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Abstract

It has previously been shown that it is possible
to derive a new class of biophysically detailed
brain tissue models when one computationally
analyzes and exploits the interdependencies or
the multi-modal and multi-scale organization
of the brain. These reconstructions, sometimes
referred to as digital twins, enable a spectrum
of scientific investigations. Building such
models has become possible because of
increase in quantitative data but also advances
in computational capabilities, algorithmic
and methodological innovations. This chapter
presents the computational science concepts
that provide the foundation to the data-driven
approach to reconstructing and simulating
brain tissue as developed by the EPFL Blue
Brain Project, which was originally applied
to neocortical microcircuitry and extended to
other brain regions. Accordingly, the chapter
covers aspects such as a knowledge graph-
based data organization and the importance of
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the concept of a dataset release. We illustrate
algorithmic advances in finding suitable
parameters for electrical models of neurons
or how spatial constraints can be exploited for
predicting synaptic connections. Furthermore,
we explain how in silico experimentation
with such models necessitates specific
addressing schemes or requires strategies for
an efficient simulation. The entire data-driven
approach relies on the systematic validation
of the model. We conclude by discussing
complementary strategies that not only enable
judging the fidelity of the model but also form
the basis for its systematic refinements.
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10.1 Introduction

Recent advances in high-performance computing
and an ever-increasing amount of experimental
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data have enabled a new class of data driven,
biophysically detailed mammalian brain tissue
models. Specifically, we refer to the reconstruc-
tion and simulation of neocortical microcircuitry
developed previously by the Blue Brain Project
(Markram et al. 2015), which has since been
extended to build models of brain regions such as
the Hippocampal CA1 model described in Chap.
11.

Data-driven brain tissue models complement
existing experimental and theoretical approaches.
They provide a unique framework for the inte-
gration of multi-modal and multi-scale data in a
systematic way. Relating different datasets makes
it possible to identify missing data while simulta-
neously providing quantitative predictions about
knowledge gaps by leveraging constraints from
the known data. For example, Markram et al.
(2015) showed that in the absence of a complete,
measured connectome it is possible to predict a
large portion of the microconnectome from the
morphological shapes of neurons and their place-
ment in space. These biological models built from
first principles serve as a virtual replica of brain
tissue, where scientific questions can be explored
in silico; in other scientific and technical contexts
such models are also referred to as ‘digital twins’.

As much as this is enabled by data and compu-
tational capabilities, it is also methodological and
algorithmic innovations that make the construc-
tion, validation, refinement, and use of thesemod-
els possible. When models reach the complexity
where individual neurons are described by tens of
thousands of differential equations and the brain
tissue models can comprise multiple millions of
neurons, it becomes necessary to remove hand
tuning and replace ad hoc decisions with repeat-
able workflows. Such an approach makes it pos-
sible to continuously refine models by integrating
new data as it becomes available.

This chapter builds upon previous work to
reconstruct and simulate prototypical neocorti-
cal microcircuitry constrained by biological first
principles (Markram et al. 2015). This chapter
does not intend to describe the individual steps
or software tools to reconstruct and simulate such
a model, which is information that is found in the
original study and in the respective open-source

software tools. Rather, this chapter intends to ex-
plain the relevant computational science concepts
that make reconstruction and simulation possible
in the first place.

In order to do this, the chapter follows the es-
sential steps of the data-driven approach to recon-
structing and simulating brain tissue as developed
by the EPFL Blue Brain Project and as illustrated
in Fig. 10.1.

10.2 Data Organization

Numerous studies have characterized the struc-
tural and functional properties of the mammalian
brain. This has resulted in a treasure-trove of
knowledge on types of neuronal (DeFelipe
and Fariñas 1992; Freund and Buzsáki 1996;
Klausberger and Somogyi 2008; Markram et
al. 2004; Peters and Kaiserman-Abramof 1970),
axonal and dendritic morphologies (Helmstaedter
and Feldmeyer 2010; Larkman 1991; Lübke
and Feldmeyer 2010; Spruston 2008; Thomson
et al. 1996), laminar organization (DeFelipe
et al. 2002; Kätzel et al. 2011; Mountcastle
1997; Rockland 2019; Rockland and Lund 1982;
Woolsey and Van der Loos 1970), their gene
expression profiles (Kawaguchi and Kubota
1997; Rudy et al. 2011; Toledo-Rodriguez et
al. 2005; Yuste et al. 2020) and ion channel
kinetics (Bekkers 2000; Hille 2001; Kole et al.
2006; Korngreen and Sakmann 2000; Lai and Jan
2006; Markram and Sakmann 1994; Ranjan et al.
2011), morphological and electrophysiological
properties (Connors et al. 1982; Hestrin and
Armstrong 1996; Kasper et al. 1994; Larkman
1991; Markram et al. 1997; Ramaswamy and
Markram 2015; Steriade 2004; Zhu 2000),
synaptic connections (Feldmeyer et al. 1999;
Gupta et al. 2000; Jiang et al. 2015; Markram
et al. 1997; Mason et al. 1991; Szabadics et al.
2006; Thomson and Lamy 2007), microcircuit
anatomy (Avermann et al. 2012; DeFelipe et al.
2002; Lefort et al. 2009; Martin 2002; Rockland
2010), and physiology and function (Haider et
al. 2006; McCormick et al. 2003; Petersen 2007;
Traub 2005).

http://dx.doi.org/10.1007/978-3-030-89439-9_11
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Fig. 10.1 Schematic illustration of the core steps to reconstruct and simulate brain tissue as previously described in
Markram et al. (2015) and for which this chapter elaborates the underlying computational concepts

The approach described in Markram et al.
(2015) aims to make sense of these multi-modal
and multi-scale datasets by using a data-driven
model as an integration framework. For example,
Markram et al. (2015) use information on the
location and morphology of cells from biocytin
stains, and electrophysiology from patch-clamp
recordings to derive a neuron-type nomenclature.
As another example, it uses NeuN-stained tissue
blocks to derive dimensions, layer delineations,
absolute cell counts and a combination of DAPI,
NeuN, and GABA stainings to establish the
fraction of excitatory and inhibitory cells in
the brain tissue. The specific computational
workflows to derive the nomenclature or tissue

properties have been described previously
(Markram et al. 2015).

In this chapter, we elaborate on the common
computational concepts in these examples: for
each of them it is necessary to leverage data from
different modalities and possibly different labo-
ratories to derive an integrated synopsis. Further-
more, a certain discipline is needed to correctly
interpret these diverse data, e.g., a nomenclature
based on the set of input data is needed and it may
have to be refined if new data become available.
Lastly, in order to store the results of the synopsis,
in some cases it may be useful to use a data
structure that allows representation of its spatial
heterogeneity.
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To this end, we highlight three computational
concepts that complement traditional neuroinfor-
matics approaches to organize data for brain tis-
sue models: (1) a Knowledge Graph-based Data
Repository, (2) Dataset Releases, and (3) a Gen-
eralized voxel-based data structure.

10.2.1 Knowledge Graph-Based Data
Repository

By now, a number of neuroinformatics initia-
tives have succeeded in the integration of se-
lect types of experimental data into dedicated
databases (Ascoli et al. 2007; Gouwens et al.
2019; Ramaswamy et al. 2015; Tripathy et al.
2014; Wheeler et al. 2015) and have proposed
standards for ontologies and file formats (Gar-
cia et al. 2014; Gillespie et al. 2020; Teeters
et al. 2015). As already alluded to, the specific
challenge for reconstructing brain tissue lies in
finding and integrating available data at different
levels of biological organization, in our case data
sets of genetic, electrophysiological,morphologi-
cal, synaptic, ormicrocircuit nature. In part, this is
a conceptual challenge in the sense that it requires
overarching and at the same time fact-based on-
tologies that can help bridge multiple commu-
nity definitions (Bug et al. 2008; Hamilton et al.
2012; Larson and Martone 2009). But surpris-
ingly, it is also a technical challenge as none of
the readily available databasing approaches such
as transaction-based databases, key-value stores
or no-SQL approaches combine the usefulness of
schematized data with the flexibility to be able
to evolve those schemas as the knowledge of the
data increases. What is needed is a data repository
combined with a knowledge graph, which makes
it possible to efficiently and effectively relate the
metadata and track its evolution; see Fig. 10.2. In
practice, the integration of data into a knowledge
graph as provided by Blue Brain Nexus1 involves
the curation of data to standardize the file format

1 Blue Brain Nexus. Designed to enable the FAIR (Find-
able, Accessible, Interoperable, and Reusable) data man-
agement principles for the Neuroscience community:
https://bluebrainnexus.io/

and attach contextual metadata to the dataset.2

The integrated data is furthermore linked to other
data using common provenance standards. For
instance, an electrophysiology recording will be
linked to a particular protocol and to a particular
experimentalist. It is furthermore linked upstream
to a particular brain slice with its metadata and it
may be linked downstream to a particular staining
protocol and a resulting stained cell.

10.2.2 Dataset Releases

Managing data for their use in a model requires
additional practices as compared to managing
data for archival and general dissemination pur-
poses (Bouwer et al. 2011). This stems from the
fact that possibly only a subset of the data in a
general data repository is being used for a model,
either because the scope of the model is narrower
than the data available in the repository (e.g.,
requiring morphologies of neurons from a certain
brain region and species, while the repository has
data for multiple species), or that not all selected
data passes other thresholds for quality control or
other reasons (e.g., incomplete reconstructions).3

Once it has been identified which data qualifies
for inclusion, it needs to be named for further
downstream use and provenance purposes (see
Fig. 10.2c). Selecting, verifying, and ultimately
approving data for modeling are steps that ac-
tually are best understood as a staged process
leading to a release for a specific purpose or use,
quite similar to what is done for releasing a piece
of software. This analogy does not stop at giving
a certain selection of data a name or version
number, but also extends to explicitly encoding
thematurity of that entity. In the context of dataset
releases, the maturity defines whether the data is
suitable for downstream usage in a model and
ultimately publication (see Fig. 10.2d).

2 Nexus Forge. A domain-agnostic, generic and extensible
Python framework enabling non-expert users to create and
manage knowledge graphs: https://github.com/BlueBrain/
nexus-forge
3 Blue Brain Morphology Workflow. An extensible work-
flow to curate, annotate and repair neuron morphologies:
https://github.com/BlueBrain/morphology-workflows

https://bluebrainnexus.io/
https://github.com/BlueBrain/nexus-forge/
https://github.com/BlueBrain/morphology-workflows
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Fig. 10.2 Schematic illustrating exemplar multi-modal
data and their provenance. The provenance tree of mor-
phologies reconstructions (a) is stored in the knowledge
graph and connected to the multi-modal data (b), a consis-

tent dataset is built from multiple reconstructions (c), and
marked as suitable (d) once validations have been success-
ful. The ontology follows the W3C Prov-O standard

10.2.3 Generalized Voxel-Based Data
Structure

Brain atlases have become a central resource for
brain research (Hawrylycz et al. 2014; Papp et
al. 2014; Paxinos and Watson 1998). On the one
hand, they give a spatial map of the brain allowing
the navigation and selection of areas of interest.
On the other hand, they further allow the registra-
tion of other data within the atlas, giving spatial
context to the data and making localized compar-
isons of data possible. The automatic creation of
atlases from imaging datasets furthermore lends
itself to define atlases in a voxel representation,
assigning to each region a set of specific voxels.
While this could be seen as a technicality, a
voxel-based representation becomes particularly
useful if an atlas is not only used as a look-up
resource but also as a generalized data structure
to store additional data and information.4 Such a
data structure in principle is simply a voxel-based
atlas, with the same parcellation, but provides
machine interfaces to retrieve and populate addi-
tional data. This data can be other experimental
modalities or data derived during the modeling

4 VoxCell. A library tomanipulate volumetric atlas dataset:
https://github.com/BlueBrain/voxcell

process. With respect to modeling processes de-
scribed below, such a generalized voxel-based
data structure makes it easy to store the hetero-
geneity of the input parameters in the respec-
tive voxels, and to provide configuration data for
model building in the form of this data structure.

10.3 Model Building

Biophysically detailed models of brain tissue
have proven useful to link anatomy and
physiology across multiple levels of detail
to emergent behavior (Arkhipov et al. 2018;
Billeh et al. 2020; Einevoll et al. 2013; Hay
et al. 2011; Newton et al. 2019; Nolte et al.
2019; Ramaswamy et al. 2012; Reimann et al.
2013). Ideally, the values that are needed to
parameterize such models are obtained directly
from experimental measurements. However,
even in well-characterized neurons such as
layer 5 pyramidal cells (Markram et al. 1997;
Ramaswamy and Markram 2015; Ramaswamy
et al. 2012), parameters such as quantal
synaptic conductances are difficult to measure
experimentally (Ramaswamy and Markram
2015; Ramaswamy et al. 2012). It becomes
obvious that such data are rather sparse when one

https://github.com/BlueBrain/voxcell


242 F. Schürmann et al.

attempts to find similar parameters for diverse
cell types and their connectivity in specific brain
regions, species, and developmental ages (Qi et
al. 2020).

There are several approaches that attempt to
overcome this challenge, ranging from more ex-
periments (Gouwens et al. 2019; Oh et al. 2014;
Ranjan et al. 2019) to rule-based regularization of
parameters (Billeh et al. 2020; Ecker et al. 2020;
Reimann et al. 2015). We previously described a
complementary approach to reconstructing neo-
cortical microcircuitry by leveraging sparse bio-
logical data and identifying interdependencies to
predict missing data (Markram et al. 2015). It can
be broken down into two main workflows, the
building of biophysically detailed neuron models
and the building of detailed brain tissue models
comprising those neurons.

10.3.1 Biophysical Neuron Models

Themulti-compartmentHodgkin-Huxley formal-
ism (Hodgkin and Huxley 1952a, b; Koch and
Segev 1998, 2000; Rall 1962) faithfully captures
the diverse electrical behavior in neurons from
somatic firing (Druckmann et al. 2007) to den-
dritic integration (Hay et al. 2011) and provides
a platform to integrate experimental data at the
level of single neurons (Gupta et al. 2000; Toledo-
Rodriguez et al. 2004; Wang et al. 2002). More
recent experimental data is more standardized,
more specific, and recorded previously unattain-
able properties of the neurons—providing a more
quantitative description of neuronal parameters
and behavior (DeFelipe et al. 2013; Petilla In-
terneuron Nomenclature Group 2008; Yuste et al.
2020). Despite these advances, experimental data
is not always sufficient to completely parameter-
ize the neuron models, especially since with the
current state of the experimental art certain pa-
rameters are difficult to obtain such as the actual
ion channel composition of a neuron and their
placement and absolute numbers.

Here, we highlight the computational strate-
gies underlying an automated workflow for large-
scale reconstruction of single neurons described
previously (Druckmann et al. 2007, 2008, 2011;

Hay et al. 2011). In contrast to other computer-
aided approaches to constrain neuronal model
parameters (Van Geit et al. 2007, 2008) and sin-
gle neuron models (Huys et al. 2006; Keren et
al. 2005), our approach aims at minimizing the
overall number of parameters to be searched and
at giving clear indications to the algorithm as to
what makes a good model. This overall strategy
reduces the risk that in the process of optimiza-
tion biophysically non-plausible parameters get
chosen (Podlaski et al. 2017). The four elements
that in our hands lead to successful automation of
parameter constraining for neurons are: (1) effec-
tive distance functions, (2) a multi-dimensional
error term, (3) a powerful search strategy, and (4)
leveraging other constraints.

10.3.1.1 Effective Distance Functions
A distance function allows to quantify how far
apart a model is from the desired target behavior.
A common choice is an L2 norm on the point-
wise output of the model with the target, equally
weighing each point of the output trace (Van Geit
et al. 2007). In some cases, this can be overly
restrictive and does not give any indication to the
algorithm whether matching some parts of the
trace may be more important than others (e.g.,
spiking behavior) (Druckmann et al. 2008). The
conceptual advancement we introduced is the use
of feature-based5 distancemetrics (Druckmann et
al. 2007). A feature can be anything from the time
to first spike, a firing frequency, or an adaptation
index, and basically describes a property of inter-
est of an output trace; see Fig. 10.3-1. By using a
feature-based distance function, we achieve two
things: First, we indicate to the search algorithm
the importance of particular aspects of the output
trace that otherwise would be competing with all
the other data points, leading more consistently to
models that express this behavior. Secondly, we
can express the difference of a model to the target
behavior in multiples of the variation measured
in the target system, which gives a very clear
quantification of the quality of the model in this
aspect.

5 Blue Brain eFEL. electrophysiology Features Extraction
Library: https://github.com/BlueBrain/eFEL

https://github.com/BlueBrain/eFEL
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Fig. 10.3 Illustration of central concepts for reconstruct-
ing biophysical neuron models. (1) Features are extracted
from electrophysiological recordings. (2) Pareto set of
solutions plotted for two dimensions (two objectives) of a

multi-dimensional optimization. (3) Indicator-based evo-
lutionary algorithms help to establish dominance between
solutions while maintaining diversity; in this example, the
solution with the smallest (red) square will be sorted out

10.3.1.2 Multi-dimensional Error Term
The distance function is used by the search algo-
rithm to determine whether one set of parameters
preferable over another. A large class of search
algorithms uses a single scalar per solution to
do this ranking, necessitating the combination of
the distance functions arithmetically into a single
value, in casemultiple distance functions are used
(Deb and Deb 2014). In practice, choosing the
weighting can be complicated and ill defined.
In order to overcome this, we decided to use
a multi-dimensional error term, i.e., maintaining
the different distance terms individually in a set or
vector and using a multi-dimensional comparison
predicate instead of a “smaller equal” scalar pred-
icate (Deb et al. 2002a; Konak et al. 2006). Such
a multi-dimensional comparison can lead to cases
where two solutions are equal in all individual
distance functions, but each respectively worse
in one (but different ones), which are typically
referred to as a “pareto set”; see Fig. 10.3-2. This
property proves extremely useful in practice as
it reveals to the modeler which properties in a
model are non-attainable at the same time, pos-
sibly requiring different model ingredients rather
than more search rounds.

10.3.1.3 Search Strategy
In the case of optimizing the parameters of neu-
rons, metaheuristics that do not make any as-
sumption on the function they are optimizing and
that can find sufficiently good solutions (while
not necessarily the best) are particularly useful.

Genetic or evolutionary algorithms fall into this
class (Deb and Deb 2014), but there are many oth-
ers (e.g., swarm optimization (Kennedy and Eber-
hart 1995)). In our case, we wanted the search
strategy to be able to be combined with the multi-
objective error function. Our first results were
obtained with an elitist non-dominated sorting
genetic algorithm NSGA-II (Deb et al. 2002b).
However, with increasing numbers of dimensions
in the error term, the switch to the family of
indicator-based evolutionary algorithms (IBEA)
proved useful (Zitzler and Künzli 2004). IBEA
algorithms manage to select better solutions in
multiple objective searches while at the same
time maintaining more diversity amongst the so-
lutions; see Fig. 10.3-3. These strategies have
been made readily available for neuronal opti-
mization in the open-source software BluePy-
Opt.6

10.3.1.4 Leveraging Other Constraints
In addition to the effectiveness of the distance
function, the ability to combine multiple distance
terms into one error term, and a powerful search
strategy, an additional key element is the min-
imization of the overall search space. This can
be achieved in various ways. Parameters that can
be measured should be set directly, e.g. by de-
termining passive parameters from experiments.
Parameters can be regularized by fixing ion chan-

6 Blue Brain BluePyOpt. Python Optimization library:
https://github.com/BlueBrain/BluePyOpt

https://github.com/BlueBrain/BluePyOpt
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nel kinetics (Ranjan et al. 2019) or e.g., the use
of functions for controlling how ion channels get
distributed along the dendrites. Furthermore, the
search space can be bounded by setting upper
and lower limits for e.g., ion channel densities.
All these measures help to focus the power of
the search strategy on those parameters that are
difficult to measure or which in biology may
have a non-uniqueness/degeneracy to begin with
(Prinz et al. 2004).

This approach to reconstructing neuron mod-
els has proven to be applicable to neurons from
diverse brain regions in rodents, including hip-
pocampus (see Chap. 11), thalamus (O’Reilly et
al. 2020), striatum (Hjorth et al. 2020), cerebel-
lum (Casali et al. 2019), and even other species
(Deitcher et al. 2017).

10.3.2 Brain Tissue Models

A brain tissue model is a specific type of neural
network that not only in its neuronal components
and its topology resembles brain circuitry (Brunel
2000), but actually aims to capture other biophys-
ical properties such as the physical extent of the
very tissue or the spatial placement of the com-
ponents. These brain tissue models thus are no
longer only models of networks and their signal
processing but actually are biophysical models
of the tissue itself; see (Markram et al. 2015),
on which this chapter is based, Chap. 11 for an
application of this approach to the hippocampus,
or other models such as (Billeh et al. 2020; Casali
et al. 2019; Egger et al. 2020; Hjorth et al. 2020).

From a model use perspective, this offers the
opportunity to link the network activity to spa-
tial biophysical observables and biochemical pro-
cesses that extend beyond the confines of neurons
andmakes it possible to interact with themodel as
if it was a virtual tissue rather than an abstraction
thereof. From a model building perspective, this
allows the use of experimental recordings that are
measured spatially and not only recordings from
single neurons.

Specifically, we have introduced com-
putational workflows to reconstruct neuron
densities, ratios, and composition using multi-
modal datasets and methods to overcome the
sparseness of themicroconnectome by leveraging
interdependencies among data that could be
measured (Markram et al. 2015). For example,
by explicitly considering space and the spatial
3D shape of neurons, it becomes possible to
use neuronal processes to predict potential
connections in the absence of a full connectome.
Conversely, one can use volume counts of
boutons, for example, as a valid target for the
connections predicted by the model. Similarly,
Markram et al. (2015) describe an approach to
reconstruct the diversity of synaptic physiology
within a microcircuit.

Here, we focus on four important concepts
underlying this computational approach to pre-
dict a dense model from sparse data: (1) space
as a modality, (2) apposition-based constraints,
(3) density-based constraints, and (4) functional
parameterization through regularization and sam-
pling.

10.3.2.1 Space as a Modality
Explicitly modeling space in neural networks of-
fers the ability to treat them as models of physical
objects where model components and proper-
ties have a spatial consequence and in turn can
be constrained (e.g., the number of spatially ex-
tended neurons that fit into a volume is limited). It
turns out that 3D reconstructions of neurons done
without space as a modality in mind often times
show artifacts (e.g., wiggly branches that stem
from tissue shrinkage before reconstruction, or
incomplete reconstruction of axons) that may not
affect the electrical models of the neurons but that
lead to a mismatch when placing them in absolute
space. Similarly, since neuron morphologies are
not necessarily obtained from the same animal or
even the same region, they may come in different
absolute sizes and their height and arborizations
within a certain layer of cortex may not fit if
they were to be used together. Consequently, we
developed computational methods that remove

http://dx.doi.org/10.1007/978-3-030-89439-9_11
http://dx.doi.org/10.1007/978-3-030-89439-9_11
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artifacts in neuronal morphologies,7,8 that can
complete missing arborization of neurons so that
they become statistically indistinguishable from
complete reconstructions of neurons in the same
class, and otherwise select, scale, and rotate mor-
phologies so that they fulfil 3D constraints in the
model (Anwar et al. 2009). To correctly guide
this, it is important to not only consider the in-
tended model’s shape and extent, but to allow
for a flexible description of spatial heterogeneity
throughout the volume. In practice, this means
that we use the previously described generalized
voxel-based data structure derived from the spe-
cific species, which allows diverse experimen-
tal data to be registered spatially in an absolute
reference frame. The model parameters can then
be sourced on a per position basis and it is not
necessary to define average “recipes” of cell com-
position, for example, for an entire region.

10.3.2.2 Apposition-Based Constraints
An easily underestimated set of parameters
for building network models is the detailed
information about the structural connectivity.
Not only does the number of these parameters
scale quadratically with the number of neuron
classes defined, but experimental data also shows
that there is important distance-dependence
and higher-order motifs. One proposed answer
to this question is EM-based connectome
reconstructions of entire microcircuits and brain
regions (Kasthuri et al. 2015; Motta et al. 2019;
Zeng 2018). Recent advances hold promise
that initial instances of these datasets may
become available in the not-too-distant future,
however, the statistical power of these hard-
earned instances remains challenging. Here, we
describe a complementary computational view to
the problem: the fact that neuron morphologies
cluster into classes [across animals and despite
anatomical specificity and plasticity (Reimann
et al. 2017; Stepanyants and Chklovskii 2005;

7 Blue Brain NeuroM. A toolkit for the analysis and
processing of neuron morphologies: https://github.com/
BlueBrain/NeuroM
8 Blue Brain NeuroR. A collection of tools to repair mor-
phologies: https://github.com/BlueBrain/NeuroR

Stepanyants et al. 2002)] indicates that there
is structure that possibly can be exploited for
predicting the connectome or at least parts of it
from these underlying elements. For the example
of the microconnectome, i.e., the structural
connectivity between neurons within the same
volume such as a microcircuit, we have shown
that a large percentage of known neuron- to
neuron-class innervations patterns (i.e., where
do synapses form within the dendritic and
axonal trees) can be predicted by computing
spatial proximities (putative synapse locations)
of dendrites and axons from 3D morphologies
placed in space and this despite the fact that
they came from different animals across the
same species, age, and region (Reimann et
al. 2015). Not only are the putative locations
mostly indistinguishable from experiments (Hill
et al. 2012; Ramaswamy et al. 2012), but it is
also possible due to the explicit consideration
of space to exploit deeper interdependencies
of parameters such as cell density, axonal
length, connection probability, mean number
of synapses/connection, and bouton density. By
exploiting these interdependencies, we showed
that it is possible to derive a prediction about
which and how neurons are connected, including
higher-order motifs, based on only partially
known connectome properties (Reimann et
al. 2015). These predictions are not limited
to the structural connectome but extend to an
actual functional instance thereof. Figure 10.4-1
illustrates the main steps of this process when
dendritic and axonal 3D reconstructions of
neurons are available. While further validation
of these predictions with further experiments
remains desirable, those results show that the
microconnectome in cortical tissue to a large
degree is an emergent property that can be
computationally predicted. Such predictions
will go hand in hand with EM connectome
reconstructions in the future to confirm patterns
for emergence or cases where more specific
construction rules are in play.

10.3.2.3 Density-Based Constraints
If axon reconstructions are not available, the
apposition-based constraints cannot be readily

https://github.com/BlueBrain/NeuroM
https://github.com/BlueBrain/NeuroM
https://github.com/BlueBrain/NeuroR
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Fig. 10.4 Illustration of the different concepts to com-
putationally reconstruct a connectome depending on the
available source data (in all cases it is assumed that den-
dritic reconstructions are available): (1) if reconstructed
axons are available, (2) if reconstructed axons are not

available but they can be modeled by a simplified geom-
etry, and (3) if only a regional targeting is available. Step
2 illustrates how putative contact locations can be derived
and step 3 illustrates the pruning to functional synapses

exploited as described above. This is particularly
a problem for long-range connections, such
as inputs from the thalamus or intra-cortical
connections or Schaffer collaterals as described
in Chap. 11 on the hippocampus. In these cases,
however, one can still exploit density-based
constraints: if one has synapse density profiles
available (Kawaguchi et al. 2006), one can
sample the detailed dendrites in the target region
according to the density profiles. In some cases,
it may suffice to model the incoming fibers as
straight lines in space and estimate their density
from literature and assign synapses from the
previous step to these fibers based on distance
probability (see Fig. 10.4-2). In other cases,
where the origins of innervation are less obvious,
we have developed a computational approach
(Reimann et al. 2019) that exploits a small set
of complete axon reconstructions (Winnubst
et al. 2019) in combination with region-to-
region projection datasets (for example, the Allen
Institute’sAAV tracer injections (Oh et al. 2014));
see Fig 10.4-3 for an illustration. In a first step,

the algorithm derives a first-order probability
for a neuron to innervate a region and a second-
order probability for multiple region innervation.
In a second step, the algorithm combines the
strength of the connection with the layer density
profiles to derive a density of synapses in 3D,
while constraining the synapses to be on the
target neuron’s dendritic tree. In a last step, it
uses a topological 2D flatmap between a source
and a target region to assign source neurons to
the synapses.

10.3.2.4 Functional Parameterization
Through Regularization
and Sampling

The final step in functionalizing connectomes
of brain tissue models involves prescribing
parameters to individual synaptic contacts based
on sparse experimental data on the synaptic types
as well as the individual synaptic connections
(Markram et al. 2015; Ramaswamy et al. 2015;
Thomson and Lamy 2007). In the cortex,
synapses have been found to display certain

http://dx.doi.org/10.1007/978-3-030-89439-9_11
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forms of short-term synaptic dynamics, namely
facilitating, depressing, or pseudo-linear. These
synapse types (s-types) are determined from
the combination of their pre- and postsynaptic
neurons. In the absence of the specific knowledge
about how each of the possible pre/post-
connections map to these types, a viable path
is to use regularization, i.e., use rules that map
connections to these classes such as pyramidal-
to-pyramidal connections are always depressing
or synaptic dynamics are preserved across layers
for all connections of specific types. After
assignments of a type, parameters for the synaptic
dynamics of individual synapses are drawn
from experimental distributions. Specifically,
the absolute value of the unitary synaptic
conductance is adjusted by comparing paired-
recording experiments that also measure somatic
postsynaptic potentials (PSP) between specific
pairs of m-types, and compare the resulting in
silico PSPs with the corresponding in vitro PSPs
(Markram et al. 2015; Ramaswamy et al. 2015).

10.4 Simulation Experiment

In the previous sections, we described the recon-
struction of a neuron or a piece of brain tissue in
a model and the required various computational
processes to parameterize them. A reconstructed
model lends itself to exploring scientific ques-
tions in their own right, for example, on the
model’s make-up, intrinsic structure, and predic-
tion of missing data. In this section, we describe
the simulation of a model—understood as the
process of solving the mathematical equations
(typically differential equations) governing the
dynamics of the model’s components and their
interactions in time.

As elaborated recently (Einevoll et al. 2019),
the numerical integration methods, simulation
schemes, and software engineering aspects
required to faithfully and efficiently perform
these calculations require mature simulator
software. In addition to being able to instantiate
various computational models for processing
with the necessary simulation algorithms, these
simulators provide means to set up simulated

experiments, i.e., the equivalent of experimental
manipulation devices such as a patch electrode
and experimental recording/imaging devices,
e.g., multielectrode array. In essence, the
simulators provide the machinery for setting up
and executing simulation experiments.

Markram et al. (2015) describe a barrage of
simulation experiments on the neocortical micro-
circuit model. They range from simulating spon-
taneous activity and thalamic activation of the
microcircuit to reproducing in vivo findings such
as neuronal responses to single-whisker deflec-
tion or the identification of soloist and chorister
neurons. These simulation experiments rely on
the NEURON simulator (Hines and Carnevale
1997),which is themost widely used open-source
simulator for biophysically detailed models of
neurons and networks.

Here, we describe computational concepts that
proved particularly useful to adopt when sim-
ulating brain tissue models, namely (1) global
unique identifiers for neurons, (2) explicit model
definition, (3) cell targets, and (4) strategies for
efficient simulation. Some of these concepts such
as the global unique identifier for neurons come
out of the box with the simulator software, but
they deserve to be highlighted. Other concepts
such as the explicit model definition and cell
targets have been necessary to adopt to effectively
connect simulations into a wider set of model
building and analysis workflows as described by
Markram et al. (2015). The question of efficiency
of the simulations, finally, is determining how
many simulation experiments can be performed
in practice.

10.4.1 Global Unique Identifier

A minimal concept that proved essential in being
able to reconstruct and simulate brain tissue mod-
els had already been introduced to neurosimula-
tors when they started to embrace parallel com-
puting systems (Morrison et al. 2005; Migliore
et al. 2006). At that point, it became necessary
to assign each neuron an explicit globally unique
identifier (GID). What we realized for the study
in (Markram et al. 2015) is that the identification
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nodes cell targetsa

b

1 2

S Rb

GID m-type morphology x y ...

gid1 L5_TTPC1 C060114A2 123.3 456.3 ...

gid1 L4_MC C090997A-12 345.6 532.3 ...
gid1 L4_PC C300797C-P4 532.4 536.1 ...

... ... ... ... ... ...

edges
PRE post SYNAPSE-TYPE GSYN ...

gid1 grid2 ... ... ...

gid2 grid3 ... ... ...
gid3 grid2 ... ... ...

... ... ... ... ...

TARGET NAME PREDICATE
group1 gid in (gid2,gid3)

group2 gid in (gid1, gid2)

a

Fig. 10.5 Schematic of computational concepts for simu-
lation experiments. (1) Global Unique Identifier: Cells are
uniquely identified by GIDs (a), the cells’ properties and
connectome are explicitly defined (a,b). (2) Cell targets:

are defined based on gids or other properties (a). Cell tar-
gets are used to easily define stimulation on a population
(S) or recording the activity of another population (R) in
2b

of neurons needs to be an explicit property of the
model, i.e., the GIDs need to be stored with the
model (and not only in the simulator) and thus
can be used in any software that interacts with the
model whether it is for the model building, sim-
ulation or visualization and analysis. This allows
the linking of additional information to any given
neuron as required by the context. See Fig. 10.5-1
for an illustration.

10.4.2 Explicit Model Definition

The need for uniquely identifying neurons goes
beyond any single step in the workflow. In order
to ensure that different tools resolve the various
GIDs in the same way, it is important to exter-
nalize the model definition in a format9 that can
be read by a variety of tools. In other contexts,
such as networks of point neuronmodels (Potjans
and Diesmann 2014), a rule-based definition of
the network is commonly used, see for instance
PyNN (Davison et al. 2009) or CSA (Djurfeldt
2012), which is compact and allows a fast instan-
tiation in the respective software tool. However,
it also leaves the interpretation of the rules to

9 Blue Brain libsonata. C++/Python reader for SONATA
files: https://github.com/BlueBrain/libsonata

the respective tools and thus potentially makes it
more difficult to clearly refer to a specific model
component among various software interacting
with the model. Thus, by storing the model ex-
plicitly in a container such as SONATA (Dai et
al. 2020), a model exists independently of the
software and rules used to produce it. This makes
it possible to unambigously identify the same
model components across tools.

10.4.3 Cell Targets

Especially for brain tissue models, which today
contain hundreds of thousands or even multiple
millions of neurons, it becomes important to ef-
ficiently be able to address specific portions of
the model. In one way, this is analogous to a
query operation in a database. For example, if
the brain tissue model stores additional properties
with the GIDs, for instance, cell type, spatial
location, etc., it becomes straightforward to find
cells of a certain type (e.g., layer 5 pyramidal
cells) or even cell groups such as disynaptic loops
between layer 5 pyramidal and Martinotti cells
(Silberberg andMarkram 2007) and refer to them
with a simple set of GIDs, which we refer to as
a cell target. Analogous to views in databases,

https://github.com/BlueBrain/libsonata
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cell targets can also be thought of as a named
subset of the model (see Fig. 10.5-2a), in cases
where only a mini-column should be used for
simulation or for singling out specific cells during
analysis or visualization. Lastly, cell targets can
also be thought of as an addressing scheme that
allows to uniquely identify and address any set of
cells. Such an addressing scheme is most relevant
to set a model up for in silico experimentation.
For example, a specific instance of the aforemen-
tioned pyramidal-Martinotti loop cell target can
be selected and a stimulation device attached to
the first pyramidal cell as well as intracellular
recording devices attached to the Martinotti cell
and the two pyramidal cells, effectively recreating
the experimental protocol in a simulation experi-
ment (see Fig. 10.5-2b).

10.4.4 Strategies for Efficient
Simulation

The time it takes to numerically solve a brain tis-
sue model for 1 s of biological time directly gov-
erns the scientific questions that can be askedwith
the model. Rarely does one accept simulations to
run for longer than a few weeks. In practice, a
few days is the limit by which simulations have
to come back with results. The primary reason
is that simulations are typically part of a larger
scientific workflow either requiring iteration or
parameter variation and ultimately human feed-
back. The efficiency of simulations is thus an
important prerequisite for the study of brain tissue
models, where a single neuron may be governed
by tens of thousands of differential equations and
the network model may contain multiple millions
of neurons. An in depth treatment of the re-
quired computational realization of this is beyond
the scope of this chapter, however, it should be
noted that several engineering and computational
science techniques have to play together. It is
necessary for efficient simulations to embrace
modern computers and clusters of computers, and
in particular their parallel nature (Cremonesi and
Schürmann 2020). Simulators such as NEURON
have thus been parallelized to execute millions of
computations in parallel (Migliore et al. 2006),
in turn necessitating to solve problems arising

from this parallelization such as consistent paral-
lel random numbers, load-balancing and efficient
loading of the model and recording of output. At
very large scales, it furthermore proved necessary
to strip unnecessary data structures away to re-
duce the overall memory footprint and reduce the
amount of memory that needs to be transferred
to the CPU for every computation; these strate-
gies have been incorporated in CoreNEURON10

that transparently integrates with NEURON11 for
large scale simulations (Kumbhar et al. 2019).

10.5 Validation

A key concept of Markram et al. (2015) is to
validate the artefacts of the reconstruction process
not only at the very end but rather to apply vali-
dation tests along the process. Cell models, for
example, are validated against independent data
not used in the reconstruction process, serving to
validate the generalization of the cell models and
to be able to compose them into a network model
where they lead to emergent behavior without
any further tuning. At the same time, the brain
tissue reconstruction is evaluated by a variety of
anatomical and physiological validation tests that
assess emergent properties of the model against
known experimental data that was not used during
reconstruction.

While validation is a standard activity in com-
putational science, the complexity of brain tissue
models necessitates a specific approach to vali-
dation that draws inspiration from the validation
of complex software systems with unit testing,
integration testing, and regression testing (Orso et
al. 2004). Here, we describe 4 types of validation
that were used by Markram et al. (2015) and
which build on top of each other: (1) individ-
ual components (e.g., neuron models) are vali-
dated in a high-throughput way. Once they pass
this component-level validation, (2) components
are integrated into a composite system (e.g., a

10 Blue Brain CoreNeuron. Optimized simulator engine
for NEURON: https://github.com/BlueBrain/CoreNeuron
11 NEURON Simulator. Simulator for models of
neurons and networks of neurons: https://github.com/
neuronsimulator/nrn

https://github.com/BlueBrain/CoreNeuron
https://github.com/neuronsimulator/nrn
https://github.com/neuronsimulator/nrn
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network model) where they are validated in the
context of that system. Once the components are
validated, (3) the system itself is validated first
against the data/rules being used to build it and
then (4) against external datasets that have not
been used to build it.

10.5.1 High-Throughput Model
Component Validation

In Biophysical Neuron Models (Sect. 3.1), an
approach was described that can create a variety
of neuron models, namely how multi-objective
optimization strategies result in a pool of models
with different trade-offs. The number of mod-
els resulting from this can potentially be large,
reaching thousands of models. Yet, depending
on the scientific starting point, it can be desir-
able for even more neurons in a brain tissue
model to be unique. In such cases, it is quite
common to transplant electrical parameters from
one neuron model into a different morphological
shape, which is computationally much cheaper
than constraining the electrical parameters from
scratch. At this point, only a high-throughput
approach can perform the validation of the mod-
els against experimental data. In case of neuron
models, these validations check for soma voltage
responses from step current, for example, or ramp
current injections. In order to automate the vali-
dation, the same approaches used in the building
of the neuron models can be used, namely to
define Effective Distance Functions as previously
defined. The quality of the generalization of the
combinations is then quantified by comparing
model and biological neurons in terms of their
median z-scores for all electrical features. In dif-
ference to the model building process, in the
validation step only one pass is made per neu-
ron; this computation is embarrassingly parallel
and lends itself to efficient execution on parallel
systems;12 Fig. 10.6 shows an example of such
high-throughput validations for electrical neuron
models.

12 Blue Brain BluePyMM. Cell Model Management:
https://github.com/BlueBrain/BluePyMM

10.5.2 Sample-Based In Situ Model
Component Validation

Once a model component is validated, it can
be integrated into a composite model. However,
here the challenge is twofold. First, one has to
validate that the component is also generalizing
when it is embedded into the composite system.
In the case of a neuron that is embedded into
a tissue model, for example, those integration
effects come from the synapses the neuron will
then receive and which could drive the neuron
out of its dynamic range. However, validating
the component inside the composite system raises
a scalability issue: the composite system some-
times needs to be taken into account in the vali-
dation itself increasing the computing cost of the
simulation. Since the contexts of embedding can
be unique, this cost may scale with the number of
instances of the component rather than just with
the number of component types. This scalability
issue prevents an exhaustive high-throughput val-
idation as described above, but rather necessitates
a sample-based approach. As an example, we use
a validation called “Morphology Collage” that
samples a certain number of neurons, displays
them in a slice along with meshes visualizing
the layer boundaries; see Fig. 10.7. This makes
it easy for a human to inspect the placement of
these neurons, for instance, to identify if certain
neurites target the appropriate location or if the
neurites are located in the expected layer.

10.5.3 Intrinsic Validation: Validation
Against Input Parameters

Data-driven model building pipelines as
described in this chapter take datasets of multiple
modalities and rules as input, and integrate
those by trying to fulfil various and possibly
conflicting constraints originating from them. In
such a constraint resolution process, it cannot a
priori be taken for granted that the final model—
after the constraints are resolved to the extent
possible—still complies with the desired initial
specification. Deviations can come from the
metrics steering the constraint resolution process

https://github.com/BlueBrain/BluePyMM
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Fig. 10.7 3D Morphology
collage for the
hippocampus CA1 region
model as an example of
Sample-based in situ
Model Component
Validation. These collages
enable the scientist quickly
to validate the dendritic
targeting and that the axon
trees are located in the
appropriate layer; see also
Chap. 11 for more details

and from random seeds used in the process to
instantiate certain parts of themodel. Formethods
as those described in Brain Tissue Models (Sect.
3.2), where we use apposition and density-based
constraints to predict the microconnectome, it is
thus necessary to validate the model against its
initial specification after it has been built. To that
end, we have developed a validation framework13

that defines the testbed and performs appropriate
statistical tests built on top of an interface14

to query and analyze our model and in silico
experiments.

10.5.4 Extrinsic Validations:
Validation of Emergent
Properties

The previous validation steps provide the first
sanity check that the resulting model has been
built according to the initial specification and that
the process of model building was completed as
intended. They thus represent a form of verifica-
tion and they are also somewhat similar to testing
the performance of a machine learning model on
training data. Obviously, this is only necessary,
but not sufficient for a good model, which needs

13 Blue Brain DMT. Data, model and test validation frame-
work: https://github.com/BlueBrain/DMT
14 Blue Brain SNAP. The Simulation and Network Analy-
sis Productivity layer: https://github.com/BlueBrain/snap

to be tested for its emergent properties in novel
regimes and against previously unused datasets.
The extrinsic validation step is thus about val-
idating properties of the model that were not
explicitly controlled for in the construction pro-
cess against independent data. The properties in
question range from structural properties of the
model to its behavior in an in silico experiment.
For example, brain tissue models that have been
built using the previouslymentionedmethods can
be validated against in vitro staining profiles of
molecular markers in brain slices. These molecu-
lar markers are not a property of the model per se,
but these 2D maps of molecular markers can be
calculated from parameters present in the model
such as the spatial composition, the neuronal type,
or their association with the molecular markers.
Similarly, data from paired recordings of synapti-
cally connected pairs of neurons can be used to
validate the model’s functional emergent prop-
erties that were only explicitly constrained on
single neuron electrophysiology and the connec-
tivity resulting from their morphologies. Lastly,
the ultimate test is to see whether the resulting
model shows an emergent behavior that is in line
with experiments that were not used to constrain
the model. A simple example of this is the vali-
dation of the behavior of the model in response to
tonic depolarization and comparing this to slice
experiments. A more complex example is the
changing of a bath parameter to explore differ-
ent computational regimes of the model and the

http://dx.doi.org/10.1007/978-3-030-89439-9_11
https://github.com/BlueBrain/DMT
https://github.com/BlueBrain/snap
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comparison to respective multi-electrode array
measurements of brain slices. In practice, the
analysis of these types of in silico experiments is
a combination of predefined tests and interactive
analyses with dedicated software frameworks as
described above combined with scientific visu-
alization15,16,17 that allows the inspection of the
model and its simulations in ways similar to what
microscopes and imaging methods provide in a
wet lab.

10.6 Model and Experiment
Refinement

Data-driven reconstructions of brain tissue mod-
els as described in Markram et al. (2015) provide
a scaffold that enables the integration of available
experimental data, identifies missing experimen-
tal data, and facilitates the iterative refinement of
constituent models. Validations are a crucial part
of the data-driven modeling process that reduces
the risk that errors could lead to major inac-
curacies in the reconstruction or in simulations
of its emergent behavior. Successful validations
not only enable the systematic exploration of the
emergent properties of the model but also estab-
lish predictions for future in vitro experiments
or question existing experimental data. Failure in
validation could also indicate errors in experi-
mental data and identify future refinements. Rig-
orous validation of a metric at one level of detail,
therefore, also prevents error amplification to the
next level and triggers specific experimental or
model refinements.

An example of refinement at the interface be-
tween experiment and model proved necessary at
the single neuron level, more specifically, the liq-
uid junction potential artifact. This artifact arises
due to the interaction of electrolytes of differ-

15 RTNeuron. Real-time rendering of detailed neuronal
simulations: https://github.com/BlueBrain/RTNeuron
16 Blue Brain Brayns. High-fidelity, large-scale render-
ing of brain tissue models: https://github.com/BlueBrain/
Brayns
17 NeuroMorphoVis. Neuronal Morphology Analysis
and Visualization: https://github.com/BlueBrain/
NeuroMorphoVis

ent concentrations—i.e., intracellular recording
and extracellular bath solutions used in whole-
cell patch clamp experiments. When single-cell
electrophysiology recordings are reported in liter-
ature, the values are usually not corrected for the
voltage difference in the liquid junction potential,
which is estimated to be around−10 to −14 mV.
As a result, the true measurement of membrane
potentials is often distorted and requires a system-
atic correction to further constrain single neurons
models, especially when combined with other
absolute quantities such as the reversal potentials
that can be calculated directly from ion concentra-
tions. The validation process identified this incon-
sistency, which led to a careful re-evaluation of
the experimental data and the precise conditions
to adjust for the liquid junction potential offset in
the experimental data used for the final model.

An example for experimental refinement oc-
curred at the level of microcircuit structure while
integrating previously published data on neuron
densities into data-driven models of neocortical
tissue. The experimentally reported values vary
by a factor of two (40,000–80,000 neurons/mm3)
and yet failed to result in the overall number
and density of synapses reported in other studies.
Consequently, we performed new experiments,
counting cells in stained tissue blocks, which
yielded a mean cell density of 108,662 ± 2754
neurons/mm3, comparable to other independent
observations in the rat barrel cortex (Meyer et al.
2010). This is a clear-cut use case of how the
data-driven brain tissue reconstruction approach
enables the refinement of specific data through
triggering new experiments.

As a third example, we encountered the need
to refine the data-driven model of neocortical
tissue at the level of microcircuit function when
it was simulated to study the emergent dynamics
of spontaneous activity. Asmentioned previously,
model parameters to recreate experimentally
observed properties of synaptic physiology were
obtained from in vitro experiments, which are
typically performed at high levels of Ca2+ in the
recording bath (2 mM). Simulating microcircuit
function with synaptic parameters at high Ca2+
levels resulted in highly synchronous, low-
frequency oscillatory behavior of spontaneous

https://github.com/BlueBrain/RTNeuron
https://github.com/BlueBrain/Brayns
https://github.com/BlueBrain/Brayns
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
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network activity. However, in order to explore
network behavior under in vivo-like conditions,
we refined model parameters for synaptic
physiology by using experimental data acquired
at low levels of Ca2+ in the recording bath (0.9–
1.1 mM), which approximates in vivo conditions.
As a result, network activity transitioned from
synchronous activity to highly asynchronous
spontaneous network activity, consistent with
experimental observations (Markram et al. 2015).

We have discussed three specific examples to
outline the symbiosis of the model-experiment
refinement cycle. Indeed, we will continue to
integrate and acquire more experimental data
to validate brain tissue models as we scale up
spatially from microcircuits to brain regions.
Additional datasets will help to fill in biological
details that are not included in the current first
draft reconstruction (e.g., data on gap junctions,
cholinergic modulatory mechanisms, rules
for activity-dependent plasticity, extrasynaptic
glutamate, and GABA receptors, kinetics of
metabotropic glutamate receptors, non-synaptic
transmission, and autaptic connections).

10.7 Conclusions

Understanding the brain is probably one of the fi-
nal frontiers of modern science. Since the brain is
a complex biological system that has evolved over
billions of years, it is difficult to know a priori
the details that matter in the healthy or diseased
brain, in turn posing challenges for computational
models. We previously introduced a data-driven
reconstruction and simulation approach to build
biophysically detailed models of the neocortical
microcircuitry (Markram et al. 2015), sometimes
also referred to as a digital twin. Our approach
builds models from first principles in the sense
that it avoids a priori simplifications or abstrac-
tions beyond the biophysical starting point, which
lends itself to capturing the brain’s cellular struc-
ture and function. By treating the modeling of
the microcircuitry as building a model of a piece
of tissue, it is possible to leverage constraints
arising from different modalities, allowing the
prediction of parameters that are experimentally

not available. Our approach describes a way to
progressively and incrementally improve models
by systematically validating their emergent prop-
erties against data not used in the reconstruction
process, and a refinement process that is executed
when the model displays aberrant properties or
behaviors that are inconsistent with experimental
data.

Over the years, the approach has been
successfully applied to larger portions of the
neocortex and other brain regions. For example,
Chap. 11 describes how this approachwas applied
to reconstruct the hippocampal CA1 region
through necessary adaptations. Therefore, this
chapter deconstructs the approach described
previously (Markram et al. 2015) into its
underlying computational concepts. This makes
it possible to not only better identify the
necessary computational methods to reconstruct
and simulate brain tissue in computer models
but also recognize the knowledge gaps in
data and modeling challenges that could be
surmounted.

In addition, even if the goal is not to recon-
struct an entire brain region but rather only a sin-
gle neuron, aspects of the section on Data Orga-
nization and Biophysical Neuron Models (Sects.
2 and 3.1) still remain relevant. Similarly, se-
lected concepts underlying simulation and valida-
tion could be applicable to network models using
simpler neuron models.

The presentation of the computational con-
cepts in this chapter is complemented with links
to available open-source software that implement
the reconstruction, modeling, and validation pro-
cedures and make them easily accessible to the
interested reader.18
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