
Semantic Web 14 (2023) 697–727 697
DOI 10.3233/SW-222974
IOS Press

Blue Brain Nexus: An open, secure, scalable
system for knowledge graph management and
data-driven science
Mohameth François Sy a,*, Bogdan Roman a,*, Samuel Kerrien a,*, Didac Montero Mendez a,
Henry Genet a, Wojciech Wajerowicz a, Michaël Dupont a, Ian Lavriushev a, Julien Machon a,
Kenneth Pirman a, Dhanesh Neela Mana a, Natalia Stafeeva a, Anna-Kristin Kaufmann a, Huanxiang Lu a,
Jonathan Lurie a, Pierre-Alexandre Fonta a, Alejandra Garcia Rojas Martinez a, Alexander D. Ulbrich a,
Carolina Lindqvist a, Silvia Jimenez a, David Rotenberg b, Henry Markram a and Sean L. Hill a,b,c,**

a Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Biotech Campus, Geneva, Switzerland
b Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
c Department of Psychiatry – Neuroscience and Clinical Translation, University of Toronto, Toronto, Canada

Editor: Stefan Schlobach, Vrije Universiteit Amsterdam, Netherlands
Solicited reviews: Michel Dumontier, Maastricht University, Netherlands; Joe Raad, Laboratoire Interdisciplinaire des Sciences du Numérique,
France; One anonymous reviewer

Abstract. Modern data-driven science often consists of iterative cycles of data discovery, acquisition, preparation, analysis,
model building and validation leading to knowledge discovery as well as dissemination at scale. The unique challenges of
building and simulating the whole rodent brain in the Swiss EPFL Blue Brain Project (BBP) required a solution to managing
large-scale highly heterogeneous data, and tracking their provenance to ensure quality, reproducibility and attribution throughout
these iterative cycles. Here, we describe Blue Brain Nexus (BBN), an ecosystem of open source, domain agnostic, scalable,
extensible data and knowledge graph management systems built by BBP to address these challenges. BBN builds on open
standards and interoperable semantic web technologies to enable the creation and management of secure RDF-based knowledge
graphs validated by W3C SHACL. BBN supports a spectrum of (meta)data modeling and representation formats including JSON
and JSON-LD as well as more formally specified SHACL-based schemas enabling domain model-driven runtime API. With its
streaming event-based architecture, BBN supports asynchronous building and maintenance of multiple extensible indices to
ensure high performance search capabilities and enable analytics. We present four use cases and applications of BBN to large-
scale data integration and dissemination challenges in computational modeling, neuroscience, psychiatry and open linked data.

Keywords: Knowledge graph, Data science, Data management, Distributed system, Data-driven science

1. Introduction

The growing complexity of many scientific domains has led to the emergence of cross-disciplinary teams and
methods for performing scientific investigations and producing new scientific knowledge [10]. A “digital data del-

*Co-first authors. E-mails: mohameth.sy@epfl.ch, bogdan.roman@epfl.ch, samuel.kerrien@epfl.ch.
**Corresponding author. E-mail: sean.hill@epfl.ch.

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

mailto:mohameth.sy@epfl.ch
mailto:bogdan.roman@epfl.ch
mailto:samuel.kerrien@epfl.ch
mailto:sean.hill@epfl.ch
https://creativecommons.org/licenses/by-nc/4.0/

698 M.F. Sy et al. / Blue Brain Nexus

uge” [21,25] has emerged thanks to the capability of researchers and engineers to collect, store and share large
datasets at unprecedented rates from experimental measurements, sensor networks [2,30] and computer simulations
of complex systems including high energy physics [19] and the rodent brain [34]. This data deluge, along with
increasingly available compute power, has led to new approaches in managing and integrating diverse, large-scale
data and in data-driven methods in science such as machine learning [32] and simulation [15] enabling fast iteration
of experimentation and knowledge discovery cycles.

In neuroscience, the Swiss brain research initiative Blue Brain Project (BBP or Blue Brain)1 has pioneered data-
driven modeling and supercomputer-based numerical simulations methods to build accurate and biologically de-
tailed digital reconstructions and simulations of the rodent brain [16,33,34]. This approach is challenging as it
involves cross-disciplinary teams of scientists and engineers performing a series of complex operations:

– Acquiring heterogeneous, sparse, multi-modal experimental data (e.g. neuron morphologies, electrophysiology
recordings, ion channel recordings and parameters from literature), generated by internal or external sources
and at different levels of organisation of the brain (i.e. sub-cellular, cellular, circuit, brain region and whole
brain);

– Preparing the sparse data through curation, integration (e.g. within a brain atlas giving a spatial context), fea-
tures extraction (e.g. neuron morphometrics and electrophysiological features), densification (e.g using differ-
ent inference techniques and algorithms to reconstruct missing data) and validation;

– Using the densified data to generate large biophysically detailed computational models (such as single cell,
circuit or brain region models) then used to perform simulations from which predictions can be made and new
knowledge can be acquired and thereafter shared with the research community.

Tracking the provenance of the neuroscience data as it gets generated, analyzed and integrated in computational
models, is essential for attribution, quality assessment, and reproducibility. Blue Brain developed Blue Brain Nexus
(BBN or Nexus)2 to address these challenges.

Blue Brain’s data-driven and simulation approach follows an iterative scientific investigation cycle described in
high level terms in Fig. 1 from data discovery, acquisition and preparation to knowledge discovery and dissemina-
tion. With each iteration, knowledge may be gained, potentially changing how data are related and how they should
be interpreted and validated. Furthermore this cycle was also found to occur in data mining [17], big data [13],
machine learning communities [41] and in more and more scientific and engineering fields [36].

The challenges around managing the data and knowledge produced alongside the data-driven science cycle have
grown significantly with the scale of data and the collaborative and accelerated nature of the iterations.

This paper presents Blue Brain Nexus (BBN), an integrated ecosystem of domain agnostic data and knowledge
graph management systems and tools open sourced by the Swiss brain research initiative Blue Brain. BBN supports
the iterative cycle of data-driven science depicted in Fig. 1 and addresses its challenges by going beyond metadata
cataloging and by using an open, scalable, extensible, standards-based and interoperable technology stack. The rest
of the paper is structured as follows. Section 2 introduces the challenges raised alongside the data-driven science
iterative cycle as well as knowledge graphs and related work using them to address the aforementioned challenges.
Section 3 gives an overview of BBN components as well as architecture. BBN components’ design principles,
features, extension points, performance benchmarks are presented in Section 4 and Section 5. BBN production
deployment at Blue Brain and its impact in supporting biologically detailed simulation of the rodent brain is detailed
in Section 6. Three adoptions of BBN are presented in Section 7 demonstrating BBN production deployment and
usage across different organisations and use cases. Finally, the lessons learned in using BBN in production settings
as well as future directions are presented and discussed for conclusion in Section 8.

1https://portal.bluebrain.epfl.ch
2https://bluebrainnexus.io

https://portal.bluebrain.epfl.ch
https://bluebrainnexus.io

M.F. Sy et al. / Blue Brain Nexus 699

Fig. 1. A typical data-driven science iterative cycle involves the following five steps: a) data discovery when searching for available data for an
investigation; b) data acquisition when collecting and storing data; c) data preparation encompassing data curation, integration, transformation,
analysis and validation; d) knowledge discovery related to building, refining and validating models from data; and e) data and knowledge sharing
and dissemination.

2. Motivation and background

2.1. Data-driven science challenges

Building, deploying and maintaining a data and knowledge management system to enable the data-driven science
iterative cycle raises a number of organisational and technical challenges.

Data discovery challenges: Data across one or many organisations can be scattered across multiple systems
and repositories without connections. These siloed data are often hard to find and access because of a lack of rich
and searchable metadata [9,38]. This situation leads to multiple sources of truth for data causing researchers and
engineers to discover and reuse potentially inconsistent data across different applications and workflows. Data silos
can also lead to missed opportunities for scientific investigations due to the lack of visibility on available data
and a duplication of effort across different research groups – or worse, within a single one. A platform for data
and knowledge management should allow organisations to unify or bridge data silos by enabling not only flexible
and incremental data linking but also by exposing such linked data through APIs and user interfaces for access and
consumption.

Data acquisition challenges: Data can be collected from a variety of sources, including internal environments,
where the data collection process may be well-controlled, as well as external sources, where it may be less con-
trolled. In both cases, the volume and variety of data raise transport, storage and preservation challenges. While
using increasingly cheap hard drives to store large volume of data is no longer a challenge [19], adapting to data
scale evolution and preserving highly variable data generation contexts are more challenging. Indeed, collected data
can be generated from different processes, experiments or simulations and may involve different organisations, sub-
jects, protocols, contributors, storage systems and APIs. As a result, collected data often come in different sizes,
quality levels, formats (e.g. tabular, relational and binary) and structures (e.g. unstructured, semi-structured and
structured).

As dynamic and evolving activities, scientific investigations may also acquire data at different rates, possibly
leading to variability of their significance and meaning depending on the scientific context [4]. The ability to adapt
to the scale and complexity of newly collected data and to robustly track their provenance (who, when, where, how,
why) is key to assessing data quality as well as the trustworthiness and reliability of a given data source.

Data preparation challenges: Data preparation often involves curation, validation, integration, and transforma-
tion of diverse data. It also encompasses data analysis as well as potentially extracting features from them and is

700 M.F. Sy et al. / Blue Brain Nexus

often related to data wrangling [18]. For example, curating data may relate to handling missing or duplicated values
as well as data fusion while integration is more about combining them with other data. Transformation involves
normalizing, reshaping and mapping data representation to common formats suitable for targeted analysis. An ex-
ample of transformation would be to represent data with optimized feature vectors, a widely preferred data shape to
perform data classification in machine learning or data mining communities.

Making sure curated and transformed data as well as the features extracted from them meet expected quality is
key for data-driven methods. For example, detecting training data issues early on and ensuring features’ presence
and shape are critical steps towards a good quality model in machine learning [40,41].

The ability to validate data is therefore important to detect anomalies that may be introduced during the data
acquisition and preparation steps. For example, validation may involve ensuring expected outputs of a given exper-
iment in terms of value ranges or ensuring consistent and common data shape and format across an organisation.
As such, data validation capability is a key requirement for maintaining research data quality as it evolves and
increasing its overall utility for downstream tasks and pipelines.

Knowledge discovery challenges: The resulting prepared data with optimized representations can then be used to
discover non-trivial patterns, relations or new classes of data but also to build models using a variety of techniques
including classification, regression and optimization. The accuracy and utility of these techniques can be greatly
improved by combining multiple datasets across many sources, thus increasing the coverage of a given subject
of study. Examples of sources can consist of reference databases or knowledge bases whether specialized such as
UniProt [45] for protein sequence and functional information, community-driven like Wikipedia3 or expert-based
representing domain knowledge often in the form of ontologies such as the Gene Ontology [6].

As models are validated and refined, new insights emerge, resulting often in new classes of data, new relationships
between data or new interpretation and perspective on a given subject of study. For example, new neuron types
can be discovered from single cell transcriptomic data, leading to new classification of neurons which have then
enabled new and specific annotation and searches for neuron morphological and electrophysiological data. Tracking
the data and the modeling processes from which a specific piece of knowledge (e.g. a new class of data) was
derived is challenging. Machine learning models, for example, are usually trained on a specific set of data, validated
on a different one and involve many different parameters. Recording such provenance is crucial to reproduce the
model building process and potentially refine it as new data and knowledge are acquired and prepared. Consistently
managing data, metadata, schemas and ontologies together and making the sources of data that drive the evolution
of a knowledge framework explicit can facilitate the critical review, assessment and credit assignment for new
discoveries.

Data and knowledge sharing challenges: Publishing and sharing research data and methods are fundamental
parts of the scientific process and the basis of the dissemination of scientific results. Furthermore, they are important
drivers to foster collaboration by enabling data reuse and supporting research results’ reproducibility. It is therefore
not a surprise to witness the emergence of a tremendous number of publicly accessible research data repositories
on the web encompassing various scientific domains. Those repositories are increasingly promoted by publishers as
well as research funding agencies.

Supporting research data sharing and publishing comes, however, with a set of challenges summarized in the FAIR
(Findable, Accessible, Interoperable, Reusable) guiding principles for scientific data management [49]. Persistent
and globally unique data identifiers – along with a consistent versioning scheme as well as open and interoperable
APIs – are key capabilities to make data findable and accessible [35]. High quality metadata – defined by the authors
of [20] as the usage of controlled and standard terms for both metadata fields and values to describe, for example,
data provenance – was identified to result, when missing, in issues for data and research results’ reproducibility [7]
and reusability [38]. Furthermore authors in [31] identified eight groups of dataset reusability features all related to
documenting the context in which the data was generated. Addressing these issues requires the set of scientific and
technical activities, protocols and contributors involved in the data generation to be described and shared as metadata
(e.g. data about data). Such metadata should be represented using generic, expressive and machine-readable formats

3https://www.wikipedia.org

https://www.wikipedia.org

M.F. Sy et al. / Blue Brain Nexus 701

to cope with cross-disciplinary scientific domains, on the one hand, and enable data and metadata interoperability
for people and software agents, on the other hand.

Without rich and high quality metadata, research data repositories – even those with open and accessible APIs –
can become a source of a “new tragedy of the commons” [8,38]. In this situation, a shared repository may lose its
overall utility and quality over time because of the collective action of researchers caring individually only about
sharing their own data without providing provenance metadata.

Genericity and extensibility challenges: Cross-disciplinary and multi-modal scientific investigations require
scalable data storage and flexible metadata representation to adapt to new research directions and results. As research
activities evolve, use cases and needs vary greatly across different domains and groups. Research data management
platforms should provide flexible and expressive metadata representation languages and formats to support different
domains, modalities and scale. A “one-size-fits-all” issue arises inevitably if it is not possible to customize the
system’s behavior and extend its feature set. Extensibility points are therefore key for a research data and knowledge
management platform.

Production-level deployment and security challenges: Building, deploying and operating a data and knowledge
management platform in production come with their own set of challenges with respect to scalability, availability,
reliability and data integrity. They come also with security requirements to allow an organisation to control data and
metadata access from data collection and generation to publishing and sharing.

Humans in the loop: Managing, finding, accessing and monitoring data and knowledge throughout the entire
lifecycle require programmatic clients as well as web interfaces targeting expert and non-expert users as well as
developers. The goal is to allow scientists and developers to incrementally prototype and manage a knowledge
graph but also to build applications on top of it without having to necessarily understand the system’s technical
internal mechanism.

2.2. Knowledge graphs for research data management

Addressing data-driven science challenges necessitates at its core enabling different targeted users – particularly
scientists, data and knowledge engineers – to discover, manage, link and reuse heterogeneous and dynamic data as
well as knowledge from different sources and describe their context in the form of high quality and complex meta-
data. Supporting these capabilities is a key use case for knowledge graphs leveraging RDF (Resource Description
Framework) as a data representation model and implementing linked data principles [25] as well as semantic web
technologies [42].

Knowledge graphs have recently seen rapid adoption as a key solution to support several industry-specific appli-
cations [39] and research data management use cases including: dataset integration and search at web scale [11],
research data integration [29,47] and scholarly data publication [5,23]. Thanks to the increasingly growing fields of
knowledge graph embedding [43,48] and graph to text conversion [1], knowledge graphs are also used in the context
of recommender systems, question answering and natural language processing (NLP) tasks.

In a knowledge graph, a domain of interest is modeled as a set of entities each representing a piece of data,
described individually and potentially linked to each other using a set of metadata and relationships [39]. Entities
along with their metadata and relationships form a graph of data and represent factual knowledge about the domain
of interest [27]. Thanks to the open, generic, standard and flexible nature of RDF and its associated query language
SPARQL,4 RDF-based knowledge graphs can support managing and accessing heterogeneous data from different
domains while enabling interoperable metadata. When using the expressive and machine-readable W3C SHACL5

(Shapes Constraint Language) validation language, users define and enforce complex constraints within schemas
for high quality metadata.

Many general purpose RDF-based knowledge graph platforms are open sourced and made available as managed
services such as the metaphactory platform [22] and LinkedDataHub6 or as downloadable artefacts such as me-

4https://www.w3.org/TR/sparql11-query/
5https://www.w3.org/TR/shacl
6https://atomgraph.github.io/LinkedDataHub

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/shacl
https://atomgraph.github.io/LinkedDataHub

702 M.F. Sy et al. / Blue Brain Nexus

treeca7 to be deployed and used within organisations on premises. Some such as KGKT [28] are libraries with
usage from a terminal or Jupyter notebooks while others such as Wikibase8 are for creating and maintaining knowl-
edge bases from structured data. Authors in [37] surveyed tools and systems for semantic data integration. While
such platforms support secured authoring, management and access of RDF-based knowledge graphs, most of them
focus primarily on metadata. Data and knowledge engineers need to complement them with data storage and man-
agement capabilities. Jointly managing data, metadata and schemas within the same framework is key for keeping
consistency between them, enabling high quality metadata and increasing the data longevity.

3. Blue Brain Nexus overview

BBN is an ecosystem of integrated software components targeting different users and supporting them alongside
the data-driven science iterative cycle. The ecosystem is made of three main components including: i) Nexus Delta, a
set of services targeting developers for managing data and knowledge graph lifecycle; ii) Nexus Fusion, a web-based
user interface enabling non-expert users to store, view, query, access and share (meta)data as well as expert users
to manage knowledge graphs; and finally iii) Nexus Forge, a Python user interface enabling data and knowledge
engineers to build knowledge graphs from various data sources and formats using data mappings, transformations
and validations. An overview of the ecosystem is presented in Fig. 2.

3.1. Services

Nexus Delta9 is a secure and scalable system carrying out core functions supporting the data-driven science
iterative cycle and exposing them through a uniform API. It targets developers who want to minimize the cost of

Fig. 2. An overview of Blue Brain Nexus ecosystem components: Nexus Delta uses off-the-shelf products as data stores (Cassandra, Elastic-
search, Blazegraph) and exposes as HTTP(s)-based API and to clients core functions and services such as Identity and Access Management as
well as knowledge graph management and administration. Nexus Forge, a Python framework, supports a variety of data and knowledge engi-
neering activities for building a knowledge graph. A Javascript library (Nexus.js) supporting a web application (Nexus Fusion). A Python library
(Nexus SDK) and a command line interface (Nexus CLI). The entire stack can be deployed in container orchestration systems (e.g. OpenShift,
Kubernetes), cloud providers (e.g. Amazon, Google) or on premises.

7https://www.metreeca.com
8https://wikiba.se
9https://bluebrainnexus.io/products/nexus-delta

https://www.metreeca.com
https://wikiba.se
https://bluebrainnexus.io/products/nexus-delta

M.F. Sy et al. / Blue Brain Nexus 703

integrating and interfacing with a knowledge graph system as part of their existing infrastructure. Developers can
thus build applications allowing users to securely create, manage and validate knowledge graphs. This component
is based on a distributed and event streaming architecture, uniquely combining under a single API: a scalable data
store using Cassandra,10 a flexible RDF11-based graph store using Blazegraph12 and a powerful full-text search
engine using Elasticsearch.13 Nexus Delta enables high-level, declarative and expressive metadata representations
and validation while still being able to turn them into a developer-friendly and secured RESTful API.

Nexus Delta is highly interoperable with existing data infrastructures by adopting open standards for authenti-
cation and authorization as well as for (meta)data storage, representation and access. Thanks to configurable data
projections and automated full-text and graph-based indexing capabilities, it enables data and knowledge engineers
to build custom views to share and access data. Support for distributed data with configurable storage backends en-
ables the exploitation of existing cloud services and the integration with high-performance compute environments
while maintaining secure data management.

3.2. User interfaces

Nexus Fusion14 is a fully customizable, resource-centric front-end for Nexus Delta. It leverages Nexus.js, a
JavaScript library that facilitates interfacing with Nexus Delta and building react.js based web applications. Nexus
Fusion primarily targets non-expert users by lowering entry barriers to search, navigate and access a knowledge
graph but also targets data and knowledge engineers enabling them to perform administrative tasks such as custom
data views creation and query editing.

Nexus Forge15 is a domain-agnostic and extensible Python framework enabling data scientists and knowledge en-
gineers to build knowledge graphs from various sources and data formats by supporting the definition and execution
of declarative data transformations and mappings, metadata validation based on the W3C SHACL recommendation
and the storage and access of the resulting graph in-memory or in Nexus Delta.

3.3. Utilities

The Nexus Fusion and Nexus Forge components reuse a Javascript library (Nexus.js16) and a Python Software
Development Kit (Nexus Python SDK17) respectively. These utilities provide developers with programming lan-
guage specific wrappers around the Nexus Delta API to simplify the development of new applications. A command
line interface (Nexus CLI18) makes use of the Nexus Python SDK to provide developers with basic administrative
access to Nexus Delta from a terminal.

In BBN, a simple knowledge graph creation scenario starts with the configuration of a secured project within an
organisation just like in Github. By default, a project and all its content are only accessible to its creator with the
ability to grant access to other clients and users. For example a project’s configuration can be the default storage
media to be used to store actual data (e.g. local file system, Amazon S3 compatible object storage, remote POSIX
file-system) or how the data should be indexed and viewed. Then the data (e.g an image in PNG format, a PDF,
ZIP or CSV document) can be uploaded in the project and stored in the project’s configured storage media using
one of the BBN user interfaces or utilities. The data can be described and linked with other data through metadata
which can correspond to a file name, description or release date but also to a link to the file creator, license and
other derived files. Validation applies to metadata and occurs before they get stored in the Nexus Delta’s primary

10https://cassandra.apache.org
11https://www.w3.org/RDF
12https://github.com/Blazegraph/database
13https://www.elastic.co/elasticsearch
14https://bluebrainnexus.io/products/nexus-fusion
15https://bluebrainnexus.io/products/nexus-forge
16https://bluebrainnexus.io/docs/utilities/index.html#nexus-js
17https://bluebrainnexus.io/docs/utilities/index.html#nexus-python-sdk
18https://github.com/BlueBrain/nexus-cli

https://cassandra.apache.org
https://www.w3.org/RDF
https://github.com/Blazegraph/database
https://www.elastic.co/elasticsearch
https://bluebrainnexus.io/products/nexus-fusion
https://bluebrainnexus.io/products/nexus-forge
https://bluebrainnexus.io/docs/utilities/index.html#nexus-js
https://bluebrainnexus.io/docs/utilities/index.html#nexus-python-sdk
https://github.com/BlueBrain/nexus-cli

704 M.F. Sy et al. / Blue Brain Nexus

store. Once the metadata are stored, the indexing processes controlled by the configured views are notified of the
new metadata. The corresponding indices (i.e. in Elasticsearch and in Blazegraph) are then updated with the new
metadata. The validation, storage and index update sequences occur for every metadata update in a project.

4. Nexus Delta

Nexus Delta supports a range of functions allowing secure storage, management, validation and connection of
data from any domain in a knowledge graph. The system also allows users to create managed views (backed by Elas-
ticsearch or Blazegraph) for searching all or a subset of a knowledge graph, shielding data and knowledge engineers
from the complex tasks required to build and manage custom Elasticsearch indices or Blazegraph namespaces.

4.1. System design

Nexus Delta exposes to clients its core functions and services through a RESTful19 API over hypertext transfer
protocol (HTTP). It can be deployed in a clustered configuration to be able to scale horizontally on demand while
being able to handle correctly the functions that require coordination such as change propagation to the managed
views. The system uses Akka Cluster20 for a decentralized, fault-tolerant, peer-to-peer based cluster membership
following the gossip protocol21 to randomly spread the cluster state as shown in Fig. 3. Active nodes in a cluster
communicate on demand over the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) using a
custom protocol provided by Akka Remoting22 to achieve the necessary distribution of load and synchronization.

Apache Cassandra was chosen as an eventually consistent23 persistent store such that the system:

– can store large amount of data via horizontal scaling;
– can handle arbitrary spikes in throughput for both read and write operations under low latency;
– favours availability over global strong consistency while retaining the ability to scale to arbitrary sizes.

Consistency is guaranteed at the level of a single resource (aggregate) and control is given to clients for executing
coordinated changes across multiple resources like for example: uploading a file and creating a description of the
uploaded file as a separate resource. The anatomy of Nexus Delta is depicted in Fig. 4.

There is a clear separation between the read (indices) and write model (the primary store) of the system, fol-
lowing the command query responsibility segregation (CQRS) 24 pattern. This allows for independent scaling of

Fig. 3. Nexus Delta can be deployed in a decentralized clustered configuration where the nodes randomly spread the cluster membership via the
gossip protocol. Akka Remoting over TCP or UDP is used to achieve distribution of load, consistency and synchronization.

19https://en.wikipedia.org/wiki/Representational_state_transfer
20https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html
21https://en.wikipedia.org/wiki/Gossip_protocol
22https://doc.akka.io/docs/akka/current/remoting-artery.html
23https://en.wikipedia.org/wiki/Eventual_consistency
24https://martinfowler.com/bliki/CQRS.html

https://en.wikipedia.org/wiki/Representational_state_transfer
https://doc.akka.io/docs/akka/current/typed/cluster-concepts.html
https://en.wikipedia.org/wiki/Gossip_protocol
https://doc.akka.io/docs/akka/current/remoting-artery.html
https://en.wikipedia.org/wiki/Eventual_consistency
https://martinfowler.com/bliki/CQRS.html

M.F. Sy et al. / Blue Brain Nexus 705

Fig. 4. Anatomy of a Nexus Delta service. Each service has separate read and write models driven by specialized stores and asynchronous
processes that project the data from the write model (the primary store) to an efficient read model backed by separate stores (e.g. Elasticsearch,
Blazegraph). Asynchronous communication is realized by consuming the event log stream of an upstream service.

the read and write parts of the system, independent evolution of the models and the use of the appropriate internal
(components) or external (stores) for efficient data access.

Request handlers translate requests pertaining to the write model into commands. Commands represent client
intent for changing the application state (e.g. CreateResource). Before being evaluated, each command is validated
for access, consistency and coherence with respect to the global application state. Evaluating a command produces
an event that is appended to the global application event log. Requests pertaining to the read model are translated
into queries that are being executed against the appropriate store. Direct resource current and past state queries
are executed against the primary store (Apache Cassandra), SPARQL25 queries are being executed against the
triple store (Blazegraph) and general filtering, full-text search and any other document oriented specific queries are
executed against the document store (Elasticsearch). Additionally, each service exposes its internal event log in a
stable document format via Server Sent Events (SSE).26

Nexus Delta uses an event sourcing persistence model where all changes to the global state of the system are
recorded as a sequence of events. This event log is used for computing the current application state, reconstructing
past states and coping with retroactive changes. Each resource in the system has its own virtual event log as a subset
of the global event log as shown in Fig. 5. The implication of the chosen persistence model is that the system uses
its database as an append-only store. Updates generate new events that are added to the log and data are never
physically removed from the system, but rather marked as obsolete.

Nexus Delta ensures that additions to the primary store are synchronized with the systems used solely for querying
purposes. The synchronization is performed as part of asynchronous processes (projections) that replay the event
log, generate the necessary model and update each of the target systems. These processes keep track of their progress
such that they can be resumed in case of global system failures, network partitions, cluster resizing or simple restarts
(e.g. software updates). The processes are also capable of retrying individual updates with exponential backoff when
the target systems become unavailable.

The asynchronous nature of the data indexing process provides some advantageous global system characteristics:

25https://www.w3.org/TR/sparql11-query
26https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

https://www.w3.org/TR/sparql11-query
https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-events

706 M.F. Sy et al. / Blue Brain Nexus

Fig. 5. Data are recorded into the Nexus Delta system as an append only event log. Each resource state is derived from an implicit subset of the
global event log.

Fig. 6. An overview of the resource lifecycle in Nexus Delta and how state changes are recorded as resource events in the global event log.

– Partial degradation instead of unavailability of the system when one of the dependent systems becomes un-
available. For example, if the Elasticsearch cluster becomes unavailable, only queries that target this store will
be affected; the rest of the system continues to function normally.

– Natural bulkheading for arbitrary spikes in write operations. The throughput for ingesting data into the system
does not affect the query performance.

– Optimal speed for propagating changes from the primary store to the target system (e.g. the speed of propagat-
ing changes to Elasticsearch is not affected by possible slower writes to Blazegraph).

– Indices can be rebuilt independently in an automated fashion when required (i.e. if a target system experiences
data loss due to a hardware failure) by restarting the respective process.

– The read (query) part is eventually consistent; writes to the system propagate with a slight delay to the respec-
tive target systems.

4.2. Resource-centric RESTful API

Nexus Delta is built following the REpresentational State Transfer (REST) architectural style where the client-
system interaction is performed via access and manipulation of resources using stateless operations. Both system
specific data (i.e a view configuration) and client data (e.g. files, metadata, schemas) are represented as resources
with a lifecycle, as depicted in Fig. 6. A resource lifecycle is represented as an ordered series of state transitions
recorded as events in the global event log. The state transitions correspond to resource creation, update, tag and
deprecation and each of them yields a new revision. The current state (last revision) of a resource is computed by
replaying all events pertaining to that resource in the order they occur.

Resources are anchored to projects and organisations as shown in Fig. 7. Organisations and projects provide data
boundaries allowing for logical isolation, grouping, varied configuration and access control policies.

The system uses a uniform positional addressing scheme determined by the resource type, scope, schema and
identifier as shown in Fig. 8. This scheme allows for operating on a single resource or collections of resources using
HTTP methods to express intent such as creation, update or listing.

M.F. Sy et al. / Blue Brain Nexus 707

Fig. 7. Logical grouping of resources within projects and organisations in Nexus Delta.

Fig. 8. Resource addressing and identification scheme in Nexus Delta. A project resource can define a collection of aliases and prefix mappings
to shorten resource identifiers used in the addressing scheme (e.g. morphologies is an alias to “https://neuroshapes.org/morphology” and can be
used as a segment for identification, either as a schema resource or the collection of resources constrained by it).

The resource_type segment represents a filter on the system supported resource types. The most general type is
resources but additional ones are listed in Table 1.

The org_id and project_id segments represent a filter on the resource’s organisation and project scope. The
schema_id represents a SHACL schema identifier allowing the system to validate resources upon creation and up-
date (through POST or PUT) operations but also to select (through GET) all resources that conform to the constraints
defined by the schema. Finally, the resource_id selects a unique resource within the parent scope. Resources of type
views expose additional sub-resources corresponding to specific endpoints (e.g. documents/_search for an Elastic-
searchView and graph/sparql for a SparqlView) for data search and access but expose also control sub-resources
like documents/statistics or graph/offset.

All resources are unambiguously and uniquely identified by HTTP based internationalized resource identifiers
(IRIs) within a given project. Clients can reuse existing identifiers (e.g. DOI27 for publications or ORCID28 for
researchers) or let the system generate them. As using documented and management-details-independent identifiers
is key to avoid common data access and collision issues [35], Nexus Delta-generated identifiers are independent
of the system deployment address including the organisation, project and schema under which the resources are

27https://www.doi.org
28https://orcid.org

https://neuroshapes.org/morphology
https://www.doi.org
https://orcid.org

708 M.F. Sy et al. / Blue Brain Nexus

Table 1

Supported resource types in Nexus Delta along with their descriptions

Resource type Description

realms Resources that represent accepted Identity Providers (IdP) and their configurations.

identities Read-only singleton resource providing information about an authenticated client (e.g. a user, a group).

permissions Singleton resource defining the collection of supported permissions.

acls Resources defining a three way mappings between identities, permissions and a target scope (global, organisation or project)

organisations First level logical grouping of projects and resources managed in them.

projects Second level logical grouping of resources.

schemas Resources defining a collection of constraints (using W3C SHACL schemas) other resources can be validated against.

resolvers Configuration resources for identifier-based resolution (i.e locating and fetching) of other resources (e.g JSON-LD context,
schemas and ontologies using owl:imports).

views Configuration resources controlling the metadata indexing processes and querying options.

storages Configuration resources for defining file storage media.

files Resources that represent user provided binary.

archives Ephemeral resources for bulk data and metadata download as tarball archive file.

resources A generic resource type representing user defined metadata and optionally constrained by schemas.

managed as shown in Fig. 8. Besides, using an HTTP-based IRI as part of another HTTP path is tedious and error
prone because of the IRI’s length and the need to encode it. Consequently, the system enables resource identifiers to
be shortened and compacted by means of aliases and prefix mappings defined in the project’s configuration.

All resource types except files have a JSON-LD29 representation format. Files have a dual representation acces-
sible through content negotiation: a JSON-LD representation for metadata such as file name and size and a binary
representation for the actual file content. Additionally, both resources and files metadata can be viewed in N-Triples
and DOT formats.

4.3. Authentication and authorization

The authentication and authorization functions are performed using four resource types: realms, permissions, acls
and identities. Nexus Delta supports OpenID Connect,30 OAuth 2.031 and JSON Web Tokens (JWT)32 allowing for
a seamless integration with identity providers that follow the same open protocols. Several off-the-shelf products
implement these protocols on top of the Lightweight Directory Access Protocol (LDAP), allowing members of an
institution to authenticate to a Nexus Delta deployment using the same institution’s identity management system.

All HTTP requests accept an Authorization header with a JWT Bearer token as value when consuming the REST-
ful API. The general authorization flow is executed as follows:

– a provided token is validated against the identity providers defined through realms resources (issuer, signature,
expiry, not before);

– the caller information (subject and group claims) is extracted and its identities (anonymous, authenticated with
a provider, user and group membership) collected for further authorization;

– the collected identities are then compared to the configured access control lists to verify that the caller is
authorized to perform the intended action such as listing resources in a given project or performing a file
upload.

A detailed description of the authentication and authorization API along with examples are available as part of
Nexus Delta documentation33

29http://json-ld.org
30https://openid.net/connect
31https://oauth.net/2
32https://jwt.io
33https://bluebrainnexus.io/docs/delta/api/acls-api.html

http://json-ld.org
https://openid.net/connect
https://oauth.net/2
https://jwt.io
https://bluebrainnexus.io/docs/delta/api/acls-api.html

M.F. Sy et al. / Blue Brain Nexus 709

4.4. Data validation

Knowledge graphs evolve over time as new data, schemas and ontologies get added and updated. The added data
often come out of extract transform load (ETL) pipelines reading and transforming from various trusted or untrusted
sources. Ensuring that those pipelines produce the expected outputs is key to maintain the knowledge graph quality
as it evolves and to detect ETL pipelines’ anomalies. To enable data validation, Nexus Delta uses the W3C SHACL
recommendation for defining, exchanging and enforcing constraints on metadata represented as RDF graphs. The
validation using SHACL involves two types of resources:

– schema: defines in a shapes graph the constraints the metadata should conform to. A schema can define one or
many shapes and is also serialized and exchanged in JSON-LD;

– metadata resource: the metadata RDF graph to be validated against the shapes of a given schema, also serialized
and exchanged in JSON-LD.

The W3C SHACL recommendation only defines SHACL shapes and ways to logically combine them using
Boolean operators (AND, OR, NOT, XONE). But shapes are almost never developed alone in production settings.
It is therefore useful to be able to:

– reuse an already defined shape for modularity purposes: there is a need of an import mechanism telling a
SHACL processor where to lookup, fetch and reuse an already managed shape. This is done through classic
owl:imports mechanism that Nexus Delta resolvers exploit for SHACL schemas.

– include managed ontologies as part of the validation: it is key to be able to leverage class hierarchies dur-
ing validation by injecting in the schema transitive closure of rdfs:subClassOf relations typically defined in
ontologies.

– group and identify a collection of shapes in order to document and manage them (e.g. Create, Read, Update,
Deprecate).

In Nexus Delta, a schema is a resource of type Schema and enables the above capabilities by using the following
JSON-LD syntax. The corresponding JSON-LD context34 is omitted in the example for simplicity.

{
"@id" : " ex : SchemaID " , " @type " : " Schema " ,
" i m p o r t s " : [" ex : AnImportedSchema " ,

" ex : AnImpor tedOnto logy "
] , " s h a p e s " : [{

"@id" : " ex : AShape " ,
" @type " : " sh : Shape "

} ,{ "@id" : " ex : AnotherShape " ,
" @type " : " sh : Shape " }]

}

Table 2 details the main properties of a resource of type Schema.

Table 2

Schema main properties

Key Description URI

@id The identifier of the schema

@type The type of the schema. By default it is nxv:Schema http://www.w3.org/1999/02/22-rdf-syntax-ns#ype

imports Collection of schemas and ontologies identifiers to bring in the
scope of the current schema when validating

http://www.w3.org/2002/07/owl#mports

shapes The collection of SHACL shapes defined within the current schema reverse of http://www.w3.org/2000/01/rdf-schema#isDefinedBy

34https://bluebrainnexus.io/contexts/shacl-20170720.json

http://www.w3.org/1999/02/22-rdf-syntax-ns#ype
http://www.w3.org/2002/07/owl#mports
http://www.w3.org/2000/01/rdf-schema#isDefinedBy
https://bluebrainnexus.io/contexts/shacl-20170720.json

710 M.F. Sy et al. / Blue Brain Nexus

Given a shapes graph (a schema) and a metadata graph (a resource) as inputs, the SHACL processor used in Nexus
Delta starts by selecting the part of the metadata graph to focus on and then validates whether that part conforms
to the shapes graph or not. The TopQuadrant SHACL API35 written in Java and based on Apache Jena36 is used as
SHACL validator.

4.5. Data storage

Nexus Delta supports the storage of arbitrary binary data through files resources. As with other resource types,
files are immutable once uploaded to the system and future updates represent new revisions. Compared to other
resources that are represented as JSON, files differ in terms of size, materialization, handling during transport and
how integrity is ensured. The files may have the following properties:

– The file size may be larger than the allocated process memory; to accommodate large file sizes the system uses
a back-pressured streaming approach for both uploads and downloads.

– During upload the system computes a SHA-256 hash for the file and stores it as metadata along with the
observed file size and the client provided media type. Clients can compare the resulting value of the SHA-256
hash with the expected value to assert the integrity of the operation (upload / download).

– The system automatically records two resource representations: the binary representation as submitted by the
client and a JSON-LD representation for the provided and computed metadata. Content negotiation is used
to discriminate between the two representations; the client can provide either the Accept: application/ld+json
header to express the intent for retrieving the file metadata (the JSON-LD representation) or the Accept: */*
header to express the intent of retrieving the binary representation.

– There are situations where the use of HTTP(S) for registering a file in the system is not feasible due to excep-
tional sizes (e.g. an image stack of a three-dimensional mouse brain tissue block with a size of 10 terabytes) or
when using a shared clustered storage medium and the data already exist on the target storage but the system
is not keeping track of it. In these situations a file can be directly materialized by making a reference to the
existing file instead of performing a possible inefficient file upload.

Nexus Delta’s file specific API along with examples are available as part of its documentation.37

The system supports multiple storage media for files. By default it uses a storage backed by the filesystem where
Nexus Delta is running (either as a local drive or an arbitrary mount). The storage media supported for a project are
controlled by resources of type Storage with more specific sub-types:

– DiskStorage – local filesystem mount.
– S3Storage – Amazon S3 compatible object storage.
– RemoteDiskStorage – remote filesystem mount via a HTTP(S) based integration service; this storage type

relies on a remote HTTP service that exposes basic file operations on an underlying POSIX file-system. This
is useful in organisations that are running a distributed network storage (e.g. Ceph, Gluster, GPFS, Lustre) that
cannot be mounted directly on the system where Nexus Delta runs because of security or geographic location
considerations.

Each recorded file metadata contains the specific revision of the storage medium used. A project can be configured
to use multiple storage media with different permission requirements for both upload and download. When files are
being uploaded, a storage identifier can be passed as a query parameter to select a different target storage other than
the project default.

35https://github.com/TopQuadrant/shacl
36https://jena.apache.org
37https://bluebrainnexus.io/docs/delta/api/files-api.html

https://github.com/TopQuadrant/shacl
https://jena.apache.org
https://bluebrainnexus.io/docs/delta/api/files-api.html

M.F. Sy et al. / Blue Brain Nexus 711

4.6. Data access and sharing through views

In Nexus Delta, all or a subset of a project’s resources can be selected and projected to specific views exposing
endpoints for search, aggregation, statistics and navigation. The processes that control these projections are defined
by resources of types views. While focusing on process automation, security and control, Nexus Delta uses off-the-
shelf open source products to provide two types of views: a document oriented view through Elasticsearch and a
graph view through SPARQL 1.1 endpoints with Blazegraph. This built-in view support occurs per project and the
created views inherit the project’s ACLs. Clients can thus select data and quickly put up endpoints for sharing and
disseminating them while controlling their access.

Views define and configure criteria to select resources (e.g. by type, by schema or at a specific revisions using
tags) and how they should be indexed (e.g. specific metadata to index). Two types of views are created per project
by default upon project creation: an ElasticsearchView and a SparqlView. Additional ones can be created based on
clients and user requirements. Table 3 details the different configuration options within an ElasticsearchView and a
SparqlView while the documentation38 details views specific API.

The indexing processes controlled by the views are executed incrementally by replaying the event log for each
individual project and applying the necessary changes in the respective target system. As resources get created, up-
dated and deprecated, each view incrementally applies the changes to maintain the indices up-to-date. The progress
of indexing data is persisted to survive system restarts and presented to clients and users through the REST API and
the Nexus Fusion interface for monitoring. If a view configuration is updated, the progress is reset and the process
starts over with the new configuration.

Each view exposes its query endpoint as a sub-resource. A _search endpoint is exposed in the case of an Elas-
ticsearchView while a sparql endpoint is exposed for a SparqlView. Queries to a view endpoint are first checked for
authorization before being dispatched to the target system.

When querying, projects’ boundaries can be crossed by means of aggregate views of type AggregateElastic-
searchView39 and AggregateSparqlView40 avoiding thus silos for resources managed in the system. They combine
multiple views from one and/or many projects allowing the access of resources across projects. An aggregate view
describes to which projects and views submitted queries are to be dispatched. Crossing projects’ boundaries implies
additional authorization checks as the client needs to have access to the selected projects and views in order to run
the submitted query.

Table 3

The different configuration options within an ElasticsearchView and a SparqlView

Option Description View type

resourceType Only resources of the listed types will be selected and indexed. ElasticsearchView, SparqlView

resourceSchemas Only resources conformant to the listed schemas will be selected and indexed. ElasticsearchView, SparqlView

resourceTag Only resources with the provided tags will be selected and indexed at the state
corresponding to the tags.

ElasticsearchView, SparqlView

includeMetadata A boolean flag indicating whether to index (true) or not (false) Blue Brain
Nexus added metadata (e.g. revision, createdAt, . . .).

ElasticsearchView, SparqlView

includeDeprecated A boolean indicating whether to index (true) or not (false) deprecated
resources.

ElasticsearchView, SparqlView

mapping A JSON object corresponding to an Elasticsearch mapping document. It
configure how Elasticsearch should index the resource.

ElasticsearchView

sourceAsText A boolean indicating whether to index (true) or not (false) the JSON-LD
payload of a resource as a string in Elasticsearch.

ElasticsearchView

38https://bluebrainnexus.io/docs/delta/api/views/index.html
39https://bluebrainnexus.io/docs/delta/api/views/aggregated-es-view-api.html
40https://bluebrainnexus.io/docs/delta/api/views/aggregated-sparql-view-api.html

https://bluebrainnexus.io/docs/delta/api/views/index.html
https://bluebrainnexus.io/docs/delta/api/views/aggregated-es-view-api.html
https://bluebrainnexus.io/docs/delta/api/views/aggregated-sparql-view-api.html

712 M.F. Sy et al. / Blue Brain Nexus

Fig. 9. The execution flow of CompositeViews indexing processes. Multiple sources are used to aggregate metadata in an isolated Blazegraph
namespace. Queries are executed for each change to collect relevant sets of triples that are further stored in SPARQL based indices or transformed
to JSON-LD and then stored in Elasticsearch indices. Filters can be applied on sources or projections to discard irrelevant information.

The system also supports automated, incremental, multi-project and cross-deployment metadata aggregation,
transformation and projection through CompositeViews which combine the capabilities of both Elasticsearch and
Blazegraph.

CompositeViews may have multiple sources of metadata (multiple projects in the current Nexus Delta cluster
and/or projects in a different Nexus Delta deployment) and may project data to multiple specialized indices at the
same time. The execution flow depicted in Fig. 9 is incremental as with the other view types where:

– metadata is aggregated from all the sources in an isolated Blazegraph namespace in a ordered series of changes
(events in the Nexus Delta log). Filtering criteria can be applied to metadata sources to discard changes to
resources that are not relevant;

– for every change a set of SPARQL CONSTRUCT queries are executed on the accumulated metadata to collect
sets of triples (one query per index). Unlike ElasticsearchViews and SparqlViews that are resource centric, the
queries executed to collect triples in CompositeViews can span any number of resources;

– the collected triples are then indexed in the target systems. In the case of SparqlProjections the sets of triples
are bounded in named graphs and stored as is. In the case of ElasticsearchProjections a context is applied to
sets of triples to frame them in JSON-LD documents that are finally stored.

In terms of querying capabilities, CompositeViews allow querying the aggregation namespace, all indices of
the same type (Elasticsearch or SPARQL) at once or individual indices. Due to the non-deterministic ordering of
changes collected by a CompositeView (collection of changes may execute at different rates or sources may be
unavailable) queries that do not target a single resource may return different results, depending on the order of the
collected changes. CompositeViews accommodate a healing mechanism where the index process can be restarted in
place at fixed intervals. Additionally, clients can choose to restart indexing for a single source, a single projection
or the entire process.

4.7. Extension points

Supporting new requirements and use cases may require extending Nexus Delta capabilities. This could involve
using a different system or application to organize and search data differently. By exposing the event log over
HTTP(S) using Server-Sent Events, the system allows clients to replicate the internal streaming approach and the
push-based asynchronous communication for resource projections during views creation. These clients can therefore
maintain third party indices supporting potentially different use cases and system behavior as shown in Fig. 10.

M.F. Sy et al. / Blue Brain Nexus 713

Fig. 10. Clients and services can subscribe to the event log stream, query the knowledge graph for additional information, generate derivations
to be registered back into the system or maintain third-party indices.

A very simple example of a system extension would be to compute and visualize statistics of the data in Nexus
Delta (e.g. data size and count per type per project) and their evolution over time. For tracking metrics over time, an
obvious choice for an index would be a time series database, like InfluxDB.41 A third-party tool could:

– subscribe to the event log stream;
– collect the required information for each changed resource by querying the knowledge graph; a SPARQL

SELECT query would allow the collection of the data size as well as the types and deprecation status of the
resource for which the event was emitted;

– record a new entry in the time series database using the creation date as the metric timestamp, the data size as
the metric value and the types and originating project as metric tags.

A visualization tool like Grafana42 could be configured to display dashboards containing charts with data size and
count per type per project over time; the visualization tool would query the time series database to collect the
information.

Since the subscription to the event log stream is continuous, as new data are added to the system, the third-party
tool will automatically propagate the information in the time series database.

4.8. Synthetic benchmarks

Nexus Delta has been tested to verify that the implementation achieves the design goals with respect to a set of
key non-functional requirements:

– horizontal scalability of the system;
– low latency resource ingestion and access;
– partial degradation of function when dependent systems (e.g. Elasticsearch and Blazegraph) become unavail-

able.

The tests have been executed for Nexus Delta version 1.4.2 in a reference environment made of a Kubernetes
cluster hosted in Amazon Web Services (AWS). A load injector was configured with 8 vCPUs, 32 GiB RAM as
a separate instance in the same virtual private cloud (VPC). The resource allocation and deployment configuration
within the Kubernetes cluster was as follows:

– 1–12 node Nexus Delta cluster (8 vCPU, 8 GiB HEAP);
– 1–12 node Cassandra cluster (version 3.11.9 – 3.5 vCPU, 12 GiB HEAP, 250 GiB EBS storage of type GP3

with 10,000 provisioned input/output operations per second (iops));

41https://www.influxdata.com/products/influxdb-overview/
42https://grafana.com/grafana/

https://www.influxdata.com/products/influxdb-overview/
https://grafana.com/grafana/

714 M.F. Sy et al. / Blue Brain Nexus

Fig. 11. Throughput of read/write operations scales up with the size of the Nexus Delta and Cassandra clusters.

Fig. 12. Latency of the requests (response times shown for the 50th and 95th percentile) is maintained in the same range as the size of the Nexus
Delta and Cassandra clusters is scaled up.

– 1 node Blazegraph (version 2.1.5 – 2 vCPU, 4 GiB HEAP);
– 1 node Elasticsearch (version 7.4.0 – 4 vCPU, 8 GiB HEAP).

Prior to the test execution, indexing was disabled and a reasonable amount of data was injected into the system
to ensure that it behaved well under a typical volume; specifically 120 million resources were created across 27
projects using an exponential distribution. The equivalent number of triples (22 for each resource plus 11 system
metadata) was approximately: 4 billion. The tests covered read and write operations and excluded queries to the
third-party indices (Elasticsearch and Blazegraph) as the goal was not to benchmark these systems.

The results are presented in Figs 11 and 12.
The results showed that the throughput scales almost linearly with the number of Nexus Delta nodes while main-

taining the latencies in the same range. There is a significant difference in throughput between write requests with
validation and those without. The reason is that validation is a very heavy function compared to the other functions
of the system.

In most cases the increase in latency is minimal as adding nodes to the cluster increases the necessary data
exchange between nodes when handling requests. The chance for the required data to be handled by the node
that accepts each request decreases from 100% (single node), 16% (six-node cluster) to 8% (twelve-node cluster).
If executing the request implies interaction with multiple resources (e.g. in the case of creating a resource with
validation where the schema has import definitions) the chances drop close to 1%.

Taking parts of the system offline showed that the system continued to function with reduced availability as
follows:

– when taking a Cassandra node offline, the system continued to function under expected conditions – full func-
tion;

– when taking a Delta node offline, the system continued to function under expected conditions – full function;

M.F. Sy et al. / Blue Brain Nexus 715

– when taking the Elasticsearch node offline, the system paused the indexing process, resource listing operations
and direct Elasticsearch queries became unavailable; the system recovered immediately after bringing the node
back online;

– When taking the Blazegraph node offline, the system paused the indexing process and direct Blazegraph
SPARQL queries became unavailable; the system recovered immediately after bringing the node back online.

5. User interfaces

5.1. Nexus Fusion

Nexus Fusion is the web interface that enables users to interactively use Nexus Delta. Users can easily login and
securely access organisations, projects and resources according to their permissions. In a given project, users can
upload new data, create new resources and easily search for specific resources by their type or schema. Each listed
resource can be selected and viewed thanks to a customizable page. Furthermore, Nexus Fusion enables data and
knowledge engineers to interact with project views, more specifically, listing existing views, creating new views,
monitoring views’ indexing progress and querying both SparqlView and ElasticsearchView.

The Nexus Fusion interface has been developed to be resource-centric and to enable users to search and discover
managed resources. This has been made possible by enabling the presentation of resources catalogued in a knowl-
edge graph using Studios. A Studio is a user configurable component where a collection of resources, resulting from
a SPARQL query run against a SparqlView can be presented as a named Dashboard. In order to offer additional
structure to a set of Studios, Dashboards can be grouped in named Workspaces. Finally, the set of available Studios
can be discovered by users based on their permissions. Nexus Fusion provides a framework where resource-specific
plugins can be developed, integrated and configured by software engineers to extend the set of BBN features to cope
with specific requirements or present specific resources in a customized way.

Thanks to its flexible and customizable nature, Nexus Fusion is extensively used within Blue Brain as many
Studios have been configured as shown in Fig. 13, for example, to enable BBP scientists to search and access exper-
imental data and models for reuse. Many plugins have been developed with BBP scientists to meaningfully present
specific scientific datasets. Figure 14, for example, shows a neuron morphology 3D shape (a) and an interactive
neuron electrophysiology viewer plugin (b). All these capabilities combined address the identified Data discovery
and Humans in the loop challenges related to searching, navigating and accessing linked data for expert users.

Fig. 13. A Studio in Nexus Fusion has workspaces (e.g. the “Neuron electrophysiology” workspace in (a)), which in turn have dashboards (e.g.
the “All” dashboard in (a) listing all neuron electrophysiology recordings). A dashboard represents custom SPARQL query results displayed in
an easy to read tabular format. Each entry in the table is a Nexus Delta resource. By clicking on a resource, users will be loading and viewing
the plugins that have been configured for that type of resource (b).

716 M.F. Sy et al. / Blue Brain Nexus

Fig. 14. Plugins have been developed at Blue Brain Project for specific types of resources. Scientists can interactively explore 3D neuron mor-
phologies through a plugin that reads and presents morphology data (a). Another plugin enables scientists to browse all static electrophysiology
recordings for a specific neuron (b), with the ability to toggle to an interactive plot of the electrophysiology recordings.

5.2. Nexus Forge

Building knowledge graphs from various sources and data formats often involves data scientists and knowledge
engineers to develop pipelines, whether automatised or prototyped in Jupyter notebooks, performing tasks to read,
shape and map input data to structures that conform to schemas and ontologies modeling a targeted domain. With
Nexus Forge, users can leverage a high level and simple Python interface43 to:

– Load and access W3C SHACL specifications for specifying and enforcing (meta)data constraints. This capa-
bility addresses the data preparation challenges.

– Define, execute and share declarative mappings to transform data from different sources and formats to a
targeted format and structure potentially conformant to defined data models. Mappings are predefined rules
that encode the logic on how to transform data from a specific source so that they conform to a specific schema.
A dictionary mapping language is supported.

– Validate the transformed data addressing data preparation challenges by making sure transformed (meta)data
meet expected shape and quality as defined in schemas.

– Store the resulting transformed and validated data in stores such as Nexus Delta.
– Search and download (meta)data from the resulting knowledge graph.

Nexus Forge is documented with many hands-on tutorials.44

6. Seminal use case: supporting biologically detailed simulation of the rodent brain at Blue Brain

The original and main driving use case for designing and developing BBN is to support biologically detailed
simulation of the rodent brain at Blue Brain.

At Blue Brain, BBN is deployed on premises and on a container cluster manager such as kubernetes which
interfaces for authentication with the organisation’s LDAP system. It interoperates with the organisation’s parallel
file system (GPFS) for read/write operations with direct connectivity to the Blue Brain supercomputer.45 BBN is
used by different applications and workflows targeting different users as shown in Fig. 15.

BBN allows Blue Brain’s scientists as well as data and knowledge engineers to perform the following tasks:

43https://nexus-forge.readthedocs.io/en/latest/interaction.html
44https://nexus-forge.readthedocs.io/en/latest/tutorials.html
45https://www.cscs.ch/computers/blue-brain-5

https://nexus-forge.readthedocs.io/en/latest/interaction.html
https://nexus-forge.readthedocs.io/en/latest/tutorials.html
https://www.cscs.ch/computers/blue-brain-5

M.F. Sy et al. / Blue Brain Nexus 717

Fig. 15. The Blue Brain Project leverages Blue Brain Nexus to integrate a broad variety of heterogeneous data across multiple data centers.
Furthermore, scientists and engineers at Blue Brain leverage the (meta)data integrated to power multiple scientific applications.

– Manage neuroscience data while tracking their provenance: the data are acquired from different sources both
internal and external. Examples of data include neuron morphologies, neuron electrophysiological record-
ings, parameters from literature or brain atlases. Acquired data are first curated with metadata conformant to
SHACL schemas such as the ones from Neuroshapes46 including the Minimal Information about a Neuro-
science DataSet (MINDS) [26] giving information about the subject from which the data were generated, the
protocol used, the data type, the license, the data distribution (where to download the actual data) and brain
location corresponding to a brain region name and/or precise coordinates within a brain atlas. Provenance of
experimental data, models and simulation results is tracked using W3C PROV-O.47

– Search and reuse curated data to derive new data and build models. Data and models can be searched using
different metadata including types, species, brain regions, cell types, contributing laboratories, and protocols.

– Build custom web applications enabling visualization of neuroscience data such as neuron morphologies, elec-
trophysiology recordings, and brain atlases.

Table 1 in the supplemental material details how BBN supports key data and knowledge management challenges
at BBP.

46https://incf.github.io/neuroshapes
47https://www.w3.org/TR/prov-o

https://incf.github.io/neuroshapes
https://www.w3.org/TR/prov-o

718 M.F. Sy et al. / Blue Brain Nexus

7. Adoption of Blue Brain Nexus

BBN has already been deployed to address various use cases alongside the data-driven science iterative cycle in
neuroscience, psychiatry and open linked data.

7.1. Knowledge graph for neuroscience data at the Human Brain Project

The Human Brain Project (HBP)48 is a European flagship project with a ten-year horizon, aiming to understand
the human brain and to translate neuroscience knowledge into medicine and technology [3]. Accordingly, it aims to
build a collaborative information and communications technology-based scientific research infrastructure to allow
a transdisciplinary community of researchers from over 130 institutions across Europe to share data and knowledge
in the field of neuroscience, computing and brain-related medicine [50].

To enable thousands of scientists to find and publish diverse data across brain scales and modalities, the HBP has
developed the EBRAINS Knowledge Graph platform49 which uses BBN as shown in Fig. 16.

The HBP has developed four applications on top of the knowledge graph (KG) to drive different use cases.
KG Editor: This application is primarily used by the HBP Knowledge Graph team to integrate data into the

EBRAINS Knowledge Graph. It allows users to create entities in the knowledge graph, edit and publish their meta-
data for public consumption.

KG Search:50 This application enables researchers to find data that has been shared in the EBRAINS Knowledge
Graph. It provides the following functionalities: data navigation by type (datasets, person, species), direct data
download, and finding of artefacts related to a person or institution, with public or restricted access.

Fig. 16. Within the EBRAINS Knowledge Graph (version 2), BBN is used to integrate (meta)data before being further indexed into purpose-built
services in order to drive distinct user applications.

48https://www.humanbrainproject.eu/en
49https://kg.ebrains.eu
50https://search.kg.ebrains.eu

https://www.humanbrainproject.eu/en
https://kg.ebrains.eu
https://search.kg.ebrains.eu

M.F. Sy et al. / Blue Brain Nexus 719

KG Query API: This application is intended for developers who want to integrate their own tools with the
EBRAINS Knowledge Graph. It features a graphical interface that allows users to design their query visually. Most
HBP applications consume data through this API.

KG Statistics: This application enables users to inspect visually the content of the EBRAINS Knowledge Graph.
This application also allows users to configure access rights and monitor the platform deployment.

Table 2 in the supplemental material details the key EBRAINS Knowledge Graph platform challenges addressed
by BBN.

7.2. Integrated clinical and research data management at the Krembil Centre for Neuroinformatics

The Krembil Centre for Neuroinformatics (KCNI or Krembil Centre) is an interdisciplinary, computationally fo-
cused research institute, located within the largest mental health hospital in Canada, the Centre for Addiction and
Mental Health (CAMH) in Toronto. A core mandate of the Krembil Centre is to advance clinical and translational
research by supporting advanced data management and analytics. KCNI supports a centralized source data man-
agement system, based on the Ontario Brain Institutes Brain-CODE platform [46], incorporating research-domain
specific databases for neuroimaging (XNAT51), omics/molecular data (LabKey52) and assessments (REDCap [24]).
CAMH is a Healthcare Information and Management Systems Society (HIMSS) Stage 7 hospital, with a fully im-
plemented electronic medical record system, (provided by CERNER53) that is accessible through a structured data
warehouse. These clinical records are of significant value for clinical operations, physician decision support, as well
as clinical and basic research. However, the standard commercial medical record implementation is tuned for acute
rather than longitudinal behavioral health, and does not incorporate models of the care pathway. The Krembil Centre
has deployed BBN in two distinct environments as shown in Fig. 17.

In a dedicated clinical environment, the CERNER schema was mapped to the interoperability standard Fast
Healthcare Interoperability Resources (FHIR)54 and made available for use by clinical operations and enable physi-
cian feedback and decision support. A clinical instance of REDCap for self-assessment data collection is integrated
with FHIR via the MEDRED ontology [12]. Research data are similarly modelled with schemas associated with
domain-specific requirements, including the Neuroimaging Data Model (NIDM55) to represent data in a flexible
semantic framework. BBN provides the core underlying semantic interoperability layer to facilitate data integration
both across research studies and between clinical and research instances, leveraging common schemas and query
functionalities. This capability allows for complex queries across data domains and structural hierarchies of the
brain, integrating real-time clinical record information towards a rich knowledge commons to apply to accelerate
discovery and care.

Electronic medical records (EMRs) are typically deployed as transactional systems designed for managing acute
medical care and supporting billing requirements. This framework is not ideally constructed to handle the longi-
tudinal needs of behavioral and mental health care, wherein patients require multiple, often recurring, encounters
towards treatment and outcome management. Furthermore, it is essential for the practice of measurement-based
and data-driven care to accurately present integrated care pathways to enact standardization and determine both
adherence and diverging patient trajectories. The clinical instance of BBN implemented at the CAMH, allows the
connection of disparate EMR data structures into an integrative holistic view of a patient. Through the adoption of
a semantic graph framework, it is possible to more accurately model the patient as a persistent entity, the structure
of modern behavioral health care delivery and their relative relationships.

BBN further supports iteration of data models, essential to the continuous process as pathways are modified in
response to research discovery and refinement in clinical practice. This allows for a rich and dynamic care model
that evolves over time. Additional benefits arise down-stream through the capabilities of semantic queries that can
traverse the complex and interlinked graph of the patient population, to draw out key information and inferences.

51https://www.xnat.org/
52https://www.labkey.com/
53https://www.cerner.com/solutions/health-systems
54https://www.hl7.org/fhir/
55http://nidm.nidash.org

https://www.xnat.org/
https://www.labkey.com/
https://www.cerner.com/solutions/health-systems
https://www.hl7.org/fhir/
http://nidm.nidash.org

720 M.F. Sy et al. / Blue Brain Nexus

Fig. 17. The Krembil Centre utilizes two distinct instances of BBN to facilitate the secure organisation of clinical records and research study data
independently, employing a shared standardized schema to facilitate bi-directional data integration for translational clinical-research.

Table 3 in the supplemental material summarizes the key challenges addressed by the deployment of BBN within
the Krembil Centre.

7.3. Research Data Connectome Project

The Research Data Connectome project originated from SWITCH56 innovation activities aiming at providing
Switzerland researchers and universities with key infrastructure components, resources and services to achieve FAIR
(Findable, Accessible, Interoperable, Reusable) research data and knowledge discovery as well as dissemination.
The project main goal is to connect different type of data from various providers including research repositories
across Switzerland and enable Switzerland’s researchers to discover them for reuse that could enable collaboration
opportunities across different domains. To achieve such goal, SWITCH brought together many partners from differ-
ent disciplines including data providers (including FORS,57 DaSCH58), research laboratories (including eXascale
Infolab,59,60 SATW,61 BCUL,62 SARI63 and Blue Brain64) as well as individual researchers to design, implement
and deploy a knowledge graph building and management pipeline [14] made of a set of resources, systems and
services encompassing a:

56https://www.connectome.ch
57https://forscenter.ch
58https://dasch.swiss
59https://exascale.info
60https://www.sagw.ch/sagw
61https://www.satw.ch
62https://www.bcu-lausanne.ch/en
63https://www.sari.uzh.ch/en.html
64https://portal.bluebrain.epfl.ch

https://www.connectome.ch
https://forscenter.ch
https://dasch.swiss
https://exascale.info
https://www.sagw.ch/sagw
https://www.satw.ch
https://www.bcu-lausanne.ch/en
https://www.sari.uzh.ch/en.html
https://portal.bluebrain.epfl.ch

M.F. Sy et al. / Blue Brain Nexus 721

Fig. 18. The Research Data Connectome uses BBN to implement a linked data pipelines allowing the project to extract, transform, validate, store
and connect in a knowledge graph research data from different data providers’ repositories. The data can then be shared through BBN or through
dedicated Web-based Services.

– set of common SHACL schemas and ontology (RESCS Ontology65) that made the knowledge graph66 schema
allowing the project to build applications and services while being shielded from the variety of (meta)data
format and structures from upstream repositories;

– set of Guidelines and standards for research data quality;67

– data extraction, transformation, validation and load pipeline68 that normalise, structure, map and validate data
from repositories to the knowledge graph schema;

– secure and scalable knowledge graph management system infrastructure to store, version and provide access
to the resulting mapped data;

– set of end-user targeted services to discover, reuse and share stored data and knowledge.

The BBN ecosystem was chosen and deployed during the first pilot phase of the Research Data Connectome
project after a review [14] of alternative open source solutions. Figure 18 shows how BBN is deployed at SWITCH.

Table 4 in supplemental material gives more details about the key challenges faced by the Research Data Con-
nectome project and the BBN capabilities that address them.

7.4. Adoption discussion

BBN can be deployed, ran and managed locally, on premises or in the cloud. Thanks to this packaging scheme
as Docker images, its deployment within BBP, KCNI, HBP and Switch infrastructures was greatly accelerated and

65https://rescs.org
66https://www.switch.ch/stories/Connectome-knowledge-graph
67https://www.switch.ch/stories/Connectome-pilot-phase
68https://www.switch.ch/stories/source-to-connectome

https://rescs.org
https://www.switch.ch/stories/Connectome-knowledge-graph
https://www.switch.ch/stories/Connectome-pilot-phase
https://www.switch.ch/stories/source-to-connectome

722 M.F. Sy et al. / Blue Brain Nexus

improved. Across all four production deployments, BBN has proven to integrate well with different systems thanks
to its interoperability capability based on open standards. Indeed, relying on standard authorization and authentica-
tion services, including OpenID Connect, OAuth 2.0 and JSON Web Tokens (JWT), enabled seamless integration
with the four organisations’ identity management systems. Using W3C SHACL for validation, shaping data and
schemas using RDF serialized as JSON-LD, and serving them using a REST architecture allowed easy integration
and communication with third-party systems. The genericity and expressiveness of BBN domain modeling format
ranging from JSON to W3C SHACL and its scalability addresses a large spectrum of complex data representation
needs and use cases.

The availability of BBN Delta’s entire events journal over a secured HTTP based SSE interface is also another
integration point. It enables other tools and systems to securely and transparently access, react and adapt to events
occurring in the knowledge graph. Those tools can therefore monitor the knowledge graph and trigger subsequent
jobs such as logging or indexing data in third-party systems. Furthermore, SSE allows developers to add additional
features to BBN by building custom applications leveraging the knowledge graph data throughout their lifecycle.

BBN has been used primarily as a complement for existing tools and systems, bringing new features and ca-
pabilities that were missing. Examples of such features include validation of data and metadata to improve ETL
pipelines’ output quality, serving as a metadata interoperability layer, support for comprehensive search capabilities
ranging from document and faceted search to semantic and graph based queries through SPARQL 1.1. Data, meta-
data, schemas, ontologies can now be managed and kept in sync together. Developers across the four deployments
of BBN also built custom applications to extend its feature set and adapt its behaviour. The developer friendly RDF
JSON-LD serialization and the REST interface played an important role in on-boarding developers, enabling them
to work with a data exchange format they are already familiar with. Furthermore, BBN internalizes the boilerplate
code necessary to build, maintain and synchronize custom views from the data stored in the Cassandra primary store
saving developers precious time. BBN enables a comprehensive implementation of the FAIR guiding principles for
scientific data management. Tables 5 and 6 in the supplemental material detail BBN implementation of the FAIR
principles.

Based on feedback from BBN production deployments across 3 adopters and use cases, a set of limitations and
further improvements of BBN can be identified. While users of BBN can currently programmatically create knowl-
edge graphs from different sources and formats using the python framework Nexus Forge, a web-based interface
would allow users that are not data and knowledge engineers to also perform such complex tasks with a certain
degree of automation. Publishing and disseminating built knowledge graphs or a subset of them either publicly or
to a specific group of users can be done through Nexus Fusion by creating web-based data views generated from
SPARQL or Elasticsearch queries. However writing such queries is challenging for non-expert users who are not
always fully aware of how the data is structured or who just don’t know about those querying languages. Addressing
this challenge would require enabling users to create data views directly from the results of simpler and user-friendly
querying modalities such as keyword, natural language or faceted search. Furthermore the web-based data views
could be automatically assigned with a DOI identifier. High quality knowledge graphs are valuable data sources for
data science and machine learning pipelines which in return can greatly help in building (e.g NLP), populating (e.g.
link prediction, node classification) and analysing (e.g. GNN: Graph Neural Network) them. Integration with widely
used machine learning and graph analytics tools is a requirement to enable data scientists and machine learning en-
gineers to benefit from and contribute to knowledge graphs. The data-driven science cycle involves numerous steps
involving many users performing complex tasks. Bringing user collaboration features through the Nexus Fusion
web interface is needed to accelerate iterations across this cycle when using BBN.

8. Conclusion and future directions

Data-driven science often involves an iterative knowledge discovery cycle which is, at its core, a collaborative
journey. It involves multi-disciplinary teams of scientists and engineers working on collecting, analyzing, linking
and classifying data, from which new knowledge is generated, shared and disseminated. We presented Blue Brain
Nexus (BBN), an open source and scalable data and knowledge graph management system providing foundation to
support this cycle.

M.F. Sy et al. / Blue Brain Nexus 723

BBN has thus far been deployed in production to address four different use cases alongside the data-driven
science iterative cycle in the fields of computational modeling, neuroscience, psychiatry and linked open data. Many
valuable lessons have been learned. First, these four production deployments have shown that a knowledge graph
should first be considered part of existing infrastructures within which it can be easily deployed and operationalized.
Secondly a knowledge graph should also be integrated in the ecosystem of tools and systems it complements and
interacts with. It should support use cases’ scale, complexity, and evolution. Finally, the four use cases show that
rapid onboarding of developers and users and the ease at which they can prototype and build custom front-end and
backend applications on top of the knowledge graph are crucial to demonstrate added value.

BBN is actively and continuously being further developed and maintained by Blue Brain as a key technology and
complementary approach to classical neuroinformatics in its data-driven approach and long term scientific goal and
workflow for organzing brain tissue data and models [44]. BBN technology stack based on open, interoperable and
domain agnostic standards supporting domain specific extension, combined with the three production deployments
by adopters from large long term organisations where potential developers and contributors community can arise,
shows BBN maturity, genericity, ability to support new use cases and evolution of existing ones as well as sustain-
ability moving forward. Furthermore, we are actively seeking to expand the engagement of adopters in contributing
to the ongoing development and to sustaining BBN.

Thanks to the lessons learned across the diverse use cases, new developments and improvements are considered
as part of BBN roadmap including providing various users: i) with advanced web-based knowledge graph authoring
features; ii) with web-based data views creation (from the results of simpler and user-friendly query modalities) and
publishing as portal with support of DOIs assignment; iii) with web-based collaboration tools across all steps and
actors of the data-driven science cycle; iv) with a plugin architecture for Nexus Delta to support developers with
more modularity and domain specific extension features; v) with integration with machine learning widely used
tools and pipelines.

Code, user and developer resources availability

BBN is an open source project with Apache 269 as license. It is freely available on Github70 and a sandbox71

deployment is available as a playground. It comes with a set of developer oriented documentation such as APIs,
installation and deployments instructions as well as user oriented documentation made of high-level and hands-on
tutorials.72,73 BBN architecture and features described in this paper refers to the version 1.4 whose release notes are
available in https://bluebrainnexus.io/docs/releases.

Author contributions

– Conceptualization / Design: MF.S., B.R., S.K. and S.H. conceived of the presented idea.
– Software design and development:

∗ Nexus Delta: MF.S., B.R., D.M., H.G., W.W.
∗ Nexus Fusion and Javascript SDK: M.D., J.M., K.P., I.L., J.L., D.N.M., N.S., AU.
∗ Nexus Forge: P.-A.F., AG.R., A.-K.K., MF.S.
∗ Nexus Python SDK: J.L., P.-A.F., S.K., MF.S., B.R., D.M., H.G., W.W., A.-K.K., H.L., S.H.

– Writing (original draft preparation): MF.S., B.R., S.K. and S.H. prepared the original draft of the manuscript
and contributed to the final version of the manuscript.

69https://www.apache.org/licenses/LICENSE-2.0
70https://github.com/BlueBrain/nexus
71https://sandbox.bluebrainnexus.io
72https://bluebrainnexus.io/docs/getting-started/try-nexus.html
73https://nexus-forge.readthedocs.io/en/latest/tutorials.html

https://bluebrainnexus.io/docs/releases
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/BlueBrain/nexus
https://sandbox.bluebrainnexus.io
https://bluebrainnexus.io/docs/getting-started/try-nexus.html
https://nexus-forge.readthedocs.io/en/latest/tutorials.html

724 M.F. Sy et al. / Blue Brain Nexus

– Writing (editing text contribution): MF.S., B.R., S.K., D.R., S.H., AU.
– Writing (review): MF.S., B.R., S.K., D.M., H.G., W.W., M.D., J.M., K.P., A.-K.K., H.L., J.L., P.-A.F., S.J.,

D.R., S.H., AU., AG.R., C.L.
– Validation / Benchmark: B.R. conceived of the benchmark design and setup. B.R., D.M., H.G., W.W., C.L.

implemented, ran the benchmark and reported the results.
– Visualization / Illustrations:

∗ MF.S. created Figs 1 and 18.
∗ B.R. created Figs 2, 3, 4, 6, 5, 7, 8, 9, 10, 12 and 11.
∗ AU. created Figs 14 and 13.
∗ D.R. created Fig. 17 for the Krembil Centre.
∗ S.K. created the use case Figs 15 and 16.

– Supervision: H.M., S.H. and S.K. provided oversight and leadership responsibility for the presented idea and
its implementation.

– Other contributions: H.M., A.-K.K., H.L., J.L., P.-A.F., S.J., D.N., N.S., provided use cases as subject matter
experts as well as critical reviews helping drive the implementation of Blue Brain Nexus.

Funding

This study was supported by funding to the Blue Brain Project, a research center of the École polytechnique
fédérale de Lausanne, from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology.

Funding has been provided in part for Nexus Forge from the European Union’s Horizon 2020 Framework Pro-
gramme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project
SGA2).

Conflict of interest statement

The authors declare no competing financial interests.

Supplementary data

The supplemental material contains a set of tables (Table 1 to Table 4) detailing how BBN addresses key data-
driven science challenges in the context of adopters from three different organisations and with different use cases.
Finally, detailed tables (Table 5 and 6) showing how Blue Brain Nexus features support each one of the FAIR
research data management principles [49] are provided. Supplementary material is available at: http://dx.doi.org/10.
3233/SW-222974.

Acknowledgements

We are grateful to Karin Holm from BBP project’s Operations team (Science Writing/Publications) and for Felix
Schürmann the BBP’s Computing Division Director for reviewing this paper and for providing us with valuable
feedback and comments. We also thank Jean-Denis Courcol, Genrich Ivaska, Pavlo Getta and Benoît Coste from
the BBP’s Neuroscientific Software Engineering team for providing us with valuable use cases and user feedback.
Many thanks to Olli Salo Antero, Mike Kenyon and Joshua Akers from the BBP’s Core Services team for providing
the infrastructure to run BBN at BBP. We thank Jan Bjaalie, Oliver Schmid, David Kunzmann and Jeff Muller
from the Human Brain Project for the useful discussions and for the useful and valuable use cases. We also thank
Sebastian Sigloch from the Research Data Connectome, Adeel Ansari and Nikola Bogetic from KCNI for the

http://dx.doi.org/10.3233/SW-222974
http://dx.doi.org/10.3233/SW-222974

M.F. Sy et al. / Blue Brain Nexus 725

fruitful discussions and for the useful and valuable use cases. We thank Patrycja Lurie, Jayakrishnan Nair, Nabil
Alibou and Eugenia Oshurko, BBP’s Data and Knowledge Engineering team members and Simon Dumas BBP’s
NeuroInformatics Software Engineering team member, for their valuable feedback. Many thanks to Michael Martin
Vincent, Kate Mullins Elizabeth and Mathieu Chambon from the BBP’s Communications team for the support in
creating illustrations for this paper.

References

[1] O. Agarwal, H. Ge, S. Shakeri and R. Al-Rfou, Knowledge graph based synthetic corpus generation for knowledge-enhanced language
model pre-training, in: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Association for Computational Linguistics, Online, 2021, pp. 3554–3565. https://www.aclweb.org/
anthology/2021.naacl-main.278. doi:10.18653/v1/2021.naacl-main.278.

[2] D. Alahakoon and X. Yu, Smart electricity meter data intelligence for future energy systems: A survey, IEEE Transactions on Industrial
Informatics 12(1) (2016), 425–436. doi:10.1109/TII.2015.2414355.

[3] K. Amunts, A.C. Knoll, T. Lippert, C.M.A. Pennartz, P. Ryvlin, A. Destexhe, V.K. Jirsa, E. D’Angelo and J.G. Bjaalie, The Human Brain
Project – Synergy between neuroscience, computing, informatics, and brain-inspired technologies, PLOS Biology 17(7) (2019), e3000344.
doi:10.1371/journal.pbio.3000344.

[4] J. Andreu, C. Poon, R.D. Merrifield, S. Wong and G.-Z. Yang, Big data for health, IEEE Journal of Biomedical and Health Informatics 19
(2015). doi:10.1109/JBHI.2015.2450362.

[5] A. Aryani and J. Wang, Research graph: Building a distributed graph of scholarly works using research data switchboard,
2017. https://monash.figshare.com/articles/Research_Graph_Building_a_Distributed_Graph_of_Scholarly_Works_using_Research_Data_
Switchboard/4742413. doi:10.4225/03/58c696655af8a.

[6] M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris,
D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin and G. Sherlock, Gene ontology:
Tool for the unification of biology. The Gene Ontology Consortium, Nature Genetics 25(1) (2000), 25–29. doi:10.1038/75556.

[7] M. Baker, 1,500 scientists lift the lid on reproducibility, Nature News 533(7604) (2016), 452. http://www.nature.com/news/1-500-scientists-
lift-the-lid-on-reproducibility-1.19970. doi:10.1038/533452a.

[8] J.R. Bambauer, Tragedy of the data commons, SSRN Scholarly Paper, ID 1789749, Social Science Research Network, Rochester, NY,
2011. https://papers.ssrn.com/abstract=1789749. doi:10.2139/ssrn.1789749.

[9] M. Boeckhout, G.A. Zielhuis and A.L. Bredenoord, The FAIR guiding principles for data stewardship: Fair enough?, European Journal of
Human Genetics 26(7) (2018), 931–936. doi:10.1038/s41431-018-0160-0.

[10] K. Börner, N. Contractor, H.J. Falk-Krzesinski, S.M. Fiore, K.L. Hall, J. Keyton, B. Spring, D. Stokols, W. Trochim and B. Uzzi, A multi-
level systems perspective for the science of team science, Science translational medicine 2(49) (2010), 49cm24. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3527819/. doi:10.1126/scitranslmed.3001399.

[11] D. Brickley, M. Burgess and N. Noy, Google dataset search: Building a search engine for datasets in an open web ecosystem, in: The
World Wide Web Conference, WWW ’19, Event-Place: San Francisco, CA, USA, ACM, New York, NY, USA, 2019, pp. 1365–1375. ISBN
978-1-4503-6674-8. doi:10.1145/3308558.3313685.

[12] J.-P. Calbimonte, F. Dubosson, R. Hilfiker, A. Cotting and M. Schumacher, The MedRed ontology for representing clinical data acquisition
metadata, in: The Semantic Web – ISWC 2017, C. d’Amato, M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange
and J. Heflin, eds, Lecture Notes in Computer Science, Springer International Publishing, 2017, pp. 38–47. ISBN 978-3-319-68204-4.
doi:10.1007/978-3-319-68204-4_4.

[13] P. Ceravolo, A. Azzini, M. Angelini, T. Catarci, P. Cudré-Mauroux, E. Damiani, A. Mazak, M. van Keulen, M. Jarrar, G. Santucci, K. Sattler,
M. Scannapieco, M. Wimmer, R. Wrembel and F.A. Zaraket, Big data semantics, J. Data Semantics 7(2) (2018), 65–85. https://exascale.
info/assets/pdf/ceravolo2018jods.pdf. doi:10.1007/s13740-018-0086-2.

[14] P. Cudré-Mauroux and eXascale Infolab, Design considerations on SWITCH’s connectome vision, 2020, https://www.semanticscholar.org/
paper/6c11bcd3f048d27826d9aee6403c2ef723d8a3c6.

[15] G.T. Einevoll, A. Destexhe, M. Diesmann, S. Grün, V. Jirsa, M. de Kamps, M. Migliore, T.V. Ness, H.E. Plesser and F. Schürmann, The Sci-
entific Case for Brain Simulations, Neuron 102(4) (2019), 735–744. http://www.sciencedirect.com/science/article/pii/S0896627319302909.
doi:10.1016/j.neuron.2019.03.027.

[16] X. Fan and H. Markram, A brief history of simulation neuroscience, Frontiers in Neuroinformatics 13 (2019). https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC6513977/. doi:10.3389/fninf.2019.00032.

[17] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, From data mining to knowledge discovery: An overview, in: Advances in Knowledge
Discovery and Data Mining, U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, eds, American Association for Artificial
Intelligence, 1996, pp. 1–34. ISBN 978-0-262-56097-9. http://dl.acm.org/citation.cfm?id=257938.257942.

[18] T. Furche, G. Gottlob, L. Libkin, G. Orsi and N.W. Paton, Data wrangling for big data: Challenges and opportunities, in: EDBT, 2016.
doi:10.5441/002/edbt.2016.44.

[19] E. Gibney, LHC plans for open data future, Nature 503(7477) (2013), 447. https://www.nature.com/articles/503447a. doi:10.1038/503447a.

https://www.aclweb.org/anthology/2021.naacl-main.278
https://www.aclweb.org/anthology/2021.naacl-main.278
https://doi.org/10.18653/v1/2021.naacl-main.278
https://doi.org/10.1109/TII.2015.2414355
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/10.1109/JBHI.2015.2450362
https://monash.figshare.com/articles/Research_Graph_Building_a_Distributed_Graph_of_Scholarly_Works_using_Research_Data_Switchboard/4742413
https://monash.figshare.com/articles/Research_Graph_Building_a_Distributed_Graph_of_Scholarly_Works_using_Research_Data_Switchboard/4742413
https://doi.org/10.4225/03/58c696655af8a
https://doi.org/10.1038/75556
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://doi.org/10.1038/533452a
https://papers.ssrn.com/abstract=1789749
https://doi.org/10.2139/ssrn.1789749
https://doi.org/10.1038/s41431-018-0160-0
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527819/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3527819/
https://doi.org/10.1126/scitranslmed.3001399
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1007/978-3-319-68204-4_4
https://exascale.info/assets/pdf/ceravolo2018jods.pdf
https://exascale.info/assets/pdf/ceravolo2018jods.pdf
https://doi.org/10.1007/s13740-018-0086-2
https://www.semanticscholar.org/paper/6c11bcd3f048d27826d9aee6403c2ef723d8a3c6
https://www.semanticscholar.org/paper/6c11bcd3f048d27826d9aee6403c2ef723d8a3c6
http://www.sciencedirect.com/science/article/pii/S0896627319302909
https://doi.org/10.1016/j.neuron.2019.03.027
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513977/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513977/
https://doi.org/10.3389/fninf.2019.00032
http://dl.acm.org/citation.cfm?id=257938.257942
https://doi.org/10.5441/002/edbt.2016.44
https://www.nature.com/articles/503447a
https://doi.org/10.1038/503447a

726 M.F. Sy et al. / Blue Brain Nexus

[20] R.S. Gonçalves and M.A. Musen, The variable quality of metadata about biological samples used in biomedical experiments, Scientific
Data 6(1) (2019), 1–15, https://www.nature.com/articles/sdata201921. doi:10.1038/sdata.2019.21.

[21] J. Gray, D.T. Liu, M. Nieto-Santisteban, A. Szalay, D.J. DeWitt and G. Heber, Scientific data management in the coming decade, SIGMOD
Rec. 34(4) (2005), 34–41. doi:10.1145/1107499.1107503.

[22] P. Haase, D.M. Herzig, A. Kozlov, A. Nikolov and J. Trame, metaphactory: A platform for knowledge graph management, Semantic Web
10(6) (2019), 1109–1125. doi:10.3233/SW-190360.

[23] T. Hammond, M. Pasin and E. Theodoridis, Data integration and disintegration: Managing Springer Nature SciGraph with SHACL and
OWL, in: Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks Co-Located with 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 23rd – to – 25th, 2017, N. Nikitina, D. Song, A. Fokoue and P. Haase, eds, CEUR
Workshop Proceedings, Vol. 1963, CEUR-WS.org, 2017. http://ceur-ws.org/Vol-1963/paper493.pdf.

[24] P.A. Harris, R. Taylor, B.L. Minor, V. Elliott, M. Fernandez, L. O’Neal, L. McLeod, G. Delacqua, F. Delacqua, J. Kirby and S.N. Duda, The
REDCap consortium: Building an international community of software platform partners, Journal of Biomedical Informatics 95 (2019),
103208. http://www.sciencedirect.com/science/article/pii/S1532046419301261. doi:10.1016/j.jbi.2019.103208.

[25] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global Data Space, Synthesis Lectures on the Semantic Web:
Theory and Technology, Morgan & Claypool. ISBN 978-1-60845-431-0. https://ieeexplore.ieee.org/document/6812934. doi:10.2200/
S00334ED1V01Y201102WBE001.

[26] S.L. Hill, How do we know what we know? Discovering neuroscience data sets through minimal metadata, Nature Reviews Neuroscience
17(12) (2016), 735–736. https://www.nature.com/articles/nrn.2016.134. doi:10.1038/nrn.2016.134.

[27] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G.D. Melo, C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, A.-
C.N. Ngomo, A. Polleres, S. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab and A. Zimmermann, Knowledge graphs, 2021,
p. 257. https://hal-emse.ccsd.cnrs.fr/emse-03440299. doi:10.2200/S01125ED1V01Y202109DSK022.

[28] F. Ilievski, D. Garijo, H. Chalupsky, N.T. Divvala, Y. Yao, C. Rogers, R. Li, J. Liu, A. Singh, D. Schwabe and P. Szekely, KGTK: A toolkit
for large knowledge graph manipulation and analysis, in: The Semantic Web – ISWC 2020, J.Z. Pan, V. Tamma, C. d’Amato, K. Janowicz,
B. Fu, A. Polleres, O. Seneviratne and L. Kagal, eds, Springer International Publishing, Cham, 2020, pp. 278–293. ISBN 978-3-030-62466-
8. doi:10.1007/978-3-030-62466-8_18.

[29] M.Y. Jaradeh, A. Oelen, K.E. Farfar, M. Prinz, J. D’Souza, G. Kismihók, M. Stocker and S. Auer, Open research knowledge graph: Next
generation infrastructure for semantic scholarly knowledge, 2019. arXiv:1901.10816 [cs]. doi:10.48550/arXiv.1901.10816.

[30] R. Kitchin, The real-time city? Big data and smart urbanism, GeoJournal 79(1) (2014), 1–14. doi:10.1007/s10708-013-9516-8.
[31] L. Koesten, P. Vougiouklis, E. Simperl and P. Groth, Dataset reuse: Toward translating principles to practice, Patterns 1(8) (2020), 100136.

https://www.sciencedirect.com/science/article/pii/S2666389920301847. doi:10.1016/j.patter.2020.100136.
[32] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature 521(7553) (2015), 436–444. https://www.nature.com/articles/nature14539.

doi:10.1038/nature14539.
[33] H. Markram, The Blue Brain Project, Nature Reviews Neuroscience 7(2) (2006), 153–160. https://www.nature.com/articles/nrn1848. doi:10.

1038/nrn1848.
[34] H. Markram, E. Muller, S. Ramaswamy, M.W. Reimann, M. Abdellah, C.A. Sanchez, A. Ailamaki, L. Alonso-Nanclares, N. Antille,

S. Arsever, G.A.A. Kahou, T.K. Berger, A. Bilgili, N. Buncic, A. Chalimourda, G. Chindemi, J.-D. Courcol, F. Delalondre, V. Delattre,
S. Druckmann, R. Dumusc, J. Dynes, S. Eilemann, E. Gal, M.E. Gevaert, J.-P. Ghobril, A. Gidon, J.W. Graham, A. Gupta, V. Haenel, E. Hay,
T. Heinis, J.B. Hernando, M. Hines, L. Kanari, D. Keller, J. Kenyon, G. Khazen, Y. Kim, J.G. King, Z. Kisvarday, P. Kumbhar, S. Lasserre,
J.-V. Le Bé, B.R.C. Magalhães, A. Merchán-Pérez, J. Meystre, B.R. Morrice, J. Muller, A. Muñoz-Céspedes, S. Muralidhar, K. Muthurasa,
D. Nachbaur, T.H. Newton, M. Nolte, A. Ovcharenko, J. Palacios, L. Pastor, R. Perin, R. Ranjan, I. Riachi, J.-R. Rodríguez, J.L. Riquelme,
C. Rössert, K. Sfyrakis, Y. Shi, J.C. Shillcock, G. Silberberg, R. Silva, F. Tauheed, M. Telefont, M. Toledo-Rodriguez, T. Tränkler, W. Van
Geit, J.V. Díaz, R. Walker, Y. Wang, S.M. Zaninetta, J. DeFelipe, S.L. Hill, I. Segev and F. Schürmann, Reconstruction and simulation
of neocortical microcircuitry, Cell 163(2) (2015), 456–492. https://www.cell.com/cell/abstract/S0092-8674(15)01191-5. doi:10.1016/j.cell.
2015.09.029.

[35] J.A. McMurry, N. Juty, N. Blomberg, T. Burdett, T. Conlin, N. Conte, M. Courtot, J. Deck, M. Dumontier, D.K. Fellows, A. Gonzalez-
Beltran, P. Gormanns, J. Grethe, J. Hastings, J.-K. Hériché, H. Hermjakob, J.C. Ison, R.C. Jimenez, S. Jupp, J. Kunze, C. Laibe,
N.L. Novère, J. Malone, M.J. Martin, J.R. McEntyre, C. Morris, J. Muilu, W. Müller, P. Rocca-Serra, S.-A. Sansone, M. Sariyar, J.L. Snoep,
S. Soiland-Reyes, N.J. Stanford, N. Swainston, N. Washington, A.R. Williams, S.M. Wimalaratne, L.M. Winfree, K. Wolstencroft, C. Goble,
C.J. Mungall, M.A. Haendel and H. Parkinson, Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to
maximize utility and impact of life science data, PLOS Biology 15(6) (2017), e2001414. doi:10.1371/journal.pbio.2001414.

[36] F.J. Montáns, F. Chinesta, R. Gómez-Bombarelli and J.N. Kutz, Data-driven modeling and learning in science and engineering, Comptes
Rendus Mécanique 347(11) (2019), 845–855. http://www.sciencedirect.com/science/article/pii/S1631072119301809. doi:10.1016/j.crme.
2019.11.009.

[37] M. Mountantonakis and Y. Tzitzikas, Large-scale semantic integration of linked data: A survey, ACM Computing Surveys 52 (2019), 1–40.
doi:10.1145/3345551.

[38] M. Musen, We face a new “Tragedy of the Commons.” The remedy is better metadata, CBIIT, 2017. https://datascience.cancer.gov/news-
events/blog/we-face-new-tragedy-commons-remedy-better-metadata.

[39] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson and J. Taylor, Industry-scale knowledge graphs: Lessons and challenges, Queue 17(2)
(2019), 20:48–20:75. doi:10.1145/3329781.3332266.

https://www.nature.com/articles/sdata201921
https://doi.org/10.1038/sdata.2019.21
https://doi.org/10.1145/1107499.1107503
https://doi.org/10.3233/SW-190360
http://ceur-ws.org/Vol-1963/paper493.pdf
http://www.sciencedirect.com/science/article/pii/S1532046419301261
https://doi.org/10.1016/j.jbi.2019.103208
https://ieeexplore.ieee.org/document/6812934
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
https://doi.org/10.2200/S00334ED1V01Y201102WBE001
https://www.nature.com/articles/nrn.2016.134
https://doi.org/10.1038/nrn.2016.134
https://hal-emse.ccsd.cnrs.fr/emse-03440299
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1007/978-3-030-62466-8_18
http://arxiv.org/abs/arXiv:1901.10816
https://doi.org/10.48550/arXiv.1901.10816
https://doi.org/10.1007/s10708-013-9516-8
https://www.sciencedirect.com/science/article/pii/S2666389920301847
https://doi.org/10.1016/j.patter.2020.100136
https://www.nature.com/articles/nature14539
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nrn1848
https://doi.org/10.1038/nrn1848
https://doi.org/10.1038/nrn1848
https://www.cell.com/cell/abstract/S0092-8674(15)01191-5
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1371/journal.pbio.2001414
http://www.sciencedirect.com/science/article/pii/S1631072119301809
https://doi.org/10.1016/j.crme.2019.11.009
https://doi.org/10.1016/j.crme.2019.11.009
https://doi.org/10.1145/3345551
https://datascience.cancer.gov/news-events/blog/we-face-new-tragedy-commons-remedy-better-metadata
https://datascience.cancer.gov/news-events/blog/we-face-new-tragedy-commons-remedy-better-metadata
https://doi.org/10.1145/3329781.3332266

M.F. Sy et al. / Blue Brain Nexus 727

[40] N. Polyzotis, S. Roy, S.E. Whang and M. Zinkevich, Data management challenges in production machine learning, in: Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, Event-Place: Chicago, Illinois, USA, ACM, 2017,
pp. 1723–1726. ISBN 978-1-4503-4197-4. doi:10.1145/3035918.3054782.

[41] N. Polyzotis, S. Roy, S.E. Whang and M. Zinkevich, Data lifecycle challenges in production machine learning: A survey, SIGMOD Rec.
47(2) (2018), 17–28. doi:10.1145/3299887.3299891.

[42] P. Ristoski and H. Paulheim, Semantic web in data mining and knowledge discovery: A comprehensive survey, Journal of Web Semantics
36 (2016), 1–22, http://www.sciencedirect.com/science/article/pii/S1570826816000020. doi:10.1016/j.websem.2016.01.001.

[43] M.R. Saeed, C. Chelmis and V.K. Prasanna, Extracting entity-specific substructures for RDF graph embeddings, Semantic Web (2019),
1–22. doi:10.3233/SW-190359.

[44] F. Schürmann, J.-D. Courcol and S. Ramaswamy, Computational concepts for reconstructing and simulating brain tissue, in: Computational
Modelling of the Brain: Modelling Approaches to Cells, Circuits and Networks, M. Giugliano, M. Negrello and D. Linaro, eds, Springer
International Publishing, Cham, 2022, pp. 237–259. ISBN 978-3-030-89439-9. doi:10.1007/978-3-030-89439-9_10.

[45] UniProt Consortium, UniProt: A worldwide hub of protein knowledge, Nucleic Acids Research 47(D1) (2018), D506–D515. doi:10.1093/
nar/gky1049.

[46] A.L. Vaccarino, M. Dharsee, S. Strother, D. Aldridge, S.R. Arnott, B. Behan, C. Dafnas, F. Dong, K. Edgecombe, R. El-Badrawi, K. El-
Emam, T. Gee, S.G. Evans, M. Javadi, F. Jeanson, S. Lefaivre, K. Lutz, F.C. MacPhee, J. Mikkelsen, T. Mikkelsen, N. Mirotchnick,
T. Schmah, C.M. Studzinski, D.T. Stuss, E. Theriault and K.R. Evans, Brain-CODE: A secure neuroinformatics platform for management,
federation, sharing and analysis of multi-dimensional neuroscience data, Frontiers in Neuroinformatics 12 (2018). doi:10.3389/fninf.2018.
00028.

[47] L. Vogt, R. Baum, P. Bhatty, C. Köhler, S. Meid, B. Quast and P. Grobe, SOCCOMAS: A FAIR web content management system that uses
knowledge graphs and that is based on semantic programming, Database 2019 (2019), baz067. doi:10.1093/database/baz067.

[48] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge graph embedding: A survey of approaches and applications, IEEE Transactions on
Knowledge and Data Engineering 29(12) (2017), 2724–2743. doi:10.1109/TKDE.2017.2754499.

[49] M.D. Wilkinson, M. Dumontier, I.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos,
P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone,
A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn,
M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao and
B. Mons, The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data 3 (2016), 160018. doi:10.1038/
sdata.2016.18.

[50] L. Zehl, S. Zafarnia, S. Köhnen, K. Andersson, M. Markovic, E. Legouée, C.H. Blixhavn, H. Kleven, X. Gui, P. Chervakov, O. Schmid,
S.D. Bell, T. Gillespie, M.B. Abrams, A.P. Davison, J.C. Muller, T.B. Leergaard, K. Amunts, J.G. Bjaalie and T. Dickscheid, Inte-
grating neuroscientific data into a unified database – From individual experiments to a standardized metadata collection using the Hu-
man Brain Project Neuroinformatics Platform, 2018. http://abstracts.g-node.org/abstracts/465d8b99-9137-4f14-9eec-3cec2bdfcf5c. doi:10.
12751/NNCN.BC2018.0236.

https://doi.org/10.1145/3035918.3054782
https://doi.org/10.1145/3299887.3299891
http://www.sciencedirect.com/science/article/pii/S1570826816000020
https://doi.org/10.1016/j.websem.2016.01.001
https://doi.org/10.3233/SW-190359
https://doi.org/10.1007/978-3-030-89439-9_10
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.3389/fninf.2018.00028
https://doi.org/10.3389/fninf.2018.00028
https://doi.org/10.1093/database/baz067
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
http://abstracts.g-node.org/abstracts/465d8b99-9137-4f14-9eec-3cec2bdfcf5c
https://doi.org/10.12751/NNCN.BC2018.0236
https://doi.org/10.12751/NNCN.BC2018.0236

	Introduction
	Motivation and background
	Data-driven science challenges
	Knowledge graphs for research data management

	Blue Brain Nexus overview
	Services
	User interfaces
	Utilities

	Nexus Delta
	System design
	Resource-centric RESTful API
	Authentication and authorization
	Data validation
	Data storage
	Data access and sharing through views
	Extension points
	Synthetic benchmarks

	User interfaces
	Nexus Fusion
	Nexus Forge

	Seminal use case: supporting biologically detailed simulation of the rodent brain at Blue Brain
	Adoption of Blue Brain Nexus
	Knowledge graph for neuroscience data at the Human Brain Project
	Integrated clinical and research data management at the Krembil Centre for Neuroinformatics
	Research Data Connectome Project
	Adoption discussion

	Conclusion and future directions
	Code, user and developer resources availability
	Author contributions
	Funding
	Conflict of interest statement
	Supplementary data
	Acknowledgements
	References

