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Abstract 
The nervous system is notorious for its strong response evoked by a surprising 
sensory input, but the biophysical and anatomical underpinnings of this phenomenon 
are only partially understood. Here we utilized in-silico experiments of a biologically-
detailed model of a neocortical microcircuit to study stimulus specific adaptation (SSA) 
in the auditory cortex, whereby the neuronal response adapts significantly for a 
repeated (“expected”) tone but not for a rare (“surprise”) tone. SSA experiments were 
mimicked by stimulating tonotopically-mapped thalamo-cortical afferents projecting to 
the microcircuit; the activity of these afferents was modeled based on our in-vivo 
recordings from individual thalamic neurons. The modeled microcircuit expressed 
naturally many experimentally-observed properties of SSA, suggesting that SSA is a 
general property of neocortical microcircuits. By systematically modulating circuit 
parameters, we found that key features of SSA depended on synergistic effects of 
synaptic depression, spike frequency adaptation and recurrent network connectivity. 
The relative contribution of each of these mechanisms in shaping SSA was explored, 
additional SSA-related experimental results were explained and new experiments for 
further studying SSA were suggested. 
 
Introduction 
Neurons in the primary auditory cortex, A1, exhibit a phenomenon called stimulus 

specific adaptation, SSA. When animals are presented with a tone sequence 

composed of a frequent tone (“standard”) and an occasional rare tone (“deviant”) the 

response of A1 neurons is markedly reduced to the standard tone, whereas their 

response to the same tone when deviant remains strong1–5 (see Nelken, 2014 for a 

definition and introduction to auditory SSA).  

 

SSA is believed to emerge de novo in A1 as it is weak in the main thalamic input 

station to A1, the ventral medial geniculate body (MGBv)6,9. Therefore, A1 has become 

a prime focus for a number of experimental and theoretical studies of SSA5,10–13. 

Modeling studies suggest that SSA can emerge from feed-forward synaptic 

depression in the thalamocortical synapses13–16 and from local neocortical synaptic 

depression11,17,18. The models differ in their biological realism, ranging from 

population-based firing-rate models to spiking point-neuron-based models. Models 

which incorporate recurrent synaptic depression11 have the greatest success in 

replicating various properties of SSA, including the dependence of the magnitude of 

SSA on the frequency difference between the deviant and the standard, on the 

probability of the deviant, on the intertone interval, and on the input amplitude. These 

models also replicated the important property of specific deviance sensitivity – the 
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larger response to a deviant tone (when the other tone presentations have a single 

expected tone frequency) than to the same tone, with the same probability, when the 

other tones vary in frequency. However, none of these models included the detailed 

cellular and synaptic diversity of neocortical microcircuits, nor did they replicate or 

explain the full repertoire of SSA without requiring specific parameter tuning. Indeed, 

we still lack a complete understanding of the underlying biophysical mechanisms of 

SSA. Towards this end, the present study uses a biologically-detailed dense computer 

reconstruction of a neocortical microcircuit, NMC19, to study SSA. This model, which 

has been extensively validated against anatomical and physiological experiments20–23 

was challenged with the question: Does SSA as found in A1 emerge in this microcircuit 

without parameter adjustment? If it does, then such a model might have strong 

explanatory power for the underlying biophysical mechanisms of the phenomenon.  

 

The NMC comprises a ~0.3 mm3 volume of the neocortical tissue and is modeled after 

the rat somatosensory cortex, consisting of 6 layers, a total of ~31,000 neurons, 55 

morphological cell types, as well as the electrical properties of these neurons and of 

their synaptic connections (~36 million synapses). The circuit was reconstructed 

based on the available experimental data and connectivity rules as described in 19 and 
24. The model was not built in order to answer any specific a priori question, but to 

recreate the detailed anatomy and physiology of the NMC. Nevertheless, the model 

has been successfully used to perform in silico experiments that explore the anatomy 

and physiology of local neocortical circuits. For example, the model revealed the 

strong constraints of neuron morphology on local connectivity25 and how they result in 

non-random structures26, characterized the role of directed cliques of neurons in 

shaping neuronal responses27, and suggested mechanisms to suppress response 

variability caused by synaptic noise28.  

 

We found that, when supplying the NMC with a biologically plausible auditory input via 

tonotopically-arranged thalamo-cortical axons, the model exhibited SSA with 

properties that mimicked many experimental observations. By modifying a variety of 

circuit parameters, we identified multiple mechanisms that may support SSA. In 

agreement with previous studies, synaptic depression of thalamo-cortical synapses as 

well as, to a lesser degree, depression of cortico-cortical synapses, shape SSA. 

Importantly, the model uncovered two additional features, spike frequency adaptation 
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(SFA) and network connectivity that, even in the absence of synaptic depression, 

synergistically give rise to key features of SSA. This “replicate and explain” paradigm 

enabled us to explore the relative contribution of each of these mechanisms in 

determining the strength of SSA in the 6 neocortical layers and to replicated and 

explain other properties of SSA -  its dependence on tone intensity29,30 and on neuron 

frequency preference31. 
 
Results 
 
Response to auditory surprise emerges naturally in the modeled thalamo-cortical 
circuit 
The simulated dense neocortical microcircuit, NMC, consists of 31,346 neurons and 

~36 million intrinsic synapses (Fig. 1a). This microcircuit is innervated by 574 thalamo-

cortical axons (Fig. 1b and see Methods), making a total of ~ 2 million thalamo-cortical 

synapses. In this model, neurons in lower layer 3 and lower layer 5 receive the largest 

number of thalamo-cortical synapses19 in accordance with experimental data32. Each 

thalamo-cortical axon branches in the 3D volume of the NMC, creating multiple 

excitatory synapses on nearby cortical cells. An example of the postsynaptic cells 

receiving excitatory synaptic inputs from two thalamo-cortical axons (red and blue 

axons and respective colored cortical neurons) is shown in Fig. 1c. The hexagon at 

the bottom illustrates the tonotopic organization of the simulated thalamic input (see 

also hexagon at the middle of Fig. 1d). 

 

To mimic auditory input impinging on the NMC from the thalamus, the time-dependent 

firing rate of the modeled thalamic axons was fitted to the rates measured 

experimentally in the auditory thalamus, MGBv (Supplementary Fig. 1 and see 

Methods). For each simulated tone presented, the instantaneous firing rate, 𝑓𝑓(𝑡𝑡, 𝑠𝑠), of 

each axon followed an alpha function Eq. (1).  𝑓𝑓(𝑡𝑡, 𝑠𝑠) depend on the tuning curve of 

the axon FR(𝑠𝑠, 𝑏𝑏), which has a triangular waveform Eq. (2). In those functions, 𝑡𝑡 is 

time, 𝑏𝑏 is the axon’s best frequency, and 𝑠𝑠 is the tone frequency (see Methods). The 

parameters for Eq. (1,2) were fitted such that the simulated response of the thalamic 

axons to specific tone frequencies mimicked the experimentally measured response 

at tone intensity of 60 dB (Methods and Supplementary Fig. 1). Two exemplar tuning 

curves are shown in Fig. 1d, top and bottom frames at left, with their corresponding 

instantaneous firing rate shown respectively at right (𝑓𝑓(𝑡𝑡, 𝑠𝑠) for 2 input frequency; 𝑠𝑠). 
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The modeled thalamic axons were organized in a tonotopic manner such that their 

best frequency spans 2 octaves over 560 μm (Fig. 1d hexagon in the middle, see 

details in Methods), in accordance with experimental findings33,34. Axons with low best 

frequency are marked by a bluish color and axons with high best frequency with a 

reddish color (color code scale at right).  

 
 
Figure 1. Feeding auditory-like input to the reconstructed cortical microcircuit. a. Dimensions 
and cell numbers per layer in the modeled microcircuit. The total number of neurons in this circuit is 
shown at the top. b. Number of thalamic synapses per cortical neuron; colored scale bar at top left. c. 
Tonotopic organization of the thalamic afferents is shown by colored dots in the lower hexagon. Two 
exemplar thalamo-cortical axons are shown, blue afferent with best frequency of 5,447 Hz and red 
afferent with best frequency of 11,854 Hz. The spatial distribution of the post-synaptic cortical neurons 
receiving synapses from these two axons is shown by the respective blue and red circles. d. Middle 
hexagon depicts the tonotopic organization of the thalamic inputs, color-coded by their best frequency. 
The size of each circle represents the width of the afferent’s tuning curve. A total of 574 thalamic 
afferents were simulated (only some are shown; see Methods). Top left shows the tuning curve for the 
afferent marked by the blue arrow. Top right shows the response of that afferent to two different tones 
(the best frequency, BF, marked by circle and for a 0.2 octave higher marked by an star). Bottom left 
and right, as in top traces for the thalamic afferent marked by the orange arrow. The modeled responses 
of the thalamic axons were all fitted to the experimental results shown in Supplementary Fig. 1.  
 
 
Using the model illustrated in Figure 1, we next simulated the oddball experimental 

paradigm1,13 as follows. We selected two frequencies, f1 = 6,666 Hz and f2 = 9,600 Hz, 

that are centered (on log scale) around 8,000 Hz and presented them to the NMC with 

a 300 ms inter-stimulus interval. In one case, f1 served as a standard tone (presented 

95% of the time) interspersed randomly 5% of the time with f2, the deviant tone. In the 

second case, the roles of f1 and f2 were reversed (see Methods and13). We focused 

our analysis on excitatory neurons located within ± 25 µm from the center of the 

simulated microcircuit (“center microcolumn”, see green neurons in Fig. 4a). These 
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cortical neurons receive most of their thalamic synapses from axons whose best 

frequency is ~8,000 Hz (green axons in the hexagon at Fig. 1d).  

 

We found that the neurons in the center microcolumn responded significantly more to 

the deviant tone than to the same tone when standard (Fig. 2a1 and a2, red bars vs. 

blue bars). This behavior is the hallmark of the stimulus-specific adaptation1, showing 

that the model indeed succeeds to replicate the phenomenon. We validated that the 

center microcolumn is not selective to tone identity by showing that the cells respond 

equally to f1 and f2 when they are presented with equal probability (Fig. 2a3; the “equal 

paradigm”14, see additional quantification in Supplementary Fig. 2). 
 

 
Figure 2. Stimulus-specific adaptation emerges in the modeled neocortical microcircuit. a1-a3. 
Blue and red bars - average response to the SSA protocol of all (2,696) responsive excitatory neurons 
located within ± 25 µm from the center of the simulated circuit (see Methods). a1. The standard 
frequency was f1 = 6,666 Hz (95% of the tones presented, blue circles) and the deviant frequency f1 = 
9,600 Hz (red circles). a2. f2 was the standard and f1 the deviant. a3. f1 and f2 were presented with an 
equal probability. In all cases, the bin size was 100 ms. b1-b4. Response of two selected pyramidal 
cells shown in the inset (B1-B2, L23 PC; B3-B4, L5 TTPC1). In all cases, the response of the neurons 
to the deviant tone (red PSTH trace at tope and red raster below) was larger than when the same tone 
was the standard tone (blue PSTH and raster) or when f1 and f2 were represented equally (black PSTH 
and raster). The rasters of the standard and equal conditions show 25 randomly selected tone 
presentations (out of 475 standard presentations and 250 equal presentations). Each PSTH trace was 
smoothed by a 10 ms Hamming window. c. CSI of 1,350 excitatory neurons (green circles) and its mean 
across layers (thick green line). Circle and star denote the two selected cells shown in b. d. SI1 against 
SI2 for the neurons in c; both indices are mostly positive, implying that the majority of neurons respond 
more strongly to the deviant. The mean is marked by the red circle. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126466doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126466
http://creativecommons.org/licenses/by-nc/4.0/


 
 
We next quantified the SSA in single excitatory cortical neurons; two examples are 

shown, one for Layer 2/3 pyramidal cell and one for Layer 5 pyramidal cell (Fig. 2b1-
b4). In both neurons, the lower was the probability of the presented frequency, the 

higher was the response of the neuron (Supplementary Fig. 2). This behavior 

matched the results found in vivo1,14,35. To quantify the degree of SSA, we computed 

the common-contrast SSA index CSI1,13 (see Methods) for each neuron. CSI = 0 

indicates that there is no difference in the response to the two frequencies when 

standard and deviant (Fig. 2c), while positive values indicate a stronger responses to 

at least one of the two tones when deviant. The CSI of most neurons was positive and 

so was the mean across layers (thick line). Note that the largest CSI was at middle 

layers and lower layer 6 which, interestingly, received relatively weak thalamic input 

(Fig. 1b and see Discussion). The average CSI value across all layers was 0.49 ± 

0.29 (mean ± std). We also computed the SSA index (see Methods) for f1 (SI1) and 

for f2 (SI2) and plotted them in Fig. 2d against each other. Note that most values fall 

in the first quadrant, implying that the neurons are more responsive to the deviant than 

to the standard, irrespective of the tone frequency. The mean SSA index value was 

0.47 ± 0.33 and 0.53 ± 0.39 for SI1 and SI2, respectively (red circle Fig. 2d). A 

summary of the SSA in the microcircuit for the present paradigm together with an 

additional stimulus paradigm is presented in Supplementary Fig. 3 showing that, 

without any parameter tuning, the NMC model replicates rather successfully diverse 

aspects of SSA. Specifically, that the response of the neurons is significantly higher to 

the deviant than to the standard tone1,3–5,13,14,29,31,35, that this difference depends on 

the probability of the deviant1,14,35, and that the response to the deviant is larger than 

the response to the same tone when it is presented among many tones with densely-

packed frequencies - the ‘diverse narrow’ paradigm4,13,14. Furthermore, in some cases, 

the response for a rarely presented tone (‘deviant alone’ or ‘rare’) were smaller than 

the responses to the same tone presented as a deviant accompanied by a standard 

tone4,13,14. However, Supplementary Fig. 3d-f shows that other experimental feature 

of SSA was not replicated by our model (see Discussion). 
 
Uncovering the neuronal mechanisms underlying SSA 
The contribution of synaptic depression and spike-frequency adaptation to SSA 
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As our dense replica of a cortical microcircuit together with its biologically constrained 

set of mechanisms replicated many of the properties of SSA, we next used it to 

uncover the biophysical mechanisms underlying this phenomenon. Synaptic 

depression is widely considered as the fundamental mechanism underlying SSA. In 

the NMC it is modeled as a short-term reduction of the probability of a spike triggering 

synaptic transmission, as described in the Tsodyks-Markram model36. We therefore 

first removed this effect by fixing the release probability (both in the cortico-cortical 

and the thalamo-cortical synapses) of all excitatory depressing synapses (see 

Methods). Following this manipulation, the SSA was indeed reduced (compare Fig. 
3a to 3b). The mean CSI was reduced from 0.49 ± 0.29 (mean ± std) to 0.16 ± 0.2 (a 

67% reduction) whereas the mean SI1 and SI2 indices changed from 0.47 ± 0.33 and 

0.53 ± 0.39 to 0.16 ± 0.29 and 0.14 ± 0.33, respectively (a 69% reduction, compare 

red circle in insets in Fig. 3a to that of Fig. 3b). However, surprisingly, blocking 

synaptic depression did not completely eliminate SSA (Fig. 3b), implying that 

additional mechanisms support SSA in the model.  

 

We therefore systematically examined the effect of a broad range of model parameters 

on the emergence of SSA. Including removing from the model a variety of membrane 

ion channels, simulating only some, out of the six, cortical layers, removing synaptic 

facilitation, etc. Eventually, we found that, when removing both synaptic depression 

and spike frequency adaptation (SFA), the SSA was completely abolished (Fig. 3d). 

SFA was removed by blocking Ca2+-dependent potassium channels from all modeled 

cells (see Methods, Supplementary Fig. 4 and Discussion). Like synaptic 

depression, removing SFA alone reduced SSA but did not abolish it (Fig. 3c). Indeed, 

in this case, the mean CSI value was reduced from 0.49 ± 0.29 to 0.21 ± 0.29 (by 57% 

reduction). This results clearly shows that SSA emerges due to at least two 

mechanisms, synaptic depression and spike frequency adaptation, operating 

synergistically. The interaction between these two mechanisms is supralinear; while 

the average CSI value was 0.16 without synaptic depression (but with SFA) and 0.21 

without SFA (but with synaptic depression), it was 0.49 when both mechanisms are 

present. For 1,719 out of 2,378 neurons, the summed CSI was smaller than the CSI 

for both mechanisms simultaneously (Supplementary Fig. 5). 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2020. ; https://doi.org/10.1101/2020.05.31.126466doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.31.126466
http://creativecommons.org/licenses/by-nc/4.0/


The summary of the above results is depicted in Fig. 3e where the mean CSI value 

across cortical layers for the different conditions is shown. Note that, synaptic 

depression alone generates SSA (light green bars), and SFA alone generates SSA 

(orange bars). When the two mechanisms are active together, the SSA is larger (dark 

green bars). A detailed exploration of the origin of the differences in SSA among the 

different cortical layers is elaborated in the Discussion. 
 

We next explored the contribution of cortico-cortical versus thalamo-cortical synaptic 

depression to SSA. We found that, in our model, thalamo-cortical synaptic depression 

has a much stronger impact on SSA than cortico-cortical synaptic depression. 

(Compare Supplementary Fig. 6 first column, lower left frame to the frame in 2nd row 

and 2nd column). When only cortico-cortical depression is active (i.e., without SFA and 

thalamo-cortical synaptic depression) cortical neurons have a wide tuning curve. This 

is because, in this condition, the cortical neurons do not adapt (no SFA) and, on top 

of it, there is no thalamo-cortical synaptic depression37. Consequently, cortical 

neurons that are selective to, for example, f1 also respond strongly to f2. When f1 

arrives as the deviant, their cortico-cortical synapses are already significantly 

depressed. In contrast, thalamic axons are narrowly tuned (responding selectively 

either to f1 or to f2). Consequently, in this condition, thalamic axons that are selective 

to f1 will respond weakly to f2. When f1 arrives as the deviant their thalamo-cortical 

synapses are only weakly depressed, resulting in a strong response to the deviant 

tone and, thus, with a strong SSA. Exploration of additional combinations of different 

mechanisms underlying SSA is elaborated in Supplementary Fig. 6.  
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Figure 3. The contribution of synaptic depression and spike frequency adaptation to SSA. a. CSI 
and SI1 vs. SI2 (inset) indices for the excitatory neurons in the microcircuit as in Fig. 2c. b. As in a but 
removing synaptic depression in both thalamo-cortical and cortico-cortical synapses. The SSA is 
reduced but not abolished. c. Removing spike frequency adaptation (SFA) in all modeled neurons. 
Albeit reduced, the SSA persists. d. Removal of both SFA and synaptic depression eliminated the SSA. 
e. Mean CSI/layer for each of the microcircuit configurations shown in a-d. Colors are as in a-d. 
 
 
Emergence of SSA due to spike frequency adaptation 

Figure 3b shows that, even in the absence of synaptic depression, SSA still persists 

in the microcircuit due to SFA (Fig. 3d). In the absence of synaptic depression, the 

cells consisting of the “center microcolumn”, i.e., cells that have no thalamo-cortical 

preference for either of the two stimuli (green cells in Fig. 4a), receive the same 

number of active thalamic inputs when f1 or f2 are presented. Therefore, on the face 

of it, these cells should respond in the same manner (and similarly adapt due to SFA) 

to f1 and f2. However, these “green neurons” also receive cortico-cortical inputs that 

affect their responses to f1 and f2. To test whether these cortico-cortical inputs mediate 

the effects of SFA on SSA, we removed all cortico-cortical synapses from the model. 

This manipulation, on top of removing synaptic depression (but leaving SFA intact), 

abolished SSA in these neurons (Supplementary Fig. 6 first row in the 3rd column). 

Thus, cortico-cortical connectivity was required in order for SFA to contribute to SSA. 
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To explore the role of cortico-cortical connectivity, we examined the responses of two 

additional microcolumns (blue and yellow cells in Fig. 4a) in the SSA protocol, in the 

absence of synaptic depression. The blue microcolumn consists of neurons that are 

selective for f1 (6,666 Hz); the yellow microcolumn is selective for f2 (9,600 Hz). The 

green microcolumn whose preferred frequency lies midway between f1 and f2 (8,000 

Hz). When f2 was the standard, the f2-selective (“yellow” cells) adapted due to SFA 

(compare Supplementary Fig. 3c, “deviant alone” green bar, to the “standard”, blue 

bar). As a result, their feedforward effect on the green cells was small. When f1 was 

presented as deviant (in the same sequence in which f2 was standard), the f1-selective 

cells (“blue” cells) respond strongly (because they were not adapted by the many 

presentations of f2; Fig. 4b1, top). This effect on yellow and blue cells does not require 

cortico-cortical connectivity (Fig. 4b1 vs. 4b2, top), but in order for them to affect the 

activity of the green cells, cortico-cortical connections are required (Fig. 4b1 vs. 4b2, 

middle and 4b3 vs. 4b4). Thus, in this condition, the green cells responded more 

strongly to the deviant (f1) than to the standard (f2). The reverse also holds for f2 as 

deviant and f1 as standard (Fig. 4c1, middle row, red trace is higher than the blue 

traces). This explains how SFA in conjunction with recurrent network connectivity 

causes SSA in the green cells. This cascade is illustrated with the animation in 

Supplementary Video 1. Remarkably, this situation recapitulates essential elements 

of the simplified model for SSA that is based on adaptation of narrowly tuned 

inputs13,14. 
 

In conclusion, we note that, while, classically, synaptic depression was considered to 

be the major mechanism responsible for SSA, our dense in silico neocortical 

microcircuit model, receiving tonotopically-mapped thalamic input, enabled us to 

demonstrate that at least two additional mechanisms (SFA combined with network 

connectivity) are involved in shaping cortical SSA. Our study also shows that in our 

model SSA is primarily a network phenomenon because, when the network is 

disconnected, the thalamo-cortical input per se (and its respective synaptic 

depression) gives rise to only a small SSA response and only in neurons that receive 

thalamo-cortical inputs (Supplementary Fig. 6 first row in 2nd column).  
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Figure 4. Combined effect of cortico-cortical connections and spike frequency adaptation on 
the emergence of SSA, in the absent of synaptic depression. a. Three reference “microcolumns” 
whose neurons respond best to different frequencies: Blue neurons receiving strong thalamic input for 
f1 = 6,666 Hz and weak thalamic input for f2 = 9,600 Hz; Green neurons receiving similar thalamic input 
for f1 and f2; Yellow neurons receiving strong thalamic input for f2 and weak thalamic input for f1. b1. 
Mean response of the cells in the three microcolumns shown in a when cortical connections remain 
untouched. b2. Without cortical connections, the strong response of the blue cells does not propagate 
to the green cells (compare green peak in the rectangle in b2 vs. b1). In both cases, we removed 
synaptic depression from the circuit. b3, b4. Propagation of activity in the microcircuit for cases shown 
in the rectangles in b1 and b2, respectively. The x-axis denotes left-to-right direction in the microcircuit 
shown in A; the locations of the 3 microcolumns are denoted by the filled colored bars above the x-axis. 
Note the extended spatial propagation right wise of the response for the case when f1 is the deviant for 
the connected circuit (compare b4 to b3). Bin size – 1.2 ms over 15 µm. c1, c2. Left column: mean 
response of the three microcolumns shown in A for f1 as the standard (blue) and as deviant (red). The 
colored microcolumns at right mark the respective microcolumns shown in a. Right column: same as 
the left column but for f2. c1 shows the case with cortico-cortical connections and c2 the case without 
cortico-cortical connections. 
 
 
Additional properties of SSA explained via the reconstructed microcircuit 
We next attempted to replicate, using the NMC model, and mechanistically explain 

other experimentally observed properties of SSA. One such property is the 

dependency of SSA on the amplitude (intensity) of the presented tones. It was found 

experimentally that stronger tones result in lower CSI29,30. We replicated this 

experiment by setting the firing rate of the modeled thalamic axons so that it mimics 

the experimental response to different tone intensities (Sound Pressure Levels, SPL, 

Fig. 5a, Supplementary Fig. 1, and Methods). Indeed, as found experimentally, the 
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microcircuit showed a decrease in CSI with the increase in tone intensity (Fig. 5b). 

When examining the frequency-response area (FRA) of thalamic axons (Fig. 5a), we 

observe that two main features of the tuning curve change with tone intensity. The 

higher the tone intensity, the higher is the firing rate of the thalamic axons and the 

wider is their tuning curve (Fig. 5a and Supplementary Fig. 1). To separate the effect 

of each of these two parameters on CSI we manipulated, in the model, either the 

tuning width of the thalamic axons (Fig. 5c) or their maximal firing rate (Fig. 5d), 

leaving all other variables unchanged (see Methods). The range of values used for 

testing the effects of the width of the tuning curve (Fig. 5c) and of the firing rate (Fig. 
5d) was within the experimental range (Supplementary Fig. 1). Both the increase in 

firing rate and in tuning width resulted in a decrease in the CSI, but the change in the 

tuning width had a much greater effect (compare Fig. 5c to 5d).  
 
Next, we utilized the circuit to uncover which of the two biophysical mechanisms 

(synaptic depression or SFA) is responsible for the reduction in CSI with increasing 

tone intensity. To achieve this, we replicated the protocol of Fig. 5b, once when 

removing SFA and once when blocking synaptic depression (Fig. 5e). Both 

manipulations resulted in a comparable reduction of the CSI with an increase in tone 

intensity (Fig. 5e), implying that both mechanisms are involved in the dependence of 

CSI on tone intensity. This is to be expected, because when tone intensity is 

increased, the thalamo-cortical afferents selective to the deviant also start responding 

to the standard due to the increase in tuning width. As a consequence, both synaptic 

adaptation and SFA will reduce the strength of the response to the deviant as a 

consequence of exposure to the standard. Consequently, in cases with high tone-

intensity, the difference in response between a standard and a deviant is smaller 

(smaller CSI). 
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Figure 5. Effect of tone intensity on SSA. a. Mean, experimentally based, frequency response area 
(FRA) for the modeled thalamic axons when the preferred frequency of each axon is shifted to 8 kHz 
(see Supplementary Fig. 1 and Methods). b. Median CSI value as a function of tone intensity 
measured from the 2,696 modeled neurons as in Fig. 2a (green line), superimposed on two in vivo 
experimental results (blue and purple lines). c, d. Effect of changing the width of the tuning curve (c) 
and the maximal firing rate (d) on the CSI while keeping all other parameters fixed as in the response 
to 60 dB (see Methods and Supplementary Fig. 1). e. Effect of removing spike frequency adaptation 
(grey line) or synaptic depression (blue line) on the dependency of CSI on tone intensity.  
 
 
Finally, we explored the experimental finding that the strength of the SSA depends on 

the frequency preference of the cortical neurons31. Indeed, the tuning curve of neurons 

in the auditory cortex is typically not symmetrical and, therefore, the neurons do not 

respond with the same firing rate to the two tones (f1 and f2) that are centered around 

their best frequency10,13,29,31. Chen et al. (2015) reported that, when using the oddball 

paradigm, the SI of the tone that gave rise to the lower firing rate (the “Non-Preferred” 

frequency SINP; e.g., f2,) was lower than the SI of the tone that gave rise to the higher 

firing rate (the “Preferred” frequency SIP; e.g., f1; See Fig. 5 in31). We independently 

verified this result by analyzing the dataset accompanying Nieto-Diego et al., 2016 

(see Methods). We found that SIP is significantly larger than SINP (0.221 ± 0.035 

versus 0.11 ± 0.037, n = 31; p = 0.032 t-test; mean ± SEM). Fig. 6a, b shows that this 

also occurs in our simulated microcircuit. We first plotted the firing rate of the excitatory 

cortical neurons as a function of the tonotopic axis (Fig. 6a). As expected, cortical 

neurons that are closer to the thalamic axons with f1 as the BF (black circle) have a 

higher firing rate for f1 (black line in Fig. 6a) and vice versa for f2 (grey line in Fig. 6a). 
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Fig. 6b shows that, as in the experiment, the larger the firing rate of a neuron to f2 

relative to f1 the larger the SI2 is (and vice versa for SI1, not shown). Together, Fig. 
6a and 6b correspond to the experimental finding that the tone that gives rise to the 

lower firing rate has lower SI value. 

 

This finding can be understood by considering the involvement of SFA in the 

emergence of SSA (Fig. 3d). In the absence of cortico-cortical connectivity, SFA may 

cause a neuron that is selective to f1 to respond more strongly to f2 as standard than 

to f2 as deviant (low SI2). This may happen when f1 is highly effective in driving the 

neuron, and therefore, when standard, the firing of this neuron would be strongly 

adapted. Consequently, when f2 occurs as a deviant, the response of the neuron is 

small. If f2 is much less effective in driving the neuron, SFA would affect the neuronal 

responses to a lesser extent and the neuron would respond more strongly to f2 under 

this condition. Thus, for this cell, SI2 is expected to be low and possibly even negative. 

We tested that prediction by removing cortico-cortical connections and synaptic 

depression from the model and found that indeed neurons that are more selective to 

f1 have lower SI2 (Fig. 6c). Furthermore, we found that, when blocking SFA, while 

leaving all other mechanisms intact, the dependence of SI2 on the frequency 

preference of the neuron vanishes (Fig. 6d).  
 

 
Figure 6. Dependence of SSA on the frequency preference of the cell. a. Mean number of spikes 
of the excitatory neurons in the simulated microcircuit in response to f1 (6,666 Hz, black line) or f2 (9,600 
Hz, grey line) when played as the standard, as a function of the tonotopic axis (left-to-right direction in 
the microcircuit shown in Fig. 4a; bin size: 50 µm). The black and grey circles mark the position of the 
thalamic axons with BF of f1 and f2. b. SI2 as a function of the tonotopic axis. Cortical neurons that are 
closer to the thalamic axons with BF of f2 (grey circle in a) have higher SI2 (bin size: 15 µm). c. SI2 in 
a model circuit leaving only spike frequency adaptation (cortico-cortical connections and thalamic 
synaptic depression are removed). The less responsive the neuron is to f2 (progressing left along the 
tonotopic axis, see a) the lower the SI2 is. d. SI2 in the model circuit when only SFA was removed, 
demonstrating that, in this case, the dependency of SI2 on the tonotopic axis (on tone frequency) 
vanishes. 
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Discussion 
This work proposes a general approach, which could be termed “replicate and 

explain”, for linking experimentally-observed (emergent) circuit responses to their 

underlying anatomical and biophysical properties. This approach utilizes a generic 

dense computer replica of the circuit studied as an “experimental” tool that 

incorporates a broad range of biophysical and anatomical details (membrane ion 

channels, synaptic and firing dynamics, cell and synapse types, dendritic morphology, 

cortical layers, etc.). Yet, this circuit model was not built to capture any a priori specific 

high-level phenomenon. We have used the “replicate and explain” approach to study 

SSA in the auditory system, utilizing the cortical microcircuit model of young rat 

developed by Markram et al., (2015), and adding to this circuit tonotopically mapped 

thalamo-cortical axons33,34 together with modeling the response of these axons to pure 

tones based on our own unpublished experimental data (Supplementary Fig. 1).  This 

dense circuit replicated a substantial amount (but not all, see below) of the 

experimental properties of SSA, without tuning of the underlying modeling parameters; 

it provided mechanistic explanations for the emergence of SSA and related 

phenomena, together with a set of experimentally-testable predictions. The study 

suggested that a significant part of SSA is not a special property of the whole brain in 

vivo, nor is it specific to the auditory cortex and it has provided a set of new 

mechanisms that support SSA.  

 

Our “replicate and explain” approach differs from the typical computational route taken 

to study circuit dynamics, whereby simplified circuit models are constructed to study 

the dependence of an observed phenomenon, e.g., SSA, on unobserved biophysical 

parameters38,39, for example, synaptic depression. While this classical modeling 

approach is invaluable for testing specific mechanisms that might explain the observed 

phenomena, the model is a priori tailored to replicate the phenomenon and, by design, 

it ignores other putative underlying mechanisms (and the interactions among them) 

that might impact the studied phenomena40.  

 

In agreement with previous theoretical suggestions, we found that thalamo-cortical 

synaptic depression (and to a lesser degree also cortico-cortical synaptic depression) 

plays a key role in generating SSA13,15. Yet, removing synaptic depression from the 
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modeled circuit uncovered additional mechanisms responsible for SSA. Namely, a 

synergetic “collaborative” interaction between spike frequency adaptation, SFA, at the 

cellular level and cortico-cortical network connections. SFA was previously proposed 

as a putative mechanism underlying SSA41, but its impact at the network level for 

generating SSA was not demonstrated. We have shown that SFA, in the absence of 

network connectivity, does not generate SSA in neurons that are equally selective to 

f1 and f2 (Fig. 4), whereas in neurons that are not equally selective to f1 and f2, SFA 

results with positive SI for the frequency (say f1) that the neuron is selective for and 

negative or zero for f2 (Fig. 6). This is in contrast to the experimental observation, 

whereby both SI1 and SI2 were positive13. One key experimentally testable prediction 

from this study is that SSA will be significantly weakened by blocking ion channels 

responsible for SFA (i.e., the Ca2+-dependent K channels, which could be blocked by 

albumin42). This study thus shows how a computation (in our case of a “surprise 

response”) can be generated in networks receiving spatially mapped sensory input 

(e.g., tonotopic input, retinotopic input) via SFA mechanism. 

 

In accordance with experimental results3,43 we found that SSA was weaker in the 

thalamo-recipient layers (lower layers 3 and 5 in our model, see Fig. 1b and 2c). In 

the thalamo-recipient layers the standard tone generated a strong response and a 

weaker response in the other layers. When the deviant arrives, neurons in all layers 

increase their firing rate by approximately the same amount. This implies that the CSI 

(and thus SSA) will be lower in the thalamo-cortical recipient layers (see Methods for 

CSI definition). Note also that neurons in the non-recipient layers (that respond weakly 

to a standard tone) are less adapted and this allows them to increase their response 

more significantly to the deviant tone.  Our “replicate and explain” methodology 

explained two additional SSA-related experimental phenomena. First, by modeling in 

vivo spike time recordings of MGBv neurons responding to pure tones at various 

sound pressure levels (SPL), we tested the oddball paradigm at different SPL. We 

found that, as in the experiments, the larger the tone intensity the lower the SSA29,30. 

The main reason for this effect is the widening of the thalamic axon tuning curve with 

tone intensity which, in turn, affects the capability of both SFA and synaptic depression 

to generate SSA. Second, we found that, in agreement with the experiments, SSA 

depended on the frequency preference of the neurons31 and showed that SFA is the 

main mechanism responsible for this dependency (Fig. 6).  
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Our model did not succeed in replicating the experimental distribution of SSA values 

in different cortical layers (compare Fig. 2c to Fig, 7 in 3) nor did it replicated an 

important property of SSA in primary auditory cortex: its specific deviance sensitivity. 

In auditory cortex, responses to a tone when deviant (accompanied by a standard) are 

comparable in size and sometimes larger than the responses to the same tone, 

occurring at the same probability, when accompanied by many widely-spaced, tones. 

This is the ‘control’ condition of the mismatch negativity in EEG literature8 and the 

‘diverse broad’ condition in13,14. In our model, the responses to a deviant frequency 

were almost always smaller than the response to this frequency in the ‘diverse broad’ 

condition (see Supplementary Fig. 3d-f). Thus, the deviant responses, while larger 

than standard responses, are still too small to fit the experimentally measured ones. 

This is actually also the major failure of previous models that were based on adaptation 

of narrowly-tuned inputs6,13,14. This might be the result of our ability to model only six 

tones in the diverse broad condition, compared to the twelve tones that are used 

experimentally. We also note that this response depends on the location of the 

neurons, where neurons with BS close to the deviant frequency show a deviant 

response that is larger than the response to the  ‘diverse broad’ (Supplementary Fig. 
3e), although only for one frequency. Further modeling efforts are required to solve 

this puzzling experimental result.  

 

With the increase in computer power we are able, for the first time, to connect via a 

dense computer replica of neuronal circuits, the subcellular (ion channels and 

synapses), the cellular (cell types) and the network (connectivity) levels, and obtain a 

new and lucid picture of the working of the brain at multitude levels of operation44. This 

will enable to resolve other long-standing open questions such as the emergence of 

“salt and pepper” organization in sensory systems of rodents45–48 and the impact of 

different excitatory and/or inhibitory cell types on network dynamics5,49–51. 

Furthermore, this approach could be scaled-up for asking as broader questions as we 

will soon have detailed computer replicas of the rodent hippocampus, cerebellum, 

thalamus, as well as a detailed model of the whole rodent neocortex with full thalamo-

cortical connections52–55. Then we might explore, and provide mechanistic 

explanations, for a wide range of in vivo multiscale phenomena such as EEG signals 
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(and its modulation, e.g., due to a “surprise”) which, after more than 100 years since 

they were discovered, are only partially understood 
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Methods 
 
Dense model of neocortical microcircuit (NMC) 
We performed simulations of electrical activity on a previously published model of a 
neocortical microcircuit of a two-week-old rat. Reconstruction of the circuits and its 
simulation methods were described in Markram et al.19. Briefly, this microcircuit (Fig. 
1a) consisted of 31,346 biophysical Hodgkin-Huxley NEURON models and around 7.8 
million synaptic connections forming around 36.4 million synapses. Synaptic 
connectivity between 55 distinct morphological types of neurons (m-types) was 
predicted algorithmically and constrained by experimental data 24. The densities of ion-
channels on morphologically-detailed neuron models were optimized to reproduce the 
behavior of different electrical neuron types (e-types) and synaptic dynamics recorded 
in vitro56. Simulations were run on HPE SGI 8600 supercomputer (BlueBrain V) using 
NEURON57 and CoreNEURON58. NEURON models and the connectome are 
available online at bbp.epfl.ch/nmc-portal59. In Supplementary Fig. 3d-f a larger 
circuit was simulated (see below). 
 
Simulation of baseline spontaneous activity 
To account for the missing long-range connections and missing neuromodulators, 
neurons were depolarized with a somatic current injection of 85% of first spike 
threshold. In addition, synapses spontaneous release probability was set to mimic an 
in vivo like state. As described by Markram et al.19, the use parameter of synaptic 
transmission and the spontaneous release probability were modulated according to 
extracellular calcium concentration ([Ca2+]o). In all our simulations [Ca2+]o was set to 
1.23mM (see also 28). Synaptic conductances and kinetics are as in Markram et al.19. 
For the excitatory, synapses, the NMDA component was revised such that the 
“steepness” factor, γ, of the NMDA conductance was set to 0.0860–62.  
 
Simulation of realistic auditory input delivered to the NMC 
Auditory input was simulated using 574 reconstructed thalamic axons19 that were 
activated tonotopically as follows: Each thalamic axon had x, y coordinates which 
correspond to the center of its projection to the NMC. The x-coordinate spans from 0 
to 560 µm and was denoted as the tonotopic axis (Fig. 1d). The best frequency, BF, 
of each axon corresponds linearly to its x-coordinate, such that BF of 4,000 Hz 
corresponded to x = 0 µm, and BF of 16,000 Hz to x = 560 µm. This process resulted 
in 2 octaves difference along the x-axis33,34,63,64.  
To set the firing-rate dynamics of the thalamic axons so that it replicates the firing-rate 
dynamics of the rodent auditory thalamic nucleus, we first analyzed in vivo recordings 
of rat ventral division of the medial geniculate body (MGBv), (see below). We 
examined the response of MGBv neurons to pure tones at frequencies ranging from 1 
kHz to 64 kHz (steps of 0.166 octaves) and at amplitudes ranging from 40 to 90 dB 
Sound Pressure Levels (SPL). Out of 26 MGBv neurons recorded experimentally, 17 
had a V-shaped frequency response area (FRA) when measured in the first 50 ms 
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after tone presentation (see example in Supplementary Fig. 1a left). We then used 
the instantaneous firing rate of each of these 17 MGBv neurons as the target for the 
fit using Eq. (1), which is a standard alpha function (see example in Supplementary 
Fig. 1b and see also 65). The other 9 of the axons were either non-responsive to tone 
presentation or had a highly irregular tuning curve. Their mean firing-rate was 1.5 Hz. 
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(3) 

 
 
Where s is the presented frequency and t is time. The parameters for this alpha 
function are: b - the neuron best frequency; ∑ - maximum firing rate; µ - width of tuning 
curve; 𝜏𝜏 - response time constant. The frequency-dependent delay (delay(s,b)) had a 
Gaussian waveform (e.g., the delay is shortest when s = b) with the following 
parameters: baseline - the maximal delay; norm - the max delay difference; σ - the 
Gaussian standard deviation. These parameters were fitted with SciPy66 least-square 
function (using the default parameters) with the target of minimizing ∑ f(t, s) −𝑠𝑠
 MGBv(t, s). This process resulted in a distribution for each of parameter, for each tone 
amplitude (Supplementary Fig. 1c-h). We used these parameter distributions to 
create the spike times of the thalamic axons.  
Because 9 out of 26 MGBv axons did not have a characteristic V-shape response, we 
started by randomly selecting 40% of the modeled thalamic axons and activated them 
spontaneously at the rate to 1.5 Hz (see above). For each of the remaining (60%) 
thalamic axons we randomly sampled the parameters ∑ and 𝜏𝜏 from a Gaussian 
distribution that fitted the corresponding parameter distribution in Supplementary Fig. 
1c-h and µ from a 2-parameter exponential distributed that fitted its distribution 
(Supplementary Fig. 1c-h). The baseline, norm, σ that were selected for the delay 
function were that of the mean of the corresponding parametric distribution 
(Supplementary Fig. 1c-h). Using this sampling process, we satisfy all parameters 
for 𝑓𝑓(𝑡𝑡, 𝑠𝑠). Then, for each tone presentation, the spike times of the axon were 
generated from an inhomogeneous Poisson process with time-varying rate 𝑓𝑓(𝑡𝑡, 𝑠𝑠) + 
1.5 Hz.  
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In Figure 5c,d all the parameters for each axon were sampled from the parameter 
distribution for an input intensity of 60 dB (Supplementary Fig. 1e) except for the 
location parameter of the exponential distribution for the tuning width (Supplementary 
Fig. 5c) and for the mean of the Gaussian distribution for the max firing rate 
(Supplementary Fig. 5d).  
The FRA in Figure 5a was constructed by creating a thalamic axon with the average 
values of ∑, 𝜏𝜏 and µ for each tone amplitude, and averaging the first 50 ms of its 
response to different tone presentations.  
 
SSA protocols 
We attempted to replicate as closely as possible the in vivo experimental protocols 
used to explore SSA in rodent auditory cortex4,5,13,14,29,35,67. To achieve this, two tones 
f1 = 6,666 Hz and f2 = 9,600 Hz were selected as the base frequencies for our 
simulations; these frequencies are separated by 0.52 octaves around the center 
frequency of the simulated cortical circuit (8,000 Hz); see Fig. 1d and Fig. 4a. Each 
simulated experiment started with 2 seconds without an auditory tone followed by 500 
tone presentations, with an inter-stimulus interval (ISI) of 300 ms. We presented tones 
in five paradigms, described here. The oddball paradigm, where the standard tone 
was presented at p = 95% (unless specified otherwise) and the deviant tone was 
presented with p = 5%. The order of the tone presentations was random. In the equal 
paradigm, each tone was presented 250 times in a random order. In the deviant alone 
paradigm, the deviant timing was identical to the deviant timing in oddball paradigm, 
but the standard tone was not presented at all. In the diverse narrow paradigm, 20 
tones equally distributed between 𝑑𝑑𝑛𝑛𝑙𝑙2(𝑓𝑓1) − 0.19 𝑡𝑡𝑛𝑛 𝑑𝑑𝑛𝑛𝑙𝑙2(𝑓𝑓2) + 0.19 were each 
presented 25 times  in a random order. In the diverse broad paradigm – 6 tones equally 
distributed between 𝑑𝑑𝑛𝑛𝑙𝑙2(𝑓𝑓1) − 1.05 𝑡𝑡𝑛𝑛 𝑑𝑑𝑛𝑛𝑙𝑙2(𝑓𝑓2) + 1.05. For simulating this condition 
(Supplementary Fig. 3d), we simulated a 3D-slice of cortical circuit containing 
~103,207 neurons consisting of 1000 µm along the tonotopic (x-axis) by 465 µm width 
(y-axis) and with same depth (z-axis) as in as in Fig. 1a. This 3D-slice was taken from 
the full 7-column circuit in Markram et al.19. 
 
Data analysis 
The analysis of SSA response in the circuit was conducted on neurons at ± 25 µm 
about the center of the simulated circuit. These neurons have a best frequency of 
around 8,000 Hz and respond similarly to f1 and f2 when each is presented alone (see 
Supplementary Fig. 3b1). Unless stated otherwise, common-contrast SSA Index 
(CSI) measurements (and SI1, SI2; see below) are shown only for neurons with a firing 
rate larger than 0.15 Hz. For the oddball paradigm, we compared the neuron response 
(50 ms from tone presentation) for 24 randomly selected standards (f1s or f2s) to their 
response for 24 deviants (f1d or f2d). We discarded the first response to a standard 
and a deviant tone 
 

𝐶𝐶𝐶𝐶𝐶𝐶 =  
(𝑓𝑓1𝑑𝑑 + 𝑓𝑓2𝑑𝑑) − (𝑓𝑓1𝑠𝑠 + 𝑓𝑓1𝑠𝑠)
𝑓𝑓1𝑠𝑠 + 𝑓𝑓2𝑠𝑠 + 𝑓𝑓1𝑑𝑑 + 𝑓𝑓2𝑑𝑑

; 𝐶𝐶𝐶𝐶1 =  
𝑓𝑓1𝑑𝑑 − 𝑓𝑓1𝑠𝑠
𝑓𝑓1𝑑𝑑 + 𝑓𝑓1𝑠𝑠

; 𝐶𝐶𝐶𝐶2 =
𝑓𝑓2𝑠𝑠 − 𝑓𝑓2𝑑𝑑
𝑓𝑓2𝑠𝑠 + 𝑓𝑓2𝑑𝑑
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Manipulation of synaptic depression 
Synapses in the microcircuit are separated into three types of short-term synaptic 
plasticity: facilitating, depressing, and pseudo-linear. The dynamics of these synapses 
is governed by the respective set of time constants19. To remove short time synaptic 
plasticity from a given synaptic connection, we set the facilitation and depression time 
constants to 0 while keeping the release probability constant.  
 
Manipulation of spike frequency adaptation 
Excitatory neuron in the microcircuit contains calcium-activated potassium channels 
(SK_E2, see also 68,69). This hyperpolarizing current was shown to be involved in 
generating spike frequency adaptation, SFA70. To remove the SFA from the 
microcircuit we abolished this current by removing all SK_E2 channels from all 
modeled compartments.  
 
Analysis of previously published data 
The experimental plots in Supplementary Fig. 4c (black and gray lines) were digitally 
reconstructed from Fig. 3d in Abolafia et al., 2011, and overlaid on the axes of the 
simulated results. 
The experimental data from Taaseh, 2010, in Fig. 5b (purple line) was digitally 
extracted (5 median points) from Fig. 5d of Yarden and Nelken11 
The experimental data from Nieto-Diego et al.29, in Fig. 5b (blue line) was created by 
analyzing the dataset accompanying the article, S1 Data Oddball (MUA). We extracted 
all SSA results of A1 units and calculated the median CSI as a function of SPL. 
We used the same dataset to calculate SIP and SINP. For each neuron that was 
recorded in SPL>50, we compared its firing rate response to f1 and to f2 as standards. 
The SI of the frequency that gave rise to the larger response was defined as SIP 
whereas the SI of the frequency that gave rise to the smaller response was defined as 
SINP. 
 
Visualization  
Network visualizations were created in Fig. 1b using RTNeuron71 and in Fig. 1c using 
Mayavi72. Single neuron morphology visualizations (Fig. 2b) were created using 
NeuroMorphoVis73. Figures were created using Matplotlib74. 
 
Experimental procedures 
The thalamic inputs were modeled based on unpublished data recorded in rat MGB, 
courtesy of Leila Khouri and Maciej Jankowski. All experiments were performed 
according to protocols approved by the Institutional Animal Care and Use Committee 
of Hebrew University. Hebrew University is an AAALAC approved institution. Animal 
preparation was as in Taaseh et al., 2011. Following the craniotomy, an electrode 
array (16 or 32 tungsten electrodes, Alpha-Omega) was introduced to the MGB using 
stereotaxic coordinates. The data analyzed here consisted of responses to pure tones 
of 37 different frequencies (1,000 Hz to 32,000 Hz, 6 tones/octave, 50 ms long with 
10 ms linear onset and offset ramps, 2/s). Each tone was repeated 10 times at each 
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sound level. Sound levels covered the range between 20-30 dB SPL to 90 dB SPL at 
10 dB steps. All data were stored as disk files and analyzed offline (Matlab, 
Mathworks). Following the experiment, the rats were perfused transcardially, the 
brains removed and used for histological verification of the recording locations. Units 
with large spikes were isolated using a unit-specific threshold. Only units with clear 
significant responses to tones were used. 
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Supplementary Information 
 

 
Supplementary Figure 1. Fitting experimental responses of MGBv neurons for generating 
auditory thalamic input. a. Exemplary FRA from an MGBv thalamic neuron (left) and the FRA for the 
fit to the experimental data (right). Bin size – 0.167 octaves measured on the first 50 ms after tone 
presentation. b. The experimental and fitted instantaneous firing rate for 6 different frequencies for an 
amplitude of 70 dB (marked by blue and orange points in a. c-h. Distributions of the values that were 
fitted for the different MGBv neurons (variables fit of Eqs (1-2); see Methods) 
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Supplementary Figure 2. SSA dependence of the probability of the presented tone. The lower the 
probability of the deviant tone in the oddball paradigm, the higher is the SSA (quantified by CSI, SI1, 
and SI2, see Methods). 
 
 

 
 

Supplementary Figure 3. Neurons response to additional auditory SSA protocols. a1-c1. 
Response amplitude (spikes per tone presentation) for multiple experimental paradigms for the blue 
cells (a1) green cells (b1) and yellow cells (c3) in Fig. 4a. a2-c2. Same as a1-c1 but when normalized 
by the corresponding response for the deviant alone paradigm. d. Microcircuit used for the diverse 
broad protocols (microcircuit used for all other figures in this study is marked in orange). Black lines 
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mark the location of the 6 frequencies that were used. e. Spikes per tone when f1 is presented as deviant 
and when presented in a diverse broad protocol (response of 2,000 cells are shown by points). f. Box 
plot for the data shown in e. g. Same as e but for neurons with different locations (±25 μm around the  
BF marked in the legend) 
 
 

 
 

 
Supplementary Figure 4. Spike frequency adaptation. a. Example of adaptation protocol for a layer 
5 TTPC2 extracted from the microcircuit. Current injection was set to five times rheobase current (2.5 
nA) and ISI to 100 ms. Note the decrease in the number of spikes for the second current injection. b. 
Same as a but for a longer ISI (200 ms). c. Adaptation index, which is defined by the ratio between the 
number of spikes for the second current injection (R2) to the number of spikes for the first current 
injection (R1), as a function of the time between the current injections, for 25 excitatory cells (5 from 
each layer) from the microcircuit (blue line, in silico). Experimental results for in vitro and awake 
preparations are shown by the gray and black lines, respectively1. 
 

 
Supplementary Figure 5. SSA supralinearity. CSI of 1000 excitatory cells measured from the full 
microcircuit (with both synaptic depression and SFA; Fig. 3a) versus the arithmetic sum of the 
respective CSI in the absent of synaptic depression (Fig. 3b) plus the CSI in the absent of SFA (Fig. 
3c). Black dot marks the mean CSI. 
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Supplementary Figure 6. SSA strength over a variety of network configurations. Each panel in 
the first row presets the CSI values in a circuit with the mechanism/s titling the corresponding panel. 
The panels in the 2nd row show the CSI values when cortical connections were added to the 
corresponding circuits in the first row. The panels in the 3rd row show the CSI when cortical synaptic 
depression is added to the corresponding circuit in the 2nd row.  
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