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Abstract

The hippocampus is a widely studied brain
region thought to play an important role in
higher cognitive functions such as learning,
memory, and navigation. The amount of data
on this region increases every day and de-
lineates a complex and fragmented picture,
but an integrated understanding of hippocam-
pal function remains elusive. Computational
methods can help to move the research for-
ward, and reconstructing a full-scale model of
the hippocampus is a challenging yet feasible
task that the research community should un-
dertake.

In this chapter, we present strategies for
reconstructing a large-scale model of the hip-
pocampus. Based on a previously published
approach to reconstruct and simulate brain
tissue, which is also explained in Chap. 10,
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we discuss the characteristics of the hippocam-
pus in the light of its special anatomical and
physiological features, data availability, and
existing large-scale hippocampus models. A
large-scale model of the hippocampus is a
compound model of several building blocks:
ion channels, morphologies, single cell mod-
els, connections, synapses. We discuss each of
those building blocks separately and discuss
how to merge them back and simulate the
resulting network model.
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11.1 Introduction

11.1.1 The Hippocampus Formation

The hippocampus is a brain region that belongs to
the archicortex, a cortical tissue with four or five
layers, instead of themore typical six layers of the
neocortex. Mammals have two hippocampi, one
on each side of the brain, and each hippocampus
appears as a curved structure inside the temporal
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lobe. In this chapter, we will discuss methods
to reconstruct the rodent hippocampus in a com-
puter model. Since the hippocampus architecture
is mostly preserved across mammals, however,
some of the insights may generalize beyond the
rodent.

In rodents, the hippocampus appears as a
prominent structure just below the neocortex.
When we say hippocampus, we refer to four
subregions: dentate gyrus (DG), cornu ammonis
1, 2, and 3 (CA1, CA2, and CA3). Some authors
use the term hippocampus proper to refer to
CA1, CA2, and CA3 only. Finally, with the
term hippocampus formation, we include also
subiculum, presubiculum, parasubiculum, and
entorhinal cortex.

The hippocampus plays an important role in
several cognitive functions, such as learning and
memory (Jarrard 1993), and spatial navigation
(O’Keefe and Nadel 1978). The hippocampus is
also implied in some pathologies. For example,
in Alzheimer’s disease, the hippocampus seems
to be affected in early stages before the disease
spreads to the entire brain. In epilepsy, the tem-
poral lobe is often the focus of seizures since the
hippocampal formation needs considerably less
current to elicit epileptiform activity compared to
other cortical areas. Additionally, the hippocam-
pus, in particular CA1, is highly vulnerable to
ischemic or hypoxic insults making this region
critical in cerebrovascular diseases.

The hippocampus has facilitated many discov-
eries due to its particular structure and properties.
First of all, it has a relatively simple and ordered
structure, with four layers, where excitatory cells
populate only one layer. The different hippocam-
pal fields are connected almost unidirectionally
and long-range fibers travel orthogonally to the
main dendritic axes of pyramidal cells. Further-
more, the synapses are highly plastic, so that they
can change their strength in response to the pre-
and postsynaptic cell behavior. Finally, neurons
can be grown in culture, and acute or cultured
slices survive in vitro for a sufficient long time
to be used in experiments. All those properties
make the hippocampus a convenient benchmark
to understand general principles of the brain. Key
discoveries that benefited from experiments on

the hippocampus are, for example, the charac-
terization of excitatory and inhibitory synapses
(Kandel et al. 1961; Hamlyn 1963; Blackstad and
Flood 1963; Andersen et al. 1964a, b, 1966a, b;
Curtis et al. 1970), the discovery of long-term
plasticity (Bliss and Lømo 1970, 1973), and the
study of oscillations and their behavioral corre-
lates (Buzsáki 2005).

This interest in the hippocampus has generated
much data that grow daily. While this is undoubt-
edly positive, it is clear that more data do not nec-
essarily bring more knowledge. Data are always
sparse, heterogeneous, conflicting, and strategies
are necessary to convert all of this into a bet-
ter understanding of the hippocampus. Computer
models can help to accelerate this process. Recent
seminal works (Ecker et al. 2020; Markram et
al. 2015; Bezaire et al. 2016; to cite the most
pertinent references) showed how it is possible to
reconstruct a brain region despite available data
being incomplete and heterogenous. This sup-
ports the idea that a faithful reconstruction of the
hippocampus in a computer model, while albeit
challenging, is nonetheless ultimately feasible.

11.1.2 Principles for Building
a Computer Model
of the Hippocampus

We can build a model for different purposes and
our choice will affect the modeling approach.
Here, we present a model that targets two main
goals. First, the model should integrate available
data on the hippocampus to provide a meaningful
snapshot of what we know. Second, the model
should allow us to study a variety of phenomena
and not be restricted to any particular hypothesis.
In reconstructing the neocortical microcircuitry,
Markram et al. (2015) developed a computational
reconstruction process that produced such neu-
roanatomically detailed and data-ready models
from biological first principles which can be gen-
eralized to other brain regions. In the previous
chapter of this book, “Computational Concepts
for Reconstruction and Simulation of Brain Tis-
sue,” the underlying approach is presented and
serves as a prerequisite for a better understanding
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of the present chapter, which applies this process
to the hippocampus.

The reconstruction of the neocortical micro-
circuitry in Markram et al. (2015) is the result
of a model building process that integrates data
at different scales and of different modalities.
This process is a data-driven process without any
preconception on any particular hypotheses one
may want to test. The model includes elements
for which one can find sufficient experimental
constraints (e.g., single cell reconstructions and
electrophysiological recordings, analysis of the
connectivity, pair recordings) representing a start-
ing point for further refinements and integration
of new data.

It is useful to consider a brain tissue model as
a compound model of different building blocks:
morphologies, ion channels, single cell electrical
models, connections, synapses, and volume (Fig.
11.1). For a full reference of those components,
see Markram et al. (2015) and Chap. 10. In the
present chapter we follow this structure and take
into account the particularities of the hippocam-
pus in terms of data availability, functions, and
specific challenges. As described in Sect. 10.5:
Validation, once we have built a model of a com-
ponent, we validate it before integrating it into the
compound model. This process offers an alterna-
tive to the conventional method of “hand-tuning”
the parameters of the model or a building block
to match the emergent properties at higher scales.
Instead, using this method, the failure to capture
an emergent behavior triggers the modeler to re-
examine the input data and model assumptions.
While such a systematic approach can be more

time-consuming than hand-tuning, it proves to be
more reproducible and extensible and provides
more insight on the causal relationship between
the building blocks and the brain tissue model’s
emergent behavior.

The chapter describes methods that can be
applied to any of the hippocampal subregions
of different species. Additionally, we will also
examine some concrete examples, in particular,
the adult rat CA1 (Romani et al., in preparation;
hippocampushub.eu), for which there is ample
available data.

11.2 Morphologies

In this section, we discuss the different cell types
to include in a computational model of the hip-
pocampus, beginning with the different morpho-
logical types (m-types). There are several classes
of morphologies in CA1, but there is no sin-
gle, universally accepted classification (for a sys-
tematic census of morphologies, visit hippocam-
pome.org). First of all, there are several methods
to classify cells that do not always arrive at the
same conclusions. Each cell is potentially differ-
ent than all the others and different classifications
recognize different patterns thereby defining dif-
ferent classes. Furthermore, the techniques used
to classify cells have evolved over time and new
techniques appear regularly in the toolbox of the
anatomists. Together with an increasingly better
understanding of the brain, this leads to a contin-
uous revision of the classifications. So, the same
morphology can be identified in many different
ways, or even the same name can identify differ-

Volume (7)

Morphologies (2) Single cell models (4) Cell placement (8)

Ion channels (3)

Connectome (5) Synapses (6) Network (8)

Fig. 11.1 Circuit building workflow. The number in parentheses shows the section number in this chapter where the
topic is discussed

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec22
hippocampushub.eu
http://www.hippocampome.org/
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Table 11.1 Core set of cell types. The number of cells
that have been reconstructed and identified as found in
neuromorpho.org with three different filter options: hip-

pocampus (+), rat hippocampus CA1 (++), rat hippocam-
pus CA1 and complete 3D neurites (+++)

No. of cells in Neuromorpho.org

Name of cell type Acronym + ++ +++
Pyramidal cell PC 14, 519 1134 234

Ivy cell/Neurogliaform cell Ivy/NG 2a 0 0

Oriens-lacunosum moleculare cell OLM 29 7 7

Parvalbumin positive (PV+) basket cell PVBC 52 7 3

Bistratified cell BS 15 5 5

Axo-axonic cell AA 25 1 1

Cholecystokinin positive (CCK+) basket cell CCKBC 12 3 3

Schaffer collateral associated cell SCA 19 8 8

Perforant pathway associated cell PPA 5 5 5

Trilaminar cell Tri 8 3 3

Interneuron-specific I IS I 1 0 0

Interneuron-specific II IS II 0 0 0

Interneuron-specific III IS III 8 0 0

Total 14, 695 1173 269
aThere are not sufficient metadata to distinguish between those two cell types

ent cell types (Petilla Interneuron Nomenclature
Group et al. 2008).

A good starting point is cell types that are quite
well established and characterizedwith strong ex-
perimental data. At least for CA1, several reviews
(Bezaire and Soltesz 2013; Klausberger and So-
mogyi 2008) and public resources (neuromor-
pho.org, hippocampome.org) help us to identify
this core set of morphologies (Table 11.1).

The core set of cell types found in the hip-
pocampus is presented in Table 11.1. What is not
shown in the table is that the somata of these cell
types can be found in different layers. Neurons
of the same type show visible differences in their
morphology if their somata are in different layers,
even if axon and dendrites preserve similar distri-
bution across layers. For this reason, we consider
cells that belong to the same class but have differ-
ent soma locations as being classified as different
morphological types. A useful convention is to
put the acronym of the layer that hosts the soma
in front of the cell type acronym, as was used in
Markram et al. (2015). The hippocampus strata
are structured depth-wise in clearly defined layers

including the stratum pyramidale (SP), stratum
oriens (SO), stratum radiatum (SR), and stratum
lacunosum moleculare (SLM). For example, we
can identify the cell types also by their locations
as abbreviated by: SP_AA, SO_Tri, SR_SCA,
SLM_PPA, respectively.

So far, we have treated the CA1 as a uniform
region. In reality, many model parameters change
along the three axes of the hippocampus—
longitudinal, transverse, and radial axis. If we
restrict the discussion to morphological features,
we already mentioned how the morphology
varies when the soma is located in different
layers (i.e., along the radial axis). Cells can
show morphological differences depending on
their exact location even within the same layer.
For example, we can distinguish a deep or
superficial pyramidal cell that has the soma
located, respectively, on the bottom or the top
of stratum pyramidale. Deep pyramidal cells
(bursting or early bursting) have more extensive
tuft dendrites, while superficial ones (non-
bursting or late bursting) have more extensive
basal dendrites (Graves et al. 2012). Also, along

http://neuromorpho.org
http://neuromorpho.org
http://neuromorpho.org/
http://hippocampome.org/
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the longitudinal axis of the hippocampus, we
can observe differences in the morphology of
pyramidal cells (Mizuseki et al. 2011; Lee et al.
2014; Masurkar et al. 2017). At first glance, PCs
in the transverse axis seem quite homogeneous,
but it masks a diversity in the PCs in terms of
connectivity, properties, and functions. Already
Lorente De Nó (1934) divided in the CA1 into
“a, b, and c” on the base of different connectivity
of pyramidal cells. New studies have revealed
additional differences both in the anatomy and
physiology of pyramidal cells along this axis
(Igarashi et al. 2014).

Differences within the hippocampus emerge
not only at the level of morphology, but also
at the level of physiological properties of the
cells, connectivity, cell density, and so on. This
high heterogeneity supports the idea that the hip-
pocampus processes different types of inputs and
this could happen in parallel (Andersen et al.
1969, 2000; Danielson et al. 2016; Deguchi et
al. 2011; Geiller et al. 2017; Sloviter and Lømo
2012).While we will not take this inhomogeneity
into account for the sake of simplicity, the reader
should not forget about that because it may have
profound implications on how the hippocampus
works in the real brain.

After identifying the cell types for consid-
eration, we have to collect their morphological
reconstructions. Public resources contain a large
number of morphological reconstructions we can
potentially use. However, not all the available re-
constructions share the same quality. The optimal
dataset should include: target species (rat), age
(adult), target region (CA1), classification, 3D
morphology, full dendritic arbor, and full axon
arbor when possible. Unfortunately, the number
of reconstructions that are publicly available and
meet the above criteria are lamentably few. In
Table 11.1, we show the result of a search in
neuromorpho.org and the number of available
morphologies when they match partially (1173
cells) or completely (269 cells) our quality crite-
ria.

Before it can be used for modeling, any neuron
reconstruction needs first to be checked carefully
to identify and fix reconstruction errors (Donohue

and Ascoli 2011; Winnubst et al. 2019) that can
affect the building of models.

A set of curated high-quality reconstructions
in Neurolucida ASCII format is available in the
“Live Papers” section under Resources/Mor-
phologies/View of the Brain Simulation Platform
(https://humanbrainproject.github.io/hbp-bsp-
live-papers/2018/migliore_et_al_2018/migliore_
et_al_2018.html).

11.3 Ion Channels

Hippocampal neurons are characterized by a va-
riety of different ion channels which exhibit a
certain distribution and density that define their
particular electrical behavior. Since the precise
information about the types of ion channels ex-
pressed by a particular cell type is not known,
even for the well-characterized ones, we have
to assume which channels to include. While it
would be desirable to model neurons with ge-
netically identified ion channels (Ranjan et al.
2019) (channelpedia.epfl.ch), and this approach
may become possible in the near future, at the
time of this writing, it is currently not feasible.
A more pragmatic approach is to define a set of
currents that can reproduce the diversity of the
firing patterns of our chosen hippocampus cell
types. The Hodgkin–Huxley formalism (Hodgkin
and Huxley 1952) has been widely used to build
phenomenological models of currents. This for-
malism offers flexibility and efficiency making
it a suitable approach for large-scale networks of
multi-compartmental neuron models.

Considering the firing patterns of rat CA1 cells
(see Sect. 11.4.1 and Fig. 11.2), we can restrict the
ion currents to the following ones:

• Sodium (Na) current and potassium delayed-
rectifier (KDR) current which are ubiquitous
in neurons and are needed to support action
potential generation;

• Type A potassium current (KA) and hyper-
polarization-activated current (Ih) which are
major players in dendritic integration;

• Type M potassium current (KM) which is re-
sponsible for spike adaptation;

http://neuromorpho.org
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
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Fig. 11.2 Morpho-electrical composition. Firing pat-
terns (electrical type or e-type) shown by the different
morphologies (morphological type or m-type). Pyrami-
dal cells: cACpyr classical accommodating. Interneurons:
cAC classical accommodating, bAC bursting accommo-
dating, cNAC classical non-accommodating

• Type d potassium current (Kd) which is re-
sponsible for delayed firing and inverse adap-
tation (seen in a few types of interneurons);

• Three calcium currents that cover the range of
kinetics observed for voltage-dependent cal-
cium channel (one fast and transient, one long-
lasting, and one non-inactivating) (CaT, CaL,
CaN);

• A calcium pump that ensures that calcium
entering through channels is extruded;

• Two calcium-dependent potassium currents
(one of them also voltage-dependent) (KCa

and Cagk) that concur in generating a strong
adaptation.

We can refit models or ion channels or
take advantage of the large number of models
publicly available (see, for example, the public
ModelDB model repository https://senselab.med.
yale.edu/modeldb/). Nonetheless, the richness

of the data available is not always positive.
Researchers have built several versions of the
same currents or modified existing models. They
constrain their models against different set of
experiments, making different assumptions that
are not always explicit and documented. The
forest ofmodels can be appreciated if we compare
their provenances (see Ion Channel Genealogy
website at icg.neurotheory.ox.ac.uk) (Podlaski et
al. 2017). In order to take full advantage of the
many models already available, we have to spend
time checking the models to verify if the models
are in agreement with the original experimental
data and if they match the experimental or
modeling conditions we are going to implement.

When we pull together data to model ion
currents or when we pull together different ion
current models, we are most likely merging two
or more datasets. Datasets are often obtained
in different experimental conditions and we
have to normalize them before implementing
this merge. Two common problems are the
liquid junction potential and the differences in
temperature (Markram et al. 2015). The liquid
junction potential (LJP) (Neher 1992) arises
when two different solutions are in contact
and have ions at different concentrations with
different mobilities. Due to the presence of
LJP, the recorded voltage does not correspond
to the membrane potential. If the experimental
data or the models are not corrected for LJP,
or the authors do not provide an estimation
for that, we have to make this correction. We
can estimate the LJP knowing the solutions
used in the experiments. This calculation
is facilitated by available tools like JPCalc
(Barry 1994). The other factor to consider
is the temperature that affects the kinetic
parameters, i.e. the time constants. We have to
bring the time constants to the same reference
temperature (generally the temperature of
our simulations) using the Q10 temperature
coefficient, which describes the change as a
consequence of increasing the temperature by
10 ◦C.

A curated set of ion channel models is avail-
able together with the single cell models (see
Sect. 11.4).

https://senselab.med.yale.edu/modeldb/
https://senselab.med.yale.edu/modeldb/
https://icg.neurotheory.ox.ac.uk
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11.4 Single Cell Models

In this section, we discuss how to constrain hip-
pocampal single cell models, which means defin-
ing the set of ion channels and how they are
distributed across the differentmorphologies. Un-
fortunately, this information is not completely
accessible—even for cell types that are intensely
studied like CA1 pyramidal cells. Despite that,
as described in Chap. 10, computational methods
exist to overcome this problem.

11.4.1 Electrophysiological Features

The simplest set of electrophysiological traces
that can be used to constrain a model consists
of single cell recordings in current clamp mode
where the soma is stimulated with a series of
step currents. Ideally, the currents should cover a
range of intensities and the step should be long
enough to resolve the particular features of the
firing patterns. For example, hyperpolarizing
currents in CA1 pyramidal cells reveal a “sag” in
the voltage response that is important to constrain
the hyperpolarization-activated nonspecific-
cation current (Ih). Depolarizing currents should
also have sufficient intensity to characterize the
high firing rates of some cell types (e.g., the
fast spiking PV+ basket cells) or even reveal
the depolarization block, a temporary arrest
of the firing due to an intense depolarizing
input (Bianchi et al. 2012). Finally, steps of
sufficient length are necessary, for example,
to better characterize the adaptation of certain
neurons or reveal the first spike of late-spiking
neurons that may appear after several hundreds
of milliseconds under near-threshold stimulation
(Tricoire et al. 2010).

After we collect the electrophysiological
recordings, we have to classify them on the basis
of the firing patterns shown. Despite the huge
variability in cell firing, the different patterns can
be sorted in a limited number of classes which
have been largely agreed upon in the neuroscience
community (Petilla Interneuron Nomenclature
Group et al. 2008). Data on the hippocampus
show that each morphological type (m-type) can

express one or more electrical types (e-type) to
give different morpho-electrical combinations
(me-type) (Komendantov et al. 2019). If our
dataset is big enough, we can also estimate the
abundance of each me-type, information that
will be important when we have to define the
cell density in the network (see Sect. 11.5.2).
Based on the data we have collected, we derived
the morpho-electrical composition shown in
Fig. 11.2.

Markram et al. (2015) showed that an efficient
way to constrain single cell models is to opti-
mize them against features rather than the entire
trace. Features are the salient elements of a trace
that characterize the firing pattern (e.g., spike
width, time to the first spike, adaptation index).
We can use the open-source Electrophysiological
Feature Extraction Library (eFEL, https://github.
com/BlueBrain/eFEL) or the Blue Brain Python
E-feature extraction (BluePyEfe, https://github.
com/BlueBrain/BluePyEfe) to extract features to
be used in a subsequent model optimization. Fea-
tures extraction can be performed in a web ap-
plication of the HBP platform EBRAINS (https://
ebrains.eu/service/feature-extraction/).

The resulting features may come from differ-
ent experiments that use different experimental
conditions or may be used together with other
experimental data. In any case, we have to nor-
malize them by correcting for LJP and using the
threshold-base currents. We already discussed the
LJP in Sect. 11.3. Regarding the second issue,
we observe that the same cell type can respond
differently to the same amount of current in dif-
ferent experiments. A way to normalize the result
is to calculate the rheobase, the current necessary
to bring the cell to the action potential threshold,
and inject step currents defined as a percentage
of this rheobase (Markram et al. 2015). If the
experiments are not done in this way, we can still
estimate the threshold current by interpolating the
available data.

11.4.2 Model Optimization

Once the target traces, or more specifically the
target electrophysiological features, have been

http://dx.doi.org/10.1007/978-3-030-89439-9_10
https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/BluePyEfe
https://github.com/BlueBrain/BluePyEfe
https://ebrains.eu/service/feature-extraction/
https://ebrains.eu/service/feature-extraction/
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defined, we have to define the set of currents,
the compartments in which they are located,
and how they change within each compartment.
As discussed in an earlier section, the set of
active membrane properties include a sodium
current (Na), four types of potassium (KDR, KA,
KM, and KD), three types of calcium (CaN,
CaL, CaT), the hyperpolarization-activated
nonspecific-cation current Ih, two types of
calcium-dependent potassium currents, KCa and
Cagk, and a calcium extrusion mechanism in all
the compartments containing calcium channels.
In general, channels are uniformly distributed
in all dendritic compartments except KA and Ih,
which in pyramidal cells are known to increase
with distance from the soma (Hoffman and
Johnston 1999; Magee 1999).

Figure 11.3 shows our first iteration on single
cell models (Migliore et al. 2018). Note the fol-
lowing about pyramidal cells:

• KM is only present in the soma and axon (Shah
et al. 2008);

• KD is not present since it is implied in delayed
spiking and this is not a feature observed in
PCs;

• KA has a different kinetics in dendrites, soma,
and axon (Hoffman et al. 1997; Migliore et al.
1999);

• KM has a different kinetics in the soma versus
the axon; and

• Na and KDR are treated separately in the soma
and the rest of the neuron.

Interneurons:

• Given the limited knowledge on the currents
in interneurons, we apply the same currents of
pyramidal cells with few exceptions;

• KD is present since some interneurons show
delayed firing; and

• KA has the same kinetics in somas and den-
drites because there is no experimental evi-
dence of a different KA kinetics in the den-
drites of interneurons.

We need to define the passive properties (ca-
pacitances and resistances) of the neurons and

maximal conductances of the ion channels. Pas-
sive properties are more easily accessible exper-
imentally and we can directly constrain them in
the models. On the contrary, peak conductances
are normally unknowns and we have to optimize
them. In summary, we can combine the set of ion
channels and the information about their distribu-
tion, the morphological reconstructions, and the
passive properties (if known), and then optimize
the remaining unknowns (mainly the peak con-
ductances) in order to match the electrophysio-
logical features.

For this purpose, we perform a multi-objective
genetic optimization using the open-source Blue
Brain Python Optimization Library BluePyOpt
(Van Geit et al. 2016). BluePyOpt is part of a set
of tools integrated into many online use cases of
the Brain Simulation Platform (BSP) of the Euro-
pean Union’s Human Brain Project (https://www.
humanbrainproject.eu/en/brain-simulation/). The
entire workflow to build single cell models is
also accessible in EBRAINS (https://ebrains.eu/
service/hodgkin-huxley-neuron-builder/).

A typical optimization run for a pyramidal
cell, configured to generate 128 individuals per
generation, requires approximately 1 h/genera-
tion using 128 cores. Typical production runs
for each optimization require approximately 60
generations to reach an equilibrated state.

This procedure produced a set of models
that are publicly available in ModelDB (https://
senselab.med.yale.edu/ModelDB/showmodel?
model=244688#tabs-1) and in the “Live Papers”
section of the BSP (https://humanbrainproject.
github.io/hbp-bsp-live-papers/2018/migliore_
et_al_2018/migliore_et_al_2018.html).

We constrained single cell models using
mainly somatic features. For this reason, after
the publication of Migliore et al. (2018), we
further validated the neuron models for dendritic
properties. In particular, we tested the excitability
of the dendrites following synaptic inputs.
This validation led to an improvement of the
models and we added the following additional
constraints:

• a strong reduction of the amplitude of a back
propagating action potential as a function of

https://www.humanbrainproject.eu/en/brain-simulation/
https://www.humanbrainproject.eu/en/brain-simulation/
https://ebrains.eu/service/hodgkin-huxley-neuron-builder/
https://ebrains.eu/service/hodgkin-huxley-neuron-builder/
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
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Fig. 11.3 Ion current distributions. Distribution of ion
currents in pyramidal cells (a) and interneurons (b). Cur-
rents present in different compartments are distinguished

using an additional letter: d dendrites, s soma, ax axon
(adapted from Migliore et al. 2018)

the distance from the soma, following exper-
imental evidence. This feature was not origi-
nally explicitly included in the previous ver-
sion, but the models predicted it anyway (see
Fig. 4B in Migliore et al. 2018). However,
it turned out that it was not enough to limit
the excitability under synaptic inputs in most
neurons, because they were firing even for a
single synaptic activation;

• an exponential reduction of the sodium chan-
nels in the dendrites of interneurons; and

• an independent optimization of channels peak
conductance in the different regions of a neu-
ron (soma, axon, and dendrites).

The new models are available in the “Live
Papers” section of the BSP (https://appukuttan-
shailesh.github.io/hbp-bsp-live-papers-dev/
2020/ecker_et_al_2020/ecker_et_al_2020.html).

This refinement shows once again the
importance of validation. Even for the most
studied cell types, we cannot constrain precisely
most of model parameters. Furthermore, we often
have to use experimental data that tests the cells
under unphysiological conditions. For example,
we already discussed how the most popular
protocol to characterize the firing patterns—

somatic injections of step currents—may lead to
under-constrained dendritic electrical properties.
For this reason, single cell models should undergo
extensive testing and validation. Sáray et al.
(2020) developed a validation suite dedicated to
single cells called HippoUnit (https://github.com/
KaliLab/hippounit). Among other things, we can
use HippoUnit to compare different models or
different versions of the same model.

11.4.3 Library of Cell Models

Although we can identify a limited number of
cell types, the reality is that each cell is unique
in terms of anatomy and physiology. This high
variability in the brain may play an important
role that we should not ignore. On the contrary,
our morphological reconstructions and electro-
physiological recordings most probably capture
too little of this variability and this may insert a
significant bias in our model.

Following Markram et al. (2015), we first pro-
duced a potentially indefinite number of unique
cells by inserting noise in specific morphologi-
cal features, branch lengths and rotations, while
preserving the branching structure. This method

https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://github.com/KaliLab/hippounit
https://github.com/KaliLab/hippounit
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normally produces cells with the same laminar
distribution of axons and dendrites, and so it
maintains the same cell types. In a few cases, the
resulting cells did not retain their cell classes and
we decided to exclude them.

Once we created thousands of unique mor-
phologies, we would have had to create electrical
models for all of them, a task that would have
required too much computer time. We overcame
this problem by combining the set of morpholo-
gies with an initial set of electrical models, and
assessing if the new combinations retained the
correct firing pattern. This procedure increased
the variability of the cells sufficiently.

11.5 Volume

We have defined a library of single cell models,
and now we have to assemble them in a network
model. In order to do that, we need to define the
volume of the network and populate it with the
single cell models.

11.5.1 Define the Volume

Previous modeling efforts for the hippocampus
have pursued different strategies to model the
network. An example of a CA1 model that does
not take into account a realistic space is the one
from Cutsuridis et al. (2010).

Bezaire et al. (2016), on the other hand, defines
the volume by using a regular geometrical shape
that can be more or less constrained experimen-
tally. While a regular volume simplifies the build
and the analysis of the network, it has several
disadvantages.With a subregion like the CA1 that
is curved and quite irregular, constraining it with
a regular geometry that has the same geometrical
properties of the original volume is not straight-
forward.

Schneider et al. (2014) used an interesting
hybrid approach. To constrain the volume of the
rat dentate gyrus (DG), the authors started from
a regular shape and applied a limited number of
transformations to approximate the real volume.
The result is a volume that can be described

parametrically, but still captures part of the irreg-
ularities of the real tissue. Another disadvantage
of using a simplified volume is that the resulting
circuit is less reusable. For example, it will be
more complicated to connect different networks,
each defined in different simplified volumes.

Brain tissue models as described in Chap. 10,
on the other hand, explicitly treat space as a
modality which should be parameterized from an
atlas. There are several public rat brain atlases,
but not all of them contain sufficient details to
be used for a large-scale model of the hippocam-
pus. An example of an atlas with a satisfactory
level of details is described in Ropireddy et al.
(2012) and available at http://krasnow1.gmu.edu/
cn3/hippocampus3d/.

An atlas-based volume is the most accurate
approach and this is what we will consider in the
rest of the chapter. However, it should be noted
that the process of deriving an atlas is very labori-
ous and error-prone; as a result, atlases are often
quite noisy. For example, there could be sudden
enlargement or shrinkage of the layer thickness,
peninsulas or islands of one layer in another layer,
holes, cavities, and detached regions. All those
artifacts complicate the reconstruction and the
analysis of the network.

11.5.2 Cell Placement

Oncewe have defined the set ofmorphologies and
single cell models, we have to specify how many
cells will populate the volume. In the case of the
rat CA1, Bezaire and Soltesz (2013) provided a
useful estimation for the total number of different
morphological types. We should combine this in-
formation with the proportions of different firing
patterns shown by several morphological types
(see Sect. 11.4.1). Furthermore, it is important
to remind the reader that Bezaire and Soltesz as-
sumed the CA1 to be uniform in their calculation.
We already discussed that CA1 is far from being
homogeneous and the cell density also varies
greatly within the CA1. Despite these caveats,
for the sake of simplicity, we can use the same
working assumption of uniformity.

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://krasnow1.gmu.edu/cn3/hippocampus3d/
http://krasnow1.gmu.edu/cn3/hippocampus3d/
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Once we have defined the number of cells, we
have to position their cell bodies in the volume,
rotate their morphologies correctly to follow the
curvature of the hippocampus, and make sure that
their dendrites and axons show up in the appropri-
ate layers (Markram et al. 2015; Ropireddy et al.
2012).

11.6 Connections

In this section, we discuss strategies to derive the
connectome, the set of connections among cells.
Different strategies are used in different published
models (Bezaire et al. 2016; Cutsuridis et al.
2010) or in different parts of a model (internal
versus afferent connections). Moving from sin-
gle cells toward networks, available experimental
data become more and more sparse and heteroge-
nous. Among all the possible connections only
a minority of them has been described at all,
some of them more precisely than others. Fur-
thermore, when available, datasets usually have
a small sample size along with high variability,
and often the quality is poor. For example, most of
the connectivity data come from light microscopy
where connections are not always very visible, or
from slices where the cut can remove part of the
connections. On the other hand,while the datasets
from electron microscopy are certainly more pre-
cise, the number of datasets is very limited as is
the volume of the sampled tissue.

The main challenge addressed in this section
is how to predict the set of connections given
the limited available datapoints. More precisely,
our goal is to specify which pairs of cells are
connected, how many synapses are present in
each connection, and where the synapses are lo-
cated in the morphology. To start, we can initially
assume that the connectivity pattern is dictated
by the morphologies in the space and the asso-
ciated distribution of dendrites and axons. For
simplicity, since there is not extensive evidence
to the contrary, we can neglect the fact that cells
with the same morphology but with differences in
other properties (i.e., firing pattern, biochemical
markers, transcriptome) may form different con-
nections. The most prominent examples of this

behavior are PV+ and CCK+ basket cells that
show a different connectivity pattern (Bezaire and
Soltesz 2013).

If cells with similar morphologies have similar
connections, we can simplify our task. With each
M morphological type, there are M2 potential
pathways. Even if not all the M2 pathways are
viable, it is convenient to assume that most of
them are. When there is strong evidence on non-
viable pathways, we can exclude them. The most
well-known examples of nonviable pathways are
the axo-axonic cells that seem to form connec-
tions only on pyramidal cells, and interneuron-
specific cells that form connections only on other
interneurons but not pyramidal cells. Another fea-
ture we should take into account is the location
of synapses. For example, excitatory synapses
tend not to have synapses on other excitatory cell
somas (Markram et al. 2015). Finally, we should
consider a certain degree of variability in our con-
nections to better capture real connectomes, sowe
should sample connectivity parameters from the
appropriate probabilistic distributions.

Chapter 10 discusses different approaches
to computationally predict the connectome
depending on what type of source data is
available, apposition-based constraints and
density-based constraints, and we used both
approaches to model, respectively, internal and
afferent connections of the CA1.

11.6.1 Apposition-Based Constraints

This approach requires that axons are sufficiently
reconstructed at least within each region of inter-
est. While this prerequisite is difficult to meet, it
reduces drastically the number of assumptions we
have to make and the resulting connectome will
be much more predictive.

In this case, we can place potential synapses
based on the proximity of axons and dendrites.
The key parameter is the threshold distance be-
tween axon and dendrite to decide if we can place
a potential synapse or not. Reimann et al. (2015)
showed that we cannot obtain a realistic connec-
tome even if we optimize this parameter. Instead,
the authors suggested using a multi-step pruning

http://dx.doi.org/10.1007/978-3-030-89439-9_10


272 A. Romani et al.

algorithm that matches the sparse data in terms
of bouton density and number of synapses per
connection thereby predicting more accurately
the rest of the connectome. This algorithm was
initially designed for the somatosensory cortex
(SSCx) microcircuit, but we can apply the same
strategy to the CA1. Even though it starts from
sparse data, this approach appears to be quite pre-
dictive and the resulting connectome also repro-
duced high-order connectivity patterns (motifs) in
the SSCx (Gal et al. 2020; Nolte et al. 2020).

In Fig. 11.4, we show parameters of the pre-
dicted connectome in the rat hippocampus CA1.
Note that these results come from an instantiation
of the circuit (i.e., with a particular set of mor-
phologies, volume, positioning) and should not be
used as expected values.

11.6.2 Density-Based Constraints

We use this approach when we do not have axon
reconstructions but do still have volumetric in-
formation. Accordingly, we can think in terms of
synapse distribution in space and therefore con-
nection probability. At least for some pathways,
we can find information on synapse distributions.
Alternatively, we can examine how the axons are
distributed in space, assuming that the probability
of finding a synapse is proportional to the axon
mass, which allows us to derive a synapse distri-
bution. In any case, once we have a synapse dis-
tribution, we can also define a connection prob-
ability. There are many ways to accomplish this
task and each way may use a different order
of constraints. This type of approach normally
reduces the number of assumptions. For example,
we do not have to specify all the viable pathways,
but we can let the algorithmdetermine thembased
on the connection probability.

We can find an application of this approach in
the model of Bezaire et al. (2016). The authors
defined their model in a simplified volume of
CA1 (see Sect. 11.5.1) and used the volumet-
ric information together with hypothetical axonal
distributions to constrain the connectivity.

This approach is also useful to constrain long-
range connections, for which we normally do not

have sufficient axon reconstructions. In fact, we
applied this method to reconstruct the Schaffer
collaterals of the CA3 pyramidal cells, the most
prominent innervation that drives the CA1 net-
work. Those fibers target both pyramidal cells and
interneurons in the CA1 mainly at the level of
stratum oriens (SO) and stratum radiatum (SR).
We can estimate that a pyramidal cell receives
on average 20,879 synapses from Schaffer col-
laterals, while an interneuron receives on average
12,714 synapses (Bezaire and Soltesz 2013).

11.7 Synapses

Once the anatomical connections are defined, we
have to assign physiological properties to the
synapses. We restrict our discussion to chemical
synapses and in particular to ionotropic recep-
tors at the level of glutamatergic (AMPA and
NMDA receptors) and GABAergic (GABAA re-
ceptor) transmission. This section addresses the
parametrization of the synapses in the rat CA1
model. This work is fully described in Ecker et
al. (2020), but we will summarize the main points
for the benefit of the reader.

11.7.1 Postsynaptic Conductance

To model ionotropic receptors, we can use a
conductance-based model (similarly to the way
ion channels were handled in Sect. 11.3) with a
double-exponential variable conductance that is
able to capture well the dynamics of hippocampal
synapses. In the case of the NMDAR component,
we should also include the dependency of con-
ductance on the Mg2+ concentration for which
Jahr and Stevens’s (1990) phenomenological
model of this dependency is a widely used
approach.

Since most of the data on synapses come from
somatic recording, we have to take into account
the space-clamp error (Bar-Yehuda and Korn-
green 2008) in addition to the postsynaptic poten-
tial attenuation that occurs between the synapse
location and the soma. To correct for both fac-
tors, we identify the synapse location and set
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a test value for the maximum or peak synaptic
conductance, we simulate a synaptic activation
and adjust the synaptic conductance to obtain the
expected postsynaptic potential (PSP) (Ecker et
al. 2020). Following this procedure, we estimate
the peak conductance of AMPAR and GABAAR,
since NMDAR is normally blocked around the
resting membrane potential. In the case of NM-
DAR, we cannot set its peak conductance because
it is always contaminated by the AMPAR compo-
nent. To overcome this problem, we can estimate
it by combining the AMPAR peak conductance
and the ratio between NMDA and AMPA con-
ductance (NMDA/AMPA ratio) that is accessible
experimentally at the level of the soma and that
we can assume to be preserved at the level of
synapses.

11.7.2 Short-Term Plasticity

If our synapse models have only stereotypical
responses, the resulting network model will have
very limited validity in the time domain. Hip-
pocampal synapses are highly plastic and show
different dynamics at different time scales. Treat-
ing all the different forms of plasticity requires
a book on its own and is beyond the scope of
this chapter. Here, we can only feasibly introduce
short-term plasticity, which is relevant in the time
span between milliseconds and seconds.

There are many possible models of short-
term plasticity (Hennig 2013). Here, we use
the Tsodyks–Markram model (Markram et al.
1998; Tsodyks and Markram 1997), a widely
used model that is relatively efficient and
able to capture the dynamics of hippocampal
synapses. From the original papers (Markram
et al. 1998; Tsodyks and Markram 1997), the
model underwent several changes (a review of the
different models can be found in Hennig 2013).
Since hippocampal synapses show facilitation
and depression, we select a model version that is
able to capture both (see Ecker et al. (2020) for
the version applied to the CA1 model).

The model has several free parameters that
have to be optimized to match pair recordings. To
fully constrain the Tsodyks–Markram model, the

pair recording should contain a series of stimuli,
possibly at different frequencies. Protocols with
fewer stimuli, like pair pulse, or with a limited
number of frequencies generally under-constrain
the model. Similarly, to the case of single cell
optimization, we can optimize the parameters
against the salient features of the pair record-
ings, in this case the peaks of the synaptic re-
sponses. We can use the python libraries eFEL
or BluePyEfe and BluePyOpt, respectively, to
extract the features and optimize the models.

11.7.3 Multivesicular Release

We can expand the Tsodyks–Markram model
to include a stochastic multivesicular release,
a transmission modality that occurs also in the
hippocampus (Rudolph et al. 2015).

Following the classical model by Castillo and
Katz (1954), we can assume our synapse contains
a number of vesicle release sites per synapse, also
known as the size of the readily releasable pool
(NRRP), at which a vesicle can be released with
the same release probability U (corresponding to
the release probability of the Tsodyks–Markram
model). We can incorporate the multivesicular
release into the Tsodyks–Markram model to
better capture the nature of certain pathways (a
mathematical description can be found in Ecker
et al. 2020). An implementation of the model
above is accessible from the BBP neocortical
microcircuit portal (https://bbp.epfl.ch/nmc-
portal/welcome) (Ramaswamy et al. 2015).

After we introduce the model formalism, we
have to constrain its parameters.We alreadymen-
tioned that we can optimize Tsodyks–Markram
model parameters using pair recording. If we
include themultivesicular release, we have to also
constrain NRRP, which is unknown for most of the
pathways. Lacking experimental estimations for
NRRP, we can predict it using our model. Barros-
Zulaica et al. (2019) showed that it is possible
to predict NRRP by choosing the value that best
matches the coefficient of variations of the first
postsynaptic current in a pair recording. In the rat
hippocampus, using this approach and available
pair recordings (Kohus et al. 2016), Ecker et al.

https://bbp.epfl.ch/nmc-portal/welcome
https://bbp.epfl.ch/nmc-portal/welcome
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(2020) predicted that certain pathways could have
multivesicular release (see Table 3 from Ecker et
al. 2020).

Furthermore, in general, when we approach
the problem of constraining synaptic parameters
in large-scale networks, we have to face two
problems: data heterogeneity and sparseness.

11.7.4 Data Heterogeneity

Data are produced using different experimental
conditions and we should pay attention when
merging different datasets. The general strategy
is to normalize the data and adjust all the data to
reflect the same conditions. We have to consider
at least three important sources for data hetero-
geneity in the case of synaptic parameters: liquid
junction potential, temperature, and calcium con-
centration. We already mentioned liquid junction
potential and differences in temperature (see Sect.
11.3 on ion channels).

The extracellular concentration of calcium,
[Ca2+]o, impacts the synaptic release probability
and consequently, the dynamics of the synapses.
This relationship can be described by a Hill
isotherm with n = 4 (Hill et al. 1910; Markram
et al. 2015). Since there are not many specific
datasets for the hippocampus, we can assume
that the hippocampus is similar to the cortex and
adopt the same parametrizations previously used
for the SSCx microcircuit (Ecker et al. 2020;
Markram et al. 2015).

11.7.5 Data Sparseness

As we mentioned in the section on connections,
data on synapses are very sparse compared to
the multitude of different pathways in a brain re-
gion. Based on available data and similarities with
other brain regions, Ecker et al. (2020) divided
the connections into nine categories depending on
the type of connections (excitatory or inhibitory)
and the biochemical markers of pre- and post-
synaptic cells: pyramidal cell (PC) to PC, PC
to somatostatin positive (SOM+) interneurons,
PC to somatostatin negative (SOM−) interneu-
rons, parvalbumin positive (PV+) interneurons to

PC, cholecystokinin positive (CCK+) interneu-
rons to PC, SOM+ interneurons to PC, nitric ox-
ide synthase positive (NOS+) interneurons to PC,
cholecystokinin negative (CCK−) interneurons
to CCK− interneurons, and CCK+ interneurons
to CCK+ interneurons.

Using our network model built up to this point
and the available data, we predicted a series of
synaptic parameters (see Table 11.2). As in the
case of connections, those parameters should be
used with caution. In fact, they reflect a particular
set of assumptions and data. Still, we believe it
provides a very useful reference for our modeling
efforts.

11.8 Simulation Experiment

We constrained single cell models, we placed
them in a volume, and we predicted their con-
nectivity and synaptic parameters (Fig. 11.5). We
can now use the model not only to simulate single
or pair neurons, but also to simulate slices or the
entire network.

A model contains variables that depend on
time, and parameters that do not. Simulating the
network means evaluating the variables in the
time dimension and subsequently showing how
network dynamics evolve. In computer simula-
tions, the time is discretized and the simulation
evaluates all the variables at each time step. We
can store the values of the variables during the
simulation for subsequent analyses. In this sec-
tion, we introduce four types of simulation con-
ditions: spontaneous or evoked activity, in vitro
or in vivo.

Without any external inputs, some networks
can generate intrinsic activity. Two driving forces
that trigger this spontaneous activity are pace-
maker neurons (Le Bon-Jego and Yuste 2007)
and spontaneous synaptic release (or “minis”).
To the best of our knowledge, there is not much
evidence for intrinsically active neurons in the
hippocampus, while spontaneous vesicle release
is quite well documented in the hippocampus
(Kavalali 2015).Minis occur at very low frequen-
cies (i.e., on the order of 0.01 Hz, Kavalali 2015),
but given the multitude of synapses, the impact
of minis is significant. There are several reasons
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Table 11.2 Predicted synaptic parameters. Synaptic pa-
rameters from presynaptic (Pre) to postsynaptic (Post) cell
types in the nine categories of connections. In parenthesis
the synaptic type: excitatory (E), inhibitory (I), facili-
tating (1), depressing (2), pseudo-linear (3). Parameter

abbreviations: ĝ peak conductance; τdecay decay time con-
stant; USE use of synaptic efficacy; D(ms) depression time
constant; F facilitation time constant; NRRP size of the
readily releasable pool of vesicles. Values are presented
as mean ± SD (adapted from Table 3 in Ecker et al. 2020)

Pre Post ĝ (nS) τdecay (ms) USE D (ms) F (ms) NRRP

PC to PC (E2)

PC PC 0.6±0.1 3±0.2 0.5±0.02 671±17 17±5 2

PC to SOM+ (E1)

PC OLM 0.8±0.05 1.7±0.14 0.09±0.12 138±211 670±830 1

PC SOM+ 0.8±0.05 1.7±0.14 0.09±0.12 138±211 670±830 1

PC to SOM− (E2)

PC PVBC 2±0.05 4.12±0.5 0.23±0.09 410±190 10±11 1

PC CCKBC 3.5±0.4 4.12±0.5 0.23±0.09 410±190 10±11 1

PC BS 1.65±0.1 4.12±0.5 0.23±0.09 410±190 10±11 1

PC Ivy 2.3±0.4 4.12±0.5 0.5±0.022 671±17 17±5 1

PC SOM− 2.35±0.7 4.12±0.5 0.23±0.09 410±90 10±11 1

PV+ to PC (I2)

PVBC PC 2.15±0.2 5.94±0.5 0.16±0.02 965±185 8.6±4.3 6

AA PC 2.4±0.1 11.2±0.9 0.1±0.01 1278±760 10±6.7 1

BS PC 1.6±0.1 16.1±1.1 0.13±0.03 1122±156 9.3±0.7 1

PV+ PC 2±0.35 11.1±4.1 0.13±0.03 1122±156 9.3±0.7 1

CCK+ to PC (I3)

CCKBC PC 1.8±0.3 9.35±1 0.16±0.04 153±120 12±3.5 1

SCA PC 2.15±0.3 8.3±0.44 0.15±0.03 185±32 14±5.8 1

CCK+ PC 2±0.15 8.8±0.25 0.16±0.01 168±15 13±0.5 1

SOM+ to PC (I2)

Tri PC 1.4±0.3 7.75±0.9 0.3±0.08 1250±520 2±4 1

SOM+ PC 1.4±0.3 8.3±2.2 0.3±0.08 1250±520 2±4 1

NOS+ to PC (I3)

Ivy PC 0.48±0.05 16±2.5 0.32±0.14 144±80 62±31 1

CCK− to CCK−
(I2)

PVBC PVBC 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 6

PVBC AA 4.5±0.3 2.67±0.13 0.24±0.15 1730±530 3.5±1.5 1

CCK− CCK− 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 1

CCK+ to CCK+
(I1)

CCKBC CCKBC 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1

CCK+ CCK+ 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1

why we want to study the network dynamics
under spontaneous activity. In this condition, we
can consider the network to be in its resting state
and this already tells us much about the network
properties. In the case of the rat CA1, the network
shows very sparse (mean frequency <1 Hz) and
random activity (Romani et al., in preparation).
Moreover, as we will discuss, simulating the net-

work without inputs is important to test and vali-
date the model.

While it is useful to study spontaneous activity,
this condition does not often occur in reality.
Brain regions are heavily interconnected and they
are always exposed to a series of stimuli. We can
mimic an external input by injecting currents
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Fig. 11.5 Rat CA1 model. Full-scale model of the rat
CA1. Only 1% of the cells and dendrites are shown for
clarity (a). Slice of 100 μm thick. Pyramidal cell (PC) and
parvalbumin positive basket cell (PVBC) are, respectively,
in blue and red (b). The same two cells, PC and PVBC,
extracted from the circuit (c). Firing patterns of PC (blue)

and PVBC (red) shown following a step current of 200% of
the rheobase. Scale bar 10 mV, 100 ms (d). Pair recording
from PC to PVBC (blue) and from PVBC to PC (red)
during a train of ten stimuli at 50 Hz. Scale bar 0.1 mV,
50 ms (e)

in the somas or we can model action potentials
through afferent fibers to our region of interest.
This second approach requires an expansion of
our model but it is the most accurate and flexible.
In the case of CA1, we implemented a model of
Schaffer collaterals that gives rise to most of the
synapses in CA1. Including a model of Schaffer
collaterals enables us to explore a variety of addi-
tional phenomena. It is clear that adding other in-
nervations (e.g., perforant pathways, projections
from medial septum) will expand the capability
of our models even more.

Whether we want to look at spontaneous or
evoked activity, we can simulate our network to
mimic in vitro or in vivo conditions. Our ultimate
goal is naturally to study how the hippocampus
behaves in a living brain, but it is also useful
to replicate in vitro conditions. In fact, most of
the data are obtained in vitro, and therefore we
may want to validate the network by compar-
ing our in silico model with in vitro data, to
gain insight or extend some experimental find-
ings. In vitro conditions may differ from in vivo
ones for several reasons. The region of interest

is normally cut and removed from its context.
As a consequence, it does not receive most of
the inputs from regions connected to it, and so
the background activity is significantly compro-
mised. Additionally, the external solution cannot
reproduce exactly the environment of the region
in the real brain. For example, the solution may
lack important molecules (i.e., ions, hormones,
neuromodulators) that influence the network be-
havior. Sometimes, the solution is altered on pur-
pose to simplify experiments. For example, ex-
perimentalists use a higher Ca2+ concentration to
make the synapses respond more strongly, ren-
dering them more easily recordable. In general,
reproducing experimental conditions accurately
is quite challenging. The fact that experimental
conditions are (apparently) under the control of
the experimenters may give the false illusion that
replicating the conditions of an experiment is
an easy task. Unfortunately, even well-written
methods cannot fully capture the reality of the
experiment, and our models may not include all
the necessary parameters to match the experimen-
tal conditions. Considering all of that, we can
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conclude that reproducing an in vitro experiment
is possible only approximately.

If reproducing an in vitro experiment is a
challenging task, this is even more true for an
in vivo experiment. Here, we have to reproduce
the extracellular solution and the background
activity—and both are seldom known. While we
cannot reproduce in vivo condition exactly, we
can nonetheless make approximations to have
an idea in which direction the system is moving
when passing from in vitro to in vivo. Markram
et al. (2015) approximated in vivo conditions
by lowering extracellular calcium concentrations
to match in vivo values (1.1–1.3 mM) and thus
applying tonic depolarization to compensate for
the reduced background activity.

11.9 Validation

Even when each of the building blocks is ap-
parently well-constrained, the correct behavior of
the network is not guaranteed. The interaction of
the different building blocks is often complex,
and the overall behavior cannot be predicted by
looking at each block individually. As a conse-
quence, extensive validation is essential and it
can unmask incorrect behavior of the building
blocks inside the network and the underlying
assumptions. There are several types of validation
as described in Chap. 10.

11.9.1 Different Types of Validation

Once we assemble the network, we should have
already validated each model component (see
Sect. 10.5.1: High-Throughput Model Compo-
nent Validation). This does not guarantee that
the model component continues to behave as ex-
pected once embedded in a compound model,
i.e. the network. For this reason, we should val-
idate model components also in the context of
the network (see Sect. 10.5.2: Sample-Based In
Situ Model Component Validation). For example,
we can inspect the position of the morphologies
within a series of slices along the main axis on
the hippocampus (Fig. 11.5, Panel b). Another

example is the validation of the single cell mod-
els. Many problems may occur at the level of
single cells, while at the same time, the network
activity appears reasonable. Cells may enter into
a depolarization block (Bianchi et al. 2012) even
when the input is expected to be low, or they get
“stuck” at certain depolarization levels even in the
absence of the input.

We reconstruct a network using a multitude
of constraints that may conflict each other. This
problem, together with the inclusion of random
number generation used in the model building
process, does not guarantee that the final model
reflects the initial set of inputs. To confirm that
the model is still consistent with the input data,
we have to perform a new set of validations (see
Sect. 10.5.3: Intrinsic Validation). For example,
we can compare the analysis of the connectome
(Fig. 11.4) again against the input parameters or
perform in silico pair recordings (Fig. 11.5, panel
e).

With the three types of validations presented
above, we assess the quality of our network in
default conditions. Indeed, network manipulation
is another useful approach to test our model. The
idea is to apply simple manipulations (we change
only one parameter at the time) for which we
know the results, either quantitatively or qualita-
tively. For example, we can block GABAAR and
check if the network shows an increased activity
as we would expect.

After performing all the previously discussed
checks, the model should be reasonably consis-
tent with the input data and each component
should work as expected. We can say that the
network is valid within a space defined by its
input parameters. While this is an important step,
it could be limiting. We would like to use the
model to explore uncharacterized regimes and
make predictions. To achieve that, we need to test
howmuch themodel generalizes and goes beyond
the input data. We need another set of validations
that compare the model with new datasets and
validate the emergent properties of the network
(see Sect. 10.5.4: Extrinsic Validation).

The first simple emergent property we may
want to check is the spontaneous activity using
default parameters (Fig. 11.6). Even if we lack

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec23
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec24
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec25
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec26
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Fig. 11.6 Rat CA1 spontaneous activity. Simulation frame (a). Examples of single cell traces. Scale bar of 10 (b).
Firing rate distribution (c)

specific information on how the network behaves
under those conditions, we should have an idea
about what to expect. For example, we know
that CA1 neurons fire with low frequency (1 Hz)
when the network is in a resting state (Czurkó
et al. 1999; Hirase et al. 1999; Wiener et al.
1989). Cells too active or too silent could be an
indication of some issues in the model.

More complex validations are possible. We
should select experiments that test different as-
pects of our region. In addition, the more our tar-
get experiments depend onmany network compo-
nents, the more they strongly validate the model.
Once we have identified the set of experiments,
we have to reproduce (as much as possible) the
same experimental conditions, stimuli (if any),
and analyses. Our model is an approximation
of the real system and the simulation is an ap-
proximation of the experimental conditions. If we
also consider the high variability of biological
systems, it is clear that we cannot expect a per-
fect match between simulation and experimental
results. What we want here is to reproduce the

essence of the concerned phenomena. If this is not
the case, we have to understand the reason(s) for
this mismatch. For example, the model may lack
an important component, some of our constraints
or assumptions may be incorrect, or we may
have failed to reproduce the exact experimental
conditions. This exercise can be quite laborious
but often leads to an improvement of the model.

Examples of more complex validations are
the reproduction of the different types of os-
cillations observed in the hippocampus (Colgin
2016). Those rhythms include a range from slow-
frequency oscillations like theta (Buzsáki 2002)
to the high-frequency oscillations like the ones
observed during the sharp-wave ripples (Buzsáki
2015) and have been correlated with different
types of behavior.

11.9.2 Sensitivity Analysis

It is important to mention another general princi-
ple when we simulate models: biological systems
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are quite robust despite their high variability. For
this reason, our simulation results may be not
very strong if they are valid only for a narrow
space of parameters or for a particular stream of
random numbers (if the model contains random
processes). To address this problem, we can repli-
cate the simulations with slightly different key
parameters (e.g., inserting noise in the stimuli) or
random number seeds, and check if the results are
robust. An additional option is to create differ-
ent instances of the network model, wherein we
change key parameters within biological range.
For example, Markram et al. (2015) created six
equivalent circuits by varying cell composition,
selection and positioning of model neurons, and
synaptic connectivity.

11.10 Conclusions

In this chapter, we discussed how we can
adapt the approach described in Markram et
al. (2015), which was covered in Chap. 10:
“Computational Concepts for Reconstructing
and Simulation Brain Tissue,” and apply it as
a use case to reconstruct a large-scale model
of the hippocampus using the example of the
rat hippocampus CA1. The method is duly
generalizable and we need only minor changes
to take into account the particular anatomy and
physiology of the hippocampus, and the available
data for this brain region.

Despite the sparseness and heterogeneity of
the data, reconstructing a faithful model of the
hippocampus is a feasible task thanks to a series
of strategies that mitigate the variable quality of
the input data. Of crucial importance is the sys-
tematic use of validations that corroborate each
building block and demonstrate the credibility of
the final circuit.

If we proceed with rigor, we can use the final
circuit model to make in silico experiments and
predictions. There are a series of questions that
we can answer with our model that are not tied
to any particular brain region, but rather concern
dynamical systems in general. For example, we
can study which dynamical regimes the network

can enter, or what the input–output (IO) function
of the network produces.

Furthermore, each brain region has its own
specific roles and properties and research on each
brain region generates its own questions. In this
context, we can use the model to support an
existing theory, reveal the mechanism behind a
given behavior, and/or predict the behavior of the
system in conditions that are not possible exper-
imentally. A prominent example is the different
types of oscillations in the hippocampus; despite
significant research, we lack a complete under-
standing of how those rhythms are generated and
of their functional roles.What is clear is that brain
rhythms, like other emergent network phenom-
ena, can be explained only by considering differ-
ent spatial and time scales. Only a biophysically
detailed model, like the one we describe in Chap.
10 and this chapter, can provide a significant
step forward in deciphering complex network
behaviors and, more generally, can provide novel
insights into the fascinating brain region of the
hippocampus.
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