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Abstract

Uncertainty quantification is a central challenge in
reliable and trustworthy machine learning. Naive
measures such as last-layer scores are well-known
to yield overconfident estimates in the context
of overparametrized neural networks. Several
methods, ranging from temperature scaling to dif-
ferent Bayesian treatments of neural networks,
have been proposed to mitigate overconfidence,
most often supported by the numerical observa-
tion that they yield better calibrated uncertainty
measures. In this work, we provide a sharp com-
parison between popular uncertainty measures for
binary classification in a mathematically tractable
model for overparametrized neural networks: the
random features model. We discuss a trade-off
between classification accuracy and calibration,
unveiling a double descent like behavior in the
calibration curve of optimally regularized estima-
tors as a function of overparametrization. This
is in contrast with the empirical Bayes method,
which we show to be well calibrated in our set-
ting despite the higher generalization error and
overparametrization.

1 INTRODUCTION

Uncertainty estimation is the cornerstone of reliable data
processing. A large body of literature in classical statis-
tical theory is dedicated to providing solid mathematical
guarantees on a model’s uncertainty, such as confidence
scores for classification and confidence intervals for regres-
sion [Wasserman, 2013]. Yet, when it comes to modern
machine learning methods such as deep neural networks
our mathematical understanding of the uncertainty asso-
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ciated with prediction falls short. A key aspect in cur-
rent machine learning practice is that, in contrast to clas-
sical wisdom, models often operate in a regime where
the complexity of the hypothesis class (e.g. as measured
by the number of parameters in the model) is compara-
ble or larger than the quantity of data available for train-
ing. This modern, overparametrized regime defies the
common intuition rooted on classical statistics, therefore
posing interesting challenges to their mathematical treat-
ments. For example, deep neural networks are able to
achieve optimal generalization performance even when the
training data are perfectly interpolated [Geman et al., 1992,
Geiger et al., 2019, Nakkiran et al., 2020], a behaviour at
odds with the bias-variance intuition. This benign overfit-
ting property was recently shown to be common among
overparametrized convex methods, such as linear regres-
sion [Bartlett et al., 2020, Hastie et al., 2022], random fea-
tures regression [Mei and Montanari, 2022] and classifica-
tion [Gerace et al., 2020].

While much of the theoretical effort has focused on
the generalization properties of point estimates from
overparametrized models, less is understood about
their confidence. Indeed, a popular method to es-
timate uncertainty in neural networks consists of in-
terpreting the last layer pre-activations as class prob-
abilities. Numerical experiments suggest that deep
neural networks tend to suffer from overconfidence
with respect this notion [Guo et al., 2017], a problem
which has motivated many empirical calibration meth-
ods in the literature [Hein et al., 2019, Kristiadi et al., 2020,
Mukhoti et al., 2020, Liu et al., 2020]. Recently, it has been
shown that actually overconfidence is a common problem in
high-dimensional classification [Bai et al., 2021], although
it can be considerably mitigated by properly regularising the
risk [Clarté et al., 2022]. An alternative to the pre-activation
scores consists in applying a Bayesian treatment to neural
networks, for instance by averaging the last layer weights
over the measure induced by the empirical risk. In some
contexts, these techniques were shown to provide better cal-
ibrated uncertainty measures than pre-activation score. A
priori, Bayesian techniques require sampling from a high-
dimensional measure, and therefore can be computationally
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demanding [Alexos et al., 2022]. Despite the success and
widespread use of these uncertainty measures, mathemati-
cal guarantees relating these notions to intrinsic uncertainty
measures such as the true class probabilities or the best un-
certainty estimation given the available data (i.e. the true
posterior uncertainty given the features) are scarce. In this
work, we provide a sharp mathematical comparison between
these different uncertainty notions in the context of a sim-
ple, solvable model for binary classification on structured
features - such as the ones given by the first layers of neural
networks. To the best of our knowledge, our work is the
first to provide a sharp asymptotic analysis of uncertainty in
overparametrized high-dimensional models.

Related work – Uncertainty quantification in deep learn-
ing is an active and rapidly evolving field, with many
coexisting metrics and methods in the literature, see
e.g. [Abdar et al., 2021, Gawlikowski et al., 2022] for two
recent reviews. [Nguyen et al., 2015, Guo et al., 2017]
empirically observed that different from "small" net-
works [Niculescu-Mizil and Caruana, 2005], modern deep
neural networks tend to give overconfident predictions.
[Guo et al., 2017] proposed temperature scaling, a simple
post-processing variant of Platt scaling [Platt, 2000] con-
sisting of rescaling & cross-validating the norm of the
last-layer weights, and showed it can effectively calibrate
them. Alternatively, [Kristiadi et al., 2020] has argued that
a Bayesian treatment of the last layer of deep networks
fixes overconfidence. Bayesian methods typically involve
sampling from a high-dimensional posterior [Mattei, 2019],
and different methods have been proposed to compute
them efficiently [Graves, 2011, Gal and Ghahramani, 2016,
Lakshminarayanan et al., 2017, Maddox et al., 2019]. Of
particular interest to our work is the Laplace ap-
proximation introduced in [MacKay, 1992] for Gaus-
sian process classification and adapted to Bayesian
deep learning in [Ritter et al., 2018, Kristiadi et al., 2020,
Daxberger et al., 2021]. An asymptotic discussion of ev-
idence maximization in Bayesian ridge regression ap-
peared in [Marion and Saad, 1994, Bruce and Saad, 1994,
Marion and Saad, 1995]. [Bai et al., 2021] has shown that
the logit model is overconfident in high-dimensions, and
[Clarté et al., 2022] discussed how to mitigate it by properly
regularizing. An exact asymptotic characterization of the
empirical risk minimizer for random features model has
been derived and discussed in [Mei and Montanari, 2022,
Gerace et al., 2020, Goldt et al., 2022, Hu and Lu, 2020,
Dhifallah and Lu, 2020, Loureiro et al., 2021a]. Particu-
larly relevant to our technical results is the recent progress in
approximate message-passing schemes for structured matri-
ces [Gerbelot and Berthier, 2021, Loureiro et al., 2022]. Fi-
nally, exact asymptotics for Bayes-optimal estimation has
been discussed in the context of generalized linear models
in [Barbier et al., 2019, Gabrié et al., 2018].

Notation – We denote vectors with bold letters, and matri-
ces with capital letters. For n ∈ N, we let [n] := {1, · · · , n}.
N (µ,Σ) denotes the Gaussian density, σ(t) := (1+e−t)−1

denotes the sigmoid function. We define

σv(x) :=

∫
σ(z)N (z|x, v)dz (1)

the averaged sigmoid with a Gaussian noise of variance v.

2 SETTING

2.1 Probabilistic classifiers and uncertainty

Consider a supervised binary classification task given by n
independent samples D = (xµ, yµ)µ∈[n] ∈ X × {−1,+1}
from a joint distribution ν, and denote by f⋆(x) = ν(y =
1|x) the oracle class probability obtained by conditioning ν
over an input. In this work we are interested in study-
ing the uncertainty associated to probabilistic classifiers
f̂(x) = P(y = 1|x) ∈ [0, 1] obtained by fitting the data1,
and how they compare with the true class probability f⋆.
A key motivation is the recent stream of works on uncer-
tainty quantification for neural networks, and in particular
the line of works proposing uncertainty measures based on
classifiers defined by sampling over the last layer of neural
networks [Brosse et al., 2020, Kristiadi et al., 2020]. To set
notation, let φ : X → Rp denote a feature map, for instance
the features learned by the first layers of a trained neural
network. We shall be interested in the following classifiers:

Empirical risk classifier – The empirical risk classifier
is the one obtained by naively interpreting the scores in the
last layer as probability distributions. Mathematically, it is
defined as f̂erm(x) = σ(θ̂⊤

ermφ(x)), where σ : R→ (0, 1)
is a non-linearity. For concreteness, we will focus on the
popular case where σ(z) = (1 + e−z)−1 is the sigmoid
function, and θ̂erm ∈ Rp is the minimizer of the associated
(regularized) logistic or cross-entropy risk:

R̂n(θ) =
1

n

n∑
µ=1

log
(
1 + e−yµθ⊤φ(xµ)

)
+
λ

2
||θ||22 . (2)

This is also commonly referred to as the logit classifier.

Bayes-optimal classifier – Denoting the training features
Dφ := {(φ(xµ), yµ)}µ∈[n], the optimal Bayesian classifier
for the last layer is given by:

f̂bo(x)=

∫
dθ p

(
y = 1|θ, {φ (xµ)}µ∈[n]

)
p (θ|Dφ) (3)

where p
(
y = 1|θ, {φ(xµ)}µ∈[n]

)
is the likelihood over the

labels and p(θ|Dφ) is the posterior distribution over the

1In the following, we consistently denote with a hat classifiers
which are a function of the training data.
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weights given the training features and labels. In practice,
the Bayes-optimal classifier fbo is not accessible to the
statistician, since she doesn’t have access to the distribu-
tion ν that has generated the data - and even if she had,
sampling from the high-dimensional posterior distribution
would be computationally cumbersome. However, as we
will discuss in Sec. 3.1, for the data generative model con-
sidered here, the Bayes-optimal classifier can be asymptoti-
cally characterized, and its marginals can be computed by a
polynomial-time message passing algorithm.

Bayesian classifiers – Since the optimal Bayesian classi-
fier is not accessible in practice, different classifiers inspired
by Bayesian methods have been proposed in the literature.
In this manuscript, we will consider two popular choices.

The first is the empirical Bayes classifier f̂eb
[Marion and Saad, 1994, Jospin et al., 2022]. In full
generality, the empirical Bayes method consists of pos-
tulating a class of plausible likelihoods and priors and
doing model selection from the training data via evidence
maximization. In the context of Bayesian neural networks,
the likelihood and priors are defined by the network
architecture and regularization, which are normalized to
define proper probability distributions. In our setting, the
empirical Bayes classifier is explicitly given by:

f̂eb(x) =

∫
Rp

dθ σ(βθ⊤φ(x))peb(θ|D, β, λ),

peb(θ|D, β, λ) =

∏
µ
σ(βyµθ⊤φ(xµ))N (θ|Ip/βλ)

p(D|β, λ)

(4)

The normalisation constant p(D|β, λ) is known as the
marginal likelihood or the evidence. In the empirical Bayes
method the evidence is maximized in order to select the
most likely hyperparameters (β, λ) explaining the training
data [MacKay, 1996]. In our specific model, we note that
the evidence is actually only a function of the ratio λ/β
(this can be seen from the change of variables θ ← βθ).
Therefore, without loss of generality we take β = 1 and
optimize only over λ. It is important to stress that the
postulated prior and likelihood in f̂eb may not correspond
to the ones that generated the data in general.

Note that, differently from the Bayes-optimal estimator, the
empirical Bayes classifier can be a priori computed using
only the training data. However, it can be computationally
demanding to sample from the posterior distribution above,
specially in large dimensions p, n≫ 1. To avoid this com-
putational bottleneck, a common approximation consists of
expanding the posterior around the θ̂erm to second order,
known as the Laplace approximation [Kristiadi et al., 2020,
Ritter et al., 2018, Daxberger et al., 2021]:

f̂Lap (x) =

∫
dθ σ

(
θ̂⊤
ermφ(x)

)
N (θ|θ̂erm,H−1) (5)

where H := ∇2
θR̂n(θ̂erm) is the Hessian of the empirical

risk evaluated at the minimum. Therefore, in the Laplace
approximation the posterior is effectively approximated by
a Gaussian distribution centred at θ̂erm and with covariance
given by the inverse curvature around the minimum. The
"sharper" the minimum, the lower the variance and the more
confident the Laplace classifier is. Note that the general-
ization errors associated to the Laplace classifier coincide
exactly with the empirical risk classifier. Finally, in the
model considered here, the Laplace approximation f̂Lap
will always be less confident than the ERM estimator using
θ̂erm. This is due to the concavity of the logit function σ on
[0,∞).

Performance and uncertainty – Given a probabilistic
classifier f̂ , the most common measure for the generaliza-
tion performance is the misclassification test error (also
known as 0/1 error) :

Egen.(f̂) = E(x,y)∼νP
(
sign(f̂(x)) ̸= y

)
. (6)

For f̂erm, another commonly used metric is the test loss :

Lgen.(f̂) = −E(x,y)∼ν log(σ(yf̂(x))) . (7)

However, our key goal in this manuscript is to mathemati-
cally characterize the uncertainty associated to the predic-
tion of the different classifiers above, and in particular how
they correlate with the true class uncertainty as measured by
f⋆. Mathematically, this can be measured by the following
joint density:

ρ⋆,t(a, b) := EDPx

(
f⋆(x) = a, f̂t(x) = b

)
(8)

where (a, b) ∈ [0, 1]2 and f̂t, t ∈ {bo, erm,Lap, eb} can
be any of the classifiers defined above, and the expectation is
taken both over the training data D = {(xµ, yµ)}µ∈[n]. In
particular, this joint density gives access to different notions
used in the literature to quantify uncertainty. For instance, a
widely studied notion is the calibration at level ℓ ∈ [0, 1] of
a classifier f̂ :

∆ℓ(f̂) := ℓ− Ex,D

[
f⋆(x)|f̂(x) = ℓ

]
. (9)

A related metric is the Expected Calibration Error (ECE):

ECE(f̂) := Ex

[
|∆f̂(x)|

]
. (10)

Note that in this work we focus on the calibration. Other
uncertainty quantification metrics exist in the literature, e.g.
the Brier Score and the Maximum Calibration Error, and
although the theoretical methods presented here can be read-
ily adapted to characterize their asymptotics, this is outside
of the scope of this work.
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2.2 The random features model

Following our aim to investigate the interplay between over-
parametrization and uncertainty, we will focus on one of
the simplest settings of feature maps defined by two-layer
neural networks φ : x ∈ X ⊂ Rp 7→ ϕ(Fx)/

√
p with

weights F ∈ Rp×d and component-wise activation ϕ. We
will consider random features [Rahimi and Recht, 2007],
where the first layer weights F ∈ Rp×d are fixed at ini-
tialization, typically taken to be i.i.d. standard Gaussian.
Random features have been widely studied as a convex
proxy for investigating the impact of overparametrization in
generalization, since they were shown to display the charac-
teristic non-monotonic double descent behaviour of the gen-
eralization error [Belkin et al., 2019, Spigler et al., 2019],
with optimal generalization achieved beyond interpolation
of the data [Mei and Montanari, 2022, Gerace et al., 2020,
D’Ascoli et al., 2020], also known as benign overfitting
[Bartlett et al., 2020].

We will assume Gaussian input data xµ ∼ N (0, 1/dId) with
labels drawn from a logit model:

f⋆(x) =

∫
R
σ
(
θ⊤
⋆ x+ τ0z

)
N (z|0, 1)dz (11)

with random weights θ⋆ ∼ N (0, Id) and τ0 ≥ 0 defines a
tunable label noise level. This completely specifies the data
distribution ν. In the following, we will be interested in the
proportional high-dimensional limit defined by n, p, d →
∞ with fixed ratios α := n/p and γ := p/d. While this
teacher-student setup is quite common in high-dimensional
statistics, we could make it more realistic by assuming a
general covariance Ψ for the input x ∼ N (0, 1/dΨ).

An asymptotic characterization of the generalization and
training errors of empirical risk minimization for the ran-
dom features model in the proportional limit was de-
rived for ridge regression in [Mei and Montanari, 2022] and
generalized to convex losses in [Gerace et al., 2020]. A
key ingredient in this analysis is a Gaussian equivalence
principle [Goldt et al., 2020, Goldt et al., 2022] proven in
[Hu and Lu, 2020, Montanari and Saeed, 2022] stating that
the statistics of the empirical risk minimizer is asymptoti-
cally equal to the one of an equivalent Gaussian problem
with matching moments. More recently, Gaussian equiva-
lence has been proven for two-layer neural tangent features
in [Montanari and Saeed, 2022] and features coming from
mixture models in [Gerace et al., 2022], and was conjec-
tured to hold for a broader class including features coming
from trained neural networks [Loureiro et al., 2021a]. Al-
though the discussion in this manuscript focus in the random
features case, our analysis can be readily extended to all
cases in which Gaussian equivalence holds. We provide
in Appendix B an extension of our main theoretical result
to a general Gaussian covariate model with convex loss
encompassing all these cases.

3 RESULTS

3.1 Technical results

Let µ̂p denote the empirical spectral distribution of the ma-
trix FF⊤ ∈ Rp×p. In the following, we assume that in
the proportional high-dimensional limit defined above, µ̂p

weakly converges to an asymptotic spectral distribution µ
on R+ with normalized second moment

∫
µ(dx)x2 = 1.

Further, assume κ0 = E[ϕ(z)], κ1 = E[zϕ(z)] and κ2⋆ =
E[ϕ(z)2]−κ21−κ20 are all finite for z ∼ N (0, 1). Note that
this assumption simply implies some mild regularity in the
activation (e.g. that is does not grow too fast). All the com-
monly considered activations functions, e.g. ReLU, tanh,
sigmoid, etc., satisfy these assumptions. Also, for simplicity
of exposition, in the following we assume κ0 = 0, which
can always be obtained by letting ϕ → ϕ − κ0. We also
define the effective noise τ2add = 1− Ex∼µ

[
κ2
1x

κ2
1x+κ2

⋆

]
.

The first step is to characterize the density ρ⋆,t with
t ∈ {bo, erm,Lap, eb} defined in eq. (8). All rele-
vant quantities depend on this density. In the asymptotic
regime, the estimator f̂(x) is characterized by six quanti-
ties (m, q, v, m̂, q̂, v̂) that are solutions of self-consistent
equations.

Theorem 3.1 (Joint density). Let D = {(xµ, yµ)}nµ=1 de-
note data independently drawn from the model defined in
Equation (11). Consider f̂t, t ∈ {bo, erm,Lap, eb} one
of the classifiers defined in Sec. 2.1. Then, in the propor-
tional high-dimensional limit where n, d, p→∞ with fixed
α = n/p, γ = p/d, the asymptotic joint density ρ⋆,t defined
in Equation (8) is given by ρlim⋆,t (a, b) = lim

p→∞
ρ⋆,t(a, b):

ρlim⋆,t (a, b) =

N

([
σ−1
τ2
0+τ2

add
(a)

σ−1
τ̂2
t
(b)

] ∣∣∣02,Σt

)
|σ′

τ2
0+τ2

add
(σ−1

τ2
0+τ2

add
(a))||σ′

τ̂2
t
(σ−1

τ̂2
t
(b))|

(12)

where

Σt =

[
1 m⋆

t

m⋆
t q⋆t

]
(13)

and the sufficient statistics (m⋆
t , q

⋆
t , v

⋆
t ) ∈ R3 are the unique

fixed points of the following system of equations:
v = 2× ∂q̂Ψw(m̂, q̂, v̂; π̂t)

q = 2× (∂q̂Ψw − ∂v̂Ψw)(m̂, q̂, v̂; π̂t)

m =
√
γ∂m̂Ψw(m̂, q̂, v̂; π̂t)

(14)


v̂ =−αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) ∂ωgt (y, ξ, v)

]
q̂ =αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) gt (y, ξ, v)

2
]

m̂ =
√
γαEξ∼N (0,q)

[∑
y ∂ωZ0 (y,m/qξ, v⋆) gt (y, ξ, v)

]
where Z0(y, ω, v) = σv+τ2

0+τ2
add

(yω), v⋆ = 1 − m2/q −
τ2add. The functions gt and π̂t and the scalar τ̂t depend on
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Classifier gt(y, ω, v) π̂t(x) τ̂t

f̂erm proxlog σ(y×·)(ω) λ 0

f̂Lap proxlog σ(y×·)(ω) λ Ex∼µ

[
κ2
1x+κ⋆

λ+v̂⋆(κ2
1x+κ⋆)

]
f̂eb ∂ω log

∫
σ(βy × z)N (z|ω, v)dz λ v⋆

f̂bo ∂ω log
∫
στ2

0+τ2
add

(y × z)N (z|ω, v)dz κ2
1x

(κ2
1x+κ2

⋆)
2 v⋆ + τ20 + τ2add

Table 1: Auxiliary functions and value of τ̂t for the different classifiers defined in Sec. 2.1.

the estimator and the sufficient statistics, and are given in
Table 1. Also :

Ψw(m̂, q̂, v̂; π̂) =
1

2
Ex∼µ

[
m̂κ21x+ q̂(κ21x+ κ2⋆)

π̂(x) + v̂(κ21x+ κ2⋆)

]
− 1

2
log(π̂(x) + v̂(κ21x+ κ2⋆)) . (15)

Proof idea: Let x ∼ N (0, 1/dId). For any of the
classifiers t ∈ {bo, erm,Lap, eb} from Sec. 2.1, the 2-
dimensional vector (f⋆(x), f̂t(x)) is asymptotically dis-
tributed as (σ(z), σṽ(z

′
t)) for some ṽ that depends on the

estimator, where (z, z′t) ∼ N (02,Σt), and

Σt =
1

d

(
||θ⋆||22 θ̂⊤

t Φθ⋆
θ⊤
⋆ Φ

⊤θ̂t θ̂⊤
t Ωθ̂t

)

where we defined the shorthand Φ = κ1F ∈ Rp×d and
Ω = κ21FF⊤ + κ2⋆Ip and θ̂t is either the unique minimizer
of the empirical risk in eq. (2) for t ∈ {erm,Lap}
or the mean over the respective posterior distribu-
tion for t ∈ {bo, eb}. The computation of ρ⋆,t
thus boils down to computing the sufficient statistics
(m⋆, q⋆) := (θ̂⊤

t Φθ⋆, θ̂
⊤
t Ωθ̂t). For f̂erm on the random

features model, the theorem can be proven using recent work
in high-dimensional statistics [Mei and Montanari, 2022,
Dhifallah and Lu, 2020, Loureiro et al., 2021a],
where (m⋆, q⋆) is proven to asymptotically obey
a set of self-consistent "state-evolution" equations
[Gerbelot and Berthier, 2021, Bayati and Montanari, 2011,
Donoho and Montanari, 2016], mathematically equiv-
alent to eqs. (14). A similar strategy was used in
[Clarté et al., 2022] for the simpler vanilla logistic model.
This is discussed in Appendix B.3 where we show how to
derive analogous results for t ∈ {bo,Lap, eb}.

Corollary 3.2 (Test error and calibration). Under the con-
ditions of Theorem 3.1, the asymptotic generalization error

and calibration are given by:

E limgen. =

∫∫
b<0.5,a

a× ρlim⋆,t (a, b)dadb

+

∫∫
b>0.5,a

(1− a)× ρlim⋆,t (a, b)dadb

∆lim
p = p−

∫
a× ρlim⋆,t (a, p)da∫
ρlim⋆,t (a, p)da

.

(16)

(17)

Intuition of the technical results – The key intuition
behind Theorem 3.1 is the fact that for the models con-
sidered here all the statistics of interest depend only on
low-dimensional projections of the estimators and the fea-
tures, i.e. the joint distribution of θ̂⊤

t φ(x) and θ⊤
⋆ x. Even

if the input data x is assumed Gaussian, the distribu-
tion of the features φ(x) can be complicated. However,
thanks to recent universality results in the high-dimensional
statistics literature [Goldt et al., 2022, Hu and Lu, 2020,
Montanari and Saeed, 2022, Dandi et al., 2023], in the
high-dimensional limit of interest here the joint distribu-
tion of these projections are asymptotically captured by a
Gaussian model with matching second moments (m⋆

t , q
⋆
t ),

see Appendix A for a detailed discussion. Moreover, these
moments (which are the sufficient statistics for the quanti-
ties of interest) can be explicitly computed from the state
evolution (14) of a tailored message passing scheme for
each of the estimators θ̂t, see Appendix B for the technical
details. This allow us to fully characterize all the quantities
of interest asymptotically.

3.2 Trade-off between performance and uncertainty

In sensitive applications of machine learning having a re-
liable estimation of the model’s uncertainty can be as im-
portant as having accurate predictions. Therefore, a key
question is "can my model achieve good generalization
while being calibrated?".

Comparing the performances: In Figure 1 (left) we
compare the misclassification test error eq. (6) of the dif-
ferent classifiers defined in Sec. 2.12 as a function of the

2Note that by construction Egen.(f̂Lap) = Egen.(f̂erm).
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Figure 1: (Left) Test errors of the different methods as a function of the number of parameter per sample p/n. ERM,
and Empirical Bayes (EB) are used with different penalizations. Here we use a logit teacher with n/d = 2.0, τ0 = 1/2

and erf activation. The curves f̂eb(λerror) and f̂erm(λerror) are very close and indistinguishable on the plot, as well
as the curves f̂eb(λevidence) and f̂erm(λloss). Due to the intrinsic noise in the model the oracle error is E⋆gen. ≃ 0.332.
(Center) Calibration at a level ℓ = 0.75. (Right) Variance of f̂bo conditioned on the different other estimators. Points are
experimental values obtained on Gaussian data at d = 200, averaged over 30 trials.

overparametrization ratio p/n at fixed sample complexity
n/d = 2 for different choices of the hyperparameters (β, λ).
First, note the characteristic double descent behaviour of the
empirical risk minimizer with λ→ 0+, with the peak at the
interpolating threshold corresponding in our setting to the
existence of linear separator [Rosset et al., 2003]. As dis-
cussed in e.g. [Nakkiran et al., 2021] for neural networks
and shown in e.g. [Gerace et al., 2020] for random features
classification, this peak is mitigated by cross-validation on
the ℓ2 regularization λ > 0, which is shown in Fig. 1 with
the blue and red full lines, corresponding to optimally tun-
ing λ to minimize the misclassification error eq. (6) and the
test loss respectively eq. (7).

It is interesting to contrast these ERM estimators to the
empirical Bayes classifier, which averages over different
classifiers. We see that, evaluating the empirical Bayes with
a Gaussian prior of variance given by the cross-validated
λerror achieves almost identical performance to the ERM
estimator, with a difference of the order of 10−5.

An often quoted strength of the Bayesian approach is that
model selection can be performed directly on the training
data by evidence maximization over the model hyperparam-
eters [MacKay, 1996]. Curiously, in our setting this yields
a very close performance to ERM cross-validated with re-
spect to the test loss, as shown in Fig. 1 (left) in dashed
yellow line. Despite achieving similar performances in our
setting, it is important to stress that these two classifiers are
computationally radically different, as the empirical Bayes
classifier requires sampling from a high-dimensional distri-
bution which can be prohibitive in practice. These should
be contrasted with the Bayes-optimal classifier, shown in
solid grey, which by definition gives the best achievable
performance at fixed data availability.

To summarise, from the point-of-view of the performance
we observe no significant difference between Bayesian and
ERM estimators, with (not surprisingly) best performance
achieved by cross-validating over the misclassification error.

Calibration: Despite the relatively small difference in
performance, the discussed classifiers are rather different
in terms of calibration. Figure 1 (center) shows the calibra-
tion at fixed level ℓ = 0.75 for the same classifiers. Note
that the max-margin interpolator λ → 0+ produces con-
sistently overconfident predictions. Indeed, we observe a
maximum in the calibration curve around the interpolation
threshold reminiscent of the double descent behaviour, with
worst possible calibration ∆ℓ = ℓ− 1/2 corresponding to a
confidence completely uncorrelated with the true class prob-
abilities achieved at the interpolation transition. As noted in
[Bai et al., 2021], overconfidence is inherent for unregular-
ized logistic regression in high-dimensions, as it is present
even when data is abundant with respect to the number of
parameters. However, in their simpler setting of matched lin-
ear classifiers the number of parameters is equal to the input
dimension p = d, and therefore overparametrization cannot
be distinguished from high-dimensionality. Indeed, they
observe an asymptotic scaling of the calibration ∆ℓ ∼ d/n,
which suggests that overconfidence increases with the num-
ber of parameters. Our setting allow us to decouple the
number of parameters p from the data dimension d, suggest-
ing instead that overparametrization can improve calibration
at fixed number of samples.

More strikingly, we observe that optimal regularization does
not mitigate this double descent-like behaviour in the cal-
ibration, which is in contrast with what happens with the
error itself that becomes monotonic when optimally regu-
larized. Indeed, while cross-validating with respect to the
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misclassification error achieves the best accuracy, it pro-
duces consistently overconfident predictions for both the
empirical risk minimizer and the empirical Bayes classi-
fiers. On the other hand, cross-validation with respect to the
loss produces better calibrated estimates, with an interesting
non-monotonic behaviour crossing from over- to undercon-
fidence as a function of overparametrization. In contrast,
maximising the evidence yields better calibrated estimation
with a monotonic calibration curve very close to zero.

To summarise, we observe a fundamental trade-off between
optimising the accuracy of classification and obtaining cali-
brated classifiers. A similar discussion holds for other cali-
bration levels and for the expected calibration error eq. (10),
as shown in Appendix E.

Conditional variance: Theorem 3.1 gives us access to a
rich set of uncertainty measures, of which the calibration is
a particular example. For instance, we have access to the
full distribution of the Bayes-optimal classifier f̂bo condi-
tioned on the predictors defined in Sec. 2.1. Note that since
E(f̂bo|f̂ = ℓ) = E(f⋆|f̂ = ℓ) = ℓ − ∆ℓ(f̂), the mean of
this conditional distribution is equal to the calibration up
to a constant. A natural measure of uncertainty beyond the
calibration is the variance of this conditional distribution
Var(f̂bo|f̂ = ℓ), which quantifies how much the prediction
f̂(x) = ℓ inform us on f̂bo(x), which is by definition the
best achievable classifier at finite availability of data. An
explicit expression for this variance can be derived from The-
orem 3.1 for any of the classifiers t ∈ {erm,bo,Lap, eb}:

Var(f̂bo(x)|f̂t(x) = ℓ) =

∫
da σv̂⋆

bo+τ2
0+τ2

add
(a)2×

×N
(
a|m⋆

t/q⋆tσ
−1
τ̂t

(ℓ), q⋆bo − m
⋆
t
2/q⋆t
)
− (ℓ−∆ℓ)

2

where (m⋆
t , q

⋆
t , q

⋆
bo) are solutions to the self-consistent equa-

tions eq. (14) and ∆ℓ is the asymptotic calibration eq. (17).
The detailed derivations are shown in Appendix D.

Figure 1 (right) shows this conditional variance as a function
of the overparametrization. Note that in this setting worse
calibration is correlated with a lower conditional variance,
and we observe a trade-off between these two metrics. We
also observe a behaviour reminiscent of double descent in
the value of the conditional variance that does not go away
with optimal regularization.

3.3 Temperature scaling

Temperature scaling is a calibration method introduced in
[Guo et al., 2017] to mitigate overconfidence in trained neu-
ral networks. It is applied after training, and consists in in-
troducing a "temperature" scaling parameter on the last layer
pre-activations f̂erm(x)=σ(θ̂⊤

ermφ(x)/T ). It is then tuned
to minimize the validation loss. In our analysis, this corre-
sponds to simply re-scaling the predictor θ̂erm→ θ̂erm/T ,
& Thm. 3.1 thus applies mutatis mutandis.

Figure 2 (center) compares the calibration at level ℓ = 0.75
of the regularized empirical risk minimizers with λloss and
λerror after temperature scaling with the empirical Bayes
classifier with λevidence and ERM classifier at λloss, the best
calibrated in our setting so far. We observe that the temper-
ature scaling yields very similar calibrations for λloss and
λerror. While empirical Bayes remains the best calibrated es-
timator, temperature scaling has a calibration around 0.1%,
which would be satisfying in most practical scenarios. We
also observe that the maximum around the interpolation
threshold is not present in the calibration curves after tem-
perature scaling.

Looking at the variance of f̂bo conditioned on f̂erm after
temperature scaling we see that it is lower for λerror than
for λloss, see Fig. 2 (right). We see that again the variance
has an increase in the vicinity of the interpolation threshold,
reminiscent of the double descent behaviour. As discussed
in the previous section, we aim to have the lowest variance
possible to ensure that the uncertainty estimation is accurate
not only on average but also point-wise. It appears that
cross-validating the empirical risk minimizer on the misclas-
sification error and then applying temperature scaling gives
an estimator that both has the best test error and is very well
calibrated, both on average and point-wise.

3.4 The calibration of the Laplace approximation

Estimating any of the Bayesian classifiers in Sec. 2.1 is
computationally demanding, since they involve a sampling
over a high-dimensional distribution. This has motivated
practitioners to develop different approximations for
making Bayesian methods more efficient. These include
Bayesian dropout [Gal and Ghahramani, 2016], deep
ensembles [Lakshminarayanan et al., 2017], stochastic
gradient Langevin dynamics [Welling and Teh, 2011]
and the Laplace approximation [Ritter et al., 2018,
Daxberger et al., 2021], among others. The Laplace approx-
imation was introduced by [MacKay, 1992] in the context
of Gaussian processes, and consists of approximating the
posterior distribution by a Gaussian density centred around
the empirical risk minimizer - or equivalently to a low-
temperature expansion of the posterior - see eq. (5). By con-
struction, the Laplace classifier has the same misclassifica-
tion error as the empirical risk minimizer, and hence can be
effectively seen as endowing this point-estimator with a co-
variance given by the inverse of the Hessian evaluated at the
minimum. Although computing the Hessian of the empirical
risk for a deep neural network can be costly, an approximate
scheme has been recently proposed [Ritter et al., 2018,
Daxberger et al., 2021], making Laplace a viable uncer-
tainty estimation technique for deep learning.

On the theory side, sharp results have been lim-
ited to the Gaussian process and ridge regression
setting, where the Laplace approximation is exact
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Figure 2: (Left) Calibration at level ℓ = 0.75 of f̂erm (solid lines, refer to Figure 1 for the legend) and f̂Lap with the three
different regularizations. (Center) Calibration at level ℓ = 0.75 of f̂erm after temperature scaling (TS), compared to f̂eb
(dashed yellow) and f̂loss (full red) for reference. (Right) Variance of f̂bo conditioned on f̂erm = 0.75 after temperature
scaling, compared to variance at f̂loss (full red) and f̂eb (dashed yellow). Points are experimental values obtained on
Gaussian data at d = 200, averaged over 30 trials.

[Sollich, 1998, Sollich, 2001]. While exact asymptotic
results characterizing the statistics of the logit estima-
tor in high-dimensions abound [Sur and Candès, 2019,
Gerace et al., 2020, Aubin et al., 2020, Deng et al., 2022],
to our best knowledge the asymptotic spectral distribution
of the Hessian at the minimum is missing. Recently,
[Liao and Mahoney, 2021] has computed the asymptotic
spectral distribution of the Hessian in a matched logit model
under the assumption that the weights are uncorrelated with
the input data. Hence, their results do not apply for the
empirical risk minimizer, and cannot be used to characterize
the uncertainty of the Laplace classifier. Characterizing the
Hessian of the logistic risk eq. (2) at the minimizer is a chal-
lenging technical result that we believe is of independent
interest to the scope of the discussion in this manuscript.

Claim 3.3 (Hessian of logit, informal). Let

H(θ) :=
∑
µ∈[n]

(σ′(yµθ⊤φ(xµ))− 1)φ(xµ)φ(xµ)⊤ + λIp

denote the Hessian of the logistic empirical risk eq. (2), and
denote θ̂erm=argminθ R̂n(θ) its minimizer. Then, under
the same conditions of Thm. 3.1 and additional technical as-
sumptions, the following asymptotic characterization holds
in the sense of deterministic equivalent:

H−1(θ̂erm) ≍
p→∞

(v̂⋆
(
κ21FF⊤ + κ2⋆Ip

)
+ λIp)

−1 (18)

where v̂⋆ ∈ R is the solution of the self-consistent eq. (14).

A heuristic derivation of this result is provided in App. C in
the general context of the Gaussian covariate model. With
Claim. 3.3 in hands, we can characterize the asymptotic
calibration of the Laplace classifier for our model.

Figure 2 (left) shows the calibration curve at level ℓ =
0.75, at sample complexity n/d = 2 and noise variance

τ0 = 0.5 as a function of the number of parameters. As
mentioned in the introduction, we observe here that f̂Lap
is always less confident than f̂erm, due to the concavity of
σ. While this might seem desirable in the scenarios where
ERM is very overconfident, e.g. for λ → 0+ or λerror, it
hurts calibration when the classifier is well-calibrated as for
λloss. Moreover, it highly depends on the sample complexity
and noise variance, see Appendix E in the supplementary
material where we show a setting in which the Laplace
approximation yields an underconfident classifier even in
the λ→ 0+ at mild overparametrization. Then, the Laplace
approximation seems to be an unreliable way to control
the calibration of the estimators, contrary to temperature
scaling.

4 CONCLUSION

In this paper, we studied the performance of different fre-
quentist and Bayesian classifiers for random features clas-
sification. In the high-dimensional limit, the asymptotic
behaviour of these algorithms can be precisely character-
ized. Our first contribution is the derivation of the Bayes-
optimal estimator. By definition it is the estimator with the
best possible performance, and although it is inaccessible
in practice, it provides a baseline to compare the classi-
fiers. Then, we compared the generalization error of fre-
quentist and Bayesian approaches, showing they yield very
similar test error. We then focused on uncertainty quan-
tification, and showed there is a trade-off between gener-
alization and calibration in our model. Moreover, we ob-
served a non-monotonic behaviour of the calibration curve
for certain estimators, akin to the famous double-descent
phenomenon for the test error. Finally, we compared two
popular approaches for post-training calibration: tempera-
ture scaling and the Laplace approximation, benchmarking
them against the baseline classifiers. In our model, we ob-
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serve that temperature scaling on top of cross-validating
the empirical risk classifier on the accuracy achieves the
best result : it has both the lowest test error and best cal-
ibration. Moreover, despite requiring a validation set, in
practice it is a computationally more efficient method than
the Bayesian approach, which requires sampling from a
high-dimensional distribution. The code used in this project
will be made available at github.com/SPOC-group/
double_descent_uncertainty.

Limitations: It is worth pointing some limitation of our
results. The first resides in the (nevertheless classical)
Gaussian assumption for the data. We note, however,
that there are good reasons to believe that this can be
a very good model in high-dimensions [Hu and Lu, 2020,
Montanari and Saeed, 2022]. A second limitation of is the
lack of feature learning. While many of the uncertainty
quantification methods discussed here apply directly to
the last layer of trained neural networks, other methods
considered in the literature apply to the full architecture
[Abdar et al., 2021]. Since the performance of deep neural
networks can be largely attributed to feature learning, it shall
be important to take it into account in theoretical studies
of uncertainty. We hope that our work can offer a starting
point towards this more ambitious goal.
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APPENDICES

A GAUSSIAN EQUIVALENCE

As discussed in the main, our analysis of the random features model introduced in Sec. 2.2 relies on a recent progress in
high-dimensional statistics known as the Gaussian equivalence theorem (GET). In this Appendix, we recall the reader of the
main results in this line of work.

A.1 Informal discussion and key idea

For convenience let’s first recall the model of interest. Consider data (xµ, yµ)µ∈[n] ∈ Rd × Y which we assume was
independently drawn from the following model:

yµ = f⋆(θ
⊤
⋆ x

µ), xµ ∼ N (0, 1/dId), θ⋆ ∼ N (0, Id) (19)

where f⋆ : R→ Y is an activation function, which we assume can be potentially stochastic (as in the logit model studied in
the main, Sec. 2.2). For convenience, define the matrix X ∈ Rn×d and the vector y ∈ Yn obtained by stacking together xµ

and yµ row-wise. We are interested in studying the following generalized linear predictor:

ŷ = f(θ̂⊤φ(x)) (20)

where φ : Rd → Rp is a feature map, and θ̂ ∈ Rp are weights, which generally depend on the training data θ̂ = θ̂(φ(X),θ⋆),
where for convenience we defined the feature matrix φ(X) ∈ Rn×p. The random features model correspond to the specific
feature map:

φ(x) =
1
√
p
ϕ(Fx) (21)

where F ∈ Rp×d is a random matrix and ϕ : R→ R is a component-wise activation function. Our key goal is to characterize
the statistics of the model, i.e. to compute expectations over functions of the test and training predictions:

EX,x,θ⋆

[
ψ
(
f⋆(θ

⊤
⋆ x), f(θ̂(φ(X),θ⋆)

⊤φ(x))
)]
, EX,θ⋆

[
ψ̃
(
f⋆(Xθ⋆), f(φ(X)θ̂(φ(X),θ⋆)

)]
(22)

where ψ : Y2 → R and ψ̃ : Y2n → R are test functions. Note in particular that the generalization errors eqs. (6), (7) and the
density eq. (8) are examples of the above.

Different tools from high-dimensional statistics have been designed to compute such expectations in the limit
where n, p, d → ∞ at fixed rates α = n/p and γ = d/p, both rigorously and heuristically, e.g. the
replica method [Mézard et al., 1987, Zdeborová and Krzakala, 2016], CGMT [Stojnic, 2013, Thrampoulidis et al., 2015,
Thrampoulidis et al., 2018], approximate message passing [Bayati and Montanari, 2011, Donoho and Montanari, 2016,
Krzakala et al., 2012, Gerbelot and Berthier, 2021], cavity / leave-one-out method [Mezard and Montanari, 2009,
Karoui et al., 2013, Mai et al., 2019], tools from random matrix theory [Karoui, 2009, Dobriban and Wager, 2018], among
others. A shortcoming of all the aforementioned methods is that they typically rely on the Gaussianity of the input data,
and therefore are not directly applicable to the random features model (note that even if Fx ∈ Rp is a Gaussian vector, the
features ϕ(Fx) are not Gaussian).

Gaussian equivalence provides a surprising answer to this hurdle. Assuming for simplicity that the features are centred
Ex[φ(x)] = 0 and defining the covariances:

Φ = Ex[φ(x)x
⊤] ∈ Rp×d, Ω = Ex[φ(x)φ(x)

⊤] ∈ Rp×p (23)

Gaussian equivalence states that in the high-dimensional limit, the expectations in eq. (22) can be computed for an equivalent
Gaussian model with matching second moments:

EX,x,θ⋆

[
ψ
(
f⋆(θ

⊤
⋆ x), f(θ̂(φ(X),θ⋆)

⊤φ(x))
)]
−−−→
p→∞

EX,V,x,v,θ⋆

[
ψ
(
f⋆(θ

⊤
⋆ x), f(θ̂(V,θ⋆)

⊤v)
)]

EX,θ⋆

[
ψ̃
(
f⋆(Xθ⋆), f(φ(X)θ̂(φ(X),θ⋆)

)]
−−−→
p→∞

EX,V,θ⋆

[
ψ̃
(
f⋆(Xθ⋆), f(Vθ̂(V,θ⋆)

)]
(24)
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where (xµ,vµ)µ∈[n] are n independent samples of jointly Gaussian random variables:

(x,v) ∼ N
(
0d+p,

[
Id/d Φ/

√
pd

Φ⊤/
√
pd Ω/p

])
(25)

and as before we defined the matrices X ∈ Rn×d and V ∈ Rn×p by stacking the samples row-wise. For the random features
model φ(x) = 1/√p ϕ(Fx), the asymptotic covariances Φ,Ω can be computed explicitly, and are given by:

Φ ≍
p→∞

κ1√
p

F, Ω ≍
p→∞

κ201p1⊤p +
κ21
p

FF⊤ + κ2⋆Ip (26)

where the constants (κ0, κ1, κ⋆) ∈ R3 are the Gaussian moments of the activation function ϕ:

κ0 = Ez∼N (0,1)[ϕ(z)], κ1 = Ez∼N (0,1)[ϕ
′(z)], κ⋆ =

√
Ez∼N (0,1)[ϕ(z)2]− κ21 − κ20. (27)

Therefore, for the random features problem the Gaussian equivalent model can be written explicitly in terms of the input
data x ∼ N (0, 1/dId) and the weights F ∈ Rp×d as:

v = κ01p +
κ1√
p

Fx+ κ⋆z (28)

where z ∼ N (0, Ip) is an effective noise vector which is independent from F, x and θ⋆. In summary, in the high-dimensional
limit the statistics of the random features model is equivalent to the statistics of a Gaussian equivalent model with noisy
features. The later can be directly characterized by the methods mentioned in the last paragraph.

A.2 Gaussian equivalence theorem

Related literature: Gaussian universality has a long history, and appeared in many contexts ranging from random matrix
theory [Erdos et al., 2009, Erdos et al., 2010, Tao and Vu, 2012] to signal processing [Donoho and Tanner, 2009],
statistical learning [Abbasi et al., 2019, Panahi and Hassibi, 2017, Korada and Montanari, 2010] and physics
[Carmona and Hu, 2004, Chatterjee, 2005]. In the context of random features, a precursor of the result dis-
cussed here is the observation that for Gaussian data the high-dimensional limit of kernel spectra is linearly
related the spectrum of the inputs [Karoui, 2010]. This result was generalized to random features kernels in
[Pennington and Worah, 2017, Liao and Couillet, 2018], and leveraged by [Mei and Montanari, 2022] to derive exact
asymptotic expressions for the generalization and training error of random features regression. For ridge regression,
computing the performance boils down to computing traces of the feature matrix, and therefore Gaussian universality can be
seen as an instance of spectral universality of random matrices [Benigni and Péché, 2021]. In non-linear problems where
a closed-form solution is not available (as in our classification setting), Gaussian universality for the random features
model was shown to hold for the empirical risk minimizer in [Gerace et al., 2020, Goldt et al., 2022], and was later proven
in [Hu and Lu, 2020, Dhifallah and Lu, 2020]. More recently, [Montanari and Saeed, 2022] extended this proof to more
general empirical risk minimization problems, and showed the universality of the free energy density associated to the
empirical risk at finite temperature. Finally, [Dandi et al., 2023] generalized this free energy universality result and proved
universal weak convergence for both empirical risk minimizers and sampling from the empirical Bayes measure. In
particular, this result covers the Bayesian classifier and the uncertainty quantification metrics (calibration, ECE, etc.) studied
here. This version is better suited to our discussion, since it is closer to the Bayesian classifiers studied in the main.
Theorem A.1 (Lemma 1 from [Montanari and Saeed, 2022]). Consider the random features model discussed in Sec. A.1.
Assume that the activation ϕ is three times differentiable and has zero Gaussian mean κ0 = Ez∼N (0,1)[ϕ(z)] = 0 and that
the weight matrix F ∈ Rp×d has rows fi ∼ N (0, Id) for i ∈ [p]. Further, assume that the function f⋆ is Lipschitz with i.i.d.
bounded sub-Gaussian noise. Define the free energy density at inverse temperature β > 0:

fβ(φ(X)) = − 1

pβ
log

∫
Rp

dθ exp

{
−β

[
−

n∑
µ=1

log σ
(
f⋆(θ

⊤
⋆ x

µ)× θ⊤φ(xµ))
)
+
λ

2
||θ||22

]}
. (29)

Then for any bounded differentiable function ψ with Lipschitz derivative we have:

lim
p→∞

|E [ψ (fβ(φ(X))]− E [ψ (fβ(V))]| = 0 (30)

We refer the reader to [Montanari and Saeed, 2022] for the technical details on the proof of this result.
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A.3 Beyond random features

The Gaussian equivalence theorem for the random features model motivates the study of generalized linear models with
general Gaussian covariates. For instance, consider n independently drawn Gaussian covariates (uµ,vµ) ∈ Rd+p:(

u
v

)
∼ N

(
0d+p,

[
Ψ Φ
Φ⊤ Ω

])
(31)

for positive definite matrices Ψ ∈ Rd×d, Ω ∈ Rp×p and Φ ∈ Rp×d such that Ψ− ΦΩ−1Φ⊤ is invertible. Labels yµ ∈ Y
are generated from the covariate u ∈ Rp from a generalized linear model:

yµ = f⋆(θ
⊤
⋆ u

µ/
√
d), θ⋆ ∼ N (0, Id). (32)

However, the statistician only observes the pairs (vµ, yµ) ∈ Rp × Y , from which she tries to learn:

ŷ = f(θ̂⊤v/
√
p). (33)

The asymptotic statistics of this Gaussian covariate model has been derived and proven [Loureiro et al., 2021a] for the
particular case in which θ̂ is the empirical risk minimizer. In Appendix B, we recover and generalize this result to the other
estimators defined in Sec. 2.1.

Note that thanks to Gaussian equivalence, in the proportional high-dimensional limit, the random features model discussed
in Sec. A.1 is a particular case of this Gaussian covariate model where u = x and v = φ(x). However, the Gaussian
covariate model can accommodate a richer class of models. For instance, one could consider the case in which the target
covariates themselves come from a feature map: u = φ⋆(x). Although Gaussian equivalence has only been established for
a limited number of feature maps, [Loureiro et al., 2021a] has empirically observed that the asymptotic formulas derived
for Gaussian covariates are in good agreement with a rich class of feature maps, including case in which the fixed features
are learned from neural networks. While the goal of this work is not to investigate Gaussian equivalence, this line of work
motivate us to derive our result for general Gaussian covariates, hence making them readily applicable to equivalences
proven in the future.
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B DERIVATION OF THEOREM 3.1

In this Appendix we provide a derivation of the self-consistent equations (14) characterizing the sufficient statistics
(m⋆

t , q
⋆
t , v

⋆
t , m̂

⋆
t , q̂

⋆
t , v̂

⋆
t ) for t ∈ {bo, erm, eb,Lap}. As motivated in Appendix A, our discussion will focus on the more

general Gaussian covariate model, which contains the random features setting as a particular case. The key idea is to
design an approximate message passing and show that the associated state evolution equations coincide exactly the with the
self-consistent equations for the sufficient statistics in Theorem 3.1.

This Appendix is organized as follows. We start by a recap of the Gaussian covariate model for our specific setting in
Sec. B.1, and introduce a convenient change of variables. Next, in Sec. B.2 we introduced a tailored message passing
algorithm, and provide an informal derivation of the associated state evolution equations. In Sec. B.3 we provide a heuristic
derivation of the self-consistent equations from the replica method, and show that it agrees with the state evolution equations
for our algorithm. In Sec. B.4 we discuss how these equations are made rigorous from recent progress in the literature.
Finally, in the three last subsections we discuss variations of this result to the context of the Laplace approximation and
temperature scaling, and a simplification for the the random features case.

B.1 Recap of the setting

As motivated in Sec. A.3, our goal is to derive the self-consistent equations in the more general setting of the Gaussian
covariate model (GCM), which thanks to Gaussian universality contains the random features model as a special case. For
the ease of reading, we first recall the reader of the model of interest, which specializes Sec. A.3 to binary classification.

Data model: Let (u,v) denote a pair of Gaussian covariates:(
u
v

)
∼ N

(
0d+p,

[
Ψ Φ
Φ⊤ Ω

])
. (34)

and define the oracle classifier as:

f⋆(u) = P(y = 1|θ⊤
⋆ u) = στ2

0

(
θ⊤
⋆ u√
d

)
, θ⋆ ∼ N (0, Id), (35)

where we remind the reader of the convenient notation:

στ (x) :=

∫
σ(z)N (z|x, τ)dz (36)

with σ(z) = (1 + e−z)−1 the sigmoid function.

Classifiers: Given n independent pairs (vµ, yν)µ∈[n] ∈ Rp × {−1, 1} from the model above and defining the training
data D = {(vµ, yµ)µ∈[n]} we are interested in studying the family of probabilistic classifiers of the type:

f̂t(v) = P(y = 1|τt,D)
∫

dθ στt

(
θ⊤v
√
p

)
pt(θ|D) (37)

where the "posterior" pt(θ|D) and the noise level τt depend on the specific classifier t ∈ {bo, erm, eb,Lap} of interest
introduced in Sec. 2.1.

A convenient rewriting: Since the covariate u ∈ Rd is not observed by the statistician, it is useful to rewrite it explicitly
as a function of v and an effective uncorrelated noise. Additionally, it is also convenient to write v in terms of an uncorrelated
variable. Mathematically, this is given by a standard Gaussian partition:

u = ΦΩ−1v +
(
Ψ− ΦΩ−1Φ⊤)1/2 z, (38)

for z ∼ N (0, Id) uncorrelated with v. This motivate us to define the projected oracle weights:

w⋆ = Ω−1Φ⊤θ⋆ (39)
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Then, the oracle classifier can be equivalently written as:

P(y = 1|w⊤
⋆ v) =

∫
στ2

0

(
w⊤

⋆ v√
d

+
1√
d
θ⊤
⋆

(
Ψ− ΦΩ−1Φ⊤)1/2 z)N (z|0, Id) dz

=

∫
στ2

0

(
w⊤

⋆ v√
d

+ ξ

)
N

(
ξ
∣∣∣0, θ⊤

⋆

(
Ψ− ΦΩ−1Φ⊤)θ⋆

d

)
dξ

(40)

(41)

which is a logit model on the observed features with an effective mismatch noise ξ ∼ N (0, 1dθ
⊤
⋆

(
Ψ− ΦΩ−1Φ⊤)θ⋆).

Recalling that θ⋆ ∼ N (0d, Id), in the asymptotic limit the noise variance concentrates:

1

d
θ⊤
⋆

(
Ψ− ΦΩ−1Φ⊤)θ⋆ → 1

d
Tr
(
Ψ− ΦΩ−1Φ⊤) =: τ2add. (42)

Therefore, the oracle classifier is equivalent to:

f⋆(v) = P(y = 1|w⊤
⋆ v) = στ2

0+τ2
add

(
w⊤

⋆ v√
d

)
(43)

with
w⋆ ∼ N (0,Σ⋆), Σ⋆ = Ω−1Φ⊤ΦΩ−1 (44)

Finally, to further simplify the algebra it is convenient to consider the following change of variables:

v → Ω−1/2v, w⋆ → Ω
1/2w⋆ (45)

Such that v ∼ N (0p, Ip) and w⋆ ∼ N (0d, Φ̃
⊤Φ̃) with Φ̃ ≡ ΦΩ−1/2. Note that the labels are invariant under this change,

and therefore we can assume input data with identity covariance.

B.2 State evolution for GAMP

Algorithm 1: GAMP for an estimator t ∈ {erm,bo, eb}
Input: Data V ∈ Rn×p, y ∈ {−1, 1}n
Define V2 = V⊙ V ∈ Rn×p and Initialize θ̂T=0 = N (0, σ2

wId), ĉT=0 = 1d, gT=0 = 0n.
for T ≤ Tmax do
V T = V2ĉT ; ωT = Vθ̂T − V T ⊙ gt−1 ; /* Update channel mean and variance */
gT = fout,t(y,ω

T ,V T ) ; ∂gT = ∂ωfout,t(y,ω
T ,V T ) ; /* Update channel */

AT = −V2⊤∂gT ; bT = V⊤gT +AT ⊙ θ̂T ; /* Update prior mean and variance
/* Update marginals */
θ̂T+1 = fw,t(b

T ,AT ) ; ĉT+1 = diag(∂bfw,t(b
T ,AT ))

end for
Return: Estimators (θ̂amp

t , ĉamp
t ) := (θ̂Tmax

t , ĉTmax
t ).

With the model in hands, we now show discuss how the sufficient statistics (v⋆t , q
⋆
t ,m

⋆
t ) needed to characterize the asymptotic

density defined in eq. (12) satisfy a set of self-consistent equations, which in the particular case of the random features model
are explicitly written given in eq. (14). Our derivation follows from the analysis of an approximate message passing scheme,
which provides a powerful tool to derive exact asymptotic results in an unified way, and has been employed in many works
in the high-dimensional statistics literature, e.g. [Bayati and Montanari, 2012, Bayati and Montanari, 2011, Rangan, 2011,
Krzakala et al., 2012, Donoho and Montanari, 2016, Sur and Candès, 2019, Loureiro et al., 2021b, Celentano et al., 2020,
Gerbelot and Berthier, 2021, Loureiro et al., 2022, Cornacchia et al., 2022].

Given the training data D = (V,y), the initial step is to consider the following set of iterates known as Generalized
Approximate Message Passing (GAMP) algorithm 1, where the denoising functions (fout,t, fw,t) depend on the specific
classifier of interest t ∈ {bo, erm, eb}, and are summarized in table 2. The convenience of the GAMP is precisely to allow
us to deal with classifiers of very different nature (t ∈ {bo, eb} are defined by sampling, while t = erm is a point-estimator)
in an unified framework. Note that the GAMP algorithm 1 is close to the one in [Rangan, 2011], with the important
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Classifier fout,t(y, ω, v) fw,t(b,A)

f̂erm proxlog σ(y×·)(ω) (λIp + A)b

f̂bo ∂ω log
∫
P(y = 1|z)N (z|ω, v)dz (Σ−1

⋆ + A)b

f̂eb ∂ω log
∫
σ(βy × z)N (z|ω, v)dz (λIp + A)b

Table 2: GAMP denoising functions for the ERM, Bayes-optimal and empirical Bayes estimators. We recall that the
covariance matrix is given by Σ⋆ = Ω−1Φ⊤ΦΩ−1.

difference that the denoising functions fw,t is vector valued - a consequence of the fact that implicitly the classifiers of
interest have non-separable priors. A second convenient property of GAMP is that in the high-dimensional limit of interest
here, the statistics of the sequence of estimators θ̂T,amp

t , ĉT,amp
t can be exactly tracked by a set of equations known as state

evolution. Therefore, the key idea in the proof strategy is to show that the statistics of the iterates θ̂T,amp
t , ĉT,amp

t (given
by the state evolution equations) coincide with the statistics of the classifiers defined in Sec. 2.1. The state evolution for
GAMP with non-separable priors was rigorously derived in [Berthier et al., 2019, Gerbelot and Berthier, 2021]. Therefore,
in the following we limit ourselves to an informal but intuitive derivation. In Sec. B.3 we show that the state evolution
for the GAMP estimators indeed coincides with the fixed-point equations describing the statistics of the classifiers of
interest according to the replica method. The fact that GAMP (rigorous) state evolution equations corresponds to the replica
saddle-point equations is a very general fact [Zdeborová and Krzakala, 2016], which is at the roots of many rigorous proofs
to the replica predictions.

In the limit where n, p→∞ with fixed α = n/p, it can be shown that the GAMP algorithm 1 is asymptotically equivalent to
the following rBP equations (this is discussed in for instance [Aubin et al., 2018, Aubin et al., 2021]):


ωT
µ→i =

∑
j ̸=i

vµj θ̂
T
j→µ

V T
µ→i =

∑
j ̸=i

(vµj )
2ĉTj→µ

,

{
gTµ→i = fout,t(y

µ, ωT
µ→i, V

T
µ→i)

∂gTµ→i = ∂ωfout,t(y
µ, ωT

µ→i, V
T
µ→i)

bTµ→i =
∑
ν ̸=µ

vνi g
T
ν→i

AT
µ→i = −

∑
ν ̸=µ

(vνi )
2∂gTν→i

,

{
θ̂T+1
i→µ = fw,t(b

T
i→µ, A

T
i→µ)

ĉT+1
i→µ = ∂bfw,t(b

T
µ→i, A

T
µ→i)

(46)

(47)

where we recall the reader i ∈ [p], µ ∈ [n], and to lighten notation we have dropped the indexes t ∈ {bo, erm, eb} for the
classifier and amp which stresses that the messages concern GAMP estimators. By construction, the rBP messages are
independent, and are only coupled to each other through the data, which we recall is given by:

yµ ∼ P0(·|w⊤
⋆ v

µ), vµ ∼ N (0, Ip), w⋆ ∼ N (0,Σ⋆) (48)

For convenience, we define the so-called teacher local field:

zµ = w⊤
⋆ v

µ/
√
d (49)

Without loss of generality, we can write yµ = f0(zµ, η
µ) for ηµ ∼ N (0, 1). We now characterize the joint statistics of the

rBP messages.

Step 1: Asymptotic joint distribution of (zµ, ωT
µ→i)

Note that (zµ, ωT
µ→i) are given by a sum of independent random variables with variance p−1/2, and therefore by the Central

Limit Theorem in the limit p → ∞ they are asymptotically Gaussian. Therefore we only need to compute their means,
variances and cross correlation. The means are straightforward, since vµi have mean zero and therefore they will also have
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mean zero. The variances are given by:

E
[
z2µ
]
=

1

d
E

 p∑
i=1

p∑
j=1

vµi v
µ
j w⋆iw⋆j

 =
1

d

p∑
i=1

p∑
j=1

E
[
vµi v

µ
j

]
w⋆iw⋆j =

1

d

p∑
i=1

p∑
j=1

δijw⋆iw⋆j

→
p→∞

ρ

E
[(
ωT
µ→i

)2]
=

1

p
E

 p∑
j ̸=i

p∑
k ̸=i

vµj v
µ
k θ̂

T
j→µθ̂

T
k→µ

 =
1

p

p∑
j ̸=i

p∑
k ̸=i

E
[
vµj v

µ
k

]
θ̂Tj→µθ̂

T
k→µ

=
1

p

p∑
j ̸=i

p∑
k ̸=i

δjkθ̂
T
j→µθ̂

T
k→µ →

p→∞
qT

E
[
zµω

T
µ→i

]
=

1√
dp

E

 p∑
j ̸=i

p∑
k=1

vµj v
µ
k θ̂

T
j→µw⋆k

 =
1√
dp

p∑
j ̸=i

p∑
k=1

E
[
vµj v

µ
k

]
θ̂Tj→µw⋆k

=
1√
dp

p∑
j ̸=i

p∑
k=1

δjkθ̂
T
j→µw⋆k →

p→∞
mT

(50)

(51)

(52)

(53)

where we have used that θ̂Ti→µ = O(p−1/2) to simplify the sums at large p. Summarising our findings:

(zµ, ω
T
µ→i) ∼ N

(
03,

[
ρ mT

mT qT

])
(54)

with:

ρ ≡ 1

d
w⊤

⋆ w⋆, qT ≡ 1

p
(θ̂T

t )
⊤θ̂T

t , mT ≡ 1√
dp

(θ̂T
t )

⊤w⋆

(55)

Step 2: Concentration of variances V T
µ→i

Since the variance V T
µ→i depends on (vµ

i )
2, in the asymptotic limit p→∞ it concentrates around its mean :

E
[
V T
µ→i

]
=

1

p

∑
j ̸=i

E
[
(vµi )

2
]
ĉTj→µ =

1

p

∑
j ̸=i

ĉTj→µ =
1

p

p∑
j=1

ĉTj→µ −
1

p
ĉTi→µ →

p→∞
V T ≡ 1

p

p∑
j=1

ĉTj (56)

where we have defined the variance overlap V T . We thus have V T
µ→i → V T . Note that V T corresponds to the divergence

with respect to b of logZw(b,A).

Step 3: Distribution of bTµ→i, b̃
T
µ→i

By definition, we have

bTµ→i =
1
√
p

∑
ν ̸=µ

vνi g
T
ν→i =

1
√
p

∑
ν ̸=µ

vνi fout(y
µ, ωT

ν→i, V
T
ν→i) =

1
√
p

∑
ν ̸=µ

vνi fout(f0(zν , η
ν), ωT

ν→i, V
T
ν→i)

(57)

Note that in the sum zν = 1√
d

p∑
j=1

vνjw⋆j there is a term i = j, and therefore zµ is correlated with vνi . To make this explicit,

we split the teacher local field:

zµ =
1√
d

p∑
j=1

vµj w⋆j =
1√
d

∑
j ̸=i

vµj w⋆j︸ ︷︷ ︸
zµ→i

+
1√
d
vµi w⋆i (58)
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and note that zµ→i = O(1) is independent from vνi . Since vµi w⋆i = O(p−1/2), to take the average at leading order, we can
expand the denoising function:

fout(f0(zµ, η
ν), ωT

ν→i, V
T
ν→i) = fout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)

+
1√
d
∂zfout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)v

ν
i w⋆i +O(p−1)

(59)

Inserting in the expression for bTµ→i,

bTµ→i =
1
√
p

∑
ν ̸=µ

vνi fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

+
1√
dp

∑
ν ̸=µ

(vνi )
2∂zfout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)w⋆i +O(p−3/2)

(60)

Therefore:

E
[
bTµ→i

]
=

w⋆i√
dp

∑
ν ̸=µ

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(p−3/2)

=
w⋆i√
dp

n∑
ν=1

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(p−3/2) (61)

Note that as p → ∞, for fixed t and for all ν, the fields (zν→i, ω
T
ν→i) are identically distributed according to average in

eq. (54). Therefore,

1√
dp

n∑
ν=1

∂zfout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) →

p→∞
α
√
γ E(ω,z),η

[
∂zfout(f0(z, η), ω, V

T )
]
≡ m̂T (62)

so:

E
[
bTµ→i

]
→

p→∞
w⋆im̂

T . (63)

Similarly, the variance is given by:

Var
[
bTµ→i

]
=

1

p

∑
ν ̸=µ

∑
κ̸=µ

E [vνi v
κ
i ] fout(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i)fout(f0(zκ→i, η

κ), ωT
κ→i, V

T
κ→i) +O(d−2)

=
1

p

∑
ν ̸=µ

fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

2 +O(p−2)

=
1

p

n∑
ν=1

fout(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i)

2 +O(p−2)

→
d→∞

α E(z,ω),ξ

[
fout(f0(z, η), ω, V

T )2
]
≡ q̂T

(64)

(65)

To summarise, we have:

bTµ→i ∼ N
(
w⋆im̂

T , q̂T
)

(66)
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Step 4: Concentration of AT
µ→i, Ã

T
µ→i

The only missing piece is to determine the distribution of the prior variances AT
µ→i, Ã

T
µ→i. Similar to the previous variance,

they concentrate:

AT
µ→i = −

1

p

∑
ν ̸=µ

(vνi )
2∂ωfout,t(y

ν , ωT
ν→i, V

T
ν→i)

= −1

p

∑
ν ̸=µ

(xνi )
2∂ωfout,t(f0(zν→i, η

ν), ωT
ν→i, V

T
ν→i) +O(p−3/2)

= −1

p

∑
ν=1

∂ωfout,t(f0(zν→i, η
ν), ωT

ν→i, V
T
ν→i) +O(d−3/2)

→
p→∞

−α E(z,ω),ξ

[
∂ωfout,t(f0(z, η), ω, V

T )
]
≡ v̂T

(67)

(68)

Summary

We now have all the ingredients we need to characterize the asymptotic distribution of the GAMP iterates for any of the
classifiers t ∈ {bo, erm, eb}:

θ̂T,amp
t ∼ fout,t(w⋆m̂

T,amp
t +

√
q̂T,amp
t ξ, v̂T,amp

t ) (69)

where ξ ∼ N (0, Ip) is an independent Gaussian vector. Therefore, we recover the GAMP state evolution equations
[Rangan, 2011, Berthier et al., 2019] for the overlaps:

V T+1,amp = E(w⋆,ξ)

[
∂b · fw,t(m̂

T,ampw⋆ +
√
q̂T,ampξ, v̂T,ampIp)

]
qT+1,amp = E(w⋆,ξ)

[
fw,t(m̂

T,ampw⋆ +
√
q̂T,ampξ, v̂T Ip)2

]
mT+1,amp =

√
γE(w⋆,ξ)

[
fw,t(m̂

T,ampw⋆ +
√
q̂T,ampξ, v̂T,ampIp)⊤w⋆

] ,

v̂T,amp = −αE(z,ω),η

[
∂ωfout,t(f0(z, η), ω, V

T,amp)
]

q̂T,amp = αE(z,ω),η

[
fout,t(f0(z, η), ω, V

T,amp)2
]

m̂T,amp = α
√
γE(z,ω),η

[
∂zfout,t(f0(z, η), ω, V

T,amp)
]

(70)

(71)

where w⋆ ∼ N (0,Σ⋆), ξ ∼ N (0, Ip) and (z, ω) ∼ N (0,

[
ρ mT

mT qT

]
), η ∼ N (0, 1)

Interestingly, we can show that the equations (71) are strictly equivalent to the self-consistent equations (14) of Theorem 3.1.
Consider first the update equations for V T,amp

t , qT,amp
t ,mT,amp

t . First, note that for all the estimators considered here, the
function fw,t has the form (Σ−1

t + A)b for some matrix Σt. Now, let us introduce

Ψ̃(b,A,Σ) =
1

2p
Tr log(Σ−1 + A) +

1

2p
b⊤(Σ−1 + A)−1b

Ψw(m̂, q̂, v̂) = Ew⋆,ξΨ̃(m̂w⋆ + q̂ξ, v̂Ip)

(72)

(73)

With some algebra, we can see that for any estimator described in Table 2 we have

∂m̂Ψw(m̂, q̂, v̂) = E(w⋆,ξ)

[
fw,t(m̂

Tw⋆ +
√
q̂T ξ, v̂T Ip)⊤w⋆

]
∂q̂Ψw − ∂v̂Ψw =

1

2
E(w⋆,ξ)

[
fw,t(m̂

Tw⋆ +
√
q̂T ξ, v̂T Ip)2

]
∂q̂Ψw =

1

2
E(w⋆,ξ)

[
∂b · fw,t(m̂

Tw⋆ +
√
q̂T ξ, v̂T Ip)

]
(74)

(75)

(76)

Thus the update equations (71) for m, q, v are equivalent to Equations (14). It is the same for m̂, q̂, v̂ : consider the update
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equation for q̂T,amp. We can rewrite it with a Dirac delta

q̂T,amp = α
∑
y

E(z,ω),η

[
fout,t(y, ω, V

T,amp)2δ(y − f0(z, η)
]

= α
∑
y

Eω

[
fout,t(y, ω, V

T,amp)2Ez|ω,η(δ(y − f0(z, η))
]

(77)

(78)

(79)

The distribution of z conditioned on ω is a Gaussian with mean mT,amp/qT,amp × ω and variance ρ − mT,amp ×
mT,amp/qT,amp. Then, Ez|ω,η(δ(y − f0(z, η)) can be written

Ez|ω,η(δ(y − f0(z, η)) =
∫

dzEη (δ(y − f0(z, η)))N (z|mT,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

=

∫
dzP(y = 1|z)N (z|mT,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

= Z0(y,m
T,amp/qT,amp × ω, ρ−mT,amp ×mT,amp/qT,amp)

we thus recover the equation for q̂ in (14) :

q̂T+1 = α
∑
y

Eω

[
fout,t(y, ω, V

T,amp)2Z0(y,m
T /qTω, ρ− m

2/q)
]

(80)

Similar computations can be done for m̂ and v̂.

We have thus eqs. (71) with the self-consistent equations (14) of Theorem 3.1. It remains to show two points. First, that
in the particular case of the random feature model the expression of Ψw simplifies to Equation (15) - this is discussed in
Appendix B.6. Second, to show that the fixed points of the state evolution equations (mamp

t , qamp
t , vamp

t ) indeed corresponds
to the sufficient statistics (m⋆

t , q
⋆
t , v

⋆
t ) for the classifiers of interest. First, we provide a heuristic derivation of this fact,

based on the replica method from statistical physics [Mézard et al., 1987]. We defer the discussion of the formal aspects to
Sec. B.4.

B.3 Self-consistent equation from the replica method

As discussed above, the goal of this section is to provide a derivation of the self-consistent equations in eq. (14) from
the replica method. For the particular case of f̂erm, this derivation appeared [Loureiro et al., 2021a], where it was also
rigorously proven using CGMT. Here, we extend this analysis to t ∈ {bo, eb}.

We can treat the different classifiers of interest in the replica analysis by defining the following Gibbs distribution:

µt(θ|D) =
1

Zt

∏
µ∈[n]

P t
σ(y

µ|θ⊤vµ)× P t
θ(θ) (81)

where (P t
σ, P

t
θ) are a likelihood and priors (not necessarily normalized) depending on the particular classifier, and are

explicitly given in Table 3, and the normalization constant Zt is the partition function.

Classifier P t
σ(y|z) P t

θ(θ)

f̂erm σ(y × z)β e−
βλ/2∥θ∥2

f̂eb σ(βy × z) N (θ|0, 1/λIp)
f̂bo στ2

0+τ2
add

(y × z) N (θ|0,Σ⋆)

Table 3: Prior and likelihood for the different estimators. For f̂erm, the temperature β must be taken in the limit β →∞,
and the Gibbs measure µerm(θ|D) is peaked around the minimizer of the empirical risk θ̂erm.

The aim of the replica method is to compute the free energy density defined as:

βfβ = − lim
p→∞

1

p
ED logZt (82)
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The free energy is the cumulant generating function of the Gibbs measure, and therefore computing it give us access to the
statistics of the measure, which in particular allow us to compute the test error and calibration (among others quantities) of
the classifiers defined in Sec. 2.1. Since taking the expectation over the log is intractable, we resort to the replica method
[Mézard et al., 1987], which consists of the following trick:

logZt = lim
r→0+

1

r
Zr

t (83)

Swapping the limit and the expectation, what we need to compute is:

EDZr
t =

n∏
µ=1

Evµ,yµ

r∏
a=1

∫
Rd

P t
θ (θ

a)P t
σ

(
yµ|v

µ⊤θa

√
d

)

=

n∏
µ=1

∑
y

∫
P (w⋆)

∫ (∏
a

P t
θ(θ

a)

)
Evµ

[
P0

(
yµ|v

µ⊤w⋆√
d

)∏
a

P t
σ

(
yµ|v

µ⊤θa

√
p

)]

Next, we introduce the local fields νµ⋆ = 1√
d
vµ⊤w⋆ and νµa = 1√

d
vµ⊤θa. Then, the term between brackets in the above

equation is equal to

∫
dνµ⋆P0(y

µ|νµ⋆ )
∫ ∏

a

dνµaP
t
σ(y

µ|νµa )Evµ

[
δ(νµ⋆ −

vµ⊤w⋆√
d

)
∏
a

δ(νµa −
vµ⊤θa

√
p

))

]
(84)

Note that Evµ

[
δ(νµ⋆ − vµ⊤w⋆)

∏
a δ(ν

µ
a − vµ⊤θa))

]
defines the joint distribution of the local fields. It is straightforward

to show that this is a Gaussian distribution on zero mean and covariance Σν :

E(ν⋆, ν⋆) =
1

d
w⊤

⋆ Ωw⋆ = ρ, E(ν⋆, νa) =
1√
pd

w⊤
⋆ Ωθ

a = ma, E(νa, νb) =
1

p
θa⊤Ωθb = Qab (85)

Then, we have

EZr
t =

∏
µ

∑
yµ

∫
Pθ,0(w⋆)

∫ ∏
a

P t
θ(θ

a)

∫
dνµ⋆

∏
a

dνµaP0(y
µ|νµ∗ )

∏
a

P t
σ(y

µ|νµa )×N (νµ∗ , ν
µ
a |0,Σν) (86)

The elements of the covariance matrix Σν are fixed by eq. (85). We can free these overlaps by doing the Fourier transform
of the Dirac delta. We get in the end

EDZr
t ∝

∫
dρdρ̂

∏
a

dmadm̂a
∏
a,b

dQabdQ̂abepΦ(r) (87)

Where

Φ(r) = − 1

γ
ρρ̂− 1

√
γ

∑
a

mam̂a −
∑
a⩽b

QabQ̂ab + α×Ψ(r)
y +Ψ(r)

w

Ψ(r)
y =

1

p
log

∫
Pθ,0(w⋆)

∫ ∏
a

P t
θ(θ

a)eρ̂∥w⋆∥2+
∑

a m̂aw⋆Ωθa+
∑

a⩽b Q̂a,bθaΩθb

Ψ(r)
w =

1

p
log
∑
y

∫
dν⋆P0(y|ν⋆)

∫ ∏
a

dνaP t
σ(y|νa)N (ν, νa; Σν)

(88)

(89)

(90)

B.3.1 Replica symmetric ansatz

In the replica symmetric ansatz, we assume ma = m, Qab = q for a ̸= b, Qaa = v + q, m̂a = m̂, Q̂ab = q̂ for a ̸= b,
Q̂aa = − 1

2 (v̂ − q̂) where the quantities m, q, v, m̂, q̂, v̂ are to be determined.

We refer to [Gerace et al., 2020, Aubin et al., 2020] for the detailed computation of limr→0+ Ψ
(r)
y and limr→0+ Ψ

(r)
w . In
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the end, we obtain :

fβ = extrm,q,v,m̂,q̂,v̂

{
− 1
√
γ
mm̂+

1

2
(qv̂ − q̂v + v̂v) + Ψw + α×Ψy

}
Ψw = lim

d→∞

1

p
Eξ,w⋆

log

∫
dθP t

θ(θ)e
−v̂2θ⊤Ωθ+θ⊤(m̂Ωw⋆+q̂Ω−1/2ξ)

Ψy = Eξ∼N (0,q)

[∑
y

Z0(y,m/qξ, ρ− m
2/q) logZg(y, ξ, v)

]
(91)

(92)

(93)

where

Z0/g(y, ω, v) =

∫
dzP0/g(y|z)N (z|ω, v) (94)

The self-consistent equations (14) are obtained by cancelling the derivative of the free energy with respect to each of
(m, q, v, m̂, q̂, v̂).

Ψw for Gaussian priors: For all the estimators considered here, the prior distribution P t
θ(θ) is Gaussian N (0,Σ), where

Σ depends on the considered estimator. Then,

Ψw =

∫
dθe−

1
2θ

⊤Σ−1θe−
v
2 θ

⊤Ωθ+θ⊤(m̂Ωw⋆+
√
q̂Ω−1/2ξ)

=
exp

(
1
2 (m̂w⋆ +

√
q̂Ω−1/2ξ)⊤(Σ + v̂Ω)−1(m̂w⋆ +

√
q̂Ω−1/2ξ)

)√
det(Σ + v̂Ω)

= lim− 1

2p
Tr log(Σ + v̂Ω) +

1

2p
Tr(m̂2Ωw⋆w

⊤
⋆ Ω+ q̂Ω)(Σ + v̂Ω)

(95)

(96)

(97)

We get in the end the following expression for Ψw

Ψw = − 1

2p
Tr log (v̂Ω+ Σ) +

1

2p
Tr
(
(m̂2Ωw⋆w

⊤
⋆ Ω+ q̂Ω)(v̂Ω+ Σ)−1

)
(98)

(99)

Saddle-point equations: To compute the free energy, we cancel its derivative with respect to m, q, v, m̂, q̂, v̂. We have :
∂m̂fβ = − 1√

γm+ ∂m̂Ψw

∂q̂fβ = − 1
2v + ∂q̂Ψw

∂v̂fβ = 1
2 (v + q) + ∂v̂Ψw

(100)

Cancelling the derivatives gives the condition:
m =

√
γ∂m̂Ψw

v = 2× ∂q̂Ψw

q = −v − 2× ∂v̂Ψw = 2× (∂q̂Ψw − ∂v̂Ψw)

(101)

Which are the first three equations of Theorem 3.1. The derivative of the free energy with respect to (m, q, v) is given by
∂mfβ = − 1√

γ m̂+ α∂mΨy

∂qfβ = 1
2 v̂ + α∂qΨy

∂vfβ = 1
2 (v̂ − q̂) + α∂vΨy

(102)
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Cancelling the derivatives, and computing the derivatives of Ψy gives then
v̂ = −αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) ∂ωgt (y, ξ, v)

]
q̂ = αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) gt (y, ξ, v)

2
]

m̂ = α
√
γEξ∼N (0,q)

[∑
y ∂ωZ0 (y,m/qξ, v⋆) gt (y, ξ, v)

] (103)

which are the last three equations for m̂, q̂, v̂ in Theorem 3.1.

Therefore, we have shown that the self-consistent equations characterizing the sufficient statistics in Theorem 3.1 can be
obtained from the replica method by computing the asymptotic free energy density. Moreover, in Sec. B.2 we have shown
that these equations exactly agree with the state evolution equations for a tailored GAMP algorithm 1.

B.4 Rigorous version of replica and self-consistent equations

As discussed in the introduction of this Appendix, the derivation of Theorem 3.1 consists in two steps. First, one constructs
a tailored GAMP algorithm 1 for which the estimates can be exactly tracked by a set of state evolution equations. Second,
one shows that these equations actually agree with the self-consistent equations describing the sufficient statistics for the
joint density of interest in Theorem 3.1. The first part was discussed in Sec. B.2, and although we provided an informal
derivation of the state evolution equations, they rigorously follow from the recent progress on state evolution proofs for
structured message passing schemes with non-separable priors [Berthier et al., 2019, Gerbelot and Berthier, 2021]. For
the second part, in Sec.B.3 we discussed a heuristic derivation of the self-consistent equations from the replica method,
and showed it agrees with the state evolution equations from GAMP. Therefore, it remains to rigorously justify this
last step. Thankfully, one can resort to a large number of recent progress on generic proofs of the replica predictions
[Bayati and Montanari, 2012, Barbier et al., 2019, Sur and Candès, 2019, Candes and Sur, 2018, Montanari et al., 2020,
Dhifallah and Lu, 2020, Loureiro et al., 2021a], which we now discuss in detail.

First, let us recall the statement of the theorem in the more general context of the Gaussian covariate model. Let (u,v)
denote a pair of Gaussian covariates: (

u
v

)
∼ N

(
0d+p,

[
Ψ Φ
Φ⊤ Ω

])
. (104)

For any of the classifiers t∈{bo, erm,Lap, eb} from Sec. 2.1, the 2-dimensional vector (f⋆(u), f̂t(v)) is asymptotically
distributed as (σ(z), σṽ(z′t)) for some ṽ that depends on the estimator, where (z, z′t) ∼ N (02,Σt), and

Σt =

(
θ⊤
⋆ Ψθ⊤

⋆ θ̂⊤
t Φθ⋆

θ⊤
⋆ Φ

⊤θ̂t θ̂⊤
t Ωθ̂t

)
where θ̂t is either the unique minimizer the empirical risk in eq. (2) for t ∈ {erm,Lap} or the mean over the respective
posterior distribution for t ∈ {bo, eb}. The computation of ρ⋆,t thus boils down to computing the sufficient statistics
(θ̂⊤

t Φθ⋆, θ̂
⊤
t Ωθ̂t). A first important point is that, asymptotically in p, these quantities converge in probability to single,

deterministic quantities. This was shown in general for sampling problems with log concave measure (such as the one we
use in the Bayes-optimal and empirical Bayes method) in [Barbier et al., 2021b], and for empirical risk minimization with
convex risks in [Loureiro et al., 2021a]. We shall thus use the following lemma:
Lemma B.1 (Overlap Concentration, from [Barbier et al., 2021b, Loureiro et al., 2021a]). In the asymptotic limit p→∞,
the random variables (θ̂⊤

t Φθ⋆, θ̂
⊤
t Ωθ̂t) converge in probability to some value (m⋆

t , q
⋆
t ) for t ∈ {bo, erm,Lap, eb}.

The problem is thus reduced to the computation of these statistics, as a function of the parameters of the problems (α, γ, τ0,
etc.) for each of the estimators of interest. In Theorem 3.1, we claim that these are given by the replica equations derived in
Appendix B.3. Thankfully, for different estimators these equations were proven in the literature in slightly different contexts,
written as formal proofs of replica predictions.

• For f̂erm on the random features model the self-consistent equations for (m⋆
erm, q

⋆
erm) were heuristically derived in

[Gerace et al., 2020] and rigorously proven in [Dhifallah and Lu, 2020]. In the more general context of the Gaussian
covariate model, analogous equations were proven in [Loureiro et al., 2021a]. In both cases, they agree with our equations
in eq. (14). While these works use the Gordon minimax approach to prove these equations, we note an independent
GAMP-based proof for both the random features and Gaussian covariate models appeared in [Loureiro et al., 2022],
leveraging recent progress on structured message passing schemes from [Gerbelot and Berthier, 2021].
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• As noted in Sec. 2.1, the average over the Laplace posterior agrees exactly with the empirical risk minimizer:

pLap(θ|D) = N (θ|θ̂erm,H−1) (105)

Therefore, the self-consistent equations for (m⋆
Lap, q

⋆
Lap) agree exactly with the ones for (m⋆

erm, q
⋆
erm). Therefore, they

are also rigorous.

In both cases, our result follows from:

Theorem B.2 (ERM statistics, Thms. 4 & 5 from [Loureiro et al., 2021a], Informal). In the setting of Theorem 3.1,
the ERM predictions from the replica are correct: (m, q, v) converges in probability to their replica fixed points
(m⋆

erm, q
⋆
erm, v

⋆
erm), while the minimum training error converges in probability to the replica free energy density.

• The "finite temperature" sampling problems related to Bayesian estimation pose different challenges. We start by
discussing the Bayes-optimal f̂bo classifier. For i.i.d. Gaussian data, the rigour of the replica prediction has been
proven for Generalized linear models in [Barbier et al., 2019], together with the GAMP optimality. Thanks to Gaussian
equivalence, our problem can be framed as a Bayesian generalized linear reconstruction problem, but with data matrix
that are instead correlated. In the random features case, the data matrix is a product of two random matrix (see eq.(28)).
Thus, in this case replica predictions were for the Bayes-optimal problem was rigorously proven in [Gabrié et al., 2018,
Barbier et al., 2018]. Note that while these works only prove the correctness of the replica free energy density, the
techniques in [Barbier et al., 2019] can be readily applied to generalize the proof to overlaps:

Theorem B.3 (BO statistics, Th. 1 from [Barbier et al., 2018] and Th. 1 from [Barbier et al., 2018], Informal). In the
setting of Theorem 3.1, the BO prediction from the replica is correct: (m, q, v) converges in probability to their replica
fixed points (m⋆

bo, q
⋆
bo, v

⋆
bo), while the minimum training error converges in probability to the replica free energy density.

Additionally, given that the performance of the GAMP algorithms follows the same self-consistent equations as the
replica’s [Berthier et al., 2019, Gerbelot and Berthier, 2021], it follows that GAMP performs Bayes-optimal estimation
for this problem, a classical property in Bayesian estimation [Zdeborová and Krzakala, 2016]. 3

• The remaining case is the empirical Bayes (EM) classifier f̂eb. In this case, where Bayesian estimation is performed
with mismatched noise, the complete proof of the replica equation is not available in the literature. In principle, this
can be done following the steps of [Barbier et al., 2021a] for the square loss (recall we consider the logistic loss in this
work). Indeed, [Barbier et al., 2021a] shows how the concentration of (m⋆, q⋆) (referred to as strong replica symmetry
in [Barbier et al., 2021b]) can be used together with rigorous control of the cavity method [Aizenman et al., 2006] to
prove the cavity equations. While this is, we believe, a worthwhile direction of research, we instead shall redefine the
empirical Bayes method performance as the one of the best empirical Bayesian estimator in linear time, that is, the
estimator achieved by the GAMP algorithm 1 with the corresponding empirical Bayes denoiser. It can indeed be shown
that GAMP is the best first-order algorithm for this class of Bayesian estimation problems [Celentano et al., 2020], and it
is widely expected to perform an exact sampling for these problems [Zdeborová and Krzakala, 2016] (as it was proven in
for the Bayes-optimal case). With this definition, the performance of GAMP is by construction given by its rigorous state
evolution [Berthier et al., 2019, Gerbelot and Berthier, 2021], which we recall the reader matches the replica prediction.

B.5 Laplace approximation : computing the inverse Hessian

In this section, we show how to compute the prediction for the Laplace approximation

f̂Lap(v) =

∫
dzσ(z)N (z|θ̂⊤

ermv,v
⊤H−1v) (106)

withH the Hessian of the empirical risk at θ̂erm. Note that in the high-dimensional limit, v⊤H−1v →p→∞ Tr(H−1Ω). As
shown in Appendix C, to compute this quantity we can add the term h⊤θ to the loss and compute the second derivative of
the free energy density with respect to h. The computations are the same as those done in Section B.3, except that the Gibbs
distribution µt(θ) is replaced by

µt(θ) =
1

Zt(h)

∏
i

P t
σ(yi|θ⊤φ(xi))× P t

θ(θ)× eβh
⊤θ (107)

3Note that this crucially relies on the strong replica symmetry [Barbier et al., 2021b] condition, which impose the existence of an
unique fixed point in our problem. Without this property, one could generically have more than a fixed point, associated to a so-called
"hard phase" where GAMP is not optimal, see [Zdeborová and Krzakala, 2016].
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Adapting the derivation from Sec. B.3 for f̂erm and taking the temperature β →∞ and get as before

f0 := lim
β→∞

fβ = extr
m,q,v,m̂,q̂,v̂

{
− 1
√
γ
mm̂+

1

2
(qv̂ − q̂v) + Ψw(m̂, q̂, v̂,h) + αΨy(m, q, v)

}
Ψy = Eξ∼N (0,q)

[∑
y

Z0(y,m/qξ, ρ− m
2/q) logZg(y, ξ, v)

] (108)

(109)

However, now Ψw is

Ψw = − 1

2p
Tr log (v̂Ω+ Σ) +

1

2p
Tr
[
((m̂Ωw⋆ + h)(v̂Ω+ λI)−1(m̂Ωw⋆ + h) + q̂Ω(v̂Ω+ Σ)−1)

]
(110)

The second derivative of Ψw with respect to h is (λId + v̂Ω)−1. As a consequence, the second derivative of the free energy

(∇2
h logZerm)|h=0 = ∇2

hΨw(m
⋆
erm, q

⋆
erm, v

⋆
erm,h) = (λId + v̂⋆ermΩ)

−1

and ∇2
hf0 = −(λId + v̂⋆ermΩ)

−1. We then deduce that the inverse Hessian is equal to

H−1 = (λId + v̂⋆ermΩ)
−1 (111)

B.6 Simplification for random features

As discussed in Appendix B, the random features model φ(x) = ϕ(Fx) is asymptotically equivalent to the Gaussian
covariate model up to an identification of the covariances:

Ω = κ21FF
⊤ + κ2⋆Ip, Φ = κ1F, Ψ = Id (112)

where:
κ1 = Ez∼N (0,1) [ϕ

′(z)] , κ⋆ =
√
Ez∼N (0,1) [ϕ(z)2]− κ21 (113)

where for simplicity we assume κ0 = Ez∼N (0,1)[ϕ(z)] = 0. Thus, in this case we can explicitly write:

Σ⋆ =
κ21FF⊤

κ2⋆Ip + κ21FF⊤ . (114)

. Note that the matrices Ω,Σ,Σ⋆ are diagonalizable in the same basis, since Σ is either a multiple of the identity, or a
function of Ω,ΦΦ⊤. Assuming that FF⊤ has an asymptotic spectral distribution µ, we can write Ψw directly in terms of an
average over µ:

Ψw =
1

2
Ex∼µ)

log (v̂(κ21x+ κ2⋆) + π(x)
)
+

m̂2 κ2
1x

κ2
1x+κ2

⋆
+ q̂(κ21x+ κ2⋆)

v̂(κ21x+ κ2⋆) + π(x)

 (115)

where the function π represents the eigenvalues of Σ : since we can write Σ = f(ΦΦ⊤) here, we have, π(x) = f(x). For
f̂erm and f̂eb, π(x) = λ. For f̂bo, π(x) = κ2

1x

κ2
1x+κ⋆

. This gives us the values of π̂t in Table 1.

In particular, when F has Gaussian i.i.d. entries (as in all plots presented here), µ is simply the Marcenko-Pastur distribution
with shape parameter γ.

B.7 Temperature scaling

In this section, we show how to compute the optimal temperature T that minimizes the test loss for f̂erm. Once the overlaps
m⋆, q⋆, v⋆, m̂⋆, q̂⋆, v̂⋆ are computed, we get the test loss with the expression

Lgen.(m, q) =
∑
y

Eξ∼N (0,1)

[
Z0(y,m

⋆
/q⋆ξ, ρ−m2/q)× (− log σ(y ×√qξ))

]
(116)

Given a temperature T , temperature scaling will divide the weights such that the prediction is now σ(θ⊤φ(x/T ). It is easy
to see that in this case, the overlaps m⋆, q⋆ now become m⋆/T, q⋆/T 2. Then, temperature scaling amounts to finding

T ⋆ = argmin
T

Lgen.(m
⋆/T, q⋆/T 2) (117)
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C CONFIDENCE FUNCTION AND HESSIAN OF LAPLACE METHOD

C.1 Computing the Hessian of the training loss

In this section, we show how we can compute the (inverse of) the Hessian thanks to classical properties of Legendre
transforms. We consider the ERM estimator f̂erm trained by minimizing the following loss :

L(w) = −
∑
i

log σ(θ⊤φ(x)i × yi) + λ/2∥θ∥2 (118)

whose Hessian at the minimum is given by

H := ∇2L = −
∑
i

(1− σ′(θ⊤φ(x)i × yi))φ(x)iφ(x)⊤i + λId
∣∣
θ=θ̂erm

(119)

Our starting point to compute this Hessian is a very classical lemma in statistical mechanics, that uses the Legendre transform
of the loss.

Lemma C.1 (Inverse Hessian from Legendre Transforms). We define the Legendre transform of the loss by adding a source
term to the loss (an external field in the parlance of statistical mechanics)

LL(h) = min
θ

[
−
∑
i

log σ(yiθ
⊤φ(x)i) + λ/2∥θ∥2 + h⊤θ

]
= min

θ

[
L(θ) + h⊤θ

]
(120)

then the Inverse of the Hessian (119) is the Hessian of the Legendre transform L(h)

H−1(θ̂erm) = −
∂2LL(h)

∂2h

∣∣
h=0

(121)

Proof This is a classical result from Legendre transform of strongly convex functions, which we informally recall. First
notice that at the minimum of L(θ) + h⊤θ over θ is characterized by

∂L(θ)
∂θj

+ hj = 0 ∀j (122)

so that

∂LL(h)

∂hi
=

∂
[
L(θ) + h⊤θ

]
∂hi

∣∣
θ̂erm

=

p∑
j=1

[
∂L(θ)
∂θj

∂θj
∂hi

+ hj
∂θj
∂hi

] ∣∣
θ̂erm

+ θi
∣∣
θ̂erm

=

p∑
j=1

∂θj
∂hi

[
∂L(θ)
∂θj

+ hj

] ∣∣
θ̂erm

+ θi
∣∣
θ̂erm

= θerm,i (123)

It thus follows that
∂2LL(h)

∂hi∂hj
=
∂θi
∂hj

. (124)

However, we have from eq.(122)
∂2L(θ)
∂θi∂θj

= −∂hj
∂θi

. (125)

Using both eqs (124) and (125) at h = 0 concludes the proof. □

Note that this relation is not asymptotic and is valid for a given instance of the problem. This lemma is however particularly
practical in the large n limit, since an asymptotic expression for the loss LL is known so that we can use it to obtain the
asymptotic expression. Using the value of the minimal loss from [Loureiro et al., 2021a, Loureiro et al., 2022], we deduce,
taking its second derivative, that for large n we must have (See Section B.5 for the derivation)

H−1
rep. = (λIp + v̂⋆ermΩ)

−1 (126)
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Where v̂⋆erm is the unique solution the following self-consistent equations:


m = γm̂

p Tr
(
Ωw⋆w

⊤
⋆ Ω(λIp + v̂Ω)−1)

)
q = 1

p Tr
(
(q̂Ω+ m̂2Ωw⋆w

⊤
⋆ Ω)Ω(λIp + v̂Ω)−2

)
v = 1

p Tr(λIp + v̂Ω)−1Ω)

,


v̂ = −αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) ∂ωfout,erm (y, ξ, v)

]
q̂ = αEξ∼N (0,q)

[∑
y Z0 (y,m/qξ, v⋆) fout,erm (y, ξ, v)

2
]

m̂ = αEξ∼N (0,q)

[∑
y ∂ωZ0 (y,m/qξ, v⋆) fout,erm (y, ξ, v)

]

(127)

Note that the subscript emphasizes that this expression was obtained by differentiating the asymptotic free energy density.

It would be tempting to assume that the convergence of the free energy to its asymptotic value in [Loureiro et al., 2021a]
would also be valid for the second derivative, so that the replica Hessian would be close, pointwise, to the actual Hessian
when p → ∞. This, however, turns out to be wrong, as one can easily check in the ridge regression case. However, we
conjecture that the limit holds in the sense of deterministic equivalents [Hachem et al., 2007]. This leads us to the following
conjecture:

Conjecture C.2 (Deterministic equivalent of the inverse Hessian). For any deterministic matrixA ∈ Rp×p, in the asymptotic
limit where n, d, p→∞ at fixed ratios α = n/p and γ = d/p, we have:

lim
p→∞

1

p
Tr
(
AH−1

)
= lim

p→∞

1

p
Tr
[
A(λIp + v̂⋆ermΩ)

−1
]

(128)

For the purpose of characterizing the Laplace approximation, we apply this formula using A = vv⊤. Proving rigorously the
convergence in the sense of deterministic equivalent remains an open problem. It is, however, easy to prove that it is valid
for the square loss, as we show in the next section. Fortunately, it can be checked numerically to great precision that the
conjecture is empirically satisfied for the study of Laplace method, as is also shown in the next section.

Additionally, we note that the statement is made in term of an expression of the inverse of the Hessian (which, conveniently,
is actually what we want to know).

C.2 An instructive example: the square loss

Although in this work we only focus in the classification case, Conj. C.2 actually applies in the more general context
of a convex loss function ℓ, for which the exact asymptotics was characterized in [Loureiro et al., 2021a]. An instructive
example is therefore given by looking at the square loss ℓ(y, x) = 1/2(y − x)2, for which the Hessian is simply given by:

H := ∇2L = V ⊤V + λIp (129)

where V ∈ Rn×p is the feature matrix with rows given by φ(xµ) ∈ Rp for µ ∈ [n]. Therefore, it is independent of the
minimizer θ̂erm. In this case, Conj. C.2 boils down to the classical deterministic equivalents for the sample covariance matrix
Ω̂n := V ⊤V . Deterministic equivalents for sample covariance matrices have been characterized under different levels of
generality for V [Bai and Zhou, 2008, Chouard, 2022, Louart et al., 2018], including in particular the random features case
V = σ(FX⊤) with X i.i.d. Gaussian considered here. They state precisely that, for any deterministic matrix A ∈ Rp×p

and in the asymptotic limit considered here:

lim
p→∞

1

p
Tr
[
A
(
V ⊤V + λIp

)−1
]
= lim

p→∞

1

p
Tr
[
A (v̂⋆Ω+ λIp)

−1
]

(130)

where Ω = E
[
σ(Fx)σ(Fx)⊤

]
is the population covariance of the features and v̂⋆ is the solution of the following

self-consistent equation:
α

v̂
− 1 = 1− λ

∫
µΩ(dt)
λ+ v̂t

(131)

with µΩ the asymptotic spectral density of Ω. It is not hard to check that this self-consistent equation (131) coincides exactly
with the self-consistent equations (127) from [Loureiro et al., 2021a] when ℓ is the square loss.
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Figure 3: (Left) Theoretical predictions (lines) and experimental values (crosses) of φ(x)⊤H−1φ(x) with n/d = 2, τ20 =
0.5, φ(x) = erf(Fx) and F Gaussian, as in Figure 1, for λerror and λloss. Experimental values are obtained by fixing
d = 256. (Right) Theoretical and experimental values for λ = 10−4.

C.3 Comparison with numerics

In this section, we apply the computations of the previous section and show that they gives extremly good prediction
even at very moderate sizes. In Figure 3, we compare the theoretical value of φ(x)⊤H−1φ(x) for φ(x) = erf(Fx) from
eq. (126) and the one observed experimentally. Experiments are done by training the logistic classifier f̂erm on training
data (xµ, yµ)µ∈[n] and computing the Hessian (C.1) at the minimizer θ̂erm. We observe a good fit between theory and
experiment, validation our analysis.
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D CONDITIONAL VARIANCE OF THE BAYES-OPTIMAL ESTIMATOR

In this section, we prove the expression of the variance of f̂bo conditioned on the confidence of other estimators :

Var(f̂bo(x)|f̂t(x) = ℓ) =

∫
da σv̂⋆

bo+τ2
0+τ2

add
(a)2 ×N

(
a|m⋆

t/q⋆tσ
−1
τ̂t

(ℓ), q⋆bo − m
⋆
t
2/q⋆t
)
− (ℓ−∆ℓ)

2 (132)

The first step is to show that for any estimator t ∈ {erm, eb,Lap}, the joint density of the confidence of f̂bo, f̂ , defined as

ρbo,t(a, b) = Px(f̂bo(x) = a, f̂t(x) = b) (133)

can be computed in the similar way as ρ⋆,t in Theorem 3.1. This was shown previously for a simpler model in
[Clarté et al., 2022], where the teacher and input data have identity covariance.

Lemma D.1. In the same setting as Theorem 3.1, in the asymptotic limit, the density ρbo,t(a, b) converges to ρlimbo,t(a, b)

ρlimbo,t(a, b) =

N

([
σ−1
τ2
0+τ2

add
(a)

σ−1
τ̂2
t
(b)

] ∣∣∣02,Σbo,t

)
|σ′

τ2
0+τ2

add
(σ−1

τ2
0+τ2

add
(a))||σ′

τ̂2
t
(σ−1

τ̂2
t
(b))|

(134)

where this time

Σbo,t =

[
q⋆bo m⋆

t

m⋆
t q⋆t

]
(135)

To prove Lemma D.1, the main idea is to observe that, as with f⋆, to compute the density we need the covariance matrix

1

d

(
θ̂⊤
boΩθ̂bo θ̂⊤

boΩθt
θ̂⊤
boΩθ̂t θ̂⊤

t Ωθt

)
(136)

The diagonal terms are q⋆bo, q
⋆
t respectively by definition. We then just need to compute the overlap mbo,t =

1
d θ̂

⊤
boΩθ̂t. Our

goal is to prove that mbo,t = m⋆
t ,

However, using the Nishimori identity from statistical physics, for any vector z(D) that can depend on the training data, we
have

ED

(
θ̂⊤boz(D)

)
= Ew⋆,D

(
w⊤

⋆ z(D)
)

(137)

Equation 137 is just an application of Bayes formula. In particular, if we take z(D) = θ̂t, we obtain that

ED(θ̂
⊤
boθ̂t) = Ew⋆,D(w

⊤
⋆ θ̂t) (138)

and we see that in expectation, ED(mbo,t) = Ew⋆,D(m
⋆
t ). We already know that the right-hand side of the equality

self-averages, i.e limd→∞ Ew⋆,D(m
⋆
t ) = m⋆

t . It remains to show that the left-hand side also self-averages.

Lemma D.2 (Concentration of the overlap mbo,t).

lim
d→∞

E

( θ̂⊤
boθt
d

)2
 = lim

d→∞
E

[
θ̂⊤
boθt
d

]2
(139)
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Proof. The proof again uses Nishimori identity.

E

( θ̂⊤
boθt
d

)2
 = E

[(
θ̂⊤
boθt
d

)(
θ̂⊤
boθt
d

)]
(140)

= ED

[(
Eθ̂|Dθ̂

⊤θt

d

)(
Eθ̂|Dθ̂ · θt

d

)]
(141)

= EDEθ̂1,θ̂2|D

[(
θ̂⊤
1 θt
d

)(
θ̂2 · θt
d

)]
(142)

= ED,w⋆

[(
w⊤

⋆ θt
d

)(Eθ̂|Dθ̂ · θt
d

)]
(143)

= ED,w⋆

[(
w⊤

⋆ θt
d

)(
w⊤

boθt
d

)]
(144)

Then, from Cauchy-Schwartz we have

E

( θ̂⊤
boθt
d

)2
2

≤ E

( θ̂⊤
boθt
d

)2
E

[(
w⊤

⋆ θt
d

)2
]

(145)

E

( θ̂⊤
boθt
d

)2
 ≤ E

[(
w⊤

⋆ θt
d

)2
]

(146)

and as d→∞, we can use the concentration of the right hand side to m⋆
t to obtain

lim
d→∞

E

( θ̂⊤
boθt
d

)2
 ≤ (m⋆

t )
2 (147)

so that, given the second moment has to be larger or equal to its (squared) mean:

lim
d→∞

E

( θ̂⊤
boθt
d

)2
 = (m⋆

t )
2 (148)

We have thus shown that m⋆
t = mbo,t, proving Lemma D.1.

Computing the conditional variance Fix now the confidence f̂t = ℓ, the local field of the estimator t is νt := σ−1
τ̂t

(ℓ).
The conditional distribution of the Bayes-optimal local field λbo is a Gaussian N (m

⋆
t/q⋆t νt, q

⋆
bo − m⋆

t
2/q⋆t ). Thus,

E
(
f̂2bo|f̂ = ℓ

)
=

∫
dzσv⋆

bo+τ2
0+τ2

add
(z)2N (z|m⋆

t/q⋆t νt, q
⋆
bo − m

⋆
t
2/q⋆t ) (149)

The last step to prove eq. (132) is to show that E
(
f̂bo|f̂t = ℓ

)
= ℓ−∆ℓ :

E
(
f̂bo|f̂t = ℓ

)
=

∫
στ2

0+τ2
add+v̂∗

bo
(z)N (z|m⋆

t/q⋆t νt, q
⋆
bo − m

⋆
t
2/q⋆t )dz

= στ2
0+τ2

add+v̂∗
bo+q⋆bo−m⋆

t
2/q⋆t

(m
⋆
t/q⋆t νt)

= στ2
0+τ2

add+ρ−m⋆
t
2/q⋆t

(m
⋆
t/q⋆t νt) = E

(
f⋆|f̂t = ℓ

)
= ℓ−∆ℓ

since, due to Bayes optimality, v̂∗bo = ρ− q⋆bo.
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E ADDITIONAL NUMERICAL EVALUATIONS

E.1 Calibration at different levels
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Figure 4: Calibration of several estimators in the same setting as Figure 1 at level ℓ = 0.6 (Left), ℓ = 0.9 (Middle),
ℓ = 0.95 (Right). Dashed lines correspond to f̂Lap. We observe the same phenomenology as in Figure 1, as f̂Lap tends to
be underconfident, and f̂eb(λevidence) is the best calibrated estimator across all levels. Dots correspond to experiments at
d = 200.

E.2 Additional setting : τ20 = 0, n/d = 10.0
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Figure 5: (Left) Test error of the estimators as a function of 1/α in the setting of Section E.2 : ∥θ⋆∥2 = 1, τ20 = 0, n/d = 10.
(Middle) Calibration of the estimators. (Right) Variance of f̂bo conditioned on f̂ = 0.75 for the different estimators.

In this section, we consider a setting where τ20 = 0.0. This allows us to consider a setting where the test error of our
estimators will be lower, as we reduce the noise in the teacher and increase the amount of training data. This is confirmed
by the first panel of Figure 5, where the test error of the estimators is smaller than in Figure 1. Moreover, compared to
the setting of Figure 1, the curves for f̂erm(λerror), f̂erm(λloss) and f̂eb(λevidence) are much closer. Looking at the second
panel, we note that as before, doing ERM with λloss or empirical-Bayes with λevidence yields the best calibration. However,
the calibration curves ∆0.75 do not exhibit the double descent-like behaviour shown in Figure 1. On Figure 6, we see
the calibration of f̂Lap (left plot) and temperature scaling (center). We see that in this setting, f̂Lap yields underconfident
estimators for p/n large enough. On the other hand, temperature scaling yields a well-calibrated estimator, whether we apply
it on f̂erm(λ = 0) or f̂erm(λerror)

E.3 Additional setting 2 : τ20 = 0, n/d = 20, ∥θ∗∥2 = 50

In the previous plots, we defined θ∗ = 1. This is of course not a limitation of our model and we can assume any norm for
the teacher. In this section, we will assume ∥θ∗∥2 = 50. This allows us to significantly reduce the noise in the data. Indeed,
as ∥θ∗∥2 → ∞, the label becomes deterministic in the input. As before, figures 7 and 6 show the test error, calibration
and variance for the different estimators. In the left panel of Figure 8, we observe that f̂Lap with λ ∈ {λerror, λloss, 10−4}
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Figure 6: (Left) Calibration of f̂Lap and f̂erm in the setting of Section E.2. (Middle) Calibration of f̂erm after temperature
scaling. Curves for λerror and λloss are indistinguishable on the plot. (Right) Variance of f̂bo conditioned on the confidence
of temperature scaling.

systematically under-confident for p/n large enough. As with the previous settings, we also note that f̂erm(λerror) used in
combination with temperature scaling is the most competitive estimator as it yields very good test error and calibration.
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Figure 7: (Left) Test error of the estimators as a function of 1/α in the setting described in section E.3. (Middle) Calibration
of the estimators. (Right) Variance of f̂bo conditioned on f̂ = 0.75 for the different estimators.
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Figure 8: (Left) Calibration of f̂Lap and f̂erm with the setting described in section E.3. (Middle) Calibration of f̂erm after
temperature scaling. Solid red line is f̂erm(λloss) before temperature scaling. (Right) Variance of f̂bo conditioned on the
confidence of temperature scaling.
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