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Abstract— Event-based sensors have the potential to optimize
energy consumption at every stage in the signal processing
pipeline, including data acquisition, transmission, processing, and
storage. However, almost all state-of-the-art systems are still
built upon the classical Nyquist-based periodic signal acquisition.
In this work, we design and validate the Polygonal Approximation
Sampler (PAS), a novel circuit to implement a general-
purpose event-based sampler using a polygonal approximation
algorithm as the underlying sampling trigger. The circuit can
be dynamically reconfigured to produce either a coarse or
detailed reconstruction of the analog input by adjusting the
error threshold of the approximation. The proposed circuit is
designed at the Register Transfer Level and processes each
input sample received from the analog-to-digital converter (ADC)
in a single clock cycle. The PAS has been tested with three
different types of archetypal signals captured by wearable devices
(electrocardiogram, accelerometer, and respiration data) and
compared with a standard periodic ADC. These tests show
that single-channel signals, with slow variations and constant
segments (like the used single-lead ECG and the respiration
signals), take great advantage of the used sampling technique,
reducing the amount of data used up to 99% without significant
performance degradation. At the same time, multi-channel
signals (like the six-dimensional accelerometer signal) can still
benefit from the designed circuit, achieving a reduction factor of
up to 80% with minor performance degradation. These results
open the door to new types of wearable sensors with reduced
size and higher battery lifetime.

Index Terms— Non-uniform ADC, low-power sensing, event-
based biosignal monitoring, polygonal approximation.

I. INTRODUCTION

SMART sensor data and edge-computing internet of thing
(IoT) devices are the building blocks for the new
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paradigm that is Industry 4.0 and its future. Interestingly,
this new way of conceptualizing work has the potential to
effectively fuse together industry and healthcare in what
is often referred to as Healthcare 4.0 [1]. This term will
enable a much healthier society as well as more productive
industries.

In this context of Industry 4.0, wearable devices have
the potential to optimize human workflow [2], [3] while
monitoring and securing the health of every worker, creating
a win-win situation for both the industry sector and the
workforce. However, behind this goal of effective continuous
monitoring, the designers of wearable devices are faced
with a permanent struggle to optimize energy consumption
and extend battery lifetime. Also, as edge computing gains
momentum, wearables are expected to go beyond the typical
sensing and transmitting functionalities to more advanced
in-sensor analysis [4]; thus, adding an additional energy
consumption factor.

The battle for energy reduction has been waged on various
fronts. In particular, different works deal with data storage,
low-power data processing architectures, and low-energy
wireless communication [5], [6], [7], [8], [9]. However, data
sensing, even if remains the largest energy expenditure factor
in many applications [10], has not undergone such a significant
evolution. Event-based sampling has proven large potential
energy savings in a few wearable-based applications [11], [12],
but no framework has been proposed to make it applicable in a
general way to existing sensing systems in the IoT context. The
lack of applications that use event-based sampling strategies
is due to the fact that the research community is just now
starting to explore the capabilities and limitations of this
field.

In this work, we propose a novel hardware module,
named Polygonal Approximation Sampler (PAS), that can be
associated with a regular analog-to-digital converter (ADC) in
order to migrate a regular sensor to an event-triggered low-
power strategy. Conceptually, this module acts as a sample
selector, taking as input the regularly acquired samples from
the ADC, and outputting the minimum set of samples required
to reconstruct the signal within a locally bounded error. The
full technique is discussed in Section II, with additional
context on event-based signal processing and our contribution
to adapting Finite Impulse Response (FIR) filters to this
domain.

In recent years, we have observed the rise of new event-
based sampling techniques, which can be grouped into
three areas of work: 1) variations of the level-crossing
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sampling method [11], [13], [14], 2) continuous time level-
crossing analysis [15], or 3) sampling optimization based
on compressed sensing [16], and subsequent optimization of
the used measurement matrix [17]. Our approach generalizes
the event-based acquisition problem, defining an objective
function (in our case, the maximum allowed integral error)
and obtaining the relevant events in an adaptive manner. This
is opposed to the rigid sampling framework imposed by level-
crossing, while, at the same time, it remains signal-agnostic,
contrary to compressed sensing approaches.

Our proposed design and hardware implementation of the
PAS, as well as its logical interconnections with the ADC
and the processor, are described in detail in Section III. Then,
in Sections IV and V, we explore the potential benefits of
the proposed circuit from an application perspective. In the
wearable domain, we are targeting energy-hungry applications
aimed at continuous monitoring of biomedical signals. These
applications usually work in a windowed fashion over long
streams of data, and memory is the primary responsible for
energy expenditure [18]. The objective of this experimental
validation is to characterize the trade-off between the amount
of input data that can be removed using our event-based
approach, and the impact this has on the performance of
the target task. To this end, we have selected three different
types of tasks and signals that are typically targeted with
wearable devices: the detection of QRS complex (i.e., the Q,
R, and S waves), which represents one of the main features
of the electrocardiogram (ECG) signals., task recognition in
inertial measurements, and breath estimation from respiratory
signals. In this way, we demonstrate that the PAS has general
applicability in multiple scenarios and with signals of different
nature coming from different devices. Moreover, as shown
in [19], [20], and [3], these tasks have become more and
more important for workflow organization in the last few years,
making them prime candidates for smart-sensing optimization.

Finally, in Section VI, we explore a complete system-level
integration of the PAS with a low-power Micro-controller unit
(MCU), and we experimentally assess the potential energy
savings that can be achieved in a real application. For this,
we take the QRS complex detection task as our benchmark
use case.

We can hence summarize the main outcomes of our work
as follows:

• Design of a polygonal approximation sampler (PAS).
• Characterization of the PAS hardware implementation.
• Study of the effect of event-based(EB) sampling using

PAS on the long-term analysis of various biosignal.
• System integration test for energy/performance character-

ization of the proposed PAS implementation.

II. BACKGROUND ON EVENT-BASED SAMPLING

In this section, we describe a new approach to event-based
sampling, and the implemented method grounded on the work
of Wall and Danielsson [21], in which a curve is polygonally
approximated based on a control variable. Then, we briefly
describe how this new environment conditions the use of
classical signal processing techniques, with a focus on filtering
operations.

Fig. 1. Limitations of the level-crossing approach for event-based sampling.
[Blue dashed lines represent sampling levels, green dots are the actual relevant
samples, and red circles correspond to unnecessary samples that are avoided
with polygonal approximation].

A. Polygonal Approximation and the
Wall-Danielsson Method

The usual approach to event-based sampling for bio-signal
monitoring is the level-crossing method [14]. The idea is to
sample just when the signal crosses certain amplitude values,
that can be more or less densely separated depending on
the target resolution. This scheme is efficient and easy to
implement, but it has two main limitations, as illustrated in
Fig. 1. First, if the signal oscillates near one of the levels,
it is sampled much more frequently than if it oscillates
between two levels. Second, if the signal has high-amplitude
linear variations, this approach results in a number of
samples equivalent to the number of levels crossed by each
variation, whereas only two samples would be sufficient to
represent each of the variations. Moreover, while several
adaptive compressed sensing techniques have been developed
in the previous years, showing excellent results [17], such
methods rely on strong assumptions on the signal under
analysis and require a different pre-processing pipeline (and
hence hardware) for every type of signal under analysis.
Therefore, we propose an approach for low-power event-based
sampling on wearable sensors that is aimed at representing
the input signal with the minimum number of points,
assuming a linear behavior between each pair of consecutive
points.

From the plethora of available algorithms [22], we inspired
our circuit design on the Wall-Danielsson method [21], as it is
particularly suitable for a real-time hardware implementation.
This algorithm works by ensuring that the discrete integral
distance between the uniformly sampled signal and the linear
interpolation between two event-based samples never grows
more than a defined threshold ϵ. On the one hand, it has the
following interesting properties:

1) It has linear complexity.
2) The memory footprint is extremely small, requiring to

store merely five numeric variables.
3) It only requires one sample of the original signal in

advance to estimate the approximation error.
On the other hand, it does not guarantee optimality in the

number of generated samples, but as we show in Section V,
it achieves a very high sampling reduction factor (i.e., the
percentage of processed input elements with respect to the
total number of input samples) in real application scenarios.
Note that, in this context, the aforementioned sampling
reduction factor is not directly related to the relaxation of
the sampling frequency of the input signal. Instead, it is
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Fig. 2. How a FIR filter (coefficients in the top graph) is applied to an
event-based signal (low graph). This figure highlights the limited number of
points that need to be interpolated (stars).

the result of the proposed hardware implementation of the
Wall-Danielsson algorithm, where the sampled input signal
is pre-processed, ultimately making the number of samples
reaching the µP lower than the total number of input samples.
A more detailed description of this solution is presented
in Section III.

B. Adapted Signal Processing Routines

By using the Wall-Danielsson algorithm to sample a signal,
we lose the main assumption of classical signal processing: the
uniformity of time-based sampling. Thus, in order to exploit
the advantages given by the non-uniformity of the sampling,
we need to adapt several of the most common operations
needed for signal processing, namely FIR filtering, Fourier
analysis, and statistical signal processing operations. In the
following, we provide an illustrative example of how FIR
filtering is performed, so it can help to understand how the
target experiments were replicated.

One of the most common techniques in signal processing
is the filtering operation. Fig. 2 shows the idea behind the
implementation of FIR filtering we performed: the FIR filters
are only applied to the event-based samples (from here on,
referred just as samples) and linearly interpolate only the
points strictly needed for the application of the filter on
that point. By doing this, we only need to compute the
FIR filter for a fraction of points defined by Psampled

Pall
, where

Psampled is the number of points sampled with our proposed
technique, and Pall is the number of points of the signal
acquired using the classical uniform sampling rate. Note that,
whenever we apply the filter to a point, we need to interpolate,
at most, the number of coefficients in the FIR filter minus
one.

The adapted signal processing routines work relative to
each sample or relative to a defined time span. Hence,
changes in the average sampling frequency (i.e., changes
in the threshold of the Wall-Danielsson algorithm) do not
affect the average amount of operations per sample to be
executed.

Fig. 3. Block diagram of the overall architecture. The Polygonal
Approximation Sampler (PAS) receives the ECG samples from the ADC and
sends the computed approximated signal to the µP.

III. POLYGONAL APPROXIMATION
SAMPLER SYSTEM DESIGN

A. Overview

Here, we introduce our proposed solution to improve
signal processing efficiency on a plethora of wearable-based
applications. We designed a hardware module, named PAS,
that acts as a general-purpose event-based sampler performing
a polygonal approximation computation. It interacts with both
the ADC and the microprocessor/microcontroller (µP), and
it aims at lowering the workload of the µP by filtering the
samples received from the ADC, thus decreasing the amount
of data to be processed. This approach opens the path for a
variety of energy savings techniques. On one side, the reduced
workload allows the µP to spend more time in an energy-
efficient sleep mode.

On the other side, the reduction of acquired samples that
need to be processed in each window enables the use of
smaller memory blocks, ultimately reducing leakage energy.
Indeed, the lower number of samples that have to be processed
by µP in a certain input window (for example, we consider
20-second windows in our experiments in Section VI) require
smaller memory buffers for their storage than the total number
of acquired inputs.

In this section, we first focus our attention on the
architectural structure and computational behavior of the
proposed module. Then, after synthesizing it, we present its
energy, area, and performance evaluation. Finally, a complete
overview of the energy gains that can be achieved by
introducing this module is presented in Section VI, where
we evaluate our benchmarks on a fully-integrated system,
including both the PAS and a low-power µP.

B. System-Level Block Diagram

As shown in Fig. 3, the PAS lies in between the ADC
and the processor: it captures the samples from the ADC and
broadcasts to the processor those that are selected according
to the polygonal approximation algorithm. The threshold
parameter (ϵ), presented in Algorithm 1, is received from
the processor and allows the PAS to adapt the algorithm
sensitivity, thus enabling a dynamic optimization of the
sampling rate at the application level. Nonetheless, the
selection of the threshold ϵ is signal and application dependent
and, therefore, it must be determined for each specific
problem. However, as a general rule of thumb, this threshold
should be approximately equal to the square of the minimum
amplitude variation producing a significant change in the input
signal.

Using this architectural solution, we can filter the samples
from the ADC, and forward to the processor only the ones
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selected by the algorithm. The result is a reduction of the
processor computational load (more than 60%, as discussed
in the next sections), leading to a reduction in the overall
system energy consumption, as the processor can be put in a
low-power state when no samples need to be processed.

Fig. 3 also shows the input/output signals of the PAS.
OUTPUT_SAMPLE and OUTPUT_INDEX characterize the
input samples that are forwarded to the processor. In particular,
OUTPUT_SAMPLE holds the signal value received from the
ADC, while OUTPUT_INDEX represents the index difference
between two consecutive forwarded samples. Additionally,
OUTPUT_VALID is used as a wake-up signal for the
processor, so that it can activate the corresponding interrupt
service routine (ISR) to read the input sample only when
needed, remaining idle the rest of the time. While these three
output signals are connected to the processor, SAMPLING_F
is sent to the ADC to drive its working frequency. We assume
a bitwidth of 16 bits for the received samples, which allows
the input signal to be correctly represented in our benchmarks
(i.e., no saturated values appear).

Algorithm 1 PAS Procedure. x and y Represent the
Cumulative xy Coordinates of the Acquired Input Samples,
With dx and dy Being the Increment/Decrement of the
Corresponding Coordinates of the Current Sample With
Respect to the Previous One, Respectively. PAS Forwards
the Acquired Input Sample Only When the Cost Function f
Exceeds the Imposed Threshold ϵ, Providing µP With the
Sample Value and the Time-Stamp Difference With Respect
to the Previous Output (i.e., t − t)
1: procedure PAS(threshold ϵ)
2: dx = 1
3: i = 1
4: f = x = y = t = peak = length = 0
5: loop
6: dy = sample[i] − sample[i − 1]

7: x = x + dx
8: y = y + dy
9: f = f + x ∗ dx − y ∗ dy

10: displacement = abs(y) + x
11: if displacement < length and peak = 0 then
12: peak = peak + i − 1
13: length = displacement
14: if abs( f ) > ϵ then
15: if peak = 0 then
16: t = i − 1
17: else
18: t = peak
19: output (sample[t], t − t)
20: f = peak = 0
21: x = (i − t) ∗ dx
22: y = sample[i] − sample[t]
23: t = t
24: length = abs(y) + x
25: i = i + 1

C. PAS Functional Behavior

Algorithm 1 shows the pseudocode of the adapted Wall-
Danielsson algorithm, as implemented in our hardware circuit
design. The ϵ parameter allows us to control the coarseness
of the approximation, as illustrated in Fig. 4. The possibility
of tuning this parameter in real-time allows us to regulate the

TABLE I
AREA AND POWER DETAILS OF SYNTHESIZED PAS

sampling toward a more coarse or fine representation of the
signal, depending on the local properties of the signal itself.
Although the sampling frequency is dictated by the PAS and
can be dynamically configured at run-time, we consider it fixed
for most of the time. This assumption enables an algorithmic
simplification since the horizontal step dx becomes constant
and can be set to 1 (see line 2 of Algorithm 1). In this
way, arithmetic instructions involving this variable reduce their
complexity, as additions simplify to unitary increments and
multiplications can be avoided, resulting in a more energy
efficient and faster HW implementation.

Finally, the use of the index difference between two
consecutive forwarded samples instead of the absolute sample
index (that is, OUTPUT_INDEX in Fig. 3) has two main
advantages. First, it enables the recording of a potentially
infinite sequence of input samples. Secondly, it still permits
the tracking of time references as it indeed counts the
input samples received from the ADC. To prevent numerical
overflow, we reset the counter when it reaches the highest
representable value and send the corresponding input sample.
This condition may arise when the input signal is constant
or, more generally, shows fluctuations lower than the imposed
threshold ϵ.

D. RTL Implementation

The PAS is implemented at the Register Transfer Level
(RTL) in VHDL. We define five combinational processes that
allow the PAS to execute its functions in one clock cycle.
Although the polygonal approximation algorithm is executed
in several steps and iterations, it mainly consists of simple
arithmetic instructions that do not make it a compute-intensive
procedure.

In fact, post-synthesis evaluations reveal that, even relaxing
the timing constraints, the output signals become stable in less
than 10 ns after the rising edge of the clock, meaning that
the proposed PAS can also work also with higher-frequency
signals up to 100 K H z, not analyzed in this work.

We evaluate the correctness of our synthesized PAS
with cycle-accurate RTL and post-synthesis simulations.
In particular, the sampler is fed with input signal segments
from the proposed benchmarks. The output signals are then
compared with the results of a python-based implementation
of the same algorithm, to validate the correctness of the
designed circuit. Simulations are run using Mentor Graphics
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Fig. 4. ECG signal, sub-sampled with the proposed algorithm, using three
different ϵ threshold values.

ModelSim,1 while synthesis is run using Synopsys Design
Compiler,2 using the TSMC 40 nm technology library.

Synthesis details are summarized in Table I. The synthesized
sampler exhibits an area footprint of 0.0025 µm2, mainly
composed of combinational cells. We also observe that 74.2%
of the area footprint implements arithmetical operators, such
as adders, and the multiplier involved in the computation of the
current segment length and its comparison with the imposed
threshold. The estimated power consumption of 1.6µW is
dominated by the switching activity of combinational cells
(>80%), although the synthesis process that maximizes
leakage is selected. More details about the energy contribution
of our synthesized circuit are presented in Section VI, where
we illustrate a full system simulation.

IV. TARGET APPLICATIONS

In order to assess the applicability of our proposed PAS
design to real-world signals, we propose an experimental
setup in which we analyze the potential benefits of the
described sampling technique on three different types of bio-
signals: Electrocardiography (ECG), Inertial measurements,

1https://eda.sw.siemens.com/en-US/ic/modelsim
2https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-

test/design-compiler-graphical.html

and Impedance Respiratory (IR) signals. For each of these
signals, we consider a different target task to be performed:
QRS complex detection from the ECG, task recognition from
the inertial measurements, and breath rate detection from the
IR signal.

For the analysis, we consider a state-of-the-art algorithm
for each of the tasks, and we assess the performance penalty
observed in our proposed event-based framework, contrasting
it with the benefits in terms of reduced data volume. The key
metric in this sense is the sampling reduction factor (SRF),
defined as

S RF = 1 −
Avg. Event_Based f req.

Uni f orm f req.
(1)

where

Avg. Event_Based f req =
Number of Events

Signal time duration
(2)

This measure tells us, on average, the percentage of samples
pruned from the uniformly sampled signal.

All the experiments were performed analyzing linearly
increasing values of the threshold ε, since S RF is largely
dependent on its value.

In the remaining of this section, we explain the specific
event-based implementations of the algorithms for QRS
detection in ECG signals, task recognition from inertial
signals, and breath rate estimation from IR signals. First,
we give an overview of the used dataset. Then we describe
the algorithm used to process the uniform-sampled signals and
the methods used to port them to the event-based domain. The
results of these experiments are presented in Section V.

A. QRS Detection in ECG Signals

The QRS complex is one of the most prominent features
of the ECG signal, as it is the signature of the ventricular
contraction in the heart. Hence, QRS complex detection is the
first step for heart rate analysis. The experiment here described
is the natural extension of the work performed in [23] where
the objective was to implement a QRS detection algorithm for
event-based ECG signals. In this prior work, we analyzed the
impact of level crossing sampling [11] on energy and F1 score
performances. Where the F1 score is defined as the harmonic
mean between precision and recall, eq. 3 express it in terms of
true positive(T P), false positive(F P), and false negative(F N ).

F1 =
2T P

2T P + F P + F N
(3)

In the context of QRS detection, we consider true positive
as the correct identification of the complex, false positive
the wrong labeling of a QRS complex, and false negative as
the missing labeling of an existing complex. In this section,
we show the software re-implementation of the work in [23],
changing the event-based sampler from level-crossing to our
developed PAS. Finally, in Section VI we present a full system
integration of this work, computing the energy performance
improvement derived from the integration of the PAS with
respect to the uniformly sampled version of the same system.
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1) Dataset: The used dataset was extracted from the MIT-
BIH Arrhythmia Database [24]. This dataset is composed
of 48 ECG recordings, each one 30 minutes long, sampled
at 360 Hz per channel with an 11-bit resolution over a 10 mV
range. Recordings provide 2 ECG channels obtained from
2+1(reference) leads placed on the chest, with the exception of
one recording that was recorded using only 1+1 leads. In this
work, we use only the signals coming from the MLII lead,
since it is the most frequent one in the database. We, therefore,
discarded the records where this lead is not present (i.e., record
102 and 104).

The selected ECG database is considered one of the standard
datasets for validation of algorithms operating on ECG signals.
This is due to the variability of the signals and the type of
heartbeats contained in it, and the complete labeling of all the
beats and rhythms by medical experts.

2) QRS Complex Detection: The main contribution of the
work in [23] is a novel algorithm for the real-time detection
of QRS complexes on event-based sampled signals. Yet, this
algorithm has not been designed from scratch, but it is based
on one of the most robust methods in the state of the art.
The choice was based on two main reasons: the possibility
of being re-adapted to a non-uniformly sampled signal, and
the ability to design the full stack, from prototyping to
implementation (in an emulator). This situation led to exclude
all methods involving wavelet or Fourier transformations:
even if a theory of wavelet on event-based sampled domain
exists, the implementation would require more energy than
the adaptation of classic algorithms, and a clear advantage in
terms of detection performance has not been proven.

The considered algorithm is the gQRS algorithm, published
in the WFDB software compilation from Physionet [24],
and recognized as one of the best-performing algorithms
on public ECG databases [25]. Other approaches exist for
the detection of QRS complexes on event-based sampled
signals [26], but they are fully coupled with the level-crossing
sampling strategy. The proposed method works with any non-
uniformly sampled signal that can be reconstructed by linear
interpolation, and keeps the linear complexity of the original
algorithm. These features of the gQRS algorithm allow us to
substitute the level-crossing sampler with our PAS without
requiring any other major changes. All the details about
the implementation of gQRS in the event-based domain are
available in [23].

B. Task Recognition From Inertial Signals

Almost every smartphone or smartband is nowadays
equipped with an Inertial Measurement Unit (IMU). This
IMU is composed by, at least, a tri-axial accelerometer and
a tri-axial gyroscope. IMUs can be used, without the need
for additional devices, for continuous monitoring of human
activity [27]. This makes inertial signals highly important in
modern bio-monitoring applications and a perfect candidate
to test our sensing technique. The target task in the proposed
experiment is postural and postural transition recognition.

The reference work for this experiment is [28]. We chose
this work mainly for three reasons: the good results reported,
the non-triviality of the task, and the applicability of the study

in a real-world scenario. Next, we briefly analyze the original
work, and the key differences with our implementation.

1) Dataset: The used dataset was obtained from [27].
This dataset is composed of 30 recordings of subjects with
ages between 19 and 48 years. The subjects performed
a protocol composed of six basic activities: three static
postures (standing, sitting, lying) and three dynamic activities
(walking, walking downstairs, and walking upstairs). The
experiment also included postural transitions that occurred
between the static postures: stand-to-sit, sit-to-stand, sit-to-
lie, lie-to-sit, stand-to-lie, and lie-to-stand. All the participants
were wearing a smartphone on the waist during the experiment
execution. Then, the used signals are composed of the 3-axial
linear acceleration and 3-axial angular velocity, acquired at a
constant sampling frequency of 50Hz by using the embedded
accelerometer and gyroscope of the device.

The experiments were video-recorded and manually labeled.
Each recording is of a different length, varying from three
to ten minutes and being six minutes on average. Moreover,
the signals are only partially labeled, since no label has been
defined for transitions between dynamic activities or between
active and dynamic activities.

2) Task Recognition Algorithm: The algorithm analyzed
was the one proposed in [28]. In this case, a mobile application
was developed to recognize six activities (three static and
three dynamic) and six transitions between the static activities,
relying exclusively on the IMU of a smartphone. The signals
were pre-processed by applying noise filters and then sampled
in fixed-width sliding windows of 2.56 sec and 50% overlap
(128 samples/window). The acceleration signal, which has
gravitational and body motion components, was separated —
using a low-pass filter — into body acceleration and gravity.
The gravitational force is assumed to have only low-frequency
components. Therefore a filter with 0.3 Hz cutoff frequency
was used. From each window, a vector of 561 features was
obtained by calculating variables from the time and frequency
domain. This feature set and respective applications can be
found in Table II. This leads to 170 to 270 labeled features
vector for each signal.

To perform activity recognition, two SVMs were trained
for the recognition of only the six main activities without
postural transition (six classes) and recognition of the six main
activities plus a single class that represent all the postural
transition (seven classes).

The train and testing were performed using a slightly
modified Leave One Out (LOO) cross-validation method.
In classic LOO, given N labeled samples, we train a
recognition algorithm to recognize one sample, using as
training dataset the other N − 1 samples. The tested samples
are then changed and the whole procedure continues until all
N samples are tested [29]. In this modified version, we do
not train on all samples except one, but instead on all full
recordings except a single record. The tested record is then
changed, and the procedure continues until all the recordings
are tested.

In the original work, the output of the SVM is used
as an input to a probability filter to improve the results.
In our study, however, we are interested in comparing the
performances of the algorithm applied to a uniform signal
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TABLE II
FEATURES AND SIGNALS USED TO EXTRACT THEM FOR THE ACTIVITY

RECOGNITION TASK. TIME VECTOR REFERS TO ALL THE VECTORS
EXTRACTED FROM THE DATASET THAT ARE DEFINED AS A TIME

SERIES, WHILE FREQUENCIES VECTORS ARE THEIR RELATIVE
FOURIER TRANSFORM. MORE DETAILS CAN BE

FOUND IN [28]

against an equivalent algorithm operating on an event-based
sampled signal. Hence, it is sufficient to compare the results
of the SVM — by choosing the most probable class through
an arg-max operation on the output probability vector — in
both scenarios. For this reason, the last stage of the original
work was not reproduced.

3) Experiment Reproduction: We redesigned the original
work in [28] in two steps. First, we re-sampled the raw
signals with our polygonal approximation method. Then,
we redesigned the core-algorithm described in Section IV-B2
by applying the same signal pre-processing and feature
extraction procedure. However, we changed the signal-
processing methods from standard, uniformly-sampled-based
methods to event-based ones, described in Section II-B. Then,
we trained two SVMs with the extracted feature vectors,
using the same techniques as the original work. Finally,
we compared the results obtained by reproducing the original
work analyzed in [28] with our modified signal processing
pipeline. These results are analyzed in Section V-B.

C. Breath Rate Estimation From IR Signals

The impedance respiratory signal (IR) describes how the
impedance between two or more points on the chest varies
in time. This variation is caused by the contraction and
relaxation of the chest, measuring the respiration phases of
a patient. The objective of this section is to build an event-
based algorithm for breath rate detection using IR signals.
Thus, we first describe the used dataset. Then, we analyze
the custom algorithm we developed for breath rate detection
using our event-based approach for wearable sensors.

1) Dataset: The used dataset was obtained from [30].
This dataset is composed of several signals, such as
photoplethysmography (PPG), impedance respiratory signal,
and electrocardiogram (ECG). We are solely interested in
impedance respiratory signal, as it is the original signal
independently labeled by two experts. Hence, our dataset

Fig. 5. Ten seconds from one of the IR signals. The red stars represent the
peaks, while the yellow triangles represent the valleys. Peaks and valleys are
used to estimate the slope and delta of a peak (continuous line: slope, dashed
line: peak delta).

is composed of 53 signals, each lasting eight minutes and
sampled at 125Hz.

Since the IR signals have two sets of labels that can be both
considered as ground-truth — as they were both produced by
medical experts —, the results can be interpreted from both
points of view. As a result, we can consider either the first
expert to be the ground truth and evaluate the second expert
as an optimal (medical level) breath rate detection algorithm,
or the opposite. In this work, we treat the second expert as
ground truth for the sake of brevity, even if we present the
numerical results for both cases.

2) Breath Rate Detection Algorithm: Due to the absence
of a state-of-the-art algorithm for breath rate detection (using
solely the IR signal), we decided to design a simple,
but effective, uniform-sampling-based algorithm, presented in
Alg.2. An example of the IR signal, as well as the two main
features used in the algorithm, can be found in Fig: 5.

The main focus of the developed algorithm shown in Alg. 2
is to have a simple implementation and results comparable
to a human-level labeling. Therefore, we opted for a classic
time-domain based, peak detection approach. In particular, the
algorithm can be described as follows: for each positive peak
structure present in a signal, we search the corresponding
valley (negative peak structure) and extract height and slope.
We use these two features as the descriptors of the peaks.
The list of all peaks is referenced using their descriptors
(Alg. 2, line 13). These values are compared with two adaptive
thresholds. If the threshold conditions are satisfied, then the
peak is inserted into a buffer of candidates (Alg. 2, lines 15-
16). After a certain time-window is acquired, we analyze the
buffer of candidates and only keep the peaks that meet three
constraints (Alg. 2, lines 18-24), namely:

• The peak values (valley-to-peak) need to be higher than
half the average of peaks in the buffer.

• The slope coefficients need to be higher than half the
average of the slope coefficients in the buffer.

• The time between peaks need to be longer than the global
time threshold.
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The thresholds are adjusted by taking 75% of the previous
value and adding 25% of the average slope and peak of the
previous 10 peaks (Alg. 2, lines 25,28).

Algorithm 2 Breath Detection Algorithm
1: procedure BREATHDETECTION(x(t))
2: t = 0
3: bu f f er Len = 10
4: peaks = []

5: peaks Breath = []

6: peak Bu f f er = []

7: peakCandidates = []

8: globalT hresholds = 0
9: localT hresholds = 0

10: peaks, globalT hresholds = ini t (x(t))
11: for all p in peaks do
12: if p ∈ globalT hresholds then
13: peakCandidates.add(p)

14: if Len(peakCandidates) > 1 & t is OK then
15: localT hresholds = computeLocal(peakCandidates)
16: for all pc in peakCandidates do
17: if peakCandidates ∈localThresholds then
18: peaks Breath.add(pc)
19: peak Bu f f er.add(pc)
20: peakCandidates.empty()

21: globalT hreshold = ad justT heshold(peak Bu f f er)

22: if Len(peak Bu f f er) > bu f f er Len then
23: bu f f er Len.remove( f irst)
24: t = time(p)

After obtaining all the respiration peaks from Alg. 2,
we compute an instantaneous breath rate (BR) for every
consecutive couple of peaks. We then linearly re-sample the
obtained vector of BR every second (i.e., at a frequency
of 1 Hz). Finally, we apply a 10-second long median
filter, introducing a delay of five seconds, considering the
assumption that the BR changes smoothly and slowly over
time. We then extract the BR vector for the human-level
labeling by repeating the previous operations (instantaneous
BR extraction, then 1Hz re-sampling, and then 10-second
median filter) to the peaks labeled by the experts.

Finally, we ported this algorithm to the event-based domain.
In order to do so, we need to execute the same operations.
Nonetheless, this time we do it without the assumption of a
fixed time between consecutive samples. Such operations are:
peak detection, valley detection, slope computing, and time
measurement between peaks. The peak and valley detection
operations do not require any information about time but only
about the values of consecutive samples, hence, no changes are
needed. Slope computing and time measurement both require
to compute the time from the information of the event instead
of counting the number of samples between the relevant points.
Therefore, the adaptation of our proposed Alg.2 to work with
event-based signals is almost trivial.

V. RESULTS ANALYSIS

To obtain meaningful results for the above-described
experiments, we measure the deviation of an experiment-
specific performance merit figure between the original and the
event-based experiment. We analyze the F1 score on the QRS
complex recognition for the ECG experiment, and the average
F1 score among classes for the IMU experiment. In contrast,
for the IR experiment, we measure the Root Mean Square

Fig. 6. Performance of the event-based QRS detector vs. average frequency.
The highlighted point was chosen as the algorithm’s working point to have a
good compromise between the saved energy and the performance degradation.
After an average frequency of 35Hz, the methodology reports no improvement
when compared to the uniformly-sampled QRS detection algorithm.

Error (RMSE) between the BR vectors computed using Alg. 2
(for both the uniform and event-based versions) and each of the
human-level BR vector. All the results presented here and in
Section VI can be reproduced from [31], which is our provided
open-source repository for this work.

A. Results on ECG Data

We are now interested in evaluating the performance
considering the experiment proposed in Section IV-A. The
objective of this analysis is to compare the QRS complex
detection in EB-sampled signals with state-of-the-art QRS
complex detection in uniformly sampled signals.

As described in [32], we cannot restrict the evaluation
of ECG quality to a simple binary decision (pass or fail).
However, in contrast to the objective in [32], the main task of
our algorithm is an efficient QRS detection, and the signal-
to-noise ratio model proposed would not be representative
of a correct QRS positioning in the EB signal. To measure
the performance of QRS detection, we use the ground-truth
labels given by the experts in the MIT-BIH Arrhythmia dataset.
We match them with the labels found by our algorithm, and
then compute the average F1 score of the detection. The
threshold ϵ used in the PAS has two distinct but related
effects in the evaluation metrics. First, as we increase the
threshold, the S RF also increases. This is expected and is
also shown in the other experiments. The second effect is the
reduction of the F1 score. As we can observe from Fig. 6,
there exists an average frequency (directly bounded to the
PAS threshold) below which the F1 score greatly decreases
while remaining almost constant before. This behaviour is
caused by the excessive threshold used in the PAS. As we
can observe in Fig. 4, the QRS complex is a clear signature
that is preserved by our sampler even when all the other
features of the ECG signals get removed by the polygonal
approximation. This remains true until the allowed error is
comparable to the average area of the QRS complex. Then,
increasing the threshold any further results in the loss of the
QRS complex signature. Hence, it produces a fast degradation
of the measured performance.

The chosen working point, highlighted in Fig. 6 with a star,
shows an F1 score on the QRS complex recognition, for the
EB-gQRS, of 99.69%, compared to the 99.75% of the original
gQRS. The penalty in the F1 score is counter-balanced by an
S RF = 92.7%
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B. Results on IMU Data

The objective of this section is to show the impact of
event-based sampling and signal processing on inertial data.
To achieve this objective, we replicated the study in [28]
in both the uniform-sampling and the event-based sampling
domain. Then, we measured the performance difference
between these two implementations against the obtained S RF
As described in Section IV-B3, to properly compare the
original and the event-based implementation of the work
in [28], we train an SVM to recognize the same seven classes
of the original study. Then, we compare the F1 score of the
identified tasks against the ground-truth labels given in the
dataset, quantifying the task recognition error. To replicate the
results, we relied on the same error function described by [28]
and reproduced in Eq. (4), where αt is the arg-max of the SVM
output, gt is the ground-truth, PT is the single class describing
all the postural transition, and U A denotes the case where the
probability output of all the classes is less than 1

Nclasses
, and,

thus, the activity is not recognized.

e(t) =


0 if


gt = αt or
(gt = PT and gt−1 ̸= gt+1 and
(αt = gt−1orαt = gt+1)) or
(gt = PT and αt = U A)

1 otherwise
(4)

using Eq. (4) we can compute the confusion matrix of the
leave one out cross-validation and thus obtain the F1 score of
the experiment.

The impact of the event-based sampling on the proposed
signal processing pipeline can be evaluated by measuring the
average and standard deviation (STD) of the F1 score against
the threshold used for the PAS algorithm and comparing these
results with the ones obtained using the classic uniform-
sampling technique (hence, reproducing the results in [28]).
These results are calculated by measuring the F1 score
for the recognition of each task. The obtained results are
shown in Fig. 7, where we can see that as the threshold
increases, the average F1 score decreases, and the STD
increases. This is to be expected as a higher threshold means
a coarser representation of the signal. Consequently, trivial
tasks, composed of big and task-significant signal variations
are still well represented and detected, while more complex
tasks, composed of smaller and more task-common signal
variations are more complex to discriminate. This leads to a
lower average and higher STD.

Also, we observe in this figure that as the threshold increases
over a certain point (in Fig. 7, this point is positioned at
ε = 900), the described behaviour stops. The reason is that
at such a high threshold, the PAS algorithm ignores entire
chunks of the signal representing tasks that do not induce
sufficiently large variations, eliminating such labels from the
problem. However, this degradation in performance needs to
be correlated to the SRF to understand the true magnitude
of what has been observed. The first row of Table III shows
the F1 loss due to the event-based sampling for increasing
values of the sampling reduction factor. Correlating these two

Fig. 7. Average F1 score and standard deviation of the leave one out
cross-validation at increasing thresholding level for the seven classes scenario.

Fig. 8. Average F1 score and standard deviation of the leave one
out cross-validation at increasing thresholding level for the twelve classes
scenario.

results, a S RF = 80% results in a threshold of 200 and in a
F1 decrease of 3.5%.

Finally, we extended the original study by training a second
SVM to recognize all the 12 target classes fully. This extension
was performed to explore the potential of the proposed
method and extend the original study with interesting results.
Moreover, the results obtained from the extended experiments
give us a confirmation of the behaviour of porting this
type of algorithms (composed of classical signal processing
for features extraction) to the event-based domain. Minor
modifications were needed, as the results for this problem
were not computed anymore using Equation (4), but just by
taking the arg-max of the probability vector produced by the
SVM. Moreover, the SVM had to be modified to process
12 classes instead of 7. As for the previous case, we aim
at analyzing the impact of the event-based sampling on the
signal processing pipeline. Fig. 8 shows how the F1 score
varies with the threshold, observing the same behaviour as for
the seven classes problem, but starting from a lower baseline
value. These results further validate the previously described
behaviour. The second row of Table III shows the F1 loss
due to the event-based sampling as the data reduction factor
increases.

C. Results on IR Data

The results obtained for the estimation of breath rate
cannot be interpreted as a classification problem, as in the
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TABLE III
SRF AND CORRESPONDING F1 LOSS FOR THE TWO EXPERIMENTS. THE

ORIGINAL F1 SCORE FOR THE SEVEN CLASSES PROBLEM IS 97.1%,
WHILE IT IS 84.9% FOR THE 12 CLASSES SCENARIO. A NEGATIVE

LOSS IMPLIES AN INCREASE IN THE F1 SCORE

above experiments, as we are interested in evaluating the
difference between two vectors with real values. To evaluate
the performance of the uniform-sampling-based algorithm and
its event-based counterpart, we measure the root mean square
error (RMSE) between the estimated BR vector and the
ground truth BR vector. In Fig. 9, we show the performance
degradation of the event-based algorithm against the used
threshold. As observed in Section V-B, as the threshold
increases the performance degrades and the standard deviation
increases. However, by observing the section of Fig. 9 below
a threshold value of 15, we notice that the average RMS is
lower or equal for the event-based version of the algorithm,
when compared to the uniform-sampling version. In fact, this
signal dramatically benefits from the PAS sampling technique
that smooths out peaks and valleys unrelated to the respiration
process (mainly caused by artifacts).

In figure Fig. 9, we show a span of thresholds from 0.1 to
60. However, the S RF is already high from the very beginning
of this scale: with ϵ = 0.1, the S RF is 93.9%, lowering the
average frequency from 125 Hz to 7.57Hz. If we set ϵ = 10,
then the S RF results to be 98.9%, lowering the average
frequency of the signal to 1.32Hz, and with ϵ = 20, the S RF
is 99.2%, lowering the average frequency to 0.953Hz. These
fractional values of average frequencies are to be expected as
the regulation is performed on the accepted maximum integral
error (the threshold, ϵ). This parameter indirectly affects the
number of samples acquired. To directly regulate the average
frequency, we should reverse the formulation of the Wall-
Danielsson algorithm. This would require fully acquiring the
signal until the end, defeating the purpose of this work. This
shows that the initial sampling frequency of 125Hz was highly
overestimated for this type of signal.

Table IV shows the increase in RMS with respect to
both experts for four different S RF values. We observe
that choosing the first expert as ground-truth, the average
RMSE increase for both the analyzed version. However, the
event-based version still shows to perform better than the
uniform one. From these results, we can conclude that Alg. 2
produces results more consistent with the second expert.
Also, we can derive that the proposed event-based sampling
approach improves the detection of meaningful events in
slowly varying signals.

Finally, since the IR dataset used is registered in a medical
and controlled environment, the obtained results may not
be representative of a day-to-day use of a wearable senor.
Hence, we assess the physical noise robustness of the proposed
algorithm using the model described and distributed in the
MIT-BIH noise stress test database [33]. To model a noisy
IR signal we first weigh the three noise source provided by
this database as in eq 5 (with Noisemio being the mioelectric

Fig. 9. Median and Median Absolute Deviation (MAD). RMS of the detected
breath rate, considering the second expert’s labels as the ground truth. The
orange line corresponds to the first expert, the green to the algorithm on the
uniform sampled signal and the blue to the event-based version applied at
different threshold levels.

Fig. 10. RMSE increases with respect to the reference human RMSE
with increasing noise (decreasing SNR). Dashed line: EB algorithm without
additional noise. Circles: RMSE increment for the EB version of the algorithm
with ε = 2. Diamonds: RMSE increment for the uniformly sampled version.

muscular noise, Noisemov the noise caused by movement and
electrode misplacing, and Noisebase the baseline wandering
noise, already present and filtered in the non-noisy original
signal ) to obtain a model representative of the noise registered
by chest mounted impedance sensor. The obtained noise is
scaled to obtain the desired value of signal to noise ratio
(SNR) compared to the database IR signal. Contrary to
what proposed in the noise stress test database web page,
we compute the noise scale factor measuring the complete
signal and noise average power instead of the five-minute
window measurements proposed. We then invert the SNR
definition formula to obtain the noise scaling factor and apply
the obtained noise to the whole signal. This corresponds to
the worst possible scenario for the designated SNR value:

noise = 2 ∗ Noisemio + 5 ∗ Noisemov + 1 ∗ Noisebase (5)

As we can observe in figure 10, the algorithm results to
be robust (i.e., without significant effect on the results) up to
an SNR of 20 dB. Moreover, the EB-version of the algorithm
continues to outperform the uniform version until an SNR
of 10 dB. While both algorithms start to degrade with an
SNR lower than 20 dB, the intrinsic filtering of the PAS
algorithm helps to remove high-frequency noise, increasing
the robustness of the EB-algorithm below 10 dB of SNR.

VI. SYSTEM INTEGRATION

In the previous sections, we have first described the circuital
implementation of the PAS algorithm and then shown the
applicability and potential benefits of event-based sampling

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 14,2023 at 16:11:19 UTC from IEEE Xplore.  Restrictions apply. 



ZANOLI et al.: ERROR-BASED APPROXIMATION SENSING CIRCUIT 499

TABLE IV
SAMPLING REDUCTION FACTOR (SRF) AND CORRESPONDING RMS

INCREASE FOR THE TWO SCENARIOS (EXPERT ONE OR EXPERT TWO
CONSIDERED AS GROUND TRUTH). THE MEDIAN RMS INCREASE

FOR THE ORIGINAL ALGORITHM ON THE UNIFORM-SAMPLED
SIGNAL IS OF 0.5 WITH RESPECT TO THE FIRST EXPERT,

AND 0.3 WITH RESPECT TO THE SECOND EXPERT

in signal processing to different scenarios. In this section,
we propose a full system simulation applied to the first targeted
problem, described in Section IV-A: on-line, low-power
QRS complex detection from ECG signals. We discussed
the performance results in Section V-A. In this section,
we summarize the baseline implementation from which we
departed in our previous work [23]. Then, we present the new
experimental setup, the improvements in the designed system,
and the energy results obtained.

A. Baseline Implementation

In order to measure the energy consumed and the
performance achieved, both the implemented algorithms
(gQRS and EB-gQRS) have been implemented on a low-
power, high-performance microcontroller unit (MCU) based
on the PULP platform. This MCU, called Mr.Wolf [8],
is composed of a RISC-V single-core controller and an octa-
core RISC-Y cluster. This platform has been developed using
40 nm technology. Both algorithms, first, acquire a 20-second
signal window through a µ DMA. Then, the algorithm is
executed with this window as the input signal. Finally, the
MCU is again put in sleep mode, waiting for the next window.

The results of this previous work can be divided according
to two main objectives:

• Detection performance: As presented in Section V-A,
the EB-gQRS achieves an F1 score on the QRS complex
recognition of 99.69%, compared to the 99.75% of
the original gQRS. The worsened F1 score is counter-
balanced by an S RF = 92.7%

• Energy consumption: The baseline implementation
of the EB-gQRS greatly reduces the energy for the
execution of the QRS complex detection algorithm. At the
same time, the energy used to keep the MCU in sleep
mode, while the acquisition process is completed, remains
invariant between the two algorithms (EB-gQRS, and
gQRS) and dominates the total energy consumption,
resulting in a total energy reduction of 44.6%. Moreover,
the energy computation obtained here does not take
into account the energy requirements for power-state
switching. To the best of our knowledge, the energy
required in-between power modes is not reported in [34].
In view of the overall energy requirement of the system,
we consider this contribution to be marginal.

B. Experimental Setup

Starting from the aforementioned work, we replace the
level-crossing sampler by the proposed PAS. Then, we extend

the energy results obtained with a more detailed analysis of
the whole system. In this case, we also consider the energy
consumed by the sampler, instead of analyzing only the energy
used for saving sampled data and processing.

Finally, we used the platform described in Section VI-A:
Mr.Wolf [8], but modifying its memory structure, moving
from 64 KB to 2 KB memory blocks. This reduction in
the memory block sizes was made because we observed the
largest impact on energy consumption was due to the leakage
of the memory blocks when they are in a retentive state.
By modifying the memory block size, we can reduce this
impact as the leakage of a smaller memory block is, in a first
approximation, directly proportional to the reduction factor.
Moreover, even in the original implementation, the amount
of data stored never grew more than 3 KB. By applying this
change, we switch from one 64 KB block of memory to two
2 KB blocks. Here, we refer to the acquired data without
considering the size of the program in memory, although
the program memory footprint is considered for the energy
consumption computation.

The power analysis of our designed PAS was run on
Synopsys Design Compiler, using the design synthesized on a
40 nm technology library. We followed the same experimental
procedure as [23]. First, we used the PAS algorithm to event-
based sample the MIT-BIH Arrhythmia Database at increasing
threshold levels. Then, we measured the F1 score and energy
consumption of the proposed algorithm for each threshold.
Finally, we measured the same parameters for the original
gQRS algorithm working on the uniformly sampled signal and
compared the results. As in our previous work, the algorithm
is run on non-overlapping windows of 20 seconds.

C. Experimental Energy and Performance Exploration
Results

We evaluated our design using technology libraries that
correspond to the worst operating case. In the context of
an embedded wearable device, the activity is a sequence
of short computation and long sleep periods. We thereby
expect the energy consumption to be dominated by leakage.
Consequently, we consider the technology corner that
maximizes the leakage (Fast-Fast corner) and we kept the
temperature in a reasonable range for a wearable (25◦C).

Table I shows the results indicating that the PAS has an
active power consumption of 1.24 µW and a leakage power
of 0.428 µW . Due to the speed at which the PAS processes
every input sample (7.09 ns per sample), the active energy,
on a 20-second window, is negligible when compared to the
leaked one: 63.1 pJ against 8.56 µJ . This translates to a fixed
PAS consumption of 8.56 µJ per acquired window.

The EB-gQRS algorithm consumes a variable amount of
energy, depending on the threshold (and hence on the average
frequency) used in the PAS. Indeed, it varies from 143 µJ at
10 Hz to 379 µJ at 360 Hz.

Fig. 11 shows the energy consumption comparison between
the gQRS algorithm and the event-based version plus the
energy used by the PAS, at different average frequencies.
While the average frequency of the PAS algorithm remains
below 204 Hz, the event-based algorithm uses less energy than
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Fig. 11. Energy comparison between the original gQRS algorithm and the
event-based version. The red star represents the working point, 17.1 Hz, the
blue diamond is the intersection point at 204 Hz.

Fig. 12. Performance of the event-based QRS detector vs. energy savings.
The highlighted point was chosen as a working-point for the algorithm
to obtain a good compromise between the saved energy and performance
degradation. Since the energy reduction is a direct consequence of the average
frequency reduction, we can notice how this figure presents a mirror view
to Fig. 6.

the original one. Moreover, in the range between 10 and 30 Hz,
the energy consumption measured is reduced by 40%.

In a complementary view, Fig. 12 shows the degradation in
the QRS detection performance, in terms of F1 score, as the
energy savings increase. In this sense, while the original gQRS
algorithm achieves an F1 score of 99.75%, the highlighted
point — corresponding to an average frequency of 17.1 Hz —
shows energy savings of 44.6%, while achieving an F1 score
of 99.69%. When compared to the original sampling frequency
of 360 Hz, these results translate in a worsening in F1 score
of 0.06% and S RF = 95.2%

The presented energy consumption values for the PAS
are computed assuming maximum leakage, Regular Voltage
Threshold (RVT), and considering the working temperature
to be 25◦C . In these conditions, this energy is already small
relative to the consumption of the used MCU in the selected
working point. However, it is possible to lower even more
the consumption of the proposed sampler aiming specifically
at reducing the energy leaked by the flip-flops while in the
retentive state. By changing the technology from RVT to High
Voltage Threshold (HVT) we managed to reduce the leaked
power from 0.428 µW to 0.035 µW . This would bring the
total energy needed by the PAS for acquiring the 20-second
windows of data to 0.7 µJ , achieving energy savings of 47.3%
at the designed working point.

VII. CONCLUSION

Interconnected smart sensors are paving the way of Industry
4.0, and the combination with low-power wearable technology

can enable a much healthier and safer working environment.
However, a significant energy of the system is spent in
standard sensing approaches, which is not suitable for a
sustainable IoT world. In this paper, we have analyzed,
designed, and validated our Polygonal Approximation Sampler
(PAS), which is a novel circuit for event-based sensing
relying on a polygonal approximation method targeting low-
power wearable sensors. The design was done through logic
synthesis and the energy evaluation was performed using
a TSMC 40 nm technology library, which resulted in an
active power consumption of 1.24 µW and a leakage power
of 0.428 µW . The circuit has also been field-tested by
targeting three common signal processing tasks on three
different types of archetypal signals captured by wearable
devices (i.e., accelerometers, respiration data, and ECG).
Moreover, we have compared our PAS design with standard
periodic ADC sampling. Overall, we obtained a reduction in
the number of acquired samples from 60% to 99% without
significant performance penalties. Finally, we evaluated the
energy consumption of a system integrating the PAS with a
complete SoC platform, showing a total reduction in energy
consumption of 44.6%. These results show that the PAS is
a promising component to be integrated into a wide range
of wearable devices performing continuous acquisition and
analysis of different types of sensory signals. Thus, PAS paves
the way for a better and safer interaction between workers and
machines in the future of Industry 4.0.
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