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Abstract
RISC-V-based Systems-on-Chip (SoCs) are witnessing a steady rise in adoption in both industry and academia.
However, the limited support for Linux-capable Full System-level simulators hampers development of the RISC-V
ecosystem. We address this by validating a full system-level simulator, gXR5 (gem5-eXtensions for RISC-V),
against the SiFive HiFive Unleashed SoC, to ensure performance statistics are representative of actual hardware.
This work also enriches existing methodologies to validate the gXR5 simulator against hardware by proposing a
systematic component-level calibration approach. The simulator error for selected SPEC CPU2017 applications
reduces from 44% to 24%, just by calibrating the CPU. We show that this systematic component-level calibration
approach is accurate, fast (in terms of simulation time), and generic enough to drive future validation efforts.

Introduction

A Linux-capable Full System-level simulator is one
that executes benchmarks (e.g. SPEC CPU2017 suite)
atop a kernel, system interface, and detailed hardware
models built-in software. To date, a full system-level
simulator for RISC-V has not been publicly validated
against fabricated hardware to target the precise mod-
eling of the execution of benchmark suites. gXR5
is a RISC-V-based Linux-capable, full system-level
simulator built into the gemb architectural simulator
that is capable of simulating the run-time of high-level
applications [1]. Since it is built on gemb [2], an open-
source, cycle-accurate, and event-driven architecture
simulator, it supports simulation of SoCs by providing
tunable architectural and micro-architectural models.
It can simulate multiple instruction set architectures
using ISA-agnostic CPU, bus and memory models.

Although gemb and gXR5 are easily tunable, validat-
ing the simulator for the SPEC CPU2017 benchmark
suite is a non-trivial task. The SPEC CPU2017 suite,
when run uncalibrated (hereafter ‘baseline’) on gXRS5,
has a mean absolute percentage error (simulated vs
actual hardware, hereafter, ‘error’) of 44.3% in execu-
tion time. The existing methodologies for validating
simulator models for the SPEC suites use synthetic
micro-benchmarks [3, 4, 5, 6] to reduce the error (de-
picted as "micro-architectural-level" calibration in Fig
1). These micro-benchmarks are not representative of
time complexity of actual workloads, thereby leading
to poor performance accuracy of simulators when real
user applications are run. Desikan et al. [3] achieve
18% simulator error in IPC for macro-benchmarks
derived from the SPEC CPU2000 benchmark suite.
Attempts have been made to use the correlation be-
tween micro-architectural events and error in IPC (e.g.
Pearson’s correlation) [5] and Hardware Performance
Counters (HPCs) for validating the simulator. Hup-
pert et al. [4] achieve an error of 20 — 25% in IPC for
the SPEC CPU2017 benchmark suite.
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Our proposed methodology introduces component-
level calibration of gem5 models targeting the Sifive
HighFive Unleashed System-on-Chip (SoC), which is
faster (in terms of simulation time), accurate, and ex-
tensible to other benchmarks. A CPU model in gXR5
is calibrated using the stress-ng benchmark suite!, re-
ducing the error in IPC from 36% to 11.8%. Once
calibrated, the execution time error reduces from 44%
to 24% while running the selected SPEC CPU2017
benchmark suite. We intend to release and open source
the validated gXR5 CPU model and supporting mate-
rials for adoption by the RISC-V community.

Methodology
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Figure 1: Component-level calibration using the stress-ng
benchmark suite.

The target of this validation focuses on the CPU
model (four-stage MinorCPU pipeline), leaving the
tuning of the memory hierarchy for future work. The
proposed methodology employs component-level cali-
bration using selected "CPU class" stressors (collec-
tion of micro-benchmarks) of the stress-ng benchmark
suite to target the FU540-C000 in-order CPU design
of Linux-capable Sifive HiFive Unleashed SoC. The
FU540-C000 (also referred to as Ub4) is a RV64GC
core. The HiFive Unleashed SoC is a quin-core SoC,
with one small CPU that supports real-time con-
straints by hosting RTOS, while the other four U54

! https://wiki.ubuntu.com/Kernel /Reference/stress-ng
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Figure 2: Performance of Simulator vs HighFive Un-
leashed SoC for stress-ng benchmarks.

cores are pipelined in-order processors? typically tar-
geting workloads in user space. We base our simulated
model and validation effort on single-core core work-
loads executing on the U54 core.

stress-ng Calibration

The stress-ng suite stresses a particular component or
set, of components of the system (in this case the CPU)
by using stressors. The selected CPU class stressors
were classified into three categories:

e Control Intensive: having complex control

structures (eg. nested for-if-else) with at least
100 branches per 1000 instructions.

e Memory Intensive: having 20% or higher
load/store instructions in the total op-code mix
of the program. A maximum 30% instructions
are load/store (for "queens" and "rand48").
Arithmetic Intensive: having 20% or more
Instructions using Integer /Float functional units.
The most significant attributes of the baseline and cal-
ibrated MinorCPU models are summarised in Table 1.
Figure 2 depicts the IPC of Baseline, Calibrated simu-
lator and Hardware for stress-ng benchmarks, along
with the absolute percentage of IPC error in the Cal-
ibrated simulator. The simulator achieves a Mean
Absolute Percentage Error in IPC of 11.8%.

Table 1: Simulator Model- MinorCPU Attributes

Component | Attribute Simulated Model
Baseline Calibrated

ReadMemFU | OpLat (cycles) 4 2

IntDivFU OpLat (cycles) 33 19

. fetch1Tofetch2

Fetch unit BackwardDelay 1 (cycles) 0 (cycles)

Branch- T Tournament Multtli -

Predictor ype ourname spective

Perceptron

Experimental Setup

The simulated CPU frequency is the same as the Hi-
Five SiFive Unleashed, running at 1GHz. Likewise,
the simulated system uses 8GB of 2400MHz DDR4
RAM. The L1 and L2 caches are implemented using

2 https://riscv.org/technical /specifications/

the classical cache models available in gXR5. They are
32KB, 8-way associative, and 2MB, 16-way associative,
respectively. The software stack of both the simulated
model and the HiFive Unleashed SoC includes the
OpenSBI bootloader, the Linux kernel v5.8, and a
24GB buildroot filesystem.

Results and Discussion

Five of the SPEC CPU2017 integer-rate benchmarks
(out of 10 total applications) were successfully run on
the validated simulator. The applications with a simi-
lar op-mix to stress-ng CPU class stressors have a mere
3.4% (500.deepsjeng r) and 0.17% (541.leela_r) er-
ror in execution time. Figure 3 compares the execution
time of SPEC CPU2017 applications running on the
HiFive Unleashed SoC and on gXR5. A relatively
large error in execution time for other applications
is expected as they are much more memory intensive
(i-e., they have nearly 40% Load/Store instructions),
given only the MinorCPU model was calibrated. Cal-
ibration reduces the overall error in execution time
from 44.3% to 23.9%.
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Figure 3: Performance of Simulator vs actual hardware
for SPEC CPU2017 suite
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