector and allow further modelling, the remaining PV potential of the

district is proposed to ES at the low voltage level in the form of a bidding table between the districts,

see Table E.1 for the identified feed-in tariffs by district.

Each district has a maximum PV production profile which is defined from its roofs orientation, met-

eorological situation, altitude, etc.. Therefore, by annualizing the investment cost of the PV installa-

tion over its lifetime, it is possible to calculate the price at which this additional electricity production

should be sold. As mentioned, the PV production is different from one district to another, but the in-

vestment cost of PV is not, which will result in different electricity prices for each district, generating

the bidding table.

3.2.5 Modelling

Please note the parameter, variable and set convention:

• Variables are written in italic

• Parameters are written in normal text

• Sets are written in UPPERCASES

District configurations cost

In order to allow ES to select the optimal shares of district configurations, some modifications on the

original code proposed by Schnidrig et al. [67] are necessary. The adjustments are based on an ad-

ditional project from the same author [68]. The following parts describe in detail the sets, variables,

constraints, and parameters added to the model.

Two new sets are created to receive the district (DIS) and their possible configurations (CONFIG).

A decision factor ( f I D
c ) is defined to select the share of configurations for each district. As each district

represents a different part of the country, the sum of the decision factor on the district configurations
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must be unity.

∑
c

f I D
c (d ,c) = 1 ∀d ∈DIS ,c ∈ CONFIG (3.8)

Subsequently, the total cost of the configurations (Ccon f i g ) is defined by the investment in each con-

figuration (cconf
inv ), calculated based on REHO, and the decision factor. Operational cost is composed

of the resources which are already accounted in the resources cost balance.

Ccon f i g =∑
d

∑
c

f I D
c (d ,c) ·cconf

inv (d ,c) ∀d ∈DIS ,c ∈ CONFIG (3.9)

The total GHG emissions of the configuration (Gcon f i g ) is calculated similarly as the total cost.

Gcon f i g =∑
d

∑
c

f I D
c (d ,c) ·gconf

inv (d ,c) ∀d ∈DIS ,c ∈ CONFIG (3.10)

(3.11)

Additional photovoltaic capacity

Regarding the additional PV potential of household roofs, a new decision factor ( f PV
c ) is introduced.

It is used as a scaling factor multiplied by the normalized maximum PV production profile, see Equa-

tion 3.12. The sum of the additional PV production and the PV production within the district, which is

defined by the multiplication of the decision factor ( f I D
c ) and the PV production of the configuration

(PPV), is upper bounded by the maximum production for each district in Equation 3.13, as illustrated

in Figure 3.4.

P add
PV (d , t ) = f PV

c (d) · Pmax
PV (d , t )

maxt Pmax
PV (d , t )

∀d ∈DIS , t ∈PERIODS (3.12)

Pmax
PV (d , t ) ≥∑

c
PPV(d ,c, t ) · f I D

c (d)+P add
PV (d , t ) ∀d ∈DIS ,c ∈ CONFIG, t ∈PERIODS (3.13)

This additional production is proposed to ES as a bidding table. The price of the PV electricity

(PriceID
PV) represents the minimum tariff to annualize the cost of the maximal PV installation (Cmax

PV )

over its lifetime (l) at an interest rate (i). The same principle is applied to get its construction emis-

sions (GID
PV).

PriceID
PV(d) = C max

PV (d)∑
t Pmax

PV (d , t )
· i · (1+ i )l

(1+ i )l −1
∀d ∈DIS , t ∈PERIODS (3.14)

GID
PV(d) = Gmax

PV (d)∑
t Pmax

PV (d , t )
· i · (1+ i)l

(1+ i)l −1
∀d ∈DIS , t ∈PERIODS (3.15)
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Figure 3.4: Representation of the different PV profiles modelled within ES. The district PV profile is

a composition of the selected configurations PV profiles. The maximum production profile is the

maximum possible production of the district. And the additional PV profile is the amount of PV ES

chooses to install in addition, here it is 70% of the remaining potential of the district

The PV capacity within ES is set to zero as it is replaced by the combination of district configurations

and the additional PV capacity. The original resource balance equation is completed by the import

and export of the district at the low voltage and pressure for electricity and NG, respectively. The

additional PV production of the district is also introduced at the low voltage level. The CO2 emitted

from the construction of the district technologies is introduced into the total emission balance. The

newly defined costs and emissions are introduced into the total costs and emissions calculations in

an identical manner.

Ctot =
∑
tec

Ci nv (tec) · i · (1+ i)l

(1+ i)l −1
+Ccon f i g +

∑
d

∑
t

PriceID
PV(d) ·P add

PV (d , t ) (3.16)

∀d ∈DIS , tec ∈ T EC, t ∈PERIODS (3.17)
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3.3 Case study

The methodology is applied to 10 typical districts representing Switzerland. The districts were ob-

tained following a methodology developed by Girardin et al. [65] and Loustau et al. [69]. A GIS data-

base combined with a Python repository generates a dataset of building with their respective energy

characteristics. Loustau additionally introduced the work of Gupta et al. [70] to spatially estimate the

district localisation based on the low voltage grid topology. Then, based on environment, infrastruc-

ture and real estate characteristics, a clustering algorithm is applied to select representative districts.

The initial number of identified districts in the country is 175’507. The GaussianMixture aggregation

methods were used on the following features: ERA, number of buildings, space heating demand,

solar roof space, meteorological zone in the country, grid exchange, irradiance, etc. The optimal

number of clusters ranges between 9 and 14. The selection of the specific cluster’s results was based

on the following criteria.

• The total number of buildings should range between 100 and 400 to apply the configurations

identification framework in reasonable computational time.

• The identified district should be widespread across the country as Switzerland is a heterogen-

eous land.

The chosen clustering is made of ten districts, see Figure 3.5. Their size range from 1 to 104 buildings

for a total of 362 buildings. This choice induced a slight bias as the clustering with large districts

where not selected to prevent computational burdens. Each district is associated to a meteorological

cluster defined by Moret in [71].

3.3.1 Districts analysis

The districts characteristics are presented in Table 3.3. Where one can see the energy reference area

(ERA) by district along side the clustered ERA, i.e. the total ERA within the database that is represen-

ted by the district. The ratio between the two represents the upscaling factor used to extrapolate the

districts optimizations from REHO to the national demand modelled in ES. The total clustered ERA

(806.16 [Mm2]) is only 2% lower than what is reported in [72, 73], this small variation validates that

the majority of the built environment is considered. As the district buildings are classified following

Schweizerische Ingenieur- und Architektenverein (SIA) regulations, it is possible to define share of

the ES sector for each district [74], see Figure 3.6.

The distribution shows that the service and industry sectors are poorly represented in comparison to

the households sector. This is a direct consequence of the database selection as the RegBL accounts

mainly for the buildings and dwellings. This results is supported with the comparison of the heat

and electricity demands obtained from the districts and the national demand declared by the Swiss

Federal Office of Energy (SFOE), see Table 3.2. The districts do not represent well the service and
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Figure 3.5: Repartition of the district in Switzerland.

Figure 3.6: Distribution of the sectors within each district using the SIA class defined in the database

and description of the class by SIA.

industry low voltage electric demand compared to ES and reference values, therefore they will not be

considered being modelled by the introduced built environment. Only the SH and hot water (HW)

low temperature demands are fulfilled for all sectors by the introduced districts.
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Table 3.2: Modelled and reference energy demands in [GWh/yr]. The energy demands related to

REHO represents the upscaled demands of the districts. The electricity demands presented in this

table is low voltage and the SH and HW demands are for low temperature demands.

REHO EnergyScope Reference

SH HW Electricity SH HW Electricity SH [73] HW [73] Electricity [72]

Household 76.13 6.92 16.18 45.6 7.1 18.8 42.11 8.97 20.10

Service 1.64 0.03 0.85 14.1 2.4 15.1 19.43 2.91 17.36

Industry 4.81 0.13 1.59 3.5 0.5 0 3.24 0.76 16.26

Total 82.58 7.08 18.62 63.3 10 33.9 64.78 12.64 53.72

Figure 3.7 illustrates that more than half of the demand comes from the district of Konolfingen, and

represents 56% of the total clustered ERA. Therefore, its configurations will have a major impact on

the final energy system. Additionally, Hombrechtikon is the second largest district with 26% of the

total clustered ERA, the two combined represent more than 80% of the total demands: Electricity, SH

and HW. Therefore, the identified configurations of those districts and the ones selected by ES will

have a major impact on the national energy system.

Figure 3.7: Repartition of the ERA and demands by district.
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3.3.2 Scenario definition

The EnergyScope base national scenario envisions a Swiss energy system in 2020 that is not only

economically optimal but also environmentally sustainable, with no net emissions and complete

independence from energy imports. Despite the absence of nuclear power plants, which are being

decommissioned in preparation for a complete phase-out by 2050, the scenario is intended to meet

the country’s energy needs in an efficient and effective manner.

Table 3.3: Characteristics of the typical districts for Switzerland

District name Buildings [-] ERA [m2] Upscaling factor [-] Clustered ERA [Mm2]

Liedertswil 1 94.86 316.0 0.03

Zürich 2 1’079.37 204.0 0.22

Horgen 10 6’318.42 2’752.0 17.39

Assens 16 6’894.09 8’616.0 59.40

Martigny-Combe 16 3’316.38 11’516.0 38.19

Crans-Montana 31 21’326.77 416.0 8.88

Bütschwil-Ganterschwil 43 16’933.44 428.0 7.24

Collina d’Oro 45 15’260.37 750.0 11.45

Hombrechtikon 94 33’231.69 6’353.0 211.11

Konolfingen 104 80’562.18 5’614.0 452.25

Total 362 185’017.57 - 806.16
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Chapter 4

Results and discussions

4.1 District configurations

This section presents the most influential parameters obtained through the Morris and the Sobol

method, and the typical configurations obtained for each district.

4.1.1 Screening method

This subsection presents the results obtained during the screening phase of the sensitivity analysis.

To reduce the number of input parameters considered for the global sensitivity analysis, the Morris

method was employed, as explained in subsection 3.1.1. The energy conversion and storage unit

parameters, as well as the energy carrier prices, were the parameters considered in this step, see

Appendix A for more details on these parameters. A total of 46 parameters were included in the

analysis, and following the sampling methodology recommended by Morris, 460 optimizations were

performed to compute the sensitivity metrics. To compare the optimizations, a specific output value

was chosen, namely the total expenditure assuming a economically rational behaviour, as each run

generated a complete system configuration and operation.

The results of the Morris method applied for each district can be found in Appendix A. However, in

order to get an overall vision of the most influential parameters of the model, an average ranking of

the parameters based on the absolute mean value of the EE distribution is presented in Table 4.1.

The retail tariff of the electricity and natural gas grids are the most influential parameters and in a

consistent manner as they place first and second 8 out of the 10 districts, respectively. Naturally, the

variable cost and baremodule of the technology are influential parameters as they impact directly

the objective function. The fact that the parameters related to photovoltaic and heat pump techno-

logies are highly ranked highlights the cost competitiveness of an electrified system. Conversely, the

presence of natural gas boiler parameters confirms the low cost of this technology.
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Technology Parameter Average ranking

Electricity grid Retail tariff 1.2

Natural gas grid Retail tariff 2

PV Baremodule 4.3

PV Variable cost 5.3

Heat pump Baremodule 6

Natural gas boiler Baremodule 7.6

Natural gas boiler Fixed cost 8.4

PV Efficiency 9.1

Heat pump Variable cost 9.8

Heat pump Fixed cost 10.4

Table 4.1: The ten most influential parameters over all districts with respect to the Morris method

As discussed in subsection 3.1.1, it is recommended as a good practice to graph the absolute mean

value (µ∗) and standard deviation (σ) of the EE distribution for every input parameter. Figure 4.1

shows such plane for the district of Crans-Montana. A persistent result is the non-interactivity of the

electricity retail tariff always located in the lower right half, whereas, most of the influential paramet-

ers sit on the non-interacting zone.

4.1.2 Sobol sampling

This subsection focuses on the final sampling of the chosen input parameters using a Sobol se-

quence. The input parameter space is explored with 1024 samples following recommendations presen-

ted in subsection 3.1.1. The chosen parameters used to explore the solution space is the retail tariffs

of NG and electricity. The number of trajectory used is 256. In order to reduce the computational

time of the space exploration, by reducing the number of optimisations. The effect of the decentral-

ized method within REHO and a reduced number of trajectory has been analyzed in Appendix B. The

conclusion is that the number of trajectory can be reduced by a factor 2 without significant reduction

of the sampling resolution. Additionally, the decentralized method can be used to reduce the com-

putational time. However, this reduce the configurations diversity, ie. there is less configurations, but

the nature of the configurations is preserved.

The Sobol’s sensitivity indices cannot be computed as some of the sampling point causes a crash of

the optimizer. Therefore, no objective values were obtained. As these indices are secondary results,

no model correction was undertaken.
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Figure 4.1: Morris analysis for the district of Crans-Montana on a µ∗−σ plane
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Figure 4.2: Identified configurations for the district of Martigny-combe and their grid exchanges

4.1.3 Clustering

The clustering algorithm identified between 3 and 7 typical configurations for the ten districts, ac-

counting for a total of 46 configurations. All districts have at least one configuration based on NG and

one on electricity. However, as demonstrated in Appendix C, the hyperparameter ϵ of the DBSCAN

algorithm seems to need some adjustments in function of the district size. Large district, ie. dozens

of buildings, solution space were better separated with low ϵ value whereas smaller district configur-

ations were well identified with high value.

Figure illustrates the available configurations for the district Martigny-Combe associated with the

meteorological cluster of Piotta. The configurations panel showcases both electric and fossil-fuel

based solutions but also an hybrid solution, number 5. The latter probably operates the NG boiler

only in high demand situation as its NG import is relatively low.

The main variation between configurations is the total installed capacity, ranging from single to

double. This discrepancy is due to the extreme period (high demands and rash environment) in-

cluded in the model. The model installs a minimum heating capacity to supply heat in any condi-

tion. This minimum heating capacity appears in all configurations and is either composed of a NG

boiler or a combination of electrical heater and heat pump.

The extensive utilization of HPs and PV in various configurations highlights their high potential in

district energy systems. Although, the electric grid is more strained with PV implementation as export

are increased, but import are not necessarily reduced, requiring a sufficient absorption capacity of

the grid. The installation of a HP triggers the deployment of a water tank to serve as heat buffer.

Figure 4.3 represents the distribution of the identified clusters over the sampling space. The heat map

in the background illustrates the amount of natural gas imported for each optimization. As observed
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Figure 4.3: Typical configurations distribution in the retail tariffs space for the district of Martigny-

combe

in subsection 4.1.2, the output of the model, i.e. the district configuration, is strongly correlated to

the retail tariff of NG and electricity. This relation can be observed in the figure below as the different

configurations can clearly be identified. Additionally, the sampling space naturally separates itself

in half, the separation is highlighted by the amount of NG imports. The configurations 2 and 4 are

based on NG and the configurations above, 5 to 10, on electricity. The NG configurations are located

on the bottom right corner where the electricity tariff is high. Inversely, the electricity based ones are

in the top left region where the NG price is high. One can note that the space has less samples in

some region, this is due to the data selection done in subsection 3.1.2. The hybrid configuration is

justified by high retail tariffs, top right corner, which prevent the configuration to be based solely on

an energy vector.

4.2 Validation of the national system based on the built environment

The results from ES incorporating the optimizations of the built environment of 2020 (SREHO2ES) is

compared to the Swiss ES (SES) of the same year. The main difference between the two models is the

means used to satisfy the low temperature SH and HW demands, as well as the electric demand at

low voltage (LV) for the households sector. In SREHO2ES, those demands are met within the district

optimizations performed in REHO, whereas ES technologies are used in the case of SES.

There is a 15% difference of the annual cost in favor of SES, which is explained by the SH demand

modelled by the district which is 23% higher and the oversimplification of the problem when using a

centralized approach.

Figure 4.4 represents the decomposition of the annual cost per capita for both models, accounting for

a Swiss population of 10 MCapita. The difference in operational costs is due to the amount of wood

purchased which is more than double in the SREHO2ES model. This additional wood is further gasi-

fied to produce NG in order to feed the households boiler installed within the districts optimizations.

30



The maintenance costs have an important disparity inherent from the modelling approach of the

maintenance cost in REHO. There is no maintenance cost in the district optimization as it is incor-

porated into the investment cost. Therefore, all investments in district technologies are overvalued in

comparison to ES technologies cost. In this regard, the maintenance cost of ES PV and HP accounts

for 43% of the total maintenance cost of SES. As a result, the maintenance cost of the SREHO2ES

model represents the maintenance cost of the national infrastructure. The main systemic difference

is the investment in gasification technologies to produce the NG from wood, for SREHO2ES, and

in geothermal district heating network in SES. The heating sector is detailed in subsection 4.2.1, its

investment gap is explained again by the maintenance cost modelling strategy. The wind and PV an-

nual costs are similar; however the PV cost comes from REHO optimizations hence the maintenance

cost is already represented, meaning that the SREHO2ES model installs less PV panels than SES. The

Others category accounts for the rest of the investment that does not fit into previous categories. The

principal contributors for SREHO2ES are the battery-electric vehicle. For SES, in addition to battery

electric vehicles, there is a district heating network that replaces the districts configurations and an

investment in deep saline carbon capture and storage technology. The overall difference comes from

an important investment into medium range battery-electric vehicles in the SREHO2ES model that

can absorb the electricity produces at LV by the district.

Figure 4.4: Comparison of the investment per capita for the SES and the SREHO2ES model
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4.2.1 District technologies comparison

Figure 4.5 illustrates side by side the detailed annual costs of the heating category represented in Fig-

ure 4.4. The category is composed of district technologies used to respond to the heating demand,

which is composed of low temperature demand for SH and HW and high temperature demand for in-

dustry. The difference of 164 [CHF/cap] is partly due to the maintenance cost, which in the case of the

ES HP used in SES, accounts for the same annual cost as the investment. Moreover, the SREHO2ES

is implemented with 2020 technologies costs at the district level, whereas the ES technologies have

2050 projected costs, increasing the cost discrepancy between the technologies of the models. The

use of water tank in the SREHO2ES model derives from the finer temporal resolution used to optimize

the district. As the operation is based on an hourly timescale the implementation of a thermal buffer

is required to optimally redistribute the heat produced by coupled HP and PV. SES implements two

district scale technologies for the heating network, electrical heat pumps and geothermal units. Note

that such technologies are not modelled in REHO and only district large enough would justify their

installation. The rest of the investments is distributed between electrical heaters and waste boilers.

Although the total costs are different, the technologies used are the same and in the same propor-

tions. Note that the PV is not represented in this graphic as more detailed results are presented in

subsection 4.2.2.
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REHO2ES model
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4.2.2 Geolocalization of PV deployment

As described in subsection 3.2.4, there is two distinct types of PV: one installed during the districts

optimizations and another installed by ES using the district PV characteristic to supply the demand.

The district configurations use at best 64% of the maximum production capacity in the district of

Crans-Montana. For other districts, the utilization is even lower with an average of 6.4% of the total

capacity. The district of Konolfingen, which represents more than half of the country’s built environ-

ment, installs a quarter of its total PV capacity. Liedertswil, second most representative district, does

not install any PV, probably because only one of its configurations has PV, see Appendix D. The detail

share of PV production potential is illustrated in Figure E.3 in Appendix C. ES invests in additional PV

only in the district of Crans-Montana as its bidding offer was the cheapest with 0.107 [CHF/kWh], the

second cheapest option was in Konolfingen with 0.121 [CHF/kWh]. This behaviour signifies that ES

can supply electricity at LV at a lower tariff either by using other energy conversion units or choosing

configurations exporting electricity at least cost.

Until then only the investments in the technologies have been compared but as mentioned their

costs are different within REHO and ES. The annual PV production for SREHO2ES and SES are 12.66

and 34.85 [TWh/yr] respectively. This difference comes from the technology characterization in the

two models. Moreover, the monthly time resolution of the SES model erases the daily stochasticity of

PV, which, in reality, is a major limitation of its penetration in the system.

Figure 4.6 represents the PV production potential share, ie. the amount of electricity produces with

respect to its maximum production capacity, on the Swiss map. The main observation is the globally

low penetration of PV over the territory with the exception of the district of Crans-Montana repres-

ented in red. The penetration is higher in urban area, ie. on lake shore and along rivers, which are

represented by the district of Konolfingen. More maps representing district technologies production

are available in Appendix C.
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Figure 4.6: Distribution of the PV production potential share over the Swiss territory. Penetration of

PV is higher in urban areas.

4.3 Impact of the feed-in tariff on the national system

This section analyses the role of the feed-in tariff of PV electricity on the behaviour of the model. The

feed-in tariff is parameterized to vary from 0.01 to 0.12 [CHF/kWh]. Figure 4.7 illustrates the evolu-

tion of the annual cost composition and storage capacities of the system. The focus of the figure is

the PV investment variation, which was previously referred to as additional PV. As for now on the PV

within the district is incorporated into the district services category. The investment in PV increases

until it hits a tipping point around 0.08 [CHF/kWh] and starts to decrease until reaching no invest-

ment for a tariff of 0.115 [CHF/kWh]. Another investment that fluctuates with the feed-in tariff is the

district services which indicates a variation in the choice of the districts configurations. As the price

of electricity increases and the model is not willing to purchase it anymore, it is necessary to either

invest in new technologies or select district configurations which are more self-sufficient or even ex-

port electricity.

Regarding the storage hydro, it is at its maximum for the whole variation range. Whereas the NG stor-

age is negatively correlated with the feed-in tariff as cheap electricity access pushes the system to use

NG as a reserve resource. This storage capacity is used as a seasonal storage as there is no reduction

of technologies’ capacity fueled by NG. Additionally, the total annual cost is correlated to the feed-in

tariff, as the access to cheap electricity becomes limited.
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Figure 4.7: Evolution of the annual cost with the feed-in tariff of electricity.

4.3.1 Adaptation of the district configurations

From Figure 4.7, it is important to decorrelate the investment from the PV production as the feed-in

tariff is not fixed. Therefore, even if the investment in the technology increases, this does not mean

that the production increases.

Figure 4.8 represents the cost for both categories of PV: within the district and the additional capacity

proposed to ES, and their respective output. The additional PV production is decreasing with the

augmentation of the feed-in tariff even when the investment increases. ES invests in additional PV

until it reaches 0.08 its tipping point where it starts to decrease. It corresponds to a shift towards NG

based configurations as represented in Figure 4.9. The electrical heater and HP investments drop

suddenly at the expense of NG boilers.

The additional PV capacity is latter replaced by district PV production at a tariff of 0.115 [CHF/kWh],

which might be compared to the levelized cost of electricity (LCOE) within the selected district con-

figurations. This value represents a threshold after which the system can supply cheaper electricity

than the feed-in tariff, either via the district configurations or ES technologies.

The total PV production reduces with the increase of the feed-in tariff until the district takes over but
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the overall production is drastically reduced. Therefore, one would expect a reduction of the electric

infrastructure cost with the refraction of PV deployment, as a high production of electricity at LV

would most likely be used to fulfill medium voltage (MV) demands.
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Figure 4.9: Evolution of the investment in district

technologies with the feed-in tariff.

4.3.2 Evolution of the electric infrastructure

Figure 4.10 represents the evolution of the installed capacities of the electric infrastructure with the

feed-in tariff variation. The total capacity decreases until a tariff of 0.05 [CHF/kWh], after what it

stabilizes with the augmentation of the tariffs. As the PV output is fed into the LV level of the net-

work, once the LV demands are fulfilled, it is transferred to the MV. Low feed-in tariffs generate such

situations. The consequences on the network are an increase in capacity of superior levels to supply

higher voltage demands. At the LV level, the demand and supply profiles cancel each other out as

a monthly resolution is used, which reduces the required network capacity. As the tariff increases,

the PV production is reduced and new technologies are introduced to provide electricity at the MV

in order to fulfill the district imports at LV and high voltage (HV) demand. During this transition, the

MV grid capacity is reduced and stabilizes at 0.05 [CHF/kWh], whereas the LV capacity is continu-

ously increasing with the tariff. Regarding the HV and extra high voltage (EHV) grids, their capacity

is decreasing because they were used to transfer the surplus electricity production to the dams con-

nected to the EHV grid for seasonal storage. The spikes of the capacity are due to some instability of

the model and can be disregarded as the resulting investment price correct, see Figure 4.7.
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4.3.3 Identification of the district levelized cost of electricity

The variation of the feed-in tariff allows to analyze the activation of the additional PV capacity. A

threshold tariff above which ES does not invest in this additional capacity can be defined for each

district. Figure 4.11 illustrates this threshold value on the Swiss map. The district of Konolfingen,

which represents the urban areas, has a lower threshold than the rest of the districts. However, a

lower cut-off tariff does not mean a lower PV deployment. As illustrated in Figure 4.6, Konolfingen is

the district with the second highest PV penetration for a feed-in tariff much higher than its threshold.

As discussed in subsection 4.3.1, this threshold value can be compared to the LCOE of the different

configurations. As the deployment of PV within a district produces electricity at least expensive [8];

the LCOE in urban areas, as a result of subsection 4.2.2, is therefore lower than in rural district. This

justifies the presence of higher threshold rate in rural regions.

Threshold feed-in tariff [CHF/kWh]
0,021 - 0,037

0,037 - 0,052

0,052 - 0,067

0,067 - 0,083

0,083 - 0,098

0,098 - 0,113

Figure 4.11: Representation of the activation threshold feed-in tariff of electricity in the district.
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4.4 Outlook

The outlook is discussed for the main steps of the research. First the districts configurations identi-

fication can be improved to provide more accurate configurations to the national model. Then the

quality of the initial districts representing Switzerland can be improvement as they have a direct im-

pact on the final results. Finally, some harmonisations between the technological costs of the district

and the national model might provide additional insights on the models interaction.

First, as the ideal approach would be to let ES define the districts configuration, it is important to

propose the most representative and diverse panel of configurations. As discussed in the B, the

decentralized optimization reduces the number of identified configurations. Therefore, additional

computing power would allow to use the decomposed method and identified a larger amount of

configurations. What is more, the configurations characteristics (key performance indicators (KPI),

operation schedule, etc.) are defined by averaging the districts of the cluster. An alternative would be

to do a final optimization of the district with the capacities of all buildings units fixed to the averaged

values of the cluster. By doing so, the KPI used would correspond to a truly optimal district solution

and not an average of optimums.

Secondly, the typical districts integrated to the framework represented poorly the built environment

of Switzerland as only two districts amounted to 80% of the energy demand. The introduction of the

municipality environment classification of the district as proposed in [75] as well as considering the

network infrastructure density could help improve the results.

Finally, the difference in the technologies cost composition and definition presents an issue to rep-

resent the operational and maintenance cost. Most importantly, the choice between deploying cent-

ralized or decentralized energy sources is deeply biased if theirs cost are defined at different hori-

zons. In our case, the technologies defined in REHO have actual market costs, while ES uses learning

curves to project costs to 2050. The consideration of the units already deployed within the building

stock and at large-scale would provides results more accurate to achieve an independent and carbon

neutral system.
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Chapter 5

Conclusion

This research presented the impact of renewable energy hubs configurations on a national energy

system. First, a panel of optimal district configurations has been identified for 10 typical districts

representing Switzerland. The built environment is then integrated in a large-scale energy system

model and compared to a baseline model. Finally, a case study regarding the impact of feed-in tariff

on the national infrastructure and the districts composition was performed. The main outcomes of

the project are listed in the following.

The district technological solutions are predominantly defined by the energy carriers tariffs. Indeed,

the gas and electricity retail tariffs are the most influential parameters of the model and were further

used as sampling parameters for the global sensitivity analysis. As a result, the typical decisions taken

to design the district energy systems were clearly distinguishable based on their energy exchanges.

Moreover, the nature of the configurations were either based on gas or electricity depending on their

location in the sampling space, ie. tariff condition.

The integration of district configurations in the national model produces a 15% increase of the an-

nual cost to reach carbon neutrality and an energy independent system compared to the model of

reference. This difference is due to the space heating demand being 23% higher within the built en-

vironment. Therefore, both approaches provide similar results, but the decentralization informs on

favourable environments to develop RE. The PV capacity of the decentralized approach represents

only 36% of the centralized approach. However, the results emphasized the importance to deploy PV

panels within urban areas to ensure on-site production.

The impact of the feed-in tariff variation on the system shows the utilization of natural gas as seasonal

storage to mitigate the PV electricity production gap between summer and winter. The investment

in PV reaches a tipping points at a tariff of 0.08 [CHF/kWh]. Afterwards, the model selects more gas

based configurations for the districts and reduces its investment in the additional PV production. Fi-

nally, the model identifies a threshold feed-in tariff for each district, above which no additional PV

capacity is installed as the district is able to produce cheaper electricity, ie. the LCOE within the dis-
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trict is lower than the feed-in tariff.

The implementation of the built environment in the national model provides relevant insights on

the possibility to develop decentralized renewable energy capacity at the district level. Additionally,

it allows to distinguish the required investment for the consumer and the national infrastructure to

reach carbon neutrality.
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Appendix A

Global sensitivity analysis

A.1 Morris screening

A.1.1 Input parameters

Parameter Default Min Max

Elec_retail 0.2100 0.10500 0.4200

Elec_feedin 0.0800 0.06000 0.1000

NG_retail 0.0900 0.04500 0.1800

NG_feedin 0.0001 0.00005 0.0002

PVA_efficiency_ref 0.2000 0.10000 0.4000

PV___Cost_inv2 2000.0000 1000.00000 4000.0000

NG_Boiler___Units_Fmin 0.1000 0.05000 0.2000

NG_Boiler___Units_Fmax 100000.0000 50000.00000 200000.0000

NG_Boiler___Cost_inv1 3800.0000 1900.00000 7600.0000

NG_Boiler___Cost_inv2 100.0000 50.00000 200.0000

NG_Boiler___baremodule 1.8000 0.90000 3.6000

NG_Boiler___lifetime 20.0000 10.00000 40.0000

HeatPump_Air___Units_Fmin 0.1000 0.05000 0.2000

HeatPump_Air___Units_Fmax 100000.0000 50000.00000 200000.0000

HeatPump_Air___Cost_inv1 4000.0000 2000.00000 8000.0000

HeatPump_Air___Cost_inv2 1000.0000 500.00000 2000.0000

HeatPump_Air___baremodule 1.8000 0.90000 3.6000

HeatPump_Air___lifetime 20.0000 10.00000 40.0000

PV___Units_Fmax 100000.0000 50000.00000 200000.0000

PV___Cost_inv1 5000.0000 2500.00000 10000.0000

PV___baremodule 1.0000 0.50000 2.0000

PV___lifetime 20.0000 10.00000 40.0000

WaterTankSH___Units_Fmin 0.1000 0.05000 0.2000

WaterTankSH___Units_Fmax 1000.0000 500.00000 2000.0000

WaterTankSH___Cost_inv1 700.0000 350.00000 1400.0000

WaterTankSH___Cost_inv2 2000.0000 1000.00000 4000.0000

WaterTankSH___baremodule 1.8000 0.90000 3.6000

WaterTankSH___lifetime 20.0000 10.00000 40.0000
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WaterTankDHW___Units_Fmin 0.0001 0.00005 0.0002

WaterTankDHW___Units_Fmax 1000.0000 500.00000 2000.0000

WaterTankDHW___Cost_inv1 300.0000 150.00000 600.0000

WaterTankDHW___Cost_inv2 4000.0000 2000.00000 8000.0000

WaterTankDHW___baremodule 1.8000 0.90000 3.6000

WaterTankDHW___lifetime 20.0000 10.00000 40.0000

ElectricalHeater_SH___Units_Fmin 0.1000 0.05000 0.2000

ElectricalHeater_SH___Units_Fmax 100000.0000 50000.00000 200000.0000

ElectricalHeater_SH___Cost_inv1 1000.0000 500.00000 2000.0000

ElectricalHeater_SH___Cost_inv2 50.0000 25.00000 100.0000

ElectricalHeater_SH___baremodule 1.0000 0.50000 2.0000

ElectricalHeater_SH___lifetime 20.0000 10.00000 40.0000

ElectricalHeater_DHW___Units_Fmin 0.1000 0.05000 0.2000

ElectricalHeater_DHW___Units_Fmax 100000.0000 50000.00000 200000.0000

ElectricalHeater_DHW___Cost_inv1 1000.0000 500.00000 2000.0000

ElectricalHeater_DHW___Cost_inv2 50.0000 25.00000 100.0000

ElectricalHeater_DHW___baremodule 1.8000 0.90000 3.6000

ElectricalHeater_DHW___lifetime 20.0000 10.00000 40.0000

Table A.1: Morris input parameters and variation range
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A.1.2 Elementary effects results

Assens Bütschwil-Ganterschwil

Collina d’Oro Hombrechtikon

A.2 Sobol sampling

iii



Horgen Konolfingen

Liedertswil Martigny-Combe

Parameters Upper bound Lower bound Unit

Electricity retail tariff 0.105 0.42 [CHF/kWh]

NG retail tariff 0.045 0.18 [CHF/kWh]

Table A.2: Sampling parameters for the Sobol sampling
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Zürich

Figure A.1: Morris results represented on the µ∗ - σ plane for each district
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Table A.3: Clustering hyperparameter ϵ for the different districts

District name ϵ District size

Konolfingen 0.4 104

Hombrechtikon 0.3 94

Collina d’Oro 0.3 45

Bütschwil-Ganterschwil 0.3 43

Crans-Montana 0.3 31

Assens 0.3 16

Martigny-Combe 0.5 16

Horgen 0.5 10

Zürich 0.5 2

Liedertswil 0.5 1

A.3 Typical configurations identification

A.3.1 Clustering hyperparameter ϵ
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A.3.2 Districts configurations

Assens Bütschwil-Ganterschwil

Collina d’Oro Crans-Montana

Hombrechtikon Horgen

Konolfingen Liedertswil

A.3.3 Distribution of the configurations over the sampling space
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Zürich

Figure A.2: Typical configurations.
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Assens

Bütschwil-Ganterschwil

Collina d’Oro

ix



Crans-Montana

Hombrechtikon

Horgen

x



Konolfingen

Liedertswil

Zürich

Figure A.3: Typical configurations distribution in the retail tariffs space.
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Appendix B

Effect of the decentralized method and a

reduced number of trajectory on the

clustering

In order to validate or not the use of the decentralized method within REHO a Sobol sampling has

been applied on the retail tariffs of NG, electricity and on the feed-in tariff of electricity. Using 512

trajectories for the sampling, the space exploration required 2560 optimizations of the model, for

both method, decentralized and decomposed. The sampling scheme of the Sobol sequence allows

to select only a the i-ith first results to simulate a reduced number of trajectories. This behaviour

is validated by Figure B.1 which illustrates the sampling space reduced to two dimensions, using a

t-distributed stochastic neighbor embedding (T-SNE) algorithm [76], for a smaller number of tra-

jectories. The sampling density is slightly decreased by reducing the number of sampling points by a

factor of 2. This is a direct consequence of the robustness of Sobol sampling sequence.

64 trajectories 128 trajectories 256 trajectories 512 trajectories

Figure B.1: Sampling space reduced to 2D for various number of trajectory

Even though, a reduced number of trajectories offers a good coverage of the sampling space, it is ne-

cessary to assess its impact on the clustering process. The following cluster configurations originates

from a sensitivity analysis performed on a 10 buildings district optimized using the Dantzig-Wolfe

decomposition (DWD). Figure B.2 represents four different clustering results with different number

xii



of sampling points. The effect of a reduced sampling is almost non visible on the district configura-

tions validating its usage for further computations.

64 trajectories 128 trajectories

256 trajectories 512 trajectories

Figure B.2: Cluster configurations for reduced number of sampling points, ie. number of trajectory,

obtained with the DWD method.

The next point to analyze is the impact of the decentralized method on the clustering. The decentral-

ized method is an abuse of language as the decomposed method is also decentralized. The difference

resides in the number of master optimization which is performed, the DWD will perform around 5

to 9 iterations [77] where the decentralized will only do a single iteration. This method allows to

approach rapidly the optimal solution about 0.005% error of the objective function for district of a

dozen buildings. Figure B.3 illustrates again the results of clustering for various number of sampling

points but the optimizations has been performed using the decentralized method. Again, there is no

spectacular difference between the number of chosen trajectory. However, there is a reduction in the

configurations diversity, ie. there is less typical configuration identified. This loss might come from

the final iterations of the DWD which allow to fine tune the system and reduce the TOTEX by adjust-

ing the units size and operation. This behaviour is not a major problem for the future steps as the

aggregation method still identifies typical configurations based on different energy carrier. However,

the diversity of the configurations is reduced which might force the large-scale model to combine

several configurations to obtain ideal profiles.
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64 trajectories 128 trajectories

256 trajectories 512 trajectories

Figure B.3: Cluster configurations for reduced number of sampling points, ie. number of trajectory,

obtained with the decentralized method.
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Appendix C

Clustering analysis

Clustering algorithms are powerful tools that can help to identify patterns and groupings within large

datasets. While these algorithms are often easy to use, it is important to have a good understanding

of their underlying principles and to fine-tune their hyperparameters in order to obtain accurate

and useful results. The DBSCAN algorithm has two main parameters: mi nP t s and ϵ. The first one

represents the number of points that should be within a ϵ distance to be considered a core points but

it is not considered as the most impactful parameter, for more details see [78]. The second one, as

mentioned, is a distanced that define, in some sort, the density of the cluster. The smaller the value

is, the denser the cluster needs to be or, new clusters are identified. Therefore, the impact of the ϵ

value on the configurations identification is analysed. Even if the size of the district should not have

an impact on the clustering behaviour of the algorithm as the data is standardized, the analysis is

performed on the district Konolfingen and Assens, which are 104 and 16 buildings respectively.

ϵ= 0.2 ϵ= 0.3 ϵ= 0.4

ϵ= 0.5 ϵ= 0.6 ϵ= 0.7

Figure C.1: Identified configurations with various ϵ for the district Assens.
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Figure C.1 and Figure C.2 clearly show an optimal value of ϵ= 0.3. Therefore, the districts that iden-

tified a limited number of configurations with the default value of ϵ = 0.5 were clustered again with

the optimal value. However, some districts didn’t produced better results with various ϵ tested.

ϵ= 0.2 ϵ= 0.3 ϵ= 0.4

ϵ= 0.5 ϵ= 0.6 ϵ= 0.7

Figure C.2: Identified configurations with various ϵ for the district Konolfingen.
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Appendix D

EnergyScope 2020 sectors demand

Table D.1: Swiss EnergyScope 2020 sector values

Sector EndUses Value

HOUSEHOLDS ELECTRICITY_LV 0

HOUSEHOLDS ELECTRICITY_MV 0

HOUSEHOLDS ELECTRICITY_HV 0

HOUSEHOLDS ELECTRICITY_EHV 0

SERVICES ELECTRICITY_LV 15143.33

SERVICES ELECTRICITY_MV 2327.528

SERVICES ELECTRICITY_HV 0

SERVICES ELECTRICITY_EHV 0

INDUSTRY ELECTRICITY_LV 0

INDUSTRY ELECTRICITY_MV 4807.66

INDUSTRY ELECTRICITY_HV 8106.22

INDUSTRY ELECTRICITY_EHV 1599.14

HOUSEHOLDS HEAT_LOW_T_SH 0

HOUSEHOLDS HEAT_LOW_T_HW 0

SERVICES HEAT_LOW_T_SH 14095

SERVICES HEAT_LOW_T_HW 2443

SERVICES HEAT_HIGH_T 425

INDUSTRY HEAT_LOW_T_SH 3482

INDUSTRY HEAT_LOW_T_HW 546

INDUSTRY HEAT_HIGH_T 24057

TRANSPORTATION MOBILITY_PASSENGER 127555

TRANSPORTATION MOBILITY_FREIGHT 27930
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Appendix E

EnergyScope results

E.1 Additional results regarding the model validation
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Figure E.1: SES 2020
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Figure E.2: SREHO2ES 2020
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E.1.1 PV penetration in the built environment

Table E.1: Identified bidding tariffs within ES.

District PV feed-in tariff [CHF/kWh]

Assens 0.1274339

Bütschwil-Ganterschwil 0.1254299

Collina d’Oro 0.1228274

Crans-Montana 0.1074611

Hombrechtikon 0.1271358

Horgen 0.1241702

Konolfingen 0.1211480

Liedertswil 0.1402705

Martigny-Combe 0.1239286

Zürich 0.1246590
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Figure E.3: Illustration of the installed PV capacity within the districts and their remaining potentials
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E.1.2 Distribution of the district technologies in Switzerland
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Figure E.4: Distribution of technologies production across Switzerland.
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E.1.3 Annual cost of SREHO2ES
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E.1.4 Annual cost of SES

05010
0

15
0

20
0

V
al

ue

Annual costs
[CHF / cap]

E
le

ct
ric

 H
ea

te
r

H
ea

t P
um

p

W
at

er
 T

an
k 

H
W

W
at

er
 T

an
k 

S
H

D
is

tr
ic

t S
er

vi
ce

s

05101520

V
al

ue

Annual costs
[CHF / cap]

G
rid

 L
V

G
rid

 M
V

Tr
an

sf
or

m
er

E
le

c.
 In

fr
as

tr
uc

tu
re

05101520

V
al

ue

Annual costs
[CHF / cap]

H
yd

ro
th

. G
as

ifi
ca

tio
n 

C
H

P

E
le

ct
ric

ity
 g

en
er

at
io

n

0.
0

0.
1

0.
2

V
al

ue

Annual costs
[CHF / cap]

N
G

 S
to

ra
ge

N
G

 T
ra

ns
fo

rm
er

G
as

 In
fr

as
tr

uc
tu

re

051015

V
al

ue

Annual costs
[CHF / cap]

D
E

C
 H

P
 E

le
c

In
d 

B
oi

le
r 

G
as

In
d 

B
oi

le
r 

W
as

te

In
d 

C
og

en
 W

as
te

In
d 

D
ire

ct
 E

le
c

H
ea

tin
g

0

10
0

20
0

30
0

V
al

ue

Annual costs
[CHF / cap]

H
yd

ro
 D

am

H
yd

ro
 R

iv
er

N
ew

 H
yd

ro
 D

am

N
ew

 H
yd

ro
 R

iv
er

H
yd

ro
 P

ow
er

05010
0

15
0

V
al

ue

Annual costs
[CHF / cap]

M
ai

nt
en

an
ce

 C
os

ts

M
ai

nt
en

an
ce

 C
os

ts

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

V
al

ue

Annual costs
[CHF / cap]

F
re

ig
ht

 T
ra

in
 E

le
c

Tr
uc

k 
E

V

M
ob

ili
ty

05010
0

15
0

V
al

ue

Annual costs
[CHF / cap]

O
pe

ra
tin

g 
C

os
ts

O
pe

ra
tin

g 
C

os
ts

05010
0

15
0

20
0

V
al

ue

Annual costs
[CHF / cap]

C
ar

 B
E

V
 L

R

C
ar

 B
E

V
 M

R

C
oa

ch
 E

V

C
om

m
ut

er
 E

le
c

G
as

if.
 S

N
G

Tr
ai

n 
E

le
c

O
th

er
s

05010
0

15
0

20
0

V
al

ue

Annual costs
[CHF / cap]

D
E

C
 P

V

P
V

P
V

05010
0

15
0

20
0

V
al

ue

Annual costs
[CHF / cap]

W
in

d

W
in

d

xxv



E.2 Additional results of the impact of feed-in tariff
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