
Quantum Science and Technology

PAPER • OPEN ACCESS

Quantum mixed state compiling
To cite this article: Nic Ezzell et al 2023 Quantum Sci. Technol. 8 035001

 

View the article online for updates and enhancements.

You may also like
Bayesian learning of parameterised
quantum circuits
Samuel Duffield, Marcello Benedetti and
Matthias Rosenkranz

-

Quantum algorithm for neighborhood
preserving embedding
Shi-Jie Pan,  , Lin-Chun Wan et al.

-

Adaptive pruning-based optimization of
parameterized quantum circuits
Sukin Sim, Jonathan Romero, Jérôme F
Gonthier et al.

-

This content was downloaded from IP address 128.178.116.76 on 15/05/2023 at 08:15

https://doi.org/10.1088/2058-9565/acc4e3
/article/10.1088/2632-2153/acc8b7
/article/10.1088/2632-2153/acc8b7
/article/10.1088/1674-1056/ac523a
/article/10.1088/1674-1056/ac523a
/article/10.1088/2058-9565/abe107
/article/10.1088/2058-9565/abe107


Quantum Sci. Technol. 8 (2023) 035001 https://doi.org/10.1088/2058-9565/acc4e3

OPEN ACCESS

RECEIVED

28 September 2022

REVISED

17 February 2023

ACCEPTED FOR PUBLICATION

16 March 2023

PUBLISHED

4 April 2023

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Quantum mixed state compiling
Nic Ezzell1,2,∗, Elliott M Ball3, Aliza U Siddiqui4,5, Mark MWilde4,6, Andrew T Sornborger2,7,
Patrick J Coles7,8 and Zoë Holmes2,9
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Abstract
The task of learning a quantum circuit to prepare a given mixed state is a fundamental quantum
subroutine. We present a variational quantum algorithm (VQA) to learn mixed states which is
suitable for near-term hardware. Our algorithm represents a generalization of previous VQAs that
aimed at learning preparation circuits for pure states. We consider two different ansätze for
compiling the target state; the first is based on learning a purification of the state and the second on
representing it as a convex combination of pure states. In both cases, the resources required to store
and manipulate the compiled state grow with the rank of the approximation. Thus, by learning a
lower rank approximation of the target state, our algorithm provides a means of compressing a
state for more efficient processing. As a byproduct of our algorithm, one effectively learns the
principal components of the target state, and hence our algorithm further provides a new method
for principal component analysis. We investigate the efficacy of our algorithm through extensive
numerical implementations, showing that typical random states and thermal states of many body
systems may be learnt this way. Additionally, we demonstrate on quantum hardware how our
algorithm can be used to study hardware noise-induced states.

1. Introduction

The task of learning an unknown d× d quantum state ρ is a fundamental primitive for quantum computing.
The well known method of full quantum state tomography learns the matrix elements of ρ directly. The
original scheme employsO(d2/ϵ2) Pauli measurements to learn the state up to additive error ϵ in trace
distance [1]. Subsequent refinements require onlyO((rank(ρ)d/ϵ2) · ln(d/ϵ))measurements [2], orO(d/ϵ2)
allowing for a small failure probability [3]. A recent improvement has found it is necessary to use at least
Ω(rank(ρ)d/ϵ)measurements, and it was also conjectured to be sufficient [4]. In all cases, tomography aims
to obtain a classical description of a quantum state, and as such, the number of measurements it requires
scales exponentially with the number of qubits of the target state.

An alternative approach is to give a more operational meaning to learning. In practice, we are often not
interested in the exact form of ρ but instead in its properties; i.e. we wish to estimate oi := Tr[ρOi] for some
observable Oi. Aaronson [5] proves that if each observable Oi, for 1⩽ i ⩽M, is restricted to two-outcome
measurements, then only Õ(ϵ−4 log4M logd) copies of ρ are sufficient to estimate each oi up to additive error
ϵ by using a method called shadow tomography [6–8]. These results were expanded to simpler, experimentally
tractable Clifford measurements and random Pauli measurements in [6, 9]. In particular, it was shown that a
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Figure 1. Applications of mixed state compilation. (a) A circuit to prepare the target state is already known and quantum
compilation is used to learn a more efficient circuit to prepare that state. (b) The target state is the (unknown) output of
(unknown) noise processes on quantum hardware. (c), (d) Quantum compiling is used to upload a quantum state from an
experimental system (or different quantum computer) to a quantum computer. This could be performed either coherently using a
Loschmidt echo/SWAP test to compute the cost (c) or incoherently by combining our algorithm with classical shadows techniques

(d). In all sub-figures Eρ denotes the channel that prepares ρ and U†
σ(α) denotes a single parameterized unitary to learn ρ via the

CCPS ansatz.

polynomial number of Clifford (Pauli) measurements is sufficient to estimate any low rank (local)
observable. The polynomial scaling achieved by shadow tomography is gained at the cost of providing only a
partial description of the quantum state.

Yet another approach to quantum state learning, and the one we take here, is instead to solve the problem
of state compilation. This involves learning a quantum circuit with which we may prepare an approximation
of the target state. In this paper, we propose and demonstrate a near-term algorithm for approximately
compiling an unknown quantum state by variationally training a PQC. Similar to the shadow tomography
case, one can use the final cost function value in our algorithm to place bounds on the deviation of
observables estimated from the learnt state from those of the target state.

While the variational compilation of pure states has been explored in [10–12], here we focus on mixed
state compilation. Specifically, we propose two different ansätze that can compile a mixed state either into a
purification using ancilla or as a convex combination of pure states (CCPSs). The latter is similar to the
Hamiltonian-based model approach in [13]. In addition, our approach shares similarities with [14, 15],
which present algorithms to learn the diagonalization of a target state, but in contrast to our approach, these
methods only apply to low-rank quantum states.

Quantum state compilation, in providing a quantum circuit description of a state, serves a different
purpose from tomography or classical shadows, as summarized in figure 1. In the first case, it may be used to
‘upload’ an unknown state of an experimental quantum system to a quantum computer. In other words,
given a quantum system in an unknown target mixed state, our algorithms can learn a circuit representation
of it for implementation on any digital quantum device. In this case, we can use the compilation to more
efficiently store the state for later processing, compute properties of the state that are hard to measure
directly, or use the state as the input to another algorithm, say for quantum simulation. Alternatively, a
circuit to prepare the target state might already be known, but the aim would be to learn a more efficient
(i.e. shorter depth and/or more noise resilient) circuit to prepare that state. These applications are
particularly interesting when the unknown mixed state is generated by unknown noise as in (b). In this case,
the compilation serves as a snapshot of how a noisy quantum computer corrupted a desired input state. This
snapshot can then be used later or perhaps even on a more coherent machine for reliable processing.

In some cases, it may be of interest not to learn the target state perfectly but rather attempt to learn a
low(er) rank approximation of it. In general, the resources required to manipulate a quantum state on
quantum hardware grow with its rank. Thus, learning a lower rank approximation provides a means of
compressing a state to store it more efficiently. The compression of quantum data has a long history tracing
back to the early days of quantum information theory [1, 16, 17]. More recently, the question of how well any
given state may be approximated using a lower rank state was addressed analytically in [18] for the
Hilbert–Schmidt (HS) and trace distances. Interestingly, the optimal lower rank approximation essentially
corresponds to performing principal component analysis (PCA) (jump to equation (3) to look ahead) for the
HS distance (but not for trace distance). Hence, as we will show, one can also use our learned compilation to
perform PCA with a desired cut-off rank. At the same time, the analytical expression for the optimal state
from this work provides a natural benchmark for our learning task.

Our algorithm, which is summarized in figure 2, involves variationally minimizing a cost function that is
formulated in terms of the HS distance between the target state and ansatz state. This cost can be efficiently
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Figure 2. The quantum mixed state compiling algorithm. (a) The algorithm takes as inputs a target state ρ and a desired
approximation rank R. The next step is to (b) (i). estimate the purity of the target state or (optionally) (ii). estimate the first
R eigenvalues of ρ. The core of the algorithm consists of (c) variationally compiling the mixed state using either (i). the state
purification (SP) ansatz or (ii). the convex combination of pure states (CCPSs) ansatz (detailed in the green and dark blue boxes
respectively). (d) The algorithm outputs a rank-R approximation of ρ. The pink box details the Loschmidt echo circuits used to
evaluate the overlap terms when using the SP ansatz (left) or the CCPS ansatz (right). A detailed description of all the circuits
necessary to evaluate the cost for both ansätze is given in appendix B.

measured using either a SWAP test or a Loschmidt echo circuit. In contrast to [19], which sketches a
quantum generative adversarial neural network that might be used to learn a mixed state, we further present
local variants of our cost functions to mitigate the trainability barrier posed by barren plateaus [20–30].

In the numerical simulations of our proposed algorithm, we demonstrate the applicability of both the
purification and convex combination ansätze for learning full and lower rank approximations of a target
mixed state. In particular, we numerically simulate the learning of typical random states, as well as of random
thermal states of the Heisenberg XY model. We additionally implement our algorithm on quantum hardware
in order to compile an unknown state generated by hardware noise.

2. Quantummixed state compiling (QMSC) algorithm

The QMSC algorithm takes as input a mixed state ρ and a desired approximation rank R. Though not
necessary, we assume R⩽ rank(ρ) =: r in defining our algorithm since this is both sensible and simplifies
our discussion. In our algorithm, we take this a step further and constrain R⩽ rϵ, where rϵ is the ϵ-rank10 of
ρ, which counts the number of eigenvalues greater than ϵ> 0. This notion of approximate rank is designed to
capture the intuition that the contribution of very small but non-zero eigenvalues can often in practice be
ignored. The goal then is to optimize the classical parameters α of a parameterized trial state σ(α,R)
satisfying rank(σ(α∗,R)) = R, such that, for the optimized parameters α∗, the output state σ(α∗,R) well
approximates the target ρ.

In order to assess the closeness between our training state σ and our target state ρ, we employ the
following cost function in terms of the HS distance between the two states:

C(α,R)≡ ∥ρ−σ(α,R)∥22
:= Tr[ρ2] +Tr[σ(α,R)2]− 2Tr[ρσ(α,R)] .

(1)

As discussed in more detail in sections 2.3 and 2.4, the HS distance can be efficiently computed using a
combination of SWAP tests and/or a Loschmidt-echo-like circuit. In appendix A we detail how this cost can
be reformulated such that it requires only local measurements [21] to mitigate the barrier to trainability
posed by barren plateaus [20–30].

If trained well, the learned state σ(α∗,R) should be close to the solution to the quantum low-rank
approximation problem (QLRAP) [18]. As discussed in [18], the unique optimal state that minimizes the HS
distance, subject to a rank constraint, i.e. the state σ(αopt,R) where

αopt := argminC(α,R) , (2)

10 We note that the notion of ϵ-rank was also used in [31], but its formal definition is slightly different than the one we choose to use
here. A smooth version of the max-entropy (or α= 0 Renyi entropy) provides yet another definition for ϵ-rank that is distinct from
ours [32, 33].
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takes the form

σ(αopt,R) = τR +

(
1−Tr[τR]

R

)
ΠR, (3)

τR := ΠRρΠR . (4)

Here ΠR is a projector onto the eigenstates corresponding to the R largest eigenvalues of ρ. That is, ΠR is a
projector onto the first R principal components of ρ. We note here that the projection ΠR is the same
conceptually as the typical subspace projection [34] used in quantum data compression [16] (given
that it projects onto the high probability subspace of the state ρ), and the quantum channel in (3) (i.e.
(·)→ΠR(·)ΠR +Tr[(I−ΠR)(·)]ΠR

R ) is essentially the same as the encoding channel used in quantum data
compression [1, equation (12.50)].

With this analytical solution, we can define a natural performance metric for the QMSC algorithm as the
difference between the found cost and optimal possible cost,

∆R := C(α∗,R)−C(αopt,R). (5)

More explicitly, this expression takes the form

∆R = C(α∗,R)−
r−1∑
i=R

λ2i +
R−1∑
i=0

(λσi −λi)
2, (6)

where {λi }r−1
i=0 denotes the set of eigenvalues of the target state. Of course when ρ is truly unknown, we can

only report the optimal cost C(α∗,R), but in this work, we actually compute∆R to verify that our algorithm
is working as intended.

In this paper, we develop a practical, noisy intermediate-scale quantum (NISQ)-friendly algorithm to
find σ(α∗,R), an approximation of σ(αopt,R). In doing so, we also find the first R principal values and
components of ρ, and so we are essentially performing quantum PCA, analogous to some previously
proposed algorithms [14, 15, 35]. The precise form in which σ(α∗,R) (or the first R principal components)
is obtained depends on our choice of ansatz. We consider two different ansätze, one based on learning an
approximate purification of ρ and the second on decomposing an approximation of it into a CCPSs. We also
discuss the complexity of computing our cost function, as well as its operational meaning. These are detailed
in the following sections. A summary of our algorithm, which also describes the two ansätze choices, is given
in figure 2.

2.1. Complexity of cost function
For all variational quantum algorithms (VQAs), the purpose of using the quantum computer in the
optimization loop is to estimate a cost function efficiently, which otherwise would be difficult to estimate
classically. Hence, it is helpful to establish that the cost function is indeed classically hard to estimate.
Previously proposed VQAs for quantum compiling [10] and linear system solving [36] have established
classical hardness via the DQC1 hardness of estimating the relevant cost function. (In the previous sentence,
DQC1 stands for deterministic quantum computation with one clean qubit [37]). We can make this same
argument for the cost function in equation (1), as follows.

A special case of computing equation (1) is when the two states happen to be Choi states associated with
unitary processes acting on a d dimensional Hilbert space. In this case, we write ρ= |ϕU⟩⟨ϕU| and
σ = |ϕV⟩⟨ϕV|, where |ϕU⟩= (1⊗U)|ϕ⟩, |ϕV⟩= (1⊗V)|ϕ⟩, and |ϕ⟩= (1/

√
d)
∑

j |j⟩|j⟩ is the standard Bell
state. Then the cost function in (1) becomes C= 2− 2Tr(ρσ) where Tr(ρσ) = |Tr(U†V)|2/d2. Hence, in this
special case we have that C= 2CHST where CHST is the HS test cost of [10]. Estimating the latter was shown to
be DQC1-hard in [10], and hence our cost function C is also DQC1-hard. Since efficient classical simulation
of DQC1 would imply a collapse of the polynomial hierarchy [38, 39], standard complexity assumptions
imply the classical hardness of estimating C.

2.2. Operational meaning of cost function
2.2.1. Observable estimation
There is a close connection between the HS distance and trace distance for low-rank states [40], which gives
operational meaning to our cost function in this case. Namely when at least one of the states is low rank, then
the two distance measures are essentially equivalent [40]. This can be seen from the following inequality
relating the 2-norm to the 1-norm:

∥ρ−σ∥22 ⩽ ∥ρ−σ∥21 ⩽ 4R· ∥ρ−σ∥22 (7)

4
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for any two density matrices ρ and σ. Here,R= rank(ρ)rank(σ)/[rank(ρ)+ rank(σ)] is a quantity called
the reduced rank, which is analogous to the reduced mass employed in physics.

In this sense, one can use the HS distance, and hence our cost function, as a strong upper bound on the
trace distance. In turn, the trace distance has operational meaning in terms of the difference of observable
expectation values on the two states [1], ∥ρ−σ∥1 = 2maxPTr(P(ρ−σ)) where the maximization is over all
POVM (positive operator valued measure) elements P, i.e. operators satisfying 0⩽ P⩽ 1. Hence, our cost
function inherits this operational meaning:

C(α,R)⩾ 1

R
[Tr(Pρ)−Tr(Pσ(α,R))]2 (8)

for any POVM element P, whereR is the reduced rank for ρ and σ(α,R).

2.2.2. Eigenvalue and eigenvector estimation
We also establish an operational meaning for our cost function in the context of minimizing the errors in the
eigenvectors and eigenvalues of the compiled state. This is particularly relevant in the context of using our
algorithm for PCA, since PCA precisely aims to extract the eigenvectors with the largest eigenvalues.

First, we note that our proposed cost is an upper bound on the squared difference between the true
eigenvalues of ρ and the eigenvalues of the learnt state σ, as follows. Let us denote the eigenvalues of ρ in
increasing order as {λi }d−1

i=0 and the eigenvalues of σ as {µi }d−1
i=0 , with d the Hilbert space dimension. Then a

measure of eigenvalue error is

∆λ :=
d−1∑
i=0

(λi −µi )
2 . (9)

It then follows from the Hoffman–Wielandt theorem that

∆λ ⩽ ∥ρ−σ∥22 = C . (10)

Thus if one can achieve a small cost value, the average error in the learnt eigenvalues is guaranteed to be small.
We remark that a small cost value might not be achievable since the optimal cost C(αopt,R) is often

non-zero. In this case, one could consider an alternative measure of eigenvalue error that, unlike (9), would
vanish for the optimal state in (3). Namely, one can consider the set SR of states that have the correct
R-largest eigenvalues up to an additive constant, and then define a measure of eigenvalue error as
∆SR(σ) =minτ∈SR ∥σ− τ∥22. Then it is clear that our cost function upper bounds this error as well: C⩾∆SR .

Second, we note that our proposed cost function is an upper bound on the eigenvector error measure
introduced in [14]. Specifically, a natural measure of the difference between the true eigenvectors of the
target state, {|vi ⟩}r−1

i=0, and the learnt eigenvectors, {|ui ⟩}
R−1
i=0 , is given by

∆v :=
R−1∑
i=0

⟨δi |δi ⟩ (11)

where

|δi ⟩ := ρ|ui ⟩−µi |ui ⟩ . (12)

Expanding this out we have that

∆v =
R−1∑
i=0

(
⟨ui |ρ2|ui ⟩+µ2i − 2µi ⟨ui |ρ|ui ⟩

)
⩽ ∥ρ−σ∥22 (13)

where for the inequality we use the fact that

R−1∑
i=0

⟨ui |ρ2|ui ⟩⩽
d−1∑
i=0

⟨ui |ρ2|ui ⟩= Tr[ρ2], (14)

(i.e. the trace can be taken with respect to an arbitrary orthonormal basis). Thus a small cost function
guarantees a small eigenvector error by this measure.

5
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2.3. State purification (SP) ansatz
Let us now move onto the different types of ansatz constructions. The SP ansatz constructs trial states of the
form

σSP(θ,nA) := TrA[Uθ(|0⟩⟨0|)⊗(n+nA)U†
θ], (15)

where Uθ acts on the n system qubits (the same qubits where the state ρ resides) plus an ancilla register A
composed of nA qubits. In using nA ancillas, we guarantee that rank(σ)⩽ 2nA , but for a typical parameterized
circuit Uθ with randomly generated parameters, one has precisely rank(σ) = 2nA . Thus, in practice, the SP
ansatz is only compatible with controlling R in powers of two, so that R= 2nA . While there are many different
possible choices in the ansatz for Uθ , we suggest using either a problem-inspired approach obeying the
symmetries of the target state [41–43] and/or an adaptive approach [44] to mitigate the problem posed by
barren plateaus. A discussion of specific choices in our work for different ensembles is given in appendix B.

Upon substitution of the SP ansatz into our proposed HS distance-based cost function, we obtain

CSP(θ,nA) = Tr[ρ2] +Tr[σ(θ,nA)
2]− 2Tr[ρσ(θ,nA)], (16)

where we use S to denote the system of the states ρ and σ(θ,nA). Below we describe efficient ways of
computing each of these terms.

2.3.1. Purity of target
The purity Tr[ρ2] of the target ρmay be measured using a SWAP test [45] or its destructive variant [46]. For
the estimate to be within ε additive error of the true value with probability not smaller than 1− δ, the
Hoeffding bound implies that it suffices to take O(ε−2 logδ−1) samples. Alternatively, as this term remains
constant throughout the procedure, we may opt to neglect it and only focus on optimizing the remaining two
parameter-dependent terms.

2.3.2. Purity of ansatz
The purity Tr[σ(θ,nA)2] of the ansatz σ(θ,nA)may again be measured via a SWAP test. It is also possible to
make use of the fact that we are representing it via its purification and measure the purity of the ansatz via
the Loschmidt-echo circuit shown in figure 2. Again, from the Hoeffding bound, it suffices to take
O(ε−2 logδ−1) samples.

2.3.3. Overlap term
The overlap term Tr[ρσ(θ,nA)] can be evaluated using either a SWAP test or the Loschmidt-echo type circuit
pictured in figure 2. The latter requires fewer qubits and controlled unitaries and hence is more NISQ
friendly. To see why this circuit works, note that since we prepare the trial state via a higher-dimensional
purification found by evolving an initial all-zero state to the purification of ρ, we can rewrite the overlap
term as follows

Tr[ρσ] = TrS[ρTrA[Uθ(|0⟩⟨0|)⊗(n+nA)U†
θ]]

= TrSA[(ρ⊗1A)(Uθ(|0⟩⟨0|)⊗(n+nA)U†
θ)]

= 2nATrSA

[
U†

θ

(
ρ⊗ 1A

2nA

)
Uθ(|0⟩⟨0|)⊗(n+nA)

]
.

(17)

This corresponds to preparing a maximally mixed state on the nA qubit ancillary system alongside ρ which is
prepared on the system register S, evolving the system and ancilla registers under Uθ , and then performing
an all-zero measurement. Due to the factor of 2nA , the number of shots required to measure this cost within
additive error ϵ will scale exponentially in the number of ancilla qubits nA. Hence the Loschmidt echo
method for computing the overlap is only appropriate for learning low rank approximations to ρ where
nA ∈ poly(log(n)).

As discussed earlier, the above method may also be used to calculate the purity of our ansatz simply by
replacing the initial state ρ with the trial state σ. However, the purity of our target may not be measured this
way, as it requires knowledge of a purification of ρ, which is precisely what we are trying to find.

2.4. CCPSs ansatz
The CCPSs ansatz constructs trial states of the form

σCCPS(α,R) :=
R−1∑
i=0

pϕ(i)Uθ|i⟩⟨i |U†
θ . (18)

6
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Here {|i⟩}R−1
i=0 denotes a subset of the computational basis of n qubits, α= (θ,ϕ) is a vector of parameters,

Uθ is a parameterized quantum circuit (PQC), and pϕ is a parameterized probability distribution. An
appealing feature of this ansatz is that learning a rank-R approximation gives any rank R ′ < R approximation
for free since one can always ‘drop’ the eigenstates corresponding to the smallest R−R ′ eigenvalues and then
re-normalize (see equation (31a)).

Since the state that minimizes our cost, σ(αopt,R) (i.e. the solution to the QLRAP given in equation (3)),
is proportional to the first R principal components of the target state ρ, it follows that this ansatz can be used
to learn the principal components of ρ. More precisely, we have that the first R principal values of ρ are given
by {pϕ(i)}R−1

i=0 and its principal components are {Uθopt |i⟩}R−1
i=0 .

When the rank of the trial state is low, i.e. R ∈ Ω(poly(n)), such that we are learning a low rank
approximation of the target state ρ, or for small scale problems, the vector of probabilities
pϕ := (pϕ(0), . . . ,pϕ(R− 1))may be stored simply as a classical vector. For learning high rank
approximations to larger full rank states, the probability vector is exponentially large and thus cannot be
explicitly stored efficiently. Rather the process will need to be sampled from. Such samples can be generated
via classical neural networks, such as generative neural networks [47] or Boltzmann machines [48]. In this
case, there are similarities between the CCPS ansatz and the Hamiltonian models considered in [13].
Similarly to the SPA, for Uθ we suggest using either a problem inspired ansatz obeying the symmetries of the
target state [41–43] and/or an adaptive approach [44]. A discussion of specific choices in our work for
different ensembles is given in appendix B.

Upon substituting the expression for the CCPSs ansatz into our proposed HS distance cost function, we
obtain

CCCPS(α,R) = Tr[ρ2] +
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)⟨i |U†
θρUθ|i⟩ , (19)

with α= (θ,ϕ). Here we describe how each of the terms in the above cost may be efficiently computed.

2.4.1. Purity of target
As for the SP ansatz, the first term, i.e. the purity of the target state, may be computed using a SWAP test [45]
or its destructive variant [46] (see also [49]).

2.4.2. Purity of ansatz
The second term, the purity of the guessed state, is equal to the sum of the square of the probabilities of the
parameterized distribution, pϕ(i). For low rank approximations, i.e. R ∈ poly(n), one may store the
probability vector classically and thus this term can be computed by basic arithmetic.

When the probability vector is too large to be stored explicitly, but rather is handled via sampling, the
purity of the ansatz can be estimated with a classical version of the SWAP test. Indeed, the approach is to take
two independent samples from the distribution pϕ(i) (call the random samples I and J). We then set an
indicator random variable χP as χP = 0 if the samples are not equal, and χP = 1 if the samples are equal. The
expectation of this random variable is then given by

E[χP] = 0 ·Pr[I ̸= J] + 1 ·Pr[I= J] (20)

= Pr[I= J] (21)

=
∑
i,j

pϕ(i)pϕ( j)δi,j (22)

=
∑
i

(pϕ(i))
2
. (23)

Thus, the random variable χP is an unbiased estimator of the collision probability,
∑

i (pϕ(i))
2, and takes

values between zero and one. The Hoeffding bound then applies, and we can take O(ε−2 logδ−1)
independent samples of χP in order to estimate the collision probability

∑
i (pϕ(i))

2 to within additive error
ε with probability not smaller than 1− δ.
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2.4.3. Overlap term
A naive approach to computing the third term, the overlap between the guess σ and target ρ, would be to
estimate each of the ⟨i |U†

θρUθ|i⟩ terms using the Loschmidt echo circuit shown in figure 2, followed by

classical post processing. That is, we compute ⟨i |U†
θρUθ|i⟩ by preparing the state ρ, performing the unitary

U†
θ , and then measuring in the computational basis. The total overlap term could simply be computed by

weighting each of the probabilities ⟨i |U†
θρUθ|i⟩ by the corresponding classical probability pϕ(i) and taking

their sum. This naive approach will work for small problems; however, even in the case where pϕ(i) can be
explicitly stored, this method will not be efficient for larger problems. The problem is that one needs enough
shots to estimate all 2n probabilities ⟨i |U†

θρUθ|i⟩. Combining this observation with Hoeffding’s equality, it is
apparent that this method requires an exponential number of shots, O(2nε−2 logδ−1).

Instead, we propose computing the overlap term using a generalization of the classical SWAP test. Let us
define the distribution

qθ(i) := ⟨i|U†
θρUθ|i⟩, (24)

which can be sampled from via the Loschmidt echo circuit. Then we see that

Tr[ρσ] =
∑
i

pϕ(i)qθ(i). (25)

This quantity can be estimated by taking a sample from pϕ(i) and an independent sample from qθ(i) (call
the samples I and J) and setting an indicator random variable χO if the samples are not equal and χO = 1 if
the samples are equal. The expectation of this random variable is given by

E[χO] = 0 ·Pr[I ̸= J] + 1 ·Pr[I= J] (26)

= Pr[I= J] (27)

=
∑
i,j

pϕ(i)qθ( j)δi,j (28)

=
∑
i

pϕ(i)qθ(i). (29)

Thus, the random variable χO is an unbiased estimator of the collision probability Tr[ρσ], and it takes values
between zero and one. The Hoeffding bound then applies, and we can take O(ε−2 logδ−1) independent
samples of χO in order to estimate this collision probability to within additive error ε with probability not
smaller than 1− δ.

2.5. Performing PCA with our ansätze
Both ansätze also allow for PCA of ρ. To make this precise, we first write the target state as

ρ=
r∑

i=1

λi |vi ⟩⟨vi | (30)

where λ1 > λ2 > · · ·> λr are the ordered principal values of ρ with associated principal components |vi⟩.
By inspection, the CCPS ansatz is directly an ansatz for the principal components of ρ. In other words,

learning a CCPS representation of σ(α∗,R) provides an estimate of the principal components,
|ui⟩ := U(θ∗)|i⟩, explicitly. It also provides an estimate of the principal values, pϕ(i), but due to
normalization, these are expected to be different from λi by an additive constant when∆R is small. As R
approaches rϵ, this additive constant goes to zero, and here pϕ(i)≈ λi. Nevertheless, even when R< rϵ, the
values of pϕ(i) are such that σ(α∗,R) acts as the closest rank R proxy, so in this operational sense, it is still
appropriate to call pϕ(i) the principal value estimates.

One very useful property of these explicit principal component/value estimates is that they allow us to
construct any numerically optimal R ′ < R approximation by truncation,

8



Quantum Sci. Technol. 8 (2023) 035001 N Ezzell et al

σ(α∗,R ′) =
R ′−1∑
i=0

p̃ϕ(i)U(θ
∗)|i⟩⟨i |U†(θ∗), (31a)

p̃ϕ(i) = pϕ(i)+

1−
R ′−1∑
i=0

pϕ(i)

/R ′. (31b)

Indeed, this is perhaps one convincing way to view each pϕ(i) as the appropriate operational sense of
‘principal value’ when we truncate the rank.

Though less obvious, the SP ansatz can also be used for PCA by using a carefully designed circuit for the
purification ansatz as described in appendix B. The result is that computational basis measurements on the
ancilla system prepare the principal vectors on the target system with probabilities given by the principal
values. Thus, the knowledge of principal values/components here is implicit, and hence cannot be directly
used to obtain lower rank approximations by truncation.

Finally, we remark that while PCA is a general procedure, it has an intuitive meaning for physically
relevant classes of states. As an example, consider an XY thermal state. In general, the eigenvalues follow a
Boltzmann distribution, and the eigenvectors are those of the XY Hamiltonian itself. At low temperature, we
often say a state is approximately in its ground-state.More precisely, we mean,

ρ≈ ρϵ ≡
q∑

i=1

λi |vi ⟩⟨vi |,
q∑

i=1

λi = 1− ϵ (32)

for ϵ small. In our language, we would say the state is approximately rank q, and when q≪ r as is typical for
low temperature thermal states, it is approximately low rank11. By performing PCA with a target rank R= q,
we find approximations of the eigenvectors with low energies {|vi⟩}qi=1 and corresponding Boltzmann
weights {λi}qi=1. Hence, our PCA algorithm can be thought of as a way to learn the Boltzmann weights and a
means to prepare low-lying energy eigenvectors of a quantum thermal state which has also been explored in
other NISQ friendly works [50].

2.6. Comparison of ansätze
The reliance on an ancillary system to compute the cost function for the SP ansatz naturally increases the
resources required for computation. Furthermore, in general, for a typical choice of Uθ , the guess state will
have rank R= 2nA . That is, one is limited to ranks of powers of two. In contrast, CCPS both requires no
ancilla and allows for fine control over both output ranks. However, the need to learn pϕ under the
constraint of convexity, in addition to θ, potentially increases the complexity of our optimization subroutine.
Thus the choice as to whether to use CCPS or SP will depend in large part on whether classical resources
(optimization power) or quantum resources (qubits available) are more constrained.

Of course, the choice as to whether to use the CCPS or SP ansatz may depend not only on the required
resources but also the end goal of the subroutine. For example, if the end goal is PCA, this is more readily
performed using CCPS since it automatically finds the first R principal components of the target.
Alternatively, one can imagine situations where it is desirable to learn the purification of the target. For
example, the purification of a state opens up methods for computing entanglement measures between
subsystems of that state [51–53], the fidelity between two states (given Ulhmann’s theorem) [54, 55], as well
as symmetry measures [56].

2.7. Summary of algorithm
The QMSC algorithm is summarized in figure 2. At its core it is composed of the following steps.

1. Start with a target state ρ, and a desired rank R for the compiled state σR used to approximate ρ.
2. Choose whether to learn the target using the purification or convex combination ansatz. In general, this

decision will depend on the purpose for which the state is being learned and the resources available. A
discussion of the circuits one must run in both cases is given in appendix B.

3. Minimize the HS distance cost C, equation (1), using a hybrid quantum–classical optimization loop to find
the trained parameters θ∗ (in the case of the SP ansatz) and (θ∗,ϕ∗) (in the case of the CCPS ansatz) that
approximately minimize C. If using a gradient based optimizer one can analytically compute the gradient
of the cost using the parameter shift rule [57, 58]. For the case of the purity of the ansatz term for the state

11 We comment that this exact notion of low rank actually precisely agrees with the definition of epsilon-rank used in [31]. We employ a
slightly different definition already given that is more amenable to NISQ experiments.
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purification ansatz, Tr[σ(θ,nA)2], this rule needs modifying to account for correlations. For more details
on computing the gradients, see appendix C.

Here we briefly describe two ways in which prior information about the structure of the target state could
be used to make the mixed state learning algorithm more efficient.

In the first instance, the purity of the target state may be computed and then we need only consider
‘guess’ states σR with the correct purity. That is, one may use the target purity as a constraint during the
minimization of the HS distance cost, equation (1). This amounts to maximizing the overlap term Tr[ρσ]
subject to the constraint Tr[σ2] = Tr[ρ2]. We note that this constrained optimization may not be compatible
with the rank constraint if the desired rank is much lower than the true rank of the target, i.e. R≪ r.

Going a step further, one could also simplify the task of learning a rank-R approximation to ρ by first
learning the R largest eigenvalues of ρ and then using the mixed state learning algorithm to learn their
corresponding eigenvectors. The largest eigenvalues of any state σ can be learnt non-variationally using the
quantum algorithm proposed in [49]. Denoting the measured eigenvalues as {λi }R−1

i=0 , the eigenvectors may

be learnt by maximizing the overlap term
∑

i λi ⟨i |U
†
θρUθ|i⟩.

As discussed further in appendix A, one theoretical advantage of these two modifications is that they
require optimizing only a single overlap term rather than the difference between two purity terms and an
overlap term. This overlap term takes the form of a standard variational quantum eigensolver cost and
therefore can be readily transformed into a local cost for which we have trainability guarantees [21].

3. Numerical simulations

We begin our numerical simulations discussion with a brief summary of the target states and chosen
optimizer. Additional details can be found in our open source code [59] which includes our raw data and the
scripts we used to generate it. We then discuss the results of compiling each of the listed states in separate
sections.

3.1. Description of states and optimizer
We discuss the performance of our QMSC algorithm for three main types of states:

1. Random states drawn from the Bures measure.
2. Thermal states of an XY chain with random coefficients at both low and high temperature.
3. Noise-induced states generated by simple circuits on NISQ hardware. (We shall call them NISQ states for

short.)

In the first two cases, we perform the entire optimization using idealized classical simulations. That is, we
evaluate the cost functions using matrix operations on a classical machine with no error model and no shots
(i.e. infinite precision). Henceforth, the use of ‘idealized classical simulations’ will continue to have this
precise meaning. This serves both as a proof-of-principle as well as a means to estimate an empirical
idealized scaling. For the NISQ states, discussed in section 4, we evaluate all cost functions on quantum
hardware but use classical computation for the parameter updates, which is the standard VQA approach.

In each case, we consider a low rank approximation by setting nA = 1 (or, equivalently, R= 2) or a full
(epsilon) rank approximation with nA = ⌈log2 rϵ⌉ (or R= 2⌈log2 rϵ⌉). It is natural to wonder why we choose to
use R= 2⌈log2 rϵ⌉ instead of R= rϵ. The reason is straightforward: we simply want both the SP and the CCPS
ansatz to attempt to learn the same state to the same rank approximation to make a fair comparison, and we
can only control the rank of the SP ansatz in powers of two.

We use the gradient-free Powell optimizer [60] provided in the scipy [61] optimization library. We find
that Powell is more robust and generally outperforms the common scipy black box alternatives such as
BFGS [62], Nelder-Mead [63], SLSQP [64], and COBYLA [65] for our problems. Of course, the performance
could be improved by using advanced VQA optimizers such as SPSA [66] or ICANs [67, 68], but we do not
pursue this refinement since we found Powell to give reasonable results.

3.2. Bures random states results
We first study the Bures random state distribution because it is a reasonable sampling distribution when
nothing about the quantum state is known [69, 70] (see appendix D.1 for more details). For some intuition,
note that one way to generate n qubit Bures random states is by preparing a Haar random state on n+ n
qubits, applying an n-qubit ‘local Haar random’ unitary on the system qubits, and then tracing out the
ancilla. In this sense, learning the purification is similar to learning a Haar random unitary on 2n qubits
which we know to be intractable for VQAs due to an intrinsic, ansatz-independent vanishing gradient
problem [22].
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Figure 3. Compiling Bures random states with idealized classical numerics. Each box plot bins the quartiles from 25 Bures
random states. Specifically, the orange line is the median, the box contains 75% of the runs, the top and bottom lines show the
max and min, and circles represent outliers. The left column of each four-panel figure corresponds to a low-rank approximation
whereas the right corresponds to a full ϵ-rank approximation. The first row shows how close the optimized state is to the best
possible state,∆R, as a function of the number of qubits, n. The bottom row shows the number of iterations, nit, it takes to
perform the optimization alongside the naive scaling of full quantum state tomography 4n and enhanced quantum sensing
tomography ⟨rϵ⟩2n where the average is across the 25 random instances.

Given their lack of structure we see Bures random states as a good test case to compare the SP and CCPSs
ansätze. However, due to the unavoidable vanishing gradient problem—along with the large number of
parameters needed for an unstructured state (see appendix B)—we only test modest sizes. Specifically,
we test from n= 1 to n= 4,5 for low rank approximations and from n= 1 to n= 3 for full ϵ-rank
approximations (i.e. we learn up to a six-qubit random purification).

We tested our algorithm on 25 Bures random states for each n. The results are shown in figure 3. Here, SP
results are shown in (a) and the CCPS results in (b). We plot the difference between the optimized cost and
the lowest possible cost∆R (see equation (5) or appendix E for more details) as a function of system size, n,
for both low rank (nA = 1,R= 2) and full ϵ-rank (nA = ⌈log2 rϵ⌉,R= 2⌈log2 rϵ⌉) approximations along with
the number of iterations nit necessary to reach∆R. Here the compilation is performed classically using the
Powell optimizer. Our ansatz, which uses alternating layers of arbitrary two-qubit gates, is explained in
appendix B.

We focus our discussion first on the top row, where we plot the performance metric∆R. Here, we see that
our algorithm is capable of learning completely (Bures) random states provided n is small enough. Indeed,
for the SP ansatz, the value∆R stays below 10−10 for all values of n tested when compiling both a low rank
and a full ϵ-rank approximation. Interestingly, the values of∆R reached for the CCPS ansatz are substantially
higher, reaching values of up to 10−8 for the low-rank and up to 10−6 for the full ϵ-rank approximations.
This suggests that the CCPS optimization is more difficult than the SP one. This is plausibly due to the fact
that the optimization was performed over both angles and probabilities, which needed to satisfy a
normalization constraint.

In the second row of figure 3, we plot the number of iterations, nit, needed to reach the∆R values above.
For reference, we also plot the curve showing 4n scaling for naive full tomography as well as a curve ⟨rϵ⟩2n for
improved quantum sensing tomography. Here, ⟨rϵ⟩ denotes the average ϵ-rank across the 25 random
instances. While it is difficult to draw definitive claims for the small values of n accessible, we see an
interesting split in the results. For low-rank (nA = 1,R= 2) approximations, the number of iterations
required seems to scale more favorably for our method than for both forms of tomography for both the SP
and CCPS ansätze. The opposite appears to be true for the full-ϵ-rank approximation where it appears that
even full tomography is a better strategy at n= 3 for both ansätze. This could plausibly be explained by the
barren plateau phenomenon for learning random states that was proven in [22]; hence reconfirming that
variational methods are not well suited to fully learning typical random states. On the other hand, with no
shot noise and such small n, this could also be due to the presence of many local minima [71, 72]. Regardless
of the cause, our simulations suggest that while our algorithm can learn small unstructured random states, it
cannot scale beyond modest n.

3.3. XY model results
This discussion naturally raises the question of what happens when structure is present. This leads us to the
study of thermal states in the Heisenberg XY model, given by
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Figure 4. Compiling XY thermal states with idealized classical numerics. We summarize the XY thermal state results for the SP
ansatz (left) and the CCPS ansatz (right). Each box plot bins the quartiles from 50 thermal states of the XY model where
Ji,Ki ∼N (0,1) are i.i.d. standard Gaussian random variables: 25 at a low temperature β= 20 and 25 at a higher temperature
β= 2. Specifically, the orange line is the median, the box contains 75% of the runs, the top and bottom lines show the max and
min, and circles represent outliers. The left column of each four-panel figure corresponds to a low-rank approximation whereas
the right corresponds to a full ϵ-rank approximation. The first row shows how close the optimized state is to the best possible
state,∆R, as a function of the number of qubits, n. The bottom row shows the number of iterations, nit, it takes to perform the
optimization alongside the naive scaling of full quantum state tomography 4n and enhanced quantum sensing tomography ⟨rϵ⟩2n
where the average is across the 25 random instances.

ρ(XY)n :=
e−βHXY

Tr[e−βHXY ]
, (33a)

HXY :=
n−1∑
i=1

JiXiXi+1 +KiYiYi+1, (33b)

where Ji,Ki ∼N (0,1) are i.i.d. standard Gaussian random variables and β = 1/kBT is the inverse
temperature. By controlling the temperature, we can control the ϵ-rank of the generated mixed states (see
appendix D.2 for more details). Structurally, this model is clearly invariant under any global rotation of all
spins, and the number of spins is constant. Thus, even with random coefficients, it exhibits important
symmetries which allow us to greatly simplify our ansatz (see appendix B). For this reason, we are able to test
from n= 2 to n= 8 qubits relatively easily, which is sufficient for an initial study of empirical resource
scaling.

We tested our algorithm on 50 random XY chain thermal states (see equation (33a)) for each n: 25 at a
large inverse temperature of β= 20 (i.e. low temperature regime) and 25 at a relatively smaller inverse
temperature of β= 2 (i.e. moderate to high temperature regime). The results are shown in figure 4, whose
format is the same as that in figure 3. Similar to the Bures results, we generated the results using noiseless
classical optimization of an alternating layer ansatz with the Powell optimizer. Unlike Bures, however, the
ansatz consisted of so-called Givens gates (see appendix B for exact definition) which respect the symmetries
of the XY model.

Our first observation is that the performance (i.e. both∆R and nit) does not have a noticeable
dependence on β. For this reason, we chose to simplify the presentation of the results and combine all 50
states (for each n) into a single box plot. Note that this was not expected a priori. As discussed in

appendix D.2, β= 20 corresponds to the limit when ρ(XY)n is approximately in the ground state of HXY with a
low ϵ-rank, whereas β= 2 samples intermediate to large ϵ-ranks. Hence, what we have found is that our
optimization is insensitive to the underlying ϵ-rank of the target state in this case.

For the SP ansatz, the performance (as measured by∆R) is quite good, with a worst case of
n= 8,nA = ⌈log2 rϵ⌉,∆R ≈ 10−6. The same point for the CCPS ansatz only reached∆R ≈ 10−4 in median
performance, and indeed, the CCPS performance is noticeably worse across the entire data set. That is, when
solving the same problem, the final∆R for the CCPS ansatz is often noticeably larger than the SP ansatz.
However, even this worst median∆R ≈ 10−4 is an acceptable ‘4 nines’ result (i.e. C(α∗,R) differs from
C(αopt,R) only in the fourth decimal place).

Across the entire data set, whether low or full rank and SP or CCPS, the actual number of iterations scales
slightly better than the compressed tomography scaling of ⟨rϵ⟩2n and is substantially better than naïve
tomography. For example, at n= 8, both low and high rank results use≈ 56 times fewer iterations (relative to
4n = 48 for full naive tomography) with SP. However, this positive result must be considered along with the
result that the quality of the solution,∆R, deteriorates with n. A fair summary of the result can be
understood by setting an acceptable cut-off, δc. Supposing that δc = 10−3 (a ‘three nines criterion’), what our
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Figure 5. PCA and truncation with the CCPS ansatz. We learn a full rank (R= 8) approximation of 25 random three-qubit XY
thermal states, achieving a median∆R=8 ≈ 10−10. Top: In themain plot, we show the Hilbert–Schmidt cost between the target
and learned CCPS ansatz when truncating to keep the first R

′
states, i.e. |ψk⟩ from k ∈ {1, . . . ,R ′}. In the inset, we show the

distribution of principal values (i.e. ordered eigenvalues of ρ) for these XY thermal states alongside the found principal values of
σ. Bottom: We show the infidelity between the kth principal component of ρ, |vk⟩, and the CCPS learned estimate |uk⟩.

data shows is that we can reach∆R < δc in fewer iterations than both naïve tomography and compressed
sensing tomography.

3.4. PCA and state compression example
As discussed, the CCPS ansatz (see equation (18)) takes the form of a convex combination of the R estimated
principal components of ρ weighted by the associated principal values. Hence, learning σCCPS(α∗,R) is
tantamount to performing PCA. As a consequence, we get the form of any R ′ < R approximation from the
rank R solution for free by truncation (see equation (31a)). We explore the practical meaning of these two
statements by example in figure 5. In this case, we learn a full rank CCPS ansatz approximation of a random
three qubit XY thermal state at low temperature, ρβ=20

n=3 . As before, we consider 25 such optimizations over
randomly drawn coefficients (see equation (33a)).

In the top plot of figure 5, we explore the effect of truncation from R= 8 to R ′ < R on the cost as a
function of R

′
. At R= 8, the median cost is C(α∗,R) = ∆R=8 ≈ 10−10 which means we have successfully

learned ρβ=20
n=3 . But even as we truncate down to R ′ = 2, the cost hardly changes–only jumping to a large

value of 0.5 at R ′ = 1. This suggests that only two principal components are necessary to approximate ρβ=20
n=3 ,

and we corroborate this intuition by showing the principal values (or spectrum) of both ρβ=20
n=3 and

σ(α∗,R= 8) in the inset. Here, the bar-plot shows the median kth principal value as a function of k. For
ρβ=20
n=3 , the values are λ0 ≈ 1/2, λ1 ≈ 1/2, and λ3 ≈ 10−13, so rϵ = 2 for ϵ > 10−13 for at least half of the

instances (and all for ϵ > 10−4).
In the bottom plot of figure 5, we show the pure state infidelity between the kth principal component of

ρβ=20
n=3 , |vk⟩, and the associated estimate contained in the CCPS ansatz, |uk⟩= Uθ∗ |k⟩ as a function of k. Note

that the k labels are ordered by decreasing principal value, i.e. k= 0 corresponds to the principal component
with the largest principal value and so on. Clearly, the infidelity for k= 0 and k= 1 is very small∼10−11

whereas the infidelity for k⩾ 2 can be rather large. This again is due to ρβ=20
n=3 having an effective ϵ-rank of

two. But by plotting the pure state infidelity we have also made the notion of ‘learning the principal
components of ρ’ more explicit. Namely, a good approximation of ρ with the CCPS ansatz relies on having a
high quality and explicit estimate of its important principal components as weighted by the relative
importance of the principal values.

Finally, this discussion suggests an alternative way to use our algorithm as a means to find the
approximate rank of an unknown state. By training for different values of R until C≪ 1 or C converges, we
can estimate that rank(ρ)≈ R. This procedure also clarifies what we mean by claiming that our algorithm
allows us to ‘learn a lower rank approximation that allows for more efficient processing.’ In this example, we
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mean that learning a rank R= 2 approximation is sufficient, and therefore σCCPS(α∗,R= 2) is a low-rank
approximation/compression of ρβ=20

n=3 .

4. Quantum hardware implementation

Finally, we consider the most important task for our algorithm: compiling a quantum state on a quantum
device. In figure 6, we demonstrate the ability to learn two classes of quantum states on the IBM
superconducting qubit devices with both ansatz choices. In figure 6(a), we successfully compile a random
single qubit mixed state with both the SP and CCPS ansatz. Here, the random state is generated by tracing
over one qubit in a two-qubit Haar random state

ρHS = TrA[UHaar|00⟩⟨00|ABU†
Haar]. (34)

The HS subscript signifies that such a state is uniformly sampled from the HS metric [70]. Finding a
compilation for a HS random state has a similar proof-of-principle goal to the Bures random states, but this
class is easier to prepare on NISQ devices. We remark that the state ρHS is known a priori in this example in
the sense that we supply the quantum device with UHaar.

In figure 6(b), we learn unknown states generated by noisy state preparation which we call ‘NISQ’ states.
In particular, we learn a noisy |+⟩ state and a noisy |Φ+⟩ state,

ρ̃+ = E1(|+⟩⟨+|) (35a)

ρ̃Φ+ = E2(|Φ+⟩⟨Φ+|), (35b)

a single- and two-qubit state, respectively. For ρ̃+, we apply a single Hadamard and then idle for the duration
of 20 Hadamards. For ρ̃Φ+ , we follow the same procedure but then apply a final CNOT at the end. Under
perfect conditions, these would generate the states |+⟩ and |Φ+⟩. Due to intrinsic ZZ cross-talk on
superconducting devices [73–76] along with other secondary sources of noise, the qubits undergo a
complicated dephasing process which we summarize as some unknown quantum channels E1 and E2,
respectively. For some sense of the strength of noise on these devices, we remark that Tr[ρ̃2+] = 0.90(1) and
Tr[ρ̃2Φ+ ] = 0.78(4) with 1σ confidence intervals generated from ten bootstrapped tomography experiments.
Since we do not know the quantum channels in advance, compiling the NISQ states is also tantamount to
learning the states. For example, we can learn a low-depth circuit to prepare ρ̃+, which is short enough to be
unaffected by ZZ cross-talk. This serves as a permanent snapshot to probe ρ̃+ even when E1 inevitably drifts
due to two-level system and calibration effects.

With the states now defined, we discuss the results presented in figure 6 more closely. For each
optimization we plot two costs, Cshot (dotted line) and Cnoiseless (solid line). The shot cost is computed on
quantum hardware using 105 shots, and it is the cost we optimize over using the Powell optimizer. The
noiseless cost is computed classically in post-processing for verification. For the random states this amounts
to classically storing the circuits to prepare ρ and σ throughout the optimization and computing the cost
with matrix operations. For the NISQ states, we rely on full quantum state tomography to compute ρ as a
‘trusted third party’ method since the states are generated by unknown noise. We terminate the optimization
when either Cshot flattens for at least 10 iterations or 100 iterations are reached. In all cases, the final noiseless
cost reaches 10−3 ⩽ Cnoiseless ⩽ 10−2. We remark that this is consistent with the use of N= 105 shots since we
expect a reported precision to scale as∼1/

√
N. In all cases, we show the result of learning a full rank

approximation of the target state, so∆R = Cnoiseless and hence 10−3 ⩽∆R ⩽ 10−2. For all but the ρ̃ϕ+

optimization we note that the noiseless cost is an order of magnitude lower than the cost evaluated on the
hardware which is indicative of optimal parameter noise resilience [12]. That is, it suggests that the position
of the global cost minimum of the cost landscape is (approximately) invariant under the action of noise.

Overall, our results show that we can successfully learn full-rank approximations of hardware relevant
states. As we might expect from the Bures and XY state results, we can also learn lower rank approximations
which we show explicitly in appendix F. The net result is very similar: we can learn lower rank
approximations to within a precision of 10−3 to 10−2, and as in the idealized classical experiments, it takes
fewer iterations to learn lower rank approximations. Alternatively, we may choose to learn a high rank
approximation of ρ with the CCPS ansatz and obtain lower rank approximations via truncation (as in
section 3.4) which we also explore for the hardware data in appendix F.
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Figure 6. Hardware Implementation of QMSCWe demonstrate the ability to compile quantum states on IBM superconducting
devices by evaluating the cost function on them. In (a), we compile random single qubit states generated by equation (34) with
both the SP and CCPS ansatz successfully. In (b), we learn two hardware-noise induced states which are described in
equations (35a) and (35b) using the SP and CCPS ansatz, respectively. Optimizations were performed on the seven-qubit devices
ibmq_casablanca (random SP result) and ibmq_jakarta (all others) using N= 105 shots to evaluate Cshot (dotted line). A
noiseless cost Cnoiseless was also computed classically for verification. In each case, 10−3 ⩽ Cnoiseless ⩽ 10−2 is reached which
denotes a successful compiling given 105 shots.

5. Discussion and outlook

We have presented an algorithm to learn an unknown mixed state ρ. In particular, we have developed a
procedure to learn a rank-R approximation to ρ, where rank(ρ)⩾ R is assumed but not essential. Put
precisely, our algorithm is a practical variational way to solve the QLRAP [18]. Applications of this algorithm
are numerous and include PCA, state compression, learning noise-induced states, and uploading of states
onto quantum computers, as described in figure 1.

We considered two ansatz constructions. If the purification ansatz is chosen, the end result is a unitary
V(θ∗) such that V(θ∗)|0⟩⊗n ⊗ |0⟩⊗nA generates a purification of the rank-R approximation of ρ. By tracing
out the nA ancilla qubits, we get the desired rank Rmixed state. For the CCPSs ansatz, the final output is a
classical vector p containing the R principal values of ρ and a unitary U(θ∗) such that U(θ∗)|i⟩ for
i ∈ {1, . . . ,R} gives the R principal vectors of ρ.

Our numerical simulations and hardware implementations indicate that our algorithm works well for a
variety of state ensembles, including random XY spin chain thermal states at arbitrary temperatures and
unknown states generated by hardware noise on superconducting qubit devices. Unsurprisingly, we found
that learning XY thermal states was easier than random states because the additional structure of the
problem opened up the possibility of using simpler ansätze. Additionally, while the SP ansatz performs better
in numerical simulations (because its optimization problem is simpler), the CCPS ansatz, as expected, allows
for larger hardware implementations because it requires fewer qubits.

For both ansätze, our algorithm provides a means of compressing the target state when rank(ρ)> R. For
the purification ansatz, the reduction is in terms of the number of qubits; for the convex combination ansatz,
the reduction is in terms of the number of pure states required to simulate the effect of the state. While the
compression of states [16, 77–81], and indeed data sets encoded in states [82], has been explored previously,
much of the compression-based literature focuses on finding the compressed state via maximizing the degree
to which the original state can be reconstructed via a successful decompression process [83].

A particularly timely application of our algorithm is for quantum PCA. While quantum PCA was
originally proposed to have an exponential speedup over classical methods for low rank states [35], it was
later dequantized for the case of classical data analysis [84], reducing speedups for this case to being modest
ones [85]. However, recently it was shown that these dequantization arguments break down for quantum
data analysis [86] and that quantum PCA for quantum data can indeed achieve an exponential quantum
speedup [87]. Moreover a simple method to encode the covariance matrix into a density matrix was recently
proposed [88], making quantum PCA an easily accessible application for near-term quantum computers.
Hence, our approach for extracting the principal components of a density matrix is especially timely, in the
quest for near-term quantum advantage.

In this article we have focused on coherent access models for quantum compilation. That is, computing
the cost using the Loschmidt echo or SWAP test requires coherent interaction between the state we wish to
compile and the device on which we wish to compile it. For this to be possible, the target quantum state
either needs to be already prepared (potentially by some unknown process) on the quantum computer or we
require a quantum sensor to mediate the interaction between the target quantum system and the quantum
computer. The former is practically viable and reasonable to assume for applications such as learning
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noise-induced states or state compression. However, further developments in quantum sensors will be
required to upload the unknown quantum state of an experimental system to a quantum computer in this
coherent access model.

An alternative approach would be to use Clifford shadow tomography [6–8] to efficiently compute the
overlap between the target state and a large set of guess compilations via independent measurements and then
classical post-processing. This incoherent version of quantum compilation could be applied in situations
where the unknown state is prepared on a platform that is very different from the hardware on which we
wish to compile it. In this manner, this approach opens up new techniques for uploading the quantum state
of experimental systems to quantum hardware. In figure 1 we sketch the difference between the coherent and
incoherent access models. Additionally, [6] provides a means of upper bounding the copy complexity of such
a compilation task. In the case of efficiently preparable target states and ansatz states, i.e. those that can be
prepared via a circuit with T ∈ O(poly(n)) local gates, thenO(T log(T/ϵ)/ϵ2)⩽ Õ(poly(n)/ϵ2) copies of the
target state ρ suffices to approximately evaluate the cost and its partial derivatives to precision ϵ arbitrarily
often [89]. Thus Õ(poly(n)/ϵ2) copies of the target ρ in theory suffice to compile it to precision Õ(ϵ).

The framework investigated in this article for mixed state compilation may more generally be applied to
the compiling of quantum channels. This follows from the fact that a channel may be represented via its Choi
representation as a mixed state. That is, a channel may be fully characterized via the mixed state generated by
applying a quantum channel to one half of a Bell state. Therefore one means of compiling a quantum
channel would be to minimize the HS distance between the Choi state corresponding to a target channel and
an ansatz mixed state, formed by applying a parameterized channel to half a Bell state. In this sense, our
algorithm further open up new avenues for learning unknown quantum processes.
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Appendix A. Local cost function analysis (HS)

As discussed briefly in section 2, barren plateaus form a barrier for trainability of VQAs for large-scale
problems. Here, we formulate and analyze different proposals of localized versions of the HS distance.

A.1. Marginal local cost function
A simple, naïve choice in 1-local cost could be formulated in terms of the HS distance between the local
reduced states. We call this cost function the marginal 1-local cost function, and it takes the same form for
both the SP and CCPSs ansatz.

Definition 1. Given two quantum states ρ and σ, let us define aMarginal 1-local cost as follows:

C(1)
M (ρ,σ) :=

1

n

n∑
j=1

∥∥ρj −σj
∥∥2
2
, (A1)
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where ρj = Trj[ρ] and σj = Trj[σ], with j denoting all system qubits except for qubit j.

This can be measured using the methods outlined in section 2. (Note, in contrast to the main text, in this
appendix we stress the dependence of the cost on the target state ρ and guess state σ.)

A successful candidate for a local cost function needs to remain faithful to the global cost, i.e. the
minimal value of the cost corresponds to the case when ρ= σ. This cost function is trivially faithful for
learning product states using a product state ansatz, i.e. if σ =

⊗n
j=1σj and ρ=

⊗n
j=1 ρj. However, it does

not take much thought to see that this local cost function is not faithful more generally. In simple terms,
different entangled states may have the same reduced states and so the local cost may vanish even when the
global states are non-identical. For example, consider the case in which ρ and σ are orthogonal Bell states, i.e.
ρ= |ψ+⟩⟨ψ+| and σ(θ,nA) = |ψ−⟩⟨ψ−|. Now, in this case, the local cost vanishes because the reduced states
are all maximally mixed

C(1)
M (ρ,σ) =

1

n

n∑
j=1

∥∥ρj −σj
∥∥2
2

(A2)

=
1

n

n∑
j=1

∥1/2−1/2∥22 = 0 . (A3)

However, |ψ+⟩⟨ψ+| ̸= |ψ−⟩⟨ψ−| and so the local cost is not faithful. In contrast, the equivalent global cost,
that is the HS distance between |ψ+⟩⟨ψ+| and |ψ−⟩⟨ψ−|, is non zero,

DHS(ρ,σ) :=
√
Tr[ρ2] +Tr[σ2]− 2Tr[ρσ] (A4)

=
√
1+ 1− 0=

√
2 , (A5)

as it should be.
The lack of faithfulness does not necessarily preclude us using it for training. We could start training on

the 1-local cost and as we approach the solution, add in k-local cost terms where we look at the distance
between the reduced states on k qubits. That is, we propose to use a cost of the following form.

Definition 2. Given two quantum states ρ and σ, and some (possibly multiple) partitioning(s)12 Pk of the set
of n qubits into Nk subsets of at most k< n qubits, where at least one set has cardinality k, let us define the
Generalized Marginal Cost as follows:

Cgen
M (ρ,σ) :=

n∑
k=1

αk(t)C
(k,Pk)
M (ρ,σ), (A6)

where

C(k,Pk)
M (ρ,σ) :=

1

Nk

Nk∑
i=1

∥∥∥ρ(k)i −σ
(k)
i

∥∥∥2
2
, (A7)

with {ρ(k)i ,σ
(k)
i }Nk

i=1 the set ofmarginals of ρ andσ as determined byPk, and the iteration dependentweightings
αk(t)⩾ 0 satisfying

∑
kαk(t) = 1.

We note that an analysis of the general behavior of C(k)
M (ρ,σ) is non-trivial as the behavior depends on

the partitions Pk. One (simple) potential choice of partition is to only allow k such that k | n, and choose Nk

sets of k qubits. In this case, for states that are k-local product states on the chosen subsets, C(k)
M (ρ,σ) would

be trivially faithful. By starting with the 1-local cost, i.e. with α1 = 1, and by slowly ramping to the global

cost C(n)
M ≡ D(n)

M (ρ,σ) by increasing the weightings of the various αk terms until αn = 1, it should be possible
to train to the minimum of the global cost. We expect this proposal to prove most useful for learning mixed
states with relatively localized entanglement.

12 Choosing partitions is relatively arbitrary. One simple choice would be to partition the n qubits into ⌊n/k⌋ subsets of k qubits and
one subset of n% k qubits. It would be natural to assign the qubits to the subsets to minimize the distance between qubits in a subset as
determined by the target state’s/hardware’s geometry. However, one can imagine sets of more complex partitions including those where
each qubit belongs to multiple subsets. For example, you could consider the set of all possible subsets of k qubits; however, this would
become resource intensive to measure in practice for 1≪ k≪ n.
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A.2. Local measurements on global states
An alternative approach to formulating a local cost function is to continue to use the full n-qubit input states,
but replace the global measurements with local measurements (similarly to [10]). As each ansatz includes
specifically prescribed measurement operators, we treat each of our ansätze separately, and derive provable
guarantees of faithfulness for special cases.

A.2.1. Local costs for CCPS ansatz
Consider the global HS cost function in the CCPS ansatz framework:

CCCPS(α,R) = Tr[ρ2] +
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)Tr
[
U†

θρUθH
(i)
G

]
, (A8)

where we write H(i)
G := |i⟩⟨i|S to emphasize the globality of the measurement. Since the purity of the target

state is not optimized and the purity of the guess state is optimized fully classically, these terms can be left

global without impeding trainability. However, for the overlap term, we seek to replace the global H(i)
G term

with some set of local measurements. There is freedom in how we may choose our local measurements, but
one simple approach is to choose the average of all 1-local measurements, as follows

Definition 3. For the CCPS ansatz, we can define a Local cost function as

CCCPS
L = Tr[ρ2] +

∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)TrS
[
U†

θρUθH
CCPS(i)
L

]
, (A9)

with

HCCPS(i)
L =

1

n

n∑
j=1

|ij⟩⟨ij|Sj ⊗1Sj
, (A10)

where, as in (18), |i⟩=
⊗n

j=1 |ij⟩ denotes an element of the computational basis of n qubits, and |ij⟩ denotes
the jth bit of the bit string i.

In order to prove faithfulness in the case of pure states, we first state and re-derive a result introduced
in [10].

Proposition 1. Let ρ be an arbitrary quantum state, and let Uθ be a parameterized unitary matrix. Denoting

ρU = U†
θρUθ , and H

(i)
L =HCCPS(i)

L , we have that

1−Tr
[
ρUH

(i)
L

]
⩽ 1−Tr

[
ρUH

(i)
G

]
⩽ n

(
1−Tr

[
ρUH

(i)
L

])
. (A11)

Proof. We can write H(i)
L = 1

n

∑n
j H

(i)
L,j , where

H(i)
L,j = |ij⟩⟨ij|Sj ⊗1Sj (A12)

are projectors that mutually commute. Note that
∏n

j=1H
(i)
L,j =H(i)

G . We can associate events Ej with the pro-

jectorsHL,j such that Pr[Ej] = Tr
[
ρUH

(i)
L,j

]
. Then, Tr

[
ρ
∏n

j=1H
(i)
L,j

]
= Pr∩n

j=1Ej. Recall, from basic probability

theory, that for any set of eventsA := {A1,A2, . . . ,An}, it holds that

Pr[∪n
i=1Ai]⩾

1

n

n∑
i=1

Pr[Ai] . (A13)

Choosing Ai = Ej, we see

Pr
[
∪n
j=1Ej

]
⩾ 1

n

n∑
i=j

Pr
[
Ej
]

=⇒ 1−Pr
[
∩n
j=1Ej

]
⩾ 1

n

n∑
j=1

(
1−Pr

[
Ej
])

=⇒ 1−Pr
[
∩n
j=1Ej

]
⩾ 1− 1

n

n∑
j=1

Tr
[
ρUH

(i)
L,j

]
=⇒ 1−Tr

[
ρUH

(i)
G

]
⩾ 1−Tr

[
ρUH

(i)
L

]
.

(A14)

18



Quantum Sci. Technol. 8 (2023) 035001 N Ezzell et al

This is precisely the first desired inequality 1−Tr
[
ρUH(i)L

]
⩽ 1−Tr

[
ρUH

(i)
G

]
. To prove the remaining

inequality, observe that, via the union bound, we have

Pr
[
∪n
j=1Ej

]
⩽

n∑
j=1

Pr
[
Ej
]

=⇒ 1−Pr
[
∩n
j=1Ej

]
⩽

n∑
j=1

(
1−Pr

[
Ej
])

=⇒ 1−Tr
[
ρUH

(i)
G

]
⩽ n

(
1−Tr

[
ρUH

(i)
L

])
.

(A15)

Thus, 1−TrSB
[
ρUH

(i)
L

]
⩽ 1−TrSB

[
ρUH

(i)
G

]
⩽ n

(
1−TrSB

[
ρUH

(i)
L

])
as required.

Proposition 2. CCCPS
L is faithful for pure states, and ‘close to faithful’ for states with low impurity. Specifically we

have that

nCCCPS
L ⩾ CG − (n− 1)(Impurity(ρ)+ Impurity(σ)) , (A16)

where Impurity(X) := 1−Tr[X2] for X= ρ and X= σ and we write CG = ∥ρ−σ∥22 to emphasize the globality
of the standard HS distance cost.

Remark 3. It follows from proposition 2, that if CD
L = 0 then

(n− 1)(Impurity(ρ)− Impurity(σ))⩾ ∥ρ−σ∥22 . (A17)

That is, if the target and trained state are pure, i.e. Impurity(σ) = Impurity(ρ) = 0, we have thatCL = 0 entails
that CG = 0. More generally, if the impurities of the target and trained states are low, CL = 0 entails that CG is
small.

Proof. From (A11), we have

1−Tr
[
ρUH

(i)
G

]
⩽ n

(
1−Tr

[
ρUH

(i)
L

])
=⇒ −Tr

[
ρUH

(i)
G

]
⩽ (n− 1)− nTr

[
ρUH

(i)
L

]
=⇒ −2

∑
i

pϕ(i)Tr
[
ρUH

(i)
G

]
⩽−2n

∑
i

pϕ(i)Tr
[
ρUH

(i)
L

]
+ 2(n− 1)

∑
i

pϕ(i), (A18)

where 2(n− 1)
∑

i pϕ(i) = 2(n− 1). Adding the purity terms to both sides gives

CG ⩽ Tr
[
ρ2
]
+Tr

[
σ2
]
− 2n

∑
i

pϕ(i)Tr
[
ρUH

(i)
L

]
+ 2(n− 1)

=⇒ CG ⩽ nCCCPS
L +(n− 1)

(
2−Tr

[
ρ2
]
−Tr

[
σ2
])
, (A19)

which can be rewritten as

nCCCPS
L ⩾ CG − (n− 1)(Impurity(ρ)+ Impurity(σ). (A20)

Accordingly, if CCCPS
L = 0, then

CG ⩽ (n− 1)(Impurity(ρ)+ Impurity(σ)). (A21)

Therefore if the purity of the target and trained states are zero, the cost is faithful; i.e.CCCPS
L = 0 impliesCG = 0.

Similarly, for high purity states the cost is approximately faithful, i.e. CCCPS
L = 0 implies CG is small.

Similar to the generalized marginal cost defined earlier, we can construct an extension of the low
impurity local cost function, such that it is local on k qubits, for k⩽ n.

One simple approach is to perform n/kmeasurements, on k qubits at a time. This naturally restricts us to
only choosing k such that k | n. Defining

Hk(i)
L :=

1

(n/k)

n/k∑
m=1

Hk(i)
Lm , (A22)
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with

Hk(i)
Lm := |iPm⟩⟨iPm |Pm ⊗1Pm

, (A23)

where Pm contains the k indices of the k qubits being measured over by themth operator, such that
P1 ∪ ·· · ∪Pn/k spans {1, . . . ,n}; we can define a k-local cost function as follows:

Definition 4. For k | n, we have the k-local cost function

Ck
L = Tr

[
ρ2
]
+
∑
i

pϕ(i)
2 − 2

∑
i

pϕ(i)TrS
[
U†

θρU
†
θH

k(i)
L

]
. (A24)

Proposition 4. Let ρ be an arbitrary quantum state, and let Uθ be a parameterized unitary matrix. Denoting
ρU = U†

θρUθ , we have that

1−Tr
[
ρUH

k(i)
L

]
⩽ 1−Tr

[
ρUH

(i)
G

]
⩽ n

k

(
1−Tr

[
ρUH

k(i)
L

])
. (A25)

Proof. Similarly to Proposition 1, we can associate events Ei with the projections Hk(i)
Lm such that Pr[Ei] =

Tr
[
ρUH

k(i)
Lm

]
. Then, Tr

[
ρU
∏n/k

m=1H
k(i)
Lm

]
= Pr

[
∪n/k
m=1Em

]
. We have that

Pr

 n/k⋃
m=1

Em

⩾ 1

(n/k)

n/k∑
m=1

Pr
[
Em
]

=⇒ 1−Pr

 n/k⋂
m=1

Em

⩾ 1

(n/k)

n/k∑
m=1

(1−Pr [Em])

=⇒ 1−Tr
[
ρUH

(i)
G

]
⩾ 1− 1

(n/k)

n/k∑
m=1

Tr
[
ρUH

k(i)
Lm

]
,

(A26)

forming one side of our inequality. We also have

Pr

 n/k⋃
m=1

Em

⩽
n/k∑
m=1

Pr
[
Em
]

=⇒ 1−Pr

 n/k⋂
m=1

Em

⩽
n/k∑
m=1

(1−Pr[Em])

=⇒ 1−Tr
[
ρUH

(i)
G

]
⩽ n

k

(
1−Tr

[
ρUH

k(i)
L

])
.

(A27)

Thus,

1−Tr
[
ρUH

k(i)
L

]
⩽ 1−Tr

[
ρUH

(i)
G

]
⩽ n

k

(
1−Tr

[
ρUH

k(i)
L

])
. (A28)

Proposition 5. The k-local cost function Ck
L is faithful for pure states, and ‘close to faithful’ for states with low

purity, with this closeness increasing with k. Specifically we have that

n

k
Ck
L ⩾ CG −

(n
k
− 1
)
(Impurity(ρ)+ Impurity(σ)) . (A29)

Remark 6. It follows from proposition 5, that if Ck
L = 0, then(n

k
− 1
)
(Impurity(ρ)+ Impurity(σ))⩾ ∥ρ−σ∥22 . (A30)

Proof. The proof is entirely analogous to that for proposition 2 but with n→ n/k.

Comparing this to the inequality found for the 1-local cost (A16), we find that the k-local cost is ‘closer to
faithful’ at low impurities than the 1-local cost. It becomes increasingly faithful as k tends to n and, trivially,
perfectly faithful for k= n. Thus similarly to the marginal local cost, we could start training on the 1-local cost
and as we approach the solution, add in k-local cost terms to drive the ansatz towards the global minimum.
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A.2.2. Local costs for SP ansatz
Consider our global HS cost function, in the SP ansatz framework:

CSP(ρ,σ(θ,nA)) = Tr
[
ρ2
]
+Tr

[
σ (θ,nA)

2
]
− 2Tr[ρσ (θ,nA)] . (A31)

Without loss of generality, we can also express ρ via its purification for analysis, i.e.

ρ= TrA
[
Vρ(|0⟩⟨0|)⊗(n+nA)V†

ρ

]
, (A32)

where Vρ is the purifying unitary associated with the target state ρ. Recall

Tr[ρσ] = dATrSA

[
U†

θ

(
ρ⊗ 1A

dA

)
Uθ(|0⟩⟨0|)⊗(n+nA)

]
(A33)

where dA is the dimension of the environment system.
In order to construct a local cost, we can replace the global (|0⟩⟨0|)⊗(n+nA) projector in each term with a

local measurement. The structure of this local measurement may, again, be chosen freely. In the case of
learning ρ completely, (i.e. R= rank(ρ)), one simple approach is to replace the global measurement with the
average of all measurements local to one system qubit and one environment qubit, i.e.

HD
L =

1

n

n∑
j=1

|0⟩⟨0|Sj ⊗1Sj ⊗ |0⟩⟨0|Aj ⊗1Aj
, (A34)

with j denoting all qubits other than qubit j. We dub this the doubly-local SP Hamiltonian.
When seeking to learn a low-rank approximation (i.e. compression) of ρ, we need not make the

measurement local on the ancilla. In this case we can use the following singly-local SP Hamiltonian,

HS
L =

1

n

n∑
j=1

|0⟩⟨0|Sj ⊗1Sj ⊗ |0⟩⟨0|A . (A35)

Definition 5. For the SP ansatz, we can define the Doubly- and Singly-local costs,

CX
L = cXL (Vρ,ρ)+ cXL (Uθ,σ)− 2cXL (Uθ,ρ) , (A36)

where

cXL (Uθ,ρ) := dATrSA
[
U†

θ (ρS ⊗1/dA)UθH
X
L

]
, (A37)

with the freedom to choose arbitrary HX
L , e.g. H

D
L or HS

L as defined above.

The terms cXL (Uθ,σ) and cXL (Uθ,ρ) can be measured using Loschmidt-echo type circuits (as discussed in
section 2) but with the global measurements replaced with local ones. However, as in general one will not
have access to Vρ, it is generally not possible to measure cXL (Vρ,ρ). Nonetheless, as this term remains
constant throughout and does not contribute to the gradient (discussed further in appendix C) it can be
neglected without effecting the optimization procedure.

The methods used to prove faithfulness of CCCPS
L for pure states do not carry over for the singly- and

doubly-local SP costs, due to the factor of dA. Thus, faithfulness for pure states for CD
L and CS

L remains an
open question. However, we can prove faithfulness for tensor-product states in the SP picture.
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Proposition 7. CD
L is faithful for tensor-product states.

Proof. In the case of tensor-product mixed states, we can write ρ=
⊗n

j=1 ρSj , Uθ =
⊗n

j=1U
θ
SjAj

. Thus the
overlap term can be written as

cDL (Uθ,ρ) = dATrSA

[(
n⊗

k=1

Uθ†
SkAk

(
n⊗

k=1

ρSk ⊗1A/dA

)
n⊗

k=1

Uθ
SkAk

)
HD

L

]

=
dA
n

n∑
j=1

TrSA

[(
n⊗

k=1

Uθ†
SkAk

(
n⊗

k=1

ρSk ⊗1A/dA

)
n⊗

k=1

Uθ
SkAk

)(
|0⟩⟨0|Sj ⊗1Sj ⊗ |0⟩⟨0|Aj ⊗1Aj

)]

=
1

n

n∑
j=1

TrSjAj

[(
Uθ†

SjAj

(
ρSj ⊗1Aj

)
Uθ

SjAj

)(
|0⟩⟨0|SjAj

)]
TrSjAj

⊗
k ̸=j

ρSk ⊗1Aj

(1SjAj

)
=

dA
2n

n∑
j=1

TrSjAj

[
Uθ†

SjAj

(
ρSj ⊗1Aj

)
Uθ

SjAj
|0⟩⟨0|SjAj

]
=

dA
2n

n∑
j=1

Tr[ρSjσSj ] .

(A38)
Thus, in this case, we have that

CD
L =

dA
2n

 n∑
j=1

Tr[ρjρj] +
n∑

j=1

Tr[σjσj]− 2
n∑

j=1

Tr[ρjσj]


∝

n∑
j=1

∥∥ρj −σj
∥∥2
2
,

(A39)

which vanishes if and only if ρj = σj for all j, i.e. assuming ρ and σ are tensor-product states, if ρ= σ.

In this subsection, we have shown how by introducing local measurements directly into our cost
function, we are able to construct local cost functions. For the case of the CCPS ansatz this construction is
provably faithful for pure states and approximately faithful for high purity states. For the case of the SP
ansatz the construction is faithful for product states. Thus we expect these costs to prove useful for learning
mixed states with relatively low impurities and low entanglement respectively. However, for target states that
are highly entangled and/or mixed, we are unable to provide guarantees on the behavior of the cost function.
In these cases, the function no longer resembles a distance measure, as positivity cannot be guaranteed. Thus
the construction of a truly faithful, yet entirely local equivalent to the HS distance remains an open question.

However, in practice one may create a cost that is both faithful and exhibits non vanishing gradients by
taking a linear combination of the absolute value of the local cost and the global cost, i.e. by training on a
cost of the form α|CL|+(1−α)CGlobal for some choice of the local cost CL and 0⩽ α⩽ 1. By tuning α such
that it is (close to) one at the start of the optimization and (close to) zero at later stages of the optimization, it
should be possible to steer towards the global minimum.

Appendix B. Circuit ansätze particulars

B.1. Summarizing the circuits in our algorithm
We summarize the circuits used to evaluate our cost function to clarify in detail how one can implement our
algorithm. In particular, we provide three circuits which sample the three terms in our cost function,

C(α,R)≡ Tr[ρ2] +Tr[σ(α,R)2]− 2Tr[ρσ(α,R)] (B1)

for both the SP ansatz and the CCPSs ansatz.

B.1.1. SP ansatz circuits
The SP ansatz generates an n qubit mixed state by applying a unitary on n+ nA qubits and tracing out the nA
ancilla,

σSP(θ,nA) := TrA[Uθ(|0⟩⟨0|)⊗(n+nA)U†
θ]. (B2)
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Figure 7.We summarize the circuits used in evaluating the cost function for the SP ansatz. (Left) An example circuit preparing a 3
qubit mixed state with 2 ancilla. (Middle) A Loschmidt-echo style circuit to measure the purity of σSP(θ,nA), i.e. Tr[σSP(θ,nA)2].
(Right) The same Loschmidt-echo circuit is also capable of measuring the cross term, Tr[ρS ·σSP(θ,nA)], when the input state
is ρS.

Figure 8. Two circuits to evaluate Tr[ρS ·σSP(θ,nA)] or Tr[σSP(θ,nA)2] by choosing ρS = σSP(θ,nA). (Left) A version of the
SWAP test as first discussed in [45]. For completeness, we demonstrate that this circuit works as intended from equations (B3)
to (B8) since [45] is not explicit for our context. This requires an ancilla and a controlled swap (aka Fredkin) gate. As the proof will
show, this circuit can be straightforwardly generalized to n qubit states by performing an 2 n qubit SWAP rather than a two qubit
SWAP. (Right) A destructive variant of the SWAP test discovered in the context of optical systems and the Hong–Ou–Mandel
effect in [46]. This removes the need for ancilla and a complicated Fredkin gate but destroys the prepared states in the process in
what is known as a Bell measurement.Much of [46] is dedicated to showing the right circuit is equivalent to the left circuit, so we
do not re-derive the entire result here. Instead, we comment on how to connect the measurements of the circuit to the desired
quantity in equation (B10). We then discuss how to generalize this procedure to n qubit mixed states in equation (B11).

The translation of this procedure into a quantum circuit is straightforward and is shown for an n= 3, nA = 2
example in the left-most circuit of figure 7. Given U(θ), we can measure an estimate of our cost function
using the remaining two Loschmidt echo style circuits shown in figure 7. The middle circuit evaluate the
purity term Tr[σSP(θ,nA)2] and the right-most circuit evaluates the cross term Tr[ρS ·σSP(θ,nA)] which we
showed in the main text equation (17). Note that we omitted providing a circuit to measure the purity of ρS
since this is a static term during the optimization anyway. If desired, one could simply use middle circuit and
replace σSP(θ,nA) with ρS.

In the middle purity evaluation circuit, we avoid writing out the circuit which prepares σSP(θ,nA) a
second time. However, it is worth mentioning that generating σSP(θ,nA) itself takes nA ancilla, so the middle
circuit takes a minimum of n+ 2nA qubits without resetting the ancilla A to use twice. As for preparing the
totally mixed state on the ancilla system, this can be done in two ways. In the first, we prepare one of 2nA basis
states with a uniformly random probability for every shot that C is evaluated. Alternatively, one may choose
to actually prepare the uniformly mixed state which can be done by preparing any completely entangled
bi-partite state (i.e. a GHZ state) on 2nA qubits. In the latter case, the middle circuit therefore uses n+ 3nA
qubits.

We also draw attention to the fact that we use U(θ) to prepare σSP(θ,nA) in the first circuit but U†(θ) in
the two cost function evaluation circuits. The use of U†(θ) is fleshed out mathematically in equation (17) of
the main text. Intuitively, it is as if U† is undoing the preparation circuit U–hence the name Loschmidt-echo
like circuit. In fact, the final cost term is ultimately evaluated by counting the number of 0s obtained at the
final registers which corroborates this intuition.

As discussed in the main text, the Loschmidt echo circuits we cooked up in figure 7 are NISQ friendly but
incur a poor shot scaling as nA grows. If in practice, nA is on the order of n and both are large, then it is best
to instead use SWAP test circuits [45] or their destructive variant [46]. The SWAP and destructive SWAP
circuits to evaluate Tr[ρS ·σSP(θ,nA)] are shown in figure 8. Note that these also can be used for
Tr[σSP(θ,nA)2] by replacing ρS with σSP(θ,nA). While the references ultimately contain sufficient
information to deduce that these circuits work as claimed, it is not obvious at a glance. For posterity and
completeness, we provide a tailored derivation of the claim in the present context.

We begin by showing that the left SWAP test circuit is sufficient to measure Tr[ρσ] (we have dropped
subscripts for simplicity). The first thing we need to know for this derivation is that

Tr[(ρ⊗σ)SWAP] = Tr[ρσ]. (B3)
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As we will see, our goal will be to find an observable on the ancilla qubit alone whose expectation value gives
us the left-hand side of equation (B3). From this identity, the desired outcome follows, and this is why we call
it a SWAP test method.

Consider the state right after the controlled SWAP (aka Fredkin) gate which we shall call ω for
concreteness. By simple Dirac notation manipulations, we arrive at,

ω ≡ (|0⟩⟨0| ⊗1+ |1⟩⟨1| ⊗ SWAP)(|+⟩⟨+| ⊗ ρ⊗σ)(|0⟩⟨0| ⊗1+ |1⟩⟨1| ⊗ SWAP) (B4)

=
1

2
{|0⟩⟨0| ⊗ ρ⊗σ+ |0⟩⟨1| ⊗ (ρ⊗σ SWAP)+ |1⟩⟨0| ⊗ (SWAP ρ⊗σ)+ |1⟩⟨1| ⊗σ⊗ ρ} . (B5)

The second line can be thought of as block matrix,

ω =
1

2

(
ρ⊗σ (ρ⊗σ)SWAP

SWAP(ρ⊗σ) σ⊗ ρ

)
. (B6)

Right before measurement we are then left with the state HωH. Since we then only make a measurement
on the ancilla qubit, we will only need the diagonal entries of this block matrix to choose the right observable
to measure. In particular, we find

HωH

=
1

4

(
ρ⊗σ+(ρ⊗σ)SWAP+ SWAP(ρ⊗σ)+σ⊗ ρ · · ·

· · · ρ⊗σ− (ρ⊗σ)SWAP− SWAP(ρ⊗σ)+σ⊗ ρ

)
.

(B7)

Staring at equation (B7) in light of equation (B3), we see that the right observable is σz. Indeed,

Tr[σzHωH] = Tr[ρ⊗σSWAP] = Tr[ρσ]. (B8)

Note that the above derivation really only relied on the fact that SWAP(ρ⊗σ) SWAP= σ⊗ ρ. Hence, this
circuit works to evaluate Tr[ρσ] when ρ and σ are composed of an arbitrary number of qubits despite the
way our diagram implies they are single qubit states. We simply chose to write it this way since it is easier to
interpret and reason in this way afterwards then try to worry about multiple qubits form the start.

Next, we discuss the right destructive SWAP variation. Let’s again begin by considering that ρ and σ are
single qubit states. It turns out, the relevant measurement is the projection into the |11⟩⟨11| subspace. In
particular, let

P11 = Tr[|11⟩⟨11| ·H ·CNOT · ρ⊗σ ·CNOT ·H] (B9)

be the probability that the final result from the destructive SWAP circuit is |11⟩. Then,

Tr[ρσ] = 2(1− P11)− 1 (B10)

gives us the desired quantity.
An n qubit generalization is not quite as straightforward as the SWAP test generalization. In particular, we

replace the single CNOT and Hadamard with a transversal application of CNOTs and Hadamards–i.e. figure
11 in [46]. Further, we do not just project onto |1 . . .1⟩⟨1 . . .1|. In fact, the augmented procedure is actually
easier to state at the level of individual measurements rather than projectors. Supposing ρ and σ are n qubit
states, then we can label the measurement outcomes for the first n ρ registers with a bitstring a and of the σ
registers b. We say the test ‘fails’ when the bit-wise and of the two bit-strings has odd parity, i.e. |a∧ b| is odd.
Identifying Pf as this failure probability obtained by repeating this procedure ad infinitum, we again find

Tr[ρσ] = 2(1− Pf)− 1. (B11)

As a sanity check, we can confirm that Pf corresponds to P11 for the single qubit case. Here, the bit-strings
each have one element, so the condition reduces to |a∧ b|= 1 which occurs if and only if a= b= 1. An
alternative derivation for the n-qubit destructive SWAP test viewed as a Bell basis measurement can be found
in [90] (page 8) whose intuition can be understood from [91] (page 6).
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Figure 9.We summarize the circuits used to evaluate the cost function for the CCPS ansatz. (Left) A generic way to prepare a
randomly sampled eigenvector of the CCPS state. Here, the state |i1i2 . . . in⟩ is a short-hand for an n qubit computational basis
state, so each ij is either 0 or 1. Given the randomly sampled bitstring, we can prepare the desired state with single qubit X gates,
and then we apply the same unitary Uθ regardless of the randomly sampled input. (Right) Here, we provide a circuit to sample

the distribution qθ(i) defined in equation (B14). We simply prepare ρS, apply U
†
θ , and measure each qubit separately in the

computational basis. By equation (B14) and the fact that pϕ(i) is stored classically, we can therefore compute the desired cross
term using a classical SWAP test as described in the main text around equation (24).

B.1.2. CCPS ansatz circuits
A mixed state is often thought as a probabilistic mixture of pure states. The CCPS ansatz is a direct
implementation of this idea,

σCCPS(α,R) :=
R−1∑
i=0

pϕ(i)Uθ|i⟩⟨i |U†
θ. (B12)

Namely, experimental observables are obtained by averaging over many experiments in which the input state
is Uθ|i⟩ chosen with probability pϕ(i) 13. The ensemble of circuits can thus be represented by Uθ acting on
an input basis vector |i⟩ as in figure 9. One can choose any set of basis vector {|i⟩}R−1

i=0 , but for our work, we
choose the set of computational basis states14. Given a the preparation unitary Uθ , we can use the right
circuit to sample the distribution

qθ(i) := ⟨i|U†
θρUθ|i⟩. (B13)

As discussed in the text surrounding equation (24), this distribution–alongside the classically stored
pϕ(i)–allow us to compute the cross term

Tr[ρσ] =
∑
i

pϕ(i)qθ(i) (B14)

by using the classical SWAP test.
As before, we omit a procedure to estimate Tr[ρ2S] which does not affect the optimization. This time,

however, we have also omitted a circuit to estimate Tr[σ2CCPS] since this is done entirely classically again using
the classical SWAP test. Other than that, the only subtlety in our circuits is simply that we have not explicitly
written out different lines for different qubits. The reason is that for this ansatz, there are no ancilla qubits
necessary, so it is understood that each line is for n qubits. As mentioned in the caption, the measurement is a
single qubit measurement on each qubit.

B.2. The parameterized circuits used forU(θ)
So far, we have described all the circuits where U(θ) was understood to be some PQC. Here, we define and
justify the choices we make for the different classes of states we consider. We begin with an abstract
description of a hardware efficient tiling. We then discuss how this tiling is applied for the parameterized
circuits in the SP ansatz and the CCPS ansatz. Then we move into specifics for Bures random states, XY
thermal states, and hardware noise induced states. As discussed in the main text, the CCPS ansatz
automatically provides a description of the principal components of the target state ρ in the computational
basis. This is not generally true for the SP ansatz, and we conclude with a discussion of how to generate an SP
ansatz that does allow for extraction of the principal components but note that it is generally not
practical.

13 When R is small, we can think of pϕ(i) as a probability vector with entries pi stored in classical memory. The funnyϕ notation conveys
the fact that R can be exponentially large in general, and more involved means of storing and sampling this distribution must be used in
this case.
14 This is not just a matter of simplicity. The value in this choice is that we can reach any computational basis state with a depth 1 circuit–
namely one applying an X gate on those qubits initialized in |1⟩ and identity otherwise. Thus, to reach a ‘complex state,’ we must use
a deep circuit ansatz Uθ . A different choice for |i⟩ could lead to hiding the necessary complexity of the circuit ansatz in practice where
|0⟩⊗n is the initial state.
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Figure 10. A hardware efficient tiling of a two-qubit gateW(θ) across a linearly connected five-qubit circuit. The notation θlk is
meant to convey the parameters of the kth gate in the lth layer. Each layer consists of n− 1 applications ofW for n qubits.

B.2.1. Hardware efficient tiling and its use in the CCPS and SP ansätze
LetW(θ) be an unspecified two-qubit gate parameterized by a vector of angles, θ. A hardware efficient tiling
ofW is given in figure 10. A single layer consists of what is shown in the ‘dotted rectangle’ on the left. The
name hardware-efficient comes from the fact that for a linearly connected device, only neighboring qubits
need to be coupled, and so no swaps are needed. Furthermore, each layer consists of a depth-2DW circuit
only, where DW is the depth ofW itself.

For the CCPS ansatz, we simply apply a hardware efficient tiling on the n qubits. That is,

UCCPS
θ =

L∏
l=1

n−1∏
k=1

W(θlk), (B15)

where the product over k represents the application of each gate in layer l and the product over l is for L
layers, which is chosen depending on the class of state. For the SP ansatz, we simply apply the same tiling but
to the n+ nA system plus ancilla qubits,

USP
θ =

L∏
l=1

n+nA−1∏
k=1

W(θlk). (B16)

B.2.2. Bures random state ansatz
There are no non-trivial symmetry operators S for which [ρ,S] = 0 for all ρ drawn from the Bures measure.
Without any inherent symmetry structure, we choose the most genericW : an arbitrary two-qubit gate; i.e.W
can express any rotation in U(4). By the KAK decomposition [92–94], we can decomposeW using three
CNOTs and 15 elementary single qubit rotations (see figure 7 in [94] for example). Next, note that one way
to generate ρ from the Bures distribution is through applying a Haar random unitary on 2n qubits, and then
putting this state in coherent superposition with the same state changed by a local transformation on the n
system qubits and then tracing out the ancilla [70] (see equation (D4)). This suggests that no low-depth
circuit exists to faithfully generate ρ, so we choose L= n. This gives a total of 15n(n− 1) trainable
parameters. As discussed in Cerezo et al [21], we expect a linear depth alternating ansatz with this many
parameters to exhibit a barren plateau and thus to not be scalable. However, in fact, we know that trying to
learn a Haar random unitary induces a barren plateau regardless of the choice of ansatz when no other
information is known [95]. Hence, this class of states is likely not scalable beyond the small sizes testable in
the NISQ era anyway. To that end, it serves as a proof of principle that even the most difficult states (for
tractable sizes) can be learned by our method.

B.2.3. XY model ansatz
The XY model does exhibit symmetries. In particular, the spin model is particle conserving, and as a chain in
2D, it is invariant under any global rotation. As discussed in [96], the structure of the XY model can be used
to design a generically good ansatz usingO(n2) gates with circuit depthO(n logn). However, as discussed in
appendix 3c of [97], one can instead use n alternating layers of Givens rotations which still obeys the
symmetries but results in a lower 2n depth with a gate count of n2 − n. The Givens rotation is a single
parameter gate,

G(θ) =


1 0 0 0
0 cos(θ/2) − sin(θ/2) 0
0 sin(θ/2) cos(θ/2) 0
0 0 0 1

 , (B17)

which rotates in the subspace where |00⟩ and |11⟩ are fixed.
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Figure 11. SP PCA Ansatz. An example SP PCA ansatz acting on 3+ 2 qubits. We first apply a gate VA on the nA = 2 ancilla,
connect the two sets of qubits with a CNOT cascade, and then apply a gate VS on the system qubits.

In our work, however, we want to associate the state |0⟩⊗n in the CCPS ansatz to the first principal
component of ρ. Hence, |0⟩⊗n should not in general be preserved. As a fix, we can consider other Givens
rotations that differ from G(θ) by an arbitrary permutation of basis elements. For example,

G ′(θ) =


0 1 0 0

cos(θ/2) 0 0 sin(θ/2)
− sin(θ/2) 0 0 cos(θ/2)

0 0 1 0

 , (B18)

is also a valid Givens rotation where the set of fixed states is permuted. To avoid attaching to a fixed choice,
we define a Givens gate as

W(θ1,θ2,θ3) = G(θ1)G
′(θ2)G(θ3), (B19)

which is analogous to an Euler decomposition of a rotation in 3D as RX(θ1)RY(θ2)RX(θ3). Using a tiling of
thisW, we find empirically that a depth L= logn is sufficient, and so use a total of 3(n− 1) log(n)
single-parameter gates with depth 3 log(n), which represents yet another improvement over [42].

B.2.4. Ansatz for hardware implementation
To learn the purification (i.e. the SP ansatz) of the single qubit state ρ+, we used an arbitrary two-qubit gate
built up with the previously mentioned KAK decomposition. For the pure state approximation, we simply
forgo using an ancilla. In other words, for the R= 1 approximation of ρ+, we used a single qubit circuit
ansatz,

WR=1
ρ+

(θ1,θ2,θ3) = RZ(θ1)RY(θ2)RZ(θ3), (B20)

on the system qubit.
To learn the principal components and values of ρΦ+ with the CCPS ansatz, we use an arbitrary

two-qubit circuit U2. The principal components are then obtained as {U2|00⟩,U2|01⟩,U2|10⟩,U2|11⟩}
whereas the principal values are stored as a vector we train over, {p00,p01,p10,1− (p00 + p01,+p10)}.

B.3. SP PCA ansatz
We note that it is possible to construct an SP ansatz that allows for the principal components of ρ to be
extracted using measurements in the computational basis. For clear reasons, we call this the PCA ansatz, and
we show a generic example of such an ansatz in figure 11. The idea bears some similarities to the ansatz
recently presented in [98].

To see why this is a PCA ansatz, we first consider the action of a generic version of the circuit in figure 11,
proceeding step by step. The state before the CNOT cascade is as follows:

|ϕ1⟩ ≡ (1S ⊗VA) |0⟩⊗nS
S |0⟩⊗nA

A (B21a)

= |0⟩⊗nS
S

1∑
i1,i2,...,inA=0

ci1,i2,...,inA |i1, i2, . . . , inA⟩A. (B21b)
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After applying the CNOTs, we get

|ϕ2⟩ ≡
nA−1∏
i=0

CNOTnS+i,nS−(i+1)|ϕ1⟩ (B22a)

= |0⟩⊗nS−nA
S

1∑
i1,i2,...,inA=0

ci1,i2,...,inA |i1, i2, . . . , inA⟩S|i1, i2, . . . , inA⟩A (B22b)

=
1∑

i1,i2,...,inA=0

ci1,i2,...,inA |0, . . . ,0, i1, i2, . . . , inA⟩S|i1, i2, . . . , inA⟩A (B22c)

=
2nA−1∑
k=0

ck|k̃⟩S|k⟩A, (B22d)

where we introduced an arbitrary simpler indexing at the end. The choice of tilde on the S basis ket is to
emphasize that there is a leading nS − nA qubits in the all-zeros state.

By applying a system local unitary VS and then tracing out the ancilla, we get

σS ≡ TrA

2nA−1∑
k,j=0

ckc
∗
j (VS ⊗1A)|k̃⟩S|k⟩A⟨̃j|S⟨j|A(V†

S ⊗1A)

 (B23a)

=
2nA−1∑
k=0

pkVS|k̃⟩⟨k̃|V†
S, (B23b)

where in the last step we simply identified |ck|2 = pk as probabilities. For arbitrary VA and VS, the state σS is
an arbitrary rank-2nA density matrix, and hence, this is clearly a legitimate ansatz for a density matrix on S.

At the same time, this ansatz prepares the state

σA ≡ TrS[|ϕ2⟩⟨ϕ2|] =
2nA∑
k=1

pk|k⟩⟨k|A (B24)

on the ancilla system. By inspection of σA and |ϕ2⟩ we see that a measurement of the ancilla in the
computational basis yields the state

|uk⟩ ≡ VS|k̃⟩S|k⟩A (B25)

with probability pk. Hence, a measurement of the ancilla prepares the eigenstates of σS, VS|k̃⟩ with
corresponding probability pk. Provided σS ≈ ρ as a result of a successful training, this gives us a way to
probabilistically prepare the first 2nA principal components of ρ. In particular, by repeatedly preparing σS

and measuring the ancilla, we prepare the kth principal component with probability pk.

Appendix C. Gradient analysis for SP ansatz

The HS distance cost for the SP ansatz takes the form CSP(θ,nA) = Tr[ρ2] +Tr[σ(θ,nA)2]− 2Tr[ρσ(θ,nA)],

where the trial state σ(θ,nA) is found via its purification, i.e. σSP(θ,nA) := TrA[Uθ(|0⟩⟨0|)⊗(n+nA)U†
θ], for

our vector of training parameters θ. The gradient with respect to θ is given by

∇CSP(θ,nA) =∇Tr
[
ρ2
]
+∇Tr

[
σ (θ,nA)

2
]
− 2∇Tr[ρσ (θ,nA)] . (C1)

The Tr[ρ2] term vanishes trivially due to a lack of dependence on θ, whilst the overlap term Tr[ρσ(θ,nA)]
obeys the standard parameter shift rule [57, 58]. In our work, we specifically use the ‘Pauli parameter shift
rule’ in which the circuit ansätze are described using single qubit gates of the form Pk = e−iθσk/2 for Pauli
σk and parameter free CNOTs. In this case, the shift refers to running the circuit with θ→ θ±π/2 (this
will become clear in the next equation). This choice is motivated by our use of IBM devices where this is the
appropriate gate set.
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We can still use the Pauli parameter shift rule for the Tr[σ(θ,nA)2] term after applying a matrix
differentiation rule [99, equation (11.175)]. Namely, given some function f (x) we have that
∂
∂θTr[ f(A(θ))] = Tr

[
g(A(θ))∂A∂θ

]
where g(x) := ∂f

∂x . Thus we have that

∂Tr
[
σ(θ,nA)2

]
∂θk

= 2Tr

[
σ(θ,nA)

∂σ(θ,nA)

∂θk

]
= Tr

[
σ(θ,nA)σ

(
θ+

π

2
· ek,nA

)]
−Tr

[
σ(θ,nA)σ

(
θ− π

2
· ek,nA

)]
,

(C2)

where in the second line we use the Pauli parameter shift rule (hence the±π/2) as applied directly to an
operator rather than an expectation value. Thus we have the complete analytic expression to compute
∇CSP(θ,nA). We note that the gradient analysis for the local costs is entirely analogous.

Appendix D. Description of state ensembles

D.1. Bures random states
Before diving into what a Bures random state is specifically, it is helpful to discuss a few general
considerations regarding generating random quantum states, as is done in the brief introduction of [69].
Generally, random quantum states are selected from a distribution that is invariant under global unitary
transformations. For pure states, this single property uniquely defines a probability measure known as the
Haar measure. But for mixed states, this property does not uniquely specify the measure. Assuming the
distribution of eigenvectors and eigenvalues is independent, then we can write the probability measure over
mixed states as [70]

dµ= dν(λ1,λ2, . . . ,λN)× dµV, (D1)

where dµV is the Haar measure and dν is the measure over the normalized eigenvalues. So the problem is
that we must also specify dν, which, while trivial for pure states, is unclear for mixed states.

There are many protocols one can follow to determine dν, but the most mathematically straightforward
is to define a measure from the normalized volume elements of a metric [69, 70]. In this formalism, the key is
then to choose an appropriate metric. The Bures distance, given by

DB(ρ,σ) :=

√
2− 2Tr

[√√
ρσ

√
ρ

]
, (D2)

has many attractive properties as an unbiased choice. Many of these properties were first pointed out by Bures
himself [100], but simpler explanations are provided in Hall [69] and Zyczkowski et al [70]. The summary in
Zyczkowski et al [70] is especially concise: the Bures metric (i) has an interpretation as a distinguishability
measure [101, 102], (ii) is the minimal monotone metric under quantum channels [103], and (iii) gives the
statistical distance when applied to two diagonal operators [70]. The form of dν is given in equation (13) of
Zyczkowski et al [70], and for brevity, we call states drawn from this measure Bures random states.

For numerically tractable system sizes, generating a Bures random state is straightforward [70]. First, we
generate a 2n × 2n Ginibre randommatrix G [104] with complex entries15. Then, we generate a Haar random
unitary matrix U with the same dimensions. With these two matrices, the random state is given by

ρB =
(1+U)GG†(1+U†)

Tr[(1+U)GG†(1+U†)]
. (D3)

An alternative, more physically motivated way to generate the states is to construct a superposition of a
random bipartite state |ψ1⟩= UAB|0,0⟩ with a local transformation of the same state, |ψ2⟩= (VA ⊗1)|ψ1⟩
and then trace out the B degrees of freedom (see figure 5 in [70]),

ρA =
TrB|ϕ⟩⟨ϕ |
⟨ϕ |ϕ⟩

|ϕ⟩ ≡ [(1+VA)⊗1]|ψ1⟩. (D4)

15 The exact description is just a matrix whose entries are Gij = x+ i y where x,y∼N (0,1).
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Figure 12. XY thermal state ϵ-rank depends on β. We show the distribution of ϵ-ranks (rϵ) for the n= 7 and n= 8 XY thermal
state instances (25 per (n,β)). At β= 20 (low temperature), the resulting rank never goes beyond rϵ = 4. For n= 7, the ground
state is doubly degenerate, so rϵ ⩾ 2 as well. For n= 8, the ground state is unique, so rϵ = 1 is reached for some of the states. For
β= 2, the ranks go from rϵ = 4 all the way up to rϵ = 14,20 for n= 7,8, respectively.

D.2. XY thermal states
By XY thermal states, we mean states of the form

ρ(XY)n =
e−βHXY

Tr[e−βHXY ]
, (D5a)

HXY =
n−1∑
i=1

JiXiXi+1 +KiYiYi+1, (D5b)

where Ji,Ki ∼N (0,1) are i.i.d. normal random variables. By controlling β, we control the effective rank rϵ of
the random states generated in this way, which we demonstrate in figure 12 with ϵ= 1/100. The reason is
simple: At β =∞ (i.e. T= 0), we expect a system with a non-degenerate ground state to be in its pure
ground state which has rϵ = 1. For a degenerate ground state, we get a totally mixed state in the ground-state
subspace, so if the degeneracy is g0, we find rϵ = g0. For small but non-zero temperatures (β= 20 here), the
state is a convex combination of low-lying energy states, so rϵ > g0 for most choices of ϵ. As β decreases, the
state becomes closer to the totally mixed state until it actually reaches it at β= 0. By choosing a larger
intermediate temperature (β= 2 here), we interpolate between the two extremes and simply get a Gibbs state
with large ϵ-rank but without being completely mixed.

Despite the random states having different coefficients (and subsequent rank), the model still respects
important symmetries. Most importantly, our XY model is a chain in 2D. Hence, it is invariant under any
global rotation of all spins, and furthermore, the number of spins is constant. These symmetries allow us to
greatly simplify the choice of ansatz to one that respects these symmetries, as discussed in appendix B.

Appendix E. Computing figure of merit

Our figure of merit comes from the solution to the QLRAP [18]. Namely, the QLRAP is to find the state
σopt(R) that satisfies

σopt(R) = argmin
σ⩾0,rank(σ)⩽R,Tr(σ)=1

D(ρ,σ)2. (E1)

As shown in [18], the unique optimal solution for the HS distance is given by

σopt(R) = τR +NR, (E2a)

τR ≡ΠRρΠR, (E2b)

NR ≡
1−Tr[τR]

R
ΠR, (E2c)

with corresponding minimal HS cost

C(αopt,R) = Tr
[
(I−ΠR)ρ

2
]
+Tr

[
N2

R

]
. (E3)
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Figure 13. Demonstrating meaning of∆R performance metric. On the left, we show an example optimization of a seven-qubit
XY model thermal state which illustrates what∆R means pictorially. Namely, for the same fixed state, we use the CCPS ansatz to
find a rank R= 1,2,3,4 approximation. The resulting optimizations terminate when the learned cost is approximately equal to
the optimal costs represented by horizontal lines. The difference between the final cost and the optimal cost is what is plotted on
the right box-plots. The variation in performance for each R comes from sampling over 25 random states (see appendix D.2).

With a little algebra, it is easy to see that the first term corresponds to the sum of squares of the r−R
eigenvalues of ρ not approximated (assuming rank(ρ) = r), and the second term accounts for the constant
offset between the first R eigenvalues of ρ and the R re-normalized eigenvalues of σopt.

Any compilation of ρ as described throughout our paper will find an empirical cost
C(α∗,R)⩾ C(αopt,R), so a simple figure of merit is just their difference:

∆R ≡ C(α∗,R)−C(αopt,R). (E4)

In figure 13, we help clarify how we compute this difference for an example optimization of a seven-qubit XY
thermal state using the CCPS ansatz with R ∈ {1,2,3,4}. Pictorially,∆R is the vertical distance between the
final cost (solid line) and the optimal cost (horizontal dashed line).

Appendix F. Additional hardware results

In section 4, we successfully compiled full rank approximations of the one qubit states ρHS and ρ̃+ and the
two qubit state ρ̃Φ+ (see the referenced section for state definitions). In particular, within an allotted budget
of 100 Powell iterations, we optimized to a cost value on the order of 10−3 ⩽ Cnoiseless ⩽ 10−2 which is close
to the precision floor allowed by our use of 105 shots to evaluate the cost function. Here, we present
additional hardware results where we compile lower rank approximations of these states either directly as in
figure 14 or indirectly through truncation of the learned full rank CCPS state as in figure 15. For convenience,
we have included the full-rank optimizations shown in section 4 alongside the lower rank optimizations.

In figure 14(a), we compile a full rank (i.e. rank two using nA = 1 ancilla) and a pure state (nA = 0)
approximation of the single qubit state ρ̃+ using the SP ansatz. In the full rank case, we find
Cnoiseless(nA = 1) = ∆2 ≈ 6.44× 10−3. In the pure state case, we find Cnoiseless(nA = 0) = 2.5× 10−2, but the
optimal possible cost is C∗(nA = 0) = 4.1× 10−3. Thus,∆1 = 2.1× 10−2, which is an acceptable final value
on the order of 10−2. It is also interesting to note that around nit = 10, the difference is minimal, reaching
Cnoiseless(nA = 0) = 4.3× 10−3 =⇒ ∆1 = 2.0× 10−3. However, it is not forthright to report this as the final
found value since it relies on knowledge of Cnoiseless to pick the right nit whereas our optimization stopping
condition does not (i.e. it relies on Cshot only).

In figure 14(b), we compile a full rank (R= 2) and a pure state (R= 1) approximation of the single qubit
state ρHS using the CCPS ansatz. In the full rank case, we find Cnoiseless(R= 2) = ∆2 = 8.2× 10−3. In the
pure state case, we find Cnoiseless(R= 1) = 4.3× 10−2, but the optimal possible cost is C∗(R= 1) =
3.3× 10−2, so∆1 = 9.9× 10−3 which is an acceptable final value on the order of at least 10−2.

Overall, we find that direct pure state compilations of ρ for both ansätze are learned to an acceptable
value of∆1. In addition, we find that finding this value takes fewer iterations for both ansätze suggesting that
finding a lower-rank approximation is easier. This observations was also found for the Bures random and XY
random thermal states in idealized noiseless, infinite shot classical simulations. Given that the lower-rank
optimization requires fewer learnable parameters alongside these empirical results, we suspect this to be a
general property of our algorithm. Namely, learning a lower rank approximation is easier.

In figure 15 we explore the quality of indirect compilations of ρ̃Φ+ by truncating a full-rank compilation.
The results here mirror those in section 3.4 but for the hardware optimization of ρ̃Φ+ . The story here is a bit
more interesting on account of finite shot noise, however. The punchline is that due to having only a
precision of roughly 10−2, our R= 4 optimization found a local minimum, Cnoiseless(R= 4) = 6.8× 10−2
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Figure 14. Direct low rank compilations of single qubit hardware states. We perform a direct full-rank and low-rank compilation
of ρHS with the SP ansatz on the (left) and of ρ̃+ with the CCPS ansatz on the (right). By direct we mean we performed a separate
and independent compilation of the same state with an ansatz supporting a rank two or rank one approximation. Since these are
one qubit states, this encompasses all interesting possibilities. For the rank one approximation, we also include a horizontal line,
C∗, which denotes the lowest possible value of the noiseless cost. The difference between the final value of Cnoiseless and this line
denotes∆R as shown explicitly on the (left) plot.

Figure 15. PCA analysis of ˜ρΦ+ when compiled on hardware using CCPS ansatz. In (a), we show the optimization result when
finding a direct full-rank (R= 4) compilation of ρ̃Φ+ . Given this CCPS ansatz, we can obtain any R ′ < 4 approximation for free
by truncation. As an example, we plot the found cost when truncating to a rank two approximation, CR=4→2

noiseless , as a solid
horizontal line. The optimal possible value for this cost, C∗, is shown in a dot-dashed line. The vertical distance between these
lines denotes their difference,∆R ′=2. In (b), we show the quality of our truncation state for different truncation levels from

R ′ = 4 (no truncation) to R ′ = 1 (maximum truncation to a pure state). For each R
′
, we plot the value of the found truncated

cost C(α∗,R→ R ′) (left, blue) as well as the optimal possible cost C(αopt,R→ R ′) (right, orange). The difference between
these costs is∆R ′ and is pictorially the height difference in the bars. In (c), we show the principal values (ordered eigenvalues) of
the target state ρ̃Φ+ and the learned CCPS state σCCPS(α∗,R= 4).

(see figure 15(a)), that is effectively a rank one approximation. In other words, a pure state approximation of
ρ̃Φ+ is sufficient to reach the cost noise floor, and this pure state solution was found in our hardware
optimization.

With the punchline stated, the empirical quality of the truncated states is summarized in figure 15(b).
Evidently, the pure state approximation (R ′ = 1) is closest to its optimal value since∆R ′=1 = 1.2× 10−3. On
the other hand,∆R ′>1 is an order of magnitude higher in all cases, i.e.∆R ′ = 2= 1.6× 10−2,
∆R ′=3 = 1.8× 10−2, and∆R ′=4 = 6.8× 10−2. In fact, the quality monotonically decreases with R

′
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increasing. This suggests that the performance of our R= 4 compilation is dominated by the quality of the
estimate of the first principal component. In figure 15(c), we verify this intuition by seeing that the
numerically optimal CCPS state, σCCPS(α∗,R= 4), is essentially a pure state. Namely, it only has non-trivial
support on the largest principal value. This interesting observation aside, we ultimately find that truncated
costs have a comparable∆R ′ to the original∆R, so the indirect compilation of the full-rank CCPS state into
lower rank approximations works well.
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