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A B S T R A C T 

With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of 
Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically moti v ated results can be 
simulated with radiative transfer codes, these simulations are computationally e xpensiv e and cannot readily produce the required 

scale and resolution simultaneously. Here we introduce the Physics-Informed neural Network for reIONization ( PINION ), 
which can accurately and swiftly predict the complete 4D hydrogen fraction evolution from the smoothed gas and mass density 

fields from pre-computed N-body simulation. We trained PINION on the C 

2 -Ray simulation outputs and a physics constraint 
on the reionization chemistry equation is enforced. With only five redshift snapshots, PINION can accurately predict the entire 
reionization history between z = 6 and 12. We e v aluate the accuracy of our predictions by analyzing the dimensionless power 
spectra and morphology statistics estimations against C 

2 -Ray results. We show that while the network’s predictions are in 

very good agreement with simulation to redshift z > 7, the network’s accuracy suffers for z < 7. We moti v ate ho w PINION 

performance could be impro v ed using additional inputs and potentially generalized to large-scale simulations. 

K ey words: radiati ve transfer – software: simulations – cosmology: dark ages, reionization, first stars.. 
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 I N T RO D U C T I O N  

mmediately after the Epoch of Recombination, no significant
adiation sources existed in the Universe. This period is called
he Dark Ages. Ho we ver, the e volution of the matter density
eld led to the generation of collapsed structures, leading to the
ormation of the first stars and galaxies. At z ∼ 30, these first
uminous sources started to emit ultraviolet light, which successively
onized the intergalactic medium (IGM) (Furlanetto, Oh & Briggs
006 ; Ferrara & Pandolfi 2014 ). Indirect constraints such as high-
edshift quasar spectra (Fan et al. 2006 ; McGreer, Mesinger &
an 2011 ; McGreer, Mesinger & D’Odorico 2014 ), the decline of
yman α emitting galaxies (Schenker et al. 2011 ; Stark, Ellis &
uchi 2011 ; Pentericci et al. 2014 ; Tilvi et al. 2014 ) suggest

hat reionization was complete for z < 6. This change from a
ark universe filled with neutral hydrogen to the fully ionized
GM is known as the Epoch of Reionization (EoR) (Gorbunov &
ubakov 2011 ; Dayal & Ferrara 2018 ). The study of the EoR is
ssential for cosmology. The evolution of reionization is driven by
he matter–energy content and geometry of the Universe, and the
istribution of ionized regions reflects how galaxies and black holes
ormed. 

The presence of neutral hydrogen during the EoR will be evident
y measuring the emerging brightness temperature from a gas cloud
t a given redshift against the CMB temperature (Zaroubi 2013 ).
 E-mail: damien.korber@protonmail.ch 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whi
odern telescopes such as LOFAR 

1 are able to measure the global
tatistics of the 21-cm signal (Paciga et al. 2013 ; Yatawatta et al.
013 ; Jeli ́c et al. 2014 ; Parsons et al. 2014 ; Jacobs et al. 2015 ; Patil
t al. 2017 ; Mertens et al. 2020 ; Trott et al. 2020 ). Ho we ver, during
eionization the signal fluctuations are expected to be non-Gaussian
Mondal, Bharadwaj & Majumdar 2017 ; Shimabukuro et al. 2017 ;

ajumdar et al. 2018 ; Gorce & Pritchard 2019 ; Hutter et al. 2019 ;
atkinson, Greig & Mesinger 2022 ), and therefore cannot be fully

epicted by the power spectra only. Next-generation telescopes such
s the SKA 

2 will be able not only to detect the 21-cm signal but also
o produce maps of its fluctuations on the sky (Mellema et al. 2013 ;
liev et al. 2014 ; Dillon et al. 2015 ; Koopmans et al. 2015 ; Wyithe,
eil & Kim 2015 ; Bacon et al. 2020 ). These observations at multiple

requencies will allow us to directly measure the neutral hydrogen
ensity distribution throughout the Universe evolution. The expected
recision of SKA-Low will allow a groundbreaking comparison
etween observations and simulations. Future high-fidelity obser-
ations of the EoR demand equivalently high-fidelity simulations. A
hysically moti v ated simulation of reionization needs to include three
ain components: gravitational evolution of dark matter particles via
-body simulations, gas dynamics via hydrodynamical simulations,

nd radiative transfer (RT) simulations to compute the propagation
f photons and the evolution of the ionized atoms. Although it is
ossible to do on-the-fly simulations that combine these three steps
 http://lofar.org 
 ht tps://skat elescope.org 
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Rosdahl et al. 2013 ; Ocvirk et al. 2016 , 2020 , 2021 ; Lewis et al.
022 ), these simulations are very computationally e xpensiv e as they
equire small time-steps and large number of simulated particles 
Abel, Norman & Madau 1999 ; Bolton, Meiksin & White 2004 ;
hapiro, Iliev & Raga 2004 ). It is also possible to post-process the
T step on to existing N-body and hydrodynamical simulations in 
rder to lighten its computational footprint. The state-of-the art post- 
rocess RT simulation is the C 2 -Ray code (Mellema et al. 2006 ).
his method uses a 3D ray tracing method that relaxes the constraints
n the time-step size. While C 2 -Ray can produce high-accuracy EoR 

imulations at large scale, is extremely computationally expensive to 
un, requiring several millions of core-hours to run across thousands 
f nodes. 
Another post-process RT code is Grizzly (Ghara et al. 2018 ), 

hich assumes spherical density profiles around each source, thus 
implifying the problem to a 1D RT process and speeding up the
omputation by several orders of magnitude. There is no simulation, 
hich is able to produce RT on large volumes while still accounting

or small-scale physics. 
Deep neural networks are well-known as universal function 

pproximators (Hornik 1991 ), and have been successfully used to 
ccelerate and impro v e simulations of physical processes in many 
omains (He et al. 2019 ; Liu et al. 2021 ). Deep learning has
reviously been applied in the context of reionization simulations. In 
articular, Chardin et al. ( 2019 ) obtained some encouraging results
or the use of neural networks in predicting the 3D ionization map at
 = 6. 

Despite their success, neural networks suffer from interpretability 
nd generalization problems (Nguyen, Yosinski & Clune 2015 ; 
ibeiro, Singh & Guestrin 2016 ). While physical phenomenons 
re often described by some theoretical or empirical model, neural 
etworks attempt to learn these laws from statistically small and 
iased data. Ho we ver, in recent years, a new class of neural networks
ith physics constrains has emerged. These networks are called 
hysics-Informed Neural Networks (PINNs) and encapsulate addi- 

ional physics laws into the behaviour of the network (Karniadakis 
t al. 2021 ). 

In this paper, we present PINION , a PINN that can accurately
redict the reionization map at any redshift and volume. This paper 
s organized as follows. In Section 2 , we present the numerical
odes employed to simulate the reionization process and create the 
etwork training data set. In Section 3 , we present the model used
o study the evolution of ionization during the EoR and data pre-
rocessing by smoothing the source distribution field to encapsulate 
he expanding behaviour of the ionizing front. Then in Section 4 
e present PINION , the neural network that we developed for this
roject, with its physics constraint. Section 5 gives the results and 
heir analysis, and Section 6 concludes with a summary of the results
nd the future prospects for this project. 

 REIONIZA  T I O N  SIMULA  T I O N S  

he simulation used in this paper is briefly described here below, but
e refer to the reader the recent works (e.g. Dixon et al. 2016 ; Ross

t al. 2017 ; Bianco et al. 2021 ) for further details. The cosmological
arameters used in the simulation are based on the WMPA 3-yr data
bservation and the results are consistent for a � CDM cosmology 
ith the following parameters, �� 

= 0.724, �m = 0.276, �b = 

.454, H 0 = 70.1 km s −1 Mpc −1 , σ 8 = 0.784, and n s = 0.946 (Spergel
t al. 2007 ). The CUBEP 3 M code (Harnois-D ́eraps et al. 2013 ) is
mployed for the N-body simulation and it is run on a box of physical
ize 714 Mpc containing 6912 3 particles, with a spatial resolution of 
 . 17 kpc and particles mass of 5 . 12 × 10 3 M �. The initial conditions
re generated using the Zel’dovich approximation, while the power 
pectrum of the linear fluctuations is given by the CAMB code (Lewis,
hallinor & Lasenby 2000 ). The simulation then starts at redshift z =
50, which gives enough time to significantly reduce the non-linear 
ecaying modes (Crocce, Pueblas & Scoccimarro 2006 ). An on- 
he-fly spherical o v erdensity halo finder algorithm (Harnois-D ́eraps 
t al. 2013 ; Watson et al. 2013 ) with o v erdensity parameter � =
30 creates a halo list catalogues at each redshift step, while the
emaining particles are considered to be part of the IGM. In this
tudy, we only consider haloes with mass M h ≥ 10 9 M � as these
ources are not affected by radiative feedback and are considered to
e the primary driver of reionization (Iliev et al. 2012 ; Dixon et al.
016 ). 
The N-body particle list and the halo catalogues are then interpo-

ated into a 300 3 grid with a smoothed-particle-hydrodynamic-like 
ethod (Shapiro et al. 1996 ; Mao et al. 2012 ), with a corresponding

ell size of 2 . 381 Mpc . This dark matter density field and cumulative
ource mass field are used as inputs to the C 2 -Ray code, which
omputes the post-processed RT to generate the photoionization 
ates and ionization fractions. A fixed time-step �t = 11 . 54 Myr is
onsidered for redshifts z = 6–50. We refer the reader to, e.g. (Dixon
t al. 2016 ; Majumdar et al. 2016 ; Bianco et al. 2021 ) for a more
eneral o v erview of the RT method and N-body method employed in
his paper. In our case, snapshots of C 2 -Ray for the redshifts range
 = 6–12 were kept for training the network, which corresponds
o the time when at least one source is present at each pixel of the
moothed grid and therefore where the reionization process is rapidly 
volving. 

The matter density field and source mass field used by C 2 -Ray
re also provided as inputs to the neural network. 

 E VO L U T I O N  O F  REI ONI ZATI ON  

n the EoR, we are interested in studying how the neutral hydrogen
ensity n HI is converted into the ionized hydrogen density n HII . Reion-
zation is driven by two different processes: ionization , by which
igh-energy photons ionize neutral hydrogen, and recombination , by 
hich ionized hydrogen recombines with the local electron density 
 e into neutral hydrogen. The evolution of ionized hydrogen is given
y (Choudhury 2009 ; Pritchard & Loeb 2012 ): 

dn HII 

dt 
= n HI � − CαB n HII n e , (1) 

here � is the reionization rate, C is the clamping factor, which
ccounts for the inhomogeneity in the simulation, and αB ≡ αB ( T ) =
 . 59 × 10 −13 ( T / 10 4 K) −0 . 7 cm 

3 s −1 is the temperature dependent
ase B recombination coefficient (Furlanetto et al. 2006 ). In this
 ork, the clumping f actor is set to C = 1. This scenario corresponds

o the case where sub-grid inhomogeneities in the IGM are ignored
Mao et al. 2019 ; Bianco et al. 2021 ). Moreo v er, we set the
emperature to T = 10 4 K, which assumes that gas in halo is able
o radiatively cool through hydrogen and helium atomic lines (Wise 
t al. 2014 ). F or a fix ed density of hydrogen n H ≡ n HI + n HII , we
an define the neutral hydrogen fraction x HI ≡ n HI / n H and ionized
ydrogen fraction x HII ≡ n HII / n H . For simplicity, we assume pure
 ydrogen g as, n e ∼ n HII . We can then rewrite equation ( 1 ) as 

dx HII 

dt 
= (1 − x HII ) � − CαB n H x 

2 
HII . (2) 

Note that in the following of this paper, we will refer to x HII as the
 olume-a verage fraction of ionized hydrogen. 
MNRAS 521, 902–915 (2023) 
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M

Figure 1. Diagram of PINION ’s pipeline. The input data consist in two input subvolumes, the gas density and the source field that were produced by the 
N-body simulation. The source field is then processed to obtain a smoothed field. The network outputs one value for the subvolume central pixel x HI . During the 
training steps, the output is then compared to the data to obtain the data loss L data and the physics constraint to obtain the the ODE loss L ODE . 
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 PINION 

INION 3 is a 3D CNN (Convolutional Neural Network) that reduces
he information from two 7 3 input cubes of gas density and mass of
ources to predict x HII at the cube centre for a single value of redshift.
he input size corresponds to a volume of (16 . 67 Mpc ) 3 . We initially
hose a size scale based on the physical hard limit imposed by Lyman
imit system (Shukla et al. 2016 ), corresponding to an input mesh-grid
ize of 49 3 . Ho we ver, we did not observe significant improvement
n the result for this larger subvolume, and decided to reduce the
nput size to reduce the training and predicting computation time.

e considered periodic boundary conditions on the full data set to
e able to predict the border pixels. This is justified by the fact that the
 

2 -Ray simulation we are training on also uses periodic boundary
onditions. 

.1 PINION pipeline and ar chitectur e 

INION has two input channels: the source mass field and the gas
ensity. An additional third input is derived internally by smoothing
he source distribution field, described in Section 4.2 . These three
elds are then internally given as inputs to the network, which then
eturns the ionized fraction x HII of the subvolume central pixel as the
utput. The network is composed of three convolutional layers with
 

3 kernel and doubling number of feature maps: 64, 128, and 256.
he convolution results in 256 feature maps with channel size 1, to
hich the normalized look-back time is concatenated. This tensor is

hen used as input to a fully connected network with three hidden
ayers of 64, 16, and 4 nodes, and a single output node. Each layer
ses the PReLU acti v ation function (He et al. 2015 ) followed by a 3D
atch normalization and a 10 per cent dropout. The output node uses
 sigmoid acti v ation function to truncate the output values between
 and 1. In total, this network has 1130 252 trainable parameters.
n Fig. 1 , we show a simplified o v erview of PINION pipeline, the
re-process step and the neural network architecture. 
We use the Adam optimization algorithm (Kingma & Ba 2014 )

uring the network training to minimize our data loss function L data .
n PINION , the data loss is the adjusted R 

2 loss, also referred to the
NRAS 521, 902–915 (2023) 
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u  

p

oefficient of determination in statistics. This quantity is defined as 

 data ( x true , x pred ) = 

∑ 

( x pred − x true ) 2 ∑ 

( x true − x̄ true ) 2 
≡ 1 − R 

2 , (3) 

here x pred is the prediction from the network, x true is the ground
ruth, and x̄ true is its mean value (Gillet et al. 2019 ). 

We train with the ODE loss as defined in Section 4.3 . The results
rom this network will be discussed in Section 5 and show promising
esults. 

.2 Data pr e-pr ocessing 

uring initial studies, we found that it was difficult for the network
o learn the relationship between the input fields from the N-body
imulation and the reionization across all redshifts. This is because,
s shown in Fig. 2 , while the gas density and source mass fields
o not change drastically o v er the EoR, the reionization rate and
raction rapidly change as ionized regions progressively grow with
ime. Without any other constraints, the network must learn to
redict extremely different outputs from very similar inputs across
ll redshifts. 

To ameliorate this problem, we provide the network with the
onizing front propagation as an additional input. This approach
as inspired by He et al. ( 2019 ), which used a neural network to
redict cosmological structure formation starting from the Zel’dovich
pproximation (Zel’Dovich 1970 ) and in our case this input should
ive a crude approximation of the photoionization rate. We can
alculate the mean free path of ionizing photons at a given redshift
νHI ( z) using the approximated form of equation (23) in Choudhury
 2009 ) as follows: 

νHI ( z ) ≈
c 

H ( z ) 
× 0 . 1 

(
1 + z 

4 

)−2 . 55 

. (4) 

his equation is the empirical fit from simulations valid for redshifts
 > 3. While the source model in Choudhury ( 2009 ) does not exactly
orrespond to our simulation, it provides a good starting point for the
etwork. We can then approximate the size of the ionized bubbles
sing λνHI ( z), and use the smoothed sources mass field to infer the
hotoionization rate. The algorithm is the following: 

(i) Calculate λνHI ( z) for a given redshift z. 

art/stad615_f1.eps
https://github.com/epfl-radio-astro/PINION
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Figure 2. Evolution of the gas density, mass of sources, photoionization rate, and ionized fraction for four different redshifts. Note that the scale is different for 
every plot but the evolution shows that Fig. 2 (a) and (b) are not expanding like Fig. 2 (c) and (d). 
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(ii) Construct a spherical kernel of size λνHI ( z) by converting 
νHI ( z) from Mpc to number of pixels given a resolution of 2.381 Mpc
er pixel, setting every pixel to 0 when further than distance λνHI ( z)
o the centre and scale the other pixel value between 0 and 1, where
 is the centre pixel and 0 the borders. 
(iii) Finally, convolve cube of mass of sources with the spherical 

ernel. 

This algorithm creates a smoothed source distribution field that 
ehaves approximately like the photoionization rate. Knowing that 
ν ( z) increases with redshift, the ionization front expand as well. 
HI 
The purpose of this smoothed field is to provide an additional
nput to the network, and outside this machine learning context, 
t should not be interpreted as an estimate of the photoionization
ate. 

.3 Physics constraint 

ne of the most popular ways to encode physics constraints in a
eep neural network is through learning bias (Karniadakis et al. 
021 ). We have incorporated this in our network by using the ODE
MNRAS 521, 902–915 (2023) 
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Figure 3. Residual between the RK4 ODE evolution of x HII and the simulated 
x HII . This plot is obtained by averaging the e v aluated ODE over 1000 random 

subvolumes of size 47.62 Mpc. The redshift is cut at z = 10 to highlight the 
lower redshifts, where the residual is the biggest. 
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rom equation ( 2 ) as an additional loss: 

 ODE = 

dx HII 

dt 
− (1 − x HII ) � + αB n H x 

2 
HII . (5) 

his ODE depends on the time deri v ati ve of x HII . While automatic
ifferentiation can be used to obtain the exact value of the deri v ati ve
Baydin et al. 2018 ), it is unfortunately not feasible for a network
ith millions of parameters. 
Instead, we encode the ODE loss as a finite-difference, using

he Runge–Kutta 4 (RK4) method (Scherer 2013 ) to calculate the
eri v ati ve. RK4 requires an intermediate step to perform deri v ations,
o we simply take a step size two times larger than the time increment
f the data. Let x n ≡ x HII ( t n ) the ionization fraction at the n th time-
tep and � n ≡ �( t n ) the photoionization rate at the n th time-step.
hen, defining h n = � t n + � t n + 1 as the new time-step, where � t n 

s the time between snapshots n and n + 1, and D n = αB n H, n , we can
efine the RK4 terms as 

 1 = (1 − x n ) � n − D n x 
2 
n , (6a) 

 2 = (1 − x n − h n 
2 k 1 ) � n + 1 − D n + 1 ( x n + 

h n 
2 k 1 ) 

2 , (6b) 

 3 = (1 − x n − h n 
2 k 2 ) � n + 1 − D n + 1 ( x n + 

h n 
2 k 2 ) 

2 , (6c) 

 4 = (1 − x n − h n k 3 ) � n + 2 − D n + 2 ( x n + h n k 3 ) 2 , (6d) 

 

∗
n + 2 = x n + 

h n 

6 
[ k 1 + 2 k 2 + 2 k 3 + k 4 ] ≡ x n + 

h n 

6 
K, (6e) 

where x n is the predicted mean fraction of ionized hydrogen,
btained as the output of the neural network, x ∗n + 2 is the step obtained
y computing the evolution of the ODE from x n and � n is the true
hotoionization rate from C 2 -Ray . The large time-step makes it
ifficult to keep the solution stable. Indeed, at higher redshifts, most
f the Universe is neutral, but at lower redshifts the ionization quickly
ncreases. With large time-steps, RK4 has no issues tracking the
volution of the ODE at earlier times, as changes are slo w. Ho we ver,
t later times, the photoionization rate is rapidly changing and the
K4 solution might drastically increase. To fix this issue, the equation
 6e ) is clipped between 0 and 1 to guarantee that the solution does
ot diverge. One can now write the physics loss as follows: 

x = x n + 2 − MinMax 

(∣∣∣∣x n + 

h n 

6 
K 

∣∣∣∣, 0 , 1 
)

, (7a) 

 ODE ( x n ) = 

1 
N 

∑ N 

n = 0 

(
�x 
h n 

− (1 − x n ) � n + D n x 
2 
n 

)2 
, (7b) 

where MinMax ( x , 0, 1) ensures that x is encapsulated between
 and 1. In Fig. 3 , we compute the residual to check that the RK4
oss accurately describe the behaviour of the C 2 -Ray simulation. We
ee good agreement between the data and the ODE as the standard
eviation is within 2 per cent for all redshifts. When the reionization
raction is not rapidly evolving for z > 9, we see excellent agreement
ithin 0.5 per cent. 
Although we use 3D convolutional layers, we account for the time

volution constraint by using the batch dimension of the network
nput. F or a giv en spatial position of the input fields, its evolution
or the 46 redshift snapshots is added as adjacent inputs along the
atch dimension. The truth information is fed to the network in the
ame manner. This way, we can use spatial convolution and study the
volution of the predicted quantity with the time evolution constraint
rom the ODE loss. This additional loss constrains the network’s
ehaviour and impro v es performance. 
NRAS 521, 902–915 (2023) 
.4 PINION and approximate RT solvers 

ompared to other fast approximations of RT, PINION offers a more
hysically moti v ated but less interpretable solution. 
F or e xample, RT codes such as GRIZZLY assume an uniform

ensity profile around each isolated source (Ghara et al. 2018 ).
his approximation reframes the reionization process as a 1D
roblem using rotational symmetries, which considerably simplifies
he computations. Therefore, this approach computes the ionization
rofile around isolated sources, thus quantifying the radius of the
pherical ionization front as a function of time and optical depth
Shapiro et al. 2006 ) and then redistributes photons in o v erlapping
egions in a second step (Ghara, Choudhury & Datta 2015 ). Recent
orks use 1D RT codes to study global statistics of the 21-cm signal

or EoR and Cosmic Dawn (Ghara et al. 2020 , 2021 ; Datta et al.
022 ; Kamran et al. 2022 ). 
PINION does not make any assumptions or approximations

bout the source or density field. Ho we ver, PINION must infer the
ynamics of RT during training, learning from a subvolume of size
16 . 67 Mpc) 3 , which we consider the region of influence . We assume
hat this region contains all the nearby sources that contribute to
he ionization state of the central pixel. During training, the ODE
onstraint equation ( 7 ) enforces realistic behaviour of the learned
ynamics. Ho we ver, as in all deep learning solutions, PINION results
ill have less interpretability compared to approximate 1D RT codes.

 RESULTS  A N D  ANALYSI S  

n order to characterize the impact of the ODE loss, we consider
hree different network training scenarios: 

(i) NP ( no physics ): The training contains the entire evolution of
ixels, but does not have a physics constraint: L total = L data . This
cenario is noted by dashdot lines ( · −) in figures. 

(ii) PFD ( physics and full data ): The training uses the ODE loss
nd the data loss for the entire time evolution of pixels: L total =
 data + L ODE . This scenario is noted by dashed lines ( −−) in figures.
(iii) LD ( low data ): The training uses the ODE loss, but the data

oss is only e v aluated at five different snapshots (limited) of the
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Figure 4. Visualization of a small cutout of the ionized hydrogen map at redshift z = 7.305 simulated by C 2 -Ray and the three PINION scenarios. The mean 
fraction of ionized hydrogen o v er the whole cube at this redshift is x̄ HII = 0 . 389 for C 2 -Ray , x̄ HII = 0 . 398 for PFD, x̄ HII = 0 . 364 for NP, and x̄ HII = 0 . 391 for 

LD. The residual is computed as R = x PINION HII − x 
C 2 -Ray 
HII . Axes and colour bars are shared for readability. 
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imulation instead of the full reionization history: L total = L limited + 

 ODE . This scenario is noted by dotted lines ( · ·) in figures. 

During the training, the three scenarios do not differ greatly in 
onvergence time. Training each scenario took 1.5 GPU-hours on 
ne node for 400 epochs. The training was performed on a node
rom CSCS’s GPU cluster Piz Daint 4 that is equipped with NVIDIA 

esla P100 16GB GPU. In each scenario, only the network weights 
ith the lowest validation loss is kept. 
To predict the reionization fraction at a single pixel location, the 

etwork needs the surrounding 7 3 pixel subvolume, corresponding to 
 volume of (16.667 Mpc) 3 , for the three internal input fields. These
ubvolumes are sliced out of the full cubes and are concatenated 
o form a higher dimensional tensor for the training data set. For
he PFD and NP scenarios, 4000 subvolumes over 46 redshifts are 
rovided to the network (184 000 training subvolumes in total) with 
 batch size of 3680. For the LD training, 4000 subvolumes over
6 redshifts with a batch size of 3680 are also considered, but the
ata loss only had the ground truth for five fixed redshifts evenly
paced o v er the EoR evolution: ( z = 12.048, 9.938, 8.515, 7.480,
nd 6.686) in the evolution, meaning that it compares the prediction 
o the truth data on 20 000 subvolumes instead of 184 000 for L data .
o validate the training, 500 validation subvolumes are considered, 
nd the final network weights are selected from the training snapshot
ith the smallest total validation loss. Note that all the subvolumes 

re randomly chosen from the full data set. 

.1 Network output 

he network results for each PINION training scenario are compared 
o the C 2 -Ray ground truth in Fig. 4 for a single redshift slice.
n general, all the scenarios are able to accurately reproduce the 
onization map. Ho we ver, small dif ferences can be observed at the
orders of large and small ionized regions. 
The x HII redshift evolution in each scenario is shown next to C 2 -
ay in Fig. 5 . The three scenarios evolve similarly and show good
 https:// www.cscs.ch/ computers/ piz-daint/ 

F  

W  

f

greement with the ground truth. All the PINION scenarios are able
o find the first ionizing bubbles ( z > 8). See for example the bubble
t ( z, L ) = (9 , 610 Mpc ) and (8 . 1 , 610 Mpc ) in Fig. 5 . Ho we ver, for
edshift z < 7, we start to see large differences between C 2 -Ray and
he PINION predictions. For instance, the neutral island at ( z, L ) =
6 . 4 , 600 Mpc ) or (6 . 6 , 490 Mpc ) on the same figure. Between the
ifferent training scenarios, the NP scenario exhibits much more 
oise at low redshift ( z ≈ 6.5) compared to the physics-constrained
cenarios. Furthermore, we observe that neutral islands are smaller 
t this redshift in all predictions. Nevertheless, NP scenario appears 
o predict the most accurate neutral island size. 

.2 Evolution of the volume-averaged x̄ HII 

e then e v aluate the e volution of the mean fraction of ionized
ydrogen o v er sev eral distinct sub volumes. Fig. 6 , top panel, shows
he evolution of the ionized fraction for four different subvolumes, 
hich each have different ionization history . Generally , we see very
ood agreement for z > 8. For early ionizing subvolumes (volumes
 and 4), the PINION reionization fraction predictions are al w ays
ostponed for the NP scenario. The physically constrained scenarios 
PFD and LD) ionize earlier for z > 7.5, and later otherwise. For late
onizing subvolumes (volumes 1 and 2), as well as the global average
black line), when z � 7 we observe good agreement for the LD
cenario, o v erprediction for the PFD scenario, and underprediction 
or the NP scenario. For z < 7 all scenarios ionize earlier than
he simulation. In general, we observe that for redshifts z � 7 the
D scenario gives better results. For z � 7, the NP scenario is
etter at reproducing later ionizations, while LD remains better for 
arlier ionizations. In the residual plot, we observe a higher standard
e viation at lo wer redshift ( z � 7.5) in general. For volumes 1 and 2,
he deviation peaks at z ≈ 6.6 while volumes 3 and 4 have a negative
eak earlier at z ≈ 7.1. The global average shows both behaviours,
ith a flex point at z ≈ 7, but less residual error. This is correlated
ith what observed in Section 5.1 for the same redshift range. In
ig. 6 bottom panel, we have the residual error of our prediction.
e can see for z � 7 and all subvolumes that the LD scenario

ollow well the simulation, while the NP scenario underpredicts with 
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art/stad615_f4.eps
https://www.cscs.ch/computers/piz-daint/


908 D. Korber et al. 

M

Figure 5. Slices through the redshift axis of the ionized hydrogen light-cone, simulated by C 2 -Ray and the three PINION scenarios. The colour bar indicates 
the ionization fraction. For readability, we cut at redshift z = 10 and position L ∈ [400 , 600] Mpc . 
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esidual under 2 . 5 per cent for z � 7.5 while the PFD o v erpredicts it
ith less than 1 per cent difference for z � 7.5. In Table 1 , we

how the corresponding redshift of four reionization milestones,
hen x̄ HII = 0 . 3 , 0 . 5 , 0 . 7, and towards reionization completion at

¯ HII = 0 . 95, interpolated from the results in Fig. 6 . In Appendix C ,
e show a comparison between mass-averaged and v olume-a veraged
lobal ionization fraction. 

.3 Morphology of the ionization bubbles 

n the study of the EoR, of particular interest are the size and volume
istributions of the ionized regions in the simulation (Furlanetto,
aldarriaga & Hernquist 2004 ). There are several methods to measure

hese statistics (Friedrich et al. 2011 ; Lin et al. 2016 ; Giri et al. 2018 ),
ut in this work we consider the mean free path method and the
riend-of-friend method. The former indicates the fraction of ionized
ubbles in a given spherical-averaged size range, while the latter
ndicates the fraction of the total ionized volume that is contained
n regions of a given volume. For both methods, we employ the
ools21cm 5 python package for EoR simulations analysis (Giri,
ellema & Jensen 2020 ). 
Fig. 7 shows the mean free path R of the different PINION sce-

arios and the simulation plotted against the probability distribution
 ( R ). We chose to study redshifts for which x̄ HII ≈ 0 . 3 , 0 . 5 , 0 . 7,
hich approximately corresponded to redshifts z = 7.480, 7.059,

nd 6.830. All three PINION scenarios exhibit similar morphology.
n particular, in each of them, we observe an excess around the peaks,
NRAS 521, 902–915 (2023) 
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s  

z  

a  
eaning that we have a more uniform distribution of bubble size.
he fact that we observe this for all three redshift means that the
ni verse e volves more uniformly with the PINION prediction than
ith the C 2 -Ray simulation. 
For redshifts z = 7.480 (blue) and z = 7.059 (orange), PINION

redicts an excess of smaller scale bubbles below the median, and
 lack of larger scale bubbles abo v e the median compared to C 2 -
ay . For redshift z = 7.480 (blue), only the NP scenario lacks

arge-scale bubbles ( R � 20 Mpc), which means that the NP scenario
roduces smaller bubbles on average than the PFD and LD scenarios.
or redshift z = 7.059 (orange), ho we ver, we observe that all three
cenarios have a turning point above which the prediction lacks large-
cale bubbles. For large- and small-scale bubbles, the LD scenario
ives a more accurate distrib ution, b ut around each peak, the PFD
cenario tend to be closer to the distribution in the simulation. 

For redshift z = 6.830 (green), we observe a deficit of small-scale
ubbles for all scenarios. In general, we observe that the predicted
istributions are shifted to the larger scale, meaning that the bubbles
re larger on average than in the simulation. 

We also study the v olume distrib ution with the friend-of-friend
ethod. Contrary to the mean free path, which measures the size

f the bubbles, the friend-of-friend algorithm e v aluates the volume
istribution of the bubbles using an island-finding algorithm. Pixels
re recursively grouped into islands based on a threshold criterion, in
ur case of x HII > 0.5. The average volume of each island V is then
lotted against the cumulative probability distribution V P ( V ). Fig. 8
hows the result for the friend-of-friend analysis. First, for redshift
 = 7.480 (blue), one can see that both the PFD and LD scenarios
re able to accurately reconstruct the b ubble v olume distrib ution
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Figure 6. Top panel: Evolution of the mean fraction of ionized hydrogen for subvolumes of size 47.61 Mpc. Four volumes with different end of ionization 
were hand-picked and are displayed with different colours. Black lines represent the global average for the whole volume. Solid lines are C 2 -Ray , dashed lines 
are PFD training, dashdot lines are NP training, and dotted lines are LD training. The x -axis is common to both plot and was cropped at redshift z = 10 for 
readability. Some characteristic redshifts can be found in Table 1 . Bottom panel: The residual between the PINION scenarios and the C 2 -Ray simulation for 
the abo v e evolutions are displayed with the same colours. In blue, the standard deviation of the residual for at each redshift for 1000 different subvolumes of the 
same size is shown. 
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nd the percolation cluster . 6 On the other hand, the NP scenario
ends to o v erpredict the number of non-o v erlapping bubbles, as one
an observe an overprediction of the bubbles distribution and an 
nderestimation of the total volume of the percolation cluster. For 
edshifts z = 7.059 (orange) and z = 6.830 (green) all three scenarios
re able to reproduce the volume distribution of both the bubbles 
nd the percolation cluster. In general, we observe that the volume 
ize distribution is well-reproduced by PINION regardless of the 
cenario, aside from NP at higher redshifts. 

.4 HI dimensionless power spectrum 

e also e v aluate the dimensionless power spectrum of the neutral
ydrogen field � HI = P ( k) k 

3 

2 for both C 2 -Ray and PINION ,

2 π

 The volume formed by the o v erlapping bubbles. 

t  

i  

r

hown in Fig. 9 . We observe almost perfect agreement in large- and
mall-scale structure for z = 7.480 (blue). Ho we ver, as ionization
rogresses, we begin to see tension between PINION and C 2 -
ay . At larger scales, k < 10 −1 Mpc −1 , the power spectrum is
nderestimated by all PINION predictions at all redshifts, meaning 
 statistically more ionized field then the ground truth. We observe
hat at these scales the discrepancy between the C 2 -Ray simulation
nd the PINION prediction increases with decreasing redshift, from 

lmost perfect agreement at z = 7.480 (blue) to up to a factor of 2
ifference for z = 6.830 (green). 

.5 Reionization redshift 

rom the predicted reionzation maps, we can calculate the reioniza- 
ion redshift z reion . Defined as the redshift at which a pixel becomes
onized fraction is x HII ≥ 0.5. In Fig. 10 , we compare the true and
econstructed z reion for our three training scenarios. 
MNRAS 521, 902–915 (2023) 
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Table 1. Linearly interpolated redshifts for a given v olume-a veraged 
x̄ HII . The values are derived from the results from Fig. 6 . 

z 0.3 z 0.5 z 0.7 z 0.95 

Global 7.519 7.108 6.847 6.510 C 2 -Ray 
7.545 7.120 6.891 6.562 PFD 

7.451 7.066 6.857 6.512 NP 
7.513 7.120 6.903 6.560 LD 

Vol. 1 7.031 6.685 6.535 6.369 C 2 -Ray 
7.073 6.817 6.670 6.432 PFD 

7.023 6.780 6.633 6.385 NP 
7.059 6.824 6.676 6.421 LD 

Vol. 2 7.299 6.923 6.711 6.484 C 2 -Ray 
7.316 6.974 6.780 6.533 PFD 

7.233 6.929 6.744 6.487 NP 
7.292 6.980 6.791 6.528 LD 

Vol. 3 7.854 7.446 7.189 6.903 C 2 -Ray 
7.906 7.434 7.125 6.788 PFD 

7.810 7.377 7.085 6.752 NP 
7.878 7.428 7.137 6.792 LD 

Vol. 4 8.037 7.592 7.307 6.965 C 2 -Ray 
8.095 7.609 7.282 6.843 PFD 

7.995 7.548 7.236 6.806 NP 
8.071 7.605 7.291 6.854 LD 

Figure 7. Top panel: Study of the ionization bubbles morphology using 
the mean free path method. Solid lines are C 2 -Ray , dashed lines are PFD 

training, dashdot lines are NP training, and dotted lines are LD training. The 
lines with the same colours are picked at the same redshift. The blue line 
corresponds to approximately x̄ HII = 0 . 3, the orange to x̄ HII = 0 . 5, and the 
green to x̄ HII = 0 . 7. Bottom panel: Residual plot for the abo v e distribution. 
The residual is obtained by subtracting the predicted PINION distribution 
with C 2 -Ray ’s distribution. 

 

s  

a  

−  

t  

Figure 8. Study of the ionization bubbles volume distribution using the 
friend-of-friend method. Solid lines are C 2 -Ray , dashed lines are PFD 

training, dashdot lines are NP training, and dotted lines are LD training. 
Both lines are picked at the same redshift. The blue line corresponds 
to approximately x̄ HII = 0 . 3, the orange to x̄ HII = 0 . 5, and the green to 
x̄ HII = 0 . 7. 

Figure 9. Top panel: Dimensionless power spectrum of x HI . Solid lines are 
C 2 -Ray , dashed lines are PFD training, dash-dot lines are NP training, and 
dotted lines are LD training. These lines are picked at the same redshifts. 
The blue line corresponds to approximately x̄ HI = 0 . 7, the orange to x̄ HI = 

0 . 5, and the green to x̄ HI = 0 . 3. Bottom panel: Ratio plot for the abo v e 
dimensionless power spectrum. The ratio is obtained by dividing the predicted 
power spectrum with C 2 -Ray ’s power spectrum. 
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At first glance, all three histograms look very similar, but
ome differences can be observed in the x projection. We observe
 larger residual at higher redshifts, with −4 . 3 ± 0 . 5 per cent ,
3 . 1 ± 0 . 6 per cent , and −3 . 3 ± 0 . 6 per cent for z = 11.834 in

he PFD, NP, and LD scenarios, respectively. As shown in Sec-
NRAS 521, 902–915 (2023) 
ion 5.4 , this indicates that PINION ionizes earlier than C 2 -Ray
t high redshift. Ho we ver, this dif ference reduces with redshift
nd in the particular case of NP, will have a positive peak of
 . 4 ± 1 . 5 per cent at z = 8.133 which this time indicates that at
his ionization redshift, PINION tends to ionize later compared
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Figure 10. Comparison between the PINION prediction and the C 2 -Ray prediction of the redshift of reionization z reion . For each training scenario, the central 
panel shows the 2D histogram of the predicted and truth redshift at which a region is considered ionized. A region is considered ionized when it reaches x HII ≥
0.5. We linearly interpolated the redshift to have the value at the threshold to avoid tessellation effects. The red line shows emphasis the 1:1 relationship, which 
would correspond to a perfect result. The vertical plots show the y projection of the histogram, with the expected value and standard deviation of the residual in 
blue. The red line emphasis the perfect prediction, which is a residual of 0. The value of the residual is divided by the central redshift of the bins of interest. The 
horizontal plots show the x projection. The axis and the colours gradient are shared between scenarios to impro v e readability. 
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o C 2 -Ray . For the y projection, we observe a large positive
ias in both NP and LD with 4 . 1 ± 3 . 5 per cent for NP and
 . 2 ± 3 . 1 per cent at z = 9.414 for LD. Near the end of the EoR,
 ≤ 7, we observe a sudden change in the residuals of every
cenario. We believe this results from small variations on the borders
f neutral islands, which are difficult for the network to predict 
recisely. 
We can also use Fig. 10 to compare PINION to (Chardin et al.

019 ), a network which predicts the 3D z reion map. PINION shows
uch better agreement at early- and mid-redshift, likely due to the 

ddition of the physics constraint. Additionally, because PINION 

utputs x HII , while PINION can reproduce (Chardin et al. 2019 ), the
nverse is not possible. 

.6 Interpretation 

e serve a few consistent differences between C 2 -Ray and the 
INION predictions in our analysis. PINION predictions are more 
niform, having more uniform bubble sizing and less variety in 
ean ionization fraction. The NP scenario ionizes later at high 

edshift, whereas the physics-constrained scenarios PDF and LD 

onize sooner. For redshifts with rapidly changing ionization fraction, 
t z � 7, there is tension between the PINION predictions and C 2 -
ay at small and particularly large scales. There are several possible
xplanations for these systematic errors. 

ata bias 

he C 2 -Ray simulation used to train PINION is an imbalanced 
ata set depending on the redshift. For instance, the vast majority of
ixels at high redshift, early reionization history, are neutral rather 
han ionized. As such, it is possible that this biases the network
redictions towards more neutral predictions. Any such bias would 
e most evident in the NP scenario, and we see for z > 7 in Fig. 6
hat the NP scenario al w ays predicts delayed ionization, thus more
eutral volumes compared to truth. Additionally, in comparison to 
he PFD and LD scenarios, the NP has larger neutral islands and
maller ionized bubbles. 
inite-difference instabilities 

nstabilities coming from the finite-difference approximation used 
o calculate the deri v ati ve can be observed as a direct issue for the
redictions. Although PINION uses a Runge–Kutta 4 scheme for 
ifferentiation, which has an error of the order O( h 

5 ), the time-steps
etween each snapshot are large compared to what is required by the
cheme. We expect the tension introduced by this bias to affect the
D and PFD scenarios, and we indeed observe that the NP scenario
as the best agreement with C 2 -Ray for z < 7. The finite-difference
nstability issue is observed, as shown in Fig. 3 , but the maximal
bserved difference lies within 2 per cent. This is lower than the
esidual that we observe in Fig. 6 , where a standard deviation within
2 per cent is observed for z < 7. While instabilities of the deri v ati ve
 v aluation do introduce a slight bias, this does not account for the
ajority of the differences observed between C 2 -Ray and PINION .

naccuracies from smoothed source distribution field 

he last main issue encountered in this project is the use of the
moothed source distribution field. As described in Section 4.2 , it is
 way to provide additional information to the network, given that
he two outputs from the N-body simulation do not provide enough
nformation about the growing structure of the ionized regions. 
o we ver, as the smoothed field is generated by convolving uniform

pheres with the input fields, it is much more uniform in structure
ompared to the behaviour of the ionization front, and therefore the
hotoionization rate. The morphology of the ionization rate map and 
he smoothed source distribution field are compared in Appendix A ,
nd in Appendix B we test the influence of the smoothed source
istribution field by adjusting the scale length of equation ( 4 ) on the
eionization history. 

 C O N C L U S I O N S  

INION successfully predicts the reionization history from RT 

imulation standard inputs with high accuracy. PINION could be 
pplied to even larger volume simulations to create RT simulations 
MNRAS 521, 902–915 (2023) 
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f unprecedented volume and resolution. Additionally, the physics-
nformed L ODE drastically reduces the amount of data required to
rain the network, with almost identical performance between the
D and PFD scenarios. 
PINION is relatively fast for a reionization simulation. Training

he network for each scenario takes about 1.5 GPU-hours and the
rediction for each scenario takes less than 84 GPU-hours. Ho we ver,
he prediction is an already highly parallelizable task that can be
urther impro v ed. The data I/O is a major bottleneck in network
raining and prediction, and optimization was not explored as part of
his work. For example, the prediction for a 300 3 volume is done in
arallel on 1000 GPU nodes, each working on a smaller subvolume.
n the current implementation, each node loads the entire data set
nd then predicts all the pixels in the subvolume in approximately 5
in. This could easily be reduced to less than 2 min by only reading

he subvolume. 
While PINION is already a viable candidate for reproducing the

 

2 -Ray simulations, there is still room for impro v ement. First,
o hyperparameter optimization was performed for the training,
o tweaks to the optimization algorithm or network structure may
mpro v e performance. Second, the smoothed field likely introduces
trong systematic biases into the network’s predictions. Starting from
 more accurate proxy for the ionization front or the photoionization
ate would result in more accurate predictions. Using an approximate
ut more physically moti v ated RT simulation such as Grizzly as
n input field may drastically impro v e performance while keeping
omputation times low . Finally , the data bias could be reduced by
odifying the data loss to account for imbalanced data. 
PINION is a promising candidate for almost unsupervised learn-

ng. The network requires very little input data to train, and the ODE
oss only requires a realistic estimation of the photoionization rate
or the calculation of equation ( 5 ), which in this work we took instead
he � from C 2 -Ray simulations. Moreo v er, we demonstrated that by
roviding a simplistic approach in equation ( 4 ) for calculating the
moothed field, the network can retrieve information on the redshift
volution observed by the photoionization rate maps, Fig. 2 c. In
rinciple, any mean free path model for the UV radiation could be
sed as a proxy in the smoothed field. 
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Figure A1. Dimensionless power spectrum of the photoionization rate and 
the smoothed source distribution field. As these are two different quantities 
(different scales and different units), these two field are transformed into 
dimensionless quantities before computing the power spectrum. 
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PPENDIX  A :  VA LIDITY  O F  T H E  DATA  

RE-PROCESSING  

s described in Section 4.2 , to encode additional information about 
he expanding behaviour of the ionization rate map in the PINION 

nput data, we pre-processed the source field to create the smoothed 
ource distribution field. This field is a very rough approximation of
his behaviour and should not be used outside PINION ’s context, as
he CNN component of PINION is needed to correct for accurate 
hysical behaviour. 
Ho we ver, large dif ferences between this smoothed field and the

onization rate map might introduce issues in the reconstitution of 
he x HII map, as seen in Section 5.6 . We highlight the behavioural
ifferences between the ionization rate and the smoothed field in 
ig. A1 . This figure shows the dimensionless power spectrum for
he dimensionless quantity ˆ x = x/ ̄x − 1, where x correspond to 
he photoionization rate field and the smoothed source distribution 
eld, respectively. This quantity compares the scale dependence of 
tructures caused by difference in the two fields, and any divergence 
an be fixed by adjusting a scaling factor. This figure shows that
he dimensionless power spectrum is well-reproduced for redshifts 
round z ≈ 7.5. Ho we ver, for earlier redshifts ( z � 8.5) the smoothed
eld o v erpredicts large-scale structure k < 10 −1 Mpc −1 , while it is

n relative good agreement with the small scale. For later redshifts
 z � 7), the smoothed field underpredicts the small-scale structures,
hile o v erpredicting the large-scale structures. 

PPENDI X  B:  M O D I F Y I N G  T H E  S M O OT H E D  

IELD  M E A N  FREE  PATH  

o e v aluate the impact of the mean free path for the smoothed fields,
e recalculated the smoothed field with the mean free path reduced
y a multiplicative factor f = 0.5, physically equi v alent to the ionizing
hotons travelling half the distance at a given redshift. The full
nalysis described in this paper was run under this modification, 
ith and without network retraining (T and NT corresponding to 
rained and Not-Tr ained , respectiv ely). The resulting figures for
edshift z = 7.305 are shown in Figs B1–B3 . The mean fraction of
onized hydrogen o v er the whole cube at this redshift is x̄ HII = 0 . 389
or C 2 -Ray , x̄ HII = 0 . 398 for PFD( f = 1), x̄ HII = 0 . 308 for PFD-
T( f = 0.5), and x̄ HII = 0 . 370 for PFD-T( f = 0.5). These plots show

hat the network outputs are agnostic to a change in the mean free
ath scale as long as the network is retrained using the modified
moothed field. Indeed, the PSD ( f = 1) case, presented in Section
.1 , and the corresponding retrained case results, PFD-T ( f = 0.5), are
ery similar in these figures, indicating that the network can retrieve a
easonable ionization map as long as it is trained with some smoothed
re-processed field. For the predicted results without proper training, 
FD-NT ( f = 0.5), the reionization is, as expected, generally slower.
he opposite behaviour was also observed for a factor f = 2, but is
mitted for brevity. This indicates the importance of proper training 
n the pre-processed inputs for PINION and the robustness of 
INION to particular choices of pre-processing strategies. 
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M

Figure B1. Visualization of a small cutout of the ionized hydrogen map at redshift z = 7.305. The first two columns are the same as in Fig. 4 , f = 1 indicating 
no modification to the mean free path. The third and fourth columns correspond to the prediction using the f = 0.5 smoothed field without modifying the training 
and with a retrained network. Axes and colour bars are shared for readability. 

Figure B2. Slices through the redshift axis of the ionized hydrogen light-cone. The C 2 -Ray simulation was described in recent works (e.g. Dixon et al. 2016 ; 
Ross et al. 2017 ; Bianco et al. 2021 ) and the three other scenarios correspond to the usual PFD scenarios with modified scale factors and training. The colour 
bar indicates the ionization fraction. For readability, we cut at redshift z = 10 and position L ∈ [400 , 600] Mpc . 
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Figure C1. Comparison between the mass-averaged and volume-averaged 
ionization fraction for Vol. 1, 4, and global average, as defined in Fig. 6 . Each 
volume is separated into two panels, the top one showing the evolution of 
x̄ HII o v er redshift the residual between the two for each scenario. 
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igure B3. Top panel: Dimensionless power spectrum of x HI . Solid lines are
 

2 -Ray , dashed lines are PFD ( f = 1) scenario, dash-dot lines are PFD-NT
 f = 0.5) scenario, and dotted lines are PFD-T ( f = 0.5) scenario. These lines
re chosen for the same redshifts. The blue line corresponds to approximately

¯ HI = 0 . 7, the orange to ̄x HI = 0 . 5, and the green to ̄x HI = 0 . 3. Bottom panel:
atio plot for the abo v e dimensionless power spectrum. The ratio is obtained
y dividing the predicted power spectrum with C 2 -Ray ’s power spectrum. 

PPENDIX  C :  MASS-AV ERAG ED  ANALYSI S  

o complement the v olume-a veraged quantities analysis from Sec- 
ion 5 , we compared the main results from Fig. 6 with their mass-
veraged counterparts. The mass-averaged ionization fraction is 
efined as 

¯ m 

HII = 1 −
∑ 

i (1 − x HII ,i )(1 + δi ) ∑ 

i (1 + δi ) 
, (C1) 

here x HII, i is the v olume-a veraged ionization fraction and (1 +
i ) is the gas o v erdensity. The summation term i is computed on
he entire simulated volume. The comparison between the mass and 
 olume-a veraged quantities is shown in Fig. C1 . One can notice that
he general behaviour of large volume simulation, where the mass- 
veraged tend to ionize earlier than the v olume-a veraged counterparts 
Iliev et al. 2014 ). 
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