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Abstract
Tokamaks allow to confine fusion plasma with magnetic fields. The prediction/reconstruction of
the last closed-flux surface (LCFS) is one of the primary challenges in the control of the
magnetic configuration. The evolution in time of the LCFS is determined by the interaction
between the actuator coils and the internal tokamak plasma. This task requires real-time capable
tools to deal with high-dimensional data and high resolution at same time, where the interaction
between a wide range of input actuator coils with internal plasma state responses adds an
additional layer of complexity. In this work, we present the application of a novel state-of-the-art
machine learning model to LCFS reconstruction in an experimental advanced superconducting
tokamak (EAST) that learns automatically from the experimental data of EAST. This
architecture allows not only offline simulation and testing of a particular control strategy but can
also be embedded in a real-time control system for online magnetic equilibrium reconstruction
and prediction. In real-time modeling tests, our approach achieves very high accuracies, with an
average similarity of over 99% in the LCFS reconstruction of the entire discharge process.
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1. Introduction

One core research of tokamak physics is the regulation of
the magnetic field distribution, which is needed to keep the
plasma confined. Magnetic control is not trivial, in particu-
lar for advanced configurations, because the resulting distri-
bution of the magnetic fields is determined by the interaction
of complex, sometimes unpredictable plasma state evolution
with a wide range of actuator inputs. Therefore, tools cap-
able of efficiently and reliably reconstructing the evolution
of magnetic fields [1–4] are paramount for the design of
experiments and the development of robust control strategies.
The conventional approach to this time-varying, non-linear,
high-dimensional task is to solve an inverse problem to pre-
compute a set of actuator coil (poloidal field coils, etc.) cur-
rents and voltages [3, 5, 6]. Then, the real-time estimates of
the tokamak plasma equilibrium through a simulation code
[4, 7, 8] allow modulating actuators’ coil voltages to achieve
the desired target. Although these physical simulation codes
are usually effective, they require substantial effort and expert-
ise by physicists to adapt a model whenever the tokamak
magnetic configuration is changed. To overcome these bot-
tlenecks, the fusion community has recently started investig-
ating machine learning (ML) and artificial intelligence cap-
abilities to reduce the complexity of models and numerical
codes.

Full tokamak discharge modeling is also a critical task from
a computational point of view. The typical workflow required
for tokamak modeling, known as ‘Integrated Modeling’ [9], is
computationally very expensive. For instance, a few seconds
of discharge process generally takes hours to days of compu-
tation for high fidelity simulations. Moreover, the integration
of the many physics processes required to describe the evol-
ution of the plasma state adds an even further layer of com-
plexity. In this context, a common approach is to replace high
fidelity simulation codes with ML-based surrogate models.
This allows us to accomplish the same task, significantly redu-
cing computation time while preserving a reasonable level of
accuracy.

Recently, various applications in magnetic confinement
fusion research have relied on ML approaches to solve a
variety of problems, such as disruption prediction [10–16],
electron temperature profile estimation [17], surrogate model
[18–20], plasma tomography [21], radiated power estimation
[22], discharge estimation [23, 24], identifying instabilities
[25], neutral beam effects estimation [26], classifying con-
finement regimes [27], the determination of scaling laws
[28, 29], filament detection [30], coil current prediction
with the heat load pattern [31], equilibrium reconstruction
[17, 32–36] and equilibrium solver [37], control plasma
[38–43], physics-informed ML [44], and reinforcement-
learning-informed magnetic field control [3]. In particular, the
use of reinforcement learning for magnetic field control work
has a different target from our work, which is the design of
a controller for magnetic control during the flat-top of the

plasma current. The conventional controller should take over
in the ramp-up and ramp-down phases.

Modeling the entire tokamak discharge process by lever-
aging ML approaches is challenging from both technical
and computational viewpoints. The duration of a plasma dis-
charge in an experimental advanced superconducting tokamak
(EAST) [45] can be of the order of thousands of seconds,
with a resulting sequence length that exceeds 1× 106 if the
sampling rate is 1 kHz. There are different classes of MLmod-
els to deal with sequence problems, recurrent neural networks
(RNNs) [46], transformers [47] based on the self-attention
mechanism, and several variants. In ML, attention is a tech-
nique designed to simulate cognitive attention. The result is
that some parts of the input data are enhanced, whereas oth-
ers are diminished. This is done so that the neural network
should exert more attention on the small but important parts
of the data. The self-attention mechanism allows input data
to interact with each other (‘self’) and find out where they
should paymore attention to (‘attention’). For traditional RNN
algorithms, training and inference time on long sequences are
usually slow. The sequential nature of RNN models prevents
in general achieving a high level of parallelization in compu-
tations. From an ML perspective, the processing of long time
sequences characterized by short- and long-term dependen-
cies is still an outstanding challenge. In a plethora of deep
learning models, transformers are a novel architecture, which
allows overcoming some of the aforementioned issues, thanks
to the multi-head attention mechanism. Nevertheless, also the
use of transformers for modeling long sequences presents
some limitations because of their computational complexity
O(n2d), where n is the sequence length. In practice, when
the sequence length is of the order of thousands of samples,
and we are dealing with high-dimensional data, training and
inference times start to become unacceptable for most of the
applications.

Magnetic field reconstruction has two research paradigms:
physics-driven and data-driven approaches. Physics-driven
approaches in magnetic field reconstruction have been stud-
ied in the last decades, resulting in the development of various
simulation codes, such as equilibrium fitting (EFIT) [48–50],
LIUQE [51], and RAPTOR [52]. The adaptation of these
codes to new target plasma configurations or to new machines
requires a non-negligible effort. This aspect, together with
the aspect of computational efficiency, has recently brought
the fusion community to leverage more and more data-driven
methods to solve tasks at different levels of complexity. How-
ever, magnetic reconstruction is far behind other applications
in fusion. To the best of our knowledge, only a fewworks, such
as [3], have actually been deployed and successfully tested in
a real environment.

In this paper two different variants of 1D-shifted win-
dows transformer model (1D-SWIN transformer) have been
proposed for real-time and offline magnetic reconstruction
of the last closed-flux surface (LCFS), respectively. In the
case of the 1D-SWIN Transformer, the model’s computational
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complexity depends linearly on the sequence length n.
Moreover, these models can take advantage of a high level
of parallelization, thanks to the attention mechanism and the
non-sequential nature of the algorithm. The models presen-
ted in this work are trained only on experimental data and
can be used for the estimation of the magnetic field evolu-
tion for the entire length of the tokamak discharge, includ-
ing the ramp-up and the ramp-down phases of the plasma
current.

As far as the real-time estimation of the magnetic fields’
evolution is concerned, the model is not directly used to con-
trol the magnetic field. It is able to predict the evolution of
the magnetic field one step ahead in the future, allowing the
design of more effective feedback control strategies. The real-
time model can be integrated within the plasma control sys-
tem (PCS) to assist robust magnetic control by predicting the
magnetic field in the subsequent time step. The offline model
remarkably reduces the execution time required to simulate
the evolution of the magnetic field for the entire discharge.
Moreover, when coupled to other ML-based surrogate models
for the prediction of 0D quantities like in [24], it allows to sim-
ulate the evolution of various quantities of interest, supporting
the experimental design and the optimization of the target plas-
mas. Compared to the model described in [3], our model does
not rely on a physics simulation code, whose computational
complexity cannot be ignored. Furthermore, given the regres-
sion task, the training of our model is in general more efficient
than the training of a model based on reinforcement learning.
Furthermore, the reinforcement learning model in magnetic
control involves an agent exploring the unknown control space
to achieve fine control over the tokamak’s magnetic field sur-
face. The convergence of reinforcement learning is difficult.
The reinforcement learning model must interact with the sim-
ulation code for each control command generated for the mag-
netic field control task, which further reduces the efficiency
of the model training. The regression task has clear targets
and inputs, allowing the model to be trained more efficiently.
Another non-negligible aspect, which is of increasing import-
ance in fusion and in many other fields of science, is that trans-
formers have become particularly successful when used in the
context of transfer learning. The key concept is that the model
has the capability to learn the underlying dynamics character-
izing the evolution of the magnetic field in a tokamak, encod-
ing this knowledge in a reduced latent space representation that
can be ‘easily’ adapted to new devices. Such a perspective is
extremely attractive and would allow to significantly optimize
the exploitation of fusion devices for more and more advanced
studies.

According to themain quantities required formagnetic field
control [2], the data used to build the ML model are primarily
magnetic signals and references for control, namely magnetic
surface probe data, in-vessel currents, poloidal field coils data,
flux loop data, plasma current, and shape references. For the
real-time version of the model, the average similarity is over

99%, and the inference time is 0.7 ms (<1 ms in accordance
with the typical control system requirements). For the offline
version of the model, the average similarity is over 93%, and
the average inference time is ∼0.22 s for a sequence length
of 1× 106, which is lower than the real-time model because
of different settings (as it will be discussed in the following
sections).

Our contributions are summarized as follows:

(i) We propose a generalized 1D shifted windows trans-
former architecture that can compute long time series.

(ii) One of the models can be integrated into tokamak control
for estimating the real-time magnetic field in advance.

(iii) One of the models can also be combined with a 0D pro-
posal estimation model to give a complete prediction of
experimental proposal results.

(iv) The validity of the proposed model is demonstrated over
a large experimental dataset of the EAST tokamak.

This paper is organized as follows. First, section 2 describes
our ML model, used dataset, and the model training. Then,
section 3 presents our model results and a short analysis.
Finally, section 4 provides a brief discussion and conclusion.

2. Methods

Ourmainworkflow is shown in figure 1. In this section, wewill
introduce details in terms of machine learning model design,
dataset selection, and model training.

2.1. ML model

The general architecture of our ML models is shown in
figure 2. Our architecture uses a customized 1D-shifting win-
dow attention mechanism inspired by the SWIN transformer
[53] to model long-term dependencies and interactions
between inputs and outputs. We stack self-attention blocks to
build the ML model.

In the framework of deep learning, there are four main can-
didate architectures for modeling such long-time sequences:
convolutional neural network (CNN), RNN, such as long-
short term memory, gated recurrent unit, transformer, and our
customized 1D SWIN transformer. In addition, some critical
quantitative criteria should be considered for modeling toka-
mak magnetic probe data: computational complexity, num-
ber of sequential operations, and maximum path length [54].
Table 1 demonstrates that 1D-shifted window attention has
roughly as many sequential operations and computational
complexities as CNNs. Generally, the attention mechanism
can achieve superior performance with respect to CNN in
numerous time sequence tasks, such as natural language pro-
cessing (NLP) [47, 55].

Generally speaking, some differences should be present
between the real-time and offline model-building strategies.
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Figure 1. Representation of the components of our machine learning model design and usage. (a) The conventional controller working
loop. The controller measurements difference between targets and the magnetic probe measurement values at the current time. According to
the difference, the controller sends actions to the actuator coils. (b) Sketch of the learning loop. The learner reads the measurements and
targets from the HDF5 data store, and then computes the loss between the predicted magnetic field and the target magnetic field. Finally,
using the loss as the criterion to train the learner. (c) The online usage for the tokamak control. Our model can predict the tokamak’s last
closed-flux surface (LCFS), the controller reads the estimation to generate the next control action sent to magnetic coils.

The real-time model requires that the single-step inference
is fast enough. That is, the one-step inference time of the
model should be less than the response time required by the
control system, and the actual system output of the previous
step can be fed back as input to the model. According to the
requirements of the EASTmagnetic control system, the model
inference time should be less than 1 ms. For a typical trans-
former model, a single-step input is complex. If the preset
control commands are modified, the whole sequence needs
to be recalculated, making the inference time exceed the con-
trol system requirements. In our work, we let ‘window size’=
1, which makes our model calculate the attention only in the
channel axis, and the single-step input becomes less expensive.
This design of the model results in a one-step inference time
of ∼0.7 ms, allowing satisfying real-time constraints. For the
offline model, the actual system output from the previous step
should not be fed back as an input unless it is trained using
the teaching force trick. The teaching force trick is a trick for
training a neural network that uses ground truth as input. In our
case, the ground truth is the actual tokamak responses to the
control commands. The time requirement of the offline mode
can be relaxed, but it should generally be within 1 h. Other-
wise, the advantage of the ML model over the integrated mod-
eling model will be diminished. If we use the teaching force,
we have to recompute all the past sequences step by step, so

the inference time of the entire sequence will be in the order
of 1× 105 s for the reason of the computational complexity.
This paper’s offline model does not use the teaching force
trick because the inference time requirement is much shorter
than 1 h.

2.2. Dataset

In this paper, a total of 16,609 discharges of the EAST
tokamak (discharge range between #56804 and 96915) were
selected to construct the total dataset. The training set, val-
idation set, and test set are divided in chronological order.
The training set has 14,732 discharges, the validation set has
200 discharges, and the test set has 1677 discharges. In the
experimental range #56804–96915, there are only 30 long
discharge discharges (discharge time >50 s), 10 of which are
included in the training set, and the remaining 20 discharges
are included in the test set. The validation set is relatively
small because the model does not update parameters during
the validation phase, and a relatively small validation set can
speed up model training. As shown in table 2, we have selec-
ted the reference of plasma current , the in-vessel current IC1,
the poloidal field coil current, the reference of poloidal field
coils, the shape reference as the input signals, and the out-
put signals include all magnetic probe signals of the magnetic
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Figure 2. Our machine learning model architecture. In the figure, ‘L’ is sequence length, ‘E’ is the embedded dimension, ‘C’ is the input
sequence channels number, and ‘O’ is the output sequence channels number.

Table 1. CNN, RNN, transformer, 1D SWIN transformer comparison.

Model type Computational complexity Sequential operation Maximum path length

CNN O(knd2) O(1) O(n/k)
RNN O(nd2) O(n) O(n)
Transformer O(n2d) O(1) O(1)
1D SWIN transformer O(nwd) O(1) O(n/w)

where k is kernel size of CNN, d is sequence dimension, n is sequence length, w is the window size of 1D SWIN
transformer.

field. Because the in-vessel current IC1 could not be obtained
in advance at the experimental proposal stage, the input sig-
nals of the offline model did not include IC1, and the out-
put signals of previous step data were not input to the offline
model for efficiency reasons. All data were uniformly sampled
at 1 kHz for the entire length of the discharge, and all time axes
were aligned to the same time-base. Data were saved to HDF5
files discharge-by-discharge. For fast and robust training, each

discharge experiment was saved as a separate HDF5 file, with
209 gigabytes of original data.

2.3. Model training

Before the model is trained, each signal’s mean, variance, and
presence flag are calculated for each discharge, and then the
data are stored in a MongoDB database. The data are then
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Table 2. The input and output of signals of the models.

Signal Physical meaning Number of channels Meaning of channels

Output signals 73

BP Equilibrium magnetic probes 38 38 magnetic probes data
FL Flux loops 35 35 flux loops data

Input signals 57

Ref. Ip Reference of plasma current 1 Plasma current reference

IC1a In-vessel coil no.1 current 1 In-vessel coil no.1 current

PF Poloidal field coils voltage 12 poloidal field no.1-12 coil current

Ref. PF Nominal current of poloidal field coils 12 Nominal current of poloidal field no. 1-12 coil

Ref. shape Shape reference 31 20 groups of control points
a only used in real-time version.

Table 3. Our model hyperparameters. The model architecture can be found in figure 2.

Hyperparameter Explanation
Best value of the real-time
model

Best value of the offline
model

η Learning rate 1× 10−4 1.5× 10−4

Optimizer Optimizer type SGD SGD
Loss Loss function MaskedMSELoss MaskedMSELoss
Epoch Number of epochs 40 35
Scheduler Scheduler type OneCycle [58] OneCycle
Window_size Window size 1 12
C Input channel 130 56
E Embedded dimension 60 36
[D0, D1, D2, D3] Depth list for layers [2, 2, 4, 2] [2, 2, 4, 2]

normalized for each discharge and finally fed into the ML
model for training. The input set is different for the offline
model and the real-time model. As analyzed in section 2.1,
the real-time model input dimension is 130, which includes
the system output at the previous step and the current IC1 sig-
nal. We can use the teaching force for training, and IC1 can be
obtained in real-time experiments. For the offline model, the
input dimension is 56 because the IC1 and the system output
at the previous step are not used.

Both versions of the model use Centos OS 7 executing on
eight P100 GPU cards. During the training of our model, we
used a custom masked mean square error (MSE) loss function
(MaskedMSELoss).

l(x,y) = L=

∑i=N
i=0 {l1, l2, . . . , lN}

N
, (1)

li =
j=len∑
j=0

fi·
(
xij− yij

)2
, (2)

where x is batch experimental sequence data, y is batch-
predicted sequence result, xij, y

i
j are the jth point values of the

ith experimental sequence and predicted sequence. fi is a signal
data existence vector of ith experimental sequence, f i equals
to 1 when the sequence exists and 0 otherwise. f i is used to
mask a signal that does not have original data. The

∑j=len
j=0 is

another mask for the invalid length of the sequence. This term
prevents training on the zeros padding of the sequence. The
use of existence masks and length masks can prevent mod-
els from being trained on sequences without actual target val-
ues and meaningless zeros padding tails. The zero padding tail
comes from the fact that we use zeros to pad sequences within
a batch to the same length. This improves the accuracy and
speed of the training process, where we used the bucketing
algorithm [56] for training acceleration, and the Tree of Parzen
Estimator algorithm [57] for the architectural hyperparameter
search. We also tested various optimizers and regulators and
finally obtained the optimal set of hyperparameters as shown
in table 3.

3. Results

We trained, validated, and tested real-time and offline versions
of the proposed transformer-basedmodel on the dataset during
the 2016–2020 EAST campaigns with discharge numbers in
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Figure 3. Discharge #73678 offline LCFS reconstruction. The LCFS was generated from EFIT using inputs from our model. The solid blue
lines are the experimental target LCFS, the red ‘star’ markers are predicted LCFS.

the range #52804–88283 [59–61], whereas input and output
signals can be found in section 2.2.

3.1. Offline model results

Figure 3 shows our offline model prediction for the LCFS in
the EAST discharge #73678. The duration of this discharge

is longer than 70 s, with the sequence length of ∼ 7× 104,
which is a typical long sequence modeling problem. The
LCFS shown in this figure is generated through the equilib-
rium reconstruction code EFIT [50] by inputting the mag-
netic quantities predicted by the model into EFIT. The equi-
librium reconstruction is a broad topic in tokamak research,
extensively discussed in various papers and main plasma
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Figure 4. (a), (b) Discharges #88195 and #73678 offline LCFS reconstruction on the flat-top phase. (c) Similarity distribution of offline
model predicted results on the test set. The test set (section 2.2) is in discharge range #82651–88283 and some long-time discharges for a
total of 1677 discharges. Discharge #88195 is the limiter (‘circle’) configuration as shown in (a). Discharge #73678 is the diverter (‘single
null’ or ‘double null’) configuration as shown in (b) (see details in figure 3).

physics books [62]; therefore, it will not be addressed in this
paper. Figure 3 shows that the model can reconstruct the LCFS
with high accuracynot only during the flat-top phase of the
plasma current but also in the ramp-up and ramp-down phases,
which are non-stationary phases. The model is able to repro-
duce the magnetic configuration during the various discharge
phases, from the tokamak start-up ‘circle,’ going through the
formation of a ‘single null’ shape, to the characteristic shapes
in the shutdown ‘circle.’

The performance of the model has been evaluated with
the same similarity indicator discussed in [23]. The aver-
age similarity in the test set for the offline version of the
model (figure 4) is 93.2%. Most of the discharges are con-
centrated around 95%, with the bulk of the distribution above
90%. The test set for this work comprises experiments in
the discharge range #82651–88283 for a total of 1677 dis-
charges, some of which have a very long duration (see details
in section 2.2). Note that the similarity is computed on raw
signal data instead of the reconstructed LCFS. As far as exper-
iments with similarity less than 0.85 are concerned, there are
98 discharges, among which 89 are disruptions, whereas 9 are
discharges with regular terminations. A disruption is an unex-
pected termination of the discharge where the plasma loses
abruptly its thermal andmagnetic confinement, involving huge
electromagnetic forces and thermal loads, which can poten-
tially damage the machine. Apart from experiments dedicated
to the study of disruption physics and to the assessment of
engineering limits during these violent transients, the design
of the discharge itself together with robust real-time control
strategies aim to avoid disruptions. Nevertheless, when oper-
ating close to stability limits, various sequences of events can
potentially lead to disruption, strongly affecting the magnetic
equilibrium and making it unavoidably deviate from offline
modeling. The operational space characterizing disruptions is

extremely complex and wide, making its coverage within the
input domain unfeasible. The nine regular terminations with
relatively high error are not well estimated probably because of
inherent limitations in the model, or inaccuracies in the meas-
urements, but they correspond to only the 0.5% of the test set.
The similarity distribution in figure 4(c) has two peaks, one at
∼98% and the other at ∼95%. We have checked the related
discharge numbers and found that peak 1 is the limiter ‘circle’
configuration (figure 4(a)), and peak 2 is the normal diverter
(‘single null’ or ‘double null’) configuration (figure 4(b)).
Based on these observations, we believe that the reason for
the two peaks is that there are two modes in the test set, which
are the limiter and diverter configurations. The limiter config-
uration is simple and easy to reconstruct offline; therefore, the
similarity is higher. In contrast, the diverter configuration is
complex and difficult to reconstruct offline; hence, the simil-
arity is lower.

3.2. Real-time model results

The real-time model differs from the offline model both in
terms of input quantities and inference time requirements (dis-
cussed in detail in section 2.1). Figure 5 shows the reconstruc-
tion results of the real-time model for the discharge #73678. In
real-time settings, the real measurement of the magnetic field
probe at the previous step is fed as an input to simulate the
actual tokamak’s control feedback process.

The similarity of the real-timemodel in the test set is shown
in figure 6, which is the same test set as the offline model.

However, there is almost no difference between the mod-
eling results of discharge #73678 in figures 3 and 5 on the
flat-top phase. Figures 7 and 8 show that the main errors of
the model prediction are concentrated in the ramp-up and
ramp-down phases, especially in the ramp-down phases. The
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Figure 5. Discharge #73678 real-time LCFS reconstruction. The LCFS was generated by the same method as offline magnetic
reconstruction, figure 3. The solid blue lines are the target LCFS, the red ‘star’ markers are predicted LCFS.

possible reasons for these errors are: 1. EFIT code result is
unstable when the plasma current is small [49]. 2. The mag-
netic field changes rapidly in the ramp-up and ramp-down
phases, and the sampling rate of 1 ms may not fully capture
the changes.

The comparison of figures 4 and 6 reveal that the real-time
model performs slightly better than the offline model. A pos-
sible reason is that the plasma magnetic field is not a rapidly
time-varying process, and the system output at the current time
step is a good ‘guide’ to forecast the evolution of the system

9
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Figure 6. Similarity distribution of real-time model predicted results on the test set. The test set for the real-time and the offline models are
the same.

Figure 7. Discharge #73678 offline LCFS reconstruction relative error on the poloidal angle. The relative error is defined as (a− â)/a, a
and â are the target and prediction minor radii.

in the subsequent time step. Figure 6 has only one peak for
possibly the same reason. However, the offline model has no
knowledge of the actual tokamak output, so even if bigger and

more computationally demanding models are used for the off-
line task, the results are a bit less accurate compared to the
real-time model.

10
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Figure 8. Discharge #73678 online LCFS reconstruction relative error on the poloidal angle. The definition of the relative error is the same
as for offline magnetic reconstruction, figure 7.

4. Discussion and conclusion

In the current work, we propose a 1D shifted windows trans-
former model that can work with long sequences (up to a
sequence length of 1× 106 for LCFS reconstruction in this
work), which reduces the computational complexity of the
original model from a square to a linear dependence on the
sequence length. The proposed model can form a general
sequence processing backbone network for both real-time and
offline sequence modeling. Thanks to the reduced computa-
tional complexity, the model can be efficiently used for very
long sequences, exceeding a sequence length of 1× 106 , as
we demonstrate in this study. To the best of our knowledge,
we have achieved the first data-driven modeling of the LCFS
for the whole tokamak discharge, including the ramp-up and
the ramp-down phases of the plasma current. Being dynamic
phases, ramp-up and ramp-down are in general more difficult
to model, and as such they are often not taken into account in
data-driven applications. The inference time for the real-time
task (one-step ahead forecasting) is ∼0.7 ms with an average
similarity of >99%, whereas the average inference time for
the offline modeling (entire discharge process) is 0.22 s with
an average similarity of >93%.

From the ML point of view and to the best of our know-
ledge, this work is also the first proposing an attention-based
mechanism for successfully modeling long time sequences.
From the point of view of tokamak physics research, we have
achieved high accuracy and fast tokamak magnetic field mod-
eling, which can be used for critical applications, such as

real-time control or offline validation of tokamak experimental
proposals.When integratedwith other existing dischargemod-
eling data-driven frameworks, such as [24], the proposed
approach can represent an extremely valuable tool to advance
in the development of robust and high-performance tokamak
scenarios. A first important milestone for the future will be
the actual integration of real-time models within plasma con-
trol systems, which is of paramount importance to understand
how reliable these systems are when operating routinely in real
environments. Another exciting future perspective triggered
by the achievements documented in this work is the valida-
tion of the full modeling of the plasma discharge, integrating
magnetic reconstruction with the prediction of key 0-D phys-
ics quantities commonly describing the outcome of a plasma
discharge. Finally, extending and testing the 1D shifted win-
dows transformer to other general areas of ML, such as NLP,
is also an exciting direction for prospective research.
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