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Abstract

The function of the neocortex is fundamentally determined by its repeating microcircuit motif, but
also by its rich, hierarchical, interregional structure with a highly specific laminar architecture. The
last decade has seen the emergence of extensive new data sets on anatomy and connectivity at the
whole brain scale, providing promising new directions for studies of cortical function that take into
account the inseparability of whole-brain and microcircuit architectures. Here, we present a data-
driven computational model of the anatomy of non-barrel primary somatosensory cortex of juvenile
rat, which integrates whole-brain scale data while providing cellular and subcellular specificity.
This multiscale integration was achieved by building the morphologically detailed model of cortical
circuitry embedded within a volumetric, digital brain atlas. The model consists of 4.2 million
morphologically detailed neurons belonging to 60 different morphological types, placed in the non-
barrel subregions of the Paxinos and Watson atlas. They are connected by 13.2 billion synapses
determined by axo-dendritic overlap, comprising local connectivity and long-range connectivity
defined by topographic mappings between subregions and laminar axonal projection profiles, both
parameterized by whole brain data sets. Additionally, we incorporated core- and matrix-type
thalamocortical projection systems, associated with sensory and higher-order extrinsic inputs,
respectively. An analysis of the modeled synaptic connectivity revealed a highly nonrandom
topology with substantial structural differences but also synergy between local and long-range
connectivity. Long-range connections featured a more divergent structure with a comparatively
small group of neurons serving as hubs to distribute excitation to far away locations. Taken
together with analyses at different spatial granularities, these results support the notion that local
and interregional connectivity exist on a spectrum of scales, rather than as separate and distinct
networks, as is commonly assumed. Finally, we predicted how the emergence of primary sensory
cortical maps is constrained by the anatomy of thalamo-cortical projections. A subvolume of the
model comprising 211,712 neurons in the front limb, jaw, and dysgranular zone has been made
freely and openly available to the community.
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1 Introduction

Previously, we introduced a biologically detailed model of neocortical microcircuitry of the juvenile
rat (NMC, Markram et al. (2015)), which has since been the basis of several studies on cortical
structure (Gal et al., 2017), function (Nolte et al., 2019) and their relation (Reimann et al., 2017,
2022; Nolte et al., 2020; Gal et al., 2021). The NMC model comprises over 31,000 neurons of
55 morphological types across six layers, assembled in a volume of 0.29mm3. Synapses in this
model were instantiated at a subset of axo-dendritic appositions, and models of stochastic synap-
tic transmission with facilitating, depressing or pseudo-linear short-term dynamics were assigned
based on the combination of pre- and post-synaptic neuron types. The electrical behaviors of
207 morpho-electrical types were modeled to match numerous in vitro recordings (Ramaswamy
et al., 2015), and an electrical type was assigned to each neuron according to a composition recipe
derived from biological data.

The defining feature of the NMC model is its unusually high level of biological detail, which
allowed its direct parameterization with available experimental data. As a consequence, many
measurable physical and biological quantities have direct correspondences in the model. For ex-
ample, every single synapse has not only physiological parameters associated with it, but also
a physical location on the axon and dendrite of its pre- and post-synaptic neuron. This allows
for powerful in silico experiments, such as comparisons to electron microscopy reconstructions
(Markram et al., 2015).

However, this also means that the NMC model represents only what it seeks to model closely:
an isolated cortical microcircuit. As such, without the vast majority of its synaptic and neuromod-
ulatory inputs, its activity would not resemble a plausible cortical state (Mei et al., 2022; Lee and
Dan, 2012). While we were able to simulate in vivo-like (asynchronous sparse) activity through
artificial depolarization and mimicking the effects of extracellular calcium (Markram et al., 2015),
we cannot expect more complex emergent phenomena that would require, for example, inter-region
connectivity and feedback connections (Felleman and Van Essen, 1991; Shepherd and Yamawaki,
2021). Tackling questions related to such phenomena will therefore require a larger model that
explicitly contains different regions and the connections between them.

For this reason, we set out to build a new model, based on the NMC model, but at a larger
scale, covering the entirety of the non-barrel primary somatosensory cortex (nbS1 ) of juvenile rat.
Beyond the increase in scale, this new model includes additional morphological and physiological
data, as well as many other additional details and improvements. We decided to exclude the barrel
cortex from this model, as its specific anatomical architecture and morphological specificity are
not readily modeled with our toolchain.

In this manuscript, we will explain the improvements to the anatomical aspect of the model,
including data sources and modeling techniques that we have developed. Upcoming manuscripts
will focus on refinements of the physiology of the model and emergent dynamics, and an open
web resource providing access to the experimental datasets used and the constituent computa-
tional models. First, instead of a simplified hexagonal volume that defined the NMC model, we
embedded the nbS1 model within a volumetric atlas, thereby taking into account the actual ge-
ometry of the somatosensory regions in the rat neocortex (Bolaños-Puchet and Reimann, prep).
Second, we increased the number of morphological neuron reconstructions and validated their
expert classification using an objective method. Third, to model synaptic connectivity at the
increased spatial scale, we adapted an algorithm for long-range connectivity to place additional
synapses (Reimann et al., 2019). Fourth, to model bottom-up synaptic inputs, we placed both
core- and matrix -type thalamo-cortical projections. Such core and matrix-type projections are
observed across the cortex, and are exemplified respectively by the inputs into barrel cortex from
the ventral posteromedial nucleus (VPM) and posterior medial nucleus (POm) of the thalamus
(Harris et al., 2019; Shepherd and Yamawaki, 2021).
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By characterizing and contrasting the local and long-range synaptic connectivity, we found
distinctly non-random features across both scales. But interestingly, we also found qualitative
differences between them: Local connectivity was more homogeneous, while long-range connectiv-
ity features a small number of neurons with a high out-degree distributing excitation to distant
regions. High-dimensional directed simplices in the local connectivity – a specific type of directed
neuron motif (Reimann et al., 2017) – formed a highly distributed skeleton, while long-range con-
nectivity significantly reduced the graph distances between individual motifs. We used thalamo-
cortical projections placed in the model to predict from anatomical grounds the assemblies of
neurons that are likely to fire together, based on their common innervation by thalamo-cortical
afferents. This way, we were able to predict how certain anatomical factors (laminar profiles of
innervation, neuronal morphologies and their placement) provide an initial constraint on the emer-
gence of neuronal assemblies in all layers in terms of their scale, and of their spatial separation.
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2 Methods

The workflow for modeling the anatomy of juvenile rat nbS1 is based on the work described in
Markram et al. (2015), with several additions and refinements. The individual steps and data
sources have already been independently described and validated in separate publications (Table
1). Here, we aim to provide an overview of these methods, how we fulfilled their input data re-
quirements, and how we combined them to assemble a single, coherent anatomical circuit model.
This is then followed by an analysis of the emergent anatomical structure.
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Figure 1: Overview of the model building workflow, showing input data and modeling steps per-
formed at each stage, and data generalization strategies followed. A. Input data: (A1) Digital atlas
of rat somatosensory cortex, enhanced with additional spatial information, and cell density layer
profiles for all morphological types; (A2) Reconstructed neuronal morphologies from both in vivo
(top) and slice (bottom) experiments, which undergo a repair process; (A3) Bouton densities and
numbers of synapses per connection in local connections, and a parameterization of subregion-
to-subregion connectivity in terms of strength, topographical structure and layer profiles; (A4)
Reconstructed thalamo-cortical axons, and layer profiles of bouton densities of thalamo-cortical
axons. B. Modeling steps: (B1) Generation of cell density atlases; (B2) Morphological classifi-
cation of neurons, and placement in atlas space according to their densities and under spatial
constraints; (B3) Definition of synaptic connectivity as the combination of: local connectivity,
based on axonal appositions, and long-range connectivity, parameterized in the form of volumet-
ric targets of individual neurons; (B4) Volumetric placement of thalamo-cortical synapses assigned
to individual thalamic fibers. C. Data generalization strategies from: (C1) Hindlimb (S1HL) and
barrel field (S1BF) subregions to the whole nbS1, indicated by a star in A; (C2) Adult to juvenile
(P14) rat, indicated by a hexagon in A; (C3) Mouse to rat, indicated by a diamond in A.

An overview of the stages in the model building workflow is outlined in Figure 1. We began
by preparing a digital atlas of juvenile rat somatosensory cortex, based on the classic work of
Paxinos and Watson (2007) (Fig.1 A1). The atlas provides region annotations, i.e., each voxel is
labeled by the somatosensory subregion it belongs to. It was further enhanced with spatial data
on cortical depth and local orientation towards the cortical surface (Bolaños-Puchet and Reimann,
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prep). Using data on layer profiles of cell densities, we generated additional atlas datasets with
cell densities for each morphological type (Fig.1 B1).

Input data
Stage Topic Reference

Atlasing Region annotation atlas Paxinos and Watson (2007)
Orientation, depth and flat map Bolaños-Puchet and Reimann (prep)
Cell density profiles Keller et al. (2019)

Volume filling Neuron reconstructions Markram et al. (2015)
in vivo neuron reconstructions *New, original data

Synaptic connectivity
Bouton densities and numbers

Reimann et al. (2015)of synapses per connection
Pathway strengths,

*Reimann et al. (2019)synapse density profiles and
topographical mapping

Thalamic inputs Bouton density profiles Meyer et al. (2010)
Projection axon lengths and widths Economo et al. (2016)

Modeling methods
Stage Topic Reference

Atlasing Cell density volume generation Keller et al. (2019)

Volume filling Neuron classification Kanari et al. (2019)
Neuron placement *Markram et al. (2015)

Synaptic connectivity Local connectivity Reimann et al. (2015)
Inter-region connectivity Reimann et al. (2019)

Thalamic inputs Input generation *Markram et al. (2015)

Table 1: References to publications of input data and methods employed for individual modeling
steps. An asterisk next to a reference indicates that substantial adaptations or refinements of the
data or methods have been performed that will be explained in this manuscript. In the other
cases, a basic summary will be provided.

Next, we filled the modeled volume of the atlas with neurons. Neuronal morphologies were
reconstructed, either in vivo or in slices (Fig. 1A2), and repaired algorithmically (Anwar et al.,
2009; Markram et al., 2015). These morphologies were classified into morphological types, based
on expert knowledge and objectively confirmed by topological classification. Then, cell bodies
for all morphological types were placed in atlas space according to their prescribed cell densities
(Fig. 1B2). At each soma location, a reconstruction of the corresponding morphological type was
chosen based on the size and shape of its dendritic and axonal trees. The selection ensured that
manually identified features of these trees landed in the correct layers.

Next, the dendritic locations of chemical synapses between neurons were determined using the
combined outputs of two connectome modeling algorithms (Fig. 1B3). For local connections with
a range of up to approximately 500µm, we used an algorithm that assigns synaptic locations from
an anatomically constrained subset of axo-dendritic appositions (Reimann et al., 2015). For long-
range connections between subregions, we adapted an algorithm originally developed for mouse
whole-isocortex connectivity (Reimann et al., 2019).

Finally, the dendritic locations of synaptic inputs from thalamic sources were determined using
experimental data on layer profiles of bouton densities of thalamo-cortical axons, and morpho-
logical reconstructions of these types of axons (Fig. 1A4). We modeled two types of thalamic
inputs (Fig. 1B4), based on the inputs into barrel cortex from the ventral posteromedial nucleus
(VPM) and from the posterior medial nucleus (POm) respectively (Harris et al., 2019; Shepherd
and Yamawaki, 2021). While barrel cortex was not a part of the model, we used these projections
as examples of a core-type projection, providing feed-forward sensory input (VPM) and a matrix -
type projection, providing higher-order information (POm).
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2.1 Data sources and strategies

The somatosensory cortex comprises about 72mm3 of the juvenile rat brain, allowing for sub-
stantial internal anatomical variability. We based our modeling methods around a high-resolution
digital brain atlas, and algorithms that consider individual subregions, voxels or even individual
neurons, thus giving us the ability to potentially capture such variability. Fully parameterizing
these algorithms would require substantial amounts of biological data that was not always readily
available. Because of this, we used data generalization strategies to compensate for missing infor-
mation (Fig. 1C). For some modeling steps, we pooled data from nearby somatosensory regions,
or did a generalization from the previously modeled hindlimb region (Markram et al., 2015) to
the entire model (Fig. 1A, C1, stars). Additionally, we decided to use or adapt adult rat data for
use in the juvenile rat model (Fig. 1A, C2, hexagons), or to adapt mouse data to the rat model
(Fig. 1A, C3, diamonds) due to its higher availability.

In the following sections, we describe our strategies for fulfilling the data requirements of each
stage and the generalizations we made. In the future, additional or more specific data can be
included in each step.

2.1.1 Data on region geometry

First and foremost, the departure from a simplified hexagonal geometry (as in the NMC model
Markram et al. (2015)), required a digital brain atlas defining the anatomy of the region. To that
end, we took as starting point the Paxinos and Watson (2007) adult rat brain atlas, processed
individual digitized slices, aligned them and labeled them to assemble a smooth three-dimensional
volume with region annotations. The resulting atlas was then scaled down from the dimensions
of adult rat to juvenile (P14) rat brain by reducing the size of individual voxels from 40µm to
38.7348µm. The scaling factor was based on the ratio of S1HL thicknesses at those ages (2082µm
for juvenile vs. 2150µm for adult). Finally, supplementary atlas datasets were generated as
described in Bolaños-Puchet and Reimann (prep). These datasets provide additional spatial in-
formation required to ensure biologically accurate placement and orientation of dendritic trees
(see below). First, the normalized cortical depth (between 0 and 1) at each point; second, the
local orientation as a vector pointing towards the cortical surface at each point; third, the total
cortical thickness at each point, i.e., the length of the shortest path from the cortical surface to
the bottom of layer 6 passing through that point (Fig. 1A1).

Additionally, we followed Bolaños-Puchet and Reimann (prep) to produce a flat map of so-
matosensory regions, that is, a coordinate transformation associating each voxel with a two-
dimensional projection into the plane. This can be used to create a flat view of region annotations
that is crucial for the description of the topographical mapping of long-range synaptic connectivity
(see below). In short, to produce the flat map, a projection surface was defined by reconstructing
a mesh from all points at a relative cortical depth of 0.5. Next, the local orientation field in the
supplementary atlas was numerically integrated, yielding streamlines that were used to project
each voxel center onto the projection surface. Finally, the projection surface was flattened with
an authalic (area-preserving) algorithm. The main property of the resulting flat map is that in
any flat view derived from it, each pixel represents a subvolume of cortex that spans all layers,
akin to a cortical column.

2.1.2 Data on cell densities

Inhibitory cell densities were constrained following Keller et al. (2019). In brief, several datasets
were combined to provide depth profiles of densities for successively more granular neuron classes
(Fig. 2). The first dataset consists of neuronal soma density estimations, using antibody stains
of neuronal nuclear protein (NeuN) and γ-aminobutyric acid (GABA) from rat neocortex (n =
6, Keller et al. (2019)). Cell counts provided mean densities and a measure of inter-individual
variability (Markram et al., 2015). Cell counts were obtained from a single rat in this dataset, and
their positions were annotated and divided into 100 equal-width bins extending from the top of
layer 1 (L1) to the bottom of layer 6 (L6) (Keller et al., 2019). This provided depth profiles of both
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total neuron (from NeuN) and inhibitory neuron densities (from GABA). A similar profile was
also estimated from immunostaining with calbindin (CB), calretinin (CR), neuropeptide Y (NPY),
parvalbumin (PV), somatostatin (SOM) and vasoactive intestinal peptide (VIP) (at least three
slices from at least two rats) (Keller et al., 2019). All stains were corrected for shrinkage (Ghobril,
2015). A single-neuron reverse transcription polymerase chain reaction (RT-PCR) dataset (Toledo-
Rodriguez et al., 2005) allowed mapping of biochemical markers to morphological types, by finding
spatial distributions of morphological cell types that would reproduce the biochemical marker
distribution (Keller et al., 2019). Whenever the classification could not be resolved down to
morphological types (i.e., excitatory cells, neurogliaform cells, L1 cells, etc.), an estimation of the
fractions of subtypes was used (Muralidhar et al., 2014). The depth profile of excitatory neuron
densities was further subdivided into subtypes, maintaining the same layerwise proportions of
these types as in previous work (Markram et al., 2015). The final output of this process was a
dataset of neuron density as a function of cortical depth for each of the 60 morphological types
(Table S1, see Sec. 2.2.2 for details on determining morphological types).
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Figure 2: Derivation of neuron density depth profiles. Left: A vertical profile of neuron densities,
calculated from antibody stains of neuronal nuclear protein (NeuN). From left to right: Neuron
densities in each bin are split into individual morphological types through antibody stains for
various markers (blue boxes) and an established mapping of markers to types (green), or by
applying established neuronal compositions (red). Information in this flow diagram is illustrative,
not quantitative.

2.1.3 Data on neuronal morphologies

The rat nbS1 model consists of approximately 4.2 million neurons. In order to populate this brain
region with detailed morphologies, a large number of neuronal reconstructions is required. How-
ever, even the most accurate reconstructions from brain slices cannot represent the total axonal
mass accurately, as branches outside the slice are lost. By constrast, in vivo reconstructions offer
a more complete picture of the axons in terms of their total extents and branching structure.
For this reason, neuronal reconstructions were collected with two techniques: neurons were either
filled with biocytin in a brain slice and reconstructed (Markram et al., 2015), or were filled with
a fluorescent dye in vivo and reconstructed (Buzás et al. (1998); Karube and Kisvárday (2011),
see Supplementary Methods). In total 1,017 unique reconstructions were used, 896 of which were
previously used in Markram et al. (2015), 63 were new in vitro reconstructions, and 58 were new
in vivo reconstructions. A topological comparison (Kanari et al., 2018, 2019) between axons and
dendrites of neurons in all layers (Fig. S1) revealed that in vitro reconstructions from slices could
not capture detailed axonal properties beyond 1000µm (Fig. S1A), but could faithfully reproduce
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dendritic arborization (Fig. S1B). Thus, the inclusion of in vivo reconstructions of axons is cru-
cial for the accurate representation of the neuropil and will consequently provide a more precise
approximation of the connectivity of the somatosensory cortex.

Neuronal morphologies vary significantly across different regions of the neocortex (prefrontal,
parietal, occipital), especially with respect to the shape of their axons. However, within the
parietal cortex, and more specifically within nbS1, neuronal morphologies share similar properties
due to the similarity of layer composition and cortical thickness (Radnikow and Feldmeyer, 2018;
Scala et al., 2019). As a result, cell types and neuronal reconstructions extracted from the hindlimb
region are suitable to populate the entire nbS1. While there are the known differences in the barrel
cortex (Narayanan et al., 2017), this region is not part of the model.

2.1.4 Data on synaptic connectivity

To determine the structure of synaptic connectivity between neurons, data on numbers of synapses
and their locations were required. Previous data for mean bouton densities on axons of various
neuron types, and number of synapses per connection (Reimann et al., 2015), were used and gen-
eralized to all nbS1 subregions. Similar to neuronal morphologies (see above), there is no evidence
for anatomical differences in connectivity between nbS1 subregions, with the exception of barrel
cortex (not included in the model). However, due to the larger spatial scale of the present model
compared to Markram et al. (2015), additional data was required to further constrain synaptic
connectivity at a global scale. To that end, we referred to data on relative strengths of synaptic
connections from the Allen Mouse Brain Connectivity Atlas (Harris et al., 2019), and generalized
it for use with a rat model.

We began by scaling the relative connection densities of Harris et al. (2019) to absolute densities
in units of synapses per µm3. That is, the entire voxel-to-voxel connection matrix of intra-
cortical connectivity was scaled to match the average total density of synapses measured in electron
microscopy (Schüz and Palm, 1989).

Next, we summed the densities over voxels belonging to pairs of nbS1 subregions, resulting
in a 6 x 6 connection matrix of synapse densities in pathways between and within regions. We
mapped this matrix to rat nbS1 by finding corresponding regions in the mouse and rat atlases
(Fig. 3A). Here, we assumed that synapse densities in these pathways are comparable between
mouse and rat, although the larger dimensions of the rat brain resulted in larger absolute synapse
counts (Fig. 3C).

We used the same mapping to generalize the spatial structure of the targeting of connections
between regions from mouse to rat. This refers to the question of which specific parts of a region
are innervated by individual axons in a different region. Reimann et al. (2019) modeled this inner-
vation as a topographical mapping between pairs of regions in a flat view of neocortex. We used
a flat map (see Sec. 2.1.1) to create a flat view of rat nbS1 subregions and recreated a matching
topographical mapping between them as follows (see Fig. 3A). First, three points were identified
inside the flat view of a mouse region such that the area of the enclosed triangle is maximized.
Color labels (“red”, “green” and “blue”) are arbitrarily assigned to the three points. Next, another
three points defining a maximal area triangle were placed in the flat map of the corresponding
rat region(s). The same color labels were then manually assigned to these points to best recreate
their spatial context in the mouse triangle, e.g., if the point in SSp-n closest to the SSp-bfd border
was labeled “red”, then the point in S1ULp closest to the S1BF border will also be labeled “red”.
We then assume that any point in a rat region corresponds to the equally labeled point in the
corresponding mouse region, with linear interpolation and extrapolation between points (Fig. 3B).
This assumption transplants the existing prediction of the topographical mapping from mouse to
rat, resulting in the mapping depicted in Fig. 3D.

Finally, we derived predictions for the relative distributions of synapse locations across cortical
layers for connections between subregions. Reimann et al. (2019) provided predictions for all pairs
of source and target regions in mouse, which we applied to the corresponding pairs of subregions
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Figure 3: Data sources for connectivity modeling. A: Mapping from mouse to equivalent
rat subregions. Left: flat view of mouse somatosensory subregions, Right: equivalent flat view
for rat. Corresponding subregions are indicated with matching colors. Triangles are drawn on
top of each subregion (shown for SSp-ul and S1FL) using manually annotated points that are
assumed to correspond to each other. Inset: These triangles define affine transformations between
mouse and rat subregions. B: Transformed rat subregions (colored outlines) are shown overlaid to
their corresponding mouse subregions (colored areas). The topographical mapping of connections
between subregions predicted in Reimann et al. (2019) (black arrows) can thus be generalized
to rat connectivity. C: Mean connection densities between rat somatosensory subregions were
derived from the Allen Mouse Brain Connectivity Atlas by summing over corresponding mouse
somatosensory subregions. Labels on the left side of the connection density matrix describe the
mapping applied from mouse to rat subregions. D: Generalized topographical mapping resulting
from the process illustrated in B. Equally colored points are predicted to predominately connect
to each other. E: Similarly, predicted layer profiles of connections between subregions (Reimann
et al., 2019) are generalized from mouse (E1) to rat (E2).

of rat nbS1. That is, we assumed these layer profiles generalize to rat, albeit using the thicker
cortical layers of rats (Fig 3E1 vs. E2).

2.1.5 Data on thalamo-cortical inputs

As previously described in Markram et al. (2015), we aimed to add synaptic connections from
thalamic regions to the circuit model. While they will ultimately serve as one of the controllable
inputs for the simulation of in vivo-like experiments, they can also be used to make predictions
of innervation strengths in our anatomical model. Specifically, we modeled two such inputs: one
”bottom-up” input with a core-type laminar profile, and one ”top-down” input with a matrix -type
laminar profile (Harris et al., 2019; Guo et al., 2020; Shepherd and Yamawaki, 2021). In order
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to create biologically realistic thalamo-cortical projections with a meaningful distinction between
core- and matrix-type inputs, we needed data on the strengths of these pathways and the laminar
profiles of their synapses.
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Figure 4: Input data for the derivation of the locations of thalamic inputs. A1: Layer
profile of bouton densities of VPM axons in the rat barrel field. Light red: Digitized from Meyer
et al. (2010). Dark red: Binned into 20 bins per peak with a lower cutoff of 1/mm3 applied. A2:
Same for POm axons. B: Total length of 11 reconstructed axons of Janelia MouseLight neurons
with somas in VPM in various somatosensory subregions. Dashed line: Median C: Standard
deviation of a Gaussian fit of the reconstruction points of the same axons around their centroid
in somatosensory areas. Dashed line: Median

As in Markram et al. (2015), we used data on the cortical innervation by thalamic sources
from Meyer et al. (2010), which yielded information on the depth profiles of thalamo-cortical
projections. We considered data for the VPM-S1BF pathway in as representative for core-type
inputs, and generalized it to all nbS1 regions (Fig. 4A1, left). Similarly, we considered data for the
POm-S1BF pathway as representative of matrix-type inputs (4A2, left), and generalized it to all
nbS1 regions. Since the data is reported as absolute volumetric bouton density of thalamo-cortical
axons, we were able to derive the total number of synapses to place by assuming one synapse per
bouton and summing over the entire innervated volume. The depth profiles for both pathways fea-
tured two clearly separated peaks. We digitized the depth profiles and split them into 10 bins per
peak. Furthermore, we applied a threshold of 0.01/µm3 below which values were set to 0 (Fig 4A).

Additionally, to constrain the innervation strength and targeting of individual thalamic axons,
we used morphological reconstructions of thalamo-cortical projection neurons from the Janelia
MouseLight project (mouselight.janelia.org; Economo et al. (2016)). This is a generalization of
mouse data to a rat model, made necessary by the lack of a comparable resource for rat. To
parameterize core-type projections, we calculated the total axonal length in somatosensory areas
of n = 11 reconstructions with somata in VPM and axons reaching the somatosensory areas.
We found lengths between 5 and 60 mm (Fig. 4 B) with a median of 27 mm that we combined
with an assumed synapse density of 0.2/µm Reimann et al. (2015) to get an average number
of 5400 synapses per projection fiber. To estimate of the lateral spread of the area innervated
by individual axons (the vertical component is covered by the layer profiles), we considered the
locations of reconstructed axon segments contained within the somatosensory regions. We then
fit a Gaussian to the lateral distance of the segments from their center (Fig. 4C), resulting in a
median value of 120µm.

Unfortunately, the MouseLight database contained only a single neuron with soma in the POm
region and axon reaching somatosensory areas (labeled as AA604), and visual inspection revealed
that its axon mostly avoided these areas and to target more medial motor-related regions. As
such, to parameterize the matrix-type projections, we instead calculated the lateral spread of the
single axon in the motor areas (300µm in MOp; 172µm in MOs; mean: 236µm). Its total length
in cortical regions was 28 mm.
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2.2 Reconstruction workflow and algorithms

2.2.1 Voxelized neuronal composition

To prepare the modeled volume for cell placement, we first associated each voxel of the atlas with
a cortical layer. We assumed layer boundaries to be at the same normalized depth at each point
of the region. The depths, derived from Markram et al. (2015), are listed in Table S2. As a voxel
atlas of normalized depths was provided as an input, layer identities could be readily looked up
from that table. Similarly, neuron densities for each voxel of the atlas were produced from the
vertical density profiles that served as inputs (see Sec. 2.1.2) by looking up the corresponding
values using the normalized depth.

2.2.2 Neuron morphologies and their classification

All morphological neuron reconstructions (see Section 2.1.3) were curated and repaired to correct
reconstruction errors and slicing artifacts, as described in Markram et al. (2015). They were
then classified based on the following strategy. Both interneurons and pyramidal cells were first
classified by expert reconstructors according to their observed shapes by inspection through the
microscope. The expert classification of pyramidal cells, which is based on the shape of the apical
dendrites, was then used as input for the training of the algorithms for the objective classification
as presented in Kanari et al. (2019). The objective classification was performed based on the topo-
logical morphology descriptor (TMD) (Kanari et al., 2018), which encodes the branching structure
of neuronal trees. The TMD of apical trees was extracted from all morphological reconstructions
and was used to train a decision tree classifier for the objective classification of cells into dis-
tinct groups. See Fig. S2 for exemplary excitatory morphologies and their features. Conversely,
interneurons have been classified by experts based on their axonal shapes and therefore the topo-
logical morphology descriptor of dendrites could not be applied for the objective classification of
interneurons.

The expert-proposed scheme comprised 60 morphological types (m-types) (18 excitatory and
42 inhibitory). The m-types of pyramidal cells are distinguished first by layer and further by
shape of their tuft, such as untufted (UPC) and tufted (TPC) cells; and finally into subclasses
(A:large tufted, B:late bifurcating, C:small tufted). The results of the objective classification of
pyramidal cells were then used to validate this classification scheme. A classification scheme was
deemed valid if the TMD was significantly different between classes. This was the case for classes
in all layers except for a distinction between two subgroups in layer 3 (L3 TPC:A vs. L3 TPC:B),
which was consequently discarded. Instead we performed an unsupervised clustering of all tufted
pyramidal cells in layer 3 based on their TMD and found a different split into two classes, best
described as large tufted (L3 TPC:A) and small tufted (L3 TPC:C), which we then used in the
model. The resulting list of m-types is found in Table S1.

In the remaining layers the results of the objective classification were used to validate the
class assignments of individual pyramidal cells. We found the objective classification to match the
expert classification closely (i.e., for 80–90% of the morphologies). Consequently, we considered the
expert classification to be sufficiently accurate to build the model. To increase the morphological
variability in the model we combined axon reconstructions with soma and dendrite reconstructions
from other neurons of the same m-type (mix & match; Markram et al. (2015)).

2.2.3 Volume atlasing and neuron placement

Neurons were placed into the volume by first generating soma positions and annotating them
with a morphological type according to the voxelized densities generated. Next, for each location
we selected a reconstructed morphology from the annotated morphological type. As previously
(Markram et al., 2015), we tried to select an appropriate reconstruction taking also the variability
within a morphological type into account. For instance, the largest exemplars of layer 5 pyramidal
cells cannot be placed close to the top of the layer, as otherwise their tuft would stick out of the
top of layer 1. We selected morphologies by scoring them according to how well manually identi-
fied features, such as dendritic tufts or horizontal axonal branching, would land in the biologically
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appropriate layers, when placed at any given location. The placement rules that were used were
the same as in Markram et al. (2015) and are listed in Table S3.

Previously, this process was aided by the use of a simplified geometry where layer boundaries
were formed by parallel planes. To execute the algorithm in a realistic brain volume, we used
auxiliary voxel atlasses (see Sec. 2.1.1; (Bolanos-Puchet and Reimann, 2022)). The first atlas
contained for each voxel the normalized depth of its center point, i.e., a value between 0 and 1
where 0 would indicate its placement at the top of layer 1 and 1 the bottom of layer 6. The second
atlas contained for each voxel the total thickness of the cortex at that location. As layer boundaries
in the model were always placed at fixed normalized depths (Table S2), we could calculate the
absolute distance of the voxel to any layer boundary by subtracting their normalized depths and
multiplying the result with the local cortical thickness. Based on this, we calculated the overlap
of the dendritic and axonal features of a candidate morphology with the target layer interval (Fig.
S3). Morphology selection was then performed as previously (Markram et al., 2015), that is, a
morphology was selected randomly from the top 10% scorers for a given position.

2.2.4 Modeling the structure of synaptic connectivity

As mentioned above, the data we used to constrain connectivity comprised data on the structure
of local connectivity, such as bouton densities and the mean number of synapses per connection,
was previously collected in Reimann et al. (2015); Markram et al. (2015). Larger-scale data were
generalized from mouse, including the total mean densities of synapses in connection between
regions, their topographical mapping and layer profiles.

We used this data in a previously introduced algorithm (Reimann et al., 2015) that models the
structure of synaptic connectivity as a subset of axo-dendritic and axo-axonal appositions, after
reconstructed neuron morphologies have been placed in a modeled volume (Markram et al., 2015).
This method has been demonstrated to result in nonrandom features matching biology (Reimann
et al., 2015; Gal et al., 2017). It explicitly determines the number of synapses in any part of the
model by the amount of axonal length present, using biological data on mean bouton densities.
As such, it relies on the axons placed in the model being complete and reaching to the biologically
accurate locations. While we try to ensure the completeness of axonal arborizations through the
use of in vivo reconstructions and repair algorithms, this becomes more challenging, the more an
axon stretches away from its soma, due to lack of dye penetration and potentially slicing artifacts.
We also ensure that local axonal arborizations reach the biologically appropriate layers (see sec-
tion 2.2.3 above). However, in addition to their local arborization, some cortical neurons feature
longer-reaching branches that stretch to neighboring cortical locations with apparent specificity
(Livingstone and Hubel (1983), Fig. 5A, red ellipses).

Taken together, this indicates that the apposition-based approach, while valid for local connec-
tivity within a few hundreds of µm laterally, cannot be relied on for more long-ranged connectivity.
We therefore decided to model connectivity as the union of synapses placed by two different al-
gorithms: the apposition-based one, and a previously published algorithm (Reimann et al., 2019)
that performs better for long-range connections. We will refer to the synapses and connections
resulting from either algorithm as the local connectome and long-range connectome respectively.

Briefly, the algorithm of (Reimann et al., 2019) places long-range synapses according to three
biological principles that all need to be separately parameterized: First, connection strength: en-
suring that the total number of synapses in a region-to-region pathway matches biology. Second,
layer profiles: ensuring that the relative number of synapses in different layers matches biology.
Third, topographical mapping: Ensuring that the specific locations within a region targeted by
long-range connections of neurons describe a biologically parameterized, topographical mapping.

To parameterize connection strengths, we used data provided by the Allen Institute (Harris
et al., 2019), adapted from mouse to rat as described above (see Sec. 2.1.4), yielding expected den-
sities of projection synapses between pairs of regions (Fig. 3C). First, we addressed the question of
to what degree the apposition-based algorithm suffices to model the connectivity within a region.
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Figure 5: Connectivity modeled as union of local and long-range connectivity. A: An
exemplary layer 5 PC axon reconstruction shown in the context of mouse somatosensory regions,
rendered in the Janelia MouseLight neuron browser (mouselight.janelia.org, Gerfen et al. (2018)).
The blue circle highlights local branches all around the soma. Red highlights depict more targeted
collaterals into neighboring regions. B1: Predicted pathway strengths as indicated in Figure
3C3. B2: Pathway strength emerging from the application of the apposition-based connectivity
algorithm described in Reimann et al. (2015). C: Values of the diagonal of (B1) compared to
the diagonal of (B2). D: Schematic of the strategy for connectivity derivation: Within a region
only apposition-based connectivity is used; across regions the union of apposition-based and long-
range connectivity. E: Connection strength constraints for the long-range connectivity derived by
subtracting B2 from B1 and setting elements < 0 to 0 (colors as in B). F: Resulting total density
from both types of modeled synaptic connections in individual regions compared to the data in
(B1).

To that end, we compared the mean excitatory synapse densities of apposition-based connectivity
to the target values adapted from (Reimann et al. (2019), Fig. 5B1 vs. B2; C). We found that the
overall average matches the data fairly well, however the variability across regions was lower in the
model (0.123+−0.017µm−1; mean +- std in the model vs. 0.097+−0.06µm−1). Based on these
results, we decided to model connections within a region exclusively based on appositions. The
apposition-based synapses created also a number of connections across region borders (Fig. 5B2).
Consequently, we parameterized the strengths of additional long-range connections to be placed
as the difference between the total strength from the data and the strengths resulting from the
apposition-based algorithm, with connection strengths within a region set to zero (Fig. 5E). As a
result synaptic connections between neighboring regions will be placed by both algorithms (Fig.
5D), with a split ranging from 20% apposition-based to 70% apposition-based. The lower spread
of apposition-based synapse density within a region (see above) will also reduce the variability of
combined synapse density from both algorithms (Fig. 5F). While this will halve the coefficient of
variation of density across regions from 0.34 to 0.17, the overall mean density over all regions is
largely preserved (0.23 data vs. 0.24 for the combined algorithms; Fig. 5F, red dot).

In summary, the anatomy of synaptic connections was constrained by data adapted from mouse
as described above. The constraints were then fulfilled by synapses determined by two separate
algorithms. First, an algorithm based on axo-dendritic (and axo-somatic) appositions placed about
half of them, mostly between nearby pairs within the same region or neighboring regions. Then,
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a second algorithm, parameterized according to more abstract biological principles, filled in the
remaining density between more distal pairs.

2.2.5 Modeling the structure of thalamo-cortical innervation

We determined dendritic locations of thalamo-cortical input synapses as previously described in
Markram et al. (2015), but adapted for the more complex geometry of this model. Briefly, binned
depth profiles of densities of thalamo-cortical synapses were used as input (see Sec. 2.1.5, Fig.
S6A1, A2). Next, we used the region atlas (see Sec. 2.1.1) to find the corresponding depth bins
in the model. This allowed us to find all dendritic sections in the model, whose center point fell
within a depth bin. We then performed a random selection of those sections and placed synapses
at random locations on each selected section, until the prescribed number of synapses for a given
depth bin was reached (Fig. S6A2). Sections were selected with probabilities proportional to their
lengths and with replacement.

After all synapses for a thalamo-cortical projection had been placed, we mapped each of them
to a presynaptic thalamic neuron. These neurons were not fully modeled, i.e., they were not as-
signed a soma position or morphology, the mapping simply allowed us to determine which synapses
would be activated together. To parameterize the process, we used an estimate of the number of
synapses formed by a single fiber and its horizontal spread (see Sec. 2.1.5). We divided the total
number of synapses placed (590 · 106 core-type; 380 · 106 matrix-type) by the number per fiber to
estimate the number of innervating fibers (approximately 100’000 for the ”core”-type projection;
73’000 ”matrix”-type). These numbers were split between the eight subregions according to their
relative volumes (Table S4), with the following steps being executed separately for each of them.

We then abstractly modeled thalamo-cortical afferent axons as lines entering their respective
subregion at the bottom of layer 6 with a certain horizontal reach for the formation of synapses.
This was done by first randomly distributing locations (one per fiber) across the boundary of
layers 4 and 5 (Fig. S6 B) and then moving them 1500µm along the negative voxel orientation
(towards layer 6; Fig. S6 B, black dots). The resulting positions and orientation vectors were used
as the starting position of the fibers and their directions, respectively (Fig. S6 B, black arrows).
The presynaptic fiber of a synapse was then determined by a stochastic process based on the
horizontal reach of individual fibers around their respective location (Fig. S6 B, red areas). This
was parameterized as a Gaussian with a σ = 120µm for core-type, and σ = 235µm for matrix-
type projections (see Sec. 2.1.5). For each placed synapse, its distance to neighboring fibers was
calculated and used as inputs into the Gaussian (Fig. S6D). This distance was calculated as the
distance between the location of the synapse and the line defined by the fiber’s starting point and
direction. The probability that any fiber was chosen as innervating fiber of the synapse was then
proportional to the values (Fig. S6E).

2.3 Validations

Each individual modeling step has been previously used and extensively validated in independent
manuscripts (see Table 1). As such, there was no need to validate the scientific accuracy of the
workflow steps themselves again, for example by comparing emerging results to biological data
that was not used in modeling. However, this is the first time the methods have been used in
conjunction with each other. Therefore, we have to ensure that the algorithms are still able to
match the constraints given by their input data, when used in this new context.

2.3.1 Validation of neuronal anatomy

We began by validating that the cortical layers placed in the atlas formed a stack of continuous
volumes. To that end, we calculated the fraction of voxels in each layer that were directly adjacent
to another layer (Fig. 6A). As expected, adjacent voxels were found only between adjacent layers.
Fractions of adjacent voxels decreased in lower layers as they are generally thicker and due to the
curved geometry of the volume. Additionally, we tested that layers are spatially continuous by
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Figure 6: Validation of neuronal anatomy. A: Fraction of voxels in the volumetric atlas
that are directly adjacent to another layer. B: Densities of excitatory (left) and inhibitory (right)
neurons in the model (orange) are compared to the input data constraining the model (blue).
C: M-type composition per layer: For each layer, stacked histograms of the relative fractions of
each m-type, comparing the model (right bar for each layer) to the input data (left bar). For
simplicity, the layer designation is stripped from each m-type. Left: For excitatory types; right:
Inhibitory types. D-F: Stacked histograms of the fraction of space filled by neurites at various
depths in the model. The y-axis indicates the distance in µm from the bottom of layer 6. D:
For neurites of neurons in different layers indicated in different colors. Grey: estimated lower
bound for the volume of axons supporting the long-range connectivity. E: For neurites of different
m-types. Colors as in C, but inhibitory types are grouped together. F: For different types of
neurites. G: Comparing fractions for axons and dendrites to the literature (Santuy et al., 2018).
X-marks indicate overall means, other marks means in individual layers; teal: reference, black:
model.

confirming that for each voxel there was at least one neighboring voxel in the same layer. This was
the case for over 99.99% of the voxels with the handful of violating voxels limited to the periphery
of the modeled volume (not shown).

To validate the neuronal composition of the model, we then compared the densities of exci-
tatory and inhibitory neurons placed in the model against the input constraints (Fig. 6B). The
vertical density profiles matched the input robustly. Slight differences between the two can be
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explained by numerical issues, such as the need to round the number of neurons to place in a voxel
to the nearest integer. Considering a more granular classification, we also compared the relative
fractions of individual m-types in each layer (Fig. 6C). Once again, we found a perfect match
within the expected numerical accuracy.

We validated the placement of reconstructed morphologies within each layer first by visual in-
spection of the placement of their neurites with respect to layer boundaries (Fig. S4 for examples).
For a more quantitative validation, we calculated the fraction of the volume occupied by neurites
in 100 depth bins of a cylindrical volume spanning all layers and with a radius of 100µm (Fig.
6D-F). In addition to the morphologies placed in the model, we also estimated a volume for the
axons forming the long-range connectivity. It was estimated by assuming that an axonal segment
with a length of 5.4µm and a diameter of 0.21µm supported each long-range synapse. The length
was based on the inverse of the mean bouton density of excitatory axons in cortex (Reimann et al.,
2015); the diameter was the mean diameter of axons in the model. As this excludes parts of the
axon not forming boutons, this is merely a lower bound estimate.

We found a clearly layered structure also for the neurite volumes, with apical dendrites con-
tributing substantially to the volume in layers above their somas. The volume was clearly domi-
nated by dendrites, filling between 23% and 47% of the space, compared to 2% to 11% for axons
(Fig. 6G). The range of values for dendrites matched literature closely (between 26% and 46%, San-
tuy et al. (2018)). Conversely, values for axons were lower than literature (between 17% and 24%);
however, this is explained by the vast amount of external input axons from non-somatosensory
and extracortical sources that are not part of the model.

2.3.2 Validation of synaptic connectivity

The part of the connectome derived with a apposition-based approach was constrained by anatom-
ical data on bouton densities and mean numbers of synapses per connection for different morpho-
logical types (Reimann et al., 2015). As such, we validated that the results match these data
(Fig. S5A, B). As previously found, the only mismatch lied in the emerging bouton densities
of Chandelier Cells. These neurons form synapses only onto the axon initial segment of other
neurons, which we model by disregarding appositions on the dendrites. For two Chandelier types,
this resulted in an insufficient number of appositions to fulfill bouton density constraints (Fig.
S5A, black arrow).

Arguably the most important constraint is the number or density of excitatory synapses in
pathways between individual subregions, as it determines the overall excitability of the model and
the velocity of the spread of activity. Here, we compared the total number of excitatory synapses,
i.e., the union of the output of both algorithms to the data (Fig. S5C), finding a robust qualitative
match. Due to the stochastic nature of the connectivity algorithms, an exact match cannot be
expected.

Finally, the long-range connectivity algorithm was further constrained by predicted topograph-
ical mapping between regions (Fig. S5D) and synapse layer profiles (Sec. 2.1.4E), which we
validated against the data.

2.3.3 Validation of thalamo-cortical innervation

One important input used was an estimate of the number of synapses formed in cortex by indi-
vidual neurons in VPM (as a reference for core projections) and POm (as a reference for matrix
projections). Unfortunately, for ”matrix”-type projections this was based on only a single axon
reconstruction. The input was used to estimate the total number of innervating fibers, and we
note that the resulting ratio of 73’000 to 100’000 fibers between core and matrix closely matches
the ratio of volumes of the two nuclei used (1.25mm3 for POm to 1.64mm3 for VPM; ratio: 0.76).

In silico synapse density profiles of VPM and POm projections were validated against the in
vitro layer profiles from Meyer et al. (2010) that were used as the input recipes (Fig. S7A, B). To
account for non-uniform thicknesses across regions, the depth values of the density profiles were
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normalized to the maximum thickness of each of the eight subregions. There is a decent match
between the recipe and the actual layer profiles, but with a 15% overshoot at peak densities. This
can be explained by the fact that the numbers of synapses to be placed were computed based on
region bounding boxes which were larger than the actual volumes. Therefore, the actual densities
are slightly higher when computing them on a voxel basis as it was done in this validation.
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3 Results

3.1 Cellular anatomy of the model

The volumetric atlas used revealed the curved anatomy of the somatosensory regions (Fig. 7A).
It also provided a spatial context for the model, with the non-modeled barrel regions being sur-
rounded on three sides by modeled regions (specifically: S1DZ and S1ULp). The cortical layers
(Fig. 7B) formed the expected vertical stack of continuous volumes. The placement of morpho-
logical reconstructions matched expectation, showing an appropriately layered structure with only
small parts of neurites leaving the modeled volume (Fig. 7C).

We decided to investigate the effect of cortical curvature on the local microcircuit around a
given point. To that end, we partitioned the modeled volume into columnar subvolumes with a
radius of approximately 230µm (Fig. 7D, see Sec. 5.3.9). We found that the resulting subvolumes
often had conical shapes, depending on the local curvature of the volume (Fig. 7D2). This is
because a convex curvature of the cortical surface necessarily results in a contraction towards the
lower layers and is independent of the algorithm used to partition the volume. We quantified the
conicality of the subvolumes (Fig. 7E1), finding mostly narrowing towards layer 6, but around the
S1HL and S1Sh subregions, also expansion. Additionally, we quantified the variability of cortical
thickness by calculating the height of the subvolumes (Fig. 7E2). We found that local differences
in curvature had significant effects on the neuronal composition (Fig. 7 F). Unsurprisingly it
affected the laminar composition, but we also found a weaker, but significant effect on the ratio
of excitatory to inhibitory neurons.

3.2 Synaptic connectivity of the model

The construction of a model with detailed neuron-to-neuron connectivity allowed us study the
structure of predicted connectivity at large scales stretching up to 6 mm. While the connectivity
in the model remains only a prediction, it does take into account known principles of the formation
of synaptic connectivity (Reimann et al., 2015). Notably, it takes into account the effect of neu-
ronal morphologies in shaping connectivity on the local scale, as synapses are placed at a subset of
axo-dendritic appositions. As this is evaluated in a global coordinate system, connectivity will be
affected by the geometry of the brain atlas used. For example, local variation in layer thicknesses,
or local curvature may influence how axons and dendrites meet.

Further, the large spatial scale of the model allows us to predict the topological structure of
connectivity at different scales. Experimentally, measurements of connectivity happen at large
spatial scales, that is, between brain regions or voxels of hundreds of micrometers, using tech-
niques such as DTI tractography or staining of populations of axons (Oh et al., 2014; Bota et al.,
2015; Scannell et al., 1995; Scholtens et al., 2014). Connectivity between individual neurons is
also measured, albeit only between a comparatively small number of neurons at a time (Perin
et al., 2011; Song et al., 2005). Electron-microscopic reconstruction will increase this scale, but at
this moment the resulting connectomes are still incomplete, as their spatial scales are not much
larger than the dendritic trees of contained neurons. The connectivity between individual neurons
is the foundation for connectivity at larger scales. But it remains unclear how the topological
structure of connectivity at the various scales relate to each other. For the currently available
experimental data, the resolution of the larger scale is on the same order of magnitude as the total
volume covered of the smaller scale; there is a large middle ground between them that we aimed
to provide a prediction for using our model.

Consequently, we set out to analyze the emerging connectivity under the following aspects:
First, comparing and contrasting the topology of local and long-range connectivity; second ana-
lyzing how they complement each other; third, analyzing how the connectivity is structured at
increasing spatial resolutions. In this manuscript, the highest resolution we consider is single
neuron resolution. Consequently, the following analyses are based on networks where nodes cor-
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Figure 7: Cellular anatomy of the model. A: Modeled brain regions (solid colors) in the
context of the non-modeled somatosensory regions (transparent). Derived from (Paxinos and
Watson, 2007). B: Modeled cortical layers (solid colors) in the context of non-modeled regions
(transparent). C: Rendering of the modeled volume with neuronal morphologies in place. 1% of
density shown. D1, D2: Parcellation of the modeled volume into columns with 230µm radius.
Exemplary slice of columns highlighted in green. E: Geometrical metrics of column subvolumes
in the flat view. Peripheral columns masked out (grey); green outline: highlighted columns in
D. E1: Conicality, defined as the slope of a linear fit of depth against column radius. Negative
values indicate narrowing towards L6. E2: Column height. F: Conicality of columns against
their neuronal composition, normalized against the overall composition of the model. Left: With
respect to neurons in different layer. Right: Excitatory vs. inhibitory neurons. Colored lines
indicate linear fits.

respond to neurons and edges to the presence of synaptic connections in the indicated direction
regardless of their number or dendritic locations.
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3.2.1 Global topology of local and long-range connectivity

We began by analyzing the global structure of neuron-to-neuron connectivity of the entire model,
separately for apposition-based local connectivity and long-range connectivity. The topology of
synaptic connectivity at neuronal resolution has previously been described in terms of the over-
expression of directed simplices (Reimann et al., 2017). A directed n-simplex is a neuron motif
of n+ 1 neurons that are all-to-all connected in feed-forward fashion, such that for any sub-motif
consisting of a subset of neurons and all connections among them, there is exactly one source
neuron and one sink neuron, where a source is a neuron sending connections to all others, and
a sink is a neuron receiving connections from all others (Fig. S9A; Fig. 8A1, inset); we call
n the dimension of the simplex. In particular, 0-simplices are the nodes of the network, and
1-simplices are directed edges. Simplex counts of a network of a given density provide a metric
of network complexity and can be used to discriminate their underlying structure (Kahle, 2009;
Curto et al., 2013; Giusti et al., 2015). Functionally, simplices, especially high-dimensional ones,
have been demonstrated to shape the structure of spiking correlation between neurons (Reimann
et al., 2017).

In line with previous results (Reimann et al., 2017), we found simplices up to dimension
seven in the local connectivity (Fig. 8A1, green). That is, the increased size of the model
compared to Markram et al. (2015) did not increase this measure. However, the addition of long-
range connectivity drastically changed this picture. In long-range connectivity alone, simplices
of dimension up to 15 were observed (Fig. 8A2, orange). This holds true even though local
and long-range connectivity have roughly the same number of edges (2.1 billion local, 2.5 billion
long-range), indicating that the higher simplex counts are not simply due to a larger number
of connections. The combined network of local and long-range connections has simplices up to
dimension 18 (Fig. 8A2, gray). Currently, there is no mechanism to determine the simplex counts
of the combined network -or even the maximal dimension attained- from the simplex counts of
the local and long-range circuits. Note in particular that the simplex counts of the combined
circuit are not simply the sum of the local and long-range simplex counts, which are closer to the
long-range counts except in dimensions two and three (Fig. 8A2, blue and inset on the right for
non logarithmic scale).

We investigated to what degree simple anatomical properties, such as the density of synaptic
connections or cortical layers, determine the connectivity structure. To do this, we compared
the simplex counts of both the local and the long-range networks of our model to the mean
and standard error of the mean in a range of comparable control models (Fig. 8A1,A2). We
found that simplex counts have tight expected values for each control model and that these were
consistently lower than those of both the local and long-range networks of our model, showing
that the connectivity structure is not determined only by the parameters used to generate the
controls. Specifically, the control models and the parameters on which they were based were the
following:

• Erdős–Rényi (ER) used the overall density of connections;

• stochastic block model (SBM) used density in m-type-specific pathways;

• configuration model (CM) used sequences of in- and out-degrees;

• distance block model (DBM) used distance-dependence and neuron locations for individual
m-type-specific pathways.

For more details on the models see Sec. 5.3.5. The CM control was the closest control for long-
range connectivity, suggesting that the effect of degree is important, which was expected since
we found that degree distributions of the long-range connectome were radically long tailed (Fig.
S9A). Nonetheless, this control model still largely underestimates the complexity of the long-range
network. Simultaneously, the DBM control was the closest control for local connectivity, showing
that much of its structure is indeed determined by spatial distance under certain morphological
restrictions.
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Figure 8: Global connectivity structure local vs. long-range. A1: Simplex counts of the
local connectivity network and several types of random controls (see text). Examples of d-simplices
for 1 ≤ d ≤ 3. A2: In orange shades, simplex counts of the long-range connectivity network and
several types of random controls. In gray, simplex counts of the combined network and in blue
the sum of the local and the long-range simplex counts. Inset: local, long-range and the sum of
simplex counts on a linear scale. B1: Normalized node participation per layer top/bottom row
local/long-range connectivity network. Left to right: Participation as source, in any position, and
as a sink of a simplex. B2: From left to right: spatial location of the cells in the simplicial n-cores
in flat coordinates for all n. Depth coordinates for each connected component in the simplicial
cores (cells participating in simplices of maximal dimension) each dot marks the depth of a neuron
in that component. Adjacency matrix of the simplicial cores with respect to local (green dots) and
long-range (orange dots) connections. B3: Number of unique cells in the simplicial cores present
in each position of a simplex. C1: Right: Distribution of path distances between pairs of neurons
in the local simplicial core; green: along only local edges; grey: along all edges. Left: Euclidean
distances between pairs at a given path distance. Arrows: See C2. C2: Total Number of neurons
in all paths of length 3 between neurons of the local core which are at distance 3 in the combined
circuit (black arrows in C1) split by location. Red/purple: at positions 2 and 3 respectively;
grey: expected from randomly assigned m-types while maintaining the global distribution. Cross-
/stripe-patterned: For pairs at path distances greater/less-or-equal than 3 along local edges only
(green arrows in C1).
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Next, we investigated in which layers the neurons forming these high-dimensional structures
resided in terms of node participation, which is the number of simplices to which a node belongs.
Node participation is a measure of a node’s centrality in the network (Sizemore et al., 2018).
This value can be further split by dimension, giving rise to the notion of n-node participation. For
n = 1 this metric is the total degree of a node, that is, the sum of its in- and out-degree, so one can
think of node participation as a higher dimensional version of degree. Given that the neurons in a
directed simplex can be easily sorted from its source to its sink, node participation can be further
refined to participation as a source or participation as a sink. We considered n-node participation
of neurons in these three different ways, averaged per layer and normalized per dimension (Fig.
8B1).

We found that in local connectivity, most simplices of dimensions 2, 3, and 4 have their source
in layer 3 and their sink in layer 5. Yet, for dimensions 5 and above, we found a shift towards
layer 6, with both sources and sinks found mostly in that layer. In long-range connectivity the
structures are much more concentrated on layer 5, which contains both source and sink. Only for
simplices of dimension greater than 8 does layer 4 provide more sources. Taken together, this in-
dicates a robust local flow of information from superficial to deeper layers and within deep layers,
with layer 5 forming a backbone of structurally strong long-range connectivity. Neurons in layer 6
form numerous simplices among themselves with no apparent output outside of layer 6, but they
are known to be the source of many cortico-thalamic connections (Shepherd and Yamawaki, 2021)
that are not part of this model.

3.2.2 Degree distributions and rich-club analysis

A way to understand a network’s structure is to study its assortativity, that is, the preference
of certain nodes to attach to each other when they have similar properties. The most commonly
considered property is node degree, which has an unusual distribution in the model, especially
for the long-range network. For instance, long-range connection probability per pathway (Fig.
S9B) is characterized by a small number of m-types forming most efferent connections, leading to
bimodal distributions of out- and total degrees in the associated DBM and SBM control models
(Fig. S9A). However, the actual long-range network has a unimodal, long-tailed degree distribu-
tion, similar to biological neuronal networks (Giacopelli et al., 2021). Nonetheless, the connection
probabilities still generate part of the structure of the network itself since it imposes the existence
of many nodes that are sinks, sources and isolated nodes (see Fig. S9C).

A way to study a network’s assortativity by degree is through its rich-club curve (Zhou and
Mondragon, 2004; van den Heuvel and Sporns, 2011), where the k-rich-club coefficient is the den-
sity of the network induced by the nodes with total degree greater than k. The rich-club curve
measures whether high degree nodes are more likely to connect together, forming some notion of
a “rich-club”. This can be generalized by replacing degree with any network metric on each node
(Opsahl et al., 2008), such as node participation (see Sec. 5.3.7 for details).

We calculated the rich-club curves for the local and long-range networks and contrasted them
with the curves for the corresponding CM controls (Fig. S10B1); dividing one by the other yielded
normalized rich-club curves (Fig. S10B2). We observe that the local network has a rich-club effect,
since its normalized coefficients are consistently above one. This is expected in a spatially finite
model with distance-dependent connectivity, as neurons in the center will have a larger degree
than the periphery and also connect preferentially to each other. We confirm this by studying
the rich-club curves for the distance dependent control models. Even though the non-normalized
rich-club coefficients are smaller for the distance controls, this is simply because their degrees are
smaller; the normalized curves show similar behavior, that is, a mostly increasing trend which is
consistently above one. On the other hand, the long-range network does not exhibit a rich-club
effect, see Figure S10B2 bottom, showing that high degree nodes are not central to the network.

A different picture emerges when looking at simplicial rich-club curves, where for every node
we consider its higher dimensional node participation (see Fig. S10B3), instead of simply degree.
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We can observe that the rich-club coefficients decrease by degree in the local network. On the
other hand, for the long-range network the rich-club coefficients increase with dimension, reaching
densities greater than 50 in all dimensions greater than four. We speculate that the long-range
network has a high normalized simplicial rich-club coefficient and the local network does not.
Unfortunately, this can not be currently verified since generating appropriate random controls for
these curves is an open problem currently investigated in the field of random topology (Unger and
Krebs, 2022).

These results show that the local network is highly distributed, since its high rich-club co-
efficients are present only in lower dimensions and are consistent with the behavior of random
networks that are distance dependent. On the other hand, the long-range network is highly con-
centrated, though its central nodes are not given by degree but by node participation in high
dimensions. We see more of evidence for this in the next section.

3.2.3 Analyzing the core of the connectivity networks

More complex analyses are hampered by the large sizes of the connectomes. For instance, it is
reasonable to hypothesize that the long-range network is small-world, but computing small-world
coefficients for a network of this size is infeasible (see Sec. 5.3.8). Therefore, we further explored
the difference between the local and long-range networks and the interaction between them by
focusing on central sub-networks or cores. One way to select such cores is using the n-core of
a network, which is a sub-network determined by degree. However, from the analysis above, we
know that node degree alone does not determine the complex structures of these networks. Thus,
instead we consider the simplicial cores of the networks, a natural variant of the degree notion of
core.

The n-simplicial core of a network is the sub-network on the nodes of the network that partici-
pate in simplices of dimension n or higher, and the simplicial core is the sub-network on the nodes
of the network that participate in simplices of maximal dimension, forming a sort of backbone
of the network. We will refer to the (n-) simplicial core of the local/long-range network as the
(n-)local/long-range core, and we will refer to the union of both as the core. The general trend
observed is that the local network is distributed, while the long-range network is highly localized
– simultaneously in terms of connectivity, location of the neurons in space, and layer profiles –
which is consistent with the structure of the probability of connectivity per pathway (Fig. S9C)
as well as the rich-club analysis.

To see this, we first considered the location of the neurons forming the cores in the flat view,
their cortical depth and the connectivity between these (Fig. 8B2). The local core consists of 267
neurons that are fairly evenly distributed throughout the flat projection, forming 26 individual
clusters that are disconnected from each other. These clusters tend to be concentrated in higher
or lower depths (Fig. 8B2, center). Neurons in n-cores for any n less than seven are also spread
out evenly to cover essentially the entire modeled space. On the other hand, the long-range core
consists of 129 neurons that are narrowly localized in the flat projection, tend to be concentrated
in middle depths, and form a single connected component. Even the neurons in n-cores for smaller
n were concentrated around specific locations and covered the entire model only for n ≤ 3. Cu-
riously, even though the numbers of neurons in the local and long-range cores are in the same
order of magnitude, the dimensions and the numbers of simplices they span are radically different,
quantifying in a smaller sub-network the difference in complexity of their corresponding structures.

The more distributed nature of the local network is also reflected in the fact that the layer
distribution of the neurons in the local core does not differ greatly from the layer distribution of
the overall population of neurons. On the other hand, neurons in the long-range core are highly
localized in layer five (Fig. 8B1, center column, bottom row). Moreover, there is little overlap
between the sets of neurons in the local core forming maximal simplices, while in the long-range
core many neurons participate in several simplices (Fig. 8B3). Especially for the source location,
we found that just seven neurons were the sources of all of the 15, 108 highest-dimensional long-
range simplices. This trend weakens with proximity to the sink, indicating that the long-range
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core forms a network mostly characterized by divergence.

Finally, we studied the interaction between the local and long-range cores through their embed-
dings within the combined network, that is, the network with both local and long-range connec-
tions. Even though the sub-network on the nodes in the local core has 26 connected components
(Fig. 8B2), there is a directed path in the full local network between any pair of nodes in the
local core, through local edges that may pass through nodes outside the core. We computed the
lengths of the paths in the full local network for all pairs of nodes of the local core (Fig. 8C1,
green), obtaining path distances between between one and seven, with a median of four. The
path distances depend strongly on the euclidean distance between the neurons (Fig. 8C1, green),
consistent with the local core being distributed throughout space and local connectivity being
strongly distance dependent. When the long-range connections are added, the maximum path
distance drops to five, with a negligible number of pairs at the maximum path distance. The
median path distance drops to three, and the dependence of the path distance on the euclidean
distance of the pairs nearly disappears (Fig. 8C1, grey).

We studied in more detail pairs of nodes at the most common path distance of three within
the combined circuit, finding all paths of length three between them. We labeled the neurons
along the paths from position 1 (start-node) to position 4 (end-node). We found that layer 5
(the layer with the highest outgoing edge probability, see Fig. S9B) is over-represented in nodes
in positions 2 and 3 compared to a random assignment of m-types (Fig. 8C2). Moreover, the
over-representation depends on the path distance between the start-node and end-node within the
local network: when the value is larger than three (bars hatched by crosses), the effect is stronger
than for pairs at a distance three or less (bars hatched by horizontal bars). This demonstrates
that neurons in layer 5 act as “highway hubs” providing shortcuts between neurons that are far
away from each other in the local circuit.

3.2.4 Connectivity at different scales

Connectivity, both functional and anatomical, is often described at lower resolutions than the
neuron-to-neuron level (Oh et al., 2014; Bota et al., 2015; Scannell et al., 1995; Scholtens et al.,
2014). However, doing so requires an often arbitrary choice of parcellation, limiting the strength
of conclusions that can be drawn (de Reus and van den Heuvel, 2013). We used our model to
predict how connectivities at different scales are related to each other, by generating and analyz-
ing matrices of directed connectivity at reduced spatial resolution. We partitioned the neurons
based on their flattened spatial locations into groups that we will refer to as nodes, then counted
the numbers of synaptic contacts between pairs of nodes. By varying the number of neurons per
node, we can analyze and compare connectivity at different resolutions. Since higher resolutions
result in larger connectivity matrices, making comparisons difficult, we chose to increasingly limit
the spatial scale for higher resolutions, considering only groups of neurons within a given spatial
neighborhood. We developed a way to systematically change the scale of connectivity matrices
along with their resolution, based on a partitioning of the neurons using a KD-Tree, and resulting
in a number of 512× 512 connectivity matrices at each resolution (Maneewongvatana and Mount
(1999), Fig. 9A; for details, see Sec. 5.3.10). At the highest resolution, this corresponded to con-
nectivity of individual neurons in a small number of minicolumns (Mountcastle (1998); Markram
et al. (2015), Fig. 9B); at the lowest, it corresponds to connectivity between populations slightly
smaller than a cortical column as defined by Markram et al. (2015).

We first investigated how synaptic connections were distributed across various spatial scales.
As neuron pairs at distances exceeding the scale were excluded, the number of pairs considered was
drastically reduced along with the scale (Fig. S8A). Specifically, the number of pairs was halved
at each step (Fig. S8B, red). By contrast, the number of synaptic connections as a fraction of
the total number of connections in the full model, fell much more slowly for the local connectivity
(Fig. S8B1, blue), reflecting that connections are more prevalent at smaller distances. This led
to an increase in the relative density of connections by over two orders of magnitude at lower
scales (Fig. 9C, red). For long-range connectivity on the other hand, the fraction of connections
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Figure 9: Structure of connectivity at different resolutions. A: At each step, a population
is split into two equally sized ones according to their 2d locations, leading to a hierarchy of
populations at decreasing scale. For a given population, we consider the matrix of connection
counts between sub-populations contained within it at a scale 9 steps lower. B: Resulting number
of neurons considered per connectivity matrix (blue) and per node of the matrix (red) at different
scales / resolutions. C: Number of connections divided by number of neuron pairs considered
in connectivity matrices at different scales, for apposition- (red), long-range- (yellow) and all
connections (orange). Normalized to the values at the largest scale. D: Fraction of non-symmetric
connections, i.e. directed connections that do not have a corresponding connection in the other
direction. E: Gini-coefficient of node degrees at various scales. F: Lowest normalized (to the
maximum) threshold weight such that the sub-network of stronger connections is fully connected.
”-inf” indicates the full network is not fully connected. dots: samples; x-marks: mean of non-inf
values. Results for local connectivity not shown, but almost identical to all connections. Black
bars in D-F: Comparable data point from the AIBS voxelized mouse connectome. Grey bars:
Comparable controls based on the AIBS connectome.

fell more proportionally to the number of pairs (Fig. S8B2), indicating that it is more evenly
distributed along scales (Fig. 9C, yellow).

Interestingly, for local connectivity at larger scales and consequently lower resolutions, a large
part of synaptic connections were within the population represented by a node, i.e., in entries of
the main diagonal of the connectivity matrix. When we excluded those entries from the count (Fig.
S8B1, teal), we found a drop in the fraction of connections considered at scales above 1775µm.
This was not found for long-range connectivity, but persisted when both were analyzed together
(Fig. S8B2, B3).
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Over-expression of bidirectional connectivity has been found both on a neuron-to-neuron level
(Perin et al., 2011; Song et al., 2005) and whole-brain level (Oh et al., 2014; van den Heuvel
et al., 2016). Thus, we next analyzed the symmetry of connectivity matrices at different scales by
measuring the fraction of connections that do not have a corresponding connection in the opposite
direction (Fig. 9D). As this measurement depends on the number of bidirectional connections
arising by chance and thus the overall distribution of values in a matrix, we compared the results
to a control with shuffled matrices (Fig. 9D, desaturated colors with dashed lines). We found
generally increasing asymmetry for long-range and decreasing asymmetry for local connectivity,
although both values were less than that of the random control, with the difference increasing
at larger scales. Curiously, when both connectomes were combined and at scales over 1775µm, a
reversal was observed that was not present in the individual connectomes: asymmetry increased
and the measure approached that of the random control.

As a reference point, we also calculated this measure directly for the primary somatosensory
regions of the AIBS voxelized mouse connectome, which we reduced to a comparable 518 × 518
connectivity matrix (for details, see Sec. 5.3.11). In terms of organization, this would correspond
to the largest spatial scale, but due to the smaller size of the mouse brain relative to the rat brain,
the actual spatial scale is closer to 2500µm. We found that the result matched the one for all
connections at the largest scale, although a larger fraction of bidirectional connections is present
in the random control (Fig. 9D, black and grey bars).

Another measure of connectivity matrices often employed is the distribution of node degrees
(Gal et al., 2017; Nigam et al., 2016; Bonifazi et al., 2009). Here, we calculated the Gini-coefficient,
measuring the inequality of degree distributions, at various scales (Fig. 9E). For all connectomes
we found more equal distributions at larger scales, although the drop in Gini-coefficient was more
pronounced for long-range connectivity. Overall, distributions were more unequal than the ran-
dom controls, except for local connectivity and all connections at scales over 2900µm. This is in
contrast to the AIBS somatosensory regions where the Gini-coefficient was larger than the control
(Fig. 9E, black and grey bars), but the overall value is close to the results at the largest scale.

Finally, we considered the robustness of connectivity at all scales, in terms of the following
question: What is the largest weight threshold, such that the sub-network containing only edges
stronger than the threshold has a single strongly connected component, i.e. any neuron can be
reached from any other neuron along the remaining edges. We report this threshold, normalized
to the maximum weight in the network, or negative infinity if the network with all edges is not
connected (Fig. 9F). First, the long-range connections had in most cases more than one connected
component, except at the largest scales. Even then, the weight threshold was close to zero indi-
cating that all connections were required to form a single component. For all connections results
were increasingly more robust for larger scales until a scale of 1775µm where only connections
stronger than half the maximum were required. After that point the trend reversed to a threshold
of 0.18 at full scale – close to the value found for the AIBS (Fig. 9F, black bar). Results for only
local connections were almost identical to all connections (not shown).

Taking all of this together, we found for all measurements a vast range of different values at
different scales. As such, the close match between results at the largest scale and the comparable
scale in the raw AIBS mouse connectome is significant. Even though the AIBS connectome was
used as a data source for model building, it serves to validate the complex workflow of adapting
data from mouse to rat and combining two connectome algorithms. Additionally, the gradual
rather than sudden shift of values for increasing scales when all connections were considered in-
dicates that connectivity exists along a spectrum of scales, instead of as two separate (local and
long-range) networks.

One key observation for almost all measurements was a reversal of trends at a scale of around
1775µm – or at the corresponding resolution of 65µm. At that point, matrices specify the strengths
of connections between 512 groups of around 1000 neurons each. The groups are almost exclusively
driven by symmetrical connections to / from the other groups that robustly tie them together
into a single component. Conversely, at full scale (512 groups of around 8000 neurons), groups
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are more driven by internal connections and between-node connections with lower symmetry.
At that scale, we were arguably analyzing connectivity between individual cortical columns, in
that the number of neurons per node was close to that characterized by Markram et al. (2015).
Consequently, greater importance of internal connections was expected, as columns are thought
to act as independent computational units. The decrease in symmetry can then be interpreted
as directionality of information flow emerging at that scale. Conversely, the asymmetry at the
smallest scales would relate to the information flow within such a computational unit.

3.3 Features of thalamic innervation

The locations of synaptic contacts from thalamo-cortical projections were directly prescribed in
the form of a layer profile and a horizontal range (see Sec. 2.1.5). However, the locations and
identity of neurons innervated by these synapses is the result of a number of additional factors.
We assume that any dendritic segment in a given depth bin is a potential target of innervation
with no specific preference (see Sec. 2.2.5). As such, neuronal innervation is also the result of
dendritic morphology and placement.

We counted the number of thalamic fibers innervating neurons at various depths and compared
the result to the prescribed synapse densities (Fig. 10A). We found that for both core- and matrix-
type projections, the pattern of peaks and troughs is informed by the pattern of synapse densities,
but with the locations of peaks shifted downwards. In fact, most peaks were located in depth
bins where the corresponding synapse density was close to zero, indicating that synapse density
profiles alone can be misleading about the location of innervated neurons. On a per-neuron basis,
the number of thalamic inputs varied drastically, even within the same layer (Fig. 10B). Overall,
the matrix-type projection innervated neurons in layers 1 and 2 more strongly than the core-type
one, while in layers 3, 4, and 6, the roles were reversed. Neurons in layer 5 were innervated on
average equally strongly by both projections.

In the model, each thalamic fiber innervates only a given subvolume of the somatosensory
cortex. This is based on the observation that the axons have a limited horizontal extent after
entering the region (see Sec. 2.1.5), which leads to nearby pairs of cortical neurons being inner-
vated by strongly overlapping sets of fibers. As pairs with many common inputs are likely to
have similar stimulus preferences, the magnitude and range of this effect has consequences for
the emergence of functional assemblies of neurons. While the model describes a stochastic state
that is unaffected by plasticity, we can still assess the bounds of such an effect. We calculated
the common thalamic innervation (CTI) for pairs as the intersection over the union of the sets of
thalamic fibers innervating each of them.

As expected, the CTI was distance dependent (Fig. 10C, D), albeit with strong variability.
Even directly neighboring pairs might not share a single thalamic afferent, leading to a sparse
spatial distribution of pairs with strong overlap. We fit Gaussian profiles of the distance depen-
dence of CTI for both types of thalamic inputs. Both core- and matrix-type projections produced
roughly equally strong overlapping innervation (Fig. 10E1) that increases for lower layers in the
case of core-type and decreases for matrix-type projections, although layer 5 is an outlier with
equally strong CTI for both input streams. The horizontal range of common innervation was
stronger for matrix-type projections in all layers (Fig. 10E2).

To estimate the possible implications of CTI on the formation of assemblies, we used the
matrix of CTI of pairs of neurons to split them into 100 clusters (see Supplementary methods). The
resulting clusters are spatially overlapping (Fig. 10F). To estimate to what degree neuron location
determines cluster membership, we calculated the silhouette score with respect to neuron distances.
A low score would indicate strongly spatially overlapping clusters. We found consistently lower
scores for matrix- than for core-type projections in all layers (Fig. 10G). Especially in layer 6,
the location of a neuron seems to have little impact on its cluster based on thalamic innervation.
One reason may be the presence of pyramidal cells with horizontal dendrites in that layer that
consequently collect and integrate input from many different fibers.
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Figure 10: Anatomy of thalamic innervation. A: Depth profiles of synapse densities (dashed
lines) and mean number of thalamic inputs per neuron (solid lines) for core (red) and matrix-type
(blue) thalamo-cortical projections. Shaded area indicates the standard error of mean. B: Mean
number of thalamic inputs for neurons in individual layers or all neurons. Dots indicate values
for 50 randomly picked neurons of the indicated layers. Colors as in A. C: Common thalamic
innervation (CTI) of an exemplary neuron (black dot) and neurons surrounding it, calculated as
the intersection over union of the sets of thalamic fibers innervating each of them. Scale bar:
200µm. D: CTI of pairs of neurons at various horizontal distances. Dots indicate values for 125
randomly picked pairs; lines indicate a sliding average with a window size of 40µm. We perform
a Gaussian fit to the data, extracting the amplitude at 0µm (A) and the standard deviation (σ).
E: Values of A and σ for pairs in the individual layers or all pairs. Colors as in A. F: Clusters
based on CTI of 3000 randomly selected neurons in a circular region of layer 4 by the matrix-
type projection. Scale bar: 200µm. G: Silhouette score of clusters in individual layers, evaluated
against the matrix of spatial distances of the neurons.
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4 Discussion

We have presented a model of the non-barrel primary somatosensory cortex of the juvenile rat
that represents its neuronal and synaptic anatomy in high detail. The model contains biologi-
cally validated features at multiple scales, ranging from subcellular, such as predicted dendritic
locations of synapses, to regional, such as its neuronal composition. While the modeling process
was based on a previously published pipeline (Markram et al., 2015), many refinements have been
and published since then (see Table 1). This manuscript integrated all these improvements into
a single model. The model was also built on a much increased spatial scale, covering 48.7mm3,
compared to the previously built 0.29mm3.

Improvements came in the form of integrating additional data, such as anatomical atlases (Pax-
inos and Watson, 2007; Bolaños-Puchet and Reimann, prep), cell density profiles (Keller et al.,
2019), in-vivo neuron reconstructions, predicted strengths and structure of synaptic pathways
(Reimann et al., 2019), the synapse density profile of a second type of thalamic input (Meyer
et al., 2010), and the morphology of thalamo-cortical axons (Economo et al., 2016). Existing
modeling methods were also improved by validating the classification of neuronal morphologies
objectively (Kanari et al., 2019). The most complex changes, however, were a result of the in-
creased spatial scale requiring the use of new modeling methods.

While local cortical curvature and other anatomical variability could be considered to be neg-
ligible at the previous scale, these had to be taken into account for this model. This required
an enrichment of the anatomical atlas with data on local orientations, i.e., the direction towards
the cortical surface. Other methods had then to be adapted to make use of that information,
such as the transformation of layer density profiles to density atlases, and the algorithm ensuring
proper placement of dendritic and axonal features. Further, while at the smaller scale synaptic
connectivity could be modeled purely based on axonal and dendritic morphologies, this method is
limited to connectivity on a local scale up to a few hundreds of µm. We found that relying on that
method alone would have underestimated the connectivity between somatosensory sub-regions,
requiring us to fill in the missing connectivity by adapting an algorithm and its associated data
from mouse to juvenile rat.

Yet, these challenges also provided us with opportunities for anatomical analyses and predic-
tions leading to novel insights with respect to the structure of synaptic connectivity. First, we were
able to predict the effect of cortical curvature on neuronal composition by increasing or decreasing
the space available for individual layers. If we assume that each layer has a given computational
purpose (Felleman and Van Essen, 1991), then this may have functional consequences. However,
there may be mechanisms compensating for this, which the model is not capturing.
Second, we predicted the topology of synaptic connectivity with neuronal resolution at an unprece-
dented scale. We were also able to compare and contrast the topology of the local and long-range
connectivity. We found that the structure of neither can be explained by connection probabilities,
degree-distributions, or distance-dependence alone, not even when individual pathways formed
between morphological types are taken into account. Further, we predict that the long-distance
connectivity forms a strong structural backbone distributing information from a small number of
hubs. The paths within the long-range network strongly rely on neurons in layer 5 and form short-
cut paths for neurons further away than around 2mm; for smaller distances, local connectivity
provides equivalent or shorter paths.

Third, we were able to generate lower-resolution versions of the predicted connectome, allowing
us to compare a biologically realistic meso-scale connectome to its underlying neuron-to-neuron
micro-scale connectome. The techniques we developed to that end resulted in comparable con-
nectivity matrices at eleven levels of resolution that could be analyzed with the same approaches.
We found that they are drastically different at different resolutions for most analyses, highlighting
the difficulty of predicting the micro-scale from meso-level data.
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Fourth, we predicted strong constraints on the emergence of cortical maps from the anatomy
of thalamo-cortical innervation, i.e., from the combination of: shape and placement of cortical
dendrites, the specific layer pattern formed by thalamo-cortical axons, and their horizontal reach.
We demonstrated how differences in these parameters may lead to stronger or weaker topograph-
ical mapping with more or less spatially overlapping neuronal clusters. Although many more
mechanisms will ultimately affect this – chief among them synaptic plasticity – this shows that
the mere anatomy can already have an effect on the outcome.

Taken together, the above points demonstrate how novel insights that are not readily apparent
in disparate data and individual models can be gained when they are combined in a way that
creates a coherent whole. For example, our predictions on the structure of common thalamic
innervation is on the surface a consequence of the specific layer profiles of the innervations. How-
ever, as we have demonstrated, the layer profiles alone can be misleading, as neurons – especially
pyramidal cells – can gather inputs from outside their home layer, leading to a shift of the profiles.
As such, the result was obtainable only by combining layer profiles with dendritic morphologies,
and doing so within the same spatial context, thereby creating a coherent model volume.

Our results also demonstrate the value of modeling at large scales. The increased spatial scale
of this work compared against (Markram et al., 2015) allowed us to construct a meso-scale con-
nectome from the model with complete knowledge about its predicted implementation in the form
of billions of individual synaptic connections. This allowed us to perform comparable analyses of
the structure of the connectome at scales spanning three orders of magnitude, revealing a drastic
shift in terms of its relative connection density, and a curious reversal at scales around 1500µm
in terms of its symmetry and robustness of connectedness. This is a first attempt at contrasting
quantitatively the connectivity between multiple microcircuits and within the very same micro-
circuits.

This iteration of the model is far from complete in several ways. Most of them stem from
compromises and generalizations that were made to be able to parameterize the process with bi-
ological data. For example, for a subset of input data, we made no distinction between individual
subregions. This means that the model is not capturing the known differences between the dis-
granular (S1DZ, S1DZO) and granular zones. Should improved and more specific data sources,
such as EM-based connectomes or whole-brain neuron reconstructions, become available in the
future, our modeling pipepline is designed to readily utilize them for refinement. There are also
known limitations to the actual model building steps. While we enforce cell density profiles along
the depth-dimension, densities are assumed to be otherwise uniform within a given subregion. For
additional structure, the algorithms will need to be updated; this will be required for example,
for the modeling of the barrel field. Similarly, during volume filling, orientation and placement
of neuron morphologies is considered only along the depth-axis. modeling of the barrel system
will also require the consideration of orientation and location with respect to nearby barrel centers.

The functional and computational implications of our findings are unfortunately hard to pre-
dict without also considering data on neuron activity. Yet the anatomical model presented here
provides a solid basis for large-scale electrical simulations of neuron activity. A future manuscript
will describe refinements in single-cell electrical modeling, synaptic physiology, and compensation
for missing extrinsic inputs from regions outwith the somatosensory area.
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Santuy, A., Turégano-López, M., Rodŕıguez, J. R., Alonso-Nanclares, L., DeFelipe, J., and Merchán-Pérez, A.
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Code packages:

• flagser-count: Computes the number of directed cliques in a directed network, available
from https://github.com/JasonPSmith/flagser-count

• pathfinder: Finds all directed paths between nodes in a directed network, available from
https://github.com/JasonPSmith/pathfinder

• connectome analysis: Contains various functions for the analysis of connectomes, in-
cluding: control models generation, degree distributions, rich-club computations, available
from https://github.com/danielaegassan/connectome_analysis

5 Supplementary Material

5.1 List of assumptions made in model building

Inherited assumptions
We assume that the published data sources and modelling steps (Table 1) are correct and conse-
quently inherit their assumptions. Below, we will only list the assumptions made on top of that.

Data assumptions
We make a number assumptions related to generalizing input data

• We assume the juvenile rat SSCx volume is a uniformly scaled-down version of the adult
SSCx.

• We assume no significant variability between nbS1 regions in terms of: Cell density layer
profiles, neuronal morphologies, bouton densities, number of synapses per connection in
pathways.

• We assume the relative strengths of connectivity and structure axonal targeting is compa-
rable in SSCx regions between mouse and rat.

• We assume that the VPM to barrel cortex projection in adult rat is representative for a
general core-type, feedforward thalamic input in juvenile rat. Similarly, POm to barrel
cortex for matrix-type, feedback input.

• We assume mouse thalamo-cortical projection axons are informative for the structure of the
rat thalamo-cortical projection system.

Structuring assumptions

• We assume that grouping of cortical neurons into 60 morphological classes is also useful for
the description of the neuronal composition (cell density profiles) and the synaptic connec-
tivity between them.

• We assume that the eight established subregions provide a parcellation that is useful for the
description of long-range connectivity in the model.

Modeling assumption

• We assume that purely vertical cell density profiles capture all relevant details of neuronal
composition.

• We assume that the union of synaptic connections from two separate algorithms accurately
describes the connectivity at all scales that are relevant in the model. Specifically, we assume
there is no ”midrange gap” remaining between the two algorithms.

• We assume that thalamo-cortical axons do not target specific classes of neurons, beyond
what is given by their layer profiles.
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• We assume the horizontal spread of thalamo-cortical axons can be captured by a Gaussian
profile for the synapses formed.
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5.2 Supplementary Tables and Figures

L1 DAC Layer 1, descending axon cell L1 HAC Layer 1, horizontal axon cell
L1 LAC L1 NGC-DA
L1 NGC-SA L1 SAC
L23 BP Layer 2, bipolar cell L23 BTC Layer 2/3, bitufted cell
L23 CHC Layer 2/3, chandelier cell L23 DBC Layer 2/3, double bouquet cell
L23 LBC Layer 2/3, large basket cell L23 MC Layer 2/3, martinotti cell
L23 NBC Layer 2/3, nest basket cell L23 NGC Layer 2/3, neurogliaform cell
L23 SBC Layer 2/3, small basket cell L2 IPC Layer 2, inverted pyramidal cell
L2 TPC:A Layer 2, large tufted pyramidal cell L2 TPC:B Layer 2, early bifurcating pyramidal cell
L3 TPC:A Layer 3, large tufted pyramidal cell L3 TPC:C Layer 3, small tufted pyramidal cell
L4 BP Layer 4, bipolar cell L4 BTC Layer 4, bitufted cell
L4 CHC Layer 4, chandelier cell L4 DBC Layer 4, double bouquet cell
L4 LBC Layer 4, large basket cell L4 MC Layer 4, martinotti cell
L4 NBC Layer 4, nest basket cell L4 NGC Layer 4, neurogliaform cell
L4 SBC Layer 4, small basket cell L4 SSC Layer 4, spiny stellate cell
L4 TPC Layer 4, tufted pyramidal cell L4 UPC Layer 4, untufted pyramidal cell
L5 BP Layer 5, bipolar cell L5 BTC Layer 5, bitufted cell
L5 CHC Layer 5, chandelier cell L5 DBC Layer 5, double bouquet cell
L5 LBC Layer 5, large basket cell L5 MC Layer 5, martinotti cell
L5 NBC Layer 5, nest basket cell L5 NGC Layer 5, neurogliaform cell
L5 SBC Layer 5, small basket cell L5 TPC:A Layer 5, large tufted pyramidal cell
L5 TPC:B Layer 5, early bifurcating pyramidal cell L5 TPC:C Layer 5, small tufted pyramidal cell
L5 UPC Layer 5, untufted pyramidal cell L6 BP Layer 6, bipolar cell
L6 BPC Layer 6 bipolar cell L6 BTC Layer 6, bitufted cell
L6 CHC Layer 6, chandelier cell L6 DBC Layer 6, double bouquet cell
L6 HPC Layer 6, horizontal pyramidal cell L6 IPC Layer 6, inverted pyramidal cell
L6 LBC Layer 6, large baskte cell L6 MC Layer 6, martinotti cell
L6 NBC Layer 6, nest basket cell L6 NGC Layer 6, neurogliaform cell
L6 SBC Layer 6, small basket cell L6 TPC:A Layer 6, large tufted pyramidal cell
L6 TPC:C Layer 6, small tufted pyramidal cell L6 UPC Layer 6 untufted pyramidal cell

Table S1: Morphological types (m-types) used in the model

Boundary nrmlz. depth
Layer 1 top 0

bottom
0.079

Layer 2 top
bottom

0.151
Layer 3 top

bottom
0.32

Layer 4 top
bottom

0.411
Layer 5 top

bottom
0.664

Layer 6 top
bottom 1.0

Table S2: Normalized depths used for layer boundaries

38

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503144doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503144
http://creativecommons.org/licenses/by-nc/4.0/


Figure S1: Topological comparison as in (Kanari et al., 2018, 2019) of in-vivo and in-vitro (i.e.,
from slices) axonal (A) and dendritic (B) reconstructions of rat somatosensory cortex of pyramidal
cells from layers 2-6. Top row presents the topological profiles of in-vivo reconstructions, second
row presents the topological profiles of in-vitro reconstructions and bottom row the difference
between them (red: in-vivo, blue: in-vitro). Number of cells per layer are reported in individual
pannels.
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Figure S2: Classification and morphometrics of excitatory morphologies. A: Exemplar
3D reconstructions of the 18 excitatory m-types. Rendering and visualization was done in Neuro-
MorphoVis (Abdellah et al., 2018). Dendritic diameters are scaled (x3) for better resolution. B:
Morphometrics of all morphologies belonging to the 18 excitatory m-types.
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L1 HAC axon [I:0.00; I:1.00]
L23 MC axon [I:0.00; I:1.00]
L2 TPC axon [V:0.00; V:1.00]

[IV:0.00; IV:1.00]
dendrite [I:0.00; I:1.00]

L2 TPC:A axon [V:0.00; V:1.00]
[IV:0.00; IV:1.00]

dendrite [I:0.00; I:1.00]
L2 TPC:B axon [V:0.00; V:1.00]

[IV:0.00; IV:1.00]
dendrite [I:0.00; I:1.00]

L3 TPC axon [V:0.00; V:1.00]
[IV:0.00; IV:1.00]

dendrite [I:0.00; I:1.00]
L3 TPC:A axon [V:0.00; V:1.00]

[IV:0.00; IV:1.00]
dendrite [I:0.00; I:1.00]

L3 TPC:B axon [V:0.00; V:1.00]
[IV:0.00; IV:1.00]

dendrite [I:0.00; I:1.00]
L3 TPC:C axon [V:0.00; V:1.00]

[IV:0.00; IV:1.00]
dendrite [I:0.00; I:1.00]

L4 MC axon [I:0.00; I:1.00]
L4 SSC axon [II:0.00; I:1.00]
L4 TPC dendrite [II:0.00; I:1.00]
L4 UPC dendrite [II:0.00; I:1.00]
L5 MC axon [I:0.00; I:1.00]

[IV:0.00; IV:1.00]
L5 TPC axon [I:0.00; I:1.00]

dendrite [I:0.00; I:1.00]
L5 TPC:A axon [I:0.00; I:1.00]

dendrite [I:0.00; I:1.00]
L5 TPC:B axon [I:0.00; I:1.00]

dendrite [I:0.00; I:1.00]
L5 TPC:C axon [I:0.00; I:1.00]

dendrite [I:0.00; I:1.00]
L5 UPC axon [I:0.00; I:1.00]
L6 BPC dendrite [V:0.50; III:0.10]
L6 HPC dendrite [VI:0.00; VI:1.00]
L6 IPC dendrite [VI:0.00; V:0.20]
L6 MC axon [II:0.00; I:1.00]

[IV:0.00; IV:1.00]
L6 TPC dendrite [V:0.80; III:0.50]
L6 TPC:A dendrite [V:0.80; III:0.50]
L6 TPC:C dendrite [V:0.80; III:0.50]
L6 UPC dendrite [V:0.70; III:0.50]

Table S3: Placement features used for modeling. The right column denotes the vertical target
interval by specifying a layer and a relative offset within the layer, with 0.0 indication the bottom
and 1.0 the top of the layer.

L1, top

L2, center

Tuft
0.0

0.08
0.15

0.32

0.41

0.66

⍼

Target interval
overlap

A B

Figure S3: Scoring the placement of a neuron morphology for a voxel. A: Neurite features,
here the apical tuft, were manually given a vertical annotation interval (grey) and assigned a
target interval, expressed as a layer interval (red). (Note: parts of the apical dendrite visually
shortened.) B: Then the placement of a neuron morphology in a given voxel (blue) is scored as
follows: Normalized depth values of the target interval are calculated (red); the normalized depth
of the voxel is looked up in an atlas (blue); it is used to calculate the normalized depth of the
annotation interval when the morphology is placed in the voxel (grey); a score is calculated as in
(Markram et al., 2015) based on the overlap of the intervals.
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Figure S4: Exemplary neurons in the model, one per m-type, rendered in the context of a slice
spanning all cortical layers (grey borders).
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Figure S5: Validation of modeled connectivity. A, B: Touch connectivity is validated by
comparing emerging bouton densities (A) and mean numbers of synapses per connection (B) to
the target values from the data. Each data point depicts a single morphological type (A) or
type-specific pathway (B). Black arrows: Bouton density for Chandelier Cells (ChC) in layers
2, 3 and 4. C: Mean densities of synapses from the union of touch connectivity and long-range
connectivity in pathways within and between regions (C2) compared to that target values from
the data (C1). D: Structure of the topographical mapping of connections; each part of the model
predominately connects to neurons at equally colored locations. (D1) Target mapping from the
data. (D2) Analyzed in the union of touch connectivity and long-range connectivity. E: Layer
profiles of synapses placed in long-range connections between regions (blue bars) compared to
the predicted target profiles from (Reimann et al. (2019), pink lines). Depicted is the density of
synapses in a depth bin relative to the overall mean density over the entire depth.
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Subregion Number of thalamic input fibers
Core-type Matrix-type

All 100000 72950
S1ULp 29701 21667
S1FL 25561 18647
S1J 15895 11596
S1HL 12154 8866
S1DZ 7962 5808
S1Tr 5326 3885
S1Sh 1991 1452
S1DZO 1410 1029

Table S4: Number of thalamic fibers providing inputs to the model and each of its subregions.
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Figure S6: Modeling thalamo-cortical synaptic inputs. A: Input vertical profiles of thalamo-
cortical synapses from core-type projections (A1) and matrix-type projections (A3). A2: Exem-
plary model neuron with projection synapses placed on dendrites according to the prescribed
densities. B: Modeling of afferent thalamic fiber locations: Depicted is an exemplary slice of the
model. For each fiber a location at the border between layers 4 and 5 is randomly chosen (10
examples shown; white spheres). A point 1500µm towards the bottom of layer 6 is chosen as
the starting point of each fiber (black dots). A domain of influence is then assigned around a
line starting at that location with the indicated direction (black arrows and red areas). Influence
weakens with distance from the line with a Gaussian profile; for details, see D, E. C: Locations of
fibers in the flat view. 10% of the full density shown. Inset: Locations of approximately 1mm2

shown in full density. The green circle indicates a single standard deviation of the Gaussian of
influence strength used for the core style projections (i.e., 120µm). D: For an exemplary synapse
its distances to surrounding fibers is measured and the value of the Gaussian for those distances
calculated. It is cut off at two standard deviations. E: The probability that a given fiber is chosen
as innervator of a synaptic location (blue bar) is proportional to its value in D (shown only for
fibers with nonzero probability).
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Figure S7: Validation of thalamo-cortical density profiles. Synapse density profiles of
thalamo-cortical synapses from core-type (VPM) projections (A) and matrix-type (POm) projec-
tions (B), compared with the target profiles from Meyer et al. (2010) (pink lines). Depicted are
the mean densities (black lines: ± SD) over voxels within depth bins relative to the respective
total cortical thickness in each of the eight sub-regions.
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Figure S8: A: Reduction of neuron pairs considered at higher resolutions: At the largest scale, the
entire connectivity matrix of the model is considered, albeit at lowered resolution (grey). However,
at the next scale, the model is partitioned into two subvolumes whose submatrices are analyzed
separately, considering only half of the pairs (red stripes). This continues at each further step
(blue stripes; green dots). Neurons within a matrix are partitioned into 512 groups (or nodes) and
the number of synaptic connections between them are counted. B: Fraction of neuron pairs (red)
and connections (blue) considered when analyzing connectivity at various scales, i.e., the area of
the submatrices in A compared to the normalized sum of entries within them. Teal: As blue, but
only considering connections between nodes, i.e. off the main diagonal of a matrix. Offset to the
left: At single neuron resolution (one neuron per nodes); right: at lower resolutions with at least
128 neurons per node. The x-axis specifies the approximate spatial scale over which neurons in a
matrix extent. B1-B3: For local connectivity, long-range connectivity and all connections.
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Figure S9: Basic properties of network connectivity. A:Top/bottom degree distributions
of the local/long-range networks and their corresponding control models. On the second row
additional inserts are provided showing the bi-modality of the out and total degree distributions
of the SBM and DBM controls. B: Matrices showing the probability of connection between given
pre/post-synpatic m-types. Vertically at the right of each matrix the probability of connection for
a fixed pre-synaptic m-type. Horizontally on top of each matrix, the probability of connection for
a fixed post-synaptic m-type. C: Left and center, percentage of special nodes in both networks,
sources (nodes of in-degree 0) and proper sinks (nodes of out-degree 0 that are not isolated nodes).
Left: layer distribution of the special nodes of the long-range network.
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Figure S10: Rich club analysis A: Depiction of simplices and non-simplices in various dimensions
with distinction between the source and target nodes. B:Rich-club analysis, top/bottom rows for
the local/long-range networks. Left column, rich-club curves for the original networks as well as
their CM controls. Top left additionally shows the rich-club curves of the DBM controls of the
local-networks as well as their corresponding CM controls. Middle column shows normalized rich
club curves obtained by dividing the rich-club curves for the original networks by the mean of
the rich-club curves of their corresponding controls. Right column shows the simplicial rich club
curves for color-coded dimensions ≥ 2.
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5.3 Supplementary Methods

5.3.1 Animal surgery

Normal C57BL/6 mice (P52-60) were used which were bred and maintained in the animal house
facility of Department of Anatomy, Physiology and Embryology under appropriately controlled
conditions (approval of Local Ethics Committee for Animal Research Studies at the University
of Debrecen in line with European Union guidelines for the care of laboratory animals, Directive
2010/63/EU).

For initial anesthesia, animals were injected with pentobarbital (0.15ml (6mg/ml), i.p.). Pro-
longed anesthesia was achieved by injecting 0.05 ml every 60-90 minutes depending on the reaction
to the toe-test. Head restraining was used and craniotomy performed in both hemispheres at co-
ordinates ML 1.5 - 2 mm ; AP 0.5 - 1 mm (Paxinos and Watson, 2007) in order to expose the
primary somatosensory cortex at the representation of the (hind-limb and fore-limb). We applied
the topical anesthetic Lidocaine (Xylocaine gel, Egis Gyógyszergyár ZRT, Hungary) to all surgical
wounds and pressure points. A custom-made plastic chamber (prepared by cutting a ring from a
1 ml plastic syringe) was mounted on the skull using super glue and was surrounded by 4% agar
(VWR International Kft, Hungary). Then, the cortex was exposed by making a slit on the dura
mater with the bent tip of a 14 gauge hypodermic needle.

5.3.2 Single neuron labelling

For this purpose, borosilicate glass pipettes (GB150F-8P, Science Products GmbH, Germany)
were pulled (Model P-97, Sutter Instrument Co., USA) with a resistance in the range of 60-80MΩ
(bevelled on a BV-10M beveler, Sutter Instrument Co., USA) and filled with 1M KCl containing
2% biocytin (Sigma-Aldrich Chemie GmbH, Germany). The microelectrode was attached to a
hydraulic microdrive (MHW-4 Narishige, Japan ) and the tip guided in the cortex under the
guidance of a surgical microscope (OP-MI, Zeiss). Then the chamber was then filled with 4% agar
(VWR International Kft, Hungary) for better stability of the micropipette. Neuronal activity
was recorded and amplified with AxoClamp-2A (Axon Instruments Inc., USA). After filtering,
the signal was displayed on an oscilloscope and an audio monitor to aid and control intracellular
penetration. Successful penetration of the cell membrane was indicated by a sudden drop of the
resting membrane potential (below -40mV) while applying 0.05 nA in the step-current mode (put
here stimulus configuration from Master-8). Then, biocytin was injected with +2 nA using a duty
cycle of 400 msec on and 200 msec off typically for 20 min. In each hemisphere 1-3 penetrations
were made with approximately 0.3 mm spacing from each other. Neuronal activity was searched
blindly across the entire cortical depth.

5.3.3 Histology

The animals received a lethal dose of anesthetics and were perfused transcardially first with the
washing medium (oxygenated Tyrode’s solution) for 2 min or until the blood showed clearing and
then with a fixative (approx. 100 ml) containing 2% paraformaldehyde (VWR International Kft,
Hungary) and 1% glutaraldehyde (Sigma-Aldrich Chemie Gmbh, Germany) in 0.1 M phosphate
buffer (PB, pH 7.4) for 50 minutes. Next, the brain was removed from the skull and tissue
blocks containing the region of interest were dissected. A series of 60-80 um thick vibratome
(Leica VT1000S, Leica Biosystem) sections were cut in the coronal plane and collected in 5x10
lots in glass vials. The sections were washed in 0.05M Tris-buffer saline (TBS, 10 min) and
0.05M TBS containing 0.1% Triton X-100 (2 x 10 min) and incubated at 4°C in avidin-biotin
complexed-HRP (ABC-Elite kit, Vector Laboratories, Inc., USA), diluted 1:200 in 0.05M TBS
containing 0.1% Triton X-100 (Sigma-Aldrich Chemie Gmbh, Germany) for overnight. Then the
sections were washed in TBS for 2 x 10 min and in TB for 10 min. They were treated with 0.05%
DAB (3.3’ diaminobenzidine-4HCl, Sigma-Aldrich Chemie Gmbh, Germany) diluted in 0.05 M TB
containing 0.0025% CoCl2 for 30 min while agitating on an electric shaker. Finally the labelling
was visualized in the presence of 0.1% H2O2 (5 min to 10 mins). After washing the sections in
0.05M TBS (3 x 10 min) and 10 min in 0.1 M PB the quality of the DAB reaction and the presence
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of intracellularly labelled cells were inspected while wet under a light microscope (x10 objective).
All sections of blocks containing strongly labelled neurons underwent osmification, dehydration
and resin embedding in order to retain the 3D structure of their axons and dendrites. Accordingly,
sections were treated with 1% OsO4 (osmium tetroxide, PI Chem Supplies, USA) diluted in 0.1%
PB for 15 minutes. After rinsing in 0.1M PB for 3x10 min, they were dehydrated in ascending
series of ethanol (50, 70, 90, 95 per cent and abs ethanol), propylene oxide, each step for 2x10
min, and submerged in resin (Durcupan, Sigma-Aldrich Chemie GmbH, Germany) overnight at
room temperature. Finally, the sections were mounted on glass slides, coversliped and cured at
56oC for 24 hours (Somogyi and Freund, 1989).

5.3.4 Morphological neuron reconstruction

Labelled neurons were reconstructed in 3D using the Neurolucida neuron reconstruction system
running on Windows XP platform (Neurolucida v.8.23, MicroBrightField Inc., Williston, USA).
For this purpose a Leica DMRB microscope (x100 objective) was coupled to a motorized XY-stage
and a z-motor via a stage controller (Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, Germany).
Each neuron was reconstructed from 20-32 adjoining sections. Neighboring sections were aligned
using the 3-point alignment and the least-squares algorithm for the cut ends of labelled processes
and fiducial landmarks such as the contour of cut blood vessels. The cell body, dendrites, axons
and axon terminals were reconstructed together with their thickness value.

5.3.5 Generation of random connectivity control models

This section contains definitions of the random connectivity control models and explains how these
were generated, presented in weakly increasing order of complexity.

The Erdős–Rényi controls (ER) are random directed networks where the edges are added with
a fixed probability independently at random. The controls were constructed by taking each or-
dered pair of nodes (i, j) and adding an edge from i to j at random with probability p = E

N(N−1) ,

where E (respectively N) is the number of edges (respectively nodes) in the original network.

The stochastic block model controls (SBM) are random networks where the edges are added
independently at random with a fixed probability dependent on the m-type pathway of the pre-
and post-synaptic neurons. These controls were built as for the ER-controls, but with a different
probability for each pathway. More precisely, if (i, j) are two neurons of m-types A and B, then
their probability of connection is

pAB =

{ EAB

(NAB)2 if A ̸= B,

EAA

(NAA)(NAA−1) if A = B,

where NAB is the number of neurons of m-type A and B and EAB is the number of edges from
neurons of type A to neurons of type B in the original network.

The directed configuration model controls (CM) are random networks that closely approximate
a given in/out-degree sequence, i.e., a vector of length the number of nodes, whose entries are
their in/out-degrees. To build these controls, we encode the edges of the original matrix by two
vectors, sources and targets, such that (sources[i], targets[i]) is a directed edge of the matrix (this
corresponds to a binary matrix in coordinate format, useful when working with sparse matrices).
Then, we shuffle the entries of both vectors sources and targets independently, which gives a new
directed network, with the same degree sequence as the original. This new network might contain
loops or parallel edges, so we remove them, thus this construction only approximates the original
degree sequence. The density of loops and parallel edges tends to decrease as the number of nodes
increases (Newman, 2003), so the approximation is good. Indeed, in our controls for local connec-
tivity, 235, 574.0±376.0 (mean ± std) connections out of 2, 050, 028, 490 were missing, which is less
than 0.012% of all connections. For long-range connectivity the number was 629, 493.4± 2, 228.0
out of 2, 482, 296, 102, which is less that 0.026% of all connections.

50

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503144doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503144
http://creativecommons.org/licenses/by-nc/4.0/


Finally, the distance block model controls (DBM) are random networks where the edges are
added independently at random with a probability pA(d) = αA · e−βA·d, that is, exponentially
decreasing with distance d, where αA is the probability at distance zero and βA the decay con-
stant, both depending only on the pre-synaptic cell m-type A. For local connectivity, the distance
between a pair of neurons used was the Euclidean distance of their position in space (in µm). For
long-range connectivity, the specific method used to originally construct the connectome (Reimann
et al., 2019) was taken into account, preferentially connecting neurons at one location within a
subregion A to neurons in another subregion B by first parameterizing linear transformations
of the flattened coordinates of the two regions. The resulting virtual coordinate system VA,B is
then used to connect pairs of neurons from A and B in a distance-dependent way. Therefore, the
distance considered in this control between pairs of neurons was the Euclidean distance between
these virtual coordinates.

For computational reasons, the model coefficients αA and βA were estimated by randomly
sub-sampling (up to) 100 000 pre-synaptic neurons of m-type A and 100 000 post-synaptic neu-
rons of any type and computing their pairwise distances. For local connectivity, distances from
0 to 1000µm were then divided into 20 evenly spaced 50µm bins. For long-range connectivity,
distances from 0 to 400 (a.u.) were divided into 20 evenly spaced 20 (a.u.) bins. Connection prob-
abilities were estimated in each bin by dividing the number of existing connections by the number
of possible connections between all pairs of neurons within that bin (excluding connections at
distance zero, that is, between one neuron with itself). Model coefficients were then determined
by fitting the exponential probability function p(d) to these data points. The whole procedure
was repeated ten times with different random sub-samples of neurons, and the averaged model
coefficients over these ten estimates were used to build the controls. Overall, the relative standard
errors of the mean over the ten estimates were on average across all m-types less than 1%. For
local connectivity, model coefficients of all 60 pre-synaptic m-types were found to be on average
α = 0.138 ± 0.102 (SD) and β = 0.0096 ± 0.002 (SD) respectively. For long-range connectivity,
the model coefficients of all 18 m-types that had any outgoing long-range connections were on
average α = 0.0006± 0.001 (SD) and β = 0.012± 0.001 (SD) respectively.

The code used to generate all the control models is available in the connectome analysis
package, and is a combination of python and C++ code.

5.3.6 Finding and counting simplices in connectivity networks

Directed simplices were computed using the custom-made C++ package flagser-count. This
code is a variation of the flagser package (Lütgehetmann et al., 2020). The code takes as input
the adjacency matrix of a directed network in compressed sparse row (or column) format, outputs
the number of directed cliques in the network, and includes the option to print all simplices.
There is also the option to output node participation, so for every node v and every dimension d
a value is given for the number of d-simplices that contain v. The algorithm considers each node
independently as a source node and then performs a depth-first search on that node to find all
simplices, where at each step it creates a new simplex by adding any node that is an out-neighbor
of all nodes in the current simplex.

Since each source node is considered independently, the computations can be easily parallelized.
The simplex count computations were conducted on the Blue Brain high performance computing
system. Each computation was run on two Intel Xeon Gold 6248 CPUs using a total of 40 physical
cores. To compute the simplex counts for the local network took 3 hours and 15 minutes using
8.2GB of memory, the long-range network took 14 hours and 44 minutes using 9.8GB of memory
and the combined network took 115 days and 20 hours using 69.5GB of memory. The transpose
adjacency matrices of the long-range and combined networks were used, which have the same
simplex counts, because these were significantly faster to compute due to the degree distributions.
The computation for the combined network was attempted on the non-transposed matrix and
ran for 121 days, and computed partial counts, but encountered 898 nodes for which the counts
could not be computed within 24 hours, such nodes were deemed too computational expensive
and skipped.
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5.3.7 Rich-club and generalized rich-club

The k-rich-club coefficient of an undirected network is the density of the subnetwork on the nodes
of degree greater than k, and is given by the formula

ϕ(k) =
2E>k

N>k(N>k − 1)
,

where N>k is the number of nodes of degree greater than k, and E>k is the number of edges
between the nodes in N>k. We call the function ϕ the rich-club curve. For a directed network
we obtain three variations of this curve depending on whether we consider in-degree, out-degree,
or total-degree (the sum of in- and out-degree), and we remove the coefficient 2 due to the fact
that the maximum number of edges is now N(N − 1) instead of N(N − 1)/2. This gives us three
formulas

ϕtotal(k) =
Etotal

>k

N total
>k (N total

>k − 1)
, ϕin(k) =

Ein
>k

N in
>k(N

in
>k − 1)

, ϕout(k) =
Eout

>k

Nout
>k (N

out
>k − 1)

, (1)

where N total
>k (resp. Etotal

>k ) is equivalent to N>k (resp. E>k) but restricted to the total degree,
and similarly for in and out.

The rich-club coefficient can be naturally generalized by replacing the degree with any network
metric (Opsahl et al., 2008). In particular, we define the simplicial rich-club coefficient by

ϕd(k) =
Ed

>k

Nd
>k(N

d
>k − 1)

, (2)

where Nd
>k is the number of nodes with d-node participation at least k, and Ed

>k is the number
of edges between them. Note that ϕ1 = ϕtotal since a 1-simplex is simply an edge of the network.

A large rich-club coefficient value is said to indicate a preference of high degree nodes to connect
together. However, it is shown in Colizza et al. (2006) that the rich-club coefficient is increasing
even in Erdős–Rényi networks, and is actually a consequence of higher degree nodes naturally
being more likely to connect. Therefore, it is important to normalize the rich-club coefficient
by dividing by the rich-club of an appropriate control, that is, a control with the same degree
distribution such as a configuration model, see Section 5.3.5. Hence we define the normalized
rich-club coefficient as

ρtotal(k) =
ϕtotal(k)

ϕtotal
rand(k)

, (3)

where ϕtotal
rand(k) is the rich-club coefficient of a configuration model control of the original net-

work, and we similarly define ρin(k) and ρout(k). A network is said to have a rich-club effect
if ρtotal(k) > 1, as this indicates the high degree nodes connect together more than is “expected”.
The importance of this normalization can be seen in Figure S9, where B1 seems to indicate the
presence of a rich-club effect for the long-range network, which disappears when normalized in B2.

Normalizing the simplicial rich-club is difficult as it requires a control model on directed flag
complexes that fixes node participation. Randomly sampling simplicial complexes with fixed
simplex counts or other high dimensional network properties is an active area of research (Kahle
et al., 2014; Young et al., 2017; Unger and Krebs, 2022), but as of yet there is no known appropriate
control model for the simplicial rich-club, and it is a topic that warrants further investigation.

5.3.8 Paths and path distances

Let G be a directed network on n nodes, with adjacency matrix A. A path of length k (or k-path)
from node u to node v is a sequence of nodes u = x1, . . . , xk+1 = v such that (xi, xi+1) is an edge
of G for all i = 1, . . . , k. The path distance between u and v is the length of the shortest path
from u to v. A path from u to v is geodesic if its length is the path distance from u to v.

The number of k-paths between all nodes in G can be easily computed using matrix multipli-
cation, since the number of k-paths between u and v is given by Ak

u,v, where A is the adjacency
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matrix of G (Diestel, 2005). Consequently, the number of k-paths from the nodes i1, . . . , it to all
other nodes in G is given by

Ak
[i1,...,it]

= A[i1,...,it]A
k−1 = Ak−1

[i1,...,it]
A,

where A[i1,...,it] is the t× n matrix obtained from A by taking only the rows i1, . . . , it. Note that
the smallest k for which entry i, j is nonzero is the path distance from i to j.

Using this approach we were able to compute the path distances in the combined network
between pairs of all 396 nodes in the local and long-range cores. We ran the computation in
parallel by partitioning the nodes into 13 sets C1, . . . , C13 of approximately 23 nodes each and
computing

Ak
[Ci]

= (. . . (A[Ci] A)A) . . . A︸ ︷︷ ︸
×k−1

).

Note that the order of the brackets ensures that at each step a 23× 4234929 matrix is computed,
rather than a 4234929× 4234929 matrix.

Once we had the path distances between the nodes in the local and long-range cores, we
computed the geodesic paths between them. This was done using the custom C++ package
pathfinder. This code functions in a similar way to flagser-count, except that at each step
it creates a new path by considering any node that is an out-neighbor of the final node in the cur-
rent path. At input the start-nodes, end-nodes, and path distances can be specified. To compute
all geodesic paths of length at most three between nodes within the local and long-range cores
took 8 hours and 47 minutes, using 51.9GB of memory. Between these 396 nodes there are 6, 383
geodesic 1-paths, 1, 039, 814 geodesic 2-paths, and 21, 701, 345 geodesic 3-paths. To compute all
geodesic 4-paths was attempted, but after running for 24 hours failed to finish, and is likely to be
computationally infeasible due to the exponential growth of the number of paths.

5.3.9 Generation of columnar subvolumes

We partitioned the modeled volume into subvolumes with shapes approximating hexagonal prisms.
To that end, we represented each voxel by the flattened location of its center. In the resulting
two-dimensional coordinate system, we distributed seed points in a hexagonal grid with a distance
of 460µm (based on the 230µm column radius of Markram et al. (2015)) between neighboring
points. Next, for each voxel we determined to which seed point it was closest. All voxels that were
closest to the same seed point were then grouped together as parts of the same subvolume. As
subvolumes near the periphery of the model could be incomplete, i.e., not form complete hexagonal
prisms, we excluded them from further analysis if either of the following two conditions was met:
1. The subvolume had fewer than six neighbors in the hexagonal grid; 2. Its volume was less than
0.166mm3. That threshold is based on the volume of a circular prism with a radius of 230µm and
a height of 1000µm.

5.3.10 Analyzing connectivity at different spatial scales

To generate connectivity matrices at various spatial scales we first considered the coordinates of all
neurons in the model in a flattened, two-dimensional coordinate system, constructed as described
in (Bolaños-Puchet and Reimann, prep). We then fed the coordinates into a KD-Tree (Manee-
wongvatana and Mount, 1999) using the scipy package in python 3.8. This generated a binary tree
where each node is associated with a population of neurons as follows: 1. The root is associated
with the entire population. 2. The populations associated with the two children of a node N
are of a partition of the population associated with N into two groups of roughly equal size. 3.
This partition is performed by splitting the population along either their flat x-coordinate or their
flat y-coordinate, depending on which has larger variance over the population. 4. This partition-
ing is continued, growing the tree until populations of only single neurons are reached at its leaves.

As a result of this construction, the set of nodes at a distance n from the root defines a
partition of the neuron population into 2n groups, such that each group is spatially continuous

53

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 15, 2022. ; https://doi.org/10.1101/2022.08.11.503144doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.11.503144
http://creativecommons.org/licenses/by-nc/4.0/


in the flattened coordinate system and stretches along comparable distances of the flat x- and y-
coordinates. We define a distance nscale that sets the spatial scale of connectivity to be analyzed.
Each group of neurons defined by nscale will be compiled into a separate connectivity matrix, i.e.,
connections between groups defined at that scale will not be taken into account.

A connectivity matrix is then generated as follows. For a given node at a distance nscale from
the root, we consider the subtree rooted at that node. Within that subtree we find all nodes at
a distance of 9 from the root. This defines a partition into 29 = 512 groups of neurons. We then
generate the 512 x 512 matrix of the numbers of synaptic connections between these groups. All
2nscale matrices at a given scale are then analyzed using the metrics explained in the main text.
For large n, we skipped the scales with more than one but fewer than 16 neurons per node, where
it is unlikely that neurons from all cortical layers are included.

We estimate the spatial scale and resolution associated to a given scale as follows. We calculate
the area of the axis-aligned bounding box of the flat coordinates of all neurons considered in one
of the matrices at that scale. We consider its square root to be an estimate of the spatial scale
analyzed. In the manuscript, we report the mean of this measure over all matrices at a given
nscale, rounded to the nearest multiple of 5µm. The spatial resolution is calculated similarly,
but considering instead the bounding boxes of neurons belonging to the same row or column of a
matrix.

5.3.11 Calculation of structural measures in the Allen voxelized connectome

We calculated structural metrics (symmetry, degree distributions, maximum weight cutoff that
keeps a fully connected core) for the AIBS voxelized connectome in a way that makes the results
comparable to our analysis of connectivity at different scales (see above). The following points
were to be considered. First, our analysis at different scales split the model along the horizontal
dimensions, consequently grouping together neurons from all layers. Second, our analysis resulted
in connectivity matrices with a constant size of 512 x 512.

To that end, we applied the flat-mapping procedure of (Bolaños-Puchet and Reimann, prep) to
the cortical regions of the AIBS v3 mouse brain atlas with a resolution of 100µm. This projected
the voxel into a two-dimensional coordinate system along paths that are roughly orthogonal to layer
boundaries. We then discretized those flat coordinates with a resolution of 100µm and grouped
together voxels of the non-barrel somatosensory regions with the same discrete flat coordinate.
This resulted in 518 groups, close to the target value of 512. The number of voxels per group
was 17.4 ∓ 6.1. We considered the matrix of mean connection strengths between the groups of
voxels. The equivalent resolution of this matrix was given by the resolution of the discretization
step, 100µm. The equivalent scale was 2600µm.

5.3.12 Generation of tentative clusters based on thalamic innervation

We considered neurons in a central cylindrical volume of the model with a radius of 1000µm. For
a given cortical layer and thalamic input source (core-type or matrix-type), we identified for each
neuron in that layer the set of input fibers innervating it with at least one synapse. For each pair
of neurons, we then calculated the amount of overlap in the thalamic innervation as the size of
the intersection, divided by the size of the union of their sets of innervating fibers.

We converted the matrix of pairwise common innervations of a layer into a distance matrix, by
taking the negative base 10 logarithm of the measure. Where the common innervation was zero,
the distance was set to five. We then clustered the neurons based on this distance matrix using
Ward linkage, as implemented in scipy. The maximum number of clusters was set to 100. To
evaluate the spatial overlap or separation of the resulting clusters, we also calculated the matrix
of pairwise distances of soma locations and then calculated the silhouette score of the clustering
based on that distance matrix.
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As different layers have very different neuron densities, it would be hard to compare the results
across layers. Therefore, we performed the clustering described above on 3000 randomly selected
neurons within the layer of interest. That number was selected based on the approximate number
of neurons within the 1000µm region of interest in the least dense layer (layer 1).
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