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ABSTRACT 
Why do cortical microcircuits in a variety of brain regions express similar, highly nonrandom, network motifs? 

To what extent this structure is innate and how much of it is molded by plasticity and learning processes? To 

address these questions, we developed a general network science framework to quantify the contribution of 

neurons’ geometry and their embedding in cortical volume to the emergence of three-neuron network motifs. 

Applying this framework to a dense in silico reconstructed cortical microcircuits showed that the innate 

asymmetric neuron’s geometry underlies the universally recurring motif architecture. It also predicted the spatial 

alignment of cells composing the different triplets-motifs. These predictions were directly validated via in vitro 

12-patch whole-cell recordings (7,309 triplets) from rat somatosensory cortex. We conclude that the local 

geometry of neurons imposes an innate, already structured, global network architecture, which serves as a 

skeleton upon which fine-grained structural and functional plasticity processes take place. 
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INTRODUCTION 

Anatomical connectivity in brain circuits plays a key role in governing network dynamics and emerging brain 

functions(Avena-Koenigsberger et al., 2017; Bonifazi et al., 2009). Connectomes at all scales exhibit structured, 

highly nonrandom, connectivity patterns(Bassett and Sporns, 2017; Fulcher and Fornito, 2016; Perin et al., 

2011; Rieubland et al., 2014; Song et al., 2005). Specifically, a glimpse into the microscale circuitries in several 

brain regions was provided recently using in vitro whole-cell multi-patch recordings(Perin et al., 2011; Rieubland 

et al., 2014; Song et al., 2005) (Fig. 1a) and by in silico dense reconstructions of cortical microcircuits(Egger et 

al., 2014; Markram et al., 2015) (Fig. 1b). Surprisingly, all observed microcircuits display common network 

architecture, over-expressing specific local connectivity patterns (motifs; Fig. 1c). However, despite their cross-

region universality, the origin of these motifs has remained elusive. 

In the absence of a concrete theory about the principles underlying these structured connectivity patterns in 

neuronal microcircuits, their emergence was considered as being shaped by specific genetic markers(Yamagata 

and Sanes, 2008; Yu et al., 2009) or by plasticity and learning processes(Ocker and Doiron, 2018; Ravid 

Tannenbaum and Burak, 2016; Rieubland et al., 2014; Song and Abbott, 2001). However, these may not be 

the only mechanisms by which the connectivity patterns emerge. In fact, most types of cortical neurons display 

highly asymmetric geometry with dendritic and axonal trees typically extending in different directions. This 

asymmetric morphology may, by itself, introduce anisotropy to the probability for forming pairwise connections 

between neurons in the circuit, and, consequently, “enforce” the existing complex profile of higher-order cortical 

motifs. If this is the case, then plasticity and learning processes might operate on top of an innate, pre-structured, 

cortical skeleton of network architecture rather than on a tabula rasa organization. This innate architecture would 

impose a strong constraint on the extent to which plasticity could further shape network connectivity. Motivated 

by this parsimonious hypothesis for the universality of network local architecture, in this work we combine 

theoretical modeling and electrophysiological recording to study the extent to which geometry of neurons alone 

dictates the ubiquitous neuronal-specific profile of over- and under-represented motifs at the microcircuit level. 

To test this challenging possibility theoretically, we utilized a reference circuit of a dense in silico reconstruction 

of a 0.3 mm3 volume from rat somatosensory cortex(Markram et al., 2015) (the neocortical microcircuit, NMC). 

The NMC was used for two main reasons. First, it reproduces a triplet motif profile that is consistent with those 

found experimentally(Gal et al., 2017). The emergence of these triplets in the NMC, whose connectivity is based 

on strictly pairwise geometrical rules between 3D-reconstructed neurons, hints of their geometric origin. Second, 

the unprecedented magnitude of cellular level connectomics data, mapping ~36 million synapses 

interconnecting ~31,000 neurons, enables the identification of regularities in the network architecture and 

advanced modeling to uncover the underlying organizing principles. Here, through a systematic construction 

of a series of progressively more complex generative geometrical circuit models, we show that the asymmetrical 

morphology of neurons and their embedding in the cortical 3D space is indeed sufficient to explain the 

preference for common motifs in a variety of neuronal microcircuits. 
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Next, we experimentally studied the appearance of triplet motifs using 12-patch whole-cell recordings from layer 

5 thick tufted pyramidal cells (L5-TTPC) in the rat somatosensory cortex. As predicted by our geometrical 

models, we found in the biological tissue a close match between the physical position of L5-TTPCs triplets and 

the motif they form.  This implies that the local geometry of L5-TTPCs and their distribution in the 3D cortical 

volume impose an innate global and highly structured skeleton in the L5-TTPCs circuit.  

 

Figure 1. Universality of triplet motifs appearance in a variety of mammalian neuronal microcircuits. a, 
Differential contrast video image of in vitro 12-patch whole-cell recording from L5 thick tufted cortical pyramidal cells in rat 
somatosensory cortex (top). Triggering a spike in a presynaptic cell and recording excitatory post-synaptic synaptic potentials in the 
post-synaptic cells enabled us to establish circuit connectivity diagram (schematically depicted at the bottom) and to count the 
frequencies of specific triplet motifs (two types of motifs are highlighted by light green and yellow). b, Left - dense in silico reconstruction 
of neocortical microcircuit (NMC) from the rat somatosensory cortex(Markram et al., 2015); its volume is of ~0.3 mm3 with ~36 
million synapses. Top right - a slice in L5 from the NMC circuit showing L5 thick tufted pyramidal cells (L5-TTPC; red) and L5 
Martinotti cells (L5-MC; blue). Lower frame – a graph theoretical analysis of the connectivity diagrams for the two cell types shown 
above, highlighting the overrepresented triplet motifs (e.g., motifs #3 and #4), the underrepresented ones (e.g., motif #7 for L5-
TTPCs), and those that are similarly represented, as compared to the respective distance-dependent random network (see Methods). 
Triplet #4 is marked in yellow and triplet #10 in light blue, as in a. c, Universality of overrepresented triplet motifs in a variety of 
neuronal microcircuits. Note that triplets #3 and #4 are overrepresented in all circuits. The brain regions in which these microcircuits 
reside are depicted schematically on the left; the expression of the various triplet motifs in these circuits is shown on the right. Triplet 
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RESULTS 

Origin of triplet motifs in dense in silico cortical microcircuits 

What could be the origin for such universality in the prevalence of overrepresented triplet motifs? We examined 

this question theoretically using the NMC as a benchmark circuit. Connectivity in the NMC is based on the 

proximity of axons and dendrites (“touch detection” algorithm) together with a set of synaptic pruning rules, 

which are set to maintain an observed distribution of the number of contacts per connection but are consistent 

with a purely geometry-driven connectivity pattern(Markram et al., 2015; Reimann et al., 2015). Therefore, the 

emergence of triplet motifs in this circuit must arise from certain geometrical rules (see Discussion). We 

uncovered these rules by building a series of network models which progressively consider higher-order features 

of the geometry underlying neuronal connectivity in the NMC, exploring whether these triplet motifs will 

emerge in these generative network models as they do in the NMC target circuit (Fig. 2, Fig. S1).  

We started by focusing our attention on L5-TTPCs and modeled their interconnectivity by the simplest, 1st 

order, random network: an Erdős-Rényi random network preserving same average connection probability of p 

= 0.025 as in the NMC (Fig. 2a, see also (Egger et al., 2014; Gal et al., 2017; Perin et al., 2011; Rieubland et 

al., 2014; Song et al., 2005)). This random model was not sufficient to capture the over- and under- represented 

triplet motifs empirically observed in the NMC (P < 0.001, Monte Carlo; Fig. 2f, purple vs. blue line).  

Next, we constructed a 2nd-order random network which, in addition to the average connection probability, also 

preserves the dependence of connection probability on intersomatic distance as in the NMC (Fig. 2b, see also 

(Gal et al., 2017; Perin et al., 2011; Rieubland et al., 2014)). Specifically, the probability for a connection from 

a neuron (𝑢) to another (𝑣) obeys 

 𝑃!" = Pr(𝑢 → 𝑣) = 𝑓(𝑟!")  

Where 𝑟!" is the intersomatic distance between neurons 𝑢 and 𝑣. This extended distance-dependent random 

model also does not explain the profile of motifs that were found in the NMC (P < 0.001, Monte Carlo; Fig. 

2f, red line). In particular, the feedback loop motif (#7), which is underrepresented in the NMC, is incorrectly 

overrepresented in the 2nd-order random network. It is important to note that, in both Erdős-Rényi and distance-

dependent models, the probability for the feedback loop motif is proportional to the probability for the 

feedforward motif (#4) by definition. Hence, in both models, it is impossible to decrease the prevalence of motif 

#7 without decreasing motif #4 too. Thus, to better fit the empirical motif profile, a new model would have to 

break the symmetry between these two motifs. 

motif expression data are displayed for primary visual cortex(Song et al., 2005); somatosensory cortex(Perin et al., 2011); interneurons 
in the cerebellum(Rieubland et al., 2014); dense in silico somatosensory cortex(Gal et al., 2017), and for dense in silico barrel 
cortex(Egger et al., 2014).  
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The next 3rd-order model also considers the implication of the asymmetrical geometry of L5-TTPCs whose 

dendrites tend to project upwards towards the pia (in the z-direction) and their axons that tend to project in the 

opposite direction. Because the prerequisite for the formation of a synapse is that the axon of the presynaptic 

cell should come close to the dendrite of the post-synaptic cell, the probability of connection between pairs of 

L5-TTPCs in the NMC is larger in the downwards (z) direction. The simplest way to allow such bias in the 

probability function is by introducing a dependency on an additional variable indicating whether the target cell 

is above or below the source cell (sign(∆#)). Thus, the probability for a connection takes the form 

 𝑃!" = 𝑓(𝑟!" ,	sign(∆#))  

Indeed, taking into account this bipolar effect of dendrites and axons when quantifying the connection 

probability in a 3rd-order model uncovers a highly anisotropic connectivity function (Fig. 2c). This model starts 

to capture the motifs trends as is the case of the NMC. Specifically, motifs #3, #4, #5, and #6 are 

overrepresented with respect to the Erdős-Rényi reference model, whereas motif #7 is correctly 

underrepresented (Fig. 2f, yellow line). Thus, by taking into consideration the anisotropy imposed by the bipolar 

nature of L5-TTPCs, the symmetry between motifs #4 and #7 is properly broken.  

In our 4th-order model, we further added the dependency of connection probability on the complete 3D offset 

between the two cells (Figure 2d demonstrated the offset in an x-z cross section) 

 𝑃!" = 𝑓(∆$ , ∆% , ∆#)  

This further improved the similarity of motif appearances between the model and the NMC (Fig. 2f, green 

line). To ensure that the improvement indeed results from extra information captured by the geometric offset 

features, and not merely as a consequence of a larger number of features, the connection probability functions 

of all geometrical models were fitted using a machine learning classifier having the same complexity (Methods).  

Finally, in our 5th-order model, we additionally considered the absolute positions of the cells when predicting 

connections  

 𝑃!" = 𝑓(𝑢$ , 𝑢% , 𝑢#, ∆$ , ∆% , ∆#)  

L5-TTPCs whose somata are located at the upper part of layer 5 and have a more elongated probability 

function, in the z-direction, than deeper cells (Fig. 2e). When this effect was incorporated, the reproduced motif 

profile was even closer to that of the NMC (P <0.001, two-tailed Wilcoxon rank sum test; Fig. 2f, light blue 

line). 
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Geometrical considerations explain the emergence of cortical motifs 

The similarity between triplet distribution in experiments and the in silico, geometrically based, NMC model, 

strongly suggests that the emergence and frequency of triplet motifs in the biological tissue can be explained, for 

the most part, as solely due to geometrical considerations. The emergence of triplet motifs for highly polar 

neurons, such as L5-TTPCs (Fig. 3a) and L5 Martinotti cells (L5-MCs) (Fig. 3c), depends strongly on their 

exact bipolar structure and position in 3D. When the neuron is more isotropic, as is the case for the inverted L6 

pyramidal neurons (in which dendrites and axons tend to overlap), then the anisotropic models (beyond the 2nd-

order distance-dependent model) do not provide further improvement for explaining the triplet distribution of 

networks composed of such cells (Fig. 3b,d). 

 

Figure 2. The anisotropic geometry of cortical neurons underlies the emergence of triplet motifs. a-e, a series of 
progressively more complex generative models for the circuit connectivity of L5 thick-tufted pyramidal cells (L5-TTPC). a, 1st order 
Erdős-Rényi model, with uniform connection probability, p = 0.025, among the cells as is the average connection probability in the 
NMC. b, 2nd order model, in which p (color coded) is distance dependent, as derived from the NMC. p is depicted with respect to the 
distance from the postsynaptic cell located at the origin (Δx, Δz intersection point). Note the decrease in p with distance. c, 3rd order 
“bipolar” model, in which p also depends on whether the postsynaptic neuron is above or below the presynaptic cell (along the z-axis). 
Note that, in the NMC, p is larger for downwards connection. d, 4th order “offset dependent” model, in which p depends also on the 
relative direction, in 3D, to the postsynaptic cell as it does in the NMC. Note that p is larger for postsynaptic neurons that are directly 
below (along the z-axis), as compared to cells that are obliquely below the presynaptic cell. e, 5th order model, in which p depends on 
the absolute position in 3D of both the presynaptic and the postsynaptic cells. E.g., L5-TTPCs whose somata are located close to the 
border of layer 4 (top horizontal line) have a larger span, in the z-direction, for having a postsynaptic partner as compared to L5-
TTPCs whose somata reside near the border of layer 6 (bottom).  f, Distribution of the various triplet motifs for each of the models 
shown in a-e, with respect to the reference Erdős-Rényi model (x-axis). Motif distribution in the NMC is shown by the blue line. Note 
that, as the geometry captured by the model becomes more realistic, the emerging motif profile becomes closer to that of the NMC 
(blue line with stars). See Methods for a detailed explanation regarding the construction of the different generative models used in this 
figure. 
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We thus concluded that the skeleton of circuit motifs is dictated, innately, by geometrical considerations; namely, 

by the position of the neurons in 3D and the asymmetry of their morphology. This implies that processes such 

as plasticity and specificity of cortical connections play a second order role in shaping motif structure and 

frequency in these circuits.  

Experimental validation of motifs spatial organization in L5 cortical pyramidal cells 

Interestingly, the geometrical models imply a specific spatial organization for each motif. For instance, the 

anisotropic models predict that, for vertically polarized neurons, the feedforward motif (#4) will be vertically 

oriented in space (Fig. S2). Specifically, for L5-TTPCs the “source” neuron (the presynaptic neuron that 

 

Figure 3. Impact of cell-type-specific morphology on the triplet motif profile. a, Appearance of triplet motifs for L5-
TTPC. a1, Left, an exemplar 3D reconstructed TTPC cell. Right, the relative soma position of all the presynaptic TTPC cells (blue) 
and all the postsynaptic TTPC cells (red) with respect to the cell somata centered at 0,0 (superposition of 50 TTPC cells). a2, 
Distribution of triplet motifs for TTPC cells (n=2,003). a3, Kullback–Leibler divergence between the motif distribution observed in 
the NMC and each of the 5 models shown in A2. Note the gradual improvement with model complexity. a4, spatial embedding of 
neurons composing motif #4 (mean ± s.d.). b-d, As in a, but for b, L6 inverted pyramidal cells (n = 3,476), c, L5 Martinotti cells 
(n=395) and d, L6 large basket cells (n=463). Note that when the neuron is more isotropic as in b and d, models beyond the distance-
dependent model do not provide further improvement.  
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projects to the other two neurons) is predicted to be located above the other two cells whereas the “sink” neuron 

(the postsynaptic neuron receiving synapses from the other two neurons) predicted to be the lowest (Fig. S2a). 

Indeed, we found a tendency for such an alignment in the NMC circuitry (Fig. 3a4). In addition, for the L5-

MCs, whose vertical polarization is inverted (axons stretch mostly above the soma whereas the dendrites stretch 

mostly below it) the models predict an inverted vertical directionality of neuron locations (Fig. 3c4, Fig. S2b). 

To examine experimentally our predictions about the spatial embedding of motifs we recorded in vitro from rat 

somatosensory cortex L5-TTPCs and reconstructed both the synaptic connectivity among the neurons and their 

spatial 3D position. (Fig. 4a). Parasagittal slices oriented parallel to the apical dendrites were used in order to 

maintain morphologies maximally intact. Using whole-cell recordings of up to 12 cells patched simultaneously 

we mapped and quantified the connectivity in 7,309 triplets (an example is shown in Fig. 4, a-c) by stimulating 

with trains of pulses each one of the patched cells in turn and averaging the postsynaptic cell responses to 15-30 

rounds of stimulation. Repeated excitatory postsynaptic responses with latencies of 1-3ms and amplitudes above 

100µV were used as indicators of monosynaptic connections (Methods).  

The in vitro data indeed shows that, as predicted by our geometrical models, there is a close match between the 

physical position of L5-TTPCs triplets in space and the synaptic connectivity motif they form in the biological 

tissue (Fig. 4d). A strikingly similar tendency for the spatial embedding of motifs was also observed among L5-

TTPCs in the NMC (Fig. 4e, Methods). The close similarity in the average relative depth differences in the 

experimental and NMC triplet patterns lends support to the notion that neuronal geometry is a fundamental 

factor influencing/determining network architecture. 

DISCUSSION 

Neuronal circuits in a variety of mammalian brain areas share a similar highly nonrandom expression pattern 

of network motifs (Fig. 1). This observed connectivity structure could be innate and/or the consequence of 

active plasticity and learning processes. Our study shows that the universal tendency of networks of pyramidal 

neurons for overrepresenting transitive triplet motifs while underrepresenting intransitive triplets emerges from 

the asymmetric geometry of the morphology of neurons and their relative spatial positions (Fig. 2). The impact 

of different neuron geometries on the emerging motifs was further evaluated using is silico circuits of several other 

cortical cell types (Fig. 3). Theoretical predictions for the spatial alignment of cells were then directly validated 

via in vitro simultaneous whole-cell recordings from up to 12 neurons in the rat somatosensory cortex (Fig. 4). 

We therefore concluded that the spatial organization of neurons and their asymmetric geometry entails most of 

the motif architecture found in neuronal circuits.  
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Figure 4. Experimental validation of motif spatial embedding.  a, Biocytin staining of multi-patch recordings from 12 L5-
TTPCs. Three exemplar connected triplet cells are shown by the transparent (green, yellow and red) triangles. b, Connectivity map 
for the 12-neuron circuit shown in a. c, All instances for three triplet motifs (#3, #4 and #10) that were extracted from the circuit 
diagram shown in b. The relative depth (z-axis) of the cells composing these triplets is preserved. E.g., note that, for triplet #3, in most 
(but not in all) cases the presynaptic cell (red circle) is located above the two postsynaptic cells (blue circles). Green, yellow and pink 
triangles correspond to the respective cell triplets shown in a. d, Spatial embedding of triplet motifs (#3, #4, #10 and #11) for L5-
TTPCs in the experimental data set (n3 = 163, n4 = 63, n10 = 31, n11 = 21 triplets); the relative depth of the cells forming individual 
triplets (light brown lines) and mean ± s.d. (black line). *P < 0.05, **P < 0.01, ***P < 0.001 (two-sided paired-sample t-test). P values 
for R-vs-Y and Y-vs-B in motif #4 are 0.2470 and 0.3029, respectively. For clarity, cell depths were aligned in each triplet according 
to one member (the left-most cell in the plot). e, As in d but for a 400µm-thick slice from the NMC (n3 = 219,377, n4 = 22,137, n10 = 
833 and n11 = 765 triplets of which only 100 instances are shown). Note the very close similarity between experiments (e) and model 
(d). 

The present study demonstrates that, given the innate bipolar morphology of neurons(Barnes and Polleux, 

2009), a structured network connectivity is essentially unavoidable and the observed complex profile of 

over/underrepresented motifs in brain microcircuitry is largely innate. Additional possible sources of the 

complex motif profile are structural synaptic plasticity and activity-dependent modifications to the wiring due 

to learning. However, while these active processes provide a huge number of potential connectivity patterns, we 

show here that geometry puts strong constraints on the connectivity configuration that are likely, and places a 

strong bias for the formation of certain types of motifs. Hence, and in agreement with the close similarity that 
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was found between the model predictions and the in vitro results, while plasticity and learning may change the 

specific members of a triplet motif, they are likely to keep the global pattern of motif expression that was set by 

geometry.  

The fine structure of synaptic connections among neurons has been shown to affect neuron-level 

computations(Amsalem et al., 2016; Cossell et al., 2015), network-level dynamics and information 

processing(Denk et al., 2012; Zhao et al., 2011), and, ultimately, behavior(Bassett and Sporns, 2017; Seung, 

2009). Therefore, it is essential for future studies to consider the contribution of the inevitably overrepresented 

network motifs to the network activity dynamics in order to advance the unraveling of the long-standing 

structure-to-function problem in neuroscience.  

The generalization of our motif spatial embedding prediction is also supported by a recent study of the 

connectivity among cerebellar asymmetrical interneurons(Rieubland et al., 2014). In addition, the preference 

for local transitive patterns has already been reported in different real-world networks from diverse 

disciplines(Azulay et al., 2016; Benson et al., 2016; Milo et al., 2002, 2004), including the C. elegans connectome, 

social networks, and the World Wide Web. It would be interesting to study, using the present method, the extent 

to which this transitivity emerges simply from the underlying geometry of such real-world networks. 

Our theoretical analysis is based on a detailed dense in silico model of a neocortical microcircuit. This provided 

us with the opportunity to dissect systematically which geometrical features (asymmetric neuronal morphology, 

neuron position in the cortical tissue) explain the emergence of patterns in the triplet distribution (Fig. 2). By 

adding increasingly more elaborate aspects to the reference generative theoretical network, we have reproduced 

the general trends of neuronal motifs as found in the full circuit. Despite obtaining a substantial reduction in the 

discrepancy between the real and expected profile of motif expression, we were unable to completely predict the 

absolute numbers of the various motifs as found in the full circuit (Fig. 2f, Fig. 3, a2-d2). This residual 

discrepancy likely stems from the fact that the present models define the probability function based on average 

values in different subpopulations and neglect instance-level differences among individual neurons(Nolte et al., 

2019).  

Recent studies of macroscale connectomes have also demonstrated that wiring architecture among brain regions 

is mostly explained by geometric factors, mainly distance(Betzel et al., 2016; Goulas et al., 2019). At the cellular 

level, previous works have hypothesized that connectivity probably depends on both the distance and the relative 

orientation between cells(Itzkovitz and Alon, 2005; Rieubland et al., 2014; Schroter et al., 2017); the present 

study systematically quantifies this dependence and its impact on the topology of the emerging networks and 

their embedding in cortical space. Additional studies highlight wiring specificities beyond what is expected from 

simple geometry. Synaptic connections might have a stronger preference to specific cell-type populations(Pfeffer 

et al., 2013), layers(Harris and Mrsic-Flogel, 2013) or perhaps even to specific cell identity(Kasthuri et al., 2015).  

Our theoretical and experimental work provides the foundation for exploring the yet open question regarding 

the origin of the connectivity structure of cortical microcircuits: what is innate and what is learned?  The present 
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work, combined with the soon-coming dense reconstructions of ~1 mm3 of rodents and human cortical 

microcircuits, will enable us to more fully explore this intriguing question.  
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MATERIALS AND METHODS 

Slice preparation.  

Experiments were carried out according to the Swiss national and institutional guidelines. Fourteen to eighteen-

day-old non-anesthetized Wistar rats were quickly decapitated, and their brains were carefully removed and 

placed in iced artificial cerebrospinal fluid (ACSF). Slices (300 μm) were cut on an HR2 vibratome (Sigmann 

Elektronik). Parasagittal slices, ∼1.7–2.2 mm lateral to the midline, were cut to access primary somatosensory 

cortex (SSC; above the anterior extremity of the hippocampus ± 1 mm). Slices were incubated at 37 °C for 30–

60 min and then left at room temperature until recording. Cells were visualized by infrared differential 

interference contrast video microscopy using a VX55 camera (Till Photonics) mounted on an upright BX51WI 

microscope (Olympus). Thick-tufted layer 5 Pyramidal Cells (PCs) were selected according to their large soma 

size (15–25 μm) and their apparent large trunk of the apical dendrite. Care was taken to use only parallel slices 

(i.e., slices that had a cutting plane parallel to the course of the apical dendrites and the primary axonal trunk). 

This ensured sufficient preservation of both the PCs’ axonal and dendritic arborizations. 

Chemicals and solutions.  

Slices were continuously superfused with ACSF containing 125 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl, 

1.25 mM NaH2PO4, 2 mM CaCl2, 1 mM MgCl2, and 25 mM D-glucose bubbled with 95% O2 and 5% CO2. 

The intracellular pipette solution contained 110 mM potassium gluconate, 10 mM KCl, 4 mM ATP-Mg, 10 

mM phosphocreatine, 0.3 mM GTP, 10 Hepes, and 13mMbiocytin adjusted to pH 7.3–7.4 with 5MKOH. 

Osmolarity was adjusted to 290–300 mOsm L-1 with D-mannitol (25–35 mM). The membrane potential values 

given were not corrected for the liquid junction potential, which is approximately −14 mV. Chemicals were 

purchased from Sigma Aldrich or Merck.  

Electrophysiological recordings.  

Multiple somatic whole-cell recordings (4–12 cells simultaneously) were performed with Multiclamp 700B 

amplifiers (Molecular Devices) in the current clamp mode at 34 ± 1 °C bath temperature. Data acquisition was 

performed through an ITC-1600 board (Instrutech) connected to a PC running a custom-written routine 

(PulseQ) under IGOR Pro (Wavemetrics). Sampling rates were 10 kHz, and the voltage signal was filtered with 

a 2-kHz Bessel filter. Patch pipettes were pulled with a Flaming/Brown micropipette puller P-97 (Sutter 

Instruments) or a DMZ puller (Zeitz Instruments) and had an initial resistance of 3–8 MΩ.  

Stimulation protocols.  

Monosynaptic, direct excitatory connections were identified by stimulation of a presynaptic cell with a 20–70 

Hz train of 5–15 strong and brief current pulses (1–2 nA, 2–4 ms) followed by a recovery test response 0.5 s after 

the end of the train (not shown in the traces), all precisely and reliably eliciting action potentials (APs). 
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Final somatic positions.  

The soma positions were recorded relative to an arbitrary reference point, and the z axis was oriented 

perpendicular to the surface of the slice. After morphological stainings were ready, the y axis was rotated around 

the z axis to match the orientation of the apical dendrites. The x axis was rotated by the same amount and 

remained orthogonal to the other two axes. 

Statistics. 

The statistical significance of the differences between the triplet profile of the NMC and the different generative 

models was assessed using the Monte Carlo method. Therefore, there were no assumptions made about the data 

distribution. For each model we estimated the expected motif profile E by generating N random networks and 

averaging their emerging motif profiles e&. We then computed the Kullback–Leibler divergence between the 

NMC observed motif profile O	 and the profile expected by the model 𝐄. Monte Carlo P values were calculated 

as (r + 1)/(N + 1), where r is the number of random networks that produced a Kullback–Leibler divergence 

greater than or equal to that calculated for the NMC (a one-tailed test). We used N = 1,000 for each geometrical 

model.  

Constructing the series of geometrical network models. 

The observed (neuronal) network of 𝑛 nodes (neurons) is described by 𝑛 × 𝑛 adjacency matrix 𝐴, whereas the 

𝐴&' entry is a binary variable denoting the existence of connection from the neuron 𝑖 to the neuron 𝑖, and by a 

3D vector x& for each neuron 𝑖, denoting its 3D position is space, x& = (𝑥& , 𝑦& , 𝑧&). Using this data, the 

geometrical profile of pairwise connection probability function 𝑝 = PrA𝐴&' = 1	C	x& , x') was computed at 

different orders of approximation, gradually taking into account additional features of pair spatial embedding 

(x& , x'). Then, to study the statistical dependence of network motifs on the geometrical profile a series of 

generative models for spatially embedded networks was developed, in which each model gradually fits a higher 

order of approximation of the probability function. The distributions of motif counts emerging from each of the 

models were compared to the distribution observed in the original network using Kullback–Leibler divergence. 

The 1st-order model that was used for the generation of reference random networks was the Erdős-Rényi 

model(Erdös and Rényi, 1959). This model assumes that the probability of forming a connection between two 

neurons, 𝑝, is uniform among all pairs of nodes and independent from every other connection. Naïvely, this 1st-

order model does not take into account spatial features of the nodes whatsoever. Thus, the model requires 

matching only two parameters: the number of neurons as in the original network, 𝑛 = 𝑛()*++,- , and the mean 

connection probability over the whole network, 𝑝(x& , x') = const = ∑ 𝐴&'&.' /(𝑛(𝑛 − 1)).  

The 2nd-order model generated random networks which preserved the non-uniform dependency of connection 

probability on intersomatic distance (𝑟) as observed in the original network (Fig. 2b, Fig. S1a). First, the 

original distance-dependent connectivity profile, 𝑝()*++,-(𝑟) (Fig. S1a, blue line), was fitted (using an 

ensemble of 500 decision trees each with a maximal depth of 5 levels (Pedregosa et al., 2011); Fig. S1a, orange 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/656058doi: bioRxiv preprint 

https://doi.org/10.1101/656058
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

line). Next, using the fitted probability function, 𝑝(𝑟), we generated random networks with a matching distance-

dependent connectivity. The original coordinates of all neurons were preserved, and the connections were 

defined as independent binomial random variables 𝐴&', with a success probability 𝑝(x& , x') = 𝑝(𝑟&') that 

corresponded to their inter-somatic distance 𝑟&'. 

The 3rd-order model captures the fact that the original probability function is anisotropic and depends not only 

on the intersomatic distance but also on the direction. Specifically, the probability may be different depending 

on whether the postsynaptic neuron is above or below (along the z-axis) the presynaptic cell. For example, in 

the L5-TTPC network, the probability is higher when the post-synaptic cell is located below (Fig. 2c). The 3rd-

order model generated networks with a matching “bipolar” distance dependence (Fig. S1b). 

The 4th-order “offset dependent” model captures 𝑝(x& , x') dependence on the full 3D relative direction between 

the presynaptic and postsynaptic cell. Specifically, in the L5-TTPC network, 𝑝(x& , x') is larger for postsynaptic 

neurons that are directly below (along the z-axis), as compared to cells that are obliquely below the presynaptic 

cell (Fig. 2d).  

The 5th-order “position dependent” model captures	𝑝(x& , x') dependence on the absolute position in 3D of both 

the presynaptic and the postsynaptic cells. Specifically, L5-TTPCs whose somata are located close to the border 

of layer 4 (Fig. 2e, top horizontal line) have a larger vertical (z-axis) span for connecting a postsynaptic partner 

as compared to L5-TTPCs whose somata reside near the border of layer 6 (Fig. 2e, lower left “cloud”).  

In all four (2nd-5th) geometrical models we employed a machine learning approach to learn the connectivity 

observed in the NMC. First, given an 𝑛 × 𝑛 adjacency matrix 𝐴 from the NMC, it was transformed into a 

labelled dataset consisting of  𝑛(𝑛 − 1) samples corresponding to all possible pairs of neurons. Each sample is 

composed of a set of features describing the geometrical embedding of the respective pair (namely, their 

intersomatic distance, downward/upward alignment, 3D relative offset and absolute 3D positions) and a label 

indicating whether the pair is connected or not. Secondly, we chose the relevant subset of features for each 

geometrical model (e.g., for the 3rd order model we chose the intersomatic distance and the downward/upward 

alignment as the two relevant features). Thirdly, we fitted the probability for a connection from the chosen 

labelled dataset. Importantly, all 2nd-5th order geometrical models were each fitted using an ensemble of 500 

decision trees, each with a maximal depth of 5 levels (regression problem)(Pedregosa et al., 2011). This method 

ensures that the gradual improvement of the fit between the NMC and the progressively more complex 

geometrical model is indeed a consequence of the additional geometric features and not merely due to the higher 

degrees of freedom when considering a larger number of features. Finally, using the fitted probability functions, 

we generated the 2nd – 5th order random networks with matching connectivity as measured in the NMC. 

Spatial embedding analysis. 

For each motif pattern, we tested the difference between the positions of the composing cells. Specifically, for a 

given motif, we classified each node according to the number and directions of its connections (different classes 
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are represented by different colors in Fig. 4, d-e). Then we performed two-sided paired-sample t-tests between 

the vertical positions of all different classes. When a motif had two neurons belonging to the same class (e.g., two 

blue neurons in motif #3) the mean of their vertical position was taken for the purpose of the two-sided paired-

sample t-test. 

SUPPLEMENTARY MATERIALS 

Figures S1-S2 
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SUPPLEMENTARY FIGURES 

 

Figure S1. Comparison of empirical and fitted connection probabilities for L5-TTPCs. a, The 
dependence of connection probability on intersomatic distance as observed in the NMC (blue) and as fitted by the 2nd-
order distance-dependent model (orange). b, The distinct connection probability of the downward (blue) versus upward 
(orange) connections as observed in the NMC (circle) and as fitted by the 3rd-order bipolar distance-dependent model 
(cross). c, The offset dependence of connection probability as observed in the NMC (top) and as fitted by the 4th-order 
offset dependent model. d, Same as in c, but for position dependence of the connection probability as fitted by the 5th-
order position dependent model. 
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Figure S2. Spatial embedding of triplet motifs (#3, #4, #10 and #11) as predicted by the series of the geometric 
models. For a, L5-TTPCs and b, L5-MCs. For each model, an instance of one network was generated, on which the 
spatial alignment of the cells involved in forming the specific triplet was measured. Note that the anisotropic models 
(beyond the 2nd-order distance-dependent model) predict the asymmetrical embedding found in the NMC model (blue) 
and in the slice (Fig. 4). For instance, the embedding of L5-TTPCs feedforward motif (#4) is such that the “source” 
neuron (red node) is located above the other two cells whereas the “sink” neuron (blue node) is the lowest. 
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