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Abstract
This thesis is situated at the crossroads between machine learning and control
engineering. Our contributions are both theoretical, through proposing a new
uncertainty quantification methodology in a kernelized context; and experimental,
through investigating the suitability of two machine learning techniques to integrate
feedback loops in two challenging real-world control problems.
The first part of this document is dedicated to deterministic kernel methods.
First, the formalism is presented along with some widespread techniques to
craft surrogates for an unknown ground-truth based on samples. Next, standing
assumptions are made on the ground-truth complexity and on the data noise,
allowing for a novel robust uncertainty quantification (UQ) theory to be developed.
By means of this UQ framework, hard out-of-sample bounds on the ground-truth
values are computed through solving convex optimization problems. Closed-form
outer approximations are also presented as a lightweight alternative to solving the
mathematical programs. Several examples are given to illustrate how the control
community could benefit from using this tool.
In the second part of the thesis, statistical models in the form of Gaussian processes
(GPs) are considered. These are used to carry out a building temperature control
task of a hospital surgery center during regular use. The engineering aspects of the
problem are detailed, followed by data acquisition, the model training procedure,
and the developed predictive control formulation. Experimental results over a
four-day uninterrupted period are presented and discussed, showing a gain in
economical performance while ensuring proper temperature regulation.
Lastly, a specialized neural network architecture is proposed to learn linear model
predictive controllers (MPC) from state-input pairs. The network features a
parametric quadratic program (pQP) as an implicit non-linearity and is used to
reduce the storage footprint and online computational load of MPC. Two examples
in the domain of power electronics are given to showcase the effectiveness of the
proposed scheme. The second of them consists in enhancing the start-up response
of a real step-down converter, deploying the learned control law on an 80MHz
microcontroller and performing the computations in under 30 microseconds.
Keywords: kernel learning, Gaussian processes, model predictive control, neural
networks, power electronics, building control.
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Résumé
Cette thèse se situe à la croisée de l’apprentissage automatique et de l’ingénierie
des systèmes de contrôle. Nos contributions sont théoriques, en proposant une
nouvelle méthodologie de quantification des incertitudes, ainsi que expérimentales,
en étudiant l’adéquation de certaines techniques d’apprentissage automatique à
intégrer des boucles de rétroaction dans le contexte de deux problèmes de contrôle
réels et difficiles.
La première partie du document est consacrée aux méthodes noyau déterministes.
Tout d’abord, le formalisme est présenté ainsi que certaines techniques pour créer
des modèles pour une fonction inconnue à partir d’échantillons. Ensuite, des
hypothèses sont faites sur la complexité de la fonction inconnue et sur le bruit
affectant les données, ce qui permet de développer une nouvelle théorie robuste de
quantification d’incertitude. Grâce à cette procédure de quantification de l’incerti-
tude, des limites supérieures et inférieures hors échantillon sur les valeurs de la
fonction peuvent être calculées en résolvant des problèmes d’optimisation convexes.
Des approximations extérieures sous forme fermée sont présentées comme une
alternative à la résolution des problèmes d’optimisation. Plusieurs exemples sont
donnés pour illustrer comment la communauté du contrôle pourrait se bénéficier
de l’utilisation de cet outil.
Dans la deuxième partie de la thèse, nous utilisons des modèles statistiques sous
forme de processus Gaussiens sont considérés. Ceux-ci sont employés pour réaliser
une tâche de contrôle de la température d’un centre de chirurgie hospitalier étant
régulièrement utiliser. Les aspects techniques du problème sont détaillés, suivis
de l’acquisition des données, de la procédure d’apprentissage du modèle et de la
formulation de la commande prédictive développée. Les résultats expérimentaux
sur une période ininterrompue de quatre jours sont présentés et discutés, montrant
un gain de performance économique tout en assurant une régulation adéquate de
la température.
Le dernier chapitre présente une architecture de réseau neuronal spécialisée pour
apprendre des contrôleurs prédictifs basés sur des modèles linéaires à partir de
paires état-commande. Le réseau dispose d’un programme quadratique paramé-
trique comme couche non-linéaire implicite et est utilisé pour réduire le besoin
de stockage et la charge computationnelle en-ligne des contrôleurs prédictifs.
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Résumé

Deux exemples dans le domaine de l’électronique de puissance sont donnés pour
démontrer l’efficacité du schéma proposé. Le deuxième exemple consiste dans
l’amélioration de la réponse du démarrage d’un convertisseur abaisseur réel, où la
loi de commande a été déployer dans un microcontrôleur de 80 MHz et les calculs
ont été effectuer en moins de 30 microsecondes.
Mots-clés : méthodes à noyaux, processus gaussien, commande prédictive, réseaux
neuronaux, électronique de puissance, contrôle des bâtiments.
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1 Introduction

1.1 The broad context

Artificial intelligence (AI) and machine learning (ML) are on the rise. Both terms,
often used interchangeably, are nowadays an integral part of the popular culture,
being referenced in various shows, movies, and books written by laymen. Recent
AI milestones that endorse the idea that important progress is being made include
the 2016 AlphaGo’s victory agains a 9-dan Go player (Silver et al., 2016), and the
OpenAI generative models DALL·E and ChatGPT, which showcased impressive
performance and drew the attention of the general population. On the business-side
of the spectrum, companies are also trying to leverage the power of AI and ML to
automate tasks, optimize processes and enhance productivity (Chui et al., 2022).
Indeed, both AI and ML are often referred to by consulting firms as disruptive
technologies whose potential is yet to be fully explored (Bechtel, 2022). These
advances and excitement are generally associated with two main driving factors:
the availability of tailored algorithms to solve specialized tasks and a wealth of
informative data at one’s disposal. Unfortunately, these are not equally present in
all application domains.

Data is indeed abundant and even freely accessible when one needs to build an
image classification model or a natural language processing algorithm. According
to 2019 YouTube statistics, over 500 hours of videos are uploaded to the platform
every minute (Hale, 2019). In the domain of automatic control, data is not
as pervasive for the reasons highlighted next. First, control systems platforms,
especially low-level ones, are typically not designed to store historical information
and repeatedly replace old samples with more recent ones. Picture for instance
microcontroller and FPGA boards, which only feature small memory blocks and
are not always designed to export operational data to remote computers in real-
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Introduction

time. Additionally, whereas in fields such as games (e.g. Go) the context that
dictates how the environment evolves in time is well-understood and sometimes
completely recorded, in engineering systems it is most often not completely known
and certainly not fully measured. In effect, robust control tools usually do not
require access to disturbance values, or are fed estimates (Zhou and Doyle, 1998;
Pannocchia, 2015). To point out one last difficulty, the tasks that need to be
learned in controls are rather specific and dependent on the particular instance of
the problem at hand. For example, an ML developer can teach a neural network
how to tell cars from other objects while using pictures of a Volkswagen Kombi
and a Lamborghini Aventador, but an automotive engineer would have a hard time
teaching his model how to drive if data coming from both vehicles were mixed1.
For these reasons, it is often hard for control engineers to gather large-enough
batches of high-quality, informative data.

Aside from the issue of data availability, some classical algorithms are not suited
for automatic control. Many ML application domains only involve off-line decision
making with no stringent time constraints associated to them. The decisions made
also do not normally affect the next inputs that the algorithm will receive, i.e.,
no closed-loop interactions are present (the prominent exception is reinforcement
learning). ML algorithms are consequently devised without particular consideration
for those aspects. Researchers have been trying to adapt certain models, making
them more suited to describing and controlling engineering systems. One such line
of investigation deals with incorporating physical knowledge into classical models
(Galimberti et al., 2021; Di Natale et al., 2022b) with the hopes of attaining a more
predictable behavior and, above all, system-level guarantees. Safety is another
major concern (Hewing et al., 2020; Brunke et al., 2022). Since bad actuation
frequently leads to causing materialistic or financial damage, if not human in the
worst case, algorithms have to be predictable and comply with certain rules. In
statistical learning, uncertainties are quantified and can be later used to establish
safety guarantees as shown for example in Hewing et al. (2019) and Lederer
et al. (2022). Nevertheless, these typically come in probabilistic forms, in contrast
with hard properties that are independent of the uncertainty realizations and to
which some control practitioners are more used to. Algorithms for which robust
guarantees can be derived are way less common than probabilistic ones. Examples
include Milanese and Novara (2004); Sabug Jr et al. (2021), where only mild
continuity assumptions are posed on the phenomenon to be learned.

Success stories involving ML in control science of course exist and they can be

1In transfer learning (Pan and Yang, 2010), one identifies patterns in data coming from a
certain task (driving the Kombi) to help him carry out a similar, but not identical task (driving
the Aventador).
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1.2 Outline and contributions

found in the fields of industrial mechatronics (Khosravi et al., 2022), building
climate control (Lian et al., 2021) and autonomous racing (Hewing et al., 2019) to
list a few. This thesis aims at strengthening this body of literature, corroborating
the idea that ML can lend itself to controls and bring important value to it. We
contribute by proposing a new algorithm that can be utilized for data-driven
robust analysis and control, an experimental investigation of a promising ML
technique, and a novel neural network architecture that can be used to scale-down
the computational requirements of a well-known optimization-based control law.

1.2 Outline and contributions

The core of this dissertation is divided into three chapters, each with its own
conclusions and envisioned future investigations. A brief description and the
contributions made in each of them are outlined as follows.

Chapter 2: Safely learning with kernels.

In this part, we investigate the problem of robust uncertainty quantification,
where hard bounds are be established for the values of an unknown function at
unobserved locations. As opposed to other works found in the literature, our novel
approach explores kernels, conferring on it a high degree of representation power.
Another distinguishing feature is the presence of a bounded measurement noise
model with no distributional assumptions imposed on it. Different versions of
the bounds are presented, involving either the solution of convex optimization
problems or closed-form expressions. Finally, examples are presented to illustrate
their applicability in a number of different scenarios, including robust analysis and
control problems. The contents of this part are based on the following works:

• P. Scharnhorst, E. T. Maddalena, Y. Jiang, and C. N. Jones. “Robust uncer-
tainty bounds in reproducing kernel Hilbert spaces: A convex optimization
approach.” IEEE Transactions on Automatic Control – Early Access (2022).

• E. T. Maddalena, P. Scharnhorst, and C. N. Jones. “Deterministic error
bounds for kernel-based learning techniques under bounded noise.” Auto-
matica 134 (2021): 109896.

• E. T. Maddalena, P. Scharnhorst, Y. Jiang, and C. N. Jones. “KPC: Learning-
based model predictive control with deterministic guarantees.” Learning for
Dynamics and Control. PMLR, 2021.

3
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Chapter 3: Building temperature control through Gaussian process and
model predictive control.

In this chapter, an experimental investigation involving Gaussian processes (GP)
dynamical models and Model Predictive Control (MPC) is reported. The tech-
niques were combined to tackle the control of an industrial hospital cooling system
for three adjacent rooms. To the best of our knowledge, no other similar in-
vestigation exists in the literature at present, validating the use of GP models
in a multi-zone building control problem. Aside from detailing the developed
project, we also contrast the approach to alternative methodologies with the aid of
simulations, helping us understand how close each of them are to an ideal solution.
The papers listed next are the ones more closely related to this part:

• Di Natale, L., Lian, Y., Maddalena, E. T., Shi, J., and Jones, C. N. (2022).
“Lessons learned from data-driven building control experiments: Contrast-
ing Gaussian process-based MPC, bilevel DeePC, and deep reinforcement
learning”. Conference on Decision and Control (pp. 1111-1117).

• Maddalena, E. T., Müller, S. A., dos Santos, R. M., Salzmann, C., Jones, C.
N. (2022). “Experimental data-driven model predictive control of a hospital
HVAC system during regular use” Energy and Buildings: 112316.

• Maddalena, E. T., Lian, Y., Jones, C. N. (2020). “Data-driven methods
for building control—A review and promising future directions.” Control
Engineering Practice 95: 104211.

Chapter 4: Learing MPC controllers with pQP neural networks.

Instead of employing neural networks (NNs) to learn unknown relationships from
data, in this chapter we utilize them to approximate a function that in principle
can be computed in closed-form. The intention is that of attaining a simplified
representation that can be more easily evaluated in real-time. More concretely,
we propose a network architecture to learn MPC controllers from state-control
samples that has two main advantages over competing strategies: it is shown
to be capable of representing any linear MPC formulation, and the NN can be
converted into a piece-wise affine format, similar to explicit MPC. Two examples,
one in simulations and one experimental, are given to showcase the effectiveness
of the technique in reducing the MPC computational burden with little impact on
performance. The papers below are the texts from which most of the material was
extracted:
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1.2 Outline and contributions

• Maddalena, E. T., Moraes, C. G. da S., Waltrich, G., Jones, C. N. (2020).
“A neural network architecture to learn explicit MPC controllers from data”.
IFAC-PapersOnLine 53 (2), 11362-11367.

• Maddalena, E. T., Specq, M. W. F., Wisniewski, V. L., Jones, C. N. (2021).
“Embedded PWM predictive control of DC-DC power converters via piecewise-
affine neural networks.” IEEE Open Journal of the Industrial Electronics
Society 2, 199-206.

A number of additional papers were written during the course of this PhD, but
are not discussed in this thesis due to their being off-topic:

• Chalet, F.-X., Bujaroska, T., Germeni, E., Ghandri, N., Maddalena, E. T.,
Modi, K., Olopoenia, A., Thompson, J., Togninalli, M., Briggs, A. H. (2023).
“Mapping the insomnia severity index instrument to EQ-5D health state
utilities: A United Kingdom Perspective.” PharmacoEconomics - Open.

• Rosolia, U., Lian, Y., Maddalena, E. T., Ferrari-Trecate, G., Jones, C.
N. (2022). “On the optimality and convergence properties of the iterative
learning model predictive controller.” IEEE Transactions on Automatic
Control 68.1: 556-563.

• Xu, W., Jiang, Y., Maddalena, E. T., Jones, C. N. (2022). “Lower bounds
on the worst-case complexity of efficient global optimization.” arXiv preprint
arXiv:2209.09655.

• Chakrabarty, A., Maddalena, E. T., Qiao, H., Laughman, C. (2021). “Scal-
able bayesian optimization for model calibration: Case study on coupled
building and HVAC dynamics.” Energy and Buildings 253, 111460

• Maddalena, E. T., Jones, C. N. (2020). “NSM converges to a k-NN regressor
under loose Lipschitz estimates.” IEEE Control Systems Letters 134: 880-885.

Whether their are covered in this dissertation or not, all works developed through-
out the past years were the result of fruitful collaborations with different scientists.
Any merit or credit for the contributions made is therefore to be shared among
authors and co-authors.
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2 Safely learning with kernels

2.1 Introduction

At its core, learning refers to the process of gathering information and using it
to improve one’s knowledge about the phenomenon under study, which we will
call the ground-truth. The standing assumption is that a link is in place, tying
information and the ground-truth together even if such link is partially corrupted.
Information typically comes in the form of data, samples, sometimes referred to as
examples, and the mathematical formalism often used in modern machine learning
to study the link between examples and the ground-truth is statistics. This choice
is convenient because it can describe the possible non-determinism of outcomes
through the concepts of distributions and samples; and because it provides us with
plenty of tools to carry out learning, i.e., to gradually improve our knowledge about
the underlying phenomenon. In this chapter, we will however adopt a different
standpoint to study the problem of learning, relying on an epistemic description
of uncertainty rather than on an aleatoric one (Hüllermeier and Waegeman, 2021).

When reporting physical parameters that are not exactly known, e.g. the friction
coefficient between two surfaces or the leakage inductance of a transformer, it
is common for engineers to specify ranges that are known to contain the true
coefficient values. Assuming that a true, invariable value exists although it is not
exactly known is the epistemic way of modeling uncertainty. This approach is
customary in many applied sciences and can be generalized from simple scalar
parameters to maps in function spaces. The entire field of approximation theory,
from which we will borrow many tools, makes constant use of this framework to
derive best approximations and error bounds for their nominal models (Wendland,
2004; Iske, 2018). Let us refer to this space as the ground-truth space (GTS),
whereas the space from where our models are drawn will be called the hypothesis
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space (HS). An advantage of working with functions spaces is the ease of packing
information into them that we might have as domain experts: take for instance
the Lipschitz continuity explored in Milanese and Novara (2004); Sabug Jr et al.
(2021) or the weak derivatives assumptions in Sobolev GTSs by the authors of
Novara et al. (2022). In this chapter, rather than posing assumptions directly on
the ground-truth, we will make use of an indirect formalism that ties the GTS to
maps named kernels. This approach guarantees the existence of a rich geometrical
structure that will allow us to develop our theory.

Kernels are a fundamental building block of modern machine learning (Schölkopf
and Smola, 2002). They enable computing similarities in extended feature spaces
while dispensing with the need of lifting the data onto them. Alternatively, they
can be viewed as a non-linearity library used to empower certain linear algorithms,
the canonical example being support vector machines. If kernels are used to
describe simultaneously the HS and the GTS, then optimal models can be found
and error-bounds can be derived for them at possibly out-of sample locations,
thus guaranteeing the quality of the model predictions (Schaback and Wendland,
2006; Kanagawa et al., 2018). One interesting aspect of those bounds are their
determinism, in that the ground-truth values cannot lie outside the established
“prediction envelope”. Therefore, such methods could in principle be used in
the engineering sciences to deterministically certify the performance or safety of
algorithms that employ learned maps, which is also remarkable due to their not
being asymptotic, but finite-sample guarantees. There is however one limiting
factor that hinders its applicability, namely the absence of a noise model (Wendland,
2004, §11). Even though noise-free samples are to be expected in domains such as
computer graphics and computer simulations, where these techniques are usually
applied (see e.g. (Sarra, 2005; Nikan et al., 2022)), corrupted data is prevalent in
electronics, robotics, building automation, among other fields.

In this chapter, we will explore kernel learning with hard guarantees. Our contri-
butions, which are mainly reported in Section 2.4, consist in posing and solving
an uncertainty quantification (UQ) problem to compute envelopes that bound the
unknown ground-truth values. We highlight that the UQ problem does not require
defining a nominal model, being thus agnostic to its choice. As opposed to other
deterministic bounds found in the literature (see the classical book (Wendland,
2004, §11)), ours encompass an additive noise with bounded levels, a description
that is not popular in general machine learning, but certainly relevant in domains
such as robust analysis and control. A number of examples are presented at the
end, illustrating different use-cases for the proposed theory, followed by concluding
remarks and ideas for future investigations.
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2.2 The formalism of kernels

Our goal is to learn maps of the form f : X → R and, to achieve that end, we will
make extensive use of auxiliary functions called kernels.

Definition 1. (Kernel) Given an arbitrary non-empty set X , a kernel k is any
symmetric function of the form

k : X × X → R (2.1)

Definition 2. (Kernel matrix) Let X = {x1, . . . , xn} ⊂ X be a finite set of
points. The n × n matrix KXX with entries [KXX ]ij = k(xi, xj) is called the
kernel matrix of k associated with X.

Definition 3. (Positive-definite kernel) A kernel function k is said to be
positive-definite if for any finite subset of points X ⊂ X , the kernel matrix satisfies
KXX � 0. If, in particular, KXX � 0, then the kernel is strictly positive-definite.

Remark 1. Aside from the last definition, there exist broader classes of kernel
functions such as the conditionally positive-definite one (Schölkopf and Smola, 2002,
§2.4)(Wendland, 2004, §8). In addition, one can also generalize the co-domain k
to be the field of complex numbers C.

Instances of positive-definite (PD) kernel functions with index set X = Rn are
the linear, the squared-exponential (also known as Gaussian), the exponential
(equivalent to the Matern12), the polynominal and the cosine kernels respectively
given by

klin(x, x′) = x · x′ (2.2)

kse(x, x′) = exp
(
−‖x− x

′‖2

2`

)
(2.3)

kexp(x, x′) = exp
(
−‖x− x

′‖
2`

)
(2.4)

kpol(x, x′) =
(
σ2(x · x′) + γ

)d
(2.5)

kcos(x, x′) = cos
(

2π
∑
i

([x]i − [x′]i)/`
)

(2.6)

where · and ‖·‖ denote the usual inner-product and 2-norm in Rn, respectively; and
the constants ` ∈ R>0, σ, γ ∈ R, d ∈ {1, 2, . . .} are the so-called hyperparameters.
Plots of these functions are presented in Figure 2.1, illustrating how diverse they
can be. Additionally, the product of any two PD kernels, such as the one depicted
in the figure, is also a PD kernel (Schölkopf and Smola, 2002).
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Figure 2.1: Examples of positive-definite kernels.

In order to construct surrogate models for the unknown f , one could partially
evaluate a given k to match their domains and co-domains. In other words, fix
one of its arguments so that k(z, ·) : X → R, x 7→ k(z, x) for some z ∈ X . Indeed,
this was the approach taken to draw the plots in Figure 2.1. Approximating the
unknown f with a single partially evaluated kernel however appears to be overly
restrictive, limiting. A sensible next step would be to consider linear combinations
of such kernel functions. It turns out that every PD kernel has a function space
associated with it that contains these linear combinations and is endowed with
plenty of useful geometric structure. The following concepts are presented to set
up the stage for defining this special hypothesis space, the reproducing kernel
Hilbert space (RKHS).

Proposition 1. (PD kernels have feature maps) Let k : X × X → R be a
positive-definite kernel. Then there exists a Hilbert space H endowed with an
inner product 〈·, ·〉H and a mapping Φ : X → H such that

k(x, x′) = 〈Φ(x),Φ(x′)〉H (2.7)

holds for any x, x′ ∈ X . Φ is known as a feature map from X to H.
Proof. (Steinwart and Christmann, 2008, Theorem 4.16), modulo the nomencla-
ture difference. �

Feature maps Φ are central in machine learning, allowing one to represent the data
x he has in a more suitable format. At the same time, (2.7) unveils another aspect
of a kernel evaluation k(x, x′): it returns the inner-product value of the transformed
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inputs Φ(x), Φ(x′). Educational textbooks often interpret these inner-products as
a similarity measure between x and x′ (Schölkopf and Smola, 2002).

The mappings Φ above as well as the H spaces are in general not unique (Steinwart
and Christmann, 2008, §4). There is however one such H space that enjoys an
extra property, ruling out some unexpected behavior from its members. This
particular H is not an arbitrary Hilbert space, but a Hilbert space of functions.

Definition 4. (Reproducing kernel Hilbert space) Let X 6= ∅ and RX the
set of functions mapping X to R. The subset H ⊂ RX is called a reproducing
kernel Hilbert space (RKHS) if it is a Hilbert space and if ∀x ∈ X the evaluation
functionals

Lx : H → R, Lx(f) 7→ f(x), ∀f ∈ H (2.8)

are bounded.

In order to see how useful such a property is, consider a sequence {fn}∞n=1 within
a certain Hilbert function space H ⊂ RX . Intuitively, one would expect that if
fn → f? in H, then the values fn(x) attained by the sequence would converge to
the values f?(x). Yet, this is not always the case (see Example 1 in Appendix A).
If, on the other hand, the evaluation functionals are bounded as in Definition 4,
then the connection between convergence in the function space and the pointwise
convergence of functions is guaranteed. Indeed, if {fn}∞n=1 and f? are members of
an RKHS H, then |fn(x)− f?(x)| = |Lx(fn)− Lx(f?)| ≤ ‖Lx‖ ‖fn − f?‖H, where
‖Lx‖ is the operator norm of Lx that is guaranteed by Definiton 4 to be a finite
number. As a result, if ‖fn − f?‖H → 0, the right-hand side of the inequality goes
to zero, and so does the pointwise difference |fn(x)− f?(x)|. Therefore, function
convergence in an RKHS implies pointwise convergence, matching our intuition.

Proposition 2. (Every RKHS has a unique PD reproducing kernel) Let
H ⊂ RX be an RKHS. Then, the map k : X × X → R, k(x, x′) := 〈Lx, Lx′〉H
is a positive-definite kernel. Furthermore, k is the unique map to satisfy the
reproducing property, i.e., for any x ∈ X , k(x, ·) ∈ H and

〈f, k(x, ·)〉H = Lx(f) = f(x), ∀f ∈ H (2.9)

Proof. (Berlinet and Thomas-Agnan, 2011, Lemma 2) along with (Steinwart and
Christmann, 2008, Theorem 4.20). �

Proposition 3. (Every PD kernel has a unique RKHS) Let k : X ×X → R
be a PD kernel. If k is the reproducing kernel of an RKHS HA and of another
RKHS HB, then HA = HB.
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Proof. (Steinwart and Christmann, 2008, Theorem 4.21). �

We understand from Propositions 2 and 3 that a special relationship exists between
a kernel and its RKHS. Nevertheless, it is still unclear from Definition 4 alone how
a given k influences or defines the members of H. To shed light on the matter,
it helps to explicitly construct H starting from a given k. Consider the so-called
pre-Hilbert space

H0 := span {k(x, ·) |x ∈ X}

=
{

n∑
i=1

ci k(xi, ·) |n ∈ N, ci ∈ R, xi ∈ X
} (2.10)

(2.11)

equipped with the real-valued map 〈f, g〉H0 := ∑n
i=1

∑m
j=1 aibik(xi, xj) for mem-

bers f, g ∈ H0, f = ∑n
i=1 ai k(xi, ·), g = ∑m

j=1 bj k(xj , ·), which can be shown to
be a valid inner-product. This family H0 of functions is however not guaranteed
to be complete, i.e., sequences {fi}i∈N of members might converge to functions
outside H0. To transform it into a proper Hilbert space, one closes the space

H := closH0 (2.12)

thus encompassing all limit points1. Finally, the function space H defined in (2.12)
can then be shown to be a valid RKHS2 according to Definition 4. In fact, it is
the only one associated with k. We therefore understand that the members of
H are weighted sums of partially evaluated kernels as per (2.11) along with their
limit points.

The questions of how expressive RKHSs can be still lingers on. To better examine
the matter, consider the following measure of expressiveness.

Definition 5. (Universal kernel) Let k be a continuous PD kernel and the set
X be a compact metric space. Then k is called universal if its RKHS H ⊂ RX is
dense in the space of real-valued continuous functions C(X ) ⊂ RX with respect to
the maximum norm ‖ · ‖∞.

The above definition guarantees that for any target function g ∈ C(X ) and any
tolerable error ε > 0, there exists an f in the RKHS of a universal kernel such that

1Closing H0 requires defining an inner-product on the superset H that is consistent with the
one present in the subset H0. Also, the closure of a set is always closed, which guarantees that
sequences within H cannot converge to functions outside of it.

2For a proof of this statement, the reader is referred to (Berlinet and Thomas-Agnan, 2011,
§3), or to (Sejdinovic and Gretton, 2012, §4) for a more step-by-step pedagogical exposition.
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their mismatch is bounded |f(x)− g(x)| ≤ ε, ∀x ∈ X . All in all, the universality
property is an indication of how rich a hypothesis space is, thus reassuring the
user that little bias error will be introduced by his choice.

Proposition 4. Let X be a compact subset of Rn. The squared-exponential
kernel with (2.3) with ` > 0 is universal.

Proof. (Steinwart and Christmann, 2008, Corollary 4.58). �

Remark 2. The anisotropic squared exponential kernel, where the hyperparameter
` is not a constant, but a vector weighing each x dimension differently, is also
universal. To see this, simply note that this generalized kernel function can recover
any isotropic squared-exponential used to fulfill the universality condition.

In contrast with Proposition 4, some results on the restrictiveness of RKHSs can
also be found in the literature. In Steinwart (2020) for example, the author shows
that no RKHS can contain C(X). On a looser note, some authors argue that the
squared-exponential kernel (2.3) has an H that is too smooth when compared to
alternative hypothesis spaces that are also associated with the same kernel (see the
discussion in (Kanagawa et al., 2018, §4)). For a thorough exposition of universal
kernels, the reader is referred to Micchelli et al. (2006). Lastly, we underline that
other model classes in machine learning also enjoy the same universality properties
that kernels do, notable certain architectures of deep neural networks (Kidger and
Lyons, 2020).

To better visualize what an RKHS is and the types of functions we might find in
it, the illustration in Figure 2.2 was created. First, we see on the top left corner
the single kernel member of the exponential RKHS with norm 1. On the right
part of the figure, we see more erratic maps displaying an aggressive behavior
that is reflected in the high value of their norms. Finally, on the bottom right
corner, a sinusoidal-like map is shown. The latter suggests that, even though its
characteristics are fairly different from the standard exponential kernel, the map
was not penalized with a high norm, but showed a reasonably low value.
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2.3 Crafting models

2.3 Crafting models

Suppose a dataset of the form {(xi, yi)}ni=1 is given. The xi ∈ X ,∀i elements
are referred to as inputs and the yi ∈ R, ∀i as outputs. In this section, we will
discuss exclusively the case where X ⊂ Rm is a compact set, and the outputs are
real-valued. The values yi are assumed to deliver information about an underlying
ground-truth function f? through the measurement model

yi = f?(xi) + εi, i = 1, . . . , n (2.13)

As detailed in Section 2.2, weighted sums of partially evaluated kernel functions
arise naturally in the context of kernel learning. In this section we shall see that,
when given {(xi, yi)}ni=1, maps of the form

f(x) =
n∑
i=1

αik(xi, x) (2.14)

are good candidates for acting as surrogate functions for the ground-truth f?.
Indeed, they are known to solve a number of optimal fitting problems given
appropriate weights α as we explain next.

In the absence of measurement noise, i.e., when εi = 0, the outputs yi perfectly
represent f?. As a result, data interpolation can be a sensible task to carry out,
which could done over f ∈ H while minimizing the resulting model norm.

Proposition 5. (Minimum-norm interpolation (MNI)) Let {(xi, yi)}ni=1 be
a collection of points such that xi ∈ Rm and yi ∈ R. Let k be a PD kernel and
H ⊂ RX its RKHS. Then, the variational problem

f̄ ∈ arg inf
f∈H

{
‖f‖2H : f(xi) = yi, i = 1, . . . , n

}
(2.15)

admits the unique solution f̄ ∈ H, f̄(x) = ∑n
i=1 αik(xi, x), α = y>K−1

XX .

Proof. (Kanagawa et al., 2018, Theorem 3.5). �

Remark 3. Some might think that models of the form (2.15) would perform poorly
in real-world scenarios as overfitting goes against established machine learning
guidelines. Yet, some authors have recently advocated for such models, and
interpolants in general, stating that they possess strong generalization capabilities
(see e.g. Belkin et al. (2018, 2019); Beaglehole et al. (2022)).

To tackle the approximation problem in the presence of measurement noise, a
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compromise between fitting the data and rejecting uninformative fluctuations is
sometimes desirable. One of the most standard tools used to achieve this balance
is kernel ridge regression (KRR) as enunciated next.

Proposition 6. (Kernel ridge regression (KRR)) Let {(xi, yi)}ni=1 be a
collection of points such that xi ∈ X for a compact X ⊂ Rm and yi ∈ R. Let k be
a SPD kernel and H ⊂ RX its RKHS. Then, the variational problem

inf
f∈H

1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2H (2.16)

with λ > 0 admits a single minimizer, the KRR model f(x) = ∑n
i=1 αixi with

α = (KXX + nλI)−1y.

Proof. Kimeldorf and Wahba (1971). �

To conclude this section, we will state a more general result, a theorem on which
a large portion of kernel learning is grounded.

Theorem 1. (The representer theorem) Let {(xi, yi)}ni=1 be a collection of
points such that xi ∈ X for an arbitrary X and yi ∈ R. Let k be a PD kernel
and H ⊂ RX its RKHS. Consider an arbitrary function c : (X ×R2)n → R ∪ {∞}
and a strictly monotonic increasing function Ω : [0,∞)→ R. Then, if f ∈ H is a
minimizer of the variational problem

inf
f∈H

c((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + Ω(‖f‖H) (2.17)

admits a representation of the form f(x) = ∑n
i=1 αixi, with αi ∈ R.

Proof. Schölkopf et al. (2001). �

2.4 Quantifying uncertainty

Besides being able to craft surrogate functions for our unknown ground-truth,
it is also a common desideratum to understand how far away our predictions
can be from the real phenomenon. We will start this section by formalizing the
problem of bounding the ground-truth values that can be attained even at unseen
locations given the information at hand. It is important to highlight that this
process will not require a model. Next, alternative bounds are developed, this
time around nominal models such as the ones presented in Section 2.3. Rather
than limiting ourselves to the theoretical sphere, the discussion will also touch on
the computational aspects involved in evaluating the derived expressions.
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2.4.1 The setting and problem definition

The theory developed in this section will revolve around a specific class of kernels
and input spaces, and will be built on the following standing assumptions.

Assumption 1. k is strictly positive-definite and its index set X ⊂ Rm is compact.

Assumption 2. f? is contained in the RKHS H associated with k.

The available data {(xi, yi)}di=1 is such that xi ∈ X and yi ∈ Rni , where the
vector yi stacks ni scalar outputs yi,1, . . . , yi,ni observed at the same input location
xi. The inputs xi are assumed to be pairwise-distinct without loss of generality.
The outputs are assumed to carry information about an underlying unknown
ground-truth map f? according to

yi,j = f?(xi) + δi,j (2.18)

where δi,j denotes an additive measurement noise. If only a single output is present
at each input location, the observational model (2.18) simplifies to yi = f?(xi) + δi.
For brevity, let X denote the set of all inputs x1, . . . , xd in the dataset. As for the
nature of δi,j , no specific distributional assumptions are made, but only that its
magnitude is uniformly bounded by a known scalar.

Assumption 3. δi,j is bounded by a known scalar δ̄, i.e., |δi,j | ≤ δ̄,∀i, j.

At this point one could ask himself if any out-of-sample guarantees could be
already established on the values attained by f?. The answer is no. Indeed, for
any tentative upper bound ω ∈ R at x 6∈ {x1, . . . , xd}, regardless of the number of
samples d, there is a member f ∈ H capable of reproducing any values at the xi
locations and additionally violating ω by an arbitrary level. Lower bounds could
be equally violated as well. What we lack is a complexity bound, which will be
posed by restricting f? to lie within the Γ-ball of H.

Assumption 4. An upper-bound Γ ≥ ‖f?‖H is known.

Remark 4. The matter of exactly computing RKHS norms from weights and
otherwise estimating them from data is discussed in Appendix 2.8.2.

With all assumptions in place, we can formulate the variational problem P0 below,
with the query point x ∈ X as a parameter

F(x) = sup
f ∈H
{f(x) : ‖f‖H ≤ Γ, ‖fX − y‖∞ ≤ δ̄} (2.19)
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where fX is the vector of evaluations at the input locations, which are repeated
whenever multiple outputs are available at a given input (see Appendix 2.8.4). We
highlight that the supremum is guaranteed to be finite. To see this, notice that
|f(x)| = |〈f, k(x, ·)〉H| ≤ ‖f‖H ‖k(x, ·)‖H ≤ Γ

√
k(x, x). This last bound is rather

loose as it does not exploit any information present in X nor the outputs y, and is
moreover uniform for translation-invariant kernels such as the squared-exponential.
(2.19) on the other hand makes use the dataset {(xi, yi)}di=1 in its entirety as well
as the complexity bound Γ.

2.4.2 The optimal solution

Consider now the convex parametric quadratically-constrained linear program P1

C(x) = max
c∈Rd,cx∈R

cx

subj. to
[
c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
≤ Γ2

‖Λc− y‖∞ ≤ δ̄

(2.20)

(2.21)

(2.22)

for any x ∈ X\X, and extend its value function C(x) to points x = xi ∈ X with the
solution of P1′ : C(x) = maxc∈Rd{ci | c>K−1

XXc ≤ Γ2, ‖Λ c− y‖∞ ≤ δ̄}. The two
cases P1 and P1′ are distinguished due to the matrix in (2.21) becoming singular
for any x ∈ X, and since it allows for one decision variable to be eliminated.
The definition of Λ is given in Appendix 2.8.4. The connection between this
optimization problem and (2.19) is unveiled next.

Theorem 2. (Finite-dimensional equivalence) The objective in P0 attains
its supremum in H and F(x) = C(x) for any x ∈ X .

The proof involves showing that a solution to P0 necessarily lies in a finite-
dimensional subspace of H, in a “representer theorem" spirit (Schölkopf et al.,
2001). The attainment of the supremum is shown from topological aspects of the
constraints in this subspace; and, finally, the match F(x) = C(x) by re-evaluating
the constraints in light of the solutions to P0 being finitely representable.

Proof. Let X := X ∪ {x} and define the finite-dimensional subspace H‖ = {f ∈
H : f ∈ span(k(xi, ·), xi ∈ X)}. Furthermore, let H⊥ = {g ∈ H : 〈g, f‖〉H =
0, ∀f‖ ∈ H‖} be the orthogonal complement of H‖. Then, we have H = H‖ ⊕H⊥

and for all f ∈ H, ∃f‖ ∈ H‖, f⊥ ∈ H⊥ : f = f‖ + f⊥. By employing the latter
decomposition and using the reproducing property, we can reformulate P0 in terms
of H‖ and H⊥ as
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2.4 Quantifying uncertainty

sup
f‖ ∈H‖
f⊥ ∈H⊥

{
〈f‖ + f⊥, k(x, ·)〉H :

∥∥∥f‖ + f⊥
∥∥∥2

H
≤ Γ2,

∥∥∥(f‖ + f⊥)X − y
∥∥∥
∞
≤ δ̄

}

(2.23)
(i)= sup

f‖ ∈H‖
f⊥ ∈H⊥

{
f‖(x) :

∥∥∥f‖∥∥∥2

H
+
∥∥∥f⊥∥∥∥2

H
≤ Γ2,

∥∥∥f‖X − y
∥∥∥
∞
≤ δ̄

}
(2.24)

(ii)= sup
f‖ ∈H‖

{
f‖(x) :

∥∥∥f‖∥∥∥2

H
≤ Γ2,

∥∥∥f‖X − y
∥∥∥
∞
≤ δ̄

}
(2.25)

In (i), the f⊥ component vanished from the cost and from the last constraint due
to orthogonality w.r.t. k(xi, ·) ∈ H‖ for any xi ∈ X; moreover, the Pythagorean
relation ‖f‖2H = ‖f‖‖2H + ‖f⊥‖2H was also used. To arrive at the second equality
(ii), one only has to note that the objective is insensitive to f⊥ and that any
f⊥ 6= 0H would tighten the first constraint.

The attainment of the supremum is addressed next. Consider (2.25) and denote
the members of H‖ simply as f . ‖f‖2H ≤ Γ2 is a closed and bounded constraint as
it is the sublevel set of a norm. We transform ‖fX − y‖∞ ≤ δ̄ into |f(xi)−yi,j | ≤ δ̄,
i = 1, . . . , d, j = 1, . . . , ni. Sets of the form {a ∈ R : |a| ≤ b} are clearly closed
in R, hence {f(xi) ∈ R : |f(xi) − yi,j | ≤ δ̄,∀i, j} is also closed. For any xi, the
evaluation functional Lxi(f) = f(xi) is a linear operator and thus pre-images
of closed sets are also closed. Consequently, {f ∈ H‖ : |f(xi) − yi,j | ≤ δ̄,∀i, j}
is closed in H‖. The intersection of a finite number of closed sets is necessarily
closed, thus all constraint present in (2.25) define a closed feasible set. Since H‖ is
finite-dimensional, any closed and bounded subset of it is compact (Heine–Borel);
therefore, the continuous objective Lx(f) = f(x) in (2.25) attains a maximum by
the Weierstrass extreme value theorem.

Finally, we establish the connection between P0 and P1. From the above ar-
guments, an optimizer for P0 must lie in H‖. The members f ∈ H‖ have the
form f(z) = α>KXz, being defined by the α weights. Due to the positive-
definiteness of k, there exists a bijective map between outputs at the X locations
fX =

[
f(x1) . . . f(xd) f(x)

]>
and the weights α, namely α = K−1

XXfX. KXX
denotes the kernel matrix associated with X. Consequently, optimizing over
f ∈ H‖ is equivalent to optimizing over

[
f(x1) . . . f(xd) f(x)

]>
=:
[
c> cx

]>
.

The bounded norm condition can be recast as ‖f‖2H = 〈f, f〉H = α>KXXα =[
c> cx

]
K−1
XX

[
c> cx

]>
. The last constraint and the objective are straightfor-

ward, and this concludes the proof. �
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Remark 5. (The optimal lower bound) In a way analogous to (2.19), the
problem inff ∈H{f(x) : ‖f‖H ≤ Γ, ‖fX − y‖∞ ≤ δ̄} could be posed to compute
the minimum out-of-sample value that could be attained by the unknown ground-
truth. Its finite-dimensional counter-part would be B(x) = minc∈Rd,cx∈R{cx :
(2.21), (2.22)} for any x ∈ X\X, and extend it to points x = xi ∈ X with
B(x) = minc∈Rd{ci | c>K−1

XXc ≤ Γ2, ‖Λ c− y‖∞ ≤ δ̄}. As a result, computing the
whole “uncertainty envelope” requires solving two problems per query point.

An illustrative example is shown in Figure 2.3, where noisy samples were gathered
from an unknown map (dashed line). The upper and lower bounds C(x) and B(x)
were then computed based on an augmented norm estimate, and are shown in
red. Finally, the ground-truth is shown to lie within the uncertainty envelope. We
underline that this procedure does not require defining any nominal model.

Theorem 2 states that quantifying uncertainty in our particular kernelized setting
can be done through convex programming involving d + 1 decision variables.
According to (2.22), c ∈ Rd is constrained to be consistent with the already seen
outputs y up to the tolerance δ̄; whereas according to (2.21), the ensemble c and
cx must lead to a total complexity not greater than Γ. It turns out that, for any
query point x outside the data-set, the complexity bound is always activated since
the objective is only sensitive to cx, which is not constrained by the infinity norm.
This is formalized next. Replacing the inequality in (2.21) by an equality would
lead to the loss of convexity as is therefore not desirable.

Proposition 7. The inequality constraint (2.21) is always active, i.e., for any x ∈

X\X let (c?, c?x) be an optimizer of P1, then
[
c?

c?x

]> [
KXX KXx

KxX k(x, x)

]−1 [
c?

c?x

]
= Γ2.

Given our knowledge on the noise influence δ̄, it is natural to ask what the limits
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Figure 2.3: Optimal bounds example for the SE kernel (2.3) with ` = 2.5. Left:
a member f ∈ H with ‖f‖H = 16.42 and 7 data-points with δ̄ = 0.5. Center:
data-points and the optimal bounds C(x), B(x) computed with Γ = 1.1 ‖f‖H.
Right: the ground-truth f(x) and the optimal bounds C(x), B(x).

20



2.4 Quantifying uncertainty

of the uncertainty quantification technique considered herein are. More concretely,
is the width of the envelope C(x)− B(x) restricted to a certain minimum value
that cannot be reduced even with the addition of new data? From (2.22), it is
clear that at any input location xi ∈ X, C(xi) and B(xi) cannot be more than 2δ̄
apart. In addition to that, the presence of the complexity constraint (2.21) can
bring the two values closer to each other. Depending on how restrictive this latter
constraint is for a given x = xi, the corresponding output yi might lie outside the
interval between C(xi) and B(xi). In this case, the resulting width is considerably
reduced as stated next and as illustrated in Figure 2.4.

Proposition 8. (Width smaller than the noise bound) If ∃yi such that
yi,j > C(xi) or yi,j < B(xi) for some j, then C(xi)− B(xi) ≤ δ̄.

Suppose now one has sampled (xi, yi) with yi =
[
yi,1 yi,2

]>
, yi,1 = f?(xi) + δ̄ and

yi,2 = f?(xi)− δ̄. In this case, there is no uncertainty whatsoever about f? at xi
since f?(xi) = (yi,1 + yi,2)/2 is the only possible value attainable by the ground-
truth. The possibility of having multiple outputs at the same location therefore
allows for the uncertainty interval to shrink past the δ̄ width, and eventually be
reduced to a singleton as shown in Figure 2.4. Notwithstanding, the addition
of a new datum to an existing dataset, be it in the form of a new output at an
already sampled location or a completely new input-output pair, can only reduce
the uncertainty as guaranteed by the following proposition.

Proposition 9. (Decreasing uncertainty) Let C1(x) be the solution of P1 with
a dataset D1 = {(xi, yi)}di=1, and C2(x) the solution with D2 = D1∪{(xd+1, yd+1)},
∀xd+1 ∈ X , yd+1 ∈ Rnd+1 . Then C2(x) ≤ C1(x) for any x ∈ Ω.

Remark 6. An analogous result holds for the lower part of the envelope B(x).
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Figure 2.4: Left: samples lying outside of the uncertainty envelope, implying that
its width is smaller than δ̄ at those locations. Right: redundant information is
used to shrink the uncertainty envelope and recover the exact ground-truth value
at x = 2.5 as C(2.5) = B(2.5) = f?(2.5) = 4.75.
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The practical implications of Proposition 9 are shown in Figure 2.5, where samples
are gradually added to the dataset, and the optimal bounds are re-computed. To
create this example, the squared-exponential kernel was employed. Notice how
new information decreases the uncertainty everywhere in the domain thanks to
the global influence of the chosen kernel. This effect can be more clearly observed
in the region −8 ≤ x ≤ −5 where the width is progressively reduced despite no
new data-points being collected within it.

Remark 7. (On the accuracy of the noise bound) Recovering the ground-
truth as shown in Figure 2.4 requires the noise realizations to match δ̄ and −δ̄; it
is thus necessary to have tight noise bounds at hand for it to happen, which is
not always a reality in practical applications. On the other hand, Proposition 9
guarantees the decreasing uncertainty property regardless of how accurate δ̄ is.
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Figure 2.5: Adding new samples to a dataset can only cause uncertainty to
be reduced everywhere in the domain. The noise was drawn from a uniform
distribution bounded in absolute value by δ̄ = 0.8. The last plot depicts the
bounds after the collection of 10 new random samples.
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One of the fundamental sources of computational complexity in problem (2.20) is
the presence of the kernel matrix inverse. Indeed, it is well-known that commonly
used algorithms for matrix inversion have cubic time-complexity. Note that the
same problem is also faced when trying to scale other kernel-based algorithms
(Zhang et al., 2013; Bauer et al., 2016; Lederer et al., 2021). In order to circumvent
this obstacle, one could make use of the optimal-bounds dual formulation, which
can be shown not to involve the aforementioned matrix.

Proposition 10. The Lagrangian dual of P1 is the convex program D1 given by

min
ν∈Rd̃, λ>0

1
4λν

>ΛKXXΛ>ν+
(

y − 1
2λΛKXx

)>
ν+δ̄‖ν‖1+ 1

4λk(x, x)+λΓ2 (2.26)

where d̃ = ∑d
i=1 ni is the total number of outputs, that is, the size of y.

The optimization problem above is convex since it is a quadratic-over-linear function
with ΛKXXΛ> � 0 and λ restricted to the positive reals. The objective can
moreover be decomposed into a differentiable part and a single non-differentiable
term ‖ν‖1, with ν unconstrained. This class of problems has long been studied
and mature numerical algorithms exist to solve them, notably different flavors of
splitting methods such as the alternating direction method of multipliers (Boyd
et al., 2011, §6). Alternatively, a standard linear reformulation could be employed
to replace ‖ν‖1 by ∑i ηi, with additional constraints −ν ≤ η, ν ≤ η, yielding a
differentiable objective, but with extra decision variables and linear constraints.

By definition, weak duality (Bertsekas, 2009, §5) ensures that any feasible solution
(ν∗, λ∗) for D1 leads to an objective value greater or equal to the primal problem
P1 optimal value. As a result, any feasible solution for D1 returns a valid upper-
bound for the ground-truth f?(x). When employed in real-time applications, users
may thus choose not to solve D1 to optimality since early-stopping solvers can
always be done with a theoretical guarantee on the returned value. Next, a mild
sufficient condition is given to ensure a zero duality gap between the primal and
dual problems.

Proposition 11. (Strong duality) If δ̄ > |δi,j |,∀i, j and Γ > ‖f?‖H, then no
duality gap exists, i.e., maxP1 = minD1.

2.4.3 Closed-form alternatives

The discussion in this subsection assumes that only one sample is present at each
input location, i.e., yi = yi for i = 1, . . . , d, so that y = y and Λ = I.

Before addressing the general case, consider first the simplified scenario of having
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noiseless observations of the ground-truth. Closed-form prediction error bounds
can then be established for MNI models, being based on the power function and
on the difference between our estimate Γ and the MNI RKHS norm.

Proposition 12. Let Assumptions 1-4 hold with δ̄ = 0. Let s be the minimum-
norm interpolant s(x) = α>KXx, α = y>K−1

XX . Then, for any x ∈ X

|s(x)− f?(x)| ≤ PX(x)
√

Γ2 − ‖s‖2H (2.27)

With (2.27) in place, a more generalized inequality can be put forth, encompassing
arbitrary noise levels and kernel models.

Proposition 13. Let Assumptions 1-4 hold with δ̄ ≥ 0. Let s be a given nominal
model s(x) = α>KXx, α ∈ Rd. Then, for any x ∈ X

|s(x)− f?(x)| ≤ PX(x)
√

Γ2 + ∆ + δ̄
∥∥∥K−1

XXKXx

∥∥∥
1

+ |s̃(x)− s(x)| (2.28)

where s̃(x) = y>K−1
XXKXx and ∆ = minν∈Rd

{
1
4ν
>KXXν + ν>y + δ̄ ‖ν‖1

}
.

Remark 8. (The sub-optimal bounds) Denote by S(x) the right-hand side of
the inequality (2.28). One can then bound the ground-truth evaluations simply
through s(x) − S(x) ≤ f?(x) ≤ s(x) + S(x). We shall refer to them as “the
sub-optimal bounds” since the inequalities will always be looser than B(x) ≤
f?(x) ≤ C(x) obtained by solving the optimization problems of Section 2.4.2.

The map s̃(x) is an interpolant for the available noisy outputs y. Note also that
none of the terms in (2.28) depend on the model weights α with the exception of
the last term |s̃(x) − s(x)|. Therefore, the width S(x) will be minimized when
s(x) = s̃(x)⇔ α = y>K−1

XX . Such a model choice is however not always desirable
and at times a balance between smoothing the data and not diverging too much
from s̃(x) has to be found. This trade-off is illustrated in Figure 2.6 where the
optimal bounds are compared against KRR sub-optimal ones built with the same
RKHS norm estimate Γ = 1.1 ‖f?‖H and noise bound δ̄ = 1. Three regularization
constants were employed when designing the nominal models (2.16). As can be
seen from the plots, the sub-optimal bounds are always more conservative than
the optimal ones and its conservativeness increases with λ.

Let us inspect more closely the source of sub-optimality in Proposition 13. To do
so, the optimal bounds problem (2.20) will be reformulated and relaxed, allowing
for a closed-form solution to be found.
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2.4 Quantifying uncertainty

Begin by employing a change of variables in P1 and optimizing over (δ, cx), δ := c−y
rather than over (c, cx). Next, apply the matrix inversion lemma (A.23) to
decompose the quadratic constraint (2.21), carry out the vector-matrix-vector
multiplication and solve for cx. This process leads to

cx ≤ PX(x)
√

Γ2 − ‖s̃‖2H − δ>K
−1
XXδ + 2y>K−1

XXδ + s̃(x) + δ>K−1
XXKXx

(2.29)
where P 2

X(x) = k(x, x)−KxXK
−1
XXKXx, s̃(x) = y>K−1

XXKXx and ‖s̃‖2H = y>K−1
XXy.

Since the norm constraint (2.22) is independent of cx, (2.29) will always be active
and we can optimize over the right-hand side of (2.29) instead, thus eliminating
one decision variable

max
‖δ‖∞≤δ̄

PX(x)
√

Γ2 − ‖s̃‖H − δ>K
−1
XXδ + 2y>K−1

XXδ+ s̃(x) + δ>K−1
XXKXx (2.30)

Now, relax the problem by allowing δ to attain different values inside and outside
the square-root

max
‖δ1‖∞,‖δ1‖∞≤δ̄

PX(x)
√

Γ2 − ‖s̃‖2H − δ>1 K
−1
XXδ1 + 2y>K−1

XXδ1 + s̃(x) + δ>2 K
−1
XXKXx

(2.31)
The above objective is separable and the terms associated with δ2 evaluate to
maxδ2∈Rd{δ>2 K−1

XXKXx : ‖δ2‖∞ ≤ δ̄} = δ̄ ‖K−1
XXKXx‖1 since these norms are duals

of each other (Boyd and Vandenberghe, 2004, §A.1.6). Notice how what is inside the
square-root is independent of the parameter x and, therefore, only needs to be evalu-
ated once for a fixed set of inputs X. Thanks to the strong duality of quadratic pro-
gramming, we have that maxδ1∈Rd

{
−δ>1 K−1

XXδ1 + 2y>K−1
XXδ1 − ‖s̃‖2H : ‖δ̄1‖∞ ≤ δ̄

}
is equal to minν∈Rd

{
1
4ν
>KXXν + ν>y + δ̄ ‖ν‖1

}
, which by definition is ∆̃. Finally,

recall that (2.31) was a (conservative) upper bound for f?(x). Given an arbitrary
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Figure 2.6: A comparison between the optimal bounds (red envelopes) and the
closed-form sub-optimal bounds (dashed black lines) around KRR models (solid
black lines). Three KRR distinct regularization constants were tested λ = 10−3

(left), λ = 10−1 (center) and λ = 102 (right).
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model s(x), the triangle inequality |f(x) − s(x)| ≤ |f(x) − s̃(x)| + |s̃(x) − s(x)|
can be used to bound the distance between its predictions and the ground-truth
values, where |f(x) − s̃(x)| comes from the derivations made in this paragraph.
We arrive thus at the same expressions presented in Proposition 13.

The proof of Proposition 13 presented in Section 2.8.5 follows a different, simpler
argumentation. The derivation presented here however better highlights how the
relaxed maximizaition (2.31) takes into account the worst-possible inner-product
δ>2 K

−1
XXKXx and norm term associated with δ1 jointly. Besides, Proposition 13

is also seen to strongly rely on the interpolant s̃(x) as shown by the use of the
triangle-inequality. Despite this fact, we have experimentally achieved reasonable
results when in moderate noise level scenarios.

Remark 9. The sub-optimal bounds given in Proposition 13 feature a nominal
model at their center, which is desirable in some situations. In the optimal case,
the minimum norm regressor s?(x) = α?>KXx, α? = argminα∈Rd{α>KXXα :
‖KXXα− y‖∞ ≤ δ̄} can be used as a nominal model. This choice is guaranteed
to lie completely within C(x) and B(x), although not necessarily in the middle,
since the map s? belongs to H and is a feasible solution for P0 in (2.19).

2.5 Kernel predictive control

The theory developed so far revolved purely around function approximation. In
this subsection we make use of it to go from data to safely controlling a dynamical
system by means of kernelized models and uncertainty estimates. For convenience
and due to the shifting from one domain to another, notation will be overloaded.

Consider a discrete-time dynamical system of the form

xt+1 = f(xt, ut) (2.32)

with time t ∈ N, states xt ∈ Rnx , inputs ut ∈ Rnu , and an unknown3 transition
map f : Rnx×Rnu → Rnx . Hard constraints xt ∈ X = {x | gi(x) ≤ 0, i = 1, . . . , nX}
and ut ∈ U = {u | si(u) ≤ 0, i = 1, . . . , nU} are imposed for all t ∈ N, where X and
U are polytopes. More general compact sets could also be considered, but the
geometric assumptions made on X and U will later allow us to more easily verify
set inclusions and constraint satisfaction.

The control goal is to steer (2.32) from a given initial condition x0 to a polytopic

3If a partial model for the ground-truth function is available, the learning task can simply be
performed on the residual dynamics.
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safe subset of the state space
Xsafe ⊆ X (2.33)

while satisfying all constraints. Similarly to Koller et al. (2018), we also assume
that a local policy πsafe : Xsafe → U is available, making Xsafe forward invariant,
i.e., ∀xt ∈ Xsafe : f(xt, πsafe(xt)) ∈ Xsafe, πsafe(xt) ∈ U. A frequent instance of this
problem is the regulation of (2.32) to a specific fixed point, in which Xsafe = {xeq}
and π(xeq) = ueq is the equilibrium input. In order to accomplish our task, we
assume to have access to noise-corrupted measurements of the unknown ground-
truth dynamics in a format that will be later specified.

The approach chosen to tackle the problem is that of recursively solving a finite-
horizon optimal control problem, i.e., the MPC approach. To perform predictions,
data could be used to build a single-step surrogate model and iterate over it. The
number one obstacle to be overcome in this case is that of uncertainty propagation.
Indeed, propagating sets through non-linear maps usually cannot be done in closed-
form and involves several overbouding steps (Koller et al., 2018). We therefore opt
for learning various multi-step ahead models, one for each of the N prediction steps.
Let F1 : X× U→ X be the one-step ahead predictor in which each dimension in
learned separately by models f̂1, . . . , f̂nx

4

(x0, u0) 7→ F1(x0, u0) =
(
f̂1(x0, u0), . . . , f̂nx(x0, u0)

)
(2.34)

Define F2 as (x0, u0, u1) 7→ F2(x0, u0, u1) =
(
f̂1(x0, u0, u1), . . . , f̂nx(x0, u0, u1)

)
,

the two-step ahead model, and F3, . . . , FN analogously.

Besides having nominal predictions, robust confidence sets are used to ensure
constraint satisfaction. These are set-valued functions of the type X1 : X×U :→ 2X,
X2 : X × U × U :→ 2X, . . . that are guaranteed to contain the unknown system
evolution

X1(x0, u0) 3 f(x0, u0)
X2(x0, u0, u1) 3 f(f(x0, u0), u1)

. . .

XN (x0, u0, u1, . . . , uN−1) 3 f(. . . f(f(x0, u0), u1), . . . , uN−1).

(2.35)

The diagram shown in Figure 2.7 illustrates the nominal predictions Fi and
confidence sets Xi all spawning from the initial state x0. Notice how as defined
above, Fi and Xi are independent elements and need not satisfy Fi ∈ Xi, let alone

4Learning each state dimension separately is necessary because the theory developed in this
chapter only encompasses real-valued functions.
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being exactly in the geometric center of it as depicted in Figure 2.7. Nevertheless,
both these properties can be obtained if the nominal model and bounds given
in Proposition 13 are employed. Also, the confidence sets are illustrated as
hyper-rectangles to reflect the fact that uncertainty quantification is carried out
individually in each dimension of the state-space.

For the sake of training the multi-step ahead models and confidence sets, a par-
ticular set of data has to be gathered. For F1 and X1, one needs {(xt, ut), yt}dt=1,
yt = f(xt, ut) + δt, where |δt| ≤ δ̄ and where disconnected one-step sequences
can be put together. For F2 and X2, one needs {(xt, ut, ut+1), yt}dt=1, yt =
f(f(xt, ut), ut+1) + δt. Following the same logic, for a general pair FN and XN ,
one needs tuples of states xt and N − 1 control moves ut, . . . , uN−1 and the Nth
step ahead state xt+N possibly corrupted by noise.

Remark 10. (On collecting the multi-step ahead data) In practical scenarios,
we typically perform various long experiments with the dynamical system to collect
data and craft models. Clearly, an experiment that starts at a given initial state
x0, is followed by a sequence of inputs ut, . . . , uN−1, and where all states are logged
x1, . . . , xN (possibly with noise), yields one training tuple for every model Ft and
confidence set Xt, t = 1, . . . , N . We highlight that it is however not possible
to extract multiple tuples from a long experiment to assemble the 1-step ahead
dataset if noise is present. This is due to our measurement model (2.18), whereby
the initial state of a tuple cannot be corrupted.

With nominal models and confidence sets at hand, the finite-horizon optimal
control problem can be formulated. Let x0 be a given initial condition for the true
dynamical system (2.32), our Kernel Predictive Control formulation then reads

t

x 0 f f

f
fF 1

F 2

F N

t+1 t+2 t+N…

…

Figure 2.7: The outcome of each map: Nominal predictions Ft (—), confidence
sets Xt (- -), and the unknown ground-truth f (—). All functions also depend on
the chosen control sequence, which is omitted for clarity.
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2.5 Kernel predictive control

KPC : min
X,U

N−1∑
t=0

`(xt, ut) + `f (xN ) (2.36a)

subj. to xt = Ft(x0, u0, . . . , ut−1), ∀t (2.36b)
Xt(x0, u0, . . . , ut−1) ⊆ X, ∀t (2.36c)
XN (x0, u0, . . . , uN−1) ⊆ Xsafe (2.36d)
ut ∈ U, ∀t (2.36e)

where X = (x1, . . . , xN ), U = (u0, . . . , uN−1) are the decision variables, and `(x, u)
and `f (x) are appropriately designed stage and final costs. In a receding-horizon
implementation, KPC is solved recursively, always supplying the current state of
(2.32) to the optimization problem as the initial condition x0, and only applying
the first optimal control input to (2.32).

After having introduced (2.36), its properties should be discussed. First, recursive
feasibility cannot be shown by means of the classical sequence shifting arguments
due to the use of multiple confidence sets Xt. Nevertheless, previous successful
iterations can contribute to the feasibility of future KPC problems. More precisely,
the closed-loop data of up to N−1 past steps can be used to reduce the uncertainty
regarding the location of true next states without updating any models. This is
formalized in the safe relaxation strategy (SRS) stated next.

Proposition 14. Assume that the N − 1 previous consecutive KPC iterations
were feasible. Denote by (u−N+1, . . . , u−1) and (x−N+1, . . . , x−1) the closed-loop
sequences of past controls and states, and by x0 the current state. Let KPC+

be the KPC optimization problem (2.36) with set constraints X1(x0, u0) ⊆ X,
X2(x0, u0, u1) ⊆ X, . . . , XN−1(x0, u0, . . . , uN−2) ⊆ X relaxed to

X1(x0, u0) ∩
(

N⋂
i=2

Xi (x−i+1, u−i+1, . . . , u−1, u0)
)
⊆ X,

X2(x0, u0, u1) ∩
(

N⋂
i=3

Xi (x−i+2, u−i+2, . . . , u−1, u0, u1)
)
⊆ X, . . .

(2.37)

Let KPC+ be feasible and (X?, U?) be any of its feasible solutions. Then, U? =
(u?0, . . . , u?N−1) drives the true system (2.32) from x0 to the safe set Xsafe while
satisfying the constraints at all times, i.e., f(x0, u

?
0), f(f(x0, u

?
0), u?1), . . . ∈ X, and

f(. . . f(f(x0, u
?
0), u?1), . . . , u?N−1) ∈ Xsafe.

Remark 11. If only M < N − 1 previous KPC iterations were feasible, (2.37)
can be adapted to have less set intersections and still achieve some relaxation.
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Learning with kernels

Let the KPC problem (2.36) be feasible and (X?, U?) be any of its feasible
solutions. The sequence of inputs U? = (u?0, . . . , u?N−1) drives the true system
(2.32) from x0 to the safe set Xsafe while satisfying the constraints at all times, i.e.,
f(x0, u

?
0), f(f(x0, u

?
0), u?1), . . . ∈ X, and f(. . . f(f(x0, u

?
0), u?1), . . . , u?N−1) ∈ Xsafe.

This is evident from the robust confidence sets definition in (2.35). What the
SRS property given in Proposition 14 ensures is that this latter guarantee remains
unchanged even after imposing less strict set constraints.

In order to numerically solve the KPC problem (2.36), the set inclusions have to
assume a more concrete form. Suppose that the confidence sets are described by

Xt(x0, uo, . . . , ut−1) = {x ||x−Ft(x0, uo, . . . , ut−1)| ≤ Bt(x0, uo, . . . , ut−1)} (2.38)

where the absolute value | · | and the inequality are to be understood element-
wise. Put differently, (2.38) defines Xt as a hyperrectangle whose center is the
nominal prediction Ft, just as depicted in Figure 2.7. Such robust confidence sets
can be obtained through the use of Proposition 13. In this case, a coordinate
transformation can be employed along with the closed-form solution of the obtained
hyper-cube support function to reformulate the constraint. More concretely,
consider the condition Xt ⊆ X, where the arguments of Xt are omitted to ease
notation. This constraint is satisfied if for each one of the half-spaces gi(x) =
Hix− hi ≤ 0 that describe the polyhedron X it holds that

∀x ∈ Xt : gi(x) ≤ 0 (2.39a)

⇔ max{gi(x) |x ∈ Xt} ≤ 0 (2.39b)

⇔ max{H>i x− hi | |x− Ft| ≤ Bt} ≤ 0 (2.39c)

⇔ max{H>i (Bt x+ Ft)− hi | ‖x‖∞ ≤ 1} ≤ 0 (2.39d)

⇔ ‖H>i Bt‖1 +H>i Ft − hi ≤ 0 (2.39e)

where the arguments of Xt, Ft and Bt were omitted to ease notation, and Bt :=
diag (Bt) ∈ Rnx×nx . In contrast with the abstract set inclusions found in (2.37),
(2.39e) is implementable5. It should be underlined that (2.39e) is still a non-convex
inequality constraint as Bt and Ft are kernelized functions of the decision variables.

Remark 12. The reformulation (2.39) is needed to tackle general polytopic
feasible sets X that are not necessarily aligned with our uncertainty estimates. If,
however, X is simply a hyper-box aligned with each axis and, thus, also with Xt,
verifying the inclusion becomes trivial.

5The one-norm can be eliminated from (2.39e) by introducing new auxiliary variables and
inequality constraints, a standard linear programming procedure.
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2.6 Numerical examples

2.6 Numerical examples

A number of numerical examples are presented next to put to test the previously
proposed strategies in different settings. This will also allow us to better understand
what they entail and what practical aspects one should mind to avoid pitfalls.

Example 1: We start with the uncertainty quantification problem of the following
map

f?(z1, z2) = 1− 0.8z2
1 + z2 + 8 sin(0.8z2) (2.40)

restricted to the domain X = {x ∈ R2 | ‖x‖∞ ≤ 10}, x = [z1 z2]. A squared-
exponential kernel k(x, x′) = exp

(
−‖x−x

′‖2

2`2
)
was chosen for our experiments with

lengthscale l = 5, which was empirically estimated by gridding the search-space
and performing a posterior validation.

Strictly speaking, the UQ techniques developed in this chapter require f? ∈ H
as per Assumption 2. As opposed to the examples depicted in Figures 2.3–2.6
whose ground-truths were finite sums of partially evaluated kernels, (2.40) is a
polynomial-trigonometric map and it is not clear if it belongs or not to the SE
RKHS. One should nevertheless bear in mind that such an RKHS is dense in
the space of continuous functions as stated in Proposition 4 and even if f? 6∈ H,
there exists a f∗ ∈ H that is point-wise arbitrarily close to f?. As a result, it is
customary in practice to overlook Assumption 2 if we are sure that the function
being considered is continuous and the kernel, universal.

The norm estimate Γ was obtained through the sampling procedure described
in Appendix 2.8.2 with a final value of Γ = 1200. Next, d = 100 samples were
collected in two different ways: points lying on an equidistant grid, and being
drawn randomly from a uniform distribution. Noise was added to both data-sets,
sampled uniformly from the interval −δ̄ ≤ δ ≤ δ̄ with δ̄ = 1 and later with δ̄ = 5.

Figure 2.8 displays the ground-truth f? along with the optimal upper bound C(x)
computed by solving (2.20) for all four scenarios. Consider first the cases where
δ̄ = 1. Whereas the C(x) surface was overall tight for the grid-based dataset, with
an average distance of 3.01 to the ground-truth, randomized data yielded a less
regular bound with an average distance of 8.02. These numbers were increased
respectively to 9.57 and 18.97 when the noise level was risen to δ̄ = 5. The plots
illustrate the disadvantages of relying on completely randomized input locations,
which degrade especially the borders of C(x). An equidistant grid of points is
highly favorable since it not only fills the domain well, but also ensures a minimum
separation distance so that no two inputs are too close to each other, thus also
avoiding numerical problems when handling the kernel matrix KXX .
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Figure 2.8: The ground-truth (black) and the optimal upper bound C(x) (red)
with 100 data-points and different sampling methods and noise levels.
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Figure 2.9: The ground-truth (solid black) sliced at z1 = −3, the optimal bounds
(red) and the sub-optimal bounds (dashed black).

The f?(z1, z2) map was then sliced at z1 = −3. The entire envelope B(x) ≤
x ≤ C(x) was computed and compared to the sub-optimal bounds given in
Proposition 13 for a kernel ridge regression model with λ = 10−2. The obtained
results for δ̄ = 1 are shown in Figure 2.9. As can be seen from the plots, the
optimal approach yielded tighter uncertainty intervals that were always within
the sub-optimal ones. Moreover, whereas the average width of the red envelope
was 8.93 and 18.96 respectively in the grid and random cases, the dashed black
envelope displayed average widths of 21.13 and 34.62.

It is desirable to have tight bounds δ̄ and Γ in order to reduce conservativeness.
This is however not possible in most practical applications where one has to
estimate those quantities from data alone. To investigate the sensitivity of the
resulting bounds with respect to those parameters, δ̄ and Γ were varied to build
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Learning with kernels

a total of 18 test scenarios, divided into two noise cases as shown in Tables 2.1
and 2.2. The figures are consistent in showing that the average width was not
significantly affected by an increase in Γ. Analyzing the numbers from Table 2.1,
the width of the optimal envelope increased on average by 34% when augmenting Γ
from 1200 to 2400, and the width of the sub-optimal envelope increased on average
by 5.2%. Repeating the analysis on Table 2.2, the optimal envelope showed an
average width increase of 24%, whereas the sub-optimal one, of 1.38%. Despite
the larger relative increase of the optimal bounds width, their absolute values were
on average 3.45 times smaller than the sub-optimal ones in Table 2.1 and 5.79
times smaller in Table 2.2, which exposes the degree of conservativeness of the
latter approach.

Example 2: The next numerical experiment involves having the map (2.40) as a
constraint in a static optimization problem6. Consider the following formulation

min
z∈R2

(z1 − 1)2 + (z2 − 5)2 (2.41a)

subj. to f?(z) ≤ −10, (2.41b)

where the function f?(z) given by (2.40) is not explicitly known, but can be
measured, evaluated. Samples were used to establish an upper bound C(z) for
f?(z), hence providing an inner-approximation for the true feasible set of (2.41).

We considered the cases of having 64, 81 and 100 evaluations of f?(z) affected
by noise with δ̄ = 1 and, once more, the data were collected by means of a
uniform random distribution and an equidistant grid. The same kernel function
and RKHS norm estimate of Γ = 1200 from Example 1 were used. In the surrogate
optimization problems, (2.41b) was replaced by C(z) ≤ −10. Optimizers z? were
computed by gridding the domain, and the results along with the estimated feasible
sets (shaded areas) are shown in Figure 2.10. Notice how in some instances the
set of feasible decisions is not connected. Thanks to Proposition 9, the addition of
new data-points can only relax the approximate formulation, hence reducing the
found minimum. Indeed, the obtained solutions for the approximate problems were
13.21, 11.36 and 10.96, respectively with 64, 81 and 100 samples taken randomly.
When employing a grid, the figures were 10.67, 8.48 and 7.67. The solution of the
real problem, i.e., the one with the ground-truth constraint, is 5.69.

Example 3: In this example, UQ will be used to verify the safety of a sequence
of control actions driving a dynamical system. As opposed to the grid-based and
randomized sampling methods used in the previous examples, the dynamics will

6Maximizing/minimizing a given objective under unknown constraints is typical in the field of
real-time optimization, see e.g. (Chachuat et al., 2009).
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Figure 2.10: Solutions and feasible sets (shaded areas) of the surrogate optimization
problems, i.e., (2.41) with the constraint replaced by its optimal upper bound
C(x) ≤ −10. The individual solutions are denoted by the yellow, orange and red
triangles and stars. The true optimum is indicated by a black star.

be taken into account and data will be gathered directly from trajectories.

Consider a continuous stirred-tank reactor (CSTR) described by the continuous-
time differential equations

ċA(t) = u(t)(cA0 − cA(t))− ρ1cA(t)− ρ3c
2
A(t) (2.42a)

ċB(t) = −u(t)cB(t) + ρ1cA(t)− ρ2c
2
B(t) (2.42b)

where cA and cB denote respectively the concentrations of cyclopentadiene and
cyclopentenol, whereas u represents the feed inflow of cyclopentadiene. The
parameters are ρ1 = ρ2 = 4.1× 10−3 h−1, ρ3 = 6.3× 10−4 h−1, cA0 = 5.1 mol/l.
The system is subject to the constraints 1 ≤ cA ≤ 3, 0.5 ≤ cB ≤ 2, 3 ≤ u ≤ 25,
and is sampled at a rate of 1/30 Hz. The goal is to drive the states from a number
of initial conditions to the reference values cref

A = 2.14, cref
B = 1.09. To achieve this

objective, a finite-horizon optimal control problem (OCP) with horizon N = 8
was formulated employing a standard quadratic cost with a larger terminal weight
but no terminal set constraint. The OCP relied on a KRR nominal model learned
from data and no uncertainty quantification, i.e., relied on certainty equivalence.
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Figure 2.11: Phase portraits of the CSTR system under the same control inputs, but
with different uncertainty quantification techniques. Constraints are represented
by the dashed lines.
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Figure 2.12: State trajectories of the CSTR system under the same control
inputs, but with different uncertainty quantification techniques. Constraints are
represented by the dashed lines.

To verify if computed OCP control actions would not lead to the system violating
constraints, we employed our kernelized UQ technique. First, the problem was
broken down into several steps: the 1-step ahead analysis, the 2-step ahead
analysis, and so on. The datasets associated with each step are composed of initial
states and sequences of control actions to form xi, and the final state to form yi

(this multi-step approach is the same as the one explained in Section 2.5). The
squared-exponential kernel was used throughout the whole process and the various
lengthscales were selected through a 5-fold cross-validation process based on 400
samples (see Section 2.8.1). The same batch of data were exploited to estimate the
different RKHS norms Γ following the procedure of Section 2.8.2. The obtained
lower estimates were then augmented to account for possible unseen complexity.
Distinct datasets were gathered to compute the bounds by starting the system at
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800 initial conditions and solving OCP from those locations. We highlight that, as
there are two states and one control variable, the domain of the function mapping
the initial condition to the 8-th step ahead state has dimension 10, hence justifying
the need for a large dataset. The noise affecting the measurements was drawn
uniformly from the interval −0.05 to 0.05, and a bound of δ̄ = 0.06 was used.

The optimal bounds (2.20) and the sub-optimal ones (2.28) were employed to
define robust confidence sets for each time-step. These are guaranteed to contain
the true system evolution, the ground-truth, as illustrated by the phase portrait
and the bounding boxes in Figure 2.11. Based solely on the sub-optimal approach,
one would certify three out of four control sequences as the one confidence set in the
lower right portion of the space extends beyond the state constraints. Nevertheless,
by using the optimal bounds we can conclude that no violation would occur as all
confidence sets are completely within the feasible region. A time-domain view of
that particular trajectory is shown in Figure 2.12. It is important to underline
that both approaches are based exactly on the same information (datasets, noise
bounds and RKHS norm bounds), and only differ in the way they are computed.

Example 4: The continuous-time angular dynamics of a pendulum with a rigid
rod can be described by ẋ1 = x2, ẋ2 = (g/l) sin(x1)− (ν/(ml2))x2 + (1/(ml2))u,
where x1 is its angular position, x2 its angular velocity, and u the torque applied to
it. The parameters are: m = 0.15 the mass of the pendulum, l = 0.5 the length of
the rod, g = 9.81 the gravitational constant, and ν = 0.1 a constant for the friction
model. Let the constraints be |x1| ≤ 3, |x2| ≤ 1, and the input be limited to
|u| ≤ 1. We selected a prediction horizon of N = 4 and collectedD = 100 uniformly
random data-points for each of the eight regression tasks. The noise was drawn
randomly from a uniform distribution with bound δ̄ = 0.011, where 1 ∈ RD is a
vector of ones. Similarly to the previous example, we used a squared-exponential
kernel with increasing lengthscales and employed an augmentation factor of 300%
on the nominal predictor norms to estimate the Γ constants. The sampling and
control period was 0.2 seconds. We compared KPC against nominal kernel-MPC,
i.e., a certainty equivalence approach where the state-constraints were imposed
directly on the nominal predictions (2.36b). In the latter case, uncertainty was
not quantified and the confidence sets were not present. The cost used in both
formulations was a positive definite function of the states and control inputs, and
included a terminal penalty term.

Predictions and the system angular velocity evolution from two different initial
conditions are shown in Figure 2.13. As can be seen from the plots, imposing the
state-constraints on the nominal model predictions was not sufficient to guarantee
safety as the closed-loop system behavior violated the x2 ≥ −1 restriction. On
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Figure 2.13: Left: Nominal kernel-MPC predictions (dashed) and closed-loop
trajectory (solid). Center: KPC predictions (dashed) and closed-loop trajectory
(solid). Right: KPC full open-loop predictions, confidence intervals, and initial
points depicted as circular markers.

the other hand, since KPC quantified and incorporated the associated uncertainty
into the optimization problems, the constraints were satisfied. The error bars on
the right plot show the all predictions and uncertainty values at each step in the
form of error bars. Note that the safety constraints were active at multiple points
in time.

2.7 Conclusions and outlook

In this first part of the thesis, we introduced and developed a novel way of
quantifying the out-of-sample uncertainty of the values of an unknown function.
The framework was built around kernels, their RKHS spaces, and a bounded
measurement noise assumption from which no statistical information is known.
Optimal hard upper and lower bounds were then derived, being computable
through convex optimization. Closed-form conservative approximation schemes
were given to be used in time-constrained scenarios. Some properties of the
optimal and sub-optimal approaches were derived and their sensitivity to the
internal parameters (the RKHS norm estimate and the noise bound) were studied.
The techniques were finally employed to solve a number of problems ranging from
a direct function bounding one, to solving an optimization problem with unknown
constraints, to certifying optimal control actions.

We envision multiple future investigations and extensions of the theory presented
in this chapter. First, additional properties of the optimal bounds could be
established, in particular, although we have not had the time to prove it, we
suspect the upper and lower envelopes C(x) and B(x) to be continuous and piece-
wise smooth whenever the base kernel k is smooth. Deriving this result would likely
involve studying the solution set and the value function of the parametric program
(2.20). One necessary extension to allow for the learning of dynamical systems
from trajectories, and not resorting to multi-step ahead models, is to consider
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uncertainty in x itself. This would call of course for robust parametric programming
to be employed. Finally, on the application side, the KPC framework presented in
Section 2.5 guarantees constraint satisfaction, but can be rather challenging to
implement in practice due to the use of multiple models. Long prediction horizons
are generally desirable to favor stability, however, this requires more models to
be trained in higher dimensional spaces since longer and longer control sequences
are incorporated into the feature vector. Estimating hyperparameters and filling
the space with data then become difficult tasks in such scenarios, limiting KPC
to short prediction horizons. To eliminate some of these difficulties, a different
approach to kernel-based predictive control could be adopted, that of optimism.
Instead of being robust against all possible ground-truth dynamics, one could
pick a dynamic that is consistent with the historical data and complexity bound,
the most convenient one. As the system is operated and more information is
gathered, the set of possibilities is reduced and the adopted dynamic would be
more consistent with the true unknown dynamics. We believe that, based on
recent regret bounds for kernelized global optimization, convergence rates could
be derived for the iterative performance improvement of this scheme and bounds
could be established for the constraint violation frequency.

2.8 Appendices

2.8.1 Estimating kernel hyperparameters

Kernel functions typically feature a number of internal constants that need to be
specified by the user, the so-called hyperparameters. Although some theoretical
properties remain insensitive to the final choice of hyperparameters7, the numerical
stability and real-world performance of kernel algorithms highly depend on the
tuning of these numbers (Fasshauer, 2011).

One popular approach to optimizing kernel hyperparameters is to consider the
log marginal likelihood objective of a Gaussian process with Gaussian measure-
ment noise, and apply a gradient-based numerical algorithm to it (Williams and
Rasmussen, 2006, §5.4.1). This amounts to solving a smooth, unconstrained non-
convex optimization problem to local optimality. Two appealing features of this
approach are the continuous nature of the search and the inherent regularization
properties of the objective, known to combat overfitting.

Bayesian optimization (BayesOpt) is another widely adopted methodology to

7As an example, the squared-exponential kernel is universal (see Definition 5) regardless of
the its lengthscale value.
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fine-tune hyperparameters against a pre-specified objective function (Snoek et al.,
2012; Shahriari et al., 2015). BayesOpt operates on pairs of hyperparameters
and their associated objective function values, and constructs a model for their
unknown relationship. Next, a so-called acquisition function based on the model
is then employed to tell bad hyperparameters from promising ones (Wilson et al.,
2018). A new set of parameters is finally chosen to be experimented with and
its performance is measured. This new piece of information is incorporated
into the dataset and the process is repeated until some termination criterion is
reached. Interestingly, the most popular model class used when reconstructing the
aforementioned unknown relationship is Gaussian process, which is itself based on
kernels whose own hyperparameters have to be set by the users.

Lastly, we could also mention the different flavors of cross-validation (CV). The
procedure builds an estimate of how suitable a set of hyperparameters are by
evaluating the resulting model performance on unseen data. More specifically, it
consists in shuffling and splitting the available data into batches, say N ; making
use of N −1 batches to define the model and the last one to assess its performance;
the process is repeated N times rotating the batches and yielding N performance
measures, which could be combined through averaging for instance. By following
this algorithm, the most suitable hyperparameter value could be found from a
predefined list of possible values. An extreme version of CV is leave-one-out
cross-validation (LOOCV), whereby a d-sample dataset is divided into d batches.
Finally, note that the log marginal likelihood itself could be a valid performance
objective within CV (Williams and Rasmussen, 2006, §5.4.2).

2.8.2 Estimating RKHS norms

Members f ∈ H are either finite weighted sums of partially evaluated kernels
k(x, ·) or limits of sequences of such sums (see Section 2.2). Assume that f enjoys
a finite expansion of N terms, then

‖f‖2H = 〈f, f〉H (2.43)

=
〈

N∑
i=1

αik(xi, ·),
N∑
i=1

αik(xi, ·)
〉
H

(2.44)

= α>KXXα (2.45)

where (2.43) is the RKHS norm definition, (2.44) is the inner-product definition,
and (2.45) follows from the inner-product linearity and from the reproducing
property of kernels (see (2.9)). As a result, the norm ‖f‖H can be exactly and
easily computed as long as we have at hand the weights α that define f .
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In practice, it is hard to imagine a situation where the coefficients α would be
known for a given physical system. Suppose however that we have a dataset
at hand {(xi, fxi)}}ni=1, where fxi = f(xi). The inputs xi need to be pairwise-
distinct. Assume that k is SPD and consider the function sn(x) := ∑n

i=1 αik(xi, x),
α = K−1

XXfX , which reproduces our dataset at every input, i.e., sn(xi) = fxi .
According to the well-known optimal recovery property (Iske, 2018, §8.3), sn not
only interpolates the dataset, but also attains a minimum RKHS norm while doing
so (Proposition 5) and, moreover, ‖sn‖H ≤ ‖f‖H for any number of samples n. In
view of the quadratic form (2.45), it is evident that for any new pair (xn+1, fxn+1)
added to the dataset, ‖sn+1‖H ≥ ‖sn‖H holds. One can finally show that if
samples are acquired in such a way to fill the domain, then ‖f‖H is the least
upper bound of the ‖sn‖H sequence and, from the monotone convergence theorem,
‖sn‖H → ‖f‖H is guaranteed.

The discussion above showed that the RKHS norm ‖f‖H can indeed be estimated
from below from samples {(xi, fxi)}ni=1. This is done by simply evaluating the
norm of the MNI interpolant for which we know the weights α

‖sn‖2H = α>KXXα = f>XK
−1
XXfX (2.46)

The more samples we have, the closer the quadratic form will be from the target
value ‖f‖H. Consider the example below for observations on how the estimation
process unfolds in a practical scenario.

Let k : R × R → R be the squared-exponential with lengthscale ` = 0.5. A
member f ∈ H of its RKHS is shown in Figure 2.14 (left), being composed of 100
partially evaluated kernels whose centers and weights were randomly generated.
The exact ‖f‖H value was computed through (2.45), yielding ‖f‖H = 11.24. Next,
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Figure 2.14: Estimating the RKHS norm of a function (left) from samples. The
norm value of the MNI interpolant for an increasing number of samples (right) is
shown to gradually approach the RKHS norm of the ground-truth.
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the same quantity was estimated through data simply drawn randomly from the
domain, following a uniform distribution. The associated ‖sn‖H from n = 1 to 60
is shown in Figure 2.14 (right). At around n = 42, the lower estimate is seen to
have essentially reached the ‖f‖H level, capturing all the complexity there was
to capture. Lastly, we selected a subset of only six of the previously samples
points, those closer to some of the function peaks, and computed the associated
interpolant norm. The value of 10.02 was obtained, i.e., 89% of ‖f‖H, illustrating
that a few well-located samples can already offer us a reasonable measure of the
unknown ground-truth RKHS norm.

Up to this point, only noiseless samples were consider. Suppose now the data
come in the form {(xi, yi)}ni=1 with xi pairwise distinct and yi = f(xi) + δi. Let
the additive noise be bounded by some known value δ̄ ≥ |δi| for all i. Since we do
not have access to the evaluations of f anymore, ‖sn‖H cannot be computed. If we
naively interpolate the data with the model s̃n(x) := ∑n

i=1 αik(xi, x), α = K−1
XXy,

the resulting norm ‖s̃n‖2H = y>K−1
XXy can be either larger or smaller than its

noise-free counterpart. The mismatch between the two will depend on how each
δi will disturb the samples, and its maximum effects can be exactly computed.

Proposition 15. Let {(xi, yi)}ni=1 be such that xi are pairwise distinct and
yi = f(xi)+δi with δ̄ ≥ |δi| for all i. Let sn and s̃n be respectively the models inter-
polating the noise-free fX and the noisy y values of f , i.e., sn(x) = ∑n

i=1 αik(xi, x),
α = K−1

XXfX and s̃n(x) = ∑n
i=1 αik(xi, x), α = K−1

XXy. It then holds that

∇ ≤ ‖s̃n‖2H − ‖sn‖2H ≤ ∆ (2.47)

where ∆ and ∇ denote respectively the maximum and minimum of −δ>K−1
XXδ +

2y>K−1
XXδ over δ, subject to |δ| ≤ δ̄.

Calculating ∆ amounts to solving a convex optimization problem since it is the
maximum of a strictly concave function, whereas ∇ is not as simple.

2.8.3 On the joint estimation of δ̄ and Γ

Rather than carrying out an independent estimation of the measurement noise
bound and of the ground-truth RKHS norm, both parameters could be jointly
considered (see for example the work (Milanese and Novara, 2004, §3) in which
the authors tackle a very similar problem). In this context, data could be used
to exclude certain (δ̄,Γ) combinations, effectively falsifying whole regions of this
two-dimensional space. Selecting an unfalsified tuple (δ̄,Γ) guarantees feasibility
of the optimal bounds optimization problem. As a last provoking thought, one
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could try to further extend this idea and consider the kernel hyperparameters as
well with the hope of finding sensible values for all necessary constants by solving
a single optimization problem.

2.8.4 Auxiliary definitions

Recall that n1, n2, . . . , nd are the number of outputs available at the input locations
x1, x2, . . . , xd. Let Λ be the matrix of size (∑i ni)× d defined as

Λ :=


1n1 0n1 0n1 · · · 0n1

0n2 1n2 0n2 · · · 0n2
...

...
... . . . ...

0nd
0nd

0nd
· · · 1nd

 (2.48)

where 1ni and 0ni are respectively column vectors of ones and zeros of size ni. If
only a single output is available at every input, Λ simplifies to an identity matrix.

The column vector fX is made of function evaluations f(xi), which are repeated
whenever multiple outputs are available at the same input location xi. More
concretely, fX := Λ

[
f(x1) . . . f(xd)

]>
.

2.8.5 Proofs

In this section we provide proofs for all the propositions found throughout the
chapter that were left unproven.

Proof of Proposition 7: It follows from the objective being linear and only
sensitive to cx and from reformulating (2.21). More concretely, we use the matrix
inversion lemma and the definition of PX(x) to re-write the complexity constraint
as [

c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
≤ Γ2 (2.49a)

⇔ c>K−1
XXc+ P−2

X (x)
(
c>K−1

XXKXx − cx
)2
≤ Γ2 (2.49b)

Note that P−2
X (x) > 0 since PX(x) > 0 for any x not in X (Karvonen, 2022). As a

result, we see that (2.49b) depends quadratically on cx. Therefore, for any feasible
(c, cx) such that (2.49a) is inactive, there exists c̃x := cx + ε, ε > 0 such that (c, c̃x)
attains a higher objective while satisfying the constraints. �
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Proof of Proposition 8: Follows from C(xi) ≥ B(xi), C(xi) ≤ yi,j + δ̄ and
B(xi) ≥ yi,j − δ̄ for any i = 1, . . . , d and any j = 1, . . . , ni. �

Proof of Proposition 9: Denote by P11 the problem solved with D1 and
decision variables

[
c cx

]
. Similarly, P12 is associated with the dataset D2 and

the decision variables
[
c cx cz

]
, where cz are due to the additional input in

D2. Since D2 contains all members of D1, the ∞-norm constraint of P12 can be
recast as that of P11 and an additional constraint for cz and the new outputs.
Let X := X ∪ {x}, c̄ :=

[
c>cx

]>
and z := xd+1 be shorthand variables to ease

notation. The complexity constraint of P12 is then

[
c̄

cz

]> [
KXX KXz

KzX k(z, z)

]−1 [
c̄

cz

]
≤ Γ2 (2.50a)

(i)⇔ c̄>K−1
XXc̄+ P−2

X (z)
∥∥∥∥∥
[
K−1
XXKXz

−1

] [
c̄

cz

]∥∥∥∥∥
2

2
≤ Γ2 (2.50b)

(ii)⇔
[
c

cx

]> [
KXX KXx

KxX k(x, x)

]−1 [
c

cx

]
+ P−2

X (z)
(
c̄>K−1

XXKXz − cz
)2
≤ Γ2 (2.50c)

where the matrix identity (A.23) was used in (i) along with P 2
X(z) = k(z, z)−

KzXK
−1
XXKXz. In (ii), the definitions of c̄ and X were used. Thanks to PX(z) ≥

0,∀z (Karvonen, 2022) and the quadratic term multiplying it, we conclude that
for any choice of the decision variable cz, (2.50c) is a tightened version of the
complexity constraint of P11. As a result, the maximum of P12 is lower or equal
than that of P11. �

Proof of Proposition 10: Consider the case x 6∈ X. Let z :=
[
c> cx

]>
,

a :=
[
0> 1

]>
, A :=

[
I 0

]
. The Lagrangian of P1 is

L(z, λ, β, γ) = a>z−λ(z>K−1
XXz−Γ2)−β>(ΛAz−y−δ̄1)−γ>(y−ΛAz−δ̄1) (2.51)

where KXX denotes the kernel matrix evaluated at X ∪ {x}. Suppose λ > 0.
Computing ∇zL(z?) = 0 leads to

z? = − 1
2λKXX

(
A>Λ>(β − γ)− a

)
.

Note that β and γ cannot be simultaneously zero element-wise. Defining ν := β−γ

44



2.8 Appendices

and substituting z? into (2.51) gives the dual objective

g(λ, ν) = 1
4λν

>ΛAKXXA>Λ>ν +
(

y − 1
2λΛAKXXa

)>
ν

+ δ̄‖ν‖1 + 1
4λa

>KXXa+ λΓ2 (2.52)

= 1
4λν

>ΛKXXΛ>ν +
(

y − 1
2λΛKXx

)>
ν

+ δ̄‖ν‖1 + 1
4λk(x, x) + λΓ2 (2.53)

where in the second equality the matrix KXX was expanded and the resulting
terms were reorganized. Since β, γ ∈ Rd̃≥0 and ν = β − γ then ν is unconstrained.

Now if λ = 0, the Lagrangian (2.51) simplifies to L(z, ν) = (a−A>Λ>ν)>z+ν>y+
δ̄‖ν‖1, which is linear in z. Its supremum w.r.t. z is only finite if a = A>Λ>ν.
Recalling the definitions of a, A and Λ, one can see that @ν that could satisfy the
latter condition. Therefore, λ = 0 =⇒ supz L(z, λ, ν) = +∞, meaning that the
dual problem is infeasible. As a conclusion, the Lagrangian dual of P1 in (??) is
precisely D1 in (2.26).

Next, consider the case x ∈ X, x = xi. The objective of P1′ can be written as a>c
with ai = 1 and an = 0, n 6= i. When deriving its Lagrangian, one obtains again
(2.51) with the simplifications: z ← c, KXX ← KXX and A← I. We proceed by
analyzing the two scenarios for λ as before. If λ > 0, the previous derivations apply,
leading to the same the quadratic-over-linear objective (2.53). However, if λ = 0,
the Lagrangian becomes L(z, ν) = (a− Λ>ν)>z + ν>y + δ̄‖ν‖1, whose supremum
w.r.t. z is only finite if a = Λ>ν. In contrast with the previous paragraph, this
condition now can be satisfied. It is equivalent to νi,1 + · · · + νi,ni = 1, where
the variables are all the multipliers associated with the i-th input location xi.
The resulting expression can be minimized analytically, yielding the minimum
minj yi,j+ δ̄, i.e., the smallest output available at xi augmented by the noise bound.
Finally, we conclude that the dual objective for P1′ is

g(λ, ν) =

(2.53), if λ > 0
minj yi,j + δ̄, if λ = 0

(2.54)

As a last observation, a dual problem can also be derived for (??), calculating the
lower part of the envelope. The formulation is analogous to (2.26), assuming the
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form

max
ν∈Rd̃,λ>0

− 1
4λν

>ΛKXXΛ>ν −
(

y + 1
2λΛKXx

)>
ν − δ̄‖ν‖1 −

1
4λk(x, x)− λΓ2

(2.55)
Note that these are distinct objectives, not merely opposites. Therefore, two
problems have to be solved to fully quantify the ground-truth uncertainty. �

Proof of Proposition 11: Consider the primal problem P1 and select c = f?X
and cx = f?(x). Let X := X ∪ {x} and KXX denote the kernel matrix associated
with X. Thanks to the optimal recovery property (Wendland, 2004, Theorem 13.2),[
c> cx

]
KXX

[
c> cx

]>
≤ ‖f?‖2H, which in turn is strictly smaller than Γ2 by

assumption. Also, ‖Λc− y‖∞ = ‖Λf?X − y‖∞ =
∥∥∥∥[δ1,1 . . . δ2,1 . . .

]>∥∥∥∥
∞
< δ̄.

Therefore, the ground-truth values constitute a feasible solution that lies in the
interior of the primal problem feasible set. As a result, Slater’s condition is met
and, since the primal is convex, there is no duality gap. �

Proof of Proposition 12: First note that

‖f − s‖2H = 〈f − s, f − s〉H (2.56)
= 〈f, f〉H − 2〈f, s〉H + 〈s, s〉H (2.57)
= ‖f‖2H − 2〈f, s〉H + ‖s‖2H (2.58)
= ‖f‖2H − 2 ‖s‖2H + ‖s‖2H (2.59)
≤ Γ2 − ‖s‖2H (2.60)

where (2.59) was established thanks to

〈f, s〉H =
〈
f,

d∑
i=1

αik(·, xi)
〉
H

(2.61)

=
d∑
i=1

αif(xi) (2.62)

=
d∑
i=1

αis(xi) (2.63)

=
d∑
i=1

αi

 d∑
j=1

αjk(xj , xi)

 (2.64)

= ‖s‖2H (2.65)

and recalling that s(xi) = f(xi) i = 1, . . . d given the noise-free setting. Combining
(2.60) with the inequality |s(x)− f(x)| ≤ PX(x) ‖f − s‖H (Wendland, 2004, §11.5)
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completes the proof. �

Proof of Proposition 13: For any given s(x) = α>KXx, we have

|f?(x)− s(x)| = |f?(x)− s̃(x) + s̃(x)− s(x)|
≤ |f?(x)− (f?X + δX)K−1

XXKXx|+ |s̃(x)− s(x)| (2.66)

≤ |f?(x)− s̄(x)|+ δ̄
∥∥∥K−1

XXKXx

∥∥∥
1

+ |s̃(x)− s(x)| (2.67)

≤P (x)
√

Γ2 − ‖s̄‖2H + δ̄
∥∥∥K−1

XXKXx

∥∥∥
1

+ |s̃(x)− s(x)| (2.68)

≤P (x)
√

Γ2 + ∆− ‖s̃‖2H + δ̄
∥∥∥K−1

XXKXx

∥∥∥
1

+ |s̃(x)− s(x)| (2.69)

with f?X being the vector of true function values at the sample locations in X and
δX the vector of additive measurement noise for the samples y. (2.66) follows from
the triangle inequality and the additive noise property of y. Using the triangle
inequality again, we arrive at (2.67), where s̄ denotes the noise-free interpolant of
f?X . The noise-free interpolation error bound gives the estimation in the first term
of (2.68), while (2.69) follows from (Maddalena et al., 2021a, Lemma 1), with
∆ = max‖δ‖∞≤δ̄(−δ

>K−1
XXδ + 2y>K−1

XXδ). A standard Lagrangian dualization
procedure leads to the dual formulation

min
ν∈Rd

1
4ν
>KXXν + ν>y + δ̄ ‖ν‖1 + y>K−1

XXy (2.70)

for ∆. Notice that the last term in (2.70) is constant and the same as the squared
interpolant norm ‖s̃‖2H. Therefore, these terms cancel in (2.69) and we are left
with

|f?(x)− s(x)| ≤ P (x)
√

Γ2 + ∆̃ + δ̄
∥∥∥K−1

XXKXx

∥∥∥
1

+ |s̃(x)− s(x)| (2.71)

where ∆̃ represents (2.70) without the constant term. �

Proof of Proposition 14: From construction, we know that Xt(x0, u
?
0, . . . , u

?
t−1) 3

f(. . . f(f(x0, u
?
0), . . . ), u?t−1) for any t. If the previous KPC iteration was feasible,

then Xt+1(x−1, u−1, u
?
0, . . . , u

?
t−1) also contains the same point, where x−1 and u−1

are past closed-loop data. Considering a total of N−1 previous consecutive feasible
KPC iterations yields a total of N set conditions for f(x0, u

?
0), N−1 set conditions

for f(x0, u
?
0, u

?
1), . . . , and 1 set condition for f(. . . f(f(x0, u

?
0), u?1), . . . , u?N−1). At

any time t = 1, . . . , N , the true system state is therefore contained in the intersec-
tion of the associated sets and, hence, enforcing the relaxed constraints suffices to
enforce constraint satisfaction. �

Proof of Proposition 15: It follows from expanding ‖sn‖2H and ‖s̃n‖2H. �
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3 Building temperature control
through Gaussian process and
model predictive control
3.1 Introduction

Buildings are responsible for a large share of the global CO2 emissions, more
concretely, for around 37% of them when taking into account the estimated
emissions associated with producing their materials (United Nations Environment
Programme, 2022, §3.2). Having in place energy-efficient heating and cooling
systems is often highlighted as a key requirement for significantly lowering their
environmental impact and marching towards a greener future (IEA, 2022). This
in turn could either be achieved by structurally changing the built environment,
for instance, improving thermal isolation between indoor spaces and the outdoor
space, or by making a more intelligent use of the energy at hand, guaranteeing the
occupants’ comfort while minimizing metrics such as thermal wasting. Control
engineers are specialists in carrying out the latter task.

Besides its clear economical and political pertinence, the topic of raising the
efficiency of buildings has also had a significant academic relevance, particularly
for the automatic control community. One idea that is often explored is that well
tuned, specialized control algorithms could deliver better performance compared
to simplistic strategies commonly deployed in the field (Stluka et al., 2018).
These specialized algorithms often rely on solving optimization problems on-
line, and can exploit forecasts of important quantities such as the weather and
the building occupancy schedule (Oldewurtel et al., 2012). Arguably the most
common framework used by researchers to tackle building climate control is model
predictive control thanks to its flexibility and interpretability. The reader is
referred to Drgoňa et al. (2020) for quite a comprehensive survey on the matter.
In Sturzenegger et al. (2015) for instance, the authors report in detail the results
of using MPC to operate an occupied 6-story Swiss office building over multiple
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months. Moreover, the study concluded that the energy savings were not sufficient
to justify the engineering effort required to deploy MPC in everyday building
projects. In fact, the modeling stage is frequently pointed out by many studies as
being the most burdensome one, preventing the wider adoption of this technique
in the field (Drgoňa et al., 2020; Bünning et al., 2020).

Eliciting knowledge from domain experts or using architectural data to develop
linear thermal models for buildings was proven to be an effective approach in many
distinct scenarios (see e.g. the experimental works Váňa et al. (2014); Bünning et al.
(2022)). As an alternative, it is also possible to employ black-box linear structures,
which require less access to building-specific information (Fabietti et al., 2016,
2018). A more recent trend is that of experimenting with contemporary machine
learning models and methods, whose promise is to further ease the modeling step
while being flexible enough to capture intricate non-linear relationships present
in the data and deliver superior performance. Some variants of reinforcement
learning (RL) for instance are model-free and can optimize their actions over time
by only interacting with the environment (Du et al., 2021). Nevertheless, since
RL typically converges slowly and long-lasting experiments with low performance
on occupied real buildings are not desirable, model-free RL designers make use of
simulation environments to warm-start their RL agents, thus not escaping the need
of high-fidelity models (Di Natale et al., 2022a). Going from historical data directly
to on-line decision making is possible through data-enabled predictive control
(DeePC) (Coulson et al., 2019), which bypasses the modeling step completely and
directly incorporates sensor information into a special MPC formulation. This
paradigm was used in Lian et al. (2021) to regulate the indoor temperature of
a university lecture hall over several weeks. DeePC was however developed to
handle linear relationships and more flexible tools are necessary to model more
complex dynamics, e.g. the formalism of Gaussian processes (GPs).

Gaussian processes are a well-established, principled way of crafting possibly
non-linear statistical models. In contrast with the techniques listed in the previous
paragraph, GPs yield not only nominal predictions, but also a measure of confidence
around them that can be taken into account during decision making. Practical
applications of this tool can be easily found in the area of robotics, computer
simulation, global optimization, among others. In the building community, they
have been used to calibrate digital twins (Chakrabarty et al., 2021), forecast
temperature evolution (Gray and Schmidt, 2016), detect faults in air-handling
units (Van Every et al., 2017), and create abstract models for how consumers react
to demand-adjustment signals (Nghiem and Jones, 2017). All of the previously
cited works consisted of off-line analyses on real data or purely of simulations
and, to the best of our knowledge, the use of Gaussian processes to carry out

50



3.2 A brief overview of Gaussian process

closed-loop control of a building has not yet been reported in the literature. The
experimental investigation presented in this chapter aims at filling that gap.

We start by reviewing the basic theory that is necessary to understand how
GPs were applied in this particular project. Next, the building under study, a
hospital surgery center, is presented along with its industrial cooling system and
the sensor networks deployed on-site. Data collection and model training are
covered, followed by our MPC formulation where the GP dynamical models were
incorporated. Finally, the obtained experimental results are discussed, and the
chosen approach is compared with a number of alternative techniques in two
criteria, average thermal comfort and incurred electrical energy consumption.

3.2 A brief overview of Gaussian process

Gaussian processes lie in the class of non-parametric Bayesian models. Whereas
one can easily and intuitively explain GPs in a regression setting by making use
of a few normal distribution properties, they also constitute a large and still
active research field on their own. One classical GP reference is the acclaimed
book Williams and Rasmussen (2006), which covers most of the basic concepts.
Complementary views on the subject are offered by the texts Gramacy (2020)
and Kanagawa et al. (2018). Two prominent lines of research that have remained
active during the last decades are scaling Gaussian processes to large datasets
(Ferrari-Trecate et al., 1998; Quinonero-Candela and Rasmussen, 2005; Yang et al.,
2012; Bauer et al., 2016; Bui et al., 2017b; Lederer et al., 2021), and incorporating
online data into the models without the need to retrain them from scratch (Csató
and Opper, 2002; Bui et al., 2017a; Maddox et al., 2021). The control community,
among others, has also been making use of Gaussian processes for some years (see
Liu et al. (2018) for an informative tutorial). Early investigations include Kocijan
et al. (2003); Hansen et al. (2005) and among more recent ones one has Diwale
et al. (2014); Hewing et al. (2019); Lederer et al. (2022); Khosravi et al. (2022).
In the cited applied works, GPs are preferred over alternative modeling strategies
mainly thanks to their uncertainty quantification feature.

Our goal here is not to thoroughly discuss the topic of Gaussian processes, but
simply to touch on the basics and understand how they were used to tackle this
particular building temperature control problem.

Assume one wants to model a given scalar phenomenon f(x), which is known to
depend on a set of variables x, and is given observations of the form {(xi, yi)}di=1
with yi = f(xi)+ε, for some random ε. For convenience, denote by X the collection

51



Building temperature control through Gaussian process and model
predictive control

of all inputs xi, by y the collection of all outputs yi and by f the (unobserved)
collection of all noise-free function evaluations at the inputs f(xi).

The Gaussian process approach to crafting models consists in placing a multivariate
normal prior distribution over f , that is

p(f |X) = N (mX,KXX) (3.1)

where mX is a vector and KXX is a positive definite matrix, both of appropriate
dimensions. The vector mX has m(xi) at its ith component, for some mean
function m, and the matrix KXX has k(xi,xj) at its ith row and jth column, for
some positive definite kernel function k.

Next, an assumption is made on the nature of ε, the most common one being
ε ∼ N (0, σ2). This zero-mean, fixed variance assumption on the noise distribution
guarantees that the subsequent steps all have closed-form solutions thanks to Gaus-
sian distributions being closed under the operations that need to be performed1.
Thanks to the measurement model yi = f(xi) + ε, we then have the distribution
p(y|f ,X) = N (f , σ2I), known as the likelihood2.

By using Bayes theorem, it is possible to show that the posterior distribution of a
new value f∗ located at a new input x∗ is (Williams and Rasmussen, 2006, §2.2)

p(f∗|x∗,y,X) = N (m(x∗) +Kx∗X(KXX + σ2I)−1(y −mX),
k(x∗, x∗) +Kx∗X(KXX + σ2I)−1KXx∗)

(3.2)

where KXx∗ is a column vector with k(xi, x∗) at its ith position and Kx∗X denotes
its transpose. Finally, (3.2) can be used to make predictions with the model.

Most models, including the Gaussian process class, feature internal parameters
that need to be adjusted, fit, to the data at hand. This is crucial to achieving
good performance. In (3.1) and (3.2), the constants to be calibrated are the ones
internal to the mean function m(x), the kernel function k(x, x) and the noise
strength σ2. Denote the ensemble of all those constants by Θ. One widely adopted
approach to solving this calibration problem is maximizing the model marginal
likelihood, that is, the quantity p(y|X). Intuitively, this can be thought of as
finding the model that would lead to the available dataset having come from it
with the highest likelihood. As it turns out, it is more convenient not to directly
optimize p(y|X), but its logarithm instead, so we define L := log p(y|X), which

1The noise is said to be heteroscedastic if its variance depends on another random variable
under study, e.g., if it varies across the x space. GPs under heteroscedastic noise are, in general,
not analytically tractable (see for example Goldberg et al. (1997); Binois et al. (2018)).

2Not to be confused with the marginal likelihood, which is often used as a training objective.
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can be shown to be (Williams and Rasmussen, 2006, §2.3)

L = −1
2(y−mX)>(KXX + σ2I)−1(y−mX)− 1

2 log det(KXX + σ2I)− d

2 log(2π)
(3.3)

and solve the problem Θ? := arg maxΘ L(Θ) to find the most suitable set of
parameters for our GP model. Notice how this amounts to solving a non-convex
but typically smooth optimization problem to local optimality. This procedure is
widely known as maximum likelihood estimation (MLE).

In the applied sciences, users may abstract most of the above concepts and think of
GPs in a more pragmatic way. They can define the (posterior) mean and variance
functions respectively as

µ(x) := m(x) +KxX(KXX + σ2I)−1(y −mX) (3.4)
var(x) := k(x, x) +KxX(KXX + σ2I)−1KXx (3.5)

and simply make use of the first expression to make predictions, indeed the
most likely ones, and the second as uncertainty level around the nominal point
predictions. It should be underlined that there is a significant cost associated with
(3.4) and (3.5), which mainly stems from the inverse of a d× d matrix. A second
point that cannot be overlooked is the numerical stability of this operation: if
two inputs xi and xj are too close to each other problems might arise despite the
presence of the diagonal term σ2I. Both these issues have to be taken into account
in practical scenarios to guarantee the feasibility of this model class.

An example of univariate Gaussian process regression is shown in Figure 3.1. The
ground truth is a shifted Gramacy and Lee function f(x) = sin(10πx)

2x + (x− 1)4 + 1
from which 60 points were sampled with σ ∼ N (0, 0.152). The rational quadratic
kernel was chosen to parametrize the GP covariance and the hyperparameters were
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Figure 3.1: A Gaussian process regression example. The ground-truth (left),
Gaussian process mean and the 3σ confidence interval for a model with log
marginal likelihood L = −29.8 (middle) and L = −48.5 (right).
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tuned through MLE. The GPflow package (Matthews et al., 2017) was used in the
numerical experiment and the objective was optimized through a BFGS method.
In the figure, two distinct GP models are depicted, which were attained by means
of MLE and BFGS under the same numerical tolerance and maximum number of
iterations, but with different hyperparameter initial guesses. This illustrates how
arriving at a favorable GPmodel through MLE requires escaping local maxima.

Up to this point, only “static” functions have been addressed and the GP modelling
dynamical systems was not touched on. If the system under study is described by
the familiar equations xt+1 = f(xt, ut) + ε, yt = g(xt) + ν and the unknown f is to
be modelled from output data yt only, then the problem is difficult. More precisely,
even if g is assumed linear and known, finding a closed-form posterior expression
for f is in general intractable and approximation schemes have to be used (e.g.
variational inference or Markov-Chain Monte Carlo methods) (Turner et al., 2010).
Tuning the hyperparameters in this so-called Gaussian process state-space model
(GPSSM) setting is another non straightforward step (Eleftheriadis et al., 2017).
The control community has been working on making GPSSM computationally more
efficient (Berntorp, 2021) and even on understanding the properties of the learned
dynamics (Beckers and Hirche, 2016), however an alternative approach exists that
circumvents some of the aforementioned difficulties under an additional assumption.
The method lies in modelling the unknown dynamics in an auto-regressive form
and utilizing feature selection techniques and expert knowledge to decide on which
signals and how many past samples to include, i.e., deciding what the regression
vector should be. In such case, building a GP model for xt+1 = f(xt, ut) + ε

reduces to learning a static map again as one would be assuming that full state
measurement is possible. This was the direction taken in this investigation.

3.3 The building and its HVAC system

The building considered in this study was a surgery center situated in the São
Julião hospital complex, in the city of Campo Grande, MS, Brazil (Figure 3.2, top).
The 51 rooms that compose it are in permanent use and, for information purposes,
528 surgical procedures were carried out in it during August 2021. We were
concerned with three thermal zones in its ophthalmology section: two operating
rooms (ORs) and one waiting room (WR), all located on the West end of the
building (Figure 3.2, bottom). Whereas the former rooms are only connected to
the waiting room, the latter has a door to the rest of the surgery center. Opaque
glass bricks are present in the waiting room as can be seen in the picture, allowing
some natural light to enter the space; the operating rooms on the other hand do
not feature them, nor do they have any windows. All spaces have exterior walls,
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Figure 3.2: The facade of the Hospital São Julião surgery center, situated in
Campo Grande, MS, Brazil (top). The three thermal zones considered in this
study (bottom): The waiting room and the doors that lead to the two operating
rooms, all in the ophthalmology section of the building, located on its West end.

but the right-hand side operating room is significantly more affected by direct
solar radiation due to the disposition of the nearby trees.

A forced-air cooling plant is in place to provide the occupants with a suitable
indoor climate in accordance with local regulations. A total of seven air-handling
units (AHUs) collect outdoor air that is then treated and filtered before being
pumped into the several indoor spaces. We had control only over three AHUs, one
for each aforementioned thermal zone. A central chiller connected to an external
cooling tower provides chilled water to all AHUs, which in turn feature three-way
valves to control the flow of water through their cooling coils. The AHU fans are
operated always at constant speed, resulting in a constant volumetric flow through
the air-ducts and into the zones. As per the regulations, no air recycling is possible
and all return air is directly discharged into the atmosphere. As the temperature
in Campo Grande is typically high, the heating, ventilation and air-conditioning
(HVAC) system was conceived to only cool the space, not having the means to
provide positive thermal energy (for more details, see Section 3.3.1).

Two distinct sensor networks were deployed to monitor the HVAC plant and the
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Figure 3.3: Photos of the AHU room where one can identify the air ducts (top),
the supply and return water pipes (top and bottom), and one of the three-way
valve servomotors that control the flow of chilled water (bottom).

indoor spaces. Firstly, we will describe the one located in the AHU room. One
local controller (LCO)–a National Instruments myRIO–was attached to each air-
handling unit to read all sensors and monitor the AHUs: supply and return water
temperature probes, a water flow meter, an anemometer, as well as an angular
position sensor. The LCOs were moreover responsible for running low-level signal
processing routines and implementing control actions, i.e., acting on the three-way
valve servomotor to change the chilled water flow, hence influencing the supply air
temperature. Photos of the AHU room are shown in Figure 3.3. Next, in order to
measure the indoor temperatures in a flexible way, a wireless network of Z-wave
sensors was set up in the operating rooms and waiting room. These were equipped
with external temperature probes (Dallas DS18B20) to guarantee fast and precise
readings, reporting their measurements periodically to a local computer (LC) that
featured a Z-wave transceiver attached to it.
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Figure 3.4: The overall system architecture, including the three AHUs and their
local controllers (LCOs). Information is exchanged between the LCOs and the
local computer (LC) through a local area network (LAN).

The LC was a 3 GHz, 16 GB RAM, core i7 machine installed in the waiting room
and acting as the main computer platform for the project. This computer and
the AHU LCOs were all connected to a local area network (LAN) to exchange
information, which was done by using the UDP protocol at a rate of 1 Hz. We
highlight that this same LAN was used to send control signals from the LC to
the LCOs in order to modulate the AHU valves. Lastly, a weather station was
deployed on site to measure the outdoor temperature and the solar radiation acting
on the building with high accuracy. All signals were sampled with a period of two
minutes and stored into a local time-series database, InfluxDB. A block-diagram
of the complete system is depicted in Figure 3.4.

3.3.1 Analysis of the control problem

The control goal was to regulate the indoor temperature within the three zones
(Ti, i = 1, 2, 3), keeping it below a pre-specified value Tmax at all times. Although
defining two-level temperature envelopes that have relaxed constraints at night is
common for residences and offices, some employees still made use of the surgery
center spaces during nighttime and, thus, the indoor temperature has to stay
below Tmax even then. Furthermore, this was to be done while minimizing the
chiller energy consumption, which is a function of its coefficient of performance
(COP) curve and the building thermal load.

The controlled variables are the angular positions of each AHU three-way valve (θi,
i = 1, 2, 3) that regulate the flow of water across their cooling coils. Naturally, these
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quantities are physically limited between a minimum θmin and a maximum value
θmax. Several disturbances both of internal and external nature act on the system.
The measured ones include the outdoor temperature Tout, the solar radiation Rsol,
and the temperature of the water supplied by the chiller to the AHUs, Tsup. The
variables Tout and Rsol directly affect the indoor climate by heating the external
walls. Also, both Tout and Tsup can be regarded as input disturbances; indeed,
these quantities define the HVAC system actuation capabilities along with the valve
positions θi. The unmeasured disturbances are the internal heat gains generated
by occupants and equipment, as well as the eventual opening and closing of doors
that lead to air mix among rooms. A summary of the relevant control information
described here can be found in Table 3.1.

In order to operate optimally the industrial cooling system while minimizing
the operational costs, we opted for designing and recursively solving a model-
based finite-horizon optimal control problem. To craft dynamical models for the
temperature evolution in the rooms and the AHU effects on them, we made use of
the Gaussian process framework described in Section 3.2.

3.3.2 Data collection, model training and testing

Aiming at capturing different weather conditions and a reasonable number of
chiller states, a representative dataset was gathered from August to November
2021. The batch consisted of 22’455 points sampled at Tsamp = 2 mins and
comprised closed-loop operation with PI and rule-based controllers (RBCs), as well
as a variety of open-loop excitation signals such as ramps and uniformly random
inputs. The latter signals were mainly tested during weekends and Holidays to
avoid disturbing occupants. After examining the obtained curves, we concluded
that a control period of 10 mins would be a good compromise between operating
the cooling system effectively and not oversampling the temperatures – given that
our model complexity grows with the size of the dataset, the latter aspect was
rather important. The dataset was then downsampled by a factor of 5 times,
resulting in 4’491 points, which corresponds to 748 hours.

A meticulous post-processing step was necessary next to ensure that unreliable
periods were discarded. We highlight that this was not simply a matter of finding
spurious outliers, but of identifying complete periods of time when the plant
was not operating normally due to, for instance, a chiller fault, an unannounced
maintenance in an AHU or even the manual closing of some air dampers by a
technician. This process was carried out by jointly studying the obtained curves
with the help of the local maintenance team. Finally, missing entries in the
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Table 3.1: The main physical quantities influencing the HVAC plant and the
temperature dynamics inside the rooms.

Symbols Description

Inputs θ1, θ2, θ3
Valve position of AHU 1,

AHU 2 and AHU 3

Outputs T1, T2, T3
Temperatures within zone 1,

zone 2 and zone 3

Measured disturbance Tsup, Tout, Rsol
Chiller supply water temperature,

outdoor temperature, solar radiation

Unmeasured disturbance − Internal heat gains (e.g. occupants),
opening and closing of doors

Table 3.2: Delays for each feature of the Gaussian process auto-regressive models.
The symbol “−” indicates what signals were neglected.

T1 T2 T3 θ1 θ2 θ3 Tsup Tout

GP1 (OR 1) 2 1 − 1 − − 1 1
GP2 (WR) 1 2 1 − 1 − 1 1
GP3 (OR 2) − 1 2 − − 1 1 1

time-series were imputed using a simple linear interpolation scheme. Thanks to
the reliability of the sensor networks shown in Section 3.3, only a small percentage
of entries was not present. With the right set of data at hand, we proceeded to
define and train one GP model for each room.

The process of designing GP models can be summarized in three steps: select
suitable mean and covariance functions, define the feature vectors, and optimize
the models hyperparameters. Among the many kernel maps available in the
literature, we chose the anisotropic squared-exponential function, a very popular
alternative due to its smoothness and expressive power. This kernel has the form

kSE(x, x′) = σ2 exp
(
−1

2

d∑
i=1

(
xi − x′i
`i

)2)
(3.6)

where xi is the ith component of the feature vector x. In (3.6), σ is the so called
vertical scale hyperparameter and `i are the horizontal scale (a.k.a. lengthscale)
hyperparameters. However, relying solely on (3.6) can be dangerous as the re-
sulting GP model would not extrapolate well. For this reason, a linear mean
function m(x) = Ax + b was also employed, causing the Gaussian process to
behave linearly when far away from the training data. As for optimizing the
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hyperparameters we made use of the log-marginal likelihood objective and the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) first-order algorithm. The develop-
ment was carried out in Python with the aid of the GPflow2 (Matthews et al.,
2017) and the SciPy (Virtanen et al., 2020) packages.

To model the temperature dynamics in the rooms, an auto-regressive structure
was preferred over a state-space one (see discussion in Section 3.2). In other
words, future predictions of a signal depend on the current and past values of
itself as well as on current and past values of other relevant quantities. Since
there were three temperatures to predict, three distinct GPs were trained and,
to avoid augmenting the Gaussian process with unnecessary features, we made
use of domain knowledge. Rooms that are not neighbors do not directly influence
each other’s temperatures; similarly, changing the valve position of AHU 1 has
no effect on any temperature besides T1. Initially, all exogenous signals Tsup, Tout

and Rsol had been included into all models to boost their prediction capabilities.
Nevertheless, we later realized that Rsol was a significant covariate only for T3.
Field tests also unveiled a high correlation between the MPC computation times
over the day and the solar radiation curve. Since having consistent rather than
fluctuating solve times was a project requirement, we decided not to employ Rsol

as a feature in any GP. The definitive set of features and signal delays is reported
in Table 3.2. Finally, by using the mean functions (3.7) to evolve the temperature
dynamics, we arrive at the final models

T1,t+1 = µ1(T1,t, T1,t−1, T2,t, θ1,t, Tsup,t, Tout,t) (3.7a)
T2,t+1 = µ2(T1,t, T2,t, T2,t−1, T3,t, θ2,t, Tsup,t, Tout,t) (3.7b)
T3,t+1 = µ3(T2,t, T3,t, T3,t−1, θ3,t, Tsup,t, Tout,t) (3.7c)

Regarding the variances (3.5), those were used in a point-wise fashion to measure
uncertainty. In other words, multi-step ahead predictions were performed by
propagating only the mean values forward. The more complex alternative, which
was discarded in this study, is to propagate also the higher-order moments and
employ numerical methods to approximate the intractable integrals in the hope
of arriving at more precise uncertainty estimates (Girard, 2004; McHutchon and
Rasmussen, 2011).

In order to train the GP models in an efficient way, balancing the information
brought by the data-set and non-parametric model size, nearby feature vectors
were dropped. The Euclidean norm of the difference was chosen as the distance
function. Such a dropping also improves the numerical stability of the model
kernel matrix. Finally, the GPs modeling rooms 1, 2 and 3 had respectively 235,
245 and 314 points, which correspond to approximately 38, 51 and 47 hours worth

60



3.3 The building and its HVAC system

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1517192123 Room1temperature[°C]

G
P

m
od

el
1

–
T

ra
in

in
g

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1315171921
G

P
m

od
el

1
–

T
es

t
1

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40

T
im

e
[h

ou
rs

]

1920212223
G

P
m

od
el

1
–

T
es

t
2 G

ro
u

n
d

-t
ru

th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1517192123 Room2temperature[°C]

G
P

m
od

el
2

–
T

ra
in

in
g

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1315171921
G

P
m

od
el

2
–

T
es

t
1

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40

T
im

e
[h

ou
rs

]

1920212223
G

P
m

od
el

2
–

T
es

t
2 G

ro
u

n
d

-t
ru

th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1517192123 Room3temperature[°C]

G
P

m
od

el
3

–
T

ra
in

in
g

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40
50

T
im

e
[h

ou
rs

]

1416182022
G

P
m

od
el

3
–

T
es

t
1

G
ro

u
n

d
-t

ru
th

M
od

el
p

re
d

ic
ti

on
s

0
10

20
30

40

T
im

e
[h

ou
rs

]

1920212223
G

P
m

od
el

3
–

T
es

t
2 G

ro
u

n
d

-t
ru

th

M
od

el
p

re
d

ic
ti

on
s

Fi
gu

re
3.
5:

Tr
ai
n
an

d
te
st

re
su
lts

fo
r
th
e
G
au

ss
ia
n
pr
oc
es
s
au

to
-r
eg
re
ss
iv
e
m
od

el
s
pr
ed

ic
tin

g
th
e
te
m
pe

ra
tu
re

ev
ol
ut
io
n
w
ith

in
ro
om

s
1,

2
an

d
3.

T
he

tr
ai
ni
ng

pl
ot
s
on

ly
di
sp
la
y
a
po

rt
io
n
of

th
e
tr
ai
ni
ng

se
t.

T
he

G
P

m
ea
ns

ar
e
de

pi
ct
ed

in
so
lid

bl
ue

an
d
th
e
tw

o
st
an

da
rd

de
vi
at
io
n
in
te
rv
al

in
lig

ht
bl
ue

.
T
he

re
al

te
m
pe

ra
tu
re
s
ar
e
sh
ow

n
in

da
sh
ed

bl
ac
k.

61



Building temperature control through Gaussian process and model
predictive control

of data. Since these sets did not come from a single experiment, but are an
informative subset of the 748 hours initially available to us, they provided enough
prediction capabilities to our non-parametric models. Training the models with
the aforementioned number of points took consistently less than 5 seconds each
on a 2.4 GHz, core i9-9980HK machine. The obtained training and test results
can be seen in Figure 3.5. We highlight that the plots show multi-step ahead
predictions over a horizon of 2 hours, that is, 12 time steps, correcting for the
temperature mismatch only at the orange points. Assessing the prediction quality
of the models in this way was necessary as they were to be used within an MPC
formulation. It is worth noting that, even though the left plots are labeled as
“training results”, the models incorporated only a small fraction of those features
due to our dropping of nearby data-points. The central and right-side plots show
the predictions over a period of 50 and 40 hours, but in completely new scenarios,
never presented to the model during training.

Inspecting Figure 3.5, we see that the mean predictions mostly follow the underlying
ground-truth signal during training. The disparity among the rooms is in their
uncertainty bands: whereas model 1 and 2 presented moderate levels of spread,
model 3 showed a fairly large one. We believe this uncertainty to stem from room 3
being the most exposed one in terms of direct solar radiation, and from Rsol not
being a feature of its GP. We remind the reader that Rsol was disregarded to
accelerate the real-time computations and ensure that the optimization problem
was solved within the time allocated to it. By taking this larger uncertainty into
account, we were able to avoid violating constraints when closing the loop with
the MPC controller. The outcome of the test phase was qualitatively similar to
the training results, aside from some additional performance degradation close to
the high temperature peaks. Overall, we deemed the results reasonable given the
challenging two-hour horizon of the prediction task.

3.3.3 Learning the chiller energy consumption

The problem of building a meaningful objective to minimize the system energy
consumption was tackled with the two-step method described next. The first
goal was to reconstruct the chiller refrigeration curve from historical data, more
specifically, from the volumetric air-flow rates along with the outdoor temperature
and the supplied air temperatures. Based on these quantities, the thermal power
delivered by the chiller was inferred. Next, we used as features the outdoor
temperature Tout and the sum of the valve positions Θ = θ1 + θ2 + θ3, the latter
correlating with the water flow through the AHU coils (see Section 3.3.1). A
representative dataset was gathered over a period of 203 hours, which encompassed
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Figure 3.6: Reconstruction of the chiller refrigeration surface (top). Data were
collected during a period of 203 hours, including both of open-loop excitation
as well as closed-loop operation. Thermal power Q(Tout,Θ) (bottom left) and
electrical power E(Tout,Θ) (bottom right) curves of the chiller as a function of
the valves openings Θ. The plots consider typical outdoor temperature values.

both random open-loop excitation and closed-loop operation. During this period,
the AHU valves ranged from being completely open to being fully closed, and the
ambient temperature varied from 15 to 40 degrees Celsius. The data distribution
can be seen in Figure 3.6. We remark that the portion of the domain where the
outdoor temperature is high and the total valve openings are low is not populated
with samples due to operational constraints of the system, a common issue in
HVAC control. The last step was to augment the batch with a grid of Tout values
paired with Θ = 0degs and 0 kW labels to represent the zero water-flow regime.

Polynomial ridge regression was performed to fit the data described above. After
experimenting with different model orders, we found that a cubic model provided
a good balance between describing the observed points and not overfitting them.
The results are presented in Figure 3.6 and the final model was

Q(Tout,Θ) = 20.22− 3.15Tout − 3.03 e−2 Θ + 1.73 e−1 T 2
out − 1.56 e−3ToutΘ

+ 3.09 e−4Θ2 − 2.75 e−3T 3
out + 4.90 e−4T 2

outΘ− 6.86 e−5ToutΘ2 + 2.56 e−6Θ3

(3.8)
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with en being a shorthand for ×10n. The model attained a mean absolute
error of 2.88 and a mean squared error of 12.97 kW. As a second step, we fit a
concave coefficient of performance (COP) curve, which is typical for variable-speed
compressor chillers and dictates how efficient they are in converting electrical to
thermal energy. The final utilized COP curve was

COP(Q) = −4.45 e−4 + 2.34 e−1Q− 2.67 e−3Q2− 2.69 e−5Q3 + 3.30 e−7Q4 (3.9)

which, given the thermal range displayed in Figure 3.6, implies in a performance
coefficient varying approximately between 1.5 and 4.5.

With the thermal model (3.8) and the COP curve (3.9) at hand, the electrical power
could be calculated according to E = Q(Tout,Θ)/COP(Q(Tout,Θ)), measured in
kW. Several slices of the thermal power surface, and their associated electrical
power counterparts are presented in Figure 3.6. The plots illustrate how the curves
change depending on the outdoor temperature, and how strongly the electrical
power profile is affected by this external factor. In particular, one notices that
when the outside temperature is high, it is more economic to open the valves
and increase the chilled water flow rather than keeping them partially closed.
Clearly though, the real-time optimal position for them will depend on the system
dynamics, the desired temperature envelope and the external disturbances.

3.4 MPC formulation and numerical computations

Given the learned GP models µi, i = 1, 2, 3 described in (3.7), a given maximum
temperature Tmax, and our reconstructed electrical power surface, we formulate
the following optimization problem to control the valves θi while reducing the
chiller energy consumption Et

min
N−1∑
t=0

(Et + ρ∆t) + ρN∆N (3.10a)

s.t. Tt+1 = µ(Tt, θt, Tsup, Tout) (3.10b)
Tt + β var1/2(Tt, θt, Tsup, Tout) ≤ Tmax + δt (3.10c)
Et = Q(Tout,Θt)/COP(Q(Tout,Θt)) (3.10d)
θmin ≤ θt ≤ θmax (3.10e)
δt ≥ 0 (3.10f)

where Θt = ∑3
i=1 θi,t is the sum of all valve positions. The variables δt in (3.10c)

are positive slacks introduced to avoid infeasibility. If needed, these can relax
the temperature constraint so that the solver can return a viable control plan.
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Of course, their use is heavily penalized in the objective, where ∆t = ∑3
i=1 δ

2
i,t

and ρ, ρN are large constants, which in our case were respectively set to 100 and
200. The temperature constraint (3.10c) also accounts for prediction uncertainty
as it includes the standard deviation var1/2. Its use confers on the formulation
a risk-aware quality and robustifies the closed-loop operation. The degree of
conservativeness is controlled by the constant β, chosen to be 2 as in Figure 3.5.
The prediction horizon was set to N = 12 steps, which translates to 2 hours.
As suggested by our notation, Tout and Tsup were kept constant throughout all
prediction steps–but updated from one sampling period to the next. Finally, our
maximum temperature value was Tmax = 21 degrees Celsius.

The optimization problem (3.10) was written in Python with the aid of CasADi
(Andersson et al., 2019), an automatic-differentiation package that provides gra-
dient information for numerical solvers–in our case, the interior-point method
IPOPT. As is customary in predictive control, (3.10) was recursively solved on-line
with the most recently available system information, with only the first optimal
control action being transmitted to the valves. We underline that the main source
of complexity in (3.10) is the presence of the constraints (3.10b) and (3.10c), which
are highly non-linear due the GP mean and variance. Since convexity is absent,
multiple local optima might exist, a fact that was indeed verified in practice. By
intelligently providing solvers with high-quality initial guesses, this problem can
be mostly overcome. Our particular case study relied on initializing the numerical
solver with control, temperature, slack and energy trajectories obtained with a
virtual PI controller. The intuition was to allow the MPC loop to build on such an
initial guess and further optimize operation. For a detailed study on solve times
and how the number of GP data-points impacted them, see Appendix A.

In order to shed light on how the number of training points affects the solve times
of the non-convex optimization problem (3.10), the following study was conducted.
Five sets of GP models were trained on distinct datasets with cardinalities N = 352,
794 (precisely the one used in the experiments), 1280, 1910 and 2643. In all
scenarios, the total number of points present in each of the GPs was approximately
a third of the total number N , so that the models were balanced. We then
generated random initial conditions, uniformly sampled from sensible intervals:
16 ≤ T1,2,3 ≤ 23, 9 ≤ Tsup ≤ 13, and 15 ≤ Tout ≤ 35. Finally, we solved the
warm-started non-convex MPC (3.10) on a 2.4 GHz, i9 machine 50 times per
scenario and recorded their run times.

The results are presented in Figure 3.7, where the vertical scale is logarithmic. The
median values of the box plots rose from 4.19 to 18.69, 85.42, 121.12 and 255.68
seconds respectively from the smallest to the largest dataset. Although using
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Figure 3.7: Box and whisker plots of the MPC solve times considering different
dataset sizes. The dashed gray line marks our sampling period of 10mins. Each
boxplot is based on 50 time samples, obtained using randomized initial conditions.

N = 1910 points does not seem unreasonable at first, challenging initial conditions
such as ones close to violating constraints can easily increase the problem solve
time: the highest point obtained for the N = 1910 scenario was 429 seconds.
Ideally, and specially when occupants experience thermal discomfort, the control
action has to be computed in negligible time to be applied as soon as possible to
the system. Keeping the solve times below a low percentile of the total sampling
period is thus a common desideratum. In our application, we regarded N = 794
to be an adequate choice.

3.5 Experimental results

The previously described Gaussian process-based MPC formulation was deployed
on the local computer and used to operate the surgery center cooling system
during multiple days in the months of October and November 2021. We report
in Figure 3.8 a four-day uninterrupted experiment carried out from November 10
to November 13 that is rather representative of the local internal and external
conditions. We highlight that the curves displayed in the figure were not filtered
in any way; the sole manipulation performed with the data was the imputation of
the missing temperature entries using linear interpolation. These points, however,
accounted for only 43 out of the 1’728 indoor temperature values gathered during
the four-day experiment. The first and third top plots show the room temperatures
and the immediate uncertainty associated with the GP predictions Tunc = βvar1/2

as employed in the formulation (3.10c). The second plot displays the valve positions,
that is, the control variables. Both outdoor signals, the external temperature
and the solar radiation are also given. The reader is reminded that, although
the latter contributes with additional heat gains, it is completely unknown to the
controller as explained in Section 3.3.2. Lastly, the bottom plot shows the supply
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water temperature Tsup, an external disturbance that was incorporated in the GP
models. This signal evolves according to the chiller own dynamics, over which we
had no direct control.

Consider first the day, November 10, and note the relatively high room temperatures
when the experiment started, which were the consequence of a harsh previous day.
The MPC controller made use of some control authority to bring the temperatures
below the 21-degree line before partially closing the valves. After the morning
shift started (7 am), even though θ2 and θ3 were fully open, T2 and T3 violated
the constraints and were only brought below 21 degrees late that evening. High
initial conditions along with a peak outdoor temperature of 35 degrees overloaded
the cooling system, causing violations of the indoor temperature constraint in two
rooms. With regard to T1, it raised quickly from 19 to 21 degrees before noon, but
then stayed essentially constant at the 21-degree mark for several hours before
being lowered during the evening.

The two days that followed, November 12 and 13, were less warm and, as a result,
the MPC controller successfully modulated the valves to guarantee constraint sat-
isfaction. From the plots, one can notice how θ1, θ2 and θ3 assumed approximately
constant intermediate values (around 60 degrees) during the evenings, and were
more aggressively modulated on working hours. We believe this pattern to be due
to the economic objective shown in Figure 3.6.

Lastly, we focus on the data from November 13, where it is possible to see a sudden
peak in the indoor temperatures and in Tsup around midnight. This was caused by
a momentary halt in the water pumps responsible for the chilled water circuit, an
event that could be regarded as a fault from a control system perspective. During
this period, as there was no water circulation through the AHU cooling coils, there
was also no refrigeration and the indoor spaces received warm air since the fans
were kept on. As soon as the pumps were reactivated, the chiller immediately
lowered the supply water temperature and normal operation was restored. During
daytime, the indoor climate was kept within the desired limits despite the valves
staying saturated at their low values, even at noon. The fact that almost no
additional actuation was needed is due to that day being a Saturday, when no
operations are scheduled for and the three doors present in the environment are
minimally opened and closed. This showcases how strong the internal heat gains
and unmeasured disturbances normally are.

To assess the efficiency gains as well as the thermal performance of the deployed
strategy, MPC was compared to alternative algorithms, all subject to exactly the
same environmental conditions by means of simulations. We underline that this
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simulation model, composed of larger Gaussian processes and a linear component,
was calibrated on data that was not included in the original GPs training set, thus
putting to test the MPC prediction capabilities. The disturbance signals Tout,
Tsup and Rsol from November 10 were employed, and the indoor temperatures of
the three rooms were uniformly initialized at values ranging from 17 to 21 degrees
Celsius. The outdoor temperature profile was processed to yield three different
weather scenarios: hot weather, which was exactly the same Tout curve seen in
Figure 3.8; warm weather, a −2°C shifted version of it, peaking at 33°C around
noon; and mild weather, a −5°C shifted version of it, peaking at 30°C. Besides
the MPC algorithm (3.10), the following were also tested:

• An MPC controller, which will be referred to as REF, with perfect prediction
capabilities, perfect disturbance information (Tout and Tsup) and a long
prediction horizon of five hours.

• PI controllers featuring anti-windup schemes and feedforward components
to enhance their performance, and with Tmax as their references.

• Rule-based ON/OFF controllers that set the valves respectively to θmin and
θmax if the indoor temperatures were below or above the set-point.

• An average (θmax− θmin)/2 controller (AVG) whose instantaneous values are
selected by sampling the interval θmin to θmax using a uniform distribution.

The REF strategy described above was conceived and tested precisely gauge the
energy saving potential of the hospital HVAC plant. This algorithm, thanks to
the way it was designed with a perfect internal model and perfect forecast of the
outdoor temperature and supply water temperatures, will indicate what can be
achieved realistically.

The obtained normalized energy consumption results and average room thermal
comfort violations are shown in Figure 3.9. Since the non-linear chiller curves
described in Section 3.3.3 were employed to measure the energy consumption, the
reader is reminded that there is a non-trivial relationship between the weather
conditions and indoor temperatures, and the final consumed energy. This aspect is
due to the nature of the chiller and not the use of any particular control technique.
As a last note, one specific energy normalization factor was used for each weather
scenario shown in Figure 3.9 to enhance clarity.

Glancing at the mild and warm weather plots, one notices how the REF and
MPC data tended to be close together, and relatively far from the PI, ON/OFF
and AVG clusters. Moreover, the REF and MPC points were also mostly to the
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Figure 3.9: Simulation results of the normalized energy consumption and thermal
performance (average temperature bound violation) of different control strategies.
Three weather profiles were considered: mild, warm and hot. The indoor tempera-
tures were initialized at three different values according to the color scheme: 17°C
(blue), 19°C (orange) and 21°C (red).

left side and vertically below the other data given the same indoor temperature
conditions–thus confirming their superior performance in terms of energy efficiency
and indoor climate regulation. The ON/OFF and PI controllers yielded overall
similar numerical results and, surprisingly, were outperformed by the AVG scheme
under mild weather and starting indoor temperatures of 17 °C and 19 °C. AVG
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nevertheless performed poorly under warm weather and 21 °C, and hot weather
in general. All in all, the predictive control strategies MPC and REF yielded the
best results in the mild and warm weather cases, whereas the separation among
them and the other techniques became less evident under hot weather, indicating
a less important advantage over classical control.

By analyzing the horizontal scales and contrasting REF to PI, ON/OFF and
AVG, one concludes that this particular HVAC plant could have its efficiency
boosted by approximately 2.5%, 4% and 5% respectively in the mild, warm and
hot weather scenarios. Notice how, as opposed to studies such as Bünning et al.
(2020), these numbers refer to the electrical energy associated with a chiller, and
not to a cumulative thermal energy. Moreover, as the hospital was not subject
to time-varying electricity prices, the contrast among control strategies was not
as stark as for instance the one reported in Joe (2022). The proposed MPC
strategy (3.10) attained results close to the aforementioned maximum percentages.
Quantitatively, MPC lead to a maximum energy efficiency improvement of 2.29%,
3.13% and 4.76% respectively in mild, warm and hot weather, with respect to the
PI and ON/OFF counterparts.

3.6 Conclusions and outlook

The practical investigation presented in this chapter revolved around the use of
Gaussian process models paired with MPC to autonomously control the industrial
cooling system of a hospital building. The study was complex in comparison with
many works found in the literature: it involved three thermal zones, multiple
subsystems, two distinct sensor networks, four strong exogenous disturbances, and
the direct control of low-level elements. From a computational viewpoint, expensive
non-parametric models were used along with a non-convex MPC formulation, both
in the cost and in the constraints, which brought about numerical challenges. All
things considered, the chosen approach was able to guarantee the indoor comfort
whenever enough actuation power was available, while also delivering superior
energy performance when compared to alternative strategies.

During the course of the project, a large portion of time was dedicated to studying
the building and the AHUs, deciding what signals to measure, and setting up the
necessary hardware. The second most time-consuming task was certainly building
a functional data ingestion pipeline for the GPs: applying the necessary filters,
detecting non-reliable periods, and crafting the feature vectors by delaying the
time-series and patching multiple experiments together. We therefore believe that
the control community could greatly benefit from a reliable toolbox to design and
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test GP autoregressive models with ease, which would certainly further increase
the popularity of this technique.

With regard to possible future investigations, we consider exploring sparse Gaussian
processes based on pseudo-inputs (Bauer et al., 2016) to lower the computational
burden of the MPC controller and allow for longer prediction horizons. Taking a
step back, it would also be interesting to experimentally investigate with different
combinations of models (not necessarily Gaussian processes) and training objectives
to find a pair that is able to automatically reject spurious data periods, not only
isolated points, and dispense with the need of a meticulous pre-processing stage.
Indeed, being robust to an abnormal period of operation at training time could
alleviate the workload of field engineers and help fulfill the promising an effortless
modeling phase. In our view, parametric techniques such as neural networks
are less sensitive as their internal constants are adjusted gradually by the data,
whereas non-parametric techniques absorb the whole dataset and make use of it
during inference. That said, perhaps additional (unobserved) covariates could be
used to explain an abnormal trajectory, essentially acting as a disturbance model.
Finally, from an HVAC systems perspective, more encompassing investigations
could include the control of additional variables, e.g. the air flow delivered to the
rooms, as well as the regulation of physical quantities other than the temperatures
such as the indoor spaces humidity levels.
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4 Learning MPC controllers with
pQP neural networks

4.1 Introduction

Consider the standard MPC formulation for linear dynamical systems

P1 : min
X,U

N−1∑
k=0

(
x>k Qxk + u>k Ruk

)
+ x>NPxN (4.1a)

subj. to xk+1 = Axk +Buk, ∀k = 0, . . . , N − 1 (4.1b)
xk ∈ X, ∀k = 0, . . . , N − 1 (4.1c)
uk ∈ U, ∀k = 0, . . . , N − 1 (4.1d)
xN ∈ XN (4.1e)
x0 = x(0) (4.1f)

where xk ∈ Rnx , uk ∈ Rnu , for all k; X := {x1, . . . , xN} and U := {u0, . . . , uN−1}
are the collections of decision variables; Q � 0, R � 0 and P � 0 are cost matrices
of adequate size; and the sets X, XN and U are polyhedra. Also, denote by

π : X → U, x(0) 7→ π(x(0)) = u?0 (4.2)

the mapping defined point-wise from the parameter x(0) of P1 to the first control
component of its optimizer1. The domain X ⊂ Rnx is the collection of all x(0)
for which P1 is finite, i.e., the problem is feasible. It is well-known that, under
reasonable standard on the terminal ingredients P and XN , the map π is a
piece-wise affine (PWA) continuous function over a polyhedral partition of the
polyhedron X (Bemporad et al., 2002; Borrelli et al., 2017).

1Since the objective is strictly convex and the constraints define a convex feasible set, if an
optimizer exists for a given parameter x(0), then this optimizer is unique.
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Automatic control involves real-time decision making and, in a number of different
scenarios, it becomes infeasible or simply undesirable to solve an optimization
problem such as (4.1) on-line. Picture, for instance, a small embedded system
that does not have enough computational resources to arrive at a solution within
the time allocated to it. One method to circumvent solving P1 is to seek π,
which can explicitly written in closed form with multi-parametric programming
tools (Bemporad et al., 2002). This approach is known as explicit MPC and has
become an establish control tool (Mariéthoz and Morari, 2008; Naus et al., 2010)
for which free software exists (Herceg et al., 2013). Unfortunately, π can also be
challenging both to compute and to store as the number of regions of its domain
grows exponentially in the worst case with the number of inequality constraints in
P1 (Alessio and Bemporad, 2009), thus limiting its applicability. Simplifications
strategies for explicit MPC exist, each coming with a different set (sometimes
empty) of guarantees. In Geyer et al. (2008) and Wen et al. (2009), for example,
the authors build equivalent but more convenient representations of the control
policy; in Jones and Morari (2008) an incremental method is proposed to fit π
without requiring its explicit description; and in Christophersen et al. (2007) and
Maddalena et al. (2019) safe elimination procedures are presented to drop some
regions without disrupting certain closed-loop properties.

With the recent popularization of deep learning and the plethora of easy-to-use
toolboxes available to users, NN approximations of the map linking the current
state x(0) to the MPC optimal control action u?0 have also become trendy (see e.g.
Karg and Lucia (2020); Kumar et al. (2021)). Although the idea itself is not new
(Parisini and Zoppoli, 1995), the latest investigations tend to make use of more
modern analysis and synthesis tools such as better activation functions and training
algorithms. The works Fazlyab et al. (2020) and Schwan et al. (2022) address the
problem of verifying a NN approximation a posteriori, employing respectively semi-
definite and mixed-integer linear programming techniques. On a different spirit,
Paulson and Mesbah (2020) tackles designing NNs that approximate predictive
controllers and are safe by design. Arguably the main motivation behind this entire
line of research is the expressive power of NNs, especially when deep architectures
are employed (Karg and Lucia, 2020), and the fact that they lie in the same class
of PWA functions as MPC controllers2.

As opposed to the previously cited works where rather multi-purpose NN archi-
tectures were used, we will explore a structure that is tailored to the problem P1
and its solution π. Our approach, which was published in Maddalena et al. (2020)
and Maddalena et al. (2021b), revolves around utilizing convex programs as layers
within neural networks as proposed in Amos and Kolter (2017) and Agrawal et al.

2As long as a PWA activation function such as the rectified linear unit (ReLU) is used.
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(2019). More specifically, the parameter-to-optimizer map of a convex program
is employed as an internal layer, offering a particular inductive bias. A shallow
architecture is proposed and shown to be able to represent the map π of any
predictive controller (4.1) given a sufficiently large size. Finally, two examples
are presented in the area of power electronics, allowing for a drastic speed-up in
computation times with only a minor performance degradation.

4.2 The proposed architecture

An illustration of the parametric quadratic programming (pQP) neural network
is shown in Figure 4.1. It is composed of two linear layers (L1 and L3), a single
non-linear layer with adjustable parameters (L2), and a fixed output layer (L4).
The central part of this structure is the pQP layer L2, which is an implicit function
described by the optimization model

y2 = arg min
z≥0
||Hz + y1||2 + ε||z||2 (4.3)

that has y1, the output of layer L1, as a parameter; the optimizer y2 is then a
function of y1. Note how (4.3) is always feasible and bounded from below, thus
well posed for any y1. The regularizing constant ε > 0 is a fixed parameter that
contributes with the numerical stability of the scheme. Additionally, if ε > 0, then
(4.3) has always a unique minimizer and thus the map y1 7→ y2 is well defined.

Intuitively, one can think of the first layer L1 as a lifting, or projection, of the current
state x ∈ Rnx onto another space Rnz whose dimension is a NN hyperparameter
to be chosen by the user. L2 then is the key non-linear transformation that
should capture most of the MPC policy complexity. Next, the affine map in
L3 takes the y2 value to the input space Rnu and finally the control actions are
guaranteed to satisfy the control constraints by projecting them onto U, which
is accomplished by L4 (see (A.24)). By adjusting nz, the designer increases or
reduces the representation power of the pQP NN with a constant number of layers.

Let π̂ : x 7→ u be the pQP NN map defined by the composition of the layers
in Figure 4.1, and whose parameters to be trained are F ∈ Rnz×nx , f ∈ Rnz ,
H ∈ Rnz×nz , G ∈ Rnu×nz and g ∈ Rnu . The final goal is to tune these to fit a
dataset of the form

{(x(0)i, u?0,i)}di=1 (4.4)

composed of initial conditions x(0) and the first optimal control action u?0 coming
from (4.1). Typically, this is done by defining a suitable loss function and mini-
mizing the mismatch between π̂(x(0)) and u?0, i.e., the control action produced
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y3 = Gy2 + g

u = Proj  (y3)

y1 = Fx + f

x

u

L1:

L2:
y2 = arg min ||Hz + y1 ||2 +   ||z ||2

subj. to z   0≥
ϵ
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L3:

L4:

Figure 4.1: A pQP neural network architecture tailored to MPC. The variables in
red are weights to be adjusted during training.

by the pQP NN and the target optimal value. The parameters are then tuned by
means of a gradient-based backpropagation procedure.

Remark 13. As shown in (Amos and Kolter, 2017, Theorem 1), OptNet layers
are differentiable everywhere, but not in a set of measure zero of parameters,
where subgradients exist. Since (4.3) is a particular instance of the OptNet layer,
it inherits its properties. Moreover, we assume the set of feasible control actions
U to be a polyhedron. The projection operator in L4 is therefore a quadratic
program with y3 as its only parameter and, thus, also an OptNet layer.

4.3 Properties of the approximator

Regard the size nz in L2 as a hyperparameter. It is then clear that as nz increases,
the expressive power of the pQP NN also increases. Moreover, as π̂ is defined by a
composition of piece-wise affine functions, it is itself piece-wise affine. Next we
prove that π̂ can not only approximate well any linear MPC controller, but also
recover an exact representation if an appropriate size nz is chosen.

Theorem 3. (The pQP NN can learn any linear MPC controller) Let
π̂ : Rnx → Rnu be the map defined by the composition of all four layers, i.e.,
π̂(x) := L4 ◦L3 ◦L2 ◦L1(x). Set ε = 0, then ∃F , f , H, G and g with appropriate
dimensions such that ∀x ∈ X , π̂(x) = π(x).

Proof : In essence, the proof consists in showing that L2 has exactly the same
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structure as the dual of the MPC formulation (4.1), and in showing that L3 can
recover the primal solution from the dual.

Start by condensing the MPC problem P1, i.e., using the equality constraints to
eliminate all state decision variables except for the initial state x(0). This leads to
the following parametric problem

P2 : min
U

U> ΛU + x(0)> ΓU (4.5a)

subj. to ΦU ≤ Ωx(0) + ω (4.5b)

The step by step condensing procedure can be found in Wright (2019), which also
shows that Λ � 0. The problems P2 and P1 are then equivalent in the sense that
the solutions U? of P2 and (X?, U?) of P1 share the same U? component. Next,
derive the dual problem of P2, which is

D2 : min
λ≥0

1
4
[
λ>Φ Λ−1Φ>λ+ (4x(0)>Ω> + 2x(0)>ΓΛ−1 Φ> + 4ω>)λ . . .

+x(0)>ΓΛ−1Γ>x(0)
] (4.6)

And use the KKT stationarity condition of P2 to arrive at an expression that
relates linearly the optimal primal and dual solutions

U? = −0.5 Λ−1Φ>λ? − 0.5 Λ−1Γ>x(0) (4.7)

Next, rewrite L2 in the standard QP form

min
z≥0

z>(H>H + εI)z + (2H>y1)> z + y>1 y1 (4.8)

and match3 the two quadratic programs (4.6) and (4.8) through

H̃>H̃ + εI = 0.25 ΦΛ−1Φ> (4.9a)
2H̃>ỹ1 = Ωx(0) + 0.5 ΦΛ−1x(0) + ω (4.9b)

which leads to ε = 0, H̃ = 0.5 (ΦΛ1/2)>, and ỹ1 = (ΦΛ1/2)−1(Ωx(0)+0.5 ΦΛ−1x(0)+
ω). This value of ỹ1 also defines the weights F and f of the L1 layer simply as
F̃ = (ΦΛ1/2)−1(Ω + 0.5 ΦΛ−1) and f̃ = (ΦΛ1/2)−1ω.

Tilde superscripts were used for H, y1, F and f in the last paragraph because those
are not the final values of those parameters. In fact, they need to be augmented
to resolve the following issue. For the layer L3 to implement (4.7), it would need

3The last terms of the two QPs are disregarded since they are independent of the optimization
variables and thus have no effect on their respective optimizers.
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access to x(0), whereas it only receives y2 from the previous layer. The solution
lies in augmenting L1 and L2 to match the MPC dual as previously done and, in
addition, also let the NN input x(0) pass through them and arrive at L3. More
concretely, the steps below have to be followed.

Set the first layer weights to F = [−I I F̃ ]> and f = [0 0 f̃ ]> so that y1 =
[−x x F̃x + f̃ ]>. Set the L2 weights to ε = 0 and H = [I 0 0; 0 I 0; 0 0 H̃].
Partitioning the decision vector into three components z = [xp xn z̃]> leads to

min
z̃,xp,xn≥0

||xp − x(0)||2 + ||xn + x(0)||2 + ||H̃z̃ + ỹ1||2 (4.10)

which is a separable objective in z̃, x̃p and x̃n. Thanks to the choice of L̃ and ỹ1

we have that z̃? in (4.10) matches λ? in (4.6). Regarding xp?, the nth optimizer
components will satisfy ∀i = 1, . . . , n, xp?i = xi(0) if xi(0) ≥ 0, else xp?i = 0.
Similarly, xn?i = −xi(0) if xi(0) ≤ 0, else xn?i = 0. Therefore, xp? − xn? = x(0),
and the output of the pQP layer (4.10) will contain the dual optimizer λ? and the
NN input value x(0) encoded in it.

Next set the weights of L3 to match (4.7), but only extracting the first op-
timal control action rather than the whole vector. This is accomplished by
G = ∇ [−0.5Λ−1Γ> 0.5Λ−1Γ> − 0.5Λ−1Φ>] and g = 0. Therefore, y3 =
G [xp? xn? z̃?]> = G [xp? xn? λ?]> = ∇U? = u?0, where ∇ is a matrix containing
zeros everywhere and a nu × nu identity matrix in its lower right corner.

Finally, note that L4 will evaluate to u?0 since y3 = u?0 necessarily belongs to
U. The proof is concluded after observing that the value of x(0) in the above
calculations can be taken to be any point x in X . �

Remark 14. Given a large enough size nz, π̂(x) can match π(x) under appropriate
parameters. In practice however, one is rather interested in experimenting with
small sizes nz to reduce the complexity of the final map.

Remark 15. As opposed to π(x), π̂(x) is defined for any x ∈ Rnx .

The deployment of the pQP NN does not have to involve solving L2 on-line. Indeed,
its explicit solution could be found off-line, in which case the real-time evaluation
of π̂(x) would boil down to computing affine and piece-wise affine expressions. By
adjusting nz, the designer can therefore tune π̂(x) to its needs. The whole process
can be then seen as the fitting of a PWA function, the pQP NN, to another PWA
function, the MPC explicit solution.

Approximating the MPC controller (4.1) with our network architecture does
not come with a priori guarantees on closed-loop stability or convergence to

78



4.4 Numerical validation

an equilibrium point. Nevertheless, once the pQP NN is trained, tools from
mixed-integer programming can be exploited to compute the worst-case mismatch
between π(x) and π̂(x) as well as basins of attraction for the closed-loop system
(Schwan et al., 2022). Alternatively, a robust MPC controller could be designed
taking into account a certain level of input disturbace, which will be incurred
later by the approximation scheme. This is the idea proposed in Hertneck et al.
(2018), where statistical guarantees are derived based on samples, and without
needing access to the worst-case approximation error. Finally, safety filters could
be employed not to certify the pQP NN, but to modify minimally its control
actions to ensure system theoretical properties (Wabersich and Zeilinger, 2018).

4.4 Numerical validation

In this section we make use of the previously proposed architecture to approximate
the MPC controller of a 4-state, 3-input model of a multi-cell DC-DC power
converter. The size nz is then varied and its effect on the quality and size of the
approximate solution is studied.

4.4.1 The dynamics and the target predictive controller

Parallelism is a key concept to increase the efficiency and power levels of electronic
converters. However, this design choice has to be accompanied by proper current
and voltage balancing techniques to ensure that no single stage is subjected to a
exceedingly high electrical stress when compared to the others.

A schematic representation of a multi-cell step-down converter is shown in Fig-
ure 4.2, and its parameters can be found in Table 4.1. The topology features three
arms that are connected to a coupled inductor, and an L-C output filter. All self
inductances are assumed equal L1 = L2 = L3 = Ls, and all mutual inductances
have value Lm. The switches of each arm operate in a complementary fashion
at a fixed frequency f =15 kHz, and with variable but constrained duty cycle
0 ≤ di ≤ 0.9, i = 1, 2, 3. Let the average voltage applied by the arms over one
switching period be denoted by vi := diVin, i = 1, 2, 3. In order to ease the analysis,
we apply the Lunze transform Ψ to all variables, decomposing the phase voltages
and currents into differential and common mode components[

idm1 idm2 icm
]>

:= Ψ
[
i1 i2 i3

]>
(4.11)[

vdm1 vdm2 vcm
]>

:= Ψ
[
v1 v2 v3

]>
(4.12)
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Figure 4.2: A diagram of the multi-cell step-down DC-DC converter.

where Ψ = (1/3) [2 − 1 − 1; −1 2 − 1; 1 1 1].

The control input is defined as u := [vdm1 vdm2 vcm]> and the continuous-time
state vector, by appending the output voltage to the transformed currents x :=
[idm1 idm2 icm vout]>. By using Kircchoff’s circuit laws, a linear model of the form
ẋ = Actx+Bctu can be derived with

Act =


−R

Ls−Lm
0 0 0

0 −R
Ls−Lm

0 0
0 0 −R

Ls+2Lm+3Lf

−1
Ls+2Lm+3Lf

0 0 3
Co

−1
RoCo

 (4.13)

Bct =


1

Ls−Lm
0 0

0 1
Ls−Lm

0
0 0 1

Ls+2Lm+3Lf

0 0 0

 (4.14)

Finally, discretization at frequency f is carried out using the zero-order hold
method, yielding xk+1 = Axk +Buk.

The control goal is to regulate the output voltage vout to 300V while maintaining
the phase currents balanced at all times, which translates to driving the differential
currents to zero. More specifically we have the following fixed reference xeq =
[0 0 16 300]> with ueq = B†(I − A)xeq, where B† denotes the pseudo-inverse of
B. Moreover, the controller approximation procedure must not incur a steady-
state error larger than 200mA for idm1 and idm2, and 5% for the common mode
component icm and output voltage vout. The chosen MPC cost function was4

J =
N−1∑
k=0

(||xk − xeq||2Q + ||uk − ueq||2R) + ||xN − xeq||2P (4.15)

where Q = diag(10, 10, 0.1, 0.1), R = 0.1 I, P is the solution to the associated the
4||a− b||2C := (a− b)>C(a− b).
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Table 4.1: The parameters of the multi-cell step-down DC-DC converter.

Vin Ls Lm R Lf Co Ro

350V 4mH -2mH 10mΩ 270µH 20µF 6.25Ω

discrete-time algebraic Riccati equation, and N = 10. For all time instants, box
state constraints were imposed

[
−5 −5 −10 −20

]>
≤ xk ≤

[
5 5 30 400

]>
and polyhedron constraints on the controls Hu uk ≤ hu that simply mapped the
duty cycle saturation to the Lunze domain. Due to the polytopic input constraints,
the system cannot be decomposed into three decoupled parts as the structure of
matrices Act and Bct suggest. Furthermore, the standard terminal set constraint
was imposed on xN , defined as the invariant set associated to the unconstrained
infinite-time problem formulation.

With the aid of the Multi-Parametric Toolbox (MPT) for MATLAB (Herceg et al.,
2013), the explicit MPC solution π(x) was computed and consisted of 2’337 regions.
By counting the number of parameters of each halfspace and control gain, the
memory requirement of this PWA function was found to be 518 kB, considering a
4-byte representation for both integers and floating point numbers.

4.4.2 Learning the optimal controller

A total of 5’000 samples were acquired from the explicit MPC policy using a
uniform distribution across the state-space. The dataset outputs u?0i were then
normalized since their first two components had considerably low amplitudes
compared to the third due to the structure of the Lunze transform Ψ. Instead
of implementing a general projection operator in L4, the layer was simplified to
u = Ψsat(y3) with saturation limits 0 and 0.9Vin, which clearly guarantees control
feasibility without the need of a second quadratic program. Several pQP NNs
were then trained with nz = 1, . . . , 7. The MPC approximators were trained using
PyTorch and the OptNet frameworks, and a mean squared error loss function.
Mini-batch stochastic gradient descent with Adam (Kingma and Ba, 2014) was
the optimization algorithm of choice to minimize the loss with batch size of 50 and
150 epochs. Training a single pQP NN took on average 42 minutes on a 3.1 GHz
Intel Core i7 machine without GPU acceleration, and 23 minutes with a single
NVIDIA Tesla T4 graphics card. Seven models were trained per nz size and only
the best scoring one was kept per size, whose results are shown in Figure 4.3.

In Figure 4.3, one sees that an increase in the nz size tends to lead to a better fit.
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Figure 4.3: Neural network training loss as a function of the pQP layer size, and
storage requirements associated with their PWA representations.

This however does not always translate to a decrease in the final loss since the
training process is affected by the weights initialization, the randomized nature of
the optimizer, among other factors. As for the size complexity of the pQP NN,
the larger the nz, the more space is needed to store it. Yet, only 6.5% of the
original explicit MPC space was used when nz = 7. Slices of the learned control
policies are show in Figure 4.4, where it is possible to visually verify the increasing
complexity of π̂(x) and how well it resembles the original π(x) when nz = 7.

In order to validate the pQP NN, the converter was simulated from four initial
conditions and under all 7 different approximate controllers, and only the two
largest ones (nz = 6 and nz = 7) met the target specifications given in the previous
section. We refer to these two solutions as the viable learned controllers. A phase
portrait of the closed-loop system evolution over multiple steps starting from
these initial conditions is depicted in Figure 4.5. A summary of the two viable
learned controller key figures is presented in Table 4.2, including their number
of polytopic regions, storage requirements, worst-case computation time and the
output steady-state (SS) error. Even though four initial states were given, the
systems always converged to the same points and, hence, only one SS error is
reported. Plus, the storage numbers also take into account all the remaining
layers parameters. Analyzing the obtained results we see that the approximations
drastically reduced the storage requirements by 93.4% and 96.7%, and sped up
the average evaluation time by 83.7% and 88.4%, respectively for the nz = 7
and nz = 6 cases. The closed-loop trajectories with the proposed π̂(x) remained
reasonably close to the scenario with the optimal π(x), converging to nearby
equilibrium points. In practice, steady-state errors are typically counteracted
by using disturbance observers, which would require however learning an MPC
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controller defined on an extended parameter space (Pannocchia, 2015).
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Figure 4.4: Slices of the explicit MPC controller π(x) and the pQP NN approxi-
mations π̂(x) for two control variables: vcm (left) and vdm1 (right).
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Figure 4.5: Output voltage and common mode current phase portraits under the
explicit MPC controller and the two viable pQP NN approximations.

Table 4.2: Explicit MPC and viable pQP NN controllers key features.

Controller Regions Storage Computational time SS error
π(x) 2’337 518 kB 12.9ms 0%
π̂(x), nz = 7 107 34 kB 2.1ms 0.59%
π̂(x), nz = 6 56 17 kB 1.5ms 1.25%

4.5 Experimental validation

We now describe an experimental validation of the proposed pQP NN architecture,
again in the context of power electronics. The system under study is a Buck con-
verter, a building block of many switched-mode power supplies. The approximate
MPC scheme was trained and then deployed on an inexpensive microcontroller,
and the approach lead to an important start-up transient response enhancement.

4.5.1 The system and the target predictive controller

A schematic representation of the Buck converter is shown in Figure 4.6 and its
parameters are found in Table 4.3. VIN , VD, L, and C refer respectively to the
input voltage, the diode forward drop, the inductance and the capacitance; whereas
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VIN
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VD

RC

L

MCU

RL

iL

vO

C
RO

Figure 4.6: A circuit diagram of the Buck converter including its parasitic resis-
tances and the diode forward voltage drop. The feedback loop is closed by the
microcontroller that implements our proposed pQP NN scheme.

Table 4.3: Parameters of the DC-DC converter

VIN VOUT VD L C RON RL RC RO fsw

15V 5V 0.1V 10mH 56µF 5mΩ 2Ω 330mΩ 100Ω 20 kHz

RON , RL, RC and RO refer to the switch on-resistance, the inductor parasitic
resistance, the capacitor parasitic resistance, and the output load. The purpose of
this topology is to supply energy to the load at a voltage level equal or lower than
the input source, which is accomplished by modulating the main switch.

We choose as state variables the inductor current and the output voltage

x =
[
x1 x2

]>
=
[
iL vO

]>
(4.16)

The power switch is operated at a constant frequency fsw and variable duty cycle,
which is taken to be the control variable u = δ. Following the classical time-
averaging technique (Middlebrook and Cuk, 1976), Kircchoff’s circuit laws are first
used to derive differential equations for both when the switch is closed, and when
it is open. These are then averaged with δ and (1− δ) as weights, yielding

ẋ1 =−RL
L
x1 −

1
L
x2 + VIN + VD

L
u− RON

L
x1u−

VD
L

(4.17a)

ẋ2 =−RCRORLC +ROL

(RC +RO)LC x1 −
RCROC + L

(RC +RO)LCx2 + RCRO(VIN + VD)
(RC +RO)L u

− RCRORON
(RC +RO)Lx1u−

RCROVD
(RC +RO)L (4.17b)

The bi-linear expressions above are finally linearized around an equilibrium point,
which is chosen by fixing the output voltage to the desired value x2eq and solving
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for the current and duty cycle steady-state values

x1eq = x2eq
RO

(4.18)

ueq = ROVD + (RL +RO)x2eq
RO(VIN + VD)−RONx2eq

(4.19)

Finally, (4.17a) and (4.17b) are expanded around (x1eq, ueq) and only the linear
terms are kept, leaving us with ẋ = Actx+Bctu where

Act =

 −RL+RONueq

L − 1
L

−RCRO(RLC−RONCueq)+ROL
(RC+RO)LC − RCROC+L

(RC+RO)LC

 (4.20)

Bct =

 VIN +VD−RONx1eq

L

RCRO(VIN +VD−RONx1eq)
(RC+RO)L

 (4.21)

As a last step, a discrete-time model xt+1 = Axt +But is obtained by integrating
the continuous-time dynamics using the zero-order hold method at fsamp = 10 kHz.

The controller goal was to attain a fast start-up response5 with as little overshoot
as possible and to regulate the output voltage vO to veq = 5V. Furthermore, an
inductor maximum current constraint of 200mA and maximum voltage constraint
of 7V were imposed. The prediction horizon was N = 10 and the standard
quadratic cost (4.15) was employed with weights Q = diag(90, 1), R = 1, and P
as the solution of the associated discrete-time algebraic Ricatti equation. The
reference equilibrium values xeq =

[
0.05 5

]>
, ueq = 0.3379 were used, along with

the constraints

xmin =
[
imin
L vmin

O

]>
=
[
0mA 0V

]>
(4.22)

xmax =
[
imax
L vmax

O

]>
=
[
200mA 7V

]>
(4.23)

umin = 0, umax = 1 (4.24)

and xN ∈ XN , with XN being the maximum invariant set for the dynamical system
under the corresponding LQR control law.

After computing the explicit solution π(x) with the MPT toolbox, the map was
found to have 70 regions as shown in Figure 4.7. Although this number may
not seem too large for a general purpose computer, it can still be challenging for
certain microcontrollers (MCU) to handle, especially since the algorithm has to

5The start-up is defined as the system evolution from having zero energy in its storage elements
to reaching the desired target output voltage.
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be executed in under 100µs. In fact, pQP NN approximations can be beneficial to
the power supply industry since the computing platforms are often MCUs with
limited memory and relatively slow clocks.

4.5.2 Learning the optimal controller and deploying the algorithm

The explicit control law π(x) was sampled in order to collect a set of state-control
pairs for a total of 5′000 points. A uniform distribution over the set of feasible
states was used throughout. In order to achieve a balanced learning over the
domain, the currents and voltages values that formed the initial states were
normalized to a range of [0, 1] The same software framework, loss function and
optimization algorithm from the last example were used with a mini-batch size
of 50 and 150 epochs. All pQP weights were initialized randomly. The code was
run on a 3.1 GHz i7 laptop with 16 GB 2133 MHz of memory, and training the
network once took on average 35mins without any GPU acceleration. The size nz
was gradually increased to improve the fitting results and with nz = 3, after only 5
re-initializations, a low mean squared error training loss was attained: 1.66× 10−7.

Both the map and the domain partition of the pQP NN can be seen in Figure 4.7,
where the number of regions was reduced from 70 to 6, and the memory required to
store the control law, 9.25 kB to 528 B. This last improvement can be particularly
useful to fit all the parameters in specialized, small memory slots that are closer to
the processor core than the main memory. Visually inspecting the surfaces shown
in Figure 4.7, one can note how similar the two are. As pointed out in Section 4.3,
the domain of the learned controller is larger than the original one, which can
be verified in the partition plots. We underline that the 6 regions of the pQP
NN are associated with the pQP layer L2 and that the map π̂(x) is composed of
other elements such as the linear layers and the saturation element in L4. Finally,
closed-loop simulations based on the nominal system model were performed from
different initial conditions around the origin to test the learned controller, after
which we proceeded to the embedded implementation phase.

A photo of the Buck converter prototype designed and assembled in the Automatic
Control Laboratory at EPFL is shown in Figure 4.8, and its parameters are listed
in Table 4.3. The current monitoring circuit consisted of a 150mΩ shunt resistor
and a INA282 differential amplifier, whereas the output voltage was simply scaled
down by means of a voltage divider with no isolation. In order to control the
step-down converter, an STM32L476 was chosen as the embedded platform: the
MCU runs at 80 MHz, it has a 32-bit RISC architecture and two independent
12-bit ADC channels. The firmware was written in an interrupt-driven, bare metal
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fashion and was triggered at 10 kHz. To avoid using raw measurements and also
to filter noise, the ADCs were operated at a faster pace and 5 consecutive readings
were averaged before being sent to the pQP NN routine. Only integers were used
to encode all control law parameters (the polytopes and feedback gains) and the
direct memory access peripheral was activated to link the ADC blocks directly
to memory. As the PWA description of the pQP layer only featured 6 regions, a
simple sequential search was employed. All these steps were needed to ensure that
all instructions could be executed within the 100µs time slot.

The natural open-loop start-up transient is reported in Figure 4.9 (top), which
shows peaks of 7.97V and 330mA, corresponding respectively to overshoots of 59%
and 660%. In Figure 4.9 (middle), how the transient response was improved under
the pQP NN control law, with voltage and current peaks of 5.16V and 202mA,
respectively. By examining the yellow curves, one sees that its initial derivative
was reduces from the top to the middle oscilloscope prints, indicating a slower
flow of energy from the source to the output capacitor. This was expected as the
inductor current had to satisfy the constraints and was capped6. Yet, the output
voltage settling time was reduced from 6.73ms to 2.33ms. Lastly, we have also
examined the execution time of the controller routine, responsible for averaging
ADC samples, locating the pertinent PWA region, computing the control action
and updating the PWM peripheral with the new duty cycle value. The execution
period did not show much variance and lasted between 22.0µs and 27.5µs as
shown by the blue signal in Figure 4.9 (bottom). In a practical scenario, this is
rather positive since the MCU core would not be always busy, but would have
time available to execute additional side tasks.

4.6 Conclusions and outlook

In this chapter, we put forward a novel neural network architecture featuring a
pQP layer to approximate linear MPC controllers. Similarly to the process of
computing an explicit MPC control law, a PWA description of the pQP problem
can be obtained, and its complexity can be controlled by the user and regarded as
a network hyperparameter. As a result, once the architecture is trained, a forward
pass simplifies to evaluating a chain of affine and PWA expressions, without
requiring solving any optimization problem. Additionally, we showed that the pQP
layer is a suitable inductive bias for MPC, indeed, it was shown that any linear
MPC policy can be learned exactly by the proposed network given a suitable size.

6The average dynamical model developed for the converter in Section 4.5.1 predicts the average
state values between the ON and the OFF semi-cycles, whereas the 202mA peak current reported
by the oscilloscope are absolute.
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Figure 4.7: The original explicit MPC map and its domain partition (left), and
the learned pQP NN map and its domain partition (right).

Figure 4.8: A picture of the Buck converter prototype designed and assembled in
the Automatic Control Laboratory at EPFL.
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Figure 4.9: Open-loop start-up response (top), closed-loop start-up response
(middle), and a close-up view of the closed-loop start-up response highlighting
individual switching cycles and the controller interrupt service routine (ISR)
execution time of approximately 27 µs.
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Two application examples in the domain of power electronics were presented,
showcasing the merits of the MPC learning scheme. First, through simulations,
the effects of the pQP layer size on the fitting error, memory requirements and
number of regions was investigated; and the simplified control laws were tested by
comparing closed-loop trajectories. Promising results were observed, suggesting
that complex PWA functions with thousands of regions can be fit with around
one hundred regions without a significant deterioration of the dynamical system
response. Second, a smaller-scale problem was tackled, but this time involving
a real power supply. The pQP NN was used to reduce by 90% the complexity
of the original explicit control law and was subsequently deployed on a low-cost
microcontroller. The necessary computations were carried out in under 27µs
and the transient response was substantially enhanced. Finally, our experiments
included a trajectory where a current constraint was activated and not violated by
the pQP NN approximate policy.

From a theoretical perspective, one aspect that could be researched in the future
is the link between the training cost and the worst-case approximation error. Intu-
itively, the training loss carries information between the approximation discrepancy
at the sample locations. In addition, it is known that both the ground-truth and
the approximator are continuous maps over compact sets. Therefore, with an
appropriate sampling strategy, out-of-samples error bounds could potentially be
established for the pQP NN scheme based solely on the training error. Another
direction that could be taken is to devise initialization strategies for the pQP layer.
In effect, this would amount to finding suitable dual problems that approximate
well the MPC dual while being smaller in size. The envisioned advantage is a
faster convergence of the network to better solutions.

From a practical viewpoint, we see at least two possible paths to be explored. One
concerns the advantages of adopting the pQP NN over a generic deep network
(DNN) with ReLU activation functions. We suspect DNNs to require in general a
large number of neurons and to result in a final map with a considerably larger
number of regions and kinks, whereas we expect our scheme to be more economical.
Second, we strongly believe that the problem of approximating mixed-integer
MPC problems deserves more attention. In particular, users of the so-called
finite-set MPC formulation (Karamanakos and Geyer, 2019) that has become
popular in recent years, have often had to restrict their prediction horizons to one
for computational reasons (Kim et al., 2015). We suspect that modern classifiers
could be employed to efficiently learn the optimal control actions from a discrete
set in long horizon formulations, unlocking important performance gains.
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4.7 Appendix

As mentioned in Section 4.1, a fair number of linear MPC simplification techniques
exists, most of which were proposed in the late 2000s and early 2010s. Our goal
in this appendix is to compare the pQP NN learning strategy with the methods
implemented in the MPT toolbox (Herceg et al., 2013) and that can be easily
accessed through the simplify() function. The reader is referred to the MPT
documentation for details on each method and the associated publications. Herein
we will adopt an user’s perspective and simply apply each of them.

First, consider the MPC formulation used in our experimental investigation (Sec-
tion 4.5.1), which has a PWA form π(x) composed of 70 regions. Four different
simplification techniques were applied to π(x) and the resulting number of regions
was counted. Additionally, a grid of 6’561 points was laid on the domain to collect
new state-control pairs and compute an average mean squared validation error.
The results are displayed in Table 4.4 and are compared to the pQP NN with
nz = 3 shown in Figure 4.9. The clipping method returned a controller with less
than haft of the original complexity, but with comparatively high validation error.
The greedy strategy lead to a map with only 20 regions and virtually no validation
error. The last three approaches could be considered as equally competitive since
they delivered maps with a low number of regions and low validation error.

Next, the MPC formulation was modified with weight matrices Q = diag(1, 1),
R = 100 and a horizon of N =100. In this case, the explicit MPC controller π(x)
had 189 regions. This second batch of results is displayed in Table 4.5. As can be
seen, most of the MPT techniques failed to simplify π(x) and essentially preserved
the original number of regions, hence the low validation error. The fitting
approach was the only one able to significantly reduce the map complexity while
attaining a good fit. The pQP NN, on the other hand, lead to a PWA function
with the same 5 partitions and less than half of the validation error when compared
to the fitting scheme, although in the same order of magnitude.

From our numerical experiments, we have observed that some simplification
schemes rely on features that are often observed in simplified case studies such as
clear saturation regions, or neighboring parts sharing the same affine gains. On the
other hand, the pQP NN is a more general approximator that does not explicitly
make use of that information. As a result, the pQP NN tends to return good
results in a large number of cases, whereas the specialized techniques sometimes
work well, but fail in other situations. Nevertheless, it is fair to mention that
training a single pQP network took around 30 minutes, whereas executing any of
the simplify() methods, less than 30 seconds.
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Table 4.4: Complexity reduction results for an explicit MPC control law π(x) with
70 regions.

MPT method num. regions validation error
clipping 25 1.49 10−4

greedy 20 < 10−20

separation 7 < 10−20

fitting 5 3.03 10−8

pQP NN 6 6.07 10−5

Table 4.5: Complexity reduction results for an explicit MPC control law π(x) with
189 regions.

MPT method num. regions validation error
clipping 187 6.31 10−8

greedy 183 < 10−20

separation 187 < 10−20

fitting 5 3.71 10−4

pQP NN 5 1.75 10−4
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A Elements of analysis and geom-
etry

For a comprehensive presentation of the concepts, the reader os referred to Searcóid
(2002) and Pugh (2002).

All vector spaces herein are defined over the field of real numbers R.

Definition 6. (Metric space) A metric space is a vector space (V,+,×) equipped
with a map d(·, ·) : V × V → R called a metric satisfying

(i) d(v, v) ≥ 0 (A.1)
(ii) d(v, w) = 0⇔ v = w (A.2)

(iii) d(v, w) = d(w, v) (A.3)
(iv) d(v, w) ≤ d(v, z) + d(z, w) (A.4)

for any v, w, z ∈ V .

For simplicity, we write (V, d) instead of (V,+,×, d).

Definition 7. (Convergent sequence) Given a metric space (V, d), a sequence
{xn}n∈N in V is said to converge to an element x ∈ V if

∀ε > 0 : ∃N ∈ N : ∀n ≥ N : d(xn, x) < ε (A.5)

Convergent sequences are usually written limn→∞ xn = x or more simply xn → x.
Moreover, sequences cannot converge to two or more points.

Definition 8. (Cauchy sequence) Given a metric space (V, d), a sequence
{xn}n∈N in V is said to be Cauchy if

∀ε > 0 : ∃N ∈ N : ∀n,m ≥ N : d(xn, xm) < ε (A.6)
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Cauchy sequences are a superset of convergent sequences.

Definition 9. (Complete space) A metric space is (V,+,×, d) is said to be
complete if every Cauchy sequence {xn}n∈N converges to an element x ∈ V .

Definition 10. (Normed space) A normed space is a vector space (V,+,×)
equipped with a map ‖ · ‖ : V → R called a norm satisfying

(i) ‖v‖ ≥ 0 (A.7)
(ii) ‖v‖ = 0⇔ v = 0 (A.8)

(iii) ‖αv‖ = |α| ‖v‖ (A.9)
(iv) ‖v + w‖ ≤ ‖v‖+ ‖w‖ (A.10)

for any v, w ∈ V and any α ∈ R.

Metrics can be defined via norms through d(x, y) := ‖x− y‖. As a result, every
normed space is a metric space.

Definition 11. (Banach space) A normed space (V, ‖ · ‖) is called a Banach
space if it is complete.

Definition 12. (Inner-product space) An inner-product space is a vector space
(V,+,×) equipped with a map 〈·, ·〉 : V ×V → R called an inner-product satisfying

(i) 〈v, w〉 = 〈w, v〉 (A.11)
(ii) 〈αv + βw, z〉 = α〈v, z〉+ β〈w, z〉 (A.12)

(iii) 〈v, v〉 ≥ 0 (A.13)
(iv) 〈v, v〉 = 0⇔ v = 0 (A.14)

for any v, w, z ∈ V and any α, β ∈ R.

Norms can be defined via inner-products through ‖x‖ :=
√
〈x, x〉. As a result,

every inner-product space is also a normed space.

Definition 13. (Hilbert space) An inner-product space (V, 〈·, ·〉) is called a
Hilbert space if it is complete.

Definition 14. (Bounded linear operator) Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be
two Banach spaces. A map A : V 7→W is said to be a bounded linear operator if

sup
v∈V \{0}

‖Av‖W
‖v‖V

<∞ (A.15)
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Definition 15. (Operator norm) Let A : V 7→W be a bounded linear operator.
The operator norm is defined as

‖A‖ := sup
v∈V \{0}

‖Av‖W
‖v‖V

(A.16)

Definition 16. (Pointwise convergence) Let X,Y be two metric spaces and
{fn}n∈N be a sequence of functions where fn : X → Y for all n. The sequence is
said to converge to a function f : X → Y if for every x ∈ X

lim
n→∞

fn(x) = f(x) (A.17)

The example below, taken from (Berlinet and Thomas-Agnan, 2011, §1), highlights
an issue one has to pay attention to when working with spaces of functions.

Example 1. (Convergence does not imply pointwise convergence) Let P
be the vector space of all polynomials over [0, 1] and endow it with the norm

‖f‖P =
(∫ 1

0
|f(x)|2dx

)1/2
(A.18)

The sequence {pn}n∈N, pn(x) = xn converges to the zero function since

lim
n→∞

‖pn − 0‖P = lim
n→∞

(∫ 1

0
x2ndx

)1/2
(A.19)

= lim
n→∞

1√
2n+ 1

(A.20)

= 0 (A.21)

and yet pn(1) = 1,∀n, i.e., |pn(x)− 0(x)|9 0.

Definition 17. (Span) Let X be a vector space and B ⊆ X be a subset of it.
The span of B is defined as the set

spanB =
{

n∑
i=1

λibi |λi ∈ R, bi ∈ B,n ∈ N
}

(A.22)

Definition 18. (Linear independence) Let X be a vector space and B ⊆ X
be a subset of it. B is said to be linearly independent if for every finite subset
{b}ni=1 ⊆ B, ∑n

i=1 λibi = 0 ⇐⇒ λ1 = · · · = λn = 0.

Definition 19. (Hamel basis) Let X be a vector space and B ⊆ X. B is called
a Hamel basis for X if B is linearly independent and spanB = X.

Proposition 16. Every vector space has a Hamel basis.
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Proposition 17. All Hamel bases of a vector space have the same cardinality.

The concept of a Hamel basis is aligned with the more specific concept of a “basis”
in finite-dimensional vector spaces.

Definition 20. (Dimension of a vector space) The dimension of a vector
space denoted dimX is the cardinality of any Hamel basis B of X. If any B is
not finite, X is said to be infinite-dimensional.

Proposition 18. Let A ∈ Rd×d be an invertible matrix, B ∈ Rd and c ∈ R. The
following identity holds

[
A B

B> c

]−1

=

A−1 + 1
dA
−1BB>A−1 −1

dA
−1B

−1
dB
>A−1 1

d

 (A.23)

where d = c−B>A−1B.

Definition 21. (Polyhedron) A polyhedron P ⊆ Rn is a set P = {x ∈
Rn|pi(x) ≤ 0, i = 1, . . . , nP } with nP <∞ and pi(x) being are affine functions.

Definition 22. (Polytope) A polytope P ⊂ Rn is a bounded polyhedron.

Definition 23. (Polyhedral projection) Let P ⊂ Rn be a polyhedron described
by {x ∈ Rn |Hx ≤ h} for some H ∈ Rn×m and h ∈ Rm. The projection of a point
z ∈ Rn onto P is defined as the vector p? ∈ Rn

p? = arg min
p∈Rn

‖p− z‖22 (A.24)

subj. to Hp ≤ h

and it is usually denoted as ProjP (x).
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