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Abstract
An analytical 1D model based on the WKB approximation is used to study the properties of a
short pulse reflectometry diagnostic in a magnetic fusion device. Expressions linking the pulse
delay with the parameters of the turbulence near the cut-off layer are derived for both ordinary
and extraordinary polarizations of the probing beam. These results are used to develop a method
for measuring the turbulence amplitude and the radial correlation length. The analytical
conclusions and the proposed method are validated using full-wave numerical modelling. The
latter is also used to study the limitations of the method and potential experimental effects not
included in the reduced model.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Active microwave methods, such as interferometry and reflec-
tometry, are commonly used for routine measurements of the
electron density profile in magnetized plasmas [1]. Due to the
fact that the probing beam propagation is affected by turbulent
density perturbations, various techniques have been developed
for reflectometry to measure the characteristics of the plasma
turbulence.

One of the first approaches to turbulence measurements
was the fluctuation reflectometry diagnostic [2, 3], in which
the plasma is probed at a fixed frequency under normal incid-
ence with respect to the cut-off surface and the variation of the
phase of the reflected signal is interpreted as the perturbation

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

of the density profile at the cut-off. Using several probing fre-
quencies, correlation techniques are used to obtain the radial
correlation length of the turbulence [4, 5]. In the case of fast
sweeping reflectometry (FSR), in which the probing frequency
is swept throughout the discharge, the method for finding
the amplitude of turbulent density fluctuations was developed
[6, 7]. Additionally, utilizing oblique incidence of the probing
beam with respect to the magnetic surface, the Doppler reflec-
tometry diagnostic [8] provides information about the poloidal
wavenumber spectrum of the turbulence as well as its rota-
tion velocity, while radial correlation Doppler reflectometry
[9] provides improved measurements of the radial correlation
length of the turbulence.

The radar pulse reflectometry technique was proposed
and employed for density profile measurements [10].The dia-
gnostic has the benefit of operating in the time-domain, mak-
ing it possible to directly measure the delay of the reflected
pulses and to separate them from parasitic reflections and scat-
tering away from the cut-off.

Considerable experimental [11–13] and theoretical [14, 15]
work was carried out to develop the diagnostic, most of it
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focused on density profile measurements rather than turbu-
lence studies. Recently, a short-pulse reflectometry (SPR) sys-
tem has been developed and employed on the TCV tokamak
[16, 17]. It is capable of using short (<ns) microwave prob-
ing pulses and digitally recording the envelope of the reflected
pulse.

So far the SPR system at TCV has only been used for the
fast reconstruction of the electron density profile. But sim-
ilar to the FSR diagnostic, SPR measurements are affected by
plasma turbulence and can potentially provide related inform-
ation. An investigation into the implications of SPR’s unique
capability to digitally record the reflected pulse for turbulence
studies has recently been carried out [18]. Unfortunately, it
concludes that, in the current configuration of the SPR dia-
gnostic, the pulse shape is not directly connected to the plasma
turbulence parameters.

Within this paper, rather than focusing on the shape of the
pulse, the possibility of using the statistical properties of the
delay times measured by SPR to determine the properties of
the plasma turbulence is explored. We present a novel method
for measuring the turbulence amplitude and its radial correla-
tion length utilizing the standard SPR configuration.

We will start by developing an analytical theory, presented
in section 2 and appendix. The results will then be validated
using the CUWA [19] code in section 3. CUWA is a full-wave
code, which was used to produce pulse delays corresponding
to a particular density perturbation while accounting for all
the relevant physics. Detailed information about the code will
also be given in section 3. In section 4, the same code will be
used to test the proposed method and its limitations that could
play a role in experiments. An overview of the final method,
a comparison with the currently available diagnostics as well
as future prospects, is presented in section 5. Lastly, the main
points of the paper are summarized in the final concluding
section.

2. Theoretical model

2.1. Analytical considerations

Within this work, we will limit ourselves to a simple 1DWKB
interpretation of the probing pulse delays measured by SPR.
We will start by considering ordinary (O) polarization of the
probing wave and generalize the results later. Since the goal
of the work is turbulence measurements, we will separate
the instantaneous electron density profile n into the stationary
background density n0 and its fluctuations δn. We will assume
the background density profile to have a linear dependence on
the radial coordinate (designated x) n0 = nc xL . Here, nc =

meω
2

4π e2

is the critical density, corresponding to the cut-off of the prob-
ing frequency ω. With this definition L is a frequency depend-
ent quantity (L(ω)∝ ω2), which represents both the cut-off
coordinate and the density gradient scale length at the cut-off.

Within this work we will not consider the temporal char-
acteristics of the turbulence. For that reason we will not make
any specific assumption about the frequency spectrum of δn
and will only assume that the density perturbation averages to

Figure 1. An illustration of the model geometry.

zero (⟨δn(x)⟩ = 0). Under these assumptions, the pulse delay
can be represented by the following integral:

td = 2
ˆ L

0

dx
vg

=
2
c

ˆ L

0

dx√
1− x

L −
δn(x)
nc

, (1)

where vg stands for group velocity. The second equality comes
from the specific dispersion relation for O-mode [20]. The
main contribution to this integral comes from the vicinity of
the cut-off x= L. Unfortunately, that is also the region where
the WKB approximation breaks down and trying to apply the
standard perturbation approach to account for the density fluc-
tuations can result in a diverging integral [20]. Nevertheless,
previous analytical work [21, 22] shows qualitatively correct
results can still be obtained using the WKB approximation in
the cut-off region.

To overcome the potential divergence of the integral, we
shall assume that density fluctuations have a simple form that
can be directly integrated. Specifically, we will assume that
the density fluctuation at the cut-off can be represented by a
step-like perturbation with its width dictated by the turbulence
radial correlation length 2lcx. This simplified model will allow
us to analytically integrate equation (1). While a more com-
plex and realistic shape could be used, we have found this sim-
plification to be sufficient to obtain correct qualitative results.
As described later in this section, these results were then con-
firmed with numerical integration without relying on the step
function simplification, allowing us to obtain the final quant-
itative expression. The geometry of the model is illustrated in
figure 1:

The perturbation of the density results in a shift of the cut-
off, the value of which depends on the amplitude δn. There are
two principal cases one needs to consider. If the shift of the
cut-off is small compared to lcx (which corresponds to small
amplitude of δn), then considering a single step-like density
perturbation is enough to account for it. In this case, as illus-
trated by figure 2, the average shift of the cut-off is 0:

In the opposite case of large turbulence amplitudes, sev-
eral density ‘steps’ have to line up to move the cut-off inward
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Figure 2. An illustration of symmetric cut-off shift.

and thus increase the delay. At the same time, a single density
‘step’ can result in the cut-off moving significantly outwards
and the delay time decreasing. In this situation, illustrated in
figure 3, the average cut-off delay effectively will be reduced
and considering a single density step-like perturbation at the
cut-off is not sufficient to describe the perturbation of the delay
time by a density fluctuation.

Within this work, we will focus on the small amplitude
case, illustrated by figure 2. It is defined by the condition that
the cut-off shift be smaller than the radial correlation length of
the turbulence. In the case of ordinary polarization and linear
profile of the background density, the position of the cut-off is
expressed by equation (2):

n(xc) = nc = nc
xc
L
+ δn(xc), (2)

δxc = xc−L=−δn
nc
L. (3)

To obtain equation (3), we have assumed that the value of
δn does not change between the original (L) and perturbed (xc)
cut-offs, as illustrated by figure 2. Equation (3) allows us to
express the critical density amplitude δncrit, for which the cut-
off shift is equal to lcx, as well as statistical properties of the
cut-off shift:

⟨δxc⟩= 0; (4)

√
⟨δx2c⟩=

√
⟨δn2⟩
nc

L; (5)

δncrit
nc

=
lcx
L
. (6)

From this point on, we will limit ourselves to considering
the regime in which r.m.s. (δn)<< δncrit. Approximating the
density perturbation by a single step-like function centred at
the cut-off will allow us to integrate the reciprocal of the group
velocity and obtain a relation for the pulse delay following
equation (1):

td =
2
c

ˆ L

0

dx√
1− x

L −
δn(x)
nc

=
4L
c

− 4
√
Llcx
c

+
4
√
L
√
lcx−L δn

nc

c
.

(7)

Taking into account the condition r.m.s. (δn)<< δncrit, we
can further simplify this expression:

td =
4L
c

− 2L
c

√
L
lcx

δn
nc

, (8)

⟨td⟩=
4L
c
, (9)

√
⟨(td−⟨td⟩)2⟩=

2L
c

√
L
lcx

√
⟨δn2⟩
nc

. (10)

From this formula we can thus directly link the r.m.s. of
SPR delays to the r.m.s. of the density fluctuations. However,
to apply it, we need to have a prior knowledge of the radial
correlation length of the turbulence. Such a measurement is
usually done by employing the radial correlation reflectometry
(RCR) technique [4]. The technique is based on computing the
cross-correlation function (CCF) between the reflected signals
corresponding to different probing frequencies. This CCF is
then interpreted as the turbulence two-point correlation func-
tion between the cut-off positions.

Using SPR, we can apply a similar technique by measuring
delays corresponding to neighbouring probing frequencies and
finding the correlation between these delays depending on the
frequency separation. One point to note is that the length L is
proportional to the square of the probing frequency ω within
our model. We will select a central frequency ω0 and designate
the corresponding value of L as L0. From equations (8)–(10)
one then obtains:

δtd(ω) = td(ω)−
4L(ω)
c

=−2L0
c

√
L0
lcx

ω

ω0

δn
nc(ω0)

, (11)

⟨δtd(ω0)δtd(ω)⟩=
(
2L0
c

)2 L0
lcx

ω

ω0

⟨δn(xc(ω0))δn(xc(ω))⟩
nc(ω0)2

.

(12)

Using this formula, we can represent the normalized CCF of
the delay perturbations in terms of the normalized two-point
CCF of the turbulence:

CCFδtd(ω,ω0) =
⟨δtd(ω)δtd(ω0)⟩√

⟨δtd(ω0)δtd(ω0)⟩⟨δtd(ω)δtd(ω)⟩
= CCFδn(xc(ω),xc(ω0)). (13)
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Figure 3. An illustration of asymmetric cut-off shifts.

Using equations (10) and (13), one can obtain information
about both radial correlation length and amplitude of the tur-
bulent density perturbations from a set of SPR measurements
at several close probing frequencies and the background dens-
ity profile information needed to determine xc(ω).

The same logic can be applied to X-mode probing, assum-
ing background parameters in the vicinity of the cut-off do not
change significantly. Given that the derivation for this case is
rather cumbersome, it is given in appendix. The final formu-
las for the critical turbulence amplitude and delay r.m.s. in the
case of X-mode are:

δncrit
n0(xc)

= 2
lcx
Lc

ω

ωpe

√
1+

ω2
ce

4ω2
pe
, (14)

√
⟨(td−⟨td⟩)2⟩=

Lc
c

√
Lc
lcx
h(xc)

ωpe

ω
√
1+ ω2

ce
4ω2

pe

√
⟨δn2⟩
n0(x)

, (15)

with h(x) and Lc given by equations (A.5) and (A.6).
Regarding the normalized CCF of the delay times,

equation (13) applies for both modes.
Equations (10) and (15) rely on a number of simplifications.

First of all, a linear background density profile (and magnetic
field profile in the case of X-mode) does not describe realistic
plasma conditions. This issue can be solved by treating the
value L as the gradient scale length of the density profile at
the cut-off. This generalization usually works for the analysis
of reflectometry diagnostics [23, 24] and, given that we only
consider the density fluctuations at the cut-off, should be all
the more valid in our case.

Another simplification involves reducing the problem to
1D. However, analytical studies for RCR have previously
shown that the results obtained in 1D [21] are in qualitative
agreement with 2D considerations [23].

Finally, the simplification of only associating the perturba-
tion of the delay time to the shift of the cut-off (and using the
WKB approximation there) is also not rigorous, although it has
been successfully utilized before for Doppler reflectometry
[25]. While equation (1) implies that the density perturbations
at the cut-off provide the dominant contribution to the integral,

it is not obvious that one can actually neglect them everywhere
else.

For all these reasons, to validate our analytic derivations,
numerical modelling is necessary.

2.2. Numerical integration

First, to justify the assumption that the r.m.s. of δtd is determ-
ined by the density fluctuations in the vicinity of the cut-off, a
numerical integration of equation (1) was carried out. To this
end, the integral along the entire beam propagation path was
considered, including all corresponding density perturbations.

To produce a sample of the density fluctuations, a Gaussian
spectrum with random phase was utilized:

δn(κ)∝ exp

(
−κ2l2cx

8
+ i∆ϕ(κ)

)
. (16)

Here, κ corresponds to the radial wavenumber of the density
perturbation. A set of samples δn(x)was obtained by perform-
ing the inverse Fourier transform of the spectrum (and retain-
ing the real part), including a random phase ∆ϕ(κ) sampled
uniformly over [0,2π]. Each sample was multiplied by a con-
stant factor to have a specific r.m.s. value and then plugged
into equation (1). A total of 3000 samples were used to guaran-
tee convergence (no significant difference between 1000 and
3000 samples was found). Once a set of 3000 delay times for
each density perturbation amplitude was obtained for a linear
n0 profile, the delay r.m.s. was computed and compared to the
prediction given by equation (10).

Since the density perturbations produced using the spec-
trum in equation (16) are uniform in amplitude, the value
of relative amplitude δn(x)/n0(x) would actually increase
towards the periphery of the plasma. This increase is in
line with realistic plasma conditions in which turbulence is
stronger closer to the plasma edge.

To avoid strong numerical reflection, in full-wave com-
putations presented in later sections the total density pro-
file at the very edge of the plasma was smoothed utilizing
a Gaussian filter with a standard deviation equal to half the
probing wavelength. An example of a typical normalised tur-
bulence amplitude profile is given in figure 4.
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Figure 4. Typical normalised turbulence amplitude (in red on the
right axis) and average density profile (in blue on the left axis) in the
computation based on 1000 samples.

Figure 5. Numerical integration example for L= 4 cm and
lcx = 0.22 cm. R.m.s of O-mode time delay vs the amplitude of the
turbulence. The blue curve corresponds to the numerical integration,
the red line is the prediction given by equation (10), multiplied by 2.
The yellow line is the threshold amplitude given by equation (6).

As can be seen from the figure, the level of turbulence
increases towards the edge up to very large values. Another
noticeable effect is that, even with 1000 samples, there are
still noticeable statistical errors in the average density pro-
file, which could partially explain discrepancies observed in
the next section.

Utilizing numerical integration, an example of the resulting
dependence of the delay r.m.s. on the r.m.s. of density perturb-
ations for the case of O-mode is given in figure 5.

The points at low fluctuation amplitudes that deviate
from theoretical expectations correspond to the delay r.m.s.
becoming comparable to the numerical error in estimat-
ing equation (1), which results in overestimated values.
These points can be ignored. It is important to note that in

Figure 6. CCF of O-mode time delays corresponding to different
cut-off positions for L= 10 cm and lcx = 0.5 cm. The blue curve
corresponds to the numerical integration, the red line is the
prediction given by equation (13). The yellow line is the same
formula with lcx divided by

√
2. The purple line corresponds

to 1/e level.

every case considered, within a wide range of parameters
(L0 = 4− 20 cm, lcx = 0.01= 1 cm), the prediction given by
equation (10) was exactly a factor of 2 smaller than the com-
putation results. As the only difference between numerical and
analytical models is the use of step-like density perturbations,
we attribute this difference to that simplification. Since the
numerical integration was using more realistic perturbations,
we incorporate this ratio into our simplified formula, so that for
further validation we will be using the modified expression:

√〈
δt2d
〉
=
√
⟨(td−⟨td⟩)2⟩=

4L
c

√
L
lcx

√
⟨δn2⟩
nc

. (17)

Next, the numerical integration was carried out for a set
of 251 critical density values, each corresponding to a differ-
ent probing frequency (using the same set of δn samples for
each frequency), to compute the CCF of delays corresponding
to different probing frequencies. An example of the integra-
tion result for a turbulence r.m.s. of 5× 10−3nc(ω0) is given
in figure 6.

Once again, in a systematic scan over L0 and lcx we find that
a rescaling of lcx by a factor of 1/

√
2 is necessary to obtain a

more accurate value of the correlation length. This empirical
correction would need to be tested further in future work, in
particular for a non-Gaussian spectrum, which was shown to
be significantly unrealistic in [26]. Nevertheless, equation (17)
only has a weak dependence on lcx, so an error in its measure-
ment is acceptable.

Finally, a numerical integration for X-mode polarization
was also carried out using the X-mode dispersion relation
(equation (A.1)) to find the group velocity. An example of
delay r.m.s. as a function of the density perturbation amplitude
is presented in figure 7.
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Figure 7. R.m.s of X-mode time delay vs amplitude of the
turbulence for L= 4 cm and lcx = 0.5 cm. The blue curve
corresponds to the numerical integration, the red line is the
prediction given by equation (15), multiplied by 2. The yellow line
is the threshold amplitude given by equation (14).

Once again, a factor of 2 was empirically found between
the analytical prediction given by equation (15) and numerical
integration results. The consistency of this effect between O
and Xmode corroborates the explanation of it being an artifact
of the step-like density perturbation approximation.

Numerical factors aside, the integration seems to confirm
the approach of attributing the time delay r.m.s. to the density
fluctuations at the cut-off.

3. Full-wave validation

3.1. Computational setup

To further validate equations (10) and (17), full-wave mod-
elling was carried out using the GPU-enabled code CUWA.
CUWA is a finite difference time domain full-wave code in
which the wave equation is solved within the cold plasma
approximation. Further details about the specific implement-
ation can be found in [19]. For the purpose of this work the
code was adapted to have a pulsed microwave source rather
than a continuous one. The computations were carried out
on a 2D grid, using frozen density perturbations and a linear
background density profile in slab geometry. The source term
was adapted for pulsed operation and the signal was recorded
throughout all timesteps to obtain the returning pulses.

Similarly to the previous section, a Gaussian turbulence
spectrum (now two-dimensional) was used to produce random
density perturbations:

δn(κ,q)∝ exp

(
−κ2l2cx

8
−
q2l2cy
8

+ i∆ϕ(κ,q)

)
. (18)

Here, q corresponds to the poloidal wavenumber of
the density perturbation, while κstill represents the radial
wavenumber. The set of delay times in this case was obtained

Figure 8. An example of the CUWA computation. The filled
contours correspond to the full density profile n0 + δn (on the left,
for x< 0.225 (m) and its perturbation δn (on the right, for x> 0.225
(m). The blue contour lines correspond to the electric field.

by computing over 1000 random samples. An example of a
CUWA computation (L0 = 20 cm, lcx = lcy = 1 cm) is given
in figure 8.

On the left side of the picture the background color cor-
responds to the total plasma density n0 + δn, while the blue
contour lines correspond to levels of constant magnitude of
electric field. The red dashed line marks the position of the
cut-off in the absence of density perturbations. Finally, on the
right side of the image the density perturbations δn are presen-
ted for visualisation purpose.

To obtain the signal from the computation, a receiving
antenna (coinciding with emitting one) was simulated by
integrating the electric field along the grid boundary (corres-
ponding to the antenna position) over the antenna pattern. The
pattern in the computation was chosen to be Gaussian (with
a half-waist ρ= 5 cm, unless specified otherwise). To model
conditions close to experimental ones [17], the central prob-
ing frequency was chosen to be 50 GHz and the cut-off was
located at L0 = 10 cm.

3.2. Modelling results

A first computation was carried out under conditions as close
to the theoretical 1D model (2.1) as possible by choosing a
poloidal correlation length lcy = 20 cm and ρ= 10 cm, making
the turbulence essentially 1D. The radial correlation length lcx
was chosen to be 1 cm and ordinary polarization was utilized.
The r.m.s. of delay times computed with CUWA are presented
in figure 9.

The first point (at the lowest fluctuation amplitude) corres-
ponds to a delay r.m.s. much smaller than the period of the
probing wave (2× 10−11 s) and the numerical noise becomes

too large to obtain reliable values of
√〈

δt2d
〉
. For the other

points, the full-wave modelling results are in good (⩽15%
of error in estimating turbulence amplitude) agreement with
the prediction given by equation (17), which includes the

6
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Figure 9. R.m.s of O-mode time delay vs the amplitude of the
turbulence in the 1D limit. The blue curve corresponds to the
full-wave computation, the red line is the prediction given by
equation (17). The yellow line is the threshold amplitude given by
equation (6).

correction factor of 2. This agreement implies that at least
within the 1D limit our model produces relevant results. The
main disagreement comes from the point δn/nc = 0.01, where
the computed delay r.m.s. turns out to be larger than the the-
oretical prediction. That in turn means that in that region
the delay r.m.s. scales with turbulence amplitude at a higher
power law than linear. That could be the case when the reflec-
ted pulse is strongly affected by nonlinear scattering effects,
which are not included in our simplified model. Applying
the criterion for strong non-linear scattering available for
fluctuation reflectometry [27], for the given parameters we
obtain δncrit = 0.013, which is low enough to account for the
observed discrepancy.

Nevertheless, nonlinear scattering effects unaccounted for
in the model only seem to provide a relatively small deviation
from the theoretical estimate for all the considered cases and
will be considered in more detail in future work.

Another similar computation was carried out for X-mode
polarization considering a linear density profile and 1/x profile
for the magnetic field. The results are depicted in figure 10,
also showing good agreement.

Next a computation for more realistic parameters lcx =
1 cm, lcy = 2 cm and ρ= 5 cm was carried out. The results
for O-mode are presented in figure 11.

Similar to the 1D case, within the relevant parameter range
(10−3 − 10−1), the analytical prediction is within 20% of the
value obtained with CUWA. Unlike the previous cases, for
some input amplitudes computed values turns out to be lower
than the 1D expectation.

The likely explanation for this is that the density perturb-
ations at small poloidal scale get ‘averaged out’ across the
finite waist of the probing beam. This makes the probing beam
only sensitive to turbulence with poloidal scale comparable to
ρ which means that for small values of lcy/ρ only a limited
part of the turbulence poloidal wavenumber spectrum provides

Figure 10. R.m.s of X-mode time delay vs the amplitude of the
turbulence in the 1D limit. The blue curve corresponds to the
full-wave computation, the red line is the prediction given by
equation (15) multiplied by a factor of 2. The yellow line is the
threshold amplitude given by equation (14).

Figure 11. R.m.s of O-mode time delay vs the amplitude of the
turbulence for realistic parameters. The blue curve corresponds to
the full-wave computation, the red line is the prediction given by
equation (17). The yellow line is the threshold amplitude given by
equation (6).

contributions to the measurement, lowering the measured tur-
bulence amplitude.

To test this explanation, a computation was done for the
more extreme set of values lcy = 0.3 cm and ρ= 10 cm. The
resulting delay r.m.s. is expected to be significantly smaller
than the one predicted by equation (17) and figure 12 indeed
confirms this.

Finally, a CUWA computation for a set of probing frequen-
cies and lcx = 1 cm, lcy = 2 cm and ρ= 5 cm was carried out
to test the radial correlation length estimation method. A set
of probing frequencies between 46 GHz and 54 GHz was used
and the resulting CCF is plotted in figure 13.

7
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Figure 12. R.m.s of O-mode time delay vs the amplitude of the
turbulence for large relative beam waist ρ/lcy. The blue curve
corresponds to the full-wave computation, the red line is the
prediction given by equation (17). The yellow line is the threshold
amplitude given by equation (6).

Figure 13. CCF of O-mode time delays vs the cut-off separation.
The blue curve corresponds to the full-wave computation, the red
line is the prediction given by equation (13). The yellow line is the
same formula with lcy divided by

√
2.

In the case of the radial correlation length measurement,
the full-wave results entirely coincide with the 1D numerical
integration. The turbulence amplitude used for this case was
5 · 10−3nc, i.e. the same value as in the previous section.

Overall, the results of the full-wave modelling are in
good agreement with the expectation given by equations (13)
and (17), with the main sources of error being the finite
beam sensitivity effects at small lcy/ρ and nonlinear scat-
tering effects at higher turbulence amplitudes. However, an
error of nearly 20% in the estimation of the turbulence amp-
litude could be a significant factor when applied to experiment.
Experimental application of the method would involve prob-
ing the plasma with a set of probing frequencies and obtaining

both the radial correlation length of the turbulence and the pro-
file of the turbulence amplitude over the covered radial range.
An error of the order of 20% at each cut-off position could
make it difficult to recover the qualitative shape of the turbu-
lence amplitude profile.

Moreover, the numerical model used still possesses a num-
ber of simplifications: slab geometry, linear background dens-
ity profile, uniform turbulence amplitude. Additional numer-
ical modelling was therefore carried out to further explore
the proposed turbulence profile measurement method and to
address each of the model simplifications in turn. This will be
discussed in the next section.

4. Model limitations

4.1. Turbulence profile measurement

Within this section, we will consider O-mode, but the result
for X-mode is expected be qualitatively similar. CUWA mod-
elling was carried out using a set of 19 probing frequencies
(with varying separation δω between neighbouring frequen-
cies) in the range f = [54− 46] GHz. A set of 3000 random
perturbation samples was used for each computation to pre-
clude significant statistical errors.

The r.m.s. value of the resulting delay was computed
for each probing frequency and the turbulence amplitude
corresponding to each cut-off position was computed using
equation (17). An example of all of the quantities is given
in figure 14 to illustrate how the turbulence amplitude profile
shape changes compared to the delay r.m.s. profile. It should
be noted, that in figure 14(c) as well as other figures in this
section the turbulence amplitude is normalized by a constant
value nc( f0), which means that the horizontal red line reflects
a constant absolute value of density perturbation amplitude in
space. The relative turbulence amplitude δn/n0 is not constant
and is increasing towards the plasma edge, as illustrated in
figure 4.

This computation corresponds to the ‘default’ case used in
the previous section. The background density profile is linear
and the turbulence amplitude is uniform across the compu-
tation domain. The slab geometry is used and the numerical
parameters are:

Based on figure 11, one would expect the turbulence amp-
litude to be underestimated by about 20% for this value of
input amplitude, which is indeed the case. Moreover, the 20%
underestimation which we attribute to the beam sensitivity
effect seems to be a systematic shift, that does not affect
the shape of the computed turbulence amplitude profile. To
estimate the error specifically in the shape of the turbulence
amplitude profile, computed δn values were multiplied by a
constant factor to minimize the average error over all the prob-
ing frequencies. The maximum remaining error in this case is
only 2.6%, suggesting that the error due to the 2D nature of
the problem is consistent across all the probing frequencies
and does not distort the shape of the measured profile.

To further confirm this idea additional computations were
carried out for different input amplitudes of the turbulence.
The resulting profiles are presented in figure 15, where for
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Figure 14. Example of data analysis process. (a) Delays computed for each turbulence sample (different colours correspond to different
probing frequencies); (b) r.m.s. of delays computed for each probing frequency vs the cut-off radial position. The blue curve corresponds to
the full-wave computation and the red dashed line is the prediction given by equation (17); (c) turbulence amplitude profile. The blue curve
corresponds to the full-wave computation data, the red dashed line corresponds to the constant turbulence amplitude profile used as an input
for the full-wave computation.

Figure 15. Turbulence amplitude profile normalised to input
amplitudes. Different colours and markers correspond to different
values of the relative input amplitude at the central cut-off.

easier comparison they are normalized by the input turbulence

amplitude δnFW(x)
δninput(x) .

Figure 15 is in agreement with our conclusions. For lower
amplitudes, where nonlinear scattering is negligible, the turbu-
lence profile is consistent between different amplitudes, with
a very small deviation from the input profile shape. For higher
amplitudes, while the systematic error changes, the deviation
from the input profile shape is still at most 3.6%, not affecting
the profile shape significantly. Given the good consistency of
the result for lower amplitudes and the high cost of simulations
for multiple probing frequencies, in the rest of this section we
will limit ourselves to considering the default input amplitude
given in table 1.

Next, we will test the profile reconstruction method against
the other simplifications of the model using the ‘default’ set of

Table 1. Default set of parameters used for the full-wave
computations at multiple probing frequencies.

f 0 L0(= xc) ρ lcx lcy

√
⟨δn2⟩

nc(ω0)

50 GHz 10 cm 5 cm 1 cm 2 cm 5× 10−3

parameters given in table 1 as the baseline and changing the
parameters of interest.

4.2. Spatial dependencies

The first issue we address is to consider a nonlinear n0(x) pro-
file instead of the linear one assumed in the model, as well as
non-uniform turbulence amplitude over x.

In the case of nonlinear background density profile, the
quantity L0 corresponds to the gradient scale length of the pro-
file. A full-wave computation was carried out for a parabolic
density profile, which was selected to still have a L0 = 10 cm
gradient scale length at the central cut-off position:

n0(x) =

[
1.25− (1.5L0 − x)2

L20

]
nc(ω0). (19)

In the region where equation (19) is negative, n0 = 0 was
assumed in CUWA. The amplitude of fluctuations was
assumed to be uniform in space, resulting in a high relative
turbulence amplitude at the plasma edge. The modelling res-
ults for this case are shown in figure 16.

In agreement with theoretical expectations, using a non-
linear n0 profile does not have a significant effect on the tur-
bulence amplitude measurements. While the error between
the ‘measured’ and input turbulence amplitude is as high as
25%, the obtained dependence is only 4.8% different from the
expected constant value.

Next, we reverted back to a linear n0 profile and tested
the influence of a non-uniform turbulence amplitude. As

9
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Figure 16. Quadratic n0(x) profile case. (a) Turbulence amplitude profile computed according to equation (17) with input lcx value. The
blue curve corresponds to the full-wave computation data, the red dashed line corresponds to the turbulence amplitude profile used as input.
(b) Delay CCF function. The blue curve corresponds to the full-wave computation, the red curve corresponds to the input Gaussian
turbulence CCF and the yellow curve corresponds to the same dependence with lcx divided by

√
2.

Figure 17. Exponential δn(x) amplitude profile case. (a) Turbulence amplitude profile computed according to equation (17). The blue curve
corresponds to the full-wave computation data, the red dashed line corresponds to the turbulence amplitude profile used as input. (b) Delay
CCF function. The blue curve corresponds to the full-wave computation, the red curve corresponds to the input Gaussian turbulence CCF
and the yellow curve corresponds to the same dependence with lcx divided by

√
2.

illustrated by figure 4, in all of the previous computations
the relative amplitude of the turbulence had significantly
increased towards the plasma edge without affecting the
method. Significantly, this is not the case for conventional fast-
sweeping reflectometry [28], in which a strong influence of
edge turbulence on the measurements was found.

However, the variation of the turbulence amplitude in the
covered radial range has so far been insignificant (around
15%) which is what we are addressing in this computa-
tion. The samples for this case were generated according to
equation (18) and thenmultiplied by a factor exp(1− x

L0
). This

resulted in the turbulence amplitude varying by about 40%
along the scanned radial range and edge turbulence having the
relative amplitude of up to 100%. The computation for this
case is given in figure 17:

Once again, the error in the shape of the measured profile
turns out to be low (2.4%), suggesting that neither large edge
turbulence nor the variation of the turbulence amplitude on the
vicinity of the cut-off are a significant issue when estimating
the pulse delay r.m.s. The possible explanation for this is the
fact that SPR operates in the temporal domain and the edge tur-
bulence scattering is naturally eliminated from the considered
signal as it reaches the antenna at earlier times compared to
the reflected pulse.

4.3. Geometrical factors

Next, the influence of 2D effects, not accounted for in the
model, was studied. First of all, a computation was carried out
with the default parameters (table 1) except for lcy = 20. Given

10
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Figure 18. 1D δn case. (a) Turbulence amplitude profile computed according to equation (17). The blue curve corresponds to the full-wave
computation data, the red dashed line corresponds to the turbulence amplitude profile used as input. (b) Delay CCF function. The blue curve
corresponds to the full-wave computation, the red curve corresponds to the input Gaussian turbulence CCF and the yellow curve
corresponds to the same dependence with lcx divided by

√
2.

the similarity to the near 1D computation presented in the pre-
vious section, we could expect the delay r.m.s. to increase and
become closer to the prediction given by equation (17). The
result of the profile reconstruction for this case is given in
figure 18.

In agreement with our expectations, the delay r.m.s.
increases, while the shape is still reproduced (within a relative
error of 2%). The results presented in figure 18 suggest that the
2D effects of the turbulence result in a consistent systematic
decrease in the density amplitude measurement and that the
turbulence profile can still be measured. The fact that the delay
r.m.s. in this case actually became larger than the analytical
expectation is puzzling, especially when compared to figure 9.
It could be related to the different number of samples or dif-
ferent values of ρ associated with the two figures. Since the
difference in delay r.m.s. lies within the 20% error observed
in the previous section, we will not explore it further in this
work.

Another geometrical limitation is the use of slab geometry.
In a realistic scenario, the magnetic surfaces of the plasma
have curvature, which could influence the propagation of the
beam. To test how the curvature of the background density pro-
file affects the pulse delay, a computation was carried out with
the following background density profile:

n0(x,y) =

{
R−

√
(x−R)2+y2

L0
nc(ω0) for

√
(x−R)2 + y2 ⩽ R,

0 for
√
(x−R)2 + y2 > R.

(20)

The density fluctuations were also adapted to follow the
curvature of the background profile, with lcy becoming the cor-
relation length along the circular surface of constant n0. This
was done by generating δn(x ′,y ′) according to equation (18)
and then remapping it to (x, y) following the rule:

(x,y) =
(
R− (R− x ′) · cos

(
y ′

R− x ′

)
,

(R− x ′) · sin
(

y ′

R− x ′

))
. (21)

For the computation, default parameters were used and R
was chosen to be 25 cm. Computation results are given in
figure 19.

While the relative error in the profile is still low (less than
3%), the average value of the delay r.m.s. in higher this case. A
possible explanation could be the fact that due to the curvature
of the cut-off, only the central portion of the reflected beam
will reach the antenna. This effectively increases the beam
sensitivity to turbulence with smaller poloidal scales and res-
ults in a higher delay r.m.s. as shown in the previous section.
This result is consistent with the one obtained for conven-
tional fluctuation reflectometry [29], where full-wave com-
putations showed an increase of measured turbulence amp-
litude at higher curvature. To test this explanation, a set of
full-wave simulations were carried out with the same para-
meters except for lcy = 20 cm, for R= 25 cm and R= 100 m
(slab limit). The reconstructed profiles are presented in
figure 20.

Such a long poloidal correlation length was used to exclude
the lcy/ρ < 1 effect, and assuming it was the cause for the large
delay r.m.s., there should be no difference between the two
computations. That is indeed the case as the two computations
provide results within 4% of each other.

Overall, the computations presented in this section confirm
that additional effects, while introducing a systematic error in
to the absolute value of the turbulence amplitude, do not signi-
ficantly affect the estimation of the turbulence amplitude pro-
file shape. Moreover, the delay CCF does not appear sensitive
to any of the considered effects.
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Figure 19. Finite plasma curvature case. (a) Turbulence amplitude profile computed according to equation (17). The blue curve corresponds
to the full-wave computation data, the red dashed line corresponds to the turbulence amplitude profile used as input. (b) Delay CCF
function. The blue curve corresponds to the full-wave computation, the red curve corresponds to the input Gaussian turbulence CCF and the
yellow curve corresponds to the same dependence with lcx divided by

√
2.

Figure 20. Turbulence amplitude profile computed according to
equation (17). The blue and yellow curves correspond to the
full-wave computation data considering lcy = 20 cm as well as
R= 100 m and R= 25 cm respectively, the red dashed line
corresponds to the profile used as input for the full-wave
computation.

5. Discussion

Summarizing the computation results obtained in the previ-
ous sections, we conclude that the proposed method provides
information about the shape of the radial profile of the turbu-
lence amplitude and its radial correlation length.

However, the absolute value of the measured turbulence
amplitude is strongly affected by the curvature of the plasma
and the poloidal correlation length of the turbulence (with
respect to the waist of the probing beam) and potential non-
linear scattering effects. To compare the absolute values of
the turbulence amplitude between different discharges, one
therefore has to ensure that the geometry and the turbulence
poloidal scale are similar.

The modelling presented in section 4, as well as addi-
tional modelling done within this work, shows a consistent
monotonic increase of delay r.m.s. with both stronger plasma
curvature and longer lcy. Both of these effects seem to be
caused by finite sensitivity of the beam, making the ratio of
poloidal scale of the turbulence to the effective beam size a key
parameter to consider. Further improvements of the method to
account for this effect are possible and will be a subject of
future work.

When compared to conventional fluctuation reflectometry
and FSR methods, the new technique seems to be affected
by nonlinear scattering effects and beam sensitivity in a sim-
ilar manner. At the same time the competitive benefit of the
method seems to lie in utilizing the temporal domain and
excluding the influence of the strong edge turbulence on the
measurements. Overall it appears that SPR delay analysis is a
more capable analog for the turbulence measurements carried
out with continuous operation.

At the same time, the correlation technique applied within
the method has proven to be robust and to provide a correct
estimate of the turbulence radial correlation length lcx, regard-
less of the probing geometry.

The natural point of comparison for this part of the method
is the RCR diagnostic, which utilizes a similar approach to
measure lcx. Measurements with this diagnostic tend to over-
estimate lcx in the linear scattering regime [4, 30]. At the same
time, in the strongly nonlinear regime, the measured correla-
tion length does not directly correspond to lcx [31] and tends to
be lower than lcx in experimental measurements [32]. We may
ask whether the proposed SPR method suffers from the same
disadvantages as classic RCR. To answer this question, two
more computations were carried out using the default paramet-
ers (table 1) and different relative amplitudes of the turbulence.
The CCFs obtained in these cases are given in figure 21.

Specific values of the amplitude selected do not have par-
ticular meaning and were selected arbitrarily due to different
amplitude normalization used in the code.

12
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Figure 21. Delay CCF function for relative turbulence amplitude δn/nc(ω0) (a) 0.0017, (b) 0.058 and (c) 0.13. The Blue curves correspond
to the full-wave computation, the red curves correspond to the input Gaussian turbulence CCF and the yellow curves correspond to the
Gaussian dependence with lcx divided by

√
2.

The criterion for the onset of the nonlinear regime [31],
applied to the default computation parameters, gives us a tur-
bulence level threshold δncrit

nc
= 0.013, suggesting that the res-

ults presented in the previous section with δn/nc(ω0) = 5·
10−3 lie within the linear scattering regime limit. According
to this value, figure 21(a) corresponds to a linear scattering
regime, while figures 21(b) and (c) describe the strongly non-
linear scattering regime. At the same time only figure 21(c)
reaches the amplitude threshold equation (6) within ourmodel.

From figures 21(a)–(c), one can see that the computed CCF
remains in agreement with the expectations within the limits
of the linear scattering case, but in the nonlinear regime we
see the narrowing that is expected from the RCR technique,
even before the critical density estimate given by equation (6)
is reached. A more detailed comparison of the two threshold
values is also a subject of future studies.

It appears, however, that linear broadening [4] does not
occur within the proposed method, making it superior to clas-
sic RCR. Additionally, in the case of SPR, probing with the
entire set of probing frequencies can be performed within the
same discharge [16], making correlation measurements easier
to implement.

An additional capability of the SPR could lie in the tem-
poral analysis the pulse delays. Since we attribute the perturb-
ation of delay to the perturbation of the cut-off, the frequency
spectrum of td should correspond to the frequency spectrum of
the turbulence.

However, within this paper we are not accounting for the
temporal evolution of the turbulence generating independent
samples instead. This will be the subject of future work, where
a realistic turbulence generated with the help of gyrokinetic
modelling will be used.

Onemore point to discuss are the empirical numerical coef-
ficients introduced in section 2.2. Given the consistent beha-
viour between different polarizations, they are likely associ-
ated with the step-like density perturbation employed within
the model. These coefficients could have different values if a
more realistic turbulence spectrum was considered. To fully
justify them, a set of computations for different realistic spec-
tra, similar to [26], is needed. Suchwork is currently underway

employing gyrokinetic modelling to produce a realistic turbu-
lence spectrum.

Nevertheless, in the case of the turbulence amplitude profile
measurement, any change in the numerical factor would likely
only add to the systematic error without affecting the meas-
ured profile shape, preserving the viability of the method for
studying the turbulence amplitude profile. While the estimate
of radial correlation length lcx might be affected by an error in
the numerical coefficient, it is still expected to provide a value
of the correct order of magnitude to use in equation (17).

Finally, from an experimental standpoint, one can conclude
that the reduced model does not have any significant applicab-
ility limitations, provided the absolute values of the turbulence
amplitude obtained with the method are compared for sim-
ilar geometries and turbulence conditions. The main limiting
factor for experimental application is the possible presence of
multiple cut-offs, appearing for turbulence amplitudes higher
than the critical value given by equation (6). Unfortunately,
to determine whether the measurement is done in that regime
one has to have prior knowledge of the turbulence amplitude
and of its radial correlation length. However, due to the strong
drop-off of the correlation in the nonlinear case (figure 21(c)),
the radial correlation length in the nonlinear regime will be
underestimated, resulting in a lower threshold value given by
equation (6) Satisfying this threshold will at least guarantee
that the unfavourable multiple cut-off case (figure 3) is not
reached.

For example using figure 21(b) we would estimate lcx as
0.7 cm, resulting in a threshold value of δn

nc(ω0)
= 0.07 rather

than the correct value of 0.1. Satisfying this more restrict-
ive threshold would guarantee that the turbulence amplitude
profile measurement is not affected by multiple cut-offs, even
if the radial correlation length measurements are affected by
nonlinear effects.

Considering equation (6), the most favourable measure-
ment regime corresponds to the case of either relatively low
turbulence amplitude or relatively small gradient scale length,
making the measurements deeper in the core potentially chal-
lenging, as the gradient scale length becomes large. At the
same time, at the plasma edge turbulence amplitude is known
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to be large making it potentially higher than the threshold
value.

In the case of X-mode probing, the amplitude threshold
condition for X-mode given by equation (A.9) benefits from
measurements at low densities, once again making the plasma
edge a viable measurement location.

Summarizing, the SPR turbulence measurement is well-
suited for the plasma edge, where the density gradient scale
length is small. A possible exception to that is the top of the
pedestal in H-mode, although it is difficult to predict whether
the increase of the gradient scale length or the reduction of
turbulence level will be a more significant factor.

In either case, in the data processing stage, each measure-
ment should be compared against the threshold value to ensure
its validity. An additional method of determining quality of
the measurement based on its statistical properties is currently
being developed.

Aside from the specifics of microwave propagation in
plasma, a potential experimental concern is the perturbation
of the pulse shape and delay in the transmission lines leading
up to the plasma. Indeed, the uncertainty in the measurements
becoming comparable to the r.m.s. of the delay related to the
turbulence would pose a significant problem for the proposed
method. However, in the case of the TCV SPR system, even
in the case of analog delay acquisition the measurement error
of the pulse delay was found to be at most 40 ps with the typ-
ical r.m.s. of delay being 100 ps [17]. Moreover, in the case of
digital acquisition currently employed in the TCV SPR, the
error further decreases down to about 20 ps with the delay
r.m.s. in the cases being considered so far being of the order of
200 ps, leading us to believe that with appropriate calibration
experimental uncertainties do not pose a significant problem
for the proposed method.

6. Conclusions

Within this paper, a new method for measuring the amplitude
and radial correlation length of turbulence has been proposed
using short pulse reflectometry. A simple theoretical model
has been utilized to obtain analytical expressions for the turbu-
lence amplitude based on the variation of the SPR pulse delays
for both O and X polarizations of the probing wave. Within
the same model, an application of the correlation technique to
the SPR delay has been demonstrated to provide information
about the turbulence radial correlation length.

Analytical predictions have then been validated with 2D
full-wave simulations, which have been employed both to con-
firm the feasibility of the proposed method and to explore its
limitations connected to experimental effects not accounted

for in the theoretical model. The robustness of the method has
been demonstrated and the limits of applicability to experi-
ment outlined.
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Appendix. X-mode polarization

To derive the delay r.m.s. in the case of X polarization of the
probing wave, we will utilize the X-mode dispersion relation.

k2 =
1
c2

(
ω2 −ωceω−ω2

pe

)(
ω2 +ωceω−ω2

pe

)
ω2 −ω2

ce−ω2
pe

, (A.1)

here, ωce = eB
mec

is the electron cyclotron frequency and ωpe =
4π ne2

me
is the plasma frequency.

Using equation (A.1), we can obtain an estimate for the
inverse group velocity:

1
vg

=
∂k
∂ω

=
ω

kc2

(
ω2 −ω2

ce−ω2
pe

)2
+ω2

peω
2
ce

(ω2 −ω2
ce−ω2

pe)
2

. (A.2)

At the cut-off, this quantity goes to infinity (due to a van-
ishing k), as for the ordinary mode. Since we are mainly con-
sidering the effect a density perturbation at the cut-off has
on the delay time, we can ignore the rest of the integral in
equation (1):

td = 2
ˆ xc

0

dx
vg

=

unperturbed T0︷ ︸︸ ︷
2
ˆ xc−lcx

0

∂k
∂ω

dx+

perturbed T1︷ ︸︸ ︷
2
ˆ xc+δxc

xc−lcx

∂k
∂ω

dx . (A.3)

In the perturbed term, we will assume that all background
factors vary slowly within lcx of the cut-off and move them
outside the integral:

T1 ≈
2h(xc)
c

ˆ xc+δxc

xc−lcx

√
ωdx√

ω− 1
2

[
ωce(x)+

√
ω2
ce(x)+ 4ω2

pe(x)
] ;

(A.4)

h(x) =
√
ω

(
ω2 −ω2

ce−ω2
pe

)2
+ω2

peω
2
ce

(ω2 −ω2
ce−ω2

pe)
3/2

√[
ω2 +ωceω−ω2

pe

][
ω− 1

2 (ωce−
√
ω2
ce+ 4ω2

pe)
] . (A.5)

14



Nucl. Fusion 63 (2023) 076012 O. Krutkin et al

Here, we have assumed that the upper cut-offωU = 1
2 (ωce+√

ω2
ce+ 4ω2

pe) is the one that the probing wave reflects at,

which is typical for reflectometry experiments. To estimate the
integral over x we will use a linear approximation to describe
the spatial dependence of the magnetic field and density:

1
Lc

=
∂ωU
∂x

ω
=

1
B
∂B
∂x︸ ︷︷ ︸

1/LB

ωce
2ω

1+
1√

1+
4ω2

pe

ω2
ce


+

1
n
∂n
∂x︸︷︷︸

1/Ln

ωpe

2ω
√
1+ ω2

ce
4ω2

pe

. (A.6)

Assuming that the amplitude of density perturbations is
small, we can estimate the shift of the cut-off surface. We will
use designations ωU, ωpe and xc for unperturbed quantities. In
that case, the shift of the cut-off can be estimated in the fol-
lowing way:

ω = ωU(xc+ δxc)+ δωU(xc+ δxc)

≈ ω+ω
δxc
Lc

+
δn

2n0(x)
ωpe√
1+ ω2

ce
4ω2

pe

, (A.7)

δxc =−Lc
δn

2n0(x)
ωpe

ω
√
1+ ω2

ce
4ω2

pe

. (A.8)

Similarly to equation (3), we can use this formula to find the
critical density, limiting the application of our approach:

δncrit
n0(xc)

= 2
lcx
Lc

ω

ωpe

√
1+

ω2
ce

4ω2
pe
. (A.9)

Now that we have obtained the expression for the cut-off
shift, we can integrate equation (A.4)

T1 ≈
2h(xc)
c

2
√
Lc

√√√√lcx−Lc
δn

2n0(x)
ωpe

ω
√
1+ ω2

ce
4ω2

pe

≈ 2h(xc)
c

2
√
Lclcx−

Lc
c

√
Lc
lcx
h(xc)

δn
n0(x)

ωpe

ω
√

1+ ω2
ce

4ω2
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.

(A.10)

Finally, we can arrive at the expression for the delay r.m.s.

√
⟨(td−⟨td⟩)2⟩=

Lc
c

√
Lc
lcx
h(xc)

√
⟨δn2⟩
n0(x)

ωpe

ω
√
1+ ω2

ce
4ω2

pe

.

(A.11)
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