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ABSTRACT The adaptive social learning paradigm helps model how networked agents are able to form
opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents
repeatedly update their beliefs based on private observations and exchange the beliefs with their neighbors.
In this work, it is shown how the sequence of publicly exchanged beliefs over time allows users to discover
rich information about the underlying network topology and about the flow of information over the graph.
In particular, it is shown that it is possible (i) to identify the influence of each individual agent to the
objective of truth learning, (ii) to discover how well-informed each agent is, (iii) to quantify the pairwise
influences between agents, and (iv) to learn the underlying network topology. The algorithm derived herein
is also able to work under non-stationary environments where either the true state of nature or the graph
topology are allowed to drift over time. We apply the proposed algorithm to different subnetworks of
Twitter users, and identify the most influential and central agents by using their public tweets (posts).

INDEX TERMS Social learning, social influence, explainability, inverse modeling, online learning, graph
learning, Twitter.

I. INTRODUCTION AND RELATED WORK
The social learning paradigm is a popular non-Bayesian
formulation that enables a group of networked agents to
learn and track the state of nature. It has motivated several
studies in the literature with many useful variations under
varied modeling assumptions (see, e.g., [2]–[17]). Under this
framework, agents observe streaming data and share infor-
mation with their immediate neighbors. Through a process
of localized cooperation, the agents continually update their
beliefs about the underlying state. These beliefs describe the
agents’ confidence on each possible hypothesis. The main
question in social learning is whether agents are able to learn
the truth eventually, i.e., whether the beliefs on the wrong
hypotheses vanish.

In principle, each agent in the network could consider
pursuing a fully Bayesian solution to learn and track the state
of nature. However, this solution is intractable and generally
NP-hard [10], [11], [18]. This is because it requires that
each agent has access to the data from the entire network,
in addition to their knowledge of the full graph topology.

These pieces of information are rarely available in a decen-
tralized setting. For this reason, non-Bayesian approaches
have been devised as effective alternatives [2]–[9]. In this
formulation, the agents first perform a local Bayesian update
using their newly received private observations, and then fuse
their beliefs with those of their neighbors either linearly or
geometrically [3], [6], [8], [9], [19]. This approach allows for
diverse data models across the agents, and helps preserve the
privacy of the individual observations. In this work, we adopt
the Adaptive Social Learning (ASL) strategy from [6], which
showed how to extend traditional non-Bayesian learning
under fixed truth to dynamic scenarios where the state of
nature is allowed to drift with time. Under ASL, the agents
will be able to track these drifts rather effectively with
performance guarantees.

Now, given a collection of networked agents tracking the
state of nature by means of the adaptive social learning
(ASL) strategy, our main objective is to focus on two
questions related to explainability and inverse modeling. In
particular, by observing the sequence of publicly exchanged
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beliefs, we would like to discover the underlying graph
topology (i.e., how the agents are connected to each other).
We would also like to discover each agent’s contribution (or
influence) to the network’s learning process.

The question of explainability over graphs is actually a
challenging task, and it has been receiving increasing atten-
tion (e.g., [20]–[26]). These works approach explainability
from different perspectives, and with different aims. For in-
stance, in [25], [26], the authors aim at building a framework
for human understanding of why a black-box method arrives
at a particular solution. The work [20] argues that a better
understanding of multi-agent reinforcement learning can help
to limit the search space. Other works suggest modifying the
learning algorithm for better interpretability [23]. Overall,
higher transparency and a better understanding of the solu-
tions are generally crucial for critical applications, such as
using artificial intelligence in healthcare or in autonomous
devices (such as vehicles).

We have performed some prior work on explainability for
social learning [27], [28]. In these works, given the evolution
of beliefs and assuming some partial prior knowledge about
the distribution of private observations, it was shown how
to identify pairwise influences inside the network (i.e., how
strongly pairs of agents influence each other), as well as
how to recover the underlying graph topology. One of the
key differences with the previous works is that here, we
consider a more limited (and, therefore, more challenging)
information scenario, where we do not require any informa-
tion about the probability distribution of the observations
(or their likelihoods). Despite being more challenging to
analyse, the algorithm nevertheless becomes more practical
and applicable to real-world data, where distributions of
privately received observations remain unknown. We will
show that, under this more demanding scenario, we are
still able to identify the contribution of each agent to
truth learning, assess its level of informativeness, as well
as learn the underlying graph and the pairwise influences
between agents. The modeling conditions we consider are
generally commonplace in real-world social networks, such
as Twitter [29]–[36]. We consider a Twitter application in
Section VII. In this application, users publicly exchange
their opinions on Twitter, which are therefore observable.
However, we do not have access to additional informa-
tion about sources affecting people’s opinion during these
exchanges such as News or discussions occurring outside
Twitter and, therefore, we do not have information about the
signal distributions. Identifying the most influential users and
their communication patterns can provide valuable insights
in social network analysis [37]. Actually, the problem of
identifying the most influential nodes in a network is in-
creasingly relevant [38]–[43], especially following the rise of
online social networks. Once identified, this information can
be useful in many contexts. For example, it can be used to
enhance recommendations for marketing purposes [38]–[49],

where the objective is to maximize the number of influenced
nodes.

There have also been several important contributions to
graph learning such as [27], [28], [50]–[63]. This is because
the graph structure plays an important role in distributed
learning [64]–[67], and its identification can provide valuable
information about relationships within the network [27]. One
approach is based on exploiting correlations and similarities
between vertices [68]–[70]. Other works assume a defined
model behind the graph signal, such as the heat diffusion
process [52], [54], [55]. Structural constraints (such as spar-
sity, connectivity, symmetry) can also be introduced through
regularization [51], [56], [60]. The present work examines
the problem of identifying a graph in the adaptive social
learning setting. Learning the graph from social interactions
requires a different approach, as already illustrated in [28],
due to the special form of the non-stationary observation
signals. Importantly, our study will relax certain assumptions
introduced in that work.

The paper is organized as follows. We describe the adap-
tive social learning model in Section II. Then, we propose
an algorithm for learning the combination matrix and the
agents’ informativeness in Section III. In Section IV, we
justify the fact that each agent’s contribution to truth learning
is proportional to its relative centrality and its informative-
ness (the KL-divergence between the marginal likelihood of
the truth and the other hypotheses). We provide theoretical
performance guarantees of the algorithm in Section V. In
Section VI, we illustrate performance in different settings
by means of numerical simulations. Finally, in Section VII,
we apply the algorithm to real-world data from Twitter.

II. SOCIAL LEARNING MODEL
We refer to Fig. 1 and consider a collection of agents
N performing peer-to-peer exchanges of beliefs according
to some combination matrix A⋆ with non-negative entries,
[A⋆]ℓ,k = aℓk ≥ 0. Agent ℓ is able to communicate
with agent k when aℓk is positive; this scalar refers to
the weight that agent k assigns to the information received
from agent ℓ. We assume the matrix A⋆ is left-stochastic
and corresponds to a strongly connected graph [3], [6], [8].
The first assumption means that the entries on any matrix
column k ∈ N add up to one,

∑
ℓ∈N aℓk = 1. The second

assumption means that there exists a path with positive
weights between any two agents, and there is at least one
agent in the network that does not ignore its own observation,
i.e., akk > 0 for at least one k ∈ N . This implies that the
combination matrix is primitive, i.e., for any ℓ, k ∈ N , there
exists t > 0 such that [At

⋆]ℓ,k > 0. It follows from the Perron-
Frobenius theorem [71, Chapter 8], [72] that the power
matrix At

⋆ converges to u1T as t → ∞ at an exponential
rate, where u is the Perron eigenvector that satisfies:

A⋆u = u, uℓ > 0,
∑
ℓ∈N

uℓ = 1, (1)
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FIGURE 1: An illustration of the network model.

where the uℓ denote the individual entries of u. Each of these
entries describes the centrality of the corresponding agent in
the graph (i.e., its level of contribution to the inference task).

We assume that there exists one true state of nature
θ⋆ belonging to a finite set of hypotheses, denoted by Θ.
Initially, each agent k starts with a private belief vector
µk,0 ∈ [0, 1]|Θ|, where each entry µk,0(θ) describes how
confident agent k is that θ corresponds to the true hypothesis
θ⋆. As befitting of a true probability mass function, the total
confidence sums up to one,

∑
θ µk,0(θ) = 1. To ensure that

no hypothesis is excluded beforehand by any of the agents,
we assume that µk,0(θ) > 0, ∀θ ∈ Θ.

At each time instant i, each agent k observes a mea-
surement ζk,i. We assume initially that each agent k ∈ N
has access to private likelihood functions, Lk(ζ|θ), which
describe the distribution of the observation ζ conditioned on
each potential model θ. With a slight abuse of notation, we
sometimes denote Lk(·|θ) by Lk(θ). The observations ζk,i
are assumed to be independent and identically distributed
(i.i.d.) over time. In order to be able to distinguish the true
hypothesis θ⋆ from any other hypothesis θ ̸= θ⋆, we need to
assume that for any θ ̸= θ⋆, there exists at least one clear-
sighted agent k ∈ N that has strictly positive KL-divergence
relative to the true likelihood, i.e., DKL (Lk (θ

⋆) ||Lk (θ)) >
0. The following boundedness assumption on the likelihood
is common in the literature [7], [27]; it essentially amounts
to assuming that the likelihoods share support regions.

Assumption 1 (Bounded likelihoods). There exists a finite
constant b > 0 such that, for all k ∈ N :∣∣∣∣∣ log Lk(ζ|θ)

Lk(ζ|θ′)

∣∣∣∣∣ ≤ b (2)

for all θ, θ′ ∈ Θ, and ζ.
■

Next, we describe the ASL strategy from [6]. At each
time step i, each agent k performs a local update based on

the newly received observation and forms the intermediate
(public) belief:

ψk,i(θ) =
Lδ
k(ζk,i|θ)µ

1−δ
k,i−1(θ)∑

θ′∈Θ Lδ
k(ζk,i|θ′)µ

1−δ
k,i−1(θ

′)
, k ∈ N . (3)

Here, δ ∈ (0, 1) is a step-size parameter that controls the
adaptation capacity, i.e., δ controls the importance of newly
received data relative to the past history. This intermediate
belief is shared with the follower agents of k, i.e., with all
agents ℓ for which akℓ > 0. Subsequently, agent k fuses the
beliefs received from its neighbors, i.e., from all agents for
which aℓk > 0. We denote this set by Nk. One fusion rule
is to fuse the beliefs geometrically as follows in order to
obtain the private beliefs [3], [6], [8], [19]:

µk,i(θ) =

∏
ℓ∈Nk

ψaℓk

ℓ,i (θ)∑
θ′∈Θ

∏
ℓ∈Nk

ψaℓk

ℓ,i (θ
′)
, k ∈ N . (4)

The term in the denominator in (4) is used to normalize
µk,i(θ) to a probability mass function. Once (4) is per-
formed, the true state θ⋆ can be estimated by agent k at time
i using the maximum a-posteriori construction over either the
private or public beliefs, for example:

θ̂k,i ≜ argmax
θ∈Θ

ψk,i(θ). (5)

It was shown in [6], [27] that this social learning scheme
has a powerful performance guarantee. Specifically, the
probability of error goes to zero for both the private and
public beliefs as the step-size δ approaches zero, namely,

lim
δ→0

lim
i→∞

P(argmax
θ∈Θ

µk,i(θ) ̸= θ⋆) = 0, ∀k ∈ N (6)

and

lim
δ→0

lim
i→∞

P(argmax
θ∈Θ

ψk,i(θ) ̸= θ⋆) = 0, ∀k ∈ N . (7)

Thus, the agents’ confidence on hypothesis θ⋆ being the true
hypothesis converges to one. In other words, the agents are
able to learn the truth eventually.

Following [27], we introduce two matrices Λi and Li in
order to represent the recursions (3)–(4) in a more compact
matrix form as follows:

Λi = (1− δ)AT
⋆Λi−1 + δLi. (8)

The matrices are of size |N | × (|Θ| − 1), and their entries
are log-belief and log-likelihood ratios and given by:

[Λi]k,j ≜ log
ψk,i(θ0)

ψk,i(θj)
(9)

[Li]k,j ≜ log
Lk(ζk,i|θ0)
Lk(ζk,i|θj)

(10)

where the reference state θ0 ∈ Θ can be chosen at will by
the designer.

The matrices Li are i.i.d. over time due to the i.i.d.
assumption on the observations. Again, following similar
previous approaches [6], [27], we introduce the following
condition on the higher-order moments of Li.
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Assumption 2 (Positive-definite covariance matrix). The
covariance matrix RL is uniformly positive-definite for all
i ≥ 0, i.e., there exists τ > 0 such that:

RL ≜ E (Li − ELi) (Li − ELi)
T ≥ τI. (11)

■

Iterating (8), we find that

Λi = (1− δ)
i (
Ai

⋆

)T
Λ0 + δ

i−1∑
t=0

(1− δ)
t
(At

⋆)
TLi−t. (12)

For large i, it can be shown that Λi converges in distribution
to a limit value given by [27, Lemma 1]:

Λi
d−→ Λ ≜ δ

∞∑
t=0

(1− δ)
t
(At

⋆)
TLt. (13)

For further analysis, we introduce the following useful result
for log-beliefs ratios. The standard laws of large numbers
cannot be applied directly to the expression for Λi in (12)
since there are dependencies between the random variables.

Lemma 1 (Law of large numbers for log-belief ratios).
After a sufficient number of iterations i (i.e., for i > M ≫ 1),
the average of the log-belief matrix converges in probability
as follows:

1

M

i−1∑
j=i−M

Λj
M→∞−−−−→ EΛ. (14)

Proof. See Appendix A.
■

III. INVERSE LEARNING FROM PUBLIC BELIEFS
In this section, we introduce an algorithm for learning the
graph combination matrix A⋆ from observations of the public
beliefs, as well as for assessing the level of informativeness
of the various agents.

A. Problem Statement
The data available from the social network might be limited
for various reasons, including privacy. Therefore, in this
work, we assume that we can only observe the evolution
of the public beliefs over time:{

ψk,i(θ)
}
i≫1

, ∀k ∈ N . (15)

This assumption is motivated by the fact that agents share
their intermediate beliefs computed by (3) during the col-
laborative process, in contrast to the private beliefs in (4).
Here, by i ≫ 1 we underline that we are observing Λi after
a sufficient amount of iterations, i.e., after Λi has reached
its steady-state distribution (13).

A good illustration for this setting is the social network
of Twitter users. From each post (or tweet) that a user posts
to their followers, we can extract an intermediate belief
ψk,i based on sentiment analysis, a.k.a., opinion mining.
After that, each user k reads the posts of its followers and
constructs the private belief µk,i according to (4).

Next, we will show that by observing public beliefs, we
can recover many useful network properties such as (i) the
combination matrix, which determines the confidence levels
that agents have about each other, (ii) the KL-divergences
DKL (Lk(θ

⋆)||Lk(θ)), which assess the capacity of each
agent to distinguish the true hypothesis from the other
possibilities, (iii) the pairwise influences of agents on each
other, and the (iv) global influencers across the network. We
allow both the network and the true state θ⋆ to drift over
time, and the algorithm will be able to track these changes
too.

B. Algorithm Development
The previous work on learning the combination matrix A⋆

in [27] assumes that the expected log-likelihood matrix L̄ ≜
ELi is known. It can be verified that

[L̄]k,j ≜ [ELi]k,j

= DKL(Lk(θ
⋆)||Lk(θj))−DKL(Lk(θ

⋆)||Lk(θ0)). (16)

Using this knowledge along with (8), the following objective
function was then minimized to learn A⋆:

Q(A;Λi,Λi−1) ≜
1

2
∥Λi − (1− δ)ATΛi−1 − δL̄∥2F (17)

in terms of the squared Frobenius norm. In this work, we
do not assume that L̄ is known beforehand, and will instead
estimate L̄ at each iteration i by using

L̂i−1(A) =
1

δM

i−1∑
j=i−M

(
Λj − (1− δ)ATΛj−1

)
, (18)

where A will be the estimate that is available for A⋆ at that
point in time. This step allows us to keep any information
about the privately received data ζk,i hidden from the
algorithm, which makes potential applications more feasible.
Accordingly, the cost function is replaced by:

Q̂(A;Λi,Λi−1, L̂i−1)

=
1

2
∥Λi − (1− δ)ATΛi−1 − δL̂i−1∥2F

=
1

2

∥∥∥∥∥Λi −
1

M

i−1∑
j=i−M

Λj − (1− δ)AT

×

Λi−1 −
1

M

i−1∑
j=i−M

Λj−1

∥∥∥∥∥
2

F

=
1

2
∥∆i − (1− δ)AT∆i−1∥2F (19)

where we introduced

∆i ≜ Λi −
1

M

i−1∑
j=i−M

Λj (20)

The corresponding risk function is then given by:

Ji(A) ≜ EQ̂(A;Λi,Λi−1, L̂i−1) (21)
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We will show in Lemma 2 that the unique minimizer of this
risk function gets closer to the true combination matrix as
M grows.

Now, assume that we observe a sequence of public be-
liefs (15), therefore a sequence {Λi}i≫1. We define the
objective function as a sum over N observed time indices
i ≫ 1:

min
A

J(A) ≜
1

N −M

∑
i

Ji(A) (22)

To solve (22), we apply stochastic gradient descent (SGD)
with constant step-size µ > 0. At each iteration i, the
estimate Ai for the combination matrix is updated via:

Ai = Ai−1 + µ(1− δ)∆i−1

×
(
ΛT

i − (1− δ)ΛT
i−1Ai−1 − δL̂

T

i−1

)
(23)

We sample the observations in the direct order i, i + 1, i +
2 . . . . This online nature of the algorithm, as well as the
use of a constant step-size instead of a vanishing step-size,
will allow the algorithm to track changes in A⋆

1
. We list the

procedure in Algorithm 1.

Algorithm 1: Graph social learning (GSL)
Data: At each time i:{

ψk,i(θ)
}
k∈N , δ

Result: Estimated combination matrix AN ,
estimated expected log-likelihood ratios L̂N .

initialize A0, L̂0

repeat
Compute matrices Λi:
for k ∈ N , j = 1, . . . , |Θ| do

[Λi]k,j = log
ψk,i(θ0)

ψk,i(θj)

Combination matrix update:

Ai = Ai−1 + µ(1− δ)

Λi−1 −
1

M

i−1∑
j=i−M

Λj−1


×
(
ΛT

i − (1− δ)ΛT
i−1Ai−1 − δL̂

T

i−1

)
.

Log-likelihoods matrix update:

L̂i =
1

δM

i∑
j=i−M+1

(
Λj − (1− δ)AT

i Λj−1

)
i = i+ 1

until sufficient convergence;

1In our algorithm, we assume deterministic A⋆. However, recursion (23)
allows adapting to changes in A⋆.

IV. GLOBAL INFLUENCE IDENTIFICATION
In this section, we establish a strong connection between
the probability of error for truth learning and the network
divergence. The network divergence is defined in terms of the
Perron eigenvector of A⋆, and the KL-divergences between
the likelihoods:

K(θ⋆, θ) ≜
∑
k∈N

ukDKL(Lk(θ
⋆)||Lk(θ)) > 0. (24)

Note that this quantity is a function of the hypothesis θ. As
remarked before (5), the true state estimator can be deduced
from the public beliefs. The probability of error is defined
as the probability of selecting a wrong hypothesis θ ̸= θ⋆:

pk,i ≜ P
(
argmax

θ∈Θ
ψk,i(θ) ̸= θ⋆

)
. (25)

Note that if θ⋆ does not maximize a public belief, then there
exists at least one θ ̸= θ⋆ such that

log
ψk,i(θ

⋆)

ψk,i(θ)
≤ 0. (26)

Thus, we can equally define the probability of error pk,i as:

pk,i = P
(
∃θ ̸= θ⋆ : log

ψk,i(θ
⋆)

ψk,i(θ)
≤ 0

)
. (27)

For this section alone, we will additionally assume that the
observations {ζk,i} are independent over space (and not
only over time). Now, we know from [6, Theorem 3] that
each random variable (for any k) of the form (26) can be
approximated by a Gaussian random variable in the steady
state with the following moments:

log
ψk,i(θ

⋆)

ψk,i(θ)
≈ G

(
K (θ⋆, θ) +O (δ) , δC +O

(
δ2
) )

(28)

for some finite and constant covariance matrix, C. Thus,
the probability of error (27) becomes the probability of the
Gaussian random variable (28) assuming negative values
for at least one θ ∈ Θ. This Gaussian random variable
concentrates around its mean (i.e., the network divergence
in (24)), which is positive. The larger network divergence is,
the smaller the probability of error for each individual agent
will be.

If we examine expression (24) for the network divergence,
we observe that each individual agent k contributes with a
term of the form

Kk(θ
⋆, θ) = ukDKL(Lk(θ

⋆)||Lk(θ)) (29)

which is scaled by the Perron entry uk. This entry reflects the
centrality of agent k, and serves as a measure of how well
it is connected to other nodes in the network. The larger the
value of (29) is, the stronger the contribution of this agent
will be towards moving the network away from an erroneous
decision. We therefore say that (29) helps convey the amount
of information that agent k has about θ disagreeing with
θ⋆. Since (29) is a function of θ, we can define the level
of informativeness of agent k to the learning process by
considering the aggregate of its contributions for all θ, which
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we denote by

Ik ≜
∑
θ∈Θ

Kk(θ
⋆, θ) = uk

∑
θ∈Θ

DKL(Lk(θ
⋆)||Lk(θ)). (30)

This quantity serves as a measure of influence, since agents
with large Ik contribute the most to learning the truth by the
network.

In what follows, we describe how to estimate the quantities
Ik by the learning algorithm. First, to obtain the Perron
eigenvector for Ai, we need to normalize any of its eigen-
vectors corresponding to the eigenvalue at 1. Subsequently,
we identify θ̂k,i that maximizes ψk,i(θ). From (7) we know
that θ̂k,i tends to θ⋆ almost surely as i → ∞ and δ → 0.
After a sufficient number of iterations iN of the Algorithm 1,
we let j′ denote the index within the hypothesis set Θ that
corresponds to:

θ̂j′ = argmax
θ∈Θ

ψk,iN (θ). (31)

Returning to (16), we can then approximate the KL-
divergences by

DKL (Lk(θ
⋆)||Lk(θ0)) ≈ −[L̂iN ]k,j′ , (32)

DKL (Lk(θ
⋆)||Lk(θj)) ≈ [L̂iN ]k,j + [L̂iN ]k,j′ , (33)

where L̂iN is an estimate for L̄.
To conclude, the sequence of public beliefs contains rich

information about the network. Using the GSL algorithm,
we are not only able to identify the graph topology, but
can also find answers to the explainability question: which
agents were the most responsible (or the main drivers) for
the overall network learning process?

V. THEORETICAL RESULTS
First, we establish some useful properties of the risk func-
tion (21).

Lemma 2 (Risk function properties). After sufficient num-
ber of iterations i, the risk function Ji(A) is strongly convex
and has Lipschitz gradient with constants νi and κi given
by:

νi ≜ (1− δ)2λmin

(
E∆i−1∆

T
i−1

)
≥ τδ2(1− δ)2 +O

(
1/
√
M
)

(34)

κi ≜ (1− δ)2λmax

(
E∆i−1∆

T
i−1

)
≥ τδ2(1− δ)2 +O

(
1/
√
M
)

(35)

where λmin(·) and λmax(·) are the minimum and maximum
eigenvalues. In other words, it holds that:

νiI ≤ ∇2
AJi(A) ≤ κiI. (36)

Moreover, the difference between the true combination ma-
trix A⋆ and the unique minimizer Amin,i of Ji(A) is on the
order of:

∥Amin,i −A⋆∥2F ≤ O
(
1/δ2M2

)
(37)

Proof. See Appendix B.
■

Result (37) states that the gap between A⋆ and the unique
minimizer of Ji(A) is negligible as M ≫ 1/δ grows.

To investigate the steady-state performance of recur-
sion (23), we adopt the following independence assumption,
which is typical in the study of adaptive systems [73]–[75].

Assumption 3 (Separation principle). We denote the es-
timation error by Ãi ≜ A⋆ − Ai, and assume the step-
size µ is small enough to allow ∥Ãi∥2F to attain a steady-
state distribution. The separation principle states that the
error Ãi is independent of the observations Λi, . . . ,Λi−M ,
conditioned on the history of previous observations. ■

The following theorem shows that in steady-state, the mean-
squared error is O(µ) +O(1/δ3M2) in expectation.

Theorem 1 (Steady-state performance). The mean-square
deviation (MSD) converges exponentially fast with asymp-
totic convergence rate:

α ≜ 1− µ(2ν +O(δ3)) +O(µ2) (38)

where

ν ≜ (1− δ)2λmin

(
lim
i→∞

E∆i−1∆
T
i−1

)
(39)

In the limit, the MSD satisfies:

lim sup
i→∞

E∥Ãi∥2F ≤ O(µ) +O(1/δ3M2) (40)

Proof. See Appendix C.
■

Naturally, the convergence rate for learning the combination
matrix is dependent on the strong convexity constant, ν.
Usually, the limiting MSD expression is of the form O (µ),
so that we can reduce the deviation by using arbitrary small
step-size µ. In our case, we also have the additional term
O
(
1/δ3M2

)
, which is due to the difference (37) between

the unique minimizer and the true combination matrix. We
can control the number of samples M . Note that by selecting
M = O(1/

√
µ), the MSD in (40) becomes O(µ).

Finally, we study how well the algorithm approximates L̄.

Theorem 2 (Steady-state log-likelihood learning). The
MSD converges exponentially fast with

lim sup
i→∞

E∥L̂i − L̄∥2F

≤ 1

M
Tr (RL) +O(µ/δ2) +O

(
1/δ5M2

)
(41)

where

RL = E
(
Li − L̄

) (
Li − L̄

)T
(42)

is independent of i due to i.i.d. observations.
Proof. See Appendix D.

■
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(a) True combination matrix. (b) Learned combination matrix.

FIGURE 2: True combination matrix and the learned matrix
using the GSL algorithm with M = 50.

Since we simultaneously learn the combination matrix A⋆

and L̄, the limiting MSD for L̄ has similar expression to
Theorem 1. We would like to note that usually, the hyper
parameter δ is a network property we don not have a direct
influence on. Thus, the final MSD is controlled by the step-
size µ and it decreases as we use higher number of samples
M .

VI. COMPUTER SIMULATIONS
In this section, we illustrate how well the proposed algorithm
is able to identify the true combination matrix A⋆ and the
expected log-likelihood matrix L̄. We also experiment with
different M in (18) to see how the convergence rate changes.
Additionally, we will see how well the learned combination
matrix and KL-divergences identify the influences (30).

We generate a graph with |N | = 20 agents according to
the Erdos-Renyi model with an edge probability of p = 0.2.
We set the adaptation hyperparameter to δ = 0.05. Then,
we generate the combination weights (see Fig. 2a ) with
uniform weights in the column, such that the resulting
matrix is left-stochastic. We consider |Θ| = 5 states, where
the likelihood models Lk(θ) for each agent k ∈ N are
assumed to follow a binomial distribution with randomly
generated parameters (for details, see Appendix E). We
generate likelihood models such that we observe only 3
agents with high informativeness. Later, we illustrate that
the algorithm allows for identifying these agents.

First, we consider how well the combination matrix is
learned for different M ∈ {1, 10, 50}. We additionally
compare with [27], where the expectation L̄ was assumed
to be known beforehand. For M = 50, we use µ = 0.1,
for M = 10, we use µ = 0.01, and for M = 1, we use
µ = 0.001 for better convergence. In Fig. 3, we plot the
reconstruction error with respect to the iteration number:

∥Ãi∥2F = ∥Ai −A⋆∥2F (43)

We notice that the higher M improves the limiting MSD as
reflected in Theorem 1.

Next, we illustrate how well the learned L̂i approximates
L̄ for different M ∈ {1, 10, 50}. In Figure 4, we show how

FIGURE 3: Algorithm performance when L̄ is known and
when it is estimated by (18) for different M ∈ {1, 10, 50}.

FIGURE 4: L̄ reconstruction error estimated by (18) for
different M ∈ {1, 10, 50}. To reduce the variance and
therefore for better interpretability, we plot the rolling mean
with window size equal to 50.

the reconstruction error evolves with i:

∥L̃i∥2F = ∥L̂i − L̄∥2F. (44)

We notice that with M growing, we can approximate L̄ more
precisely, which aligns with the result of Theorem 2, and
explains Figure 3.

We illustrate the recovered combination matrix in Fig. 2b .
We use M = 50 since it has better convergence. Comparing
Fig. 2a and 2b, we observe an almost perfect recovery of the
true combination weights.

Figure 5 illustrates how well the learned KL-divergences
and combination matrix can recover the global influ-
ences (30). For better interpretability, we normalize the val-
ues so that they add up to one. We see that for some agents,
the algorithm does not perfectly recover these components,
but yet allows us to identify that the first agents are driving
the learning the most. This property allows us to search for
agents that are the most contributing to learning the true
state.

In Fig. 6, we illustrate the connection between the prob-
ability of error (25) and the presence of agents with a
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(a) 3 influential agents.

(b) 1 influential agent.

FIGURE 5: Agents’ influences (30) based on the learned
graph and KL-divergences.

significant contribution Ik (30) to the network divergence.
We plot the rate of correctly classified states at each point i:

ri =
1

i

i∑
t=1

I{θ̂i = θ⋆} (45)

We generate likelihood models according to Appendix E,
where less (yet significantly) influential agents have smaller
KL-divergence between likelihood models (lines 3 and 4 in
the legend). Thus, we illustrate the value of the identified
importance measure (30) and the role of “informativeness”
(or KL-divergences) of each agent: the presence of agents
with high informativeness improves the quality of true state
inference.

Finally, we comment on the adaptation abilities of the
proposed algorithm that results from its online nature (23).
There is a trade-off between the speed of adaptation to
changes in A⋆ or in θ⋆ and the final MSD. Larger step-
size µ leads to faster reaction by the algorithm to changes
by the combination matrix, but enlarges the steady-state
MSD. However, an important point to note here is that
if the topology changes more frequently than the time
needed to reach the steady-state (each change of the true
A⋆ “restarts” the algorithm), then a fairly large step-size
µ would be needed. We illustrate this behavior in Fig. 7a.
The ability of the algorithm to adapt to the true state θ⋆ is
also important for its performance due to the fact that we
have performance guarantees when Λi reaches its steady-
state. The adaptation ability is also evident from the social
learning update itself (3)–(4). In [6], the authors discuss that
small δ leads to an increased confidence of beliefs, but it

FIGURE 6: Rate of correctly classified truth for differ-
ent models. Less influential agents denote agents with the
same centrality as influential agents, but with smaller KL-
divergence between states.

comes at the cost of an increased adaptation time, on the
order of ≈ log 2/δ. Thus, as long as the environment does
not change its state faster than the adaptation period, the
performance of the algorithm stays close to what is predicted
under Theorems 1, 2. We illustrate this scenario in Fig. 7b.

VII. APPLICATION TO TWITTER DATA
In this section, we apply the graph social learning algorithm
introduced in this manuscript to actual datasets. We choose
Twitter as a suitable social media platform where we can
analyze the posts of users and observe their interactions. In
particular, we aim to detect the centrality (i.e., Perron entry)
and influence of agents over a network, and identify the
most influential agents. We choose this objective as a more
realistic goal for Twitter data, rather than trying to recover
the entire combination matrix. This is primarily due to the
fact that we can only have access to the true adjacency matrix
of the users on Twitter, that is to say, we only know who
follows whom, but we do not know the weights (confidence
levels) agents assign to each other. In the literature, there
have been multiple studies trying to analyze the influence of
Twitter accounts on various topics. The work [29] analyzed
the propagation of information through Twitter networks, and
how different users take part in the effective dissemination of
ideas. Moreover, the work [30] analyzes the influential users
on Twitter by investigating the linguistic aspects of the tweets
of users, such as the grammatical structure and vocabulary
of the tweets. However, these studies lack a mathematical
foundation to analyze the “influence” of agents, and rely
largely on heuristics. In this context, the work [31] aims
to leverage ten different attributes of Twitter accounts and
their tweets to develop a Twitter-based influence measure.
Similarly, the work [32] uses descriptive statistics of the
Twitter accounts such as their follower counts, frequency
of their posts and the total number of replies, likes and
retweets of users. However, what we propose in this study is
significantly different. In the proposed algorithm, we do not
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(a) Algorithm performance when the graph regularly changes its
topology (every 1000 iterations). Every element of the adjacency
matrix changes its state with probability 0.5%.

(b) Algorithm performance when the true state θ⋆ changes.

FIGURE 7: Algorithm performance under perturbations.

need to have access to any of these features and the various
statistics. In fact, the only input the proposed algorithm needs
is the publicly shared tweets of the users. This information is
sufficient to learn the centrality of users over a subnetwork
of Twitter users, and to identify the most influential user
for the formed opinions, using the described mathematical
model of social learning.

To identify the influence of agents in a network, we first
need to (i) create a subnetwork of Twitter users that is
strongly connected, (ii) obtain the tweets (posts) of the users
in the created network, and (iii) process the text in the tweets
to obtain the log-belief ratios Λi over time. After these pre-
processing operations, we run the proposed algorithm, and
estimate the underlying combination matrix of the network
of users and the likelihood models of these users. Then, we
compute the Perron eigenvector of the estimated combination
matrix. We refer to this vector as the “learned” Perron vector,
not to be confused with the “original” Perron vector of the
true combination matrix of the network of users. Note that,
there is no ground truth regarding the confidence agents
place on each other, hence one cannot possibly know the

true combination matrix. Therefore, we heuristically form a
combination matrix to obtain its Perron vector, through the
procedure of Section VII-A. However, as an indisputable
ground truth data for a given subnetwork, we know the
agents that have the highest number of followers within
that subnetwork. In our experiments, these agents happen
to coincide with the highest original Perron vector entries.

We run experiments on three different user subnetworks
of Twitter users by using Twitter API, where we utilize
the Tweepy library to build up our queries in Python.
Quantitatively, we show that we can identify the most central
user in all three networks, i.e., the largest entries of the
learned Perron vector and the original Perron vector. Note
that in these experiments with real data, we do not have
access to the likelihood models of the users, hence we
do not have “ground truths” for the influence of agents,
i.e., ukDKL(Lk(θ

⋆)||Lk(θ)). However, to obtain a qualita-
tive measurement, we construct the aforementioned three
networks (see Fig. 8) around famous public figures (the first
network is built around Elon Musk (CEO, 118.5M follow-
ers), the second network is built around Maggie Haberman
(journalist, 1.6M followers), and the third network is built
around Ben Shapiro (columnist, 5M followers)). In all of
these networks, we recover these public figures as the most
influential users.

A. Network formation
To construct a network, we first select a popular Twitter
account A, such as an influential CEO or a journalist whom
we expect to be influential among other users. Next, in
order to select a strongly connected network, we build a
network starting from a less centered Twitter account B that
is followed by that popular user A. Starting from account
B, we construct a subnetwork of depth 2, i.e. we identify
1K followers of account B, and 1K followers of each of
those followers. While satisfying these conditions, we filter
users who post frequently, so that they provide sufficient
data, and who are less centered (they have less than 10K
followers). Among all of these identified follower-following
relationships, we construct a network, and verify that the
network is strongly connected. Following this procedure, the
networks constructed for Elon Musk, Maggie Haberman and
Ben Shapiro are of sizes 20, 26 and 28, respectively.

After constructing the network, we obtain its adjacency
matrix by finding out who follows whom. Since there is no
way in real world experiments to determine the confidence
agents assign to each other, there is no ground truth for the
combination matrix. Therefore, we assume that agents assign
uniform weights to their neighbors (i.e., to the people they
follow). This corresponds to applying the averaging rule [74,
Chapter 14] to the adjacency matrix.

B. Obtaining user posts
In order to obtain the tweets of the users, we first build up
our query for the Twitter API. This query includes a specific
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(a) Network for Elon Musk. (b) Network for Maggie Haberman. (c) Network for Ben Shapiro.

FIGURE 8: Network of agents. Agent A is indicated with color green, and agent B is indicated in color orange according
to the description in Section A.

keyword for each network so that we do not fetch unrelated
tweets. For the network containing Elon Musk, we choose
the keyword to be “coin OR bitcoin OR crypto-currency”, for
the tweets between 01.01.2017 and 01.05.2022. In this case,
we would like to see the influential agents in that network
in shaping the opinion of Twitter users on crypto-currency
related matters. For the other networks, we choose the key-
word to be “Trump” for the tweets between 01.01.2017 and
31.01.2021, and “Biden” for the tweets between 01.01.2021
and 01.05.2022. Hence, we aim to determine the influence
of agents in determining the attitude of their respective
networks regarding the issue of “the current president of the
United States”.

C. Obtaining the log-ratio beliefs of users
After obtaining the tweets of the users, we need to process
the text in those tweets to obtain the intermediate belief
vectors. For this purpose, we use a language model based
on Roberta, which is trained with around 124M tweets, and
fine tuned with the TweetEval benchmark for the sentiment
analysis task [76]. We can feed a text to this model and
obtain three different probabilities for three different senti-
ments of the input text: p0 for “Negative”, p1 for “Neutral”,
and p2 for “Positive”. We eliminate the neutral labels and
recalculate the probability of the positive sentiment of a text
as

p ≜
p2

p0 + p2
(46)

and accordingly, the probability of the negative sentiment as

1− p =
p0

p0 + p2
(47)

In Table 1, we show sample tweets from the network related
to Bitcoins. When p is close to 1, this means that the text
asserts a positive attitude towards Bitcoin, and when p is
closer to 0, this means that the text asserts a negative attitude.

Sample Tweets Positive
Sentiment

#Bitcoin for the win p = 0.99

Unless otherwise stated, I am adding Bitcoin
every week

p = 0.82

Bitcoin falls from $66K highs, Tesla down 3%
after Elon Musk warns he could sell more
#Bitcoin

p = 0.02

TABLE 1: Examples of sentiment analysis and generated
sentiment probabilities.

To construct the log-belief ratio of an agent at a day
i, we incorporate the sentiment of all tweets within this
day. We denote the number of tweets user k shares at
iteration i by Nk,i. Among those tweets, we denote the
positive sentiment probability of each tweet t by pk,i,t, so
that pk,i,t approximates belief ψk,i,t(θ0), and 1 − pk,i,t as
approximates belief ψk,i,t(θ1). Here, θ0 is the hypothesis
that the underlying topic (e.g., Bitcoin, the current president
of the United States, etc.) is “good”, and θ1 is the counter-
hypothesis. Then, we construct log-belief of each agent k
as:

Λk,i =
1

Nk,i

Nk,i∑
t=1

log

(
pk,i,t

1− pk,i,t

)
(48)

Note that if Nk,i = 0 for some agent k at some iteration i,
we set Λk,i to previous value of it, i.e. Λk,i = Λk,i−1.

D. Adjustments to the algorithm
We have made some adjustments to the graph social learning
algorithm to cope with real life data. In particular, instead
of performing gradient updates at each iteration, as in
the online stochastic learning algorithm, we use stochastic
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(a) Network of Elon Musk (agent 0).

=

(b) Network of Maggie Haberman (agent 0). (c) Network of Ben Shapiro (agent 0).

FIGURE 9: Plots of agent centralities. Green points are the entries of the original Perron vector, and purple points belong
to the learned Perron vectors. In all networks, we see that the algorithm identifies the most central agent in the graph.

(a) Network of Elon Musk (agent 0). (b) Network of Maggie Haberman (agent 0). (c) Network of Ben Shapiro (agent 0).

FIGURE 10: Plots of agent influences. In the respective networks containing Elon Musk (CEO – 110M followers on
Twitter), Maggie Haberman (journalist – 1.7M followers on Twitter) and Ben Shapiro (columnist – 4.5M followers on
Twitter), we can identify these public figures as the most influential agents. For instance, in Fig. 10a, we can identify Elon
Musk as the most influential Twitter user in the corresponding subnetwork

.

mini-batches. Namely, we select a window size W , and
average the gradients calculated within that window, and then
perform the gradient step. In our experiments, we observe
that this practice reduces the noise in the gradients due
to real life data. Furthermore, we use ℓ1 regularization to
promote sparsity. The motivation for sparsity is to get rid
of unnecessary links between different users in the graph.
These hyperparameters in the experiments are determined
with a grid search on one of the networks (Ben Shapiro),
and then the parameters are used in the other two networks.
These hyperparameters are: for the stochastic mini-batch
size, W = 30, for the stepsize δ = 0.0001, for the
learning rate µ = 0.0003 and for the ℓ1 regularization weight
α = 0.006. The fact that we obtain desirable outcomes in all
cases suggests that the algorithm generalizes and performs
well across different networks.

E. Experimental results
We compare the Perron vectors of the learned combination
matrix and the original combination matrix (which is con-
structed by assigning uniform weights to users each user
follows). In these comparisons of Perron vectors, we show
that we can correctly estimate the most central agents in all
three networks. These comparisons can be seen in Fig. 9.

Secondly, we show the influence plots of the agents in these
three networks in Fig. 10. These figures, “qualitatively” show
that we can indeed identify the popular accounts (Elon Musk,
Maggie Haberman and Ben Shapiro) as the most influential
agents in their respective networks. For instance, in Fig. 10a,
we can identify Elon Musk as the most influential Twitter
user of his network of users.

VIII. CONCLUSIONS
In this study, we show that a sequence of publicly exchanged
beliefs in the adaptive social learning protocol contains
rich information about the underlying model. We present
an algorithm for learning the agents’ informativeness in
terms of KL-divergences between likelihood models, and
for identifying a combination graph. We demonstrate that
these quantities determine the probability of error of the
true hypothesis estimator, and we introduce a notion of
a global agent influence, which quantifies the individuals’
contribution to learning. As a result, the suggested approach
enables us to determine the most influential agents in the
opinion formation process. We also describe how to apply the
algorithm to Twitter data. Our experiments on both synthetic
data and Twitter data illustrate that we can accurately find
global influencers and learn the underlying graph.
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Appendix A
PROOF OF LEMMA 1
From Markov’s inequality, we have

P

∥∥∥∥∥ 1

M

i−1∑
j=i−M

Λj − EΛ

∥∥∥∥∥
2

F

> ε


≤ 1

ε
E

∥∥∥∥∥ 1

M

i−1∑
j=i−M

Λj − EΛ

∥∥∥∥∥
2

F

=
1

M2ε
E

∥∥∥∥∥
i−1∑

j=i−M

(
Λj − EΛ

)∥∥∥∥∥
2

F

. (49)

The expectation above can be expanded into:

E

∥∥∥∥∥
i−1∑

j=i−M

(
Λj − EΛ

)∥∥∥∥∥
2

F

=

i−1∑
j=i−M

E
∥∥∥Λj − EΛ

∥∥∥2
F

+ 2

i−1∑
j1,j2=i−M,

j1<j2

Tr
(
E (Λj1 − EΛ) (Λj2 − EΛ)

T
)
. (50)

Introducing the history

F i ≜ {ζk,j , j < i, ∀k ∈ N}, (51)

which collects all observations up to time i, and conditioning
over F j1+1, we have

E (Λj1 − EΛ) (Λj2 − EΛ)
T

= E
(
(Λj1 − EΛ)E

(
ΛT

j2 − EΛT
∣∣F j1+1

))
(52)

This equality holds since E (Λj1 |F j1+1) = Λj1 . Using the
main recursion formula (8), we can represent Λj2 in terms
of Λj1 and observations Lt with j1 + 1 ≤ t ≤ j2:

Λj2 = (1− δ)j2−j1(Aj2−j1
⋆ )TΛj1

+ δ

j2−j1−1∑
t=0

(1− δ)t(At
⋆)

TLj2−t (53)

It follows that

E
(
Λj2

∣∣F j1+1

)
= (1− δ)j2−j1(Aj2−j1

⋆ )TΛj1

+ δ

j2−j1−1∑
t=0

(1− δ)t(At
⋆)

TL̄ (54)

where L̄ is the expected value of Li defined in (16).
Using (54), we can rewrite (52) as:

E
(
(Λj1 − EΛ)E

(
ΛT

j2 − EΛT
∣∣F j1+1

))
= E (Λj1 − EΛ)

(
(1− δ)j2−j1(Aj2−j1

⋆ )TΛj1 − EΛ
)T

+ E (Λj1 − EΛ)

(
δ

j2−j1−1∑
t=0

(1− δ)t(At
⋆)

TL̄

)T

= E (Λj1 − EΛ) (Λj1 − EΛ)
T
(1− δ)j2−j1Aj2−j1

⋆

+ E (Λj1 − EΛ)EΛT
(
(1− δ)j2−j1Aj2−j1

⋆ − I
)

+ E (Λj1 − EΛ)

(
δ

j2−j1−1∑
t=0

(1− δ)t(At
⋆)

TL̄

)T

= E (Λj1 − EΛ) (Λj1 − EΛ)
T
(1− δ)j2−j1Aj2−j1

⋆ (55)

where the last equation holds since in steady state EΛj1 =
EΛ. The trace of (55) then becomes2:

Tr E (Λj1 − EΛ) (Λj1 − EΛ)
T
(1− δ)j2−j1Aj2−j1

⋆

≤ E
(∥∥Λj1 − EΛ

∥∥
F

×
∥∥(1− δ)j2−j1(Aj2−j1

⋆ ) (Λj1 − EΛ)
∥∥

F

)
≤ (1− δ)j2−j1∥Aj2−j1

⋆ ∥FE∥Λj1 − EΛ
∥∥2

F

≤ (1− δ)j2−j1
√

|N |E
∥∥Λj1 − EΛ

∥∥2
F, (56)

where the last inequality holds because A⋆ and its powers
are left-stochastic, i.e. all the entries are non-negative and
each column’s entries add up to one:

∥A⋆∥2F =
∑
k

∑
ℓ

a2kℓ ≤
∑
k

(∑
ℓ

akℓ

)2

=
∑
k

1 = |N |

(57)

Next, let us study the following sum:
i−1∑

j1,j2=i−M,
j1<j2

(1− δ)j2−j1

= (M − 1)(1− δ) + (M − 2)(1− δ)2 + · · ·+
+ 2(1− δ)M−2 + (1− δ)M−1

=
M − 1− (1− δ)M

δ
− (1− δ)δM−2 = O(M/δ) (58)

Additionally, under the steady-state condition (13), the fol-
lowing property for Λ holds:

E∥Λ− EΛ∥2F
= E Tr

(
(Λ− EΛ) (Λ− EΛ)

T
)

(13)
= E Tr

(
δ

∞∑
t1=0

(1− δ)
t1 (At1

⋆ )T
(
Lt1 − L̄

)
× δ

∞∑
t2=0

(1− δ)
t2 (At2

⋆ )T
(
Lt2 − L̄

) )
= δ2E Tr

( ∞∑
t1=0

∞∑
t2=0

(1− δ)t1+t2(At1
⋆ )T(Lt1 − L̄)

× (Lt2 − L̄)TAt2
⋆

)
= δ2

∞∑
t=0

(1− δ)2tTr
(
(At

⋆)
TRLA

t
⋆

)
= O(δ) (59)

2Using Tr
(
ABT

)
≤ ∥A∥F∥B∥F.
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due to i.i.d. Li. Combining the derivations above, expres-
sion (49) becomes:

P

∥∥∥∥∥ 1

M

i−1∑
j=i−M

Λj − EΛ

∥∥∥∥∥
2

F

> ε


≤ 1

M2ε

i−1∑
j=i−M

E
∥∥Λj − EΛ

∥∥2
F

+
2

M2ε

∑
j1<j2

(1− δ)j2−j1
√

|N |E
∥∥Λj1 − EΛ

∥∥2
F

=
1

Mε

(
1 +

2
√

|N |
M

∑
j1<j2

(1− δ)j2−j1

)
E∥Λ− EΛ∥2F

=
1

Mε
(1 +O(1/δ))O(δ)

= O

(
1

Mε

)
(60)

since
∑

j1<j2
(1 − δ)j2−j1 = O(M/δ). Taking M → ∞,

the right-hand side of (60) is zero for any ε > 0. Thus, we
establish convergence in probability by definition.

Appendix B
PROOF OF LEMMA 2
Under some reasonable assumptions on the distribution of
the random variables, as required by the dominated conver-
gence theorem in mathematical analysis, it is possible to
exchange the expectation and gradient operations [72]. Thus,
using (19), the gradient of (21) is given by:

∇Ji(A) =− (1− δ)E
[
∆i−1

(
∆T

i − (1− δ)∆T
i−1A

)]
(61)

We first verify that the risk function Ji(A) has Lipschitz
gradients. Note that for any A1, A2:

Tr
(
(∇Ji(A1)−∇Ji(A2))

T
(A1 −A2)

)
= (1− δ)2Tr

(
E∆i−1∆

T
i−1 (A1 −A2) (A1 −A2)

T
)

(a)

≤ (1− δ)2λmax

(
E∆i−1∆

T
i−1

)
∥A1 −A2∥2F, (62)

where step (a) follows from the following considerations. For
matrices X and Y of appropriate dimensions, where X is
positive definite with eigendecomposition X = UXΛXU−1

X ,
the following inequality holds:

Tr
(
XY Y T

)
= Tr

(
UXΛXU−1

X Y Y T
)

= Tr
(
ΛXU−1

X Y Y TUX

)
≤ λmax(X)Tr(U−1

X Y Y TUX)

= λmax(X)∥Y ∥2F. (63)

Similarly, we can verify that Ji(A) is strongly convex since

Tr
(
(∇Ji(A1)−∇Ji(A2))

T
(A1 −A2)

)
≥ (1− δ)2λmin

(
E∆i−1∆

T
i−1

)
∥A1 −A2∥TF . (64)

Next we verify that E∆i∆
T
i is positive definite and finite.

For this purpose, we refer to [27, Lemma 1], which es-

tablishes that Λ given by (13) is element-wise bounded as
follows:

|Λ| ⪯ Λ̄ ≜ δb

∞∑
t=0

(1− δ)
t
(At

⋆)
T11T

= δb
(
I − (1− δ)AT

⋆

)−1
11T (65)

Using (65), we can also bound the sample average:∣∣∣ 1
M

i−1∑
j=i−M

Λj

∣∣∣ ⪯ 1

M

i−1∑
j=iM

|Λj | = Λ̄ (66)

Then, E∆i∆
T
i is also bounded:

E∆i∆
T
i

= E

Λi −
1

M

i−1∑
j=i−M

Λj

Λi −
1

M

i−1∑
j=i−M

Λj

T

⪯ E

|Λi|+
∣∣∣ 1
M

i−1∑
j=i−M

Λj

∣∣∣
|Λi|+

∣∣∣ 1
M

i−1∑
j=i−M

Λj

∣∣∣
T

⪯ 2Λ̄ · 2Λ̄T = 4Λ̄Λ̄T. (67)

From Lemma 1 we know that the following convergence in
probability holds:

1

M

i−1∑
i−M

Λj
M→∞−−−−→ EΛ (68)

By definition of convergence in probability, for any ε > 0
and π ∈ (0, 1), there exists M0 such that for any M ≥
M0(π) the probability of the event ω:

ω ≜

{∥∥∥ 1

M

i−1∑
i−M

Λj − EΛ
∥∥∥2

F
≤ ε

}
(69)

is bounded as follows:

P(ω) ≥ 1− π. (70)

By the law of total expectation and using (70), we can
represent E∆i∆

T
i as:

E∆i∆
T
i

= E
(
∆i∆

T
i

∣∣ω)P(ω) + E
(
∆i∆

T
i

∣∣ω̄)P(ω̄)
≥ (1− π) · E

(
∆i∆

T
i

∣∣ω)+ 0 · E
(
∆i∆

T
i

∣∣ω̄) (71)

where ω̄ denotes the complementary event of ω, and
E
(
∆i∆

T
i

∣∣ω̄) is finite due to finiteness of each Λi, as
established in (65). Next, using definition (20), and the fact
that g(X) = XXT is a continuous bounded function given
a bounded input

3
we get that:

E
(
∆i∆

T
i

∣∣ω)

3If a sequence of random variables x1,x2, . . . converges in distribution
to a random variable x, then Eg(xi)

i→∞−−−−→ Eg(x) for a continuous and
bounded function g(·)
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= E

(Λi −
1

M

i−1∑
j=i−M

Λj

)(
Λi −

1

M

i−1∑
j=i−M

Λj

)T∣∣∣∣∣ω


(69)
= E

(
Λ− EΛ+O(

√
ε)
) (

Λ− EΛ+O(
√
ε)
)T

= E(Λ− EΛ)(Λ− EΛ)T +O(ε)

= δ2
∞∑
t=0

(1− δ)
2t
(At

⋆)
TRLA

t
⋆ +O(ε)

= δ2RL +

∞∑
t=1

(1− δ)
2t
(At

⋆)
TRLA

t
⋆ +O(ε)

(a)

≥ δ2RL +O(ε) ≥ τδ2I +O(ε) (72)

where the last inequality is due to Assumption 2. Thus, (71)
becomes:

E∆i∆
T
i ≥ (1− π)

(
τδ2I +O(ε)

)
(73)

Since we can choose ε as small as possible, let us set ε =
1/

√
M . Then, using (60), we get that

P (w̄) = O(1/Mε) = O(1/
√
M). (74)

Therefore, we can take the corresponding π to be on the
order of 1/

√
M due to (70). Returning to (73), we get:

E∆i∆
T
i ≥

(
1 +O

(
1/
√
M
))(

τδ2I +O(1/
√
M)
)

= τδ2I +O
(
1/
√
M
)
. (75)

Thus, E∆i∆
T
i is positive-definite for M large enought i.e.

as long as M ≫ 1/δ4.
We now examine the relation of the minimizer of Amin,i ≜

minA Ji(A) to the true combination matrix A⋆. From strong
convexity, the minimizer of Ji(A) is unique and satisfies:

∇Ji(Amin,i) = 0 (76)

Referring to (61), we get

−(1− δ)E∆i−1

(
∆T

i − (1− δ)∆T
i−1Amin,i

)
= 0. (77)

Therefore,

Amin,i =
1

1− δ

(
E∆i−1∆

T
i−1

)−1

E∆i−1∆
T
i (78)

In turn, using (20), recursion (8) can be modified into

∆i = (1− δ)AT
⋆∆i−1 + δ

Li −
1

M

i−1∑
j=i−M

Lj

 (79)

so that

A⋆ =
1

1− δ

(
E∆i−1∆

T
i−1

)−1

×

(
E∆i−1∆

T
i − δE∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T)
(80)

Subtracting (78) and (80) gives:

Amin,i −A⋆ =
δ

1− δ

(
E∆i−1∆

T
i−1

)−1

× E∆i−1

Li −
1

M

i−1∑
j=i−M

Lj

T

(81)

Iterating (8), we get the following representation for Λi:

Λi = (1− δ)M (AM
⋆ )TΛi−M + δ

M−1∑
t=0

(1− δ)t(At
⋆)

TLi−t.

(82)

Since Li are i.i.d and using (81) and the definition of ∆i

in (20), we rewrite the expectation in (81) as:

E∆i−1

Li −
1

M

i−1∑
j=i−M

Lj

T

= E

Λi−1 −
1

M

i−1∑
j=i−M

Λj−1

Li −
1

M

i−1∑
j=i−M

Lj

T

(82)
= E

[(
(1− δ)M (AM

⋆ )T

− (1− δ)M−1(AM−1
⋆ )T + · · ·+ (1− δ)AT

⋆ + I

M

)
Λi−M−1

+ δ
(
(1− δ)M−1(AM−1

⋆ )T

− (1− δ)M−2(AM−2
⋆ )T + · · ·+ I

M

)
Li−M

+ δ
(
(1− δ)M−2(AM−2

⋆ )T

− (1− δ)M−3(AM−3
⋆ )T + · · ·+ I

M

)
Li−M+1

+ . . .

+ δ

(
(1− δ)AT

⋆ − I

M

)
Li−2

+ δLi−1

]
×

[
Li −

Li−1 + · · ·+Li−M

M

]T
= − δ

M

( I

M
+

2

M
(1− δ)AT

⋆ + · · ·+

+
M − 1

M
(1− δ)M−2(AM−2

⋆ )T

+ (1− δ)M−1(AT
⋆ )

M−1
)
RL

= O (1/M) I. (83)

with

RL = E
(
Li − L̄

) (
Li − L̄

)T
(84)

and where we used the fact that

E

[
Λi−M−1

(
Li −

Li−1 + · · ·+Li−M

M

)T
]

= EΛi−M−1E
(
Li −

Li−1 + · · ·+Li−M

M

)T

= EΛi−M−1

(
L̄ − L̄

)T
= 0. (85)
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Thus, combining (75), (81) and (83), we find the following
relation between A⋆ and Amin:

∥Amin,i −A⋆∥2F

≤ δ2

(1− δ)2
∥O (1/M) I∥2F

∥∥∥∥(E∆i−1∆
T
i−1

)−1
∥∥∥∥2
F

≤ |N |δ2

τ2δ4(1− δ)6
O
(
1/M2

)
= O

(
1/δ2M2

)
(86)

Appendix C
PROOF OF THEOREM 1
Using recursion (8) for Λi and the definition of L̂i−1 in (18),
the SGD step (23) can be rewritten as follows:

Ai = Ai−1 + µ(1− δ)∆i−1

×
(
∆T

i − (1− δ)∆T
i−1Ai−1

)
(79)
= Ai−1 + µ(1− δ)∆i−1

×
(
(1− δ)∆T

i−1 (A⋆ −Ai−1)

+ δ
(
Li −

1

M

i−1∑
j=i−M

Lj

)T)
= Ai−1 + µ(1− δ)2∆i−1∆

T
i−1 (A⋆ −Ai−1)

+ µδ(1− δ)∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
(87)

Recall the deviation from the true combination matrix:

Ãi = A⋆ −Ai. (88)

Combining (87) with (88), we obtain:

Ãi =
(
I − µ(1− δ)2∆i−1∆

T
i−1

)
Ãi−1

− µδ(1− δ)∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
=
(
I − µ(1− δ)2E∆i−1∆

T
i−1

)
Ãi−1

+ µ(1− δ)2
(
E∆i−1∆

T
i−1 −∆i−1∆

T
i−1

)
Ãi−1

− µδ(1− δ)∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
. (89)

The mean-square deviation is then given by

E∥Ãi∥2F
≤ ρ2

(
I − µ(1− δ)2E∆i−1∆

T
i−1

)
E∥Ãi−1∥2F

+ µ2(1− δ)4E
[∥∥∥(E∆i−1∆

T
i−1 −∆i−1∆

T
i−1

)∥∥∥2
F

× ∥Ãi−1∥2F
]

+ µ2δ2(1− δ)2E
∥∥∥∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T∥∥∥2
F

− 2µδ(1− δ)E
[
Tr
(
∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
× Ã

T

i−1

(
I − µ(1− δ)2∆i−1∆

T
i−1

))]
+ 2µ(1− δ)2E

[
Tr
((

E∆i−1∆
T
i−1 −∆i−1∆

T
i−1

)
Ãi−1

× Ã
T

i−1

(
I − µ(1− δ)2E∆i−1∆

T
i−1

))]
= ρ2

(
I − µ(1− δ)2E∆i−1∆

T
i−1

)
E∥Ãi−1∥2F

+ µ2(1− δ)4E
[∥∥∥(E∆i−1∆

T
i−1 −∆i−1∆

T
i−1

)∥∥∥2
F

× ∥Ãi−1∥2F
]

+ µ2δ2(1− δ)2E
∥∥∥∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T∥∥∥2
F

+ 2µ2δ(1− δ)3E
[
Tr
(
∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
× Ã

T

i−1∆i−1∆
T
i−1

)]
+ 2µ(1− δ)2E

[
Tr
((

E∆i−1∆
T
i−1 −∆i−1∆

T
i−1

)
Ãi−1

× Ã
T

i−1

(
I − µ(1− δ)2E∆i−1∆

T
i−1

))]
− 2µδ(1− δ)E

[
Tr
(
∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
Ãi−1

)]
(90)

where ρ(·) denotes the spectral radius of its matrix argument.
Considering the first term:

ρ2
(
I − µ(1− δ)2E∆i−1∆

T
i−1

)
= max

{
λ2
min

(
I − µ(1− δ)2E∆i−1∆

T
i−1

)
,

λ2
max

(
I − µ(1− δ)2E∆i−1∆

T
i−1

)}
= max

{(
1− µ(1− δ)2λmin

(
E∆i−1∆

T
i−1

))2
,(

1− µ(1− δ)2λmax

(
E∆i−1∆

T
i−1

))2 }
= max

{
(1− µν)2, (1− µκ)2

}
≤ 1− 2µν + µ2κ2 = 1− 2µν +O(µ2), (91)

where the last inequality holds since ν ≤ κ by defini-
tions (34) and (35). We omit the time indices in νi and κi

since we are assuming that Λi has reached the steady-state
distribution (13), and ν and κ are defined as:

ν ≜ (1− δ)2λmin

(
lim
i→∞

E∆i−1∆
T
i−1

)
κ ≜ (1− δ)2λmax

(
lim
i→∞

E∆i−1∆
T
i−1

)
(92)

These constraints are positive by Lemma 2 and exist due to
bounded Λi in (65). From [27, Lemma 1] it follows that:

|Λi| ⪯ Λ̄i ≜ (1− δ)
i (
AT

⋆

)i |Λ0|
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+ δb

i−1∑
t=0

(1− δ)
t
(At

⋆)
T11T (93)

and the upper bound has a finite limit, limi→∞ Λ̄i. Therefore,
we can derive another upper bound:

|∆i−1∆
T
i−1| ⪯

1

M2

i−1∑
j1=i−M

(
Λ̄i−1 + Λ̄j1

)
×

i−1∑
j2=i−M

(
Λ̄i−1 + Λ̄j2

)T
≜ X. (94)

Now, the expectation of the second term in (90) is bounded
as follows:

µ2E
(
∥(1− δ)2

(
E∆i−1∆

T
i−1 −∆i−1∆

T
i−1

)
∥2F

× ∥Ãi−1∥2F
)

≤
5
2µ2E

((
∥(1− δ)2E∆i−1∆

T
i−1∥2F

+ ∥(1− δ)2∆i−1∆
T
i−1∥2F

)
× ∥Ãi−1∥2F

)
≤ 2µ2

(
∥(1− δ)2E∆i−1∆

T
i−1∥2F + ∥(1− δ)2X∥2F

)
× E∥Ãi−1∥2F

≤ 4µ2∥(1− δ)2X∥2FE∥Ãi−1∥2F
= O(µ2) · E∥Ãi−1∥2F. (95)

Now, we proceed with the third term in (90). Due to
Assumption 1, we have bounded observations Li and Λi

(see (93)), and we conclude that∣∣∣∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T∣∣∣
=
∣∣∣(Λi−1 −

1

M

i−1∑
j=i−M

Λj

)(
Li −

1

M

i−1∑
j=i−M

Lj

)T∣∣∣
⪯
(
|Λi−1|+

1

M

i−1∑
j=i−M

|Λj |
)(

|Li|+
1

M

i−1∑
j=i−M

|Lj |
)T

⪯ (Λ̄ + Λ̄)(b11T + b11T)T

= O(1). (96)

Thus,

µ2δ2(1− δ)2E
∥∥∥∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T∥∥∥2
F

≤ µ2δ2(1− δ)2 ·O(1) = µ2 ·O(δ2) (97)

In turn, the fourth term becomes:

2µ2δ(1− δ)3E
[
Tr
(
∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
5(a− b)2 ≤ 2a2 + 2b2.
62 Tr

(
ABT

)
≤ ∥A∥2F + ∥B∥2F .

× Ã
T

i−1∆i−1∆
T
i−1

)]
≤

6
µ2δ2(1− δ)6E

∥∥∥Li −
1

M

i−1∑
j=i−M

Lj

∥∥∥2
F

+ µ2E
∥∥∥AT

i−1∆i−1∆
T
i−1∆i−1

∥∥∥2
F

(a)
= µ2δ2(1− δ)6

M + 1

M
Tr(RL) +O(µ2) · E∥Ãi−1∥2F

= µ2O(δ2) +O(µ2) · E∥Ãi−1∥2F (98)

where we use the same steps as in (95), and (a) follows
from:

E
∥∥∥ 1

M

i−1∑
j=i−M

Lj −Li

∥∥∥2
F
= E

∥∥∥ 1

M

i−1∑
j=i−M

(Lj −Li)
∥∥∥2

F

= E Tr

(
1

M

i−1∑
i=j−M

(Lj −Li)

)(
1

M

i−1∑
i=j−M

(Lj −Li)

)T

=
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T
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=
1

M2
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i

)
+

1

M2
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(
ELiLT
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)

=
2

M
Tr (RL) +

M − 1

M
Tr (RL) =

M + 1

M
Tr (RL) (99)

To find the expectation of the second trace term in (90),
consider first the conditional expectation, and then use As-
sumption 3:

E
[
Tr
((

E∆i−1∆
T
i−1 −∆i−1∆

T
i−1

)
Ãi−1Ã

T

i−1

×
(
I − µ(1− δ)2E∆i−1∆

T
i−1

))∣∣∣F i−M−1

]
= Tr

((
E∆i−1∆

T
i−1 − E∆i−1∆

T
i−1

)
× E

[
Ãi−1Ã

T

i−1

∣∣F i−M−1

]
×
(
I − µ(1− δ)2E∆i−1∆

T
i−1

))
= 0 (100)

where we use the fact that ∆i−1 depends only on
Λi−M−1, . . . ,Λi−1. Finally, consider the last term of (90).
Using Assumption 3, we obtain:

− 2µδ(1− δ)E
[
Tr
(
∆i−1

(
Li −

1

M

i−1∑
j=i−M

Lj

)T
Ãi−1

)]
= −2µδ(1− δ)
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(85)
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(83)
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[
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(
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[
Tr
(
O(1/M)Ãi−1
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≤

6
µ
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δ
O(1/M2) + µδ3E∥Ãi−1∥2F

= µO(1/δM2) + µE∥Ãi−1∥2F ·O(δ3). (101)

where in (83) the conditional expectation on F i−M−1 is
equal to the full expectation because (85) equals to zero
for both full and conditional on F i−M−1 expectations.
Summarizing the derivations above, we can transform (90)
into:

E∥Ãi∥2F ≤ αE∥Ãi−1∥2F + µ2γ + µc, (102)

with γ = O(δ2), c = O
(
1/δM2

)
and α = 1 − µ(2ν +

O(δ3)) +O(µ2). Thus,

E∥Ãi∥2F ≤ αi∥Ã0∥2F +
(
µ2γ + µc

) i∑
t=0

αi

= αi∥Ã0∥2F +
(
µ2γ + µc

) 1− αi

1− α
. (103)

For small enough µ, α is strictly less than one. Hence, we
obtain the following limiting MSD:

lim sup
i→∞

E∥Ãi∥2F ≤ µ2γ + µc

1− α

= O(µ) +O
(
1/δ3M2

)
(104)

Appendix D
PROOF OF THEOREM 2
First, using recursion (8), we rewrite (18) as:

L̂i−1(Ai) =
1
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(105)

Consider the mean square deviation of L̂i:
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. (106)

Consider the first norm:
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Let us study the second term of (106) using Assumption 3
and Lemma 1. Conditioning on the history (51), we get
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(108)

According to (66), we can bound:

E
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Therefore, (108) can be bounded as follows:
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Now, consider the trace term in (106):
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where (a) holds due to Assumption 3 and (b) holds due the
trick similar to (83). Summarizing the derivations above, we
can upper bound the expectation (106) as:

E∥L̂i−1 − L̄∥2F

≤ 1

M
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M
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1
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By Theorem 1, we derive the following MSD in the limit:

lim sup
i→∞

E∥L̂i−1 − L̄∥2F

≤ 1

M
Tr (RL) +O(µ/δ2) +O

(
1/δ5M2

)
(113)

Appendix E
In this section, we describe how we generate Bernoulli
likelihood model parameters. Under hypothesis θ, each agent
k receives observation 0 with probability pk(θ), and obser-
vation 1 with probability qk(θ) = 1− pk(θ). For hypotheses
θ0, we fix the probabilities as follows:

pk(θ0), qk(θ0) = [0.3, 0.7] (114)

And for all other θi ̸= θ0, we generate pk(θi) and qk(θi)
with the following procedure:

εpk
, εqk ∼ G(0, 1), (115)

and

pk(θi), qk(θi) =
1

pk(θ0) + σ2
kεpk

+ qk(θ0) + σ2
kεqk

×
[
pk(θ) + σ2

kεpk
, qk(θ0) + σ2

kεqk
]

(116)

For “non-influential” agents, we take σ2
k = 0.05, while for

“influential” ones we use σ2
k = 0.5 to enlarge the KL-

divergences between different states. For additional compar-
ison in Fig. 5, we take σ2

k = 0.2 for “influential” agents with
smaller (but yet significant) KL-divergences.
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