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Abstract
Non-convex constrained optimization problems have become a powerful framework for modeling
a wide range of machine learning problems, with applications in k-means clustering, large-
scale semidefinite programs (SDPs), and various other tasks. As the performance of these
methods on real-world tasks has shown promising results, the need to develop efficient algorithms
and understand their theoretical properties has become increasingly important. Augmented
Lagrangian methods provide strong tools for solving constrained problems by breaking them
down into a sequence of relatively easier unconstrained subproblems. Theoretical properties of
these methods have been extensively studied for problems where both the objective function and
constraints are convex. Additionally, there have been efforts to provide convergence guarantees
to the first-order stationary points of constrained problems when only the objective function
is non-convex. However, the scenario in which the objective function and constraints are both
non-convex has yet to be sufficiently explored. This thesis is dedicated to the development and
theoretical analysis of algorithms that are grounded in the Augmented Lagrangian method, with
an emphasis on efficiency and practicality.
First, we introduce a generic inexact Augmented Lagrangian framework that enables the use of
either first-order or second-order subsolvers in the subproblems to attain convergence guarantees
for the first (or second) order stationary points of the original constrained problem. This is
accomplished with an algorithm that can be implemented practically. The success of the algorithm
relies on a verifiable geometric regularity condition. We showcase the effectiveness of the
algorithm via a range of numerical examples, including k-means clustering and `∞ image
denoising problem that incorporates a generative adversarial network (GAN) prior to counteract
adversarial examples.
Next, we direct our attention to a more specialized algorithm aimed at solving semidefinite
programming (SDP) problems by factorizing the decision variable. The resulting optimization
problems are inherently non-convex and nonlinear. We obtain the rate of convergence with an
augmented Lagrangian method which combines aspects of both linearized and inexact augmented
Lagrangian methods.
Finally, we present a linearized alternating direction method of multipliers (ADMM) framework
that is more practical and requires only two consecutive proximal gradient steps on the primal
variables and a gradient ascent step in the dual. This framework is designed to address the
increasingly important problem of minimizing two sets of variables with a separable non-convex
composite objective that has nonlinear constraints. Our analysis enables us to recover known
convergence rates with a single loop algorithm, which is less complex than the inexact Augmented
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Abstract

Lagrangian variants. Furthermore, our framework accommodates the linearized augmented
Lagrangian as a special case. The numerical evidence on various machine learning tasks,
including causal learning, clustering and maximum cut problems, illustrates that the proposed
algorithm is versatile, scalable and accurate while requiring minimal tuning.

Key words: non-convex optimization, nonlinearly constrained optimization, SDPs, augmented
Lagrangian methods, first-order methods, practical algorithms, KKT points.
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Résumé
Les problèmes d’optimisation non convexe sous contrainte sont devenus un outil puissant pour
modéliser un large éventail de problèmes d’apprentissage automatique, avec des applications
dans le partitionnement k-moyennes, les programmes semi-définis (SDP) à grande échelle et
diverses autres tâches. Puisque les performances de ces méthodes sur des tâches réelles ont
montré des résultats prometteurs, la nécessité de développer des algorithmes efficaces et de
comprendre leurs propriétés théoriques est devenue de plus en plus importante. Les méthodes de
Lagrangien augmenté fournissent des moyens puissants pour résoudre des problèmes contraints
en les décomposant en une séquence de sous-problèmes non-contraints plus faciles à résoudre. Les
propriétés théoriques de ces méthodes ont été largement étudiées pour les problèmes où la fonction
objectif et les contraintes sont convexes. En outre, des efforts ont été déployés pour fournir des
garanties de convergence aux points stationnaires du premier ordre des problèmes contraints
lorsque seule la fonction objectif est non convexe. Cependant, le scénario dans lequel la fonction
objective et les contraintes sont toutes deux non-convexes n’a pas encore été suffisamment exploré.
Cette thèse est consacrée au développement et à l’analyse théorique d’algorithmes basés sur la
méthode du lagrangien augmenté, en mettant l’accent sur l’efficacité et la praticité.
Tout d’abord, nous présentons une méthode générique de Lagrangien augmenté inexact qui permet
l’utilisation de solveurs du premier ou du second ordre dans les sous-problèmes pour obtenir des
garanties de convergence aux points stationnaires du premier (ou du second) ordre du problème
contraint d’origine. Cela est réalisé avec un algorithme qui peut être implémenté en pratique.
Le succès de l’algorithme repose sur une condition de régularité géométrique vérifiable. Nous
démontrons l’efficacité de l’algorithme à l’aide d’une série d’exemples numériques, notamment
le partitionnement k-moyennes et le problème de débruitage d’image `∞ qui utilise un réseau
antagoniste génératif (GAN) comme a priori afin de contrecarrer les exemples contradictoires
(adversarial examples).
Ensuite, nous nous intéressons à un algorithme plus spécialisé visant à résoudre les problèmes
de programmation semi-définie (SDP) en factorisant la variable de décision. Les problèmes
d’optimisation qui en résultent sont intrinsèquement non convexes et non linéaires. Nous obtenons
un taux de convergence avec une méthode de Lagrangien augmenté qui combine des aspects des
méthodes de Lagrangien augmenté linéarisées et inexactes.
Enfin, nous présentons une linéarisation de la méthode des multiplicateurs de direction alternée
(ADMM) qui est plus pratique et ne nécessite que deux étapes consécutives de gradient proximal
sur les variables primales et une étape d’ascension de gradient dans le dual. Cette méthode est
conçue pour traiter le problème de plus en plus important de la minimisation de deux ensembles
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Résumé

de variables avec un objectif composite non convexe séparable qui a des contraintes non linéaires.
Notre analyse nous permet de retrouver les taux de convergence connus avec un algorithme
à boucle unique, qui est moins complexe que les variantes inexactes du lagrangien augmenté.
En outre, notre méthode présente comme cas particulier le Lagrangien augmenté linéarisé.
Les résultats numériques obtenus sur diverses tâches d’apprentissage automatique, y compris
l’apprentissage causal, le partitionnement et les problèmes de coupe maximum, montrent que
l’algorithme proposé est polyvalent, évolutif et précis, tout en nécessitant un réglage minimal.

Mots clés : optimisation non convexe, optimisation contrainte non linéaire, programmes semi-
définis, méthodes de Lagrangien augmenté, méthodes de premier ordre, algorithmes pratiques,
points KKT.
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1 Introduction

Non-convex optimization has gained popularity over the past two decades due to its ability to
effectively model complex real world scenarios in the field of deep learning and machine learning.
As a result, there has been a growing need to develop effective and practical algorithms capable of
solving these types of problems. A considerable body of research has concentrated on non-convex
optimization problems without any constraints or featuring constraints that are relatively simple
to handle [TH12, Zei12, KB14, Doz16, RKK19, CO19]. However, in some cases, it becomes
essential to incorporate non-convex constraints along with non-convex objectives to accurately
capture the complexities of learning tasks and improve the overall model. For instance, due to
their data-driven nature, machine learning models might produce biased results towards some
underrepresented groups and therefore cause discrimination. Optimizing these models with
non-convex fairness constraints [CJG+19] is one way to mitigate this problem.

Semidefinite programming (SDP) is a type of optimization problem that involves minimizing a
linear objective function subject to linear constraints and a semidefinite constraint. In discrete
optimization, some of the most powerful relaxations for important problems such as maximum-
cut [GW95] and community detection [ABKK17] rely on semidefinite programming. SDPs
also provide a powerful framework for achieving certifiable robustness in deep neural networks
[FMP20]. While algorithms designed to solve SDPs to arbitrary accuracy within polynomial
time offer promising theoretical results, they often face significant challenges when it comes
to practical implementation, particularly in terms of scalability. As the size of the problem
grows larger, both the computational time and memory requirements for solving SDPs can
become prohibitively high, making it difficult to work with these algorithms in practice. This
highlights the ongoing need for developing more efficient and scalable approaches to solving
SDPs [YTF+21, YUTC17], particularly in the context of larger and more complex optimization
problems. The Burer-Monteiro (BM) factorization is a technique that can be used to efficiently
solve certain types of SDP problems, by approximating the semidefinite constraint with a low-
rank matrix. This technique has been shown to be effective in solving large-scale SDP problems
in machine learning [BM03b, BVB16] and other fields. However, the optimization problem
arising from BM factorization is inherently challenging, as it involves both a non-convex objective
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function and non-convex constraints. Therefore, it is essential to devise approaches with provable
guarantees to effectively address these complex optimization problems.

While there are numerous algorithms available for addressing these more complex class of
problems, it is crucial to consider factors such as efficiency, scalability, and ease of implementation
to ensure that they can be effectively utilized in real-world situations. A substantial portion of
these algorithms, despite providing theoretical convergence guarantees, suffer from impracticality
or depend on assumptions that prove challenging to verify [BST18, CGT18, BGM+16]. Finding
the right balance between these factors remains an active area of research in the field of nonlinear
optimization. Therefore, we pose the following research question:

Is it possible to design algorithms which are both practical and provable with verifiable
assumptions?

In this thesis, we answer this affirmatively and develop various algorithms for non-convex
constrained optimization which are based on Augmented Lagrangian method.

1.1 Problem formulation

We consider the following optimization problem,

min
x∈Rd

f (x)+ g (x) s.t. A(x) = 0, (1.1)

where f : Rd → R is a twice differentiable function whose gradient is given by ∇ f (x) ∈ Rd ;
g :Rd →R∪ {∞} is a proximal-friendly, (possibly) non-differentiable, proper, closed and convex
function; A :Rd →Rm is a twice-differentiable mapping whose Jacobian is denoted as DA(x) ∈
Rm×d . We additionally assume f and A satisfies the smoothness property such that

‖∇ f (x)−∇ f (x ′)‖ ≤λ f ‖x −x ′‖, ‖DA(x)−DA(x ′)‖ ≤λA‖x −x ′‖, (1.2)

for λ f ,λA ≥ 0 and every x, x ′ ∈Rd .

Solving non-convex optimization problems with constraints presents a persistent challenge in
the field of machine learning. When the constraints are either convex or linear, several works
have explored and developed various algorithms for solving this class of problems. Some of
these algorithms include primal-dual algorithms [HLR16, HH19, ZYZ22], inexact augmented
Lagrangian methods [Xu21], and trust-region approaches [CGT11], among others.

2



1.1. Problem formulation

1.1.1 Augmented Lagrangian method

Augmented Lagrangian method is a classical algorithm, which first appeared in [Hes69, Pow69]
and extensively studied afterwards in [Ber82, BM14]. The use of Augmented Lagrangian methods
holds a prominent place in the field of optimization, as they effectively address constrained
optimization problems by melding the strengths of the Lagrangian method and penalty methods.
The combination of these techniques results in more accurate and efficient solutions to complex
problems in a variety of disciplines, including engineering [LFJ11], economics, and science. The
Augmented Lagrangian approach integrates the penalty function into the Lagrangian, leading to
increased stability and convergence in iterative algorithms. This robustness enables the handling
of non-convex and non-differentiable constraints, making it a versatile and effective tool in
addressing real-world challenges. Additionally, these methods have also been successful in
decomposing large-scale problems into smaller subproblems, facilitating parallel computing and
solving problems in distributed systems [CDZ15]. For solving (1.1), ALM suggests solving the
problem

min
x

max
y

Lβ(x, y)+ g (x), (1.3)

where, for penalty weight β> 0, Lβ is the corresponding augmented Lagrangian, defined as

Lβ(x, y) := f (x)+〈A(x), y〉+ β

2
‖A(x)‖2. (1.4)

The minimax formulation in (1.3) naturally suggests the following algorithm for solving (1.1):

xk+1 ∈ argmin
x

Lβ(x, yk )+ g (x), (1.5)

yk+1 = yk +σk A(xk+1),

where the dual step sizes are denoted as {σk }k . However, computing xk+1 above requires solving
the non-convex problem (1.5) to optimality, which is typically intractable. Instead, it is often
easier to find an approximate first- or second-order stationary point of (1.5).

Hence, we argue that by gradually improving the stationarity precision and increasing the penalty
weight β above, we can reach to a stationary point of the main constrained problem, as detailed
in Section 2.3.

1.1.2 Notations

We use the notations 〈·, ·〉 and ‖ ·‖ for the standard inner product and norm on Rd , respectively.
For matrices, ‖·‖ and ‖·‖F denote the spectral and Frobenius norms, respectively. For the convex
function g :Rd →R, the subdifferential set at x ∈Rd is denoted by ∂g (x) and we will occasionally
use the notation ∂g (x)/β = {z/β : z ∈ ∂g (x)}. When presenting iteration complexity results,
we often use Õ(·) which suppresses the logarithmic dependencies. Gradient of differentiable
f : Rd → R at x is denoted by ∇ f (x). For an operator A : Rd → Rm with components {Ai }m

i=1,

3
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D A(x) ∈Rm×d denotes the Jacobian of A, where the i th row of D A(x) is the vector ∇Ai (x) ∈Rd .
Given x ∈ Rd and γ> 0, the proximal operator, Pγ,g : Rd → Rd , associated to g takes the form
Pγ,g (x) = argmin

y
g (y)+ 1

2γ‖x − y‖2. We denote δX : Rd → R as the indicator function of a set

X ⊂Rd . An integer interval is denoted by [k0 : k1] = {k0, · · · ,k1} for integers k0 ≤ k1.

1.1.3 Optimality conditions

First-order necessary optimality conditions for (1.1) are well-studied. Indeed, x ∈Rd is a first-
order stationary point of (1.1) if there exists y ∈Rm such that

−∇xLβ(x, y) ∈ ∂g (x), A(x) = 0, (1.6)

which is in turn the necessary optimality condition for (1.3). Inspired by this, we say that x is an
(ε f ,β) first-order stationary point of (1.3) if there exists a y ∈Rm such that

dist(−∇xLβ(x, y),∂g (x)) ≤ ε f , ‖A(x)‖ ≤ ε f , (1.7)

for ε f ≥ 0. In light of (1.7), a metric for evaluating the stationarity of a pair (x, y) ∈Rd ×Rm is

dist
(−∇xLβ(x, y),∂g (x)

)+‖A(x)‖, (1.8)

which we use as the first-order stopping criterion. As an example, for a convex set X ⊂ Rd ,
suppose that g = δX is the indicator function on X . Let also TX (x) ⊆Rd denote the tangent cone
to X at x, and with PTX (x) :Rd →Rd we denote the orthogonal projection onto this tangent cone.
Then, for u ∈Rd , it is not difficult to verify that

dist
(
u,∂g (x)

)= ‖PTX (x)(u)‖. (1.9)

When g = 0, a first-order stationary point x ∈Rd of (2.1) is also second-order stationary if

λmin(∇xxLβ(x, y)) ≥ 0, (1.10)

where ∇xxLβ is the Hessian of Lβ with respect to x, and λmin(·) returns the smallest eigenvalue
of its argument. Analogously, x is an (ε f ,εs ,β) second-order stationary point if, in addition to
(1.7), it holds that

λmin(∇xxLβ(x, y)) ≥−εs , (1.11)

for εs ≥ 0. Naturally, for second-order stationarity, we use λmin(∇xxLβ(x, y)) as the stopping
criterion.

Gradient mapping (as in [GLZ16]), defined below, plays an important role in our convergence
analysis. However, by itself, it does not correspond to any standard measure of stationarity for
the problem (1.1) as explained in the sequel.

Definition 1. (Gradient mapping) Given y ∈ Rd and γ > 0, the gradient mapping Gβ,γ(·; y) :
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Rd →Rd takes x ∈Rd to

Gβ,γ(x, y) = x −x+

γ
, (1.12)

where x+ = Pγ,g (x −γ∇xLβ(x, y)). If we set g ≡ 0 in (1.1), the gradient mapping reduces to
Gβ,γ(x, y) =∇xLβ(x, y).

Note also from optimality conditions of the proximal mapping that

Gβ,γ(x, y) ∈∇ f (x)+DA(x)> ỹ +∂g (x+), (1.13)

where ỹ = y +βA(x). Here, f (·)+DA(·)> ỹ and ∂g (·) are calculated at different points. To resolve
this issue, we propose to use the displaced gradient mapping as a meaningful metric for showing
approximate stationarity

�Gβ,γ(x+, ỹ) :=Gβ,γ(x, y)+∇ f (x+)−∇ f (x)+ (
DA(x+)−DA(x)

)> ỹ .

Therefore, a linear combination of ‖�Gβ,γ(x+, ỹ)‖2 and the feasibility gap ‖A(x+)‖2 is a natural
metric to measure the first-order stationarity of a pair (x+, ỹ) in problem (1.1).

1.2 Contributions and organization

In this dissertation, we focus on revealing verifiable assumptions on the constraint set for
problems of the form (1.1) to be able to provide convergence guarantees to the practical and
implementable algorithms we propose. Our goal is to bridge the gap between theory and practice.
To achieve this goal:

In Chapter 2,

• We propose a practical inexact augmented Lagrangian method (iALM) for nonconvex
problems with nonlinear constraints.

• We characterize the total computational complexity of our method subject to a verifiable
geometric condition, which is closely related to the Polyak-Lojasiewicz and Mangasarian-
Fromowitz conditions.

• In particular, when a first-order solver is used for the inner iterates, we prove that iALM
finds a first-order stationary point with Õ (1/ε4) calls to the first-order oracle.

• If, in addition, the problem is smooth and a second-order solver is used for the inner iterates,
iALM finds a second-order stationary point with Õ (1/ε5) calls to the second-order oracle,
which matches the known theoretical complexity result in the literature.

• We also provide strong numerical evidence on large-scale machine learning problems, in-
cluding the Burer-Monteiro factorization of semidefinite programs, and a novel nonconvex
relaxation of the standard basis pursuit template.

5



Introduction

• For these examples, we also show how to verify our geometric condition.

In Chapter 3,

• We consider a canonical nonlinear-constrained nonconvex problem arising from factorizing
the decision variable in semidefinite programming examples (SDPs).

• We propose a simple primal-dual splitting scheme that provably converges to a stationary
point of the non-convex problem.

• We achieve this desideratum via an adaptive and inexact augmented Lagrangian method.

• The new algorithm features a slow O (1/ε6) convergence rate, which it counteracted by its
cheap per-iteration complexity. We provide numerical evidence on large-scale machine
learning problems, modeled typically via semidefinite relaxations.

In Chapter 4,

• We study an increasingly important problem of minimizing two sets of variables with the
separable nonconvex composite objective with nonlinear constraints.

• We introduce a linearized alternating direction method of multipliers (ADMM) framework
that only requires two consecutive proximal gradient steps on the primal variables and a
gradient ascent step in the dual.

• The proposed scheme achieves ε−first order stationarity by reducing the feasibility and
gradient mapping at a rate Õ ( 1

ε4 ) subject to a regularity condition on the constraints.

• We also establish the same complexity result to ε approximate KKT points of the con-
strained problem. Our analysis allows us to recover the known convergence rates with a
single loop algorithm, which is simpler than the inexact Augmented Lagrangian variants.

• Our framework also handles the linearized augmented Lagrangian as a special case. Nu-
merical evidence on large-scale nonconvex machine learning problems (such as continuous
relaxation of causal learning problem, SDP relaxation of clustering and Max-Cut problems)
show that the algorithm is scalable and accurate while requiring very little tuning.

In short, this thesis explores the development of efficient non-convex optimization methods based
on Augmented Lagrangian function, which are well-suited for machine learning applications.
We address the challenges of computational complexity and convergence while demonstrating
effectiveness on real-world tasks.
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2 iALM for Non-convex Problems with
Nonlinear constraints

In this chapter, we propose a practical inexact augmented Lagrangian method (iALM) for non-
convex problems with nonlinear constraints. We characterize the total computational complexity
of our method subject to a verifiable geometric condition, which is closely related to the Polyak-
Lojasiewicz and Mangasarian-Fromowitz conditions.

In particular, when a first-order solver is used for the inner iterates, we prove that iALM finds
a first-order stationary point with Õ (1/ε4) calls to the first-order oracle. If, in addition, the
problem is smooth and a second-order solver is used for the inner iterates, iALM finds a second-
order stationary point with Õ (1/ε5) calls to the second-order oracle, which matches the known
theoretical complexity result in the literature.

We also provide strong numerical evidence on large-scale machine learning problems, including
the Burer-Monteiro factorization of semidefinite programs, and a novel non-convex relaxation
of the standard basis pursuit template. For these examples, we also show how to verify our
geometric condition.

2.1 Introduction
We study the non-convex optimization problem

min
x∈Rd

f (x)+ g (x) s.t. A(x) = 0, (2.1)

where f : Rd → R is a continuously-differentiable non-convex function and A : Rd → Rm is a
nonlinear operator. We assume that g : Rd → R∪ {∞} is a proximal-friendly convex function
[PB+14].

A host of problems in computer science [KN11, Lov03, ZKRW98], machine learning [MNS15,
SSGB07], and signal processing [Sin11, SS11] naturally fall under the template (2.1), including
max-cut, clustering, generalized eigenvalue decomposition, as well as the quadratic assignment
problem (QAP) [ZKRW98].
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Chapter 2. iALM for Non-convex Problems with Nonlinear constraints

To solve (2.1), we propose an intuitive and easy-to-implement augmented Lagrangian algorithm,
and provide its total iteration complexity under an interpretable geometric condition. Before we
elaborate on the results, let us first motivate (2.1) with an application to semidefinite programming
(SDP):

Vignette: Burer-Monteiro splitting.A powerful convex relaxation for max-cut, clustering, and
many others is provided by the trace-constrained SDP

min
X∈Sd×d

〈C , X 〉 s.t. B(X ) = b, tr(X ) ≤α, X º 0, (2.2)

where C ∈Rd×d , X is a positive semidefinite d ×d matrix, and B :Sd×d →Rm is a linear operator.
If the unique-games conjecture is true, the SDP in equation (2.2) obtains the best possible
approximation for the underlying discrete problem [Rag08].

Since d is often large, many first- and second-order methods for solving such SDP’s are immedi-
ately ruled out, not only due to their high computational complexity, but also due to their storage
requirements, which are O (d 2).

A contemporary challenge in optimization is therefore to solve SDPs using little space and in a
scalable fashion. The recent homotopy conditional gradient method, which is based on linear
minimization oracles (LMOs), can solve (2.2) in a small space via sketching [YFLC18]. However,
such LMO-based methods are extremely slow in obtaining accurate solutions.

A different approach for solving (2.2), dating back to [BM03b, BM05], is the so-called Burer-
Monteiro (BM) factorization X = UU>, where U ∈ Rd×r and r is selected according to the
guidelines in [Pat98, Bar95], which is tight [WW18]. The BM factorization leads to the following
non-convex problem in the template (2.1):

min
U∈Rd×r

〈C ,UU>〉 s.t. B(UU>) = b, ‖U‖2
F ≤α, (2.3)

The BM factorization does not introduce any extraneous local minima [BM05]. Moreover, [BVB16]
establishes the connection between the local minimizers of the factorized problem (2.3) and the
global minimizers for (2.2). To solve (2.3), the inexact Augmented Lagrangian method (iALM)
is widely used [BM03b, BM05, KSP07], due to its cheap per iteration cost and its empirical
success.

Every (outer) iteration of iALM calls a solver to solve an intermediate augmented Lagrangian
subproblem to near stationarity. The choices include first-order methods, such as the proxi-
mal gradient descent [PB+14], or second-order methods, such as the trust region method and
BFGS [NW06].1

Unlike its convex counterpart [NNTD14, LM16, Xu17b], the convergence rate and the complexity

1BFGS is in fact a quasi-Newton method that emulates second-order information.
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of iALM for (2.3) are not well-understood, see Section 2.5 for a review of the related literature.
Indeed, addressing this important theoretical gap is one of the contributions of our work. In
addition,

• We derive the convergence rate of iALM to first-order optimality for solving (2.1) or second-
order optimality for solving (2.1) with g = 0, and find the total iteration complexity of iALM
using different solvers for the augmented Lagrangian subproblems. We provide an extensive
comparison with the existing complexity results in optimization, see Section 2.5.

• Our iALM framework is future-proof in the sense that different subsolvers can be substituted.

• We propose a geometric condition that simplifies the algorithmic analysis for iALM, and clarify
its connection to well-known Polyak-Lojasiewicz [KNS16] and Mangasarian-Fromovitz [Ber82]
conditions. We also verify this condition for key problems in Sections 2.10 and 2.11.

2.2 Preliminaries
Smoothness.We assume smooth f :Rd →R and A :Rd →Rm ; i.e., there exist λ f ,λA ≥ 0 s.t.

‖∇ f (x)−∇ f (x ′)‖ ≤λ f ‖x −x ′‖, ‖D A(x)−D A(x ′)‖ ≤λA‖x −x ′‖, ∀x, x ′ ∈Rd . (2.4)

Smoothness lemma.This next result controls the smoothness of Lβ(·, y) for a fixed y . The proof
is standard but nevertheless is included in Section 2.9 for completeness.

Lemma 2.2.1 (smoothness). For fixed y ∈Rm and ρ,ρ′ ≥ 0, it holds that

‖∇xLβ(x, y)−∇xLβ(x ′, y)‖ ≤λβ‖x −x ′‖, (2.5)

for every x, x ′ ∈ {x ′′ : ‖x ′′‖ ≤ ρ,‖A(x ′′)‖ ≤ ρ′}, where

λβ ≤λ f +
p

mλA‖y‖+ (
p

mλAρ
′+dλ′2

A )β=:λ f +
p

mλA‖y‖+λ′′(A,ρ,ρ′)β. (2.6)

Above, λ f ,λA were defined in (2.4) and

λ′
A := max

‖x‖≤ρ
‖D A(x)‖. (2.7)

2.3 Algorithm

To solve the equivalent formulation of (2.1) presented in (1.3), we propose the inexact ALM
(iALM), detailed in Algorithm 1. At the k th iteration, Step 2 of Algorithm 1 calls a solver that
finds an approximate stationary point of the augmented Lagrangian Lβk (·, yk ) with the accuracy
of εk+1, and this accuracy gradually increases in a controlled fashion. The increasing sequence
of penalty weights {βk }k and the dual update (Steps 4 and 5) are responsible for continuously
enforcing the constraints in (2.1). The appropriate choice for {βk }k will be specified in Corrollary
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Chapter 2. iALM for Non-convex Problems with Nonlinear constraints

Sections 2.7.1 and 2.7.2.

The particular choice of the dual step sizes {σk }k in Algorithm 1 ensures that the dual variable yk

remains bounded.

Algorithm 1 Inexact ALM
Input: Non-decreasing, positive, unbounded sequence {βk }k≥1, stopping thresholds τ f ,τs > 0.
Initialization: Primal variable x1 ∈Rd , dual variable y0 ∈Rm , dual step size σ1 > 0.

1: for k = 1,2, . . . do
2:

1. (Update tolerance) εk+1 = 1/βk .

2. (Inexact primal solution) Obtain xk+1 ∈Rd such that

dist(−∇xLβk (xk+1, yk ),∂g (xk+1)) ≤ εk+1

for first-order stationarity

λmin(∇xxLβk (xk+1, yk )) ≥−εk+1

for second-order-stationarity, if g = 0 in (2.1).

3. (Update dual step size)

σk+1 =σ1 min
( ‖A(x1)‖ log2 2

‖A(xk+1)‖(k +1)log2(k +2)
,1

)
.

4. (Dual ascent) yk+1 = yk +σk+1 A(xk+1).

5. (Stopping criterion) If

dist(−∇xLβk (xk+1),∂g (xk+1))+‖A(xk+1)‖ ≤ τ f ,

for first-order stationarity and if also λmin(∇xxLβk (xk+1, yk )) ≥−τs for second-order
stationarity, then quit and return xk+1 as an (approximate) stationary point of (1.3).

3: end for

2.4 Convergence Rate

This section presents the total iteration complexity of Algorithm 1 for finding first and second-
order stationary points of problem (1.3). All the proofs are deferred to Section 2.8. Theorem 2.4.1
characterizes the convergence rate of Algorithm 1 for finding stationary points in the number of
outer iterations.

Theorem 2.4.1. (convergence rate) For integers 2 ≤ k0 ≤ k1, consider the interval K = [k0 :

k1], and let {xk }k∈K be the output sequence of Algorithm 1 on the interval K .2 Let also ρ :=
2The choice of k1 =∞ is valid here too.
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supk∈[K ] ‖xk‖.3 Suppose that f and A satisfy (2.4) and let

λ′
f = max

‖x‖≤ρ
‖∇ f (x)‖, λ′

A = max
‖x‖≤ρ

‖D A(x)‖, (2.8)

be the (restricted) Lipschitz constants of f and A, respectively. With ν> 0, assume that

ν‖A(xk )‖ ≤ dist

(
−D A(xk )>A(xk ),

∂g (xk )

βk−1

)
, (2.9)

for every k ∈ K . We consider two cases:

• If a first-order solver is used in Step 2, then xk is an (εk, f ,βk ) first-order stationary point
of (1.3) with

εk, f =
1

βk−1

(
2(λ′

f +λ′
A ymax)(1+λ′

Aσk )

ν
+1

)
=:

Q( f , g , A,σ1)

βk−1
, (2.10)

for every k ∈ K , where ymax(x1, y0,σ1) := ‖y0‖+c‖A(x1)‖.

• If a second-order solver is used in Step 2, then xk is an (εk, f ,εk,s ,βk ) second-order
stationary point of (1.3) with εk,s specified above and with

εk,s = εk−1 +σk
p

mλA

2λ′
f +2λ′

A ymax

νβk−1
=
ν+σk

p
mλA2λ′

f +2λ′
A ymax

νβk−1
=:

Q ′( f , g , A,σ1)

βk−1
.

(2.11)

Theorem 2.4.1 states that Algorithm 1 converges to a (first- or second-) order stationary point of
(1.3) at the rate of 1/βk , further specified in Corollary 2.4.2 and Corollary 2.4.3. A few remarks
are in order about Theorem 2.4.1.

Regularity.The key geometric condition in Theorem 2.4.1 is (2.9) which, broadly speaking,
ensures that the primal updates of Algorithm 1 reduce the feasibility gap as the penalty weight
βk grows. We will verify this condition for several examples in Sections 2.10 and 2.11.

This condition in (2.9) is closely related to those in the existing literature. In the special case
where g = 0 in (2.1), (2.9) reduces to;

‖D A(x)>A(x)‖ ≥ ν‖A(x)‖. (2.12)

3If necessary, to ensure that ρ < ∞, one can add a small factor of ‖x‖2 to Lβ in (1.4). Then it is easy to
verify that the iterates of Algorithm 1 remain bounded, provided that the initial penalty weight β0 is large enough,
supx ‖∇ f (x)‖/‖x‖ <∞, supx ‖A(x)‖ <∞, and supx ‖D A(x)‖ <∞.
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Polyak-Lojasiewicz (PL) condition [KNS16]. Consider the problem with λ f̃ -smooth objective,

min
x∈Rd

f̃ (x).

f̃ (x) satisfies the PL inequality if the following holds for some µ> 0,

1

2
‖∇ f̃ (x)‖2 ≥µ( f̃ (x)− f̃ ∗), ∀x (PL inequality)

This inequality implies that gradient is growing faster than a quadratic as we move away from the
optimal. Assuming that the feasible set {x : A(x) = 0} is non-empty, it is easy to verify that 2.12 is
equivalent to the PL condition for minimizing f̃ (x) = 1

2‖A(x)‖2 with ν=√
2µ [KNS16].

PL condition itself is a special case of Kurdyka-Lojasiewicz with θ = 1/2, see [XY17, Definition
1.1]. When g = 0, it is also easy to see that (2.9) is weaker than the Mangasarian-Fromovitz (MF)
condition in nonlinear optimization [BST18, Assumption 1]. Moreover, when g is the indicator
on a convex set, (2.9) is a consequence of the basic constraint qualification in [Roc93], which
itself generalizes the MF condition to the case when g is an indicator function of a convex set.

We may think of (2.9) as a local condition, which should hold within a neighborhood of the
constraint set {x : A(x) = 0} rather than everywhere in Rd . Indeed, the iteration count k appears
in (2.9) to reflect this local nature of the condition. Similar kind of arguments on the regularity
condition also appear in [BST18]. There is also a constant complexity algorithm in [BST18] to
reach so-called “information zone”, which supplements Theorem 2.4.1.

Penalty method.A classical algorithm to solve (2.1) is the penalty method, which is characterized
by the absence of the dual variable (y = 0) in (1.4). Indeed, ALM can be interpreted as an adaptive
penalty or smoothing method with a variable center determined by the dual variable. It is worth
noting that, with the same proof technique, one can establish the same convergence rate of
Theorem 2.4.1 for the penalty method. However, while both methods have the same convergence
rate in theory, we ignore the uncompetitive penalty method since it is significantly outperformed
by iALM in practice.

Computational complexity.Theorem 2.4.1 specifies the number of (outer) iterations that Algo-
rithm 1 requires to reach a near-stationary point of problem (1.4) with a prescribed precision
and, in particular, specifies the number of calls made to the solver in Step 2. In this sense,
Theorem 2.4.1 does not fully capture the computational complexity of Algorithm 1, as it does not
take into account the computational cost of the solver in Step 2.

To better understand the total iteration complexity of Algorithm 1, we consider two scenarios in
the following. In the first scenario, we take the solver in Step 2 to be the Accelerated Proximal
Gradient Method (APGM), a well-known first-order algorithm [GL16]. In the second scenario,
we will use the second-order trust region method developed in [CGT12]. We have the following
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two corollaries showing the total complexity of our algorithm to reach first and second-order
stationary points. Section 2.7 contains the proofs and more detailed discussion for the complexity
results.

Corollary 2.4.2 (First-order optimality). For b > 1, let βk = bk for every k. If we use APGM
from [GL16] for Step 2 of Algorithm 1, the algorithm finds an (ε f ,βk ) first-order stationary point
of (1.3), after T calls to the first-order oracle, where

T =O

(
Q3ρ2

ε4 logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε4

)
. (2.13)

For Algorithm 1 to reach a near-stationary point with an accuracy of ε f in the sense of (1.7)
and with the lowest computational cost, we therefore need to perform only one iteration of
Algorithm 1, with β1 specified as a function of ε f by (2.10) in Theorem 2.4.1. In general,
however, the constants in (2.10) are unknown and this approach is thus not feasible. Instead, the
homotopy approach taken by Algorithm 1 ensures achieving the desired accuracy by gradually
increasing the penalty weight. This homotopy approach increases the computational cost of
Algorithm 1 only by a factor logarithmic in the ε f , as detailed in the proof of Corollary 2.4.2.

Corollary 2.4.3 (Second-order optimality). For b > 1, let βk = bk for every k. We assume that

Lβ(x1, y)−min
x

Lβ(x, y) ≤ Lu , ∀β. (2.14)

If we use the trust region method from [CGT12] for Step 2 of Algorithm 1, the algorithm finds an
ε-second-order stationary point of (1.3) in T calls to the second-order oracle where

T =O

(
LuQ ′5

ε5 logb

(
Q ′

ε

))
= Õ

(
LuQ ′5

ε5

)
. (2.15)

Remark.These complexity results for first and second-order are stationarity with respect to (1.4).
We note that second order complexity result matches [CGT18] and [BGM+16]. However, the
stationarity criteria and the definition of dual variable in these papers differ from ours. We include
more discussion on this in the Section 2.7.1.

Effect of βk in 2.9.We consider two cases, when g is the indicator of a convex set (or 0), the
subdifferential set will be a cone (or 0), thus βk will not have an effect. On the other hand, when
g is a convex and Lipschitz contiunous function defined on the whole space, subdifferential set
will be bounded [Roc70, Theorem 23.4]. This will introduce an error term in 2.9 that is of the
order (1/βk). One can see that bk choice for βk causes a linear decrease in this error term. In
fact, all the examples in this paper fall into the first case.
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2.5 Related Work

ALM has a long history in the optimization literature, dating back to [Hes69, Pow69]. In the
special case of (2.1) with a convex function f and a linear operator A, standard, inexact, and
linearized versions of ALM have been extensively studied [LM16, NNTD14, TDAFC18, Xu17b].

Classical works on ALM focused on the general template of (2.1) with non-convex f and
nonlinear A, with arguably stronger assumptions and required exact solutions to the subproblems
of the form (1.5), which appear in Step 2 of Algorithm 1, see for instance [Ber14].

A similar analysis was conducted in [FS12] for the general template of (2.1). The authors
considered inexact ALM and proved convergence rates for the outer iterates, under specific
assumptions on the initialization of the dual variable. However, in contrast, the authors did not
analyze how to solve the subproblems inexactly and did not provide total complexity results with
verifiable conditions.

Problem (2.1) with similar assumptions to us is also studied in [BGM+16] and [CGT18] for
first-order and second-order stationarity, respectively, with explicit iteration complexity analysis.
As we have mentioned in Section 2.4, our second order iteration complexity result matches
these theoretical algorithms with a simpler algorithm and a simpler analysis. In addition, these
algorithms require setting final accuracies since they utilize this information in the algorithm
while our Algorithm 1 does not set accuracies a priori.

[CGT11] also considers the same template (2.1) for first-order stationarity with a penalty-type
method instead of ALM. Even though the authors show O (1/ε2) complexity, this result is obtained
by assuming that the penalty parameter remains bounded. We note that such an assumption can
also be used to improve our complexity results to match theirs.

[BST18] studies the general template (2.1) with specific assumptions involving local error bound
conditions for the (2.1). These conditions are studied in detail in [BNPS17], but their validity for
general SDPs (2.2) has never been established. This work also lacks the total iteration complexity
analysis presented here.

Another work [CMV18] focused on solving (2.1) by adapting the primal-dual method of Cham-
bolle and Pock [CP11]. The authors proved the convergence of the method and provided
convergence rate by imposing error bound conditions on the objective function that do not hold
for standard SDPs.

[BM03b, BM05] is the first work that proposes the splitting X =UU> for solving SDPs of the
form (2.2). Following these works, the literature on Burer-Monteiro (BM) splitting for the large
part focused on using ALM for solving the reformulated problem (2.3). However, this proposal
has a few drawbacks: First, it requires exact solutions in Step 2 of Algorithm 1 in theory, which
in practice is replaced with inexact solutions. Second, their results only establish convergence
without providing the rates. In this sense, our work provides a theoretical understanding of the
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BM splitting with inexact solutions to Step 2 of Algorithm 1 and complete iteration complexities.

[BKS16, PKB+16] are among the earliest efforts to show convergence rates for BM splitting,
focusing on the special case of SDPs without any linear constraints. For these specific problems,
they prove the convergence of gradient descent to global optima with convergence rates, assuming
favorable initialization. These results, however, do not apply to general SDPs of the form (2.2)
where the difficulty arises due to the linear constraints.

Another popular method for solving SDPs are due to [BMAS14, BAC16, BVB16], focusing
on the case where the constraints in (2.1) can be written as a Riemannian manifold after BM
splitting. In this case, the authors apply the Riemannian gradient descent and Riemannian
trust region methods for obtaining first- and second-order stationary points, respectively. They
obtain O (1/ε2) complexity for finding first-order stationary points and O (1/ε3) complexity for
finding second-order stationary points.

While these complexities appear better than ours, the smooth manifold requirement in these works
is indeed restrictive. In particular, this requirement holds for max-cut and generalized eigen-
value problems, but it is not satisfied for other important SDPs such as quadratic programming
(QAP), optimal power flow and clustering with general affine constraints. In addition, as noted
in [BAC16], per iteration cost of their method for max-cut problem is an astronomical O (d 6).

[Cif21] extends the approach of [BAC16] to arbitrary semidefinite programs beyond smooth
manifold assumption, possibly involving inequalities or multiple semidefinite constraints. This
work establishes the relationship between the critical points of factorized problem (2.3) and the
original formulation (2.2) for general SDPs satisfying Pataki bound [Pat98, Bar95], deriving
similar guarantees as [BAC16]. Their Theorem 1 which formalizes this connection does not
require any regularity condition. Nonetheless, the work [Cif21] is only limited to establishing the
theoretical connections and does not extend to providing a practical algorithm for solving these
problems.

Lastly, there also exists a line of work for solving SDPs in their original convex formulation, in a
storage efficient way [Nes09, YDC15, YFLC18]. These works have global optimality guarantees
by their virtue of directly solving the convex formulation. On the downside, these works require
the use of eigenvalue routines and exhibit significantly slower convergence as compared to
non-convex approaches [Jag13].

2.6 Numerical Evidence

We first begin with a caveat: It is known that quasi-Newton methods, such as BFGS and lBFGS,
might not converge for non-convex problems [Dai02, Mas04]. For this reason, we have used
the trust region method as the second-order solver in our analysis in Section 2.4, which is
well-studied for non-convex problems [CGT12]. Empirically, however, BFGS and lBGFS are
extremely successful and we have therefore opted for those solvers in this section since the
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Figure 2.1 – Clustering running time comparison.

subroutine does not affect Theorem 2.4.1 as long as the subsolver performs well in practice.

2.6.1 Clustering

Given data points {zi }n
i=1, the entries of the corresponding Euclidean distance matrix D ∈Rn×n

are Di , j =
∥∥zi − z j

∥∥2. Clustering is then the problem of finding a co-association matrix Y ∈Rn×n

such that Yi j = 1 if points zi and z j are within the same cluster and Yi j = 0 otherwise. In [PW07],
the authors provide a SDP relaxation of the clustering problem, specified as

min
Y ∈Rnxn

tr(DY ) s.t. Y 1 = 1, tr(Y ) = s, Y º 0, Y ≥ 0, (2.16)

where s is the number of clusters and Y is both positive semidefinite and has nonnegative entries.
Standard SDP solvers do not scale well with the number of data points n, since they often require
projection onto the semidefinite cone with the complexity of O (n3). We instead use the BM
factorization to solve (2.16), sacrificing convexity to reduce the computational complexity. More
specifically, we solve the program

min
V ∈Rn×r

tr(DV V >) s.t. V V >1 = 1, ‖V ‖2
F ≤ s, V ≥ 0, (2.17)

where 1 ∈Rn is the vector of all ones. Note that Y ≥ 0 in (2.16) is replaced above by the much
stronger but easier-to-enforce constraint V ≥ 0 in (2.17), see [KSP07] for the reasoning behind
this relaxation. Now, we can cast (2.17) as an instance of (2.1). Indeed, for every i ≤ n, let
xi ∈Rr denote the i th row of V . We next form x ∈Rd with d = nr by expanding the factorized
variable V , namely, x := [x>

1 , · · · , x>
n ]> ∈Rd , and then set

f (x) =
n∑

i , j=1
Di , j

〈
xi , x j

〉
, g = δC , A(x) = [x>

1

n∑
j=1

x j −1, · · · , x>
n

n∑
j=1

x j −1]>,

where C is the intersection of the positive orthant in Rd with the Euclidean ball of radius
p

s. In
Section 2.10, we verify that Theorem 2.4.1 applies to (2.1) with f , g , A specified above.

16



2.6. Numerical Evidence

In our simulations, we use two different solvers for Step 2 of Algorithm 1, namely, APGM
and lBFGS. APGM is a solver for non-convex problems of the form (1.5) with convergence
guarantees to first-order stationarity, as discussed in Section 2.4. lBFGS is a limited-memory
version of BFGS algorithm in [Fle13] that approximately leverages the second-order information
of the problem. We compare our approach against the following convex methods:

• HCGM: Homotopy-based Conditional Gradient Method in [YFLC18] which directly
solves (2.16).

• SDPNAL+: A second-order augmented Lagrangian method for solving SDP’s with non-
negativity constraints [YST15].

As for the dataset, our experimental setup is similar to that described by [MVW17]. We use the
publicly-available fashion-MNIST data in [XRV17], which is released as a possible replacement
for the MNIST handwritten digits. Each data point is a 28×28 gray-scale image, associated
with a label from ten classes, labeled from 0 to 9. First, we extract the meaningful features
from this dataset using a simple two-layer neural network with a sigmoid activation function.
Then, we apply this neural network to 1000 test samples from the same dataset, which gives us
a vector of length 10 for each data point, where each entry represents the posterior probability
for each class. Then, we form the `2 distance matrix D from these probability vectors. The
solution rank for the template (2.16) is known and it is equal to number of clusters k [KSP07,
Theorem 1]. As discussed in [TSC18], setting rank r > k leads more accurate reconstruction in
expense of speed. Therefore, we set the rank to 20. For iAL lBFGS, we used β1 = 1 and σ1 = 10

as the initial penalty weight and dual step size, respectively. For HCGM, we used β0 = 1 as the
initial smoothness parameter. We have run SDPNAL+ solver with 10−12 tolerance. The results
are depicted in Figure 2.1. We implemented 3 algorithms on MATLAB and used the software
package for SDPNAL+ which contains mex files. It is predictable that the performance of our
non-convex approach would even improve by using mex files.

2.6.2 Additional demonstrations

We provide several additional experiments in Section 2.11. Section 2.11.1 discusses a novel
non-convex relaxation of the standard basis pursuit template which performs comparable to the
state of the art convex solvers. In Section 2.11.2, we provide fast numerical solutions to the
generalized eigenvalue problem. In Section 2.11.3, we give a contemporary application example
that our template applies, namely, denoising with generative adversarial networks. Finally, we
provide improved bounds for sparse quadratic assignment problem instances in Section 2.11.4.
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2.7 Complexity Results

2.7.1 First-Order Optimality

Let us first consider the case where the solver in Step 2 is is the first-order algorithm APGM,
described in detail in [GL16]. At a high level, APGM makes use of ∇xLβ(x, y) in (1.4), the
proximal operator proxg , and the classical Nesterov acceleration [Nes83] to reach first-order
stationarity for the subproblem in (1.5). Suppose that g = δX is the indicator function on a
bounded convex set X ⊂Rd and let

ρ = max
x∈X

‖x‖, (2.18)

be the radius of a ball centered at the origin that includes X . Then, adapting the results in [GL16]
to our setup, APGM reaches xk in Step 2 of Algorithm 1 after

O

(
λ2
βk
ρ2

ε2
k+1

)
(2.19)

(inner) iterations, where λβk denotes the Lipschitz constant of ∇xLβk (x, y), bounded in (2.6).
For the clarity of the presentation, we have used a looser bound in (2.19) compared to [GL16].
Using (2.19), we derive the following corollary, describing the total iteration complexity of
Algorithm 1 in terms of the number calls made to the first-order oracle in APGM.

Corollary 2.7.1. For b > 1, let βk = bk for every k. If we use APGM from [GL16] for Step 2
of Algorithm 1, the algorithm finds an (ε f ,βk ) first-order stationary point, after T calls to the
first-order oracle, where

T =O

(
Q3ρ2

ε4 logb

(
Q

ε

))
= Õ

(
Q3ρ2

ε4

)
. (2.20)

Proof. Let K denote the number of (outer) iterations of Algorithm 1 and let ε f denote the desired
accuracy of Algorithm 1, see (1.7). Recalling Theorem 2.4.1, we can then write that

ε f =
Q

βK
, (2.21)

or, equivalently, βK =Q/ε f . We now count the number of total (inner) iterations T of Algorithm 1
to reach the accuracy ε f . From (2.6) and for sufficiently large k, recall that λβk ≤ λ′′βk is the
smoothness parameter of the augmented Lagrangian. Then, from (2.19) ad by summing over the
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2.7. Complexity Results

outer iterations, we bound the total number of (inner) iterations of Algorithm 1 as

T =
K∑

k=1
O

(
λ2
βk−1

ρ2

ε2
k

)

=
K∑

k=1
O

(
β4

k−1ρ
2) (Step 1 of Algorithm 1)

≤O
(
Kβ4

K−1ρ
2) (

{βk }k is increasing
)

≤O

(
KQ3ρ2

ε4
f

)
. (see (2.21)) (2.22)

In addition, if we specify βk = bk for all k, we can further refine T . Indeed,

βK = bK =⇒ K = logb

(
Q

ε f

)
, (2.23)

which, after substituting into (2.22) gives the final bound in Corollary 2.4.2.

2.7.2 Second-Order Optimality

Let us now consider the second-order optimality case where the solver in Step 2 is the the trust
region method developed in [CGT12]. Trust region method minimizes a quadratic approximation
of the function within a dynamically updated trust-region radius. Second-order trust region
method that we consider in this section makes use of Hessian (or an approximation of Hessian)
of the augmented Lagrangian in addition to first order oracles.

As shown in [NLR18], finding approximate second-order stationary points of convex-constrained
problems is in general NP-hard. For this reason, we focus in this section on the special case
of (2.1) with g = 0.

Let us compute the total computational complexity of Algorithm 1 with the trust region method
in Step 2, in terms of the number of calls made to the second-order oracle. By adapting the
result in [CGT12] to our setup, we find that the number of (inner) iterations required in Step 2 of
Algorithm 1 to produce xk+1 is

O

(
λ2
βk ,H (Lβk (x1, y)−minx Lβk (x, y))

ε3
k

)
, (2.24)

where λβ,H is the Lipschitz constant of the Hessian of the augmented Lagrangian, which is of the
order of β, as can be proven similar to Lemma 2.2.1 and x1 is the initial iterate of the given outer
loop. In [CGT12], the term Lβ(x1, y)−minx Lβ(x, y) is bounded by a constant independent of
ε. We assume a uniform bound for this quantity for every βk , instead of for one value of βk as
in [CGT12]. Using (2.24) and Theorem 2.4.1, we arrive at the following:
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Corollary 2.7.2. For b > 1, let βk = bk for every k. We assume that

Lβ(x1, y)−min
x

Lβ(x, y) ≤ Lu , ∀β. (2.25)

If we use the trust region method from [CGT12] for Step 2 of Algorithm 1, the algorithm finds an
ε-second-order stationary point of (2.1) in T calls to the second-order oracle where

T =O

(
LuQ ′5

ε5 logb

(
Q ′

ε

))
= Õ

(
LuQ ′5

ε5

)
. (2.26)

Before closing this section, we note that the remark after Corollary 2.4.2 applies here as well.

2.7.3 Approximate optimality of (2.1).

Corollary 2.4.2 establishes the iteration complexity of Algorithm 1 to reach approximate first-
order stationarity for the equivalent formulation of (2.1) presented in (1.3). Unlike the exact
case, approximate first-order stationarity in (1.3) does not immediately lend itself to approxi-
mate stationarity in (2.1), and the study of approximate stationarity for the penalized problem
(special case of our setting with dual variable set to 0) has also precedent in [BBJN18]. For a
precedent in convex optimization for relating the convergence in augmented Lagrangian to the
constrained problem using duality, see [TDFC18]. For the second-order case, it is in general not
possible to establish approximate second-order optimality for (1.3) from Corollary 2.4.3, with the
exception of linear constraints. [NLR18] provides an hardness result by showing that checking
an approximate second-order stationarity is NP-hard.

2.8 Proof of Theorem 2.4.1

For every k ≥ 2, recall from (1.4) and Step 2 of Algorithm 1 that xk satisfies

dist(−∇ f (xk )−D A(xk )>yk−1 −βk−1D A(xk )>A(xk ),∂g (xk ))

= dist(−∇xLβk−1 (xk , yk−1),∂g (xk )) ≤ εk . (2.27)

With an application of the triangle inequality, it follows that

dist(−βk−1D A(xk )>A(xk ),∂g (xk )) ≤ ‖∇ f (xk )‖+‖D A(xk )>yk−1‖+εk , (2.28)

which in turn implies that

dist(−D A(xk )>A(xk ),∂g (xk )/βk−1) ≤ ‖∇ f (xk )‖
βk−1

+ ‖D A(xk )>yk−1‖
βk−1

+ εk

βk−1

≤
λ′

f +λ′
A‖yk−1‖+εk

βk−1
, (2.29)
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2.8. Proof of Theorem 2.4.1

where λ′
f ,λ′

A were defined in (2.8). We next translate (2.29) into a bound on the feasibility gap
‖A(xk )‖. Using the regularity condition (2.9), the left-hand side of (2.29) can be bounded below
as

dist(−D A(xk )>A(xk ),∂g (xk )/βk−1) ≥ ν‖A(xk )‖. (see (2.9)) (2.30)

By substituting (2.30) back into (2.29), we find that

‖A(xk )‖ ≤
λ′

f +λ′
A‖yk−1‖+εk

νβk−1
. (2.31)

In words, the feasibility gap is directly controlled by the dual sequence {yk }k . We next establish
that the dual sequence is bounded. Indeed, for every k ∈ K , note that

‖yk‖ = ‖y0 +
k∑

i=1
σi A(xi )‖ (Step 5 of Algorithm 3)

≤ ‖y0‖+
k∑

i=1
σi‖A(xi )‖ (triangle inequality)

≤ ‖y0‖+
k∑

i=1

‖A(x1)‖ log2 2

k log2(k +1)
(Step 4)

≤ ‖y0‖+c‖A(x1)‖ log2 2 =: ymax, (2.32)

where

c ≥
∞∑

i=1

1

k log2(k +1)
. (2.33)

Substituting (2.32) back into (2.31), we reach

‖A(xk )‖ ≤
λ′

f +λ′
A ymax +εk

νβk−1
≤

2λ′
f +2λ′

A ymax

νβk−1
, (2.34)

where the second inequality above holds if k0 is large enough, which would in turn guarantees
that εk = 1/βk−1 is sufficiently small since {βk }k is increasing and unbounded. It remains to
control the first term in (1.8). To that end, after recalling Step 2 of Algorithm 1 and applying the
triangle inequality, we can write that

dist(−∇xLβk−1 (xk , yk ),∂g (xk )) ≤ dist(−∇xLβk−1 (xk , yk−1),∂g (xk ))

+‖∇xLβk−1 (xk , yk )−∇xLβk−1 (xk , yk−1)‖. (2.35)
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The first term on the right-hand side above is bounded by εk , by Step 5 of Algorithm 1. For the
second term on the right-hand side of (2.35), we write that

‖∇xLβk−1 (xk , yk )−∇xLβk−1 (xk , yk−1)‖ = ‖D A(xk )>(yk − yk−1)‖ (see (1.4))

≤λ′
A‖yk − yk−1‖ (see (2.8))

=λ′
Aσk‖A(xk )‖ (see Step 5 of Algorithm 1)

≤ 2λ′
Aσk

νβk−1
(λ′

f +λ′
A ymax). (see (2.34)) (2.36)

By combining (2.35,2.36), we find that

dist(∇xLβk−1 (xk , yk ),∂g (xk )) ≤ 2λ′
Aσk

νβk−1
(λ′

f +λ′
A ymax)+εk . (2.37)

By combining (2.34,2.37), we find that

dist(−∇xLβk−1 (xk , yk ),∂g (xk ))+‖A(xk )‖

≤
(

2λ′
Aσk

νβk−1
(λ′

f +λ′
A ymax)+εk

)

+2

(
λ′

f +λ′
A ymax

νβk−1

)
. (2.38)

Applying σk ≤σ1, we find that

dist(−∇xLβk−1 (xk , yk ),∂g (xk ))+‖A(xk )‖

≤ 2λ′
Aσ1 +2

νβk−1
(λ′

f +λ′
A ymax)+εk . (2.39)

For the second part of the theorem, we use the Weyl’s inequality and Step 5 of Algorithm 1 to
write

λmin(∇xxLβk−1 (xk , yk−1)) ≥λmin(∇xxLβk−1 (xk , yk ))

−σk‖
m∑

i=1
Ai (xk )∇2 Ai (xk )‖. (2.40)

The first term on the right-hand side is lower bounded by −εk−1 by Step 2 of Algorithm 1. We
next bound the second term on the right-hand side above as

σk‖
m∑

i=1
Ai (xk )∇2 Ai (xk )‖ ≤σk

p
m max

i
‖Ai (xk )‖‖∇2 Ai (xk )‖

≤σk
p

mλA

2λ′
f +2λ′

A ymax

νβk−1
,

22



2.9. Proof of Lemma 2.2.1

where the last inequality is due to (2.4,2.34). Plugging into (2.40) gives

λmin(∇xxLβk−1 (xk , yk−1))

≥−εk−1 −σk
p

mλA

2λ′
f +2λ′

A ymax

νβk−1
,

which completes the proof of Theorem 2.4.1.

2.9 Proof of Lemma 2.2.1

Proof. Note that

Lβ(x, y) = f (x)+
m∑

i=1
yi Ai (x)+ β

2

m∑
i=1

(Ai (x))2, (2.41)

which implies that

∇xLβ(x, y)

=∇ f (x)+
m∑

i=1
yi∇Ai (x)+ β

2

m∑
i=1

Ai (x)∇Ai (x)

=∇ f (x)+D A(x)>y +βD A(x)>A(x), (2.42)

where D A(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach

∇2
xLβ(x, y) =∇2 f (x)+

m∑
i=1

(
yi +βAi (x)

)∇2 Ai (x)

+β
m∑

i=1
∇Ai (x)∇Ai (x)>. (2.43)

It follows that

‖∇2
xLβ(x, y)‖

≤ ‖∇2 f (x)‖+max
i

‖∇2 Ai (x)‖(‖y‖1 +β‖A(x)‖1
)

+β
m∑

i=1
‖∇Ai (x)‖2

≤λh +p
mλA

(‖y‖+β‖A(x)‖)+β‖D A(x)‖2
F . (2.44)

For every x such that ‖x‖ ≤ ρ and ‖A(x)‖ ≤ ρ, we conclude that

‖∇2
xLβ(x, y)‖ ≤λ f +

p
mλA

(‖y‖+βρ′)+β max
‖x‖≤ρ

‖D A(x)‖2
F , (2.45)

which completes the proof of Lemma 2.2.1.
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2.10 Clustering

We only verify the condition in (2.9) here. Note that

A(x) =V V >1−1, (2.46)

D A(x) =


w1,1x>

1 · · · w1,n x>
1

...
wn,1x>

n · · · wn,n1x>
n



=
[

V · · · V
]
+


x>

1
. . .

x>
n

 , (2.47)

where wi .i = 2 and wi , j = 1 for i 6= j . In the last line above, n copies of V appear and the last
matrix above is block-diagonal. For xk , define Vk accordingly and let xk,i be the i th row of Vk .
Consequently,

D A(xk )>A(xk ) =


(V >

k Vk − In)V >
k 1

...
(V >

k Vk − In)V >
k 1



+


xk,1(VkV >

k 1−1)1
...

xk,n(VkV >
k 1−1)n

 , (2.48)

where In ∈Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First,
we assume that ‖xk‖ <

p
s (which can be enforced in the iterates by replacing C with (1−ε)C for

a small positive ε in the subproblems). Under this assumption, it follows that

(∂g (xk ))i =
0 (xk )i > 0

{a : a ≤ 0} (xk )i = 0,
i ≤ d . (2.49)

Second, we assume that Vk has nearly orthonormal columns, namely, V >
k Vk ≈ In . This can also

be enforced in each iterate of Algorithm 1 and naturally corresponds to well-separated clusters.
While a more fine-tuned argument can remove these assumptions, they will help us simplify the
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presentation here. Under these assumptions, the (squared) right-hand side of (2.9) becomes

dist

(
−D A(xk )>A(xk ),

∂g (xk )

βk−1

)2

= ∥∥(−D A(xk )>A(xk )
)
+
∥∥2

(a+ = max(a,0))

=

∥∥∥∥∥∥∥∥


xk,1(VkV >
k 1−1)1
...

xk,n(VkV >
k 1−1)n


∥∥∥∥∥∥∥∥

2

(xk ∈C ⇒ xk ≥ 0)

=
n∑

i=1
‖xk,i‖2(VkV >

k 1−1)2
i

≥ min
i

‖xk,i‖2 ·
n∑

i=1
(VkV >

k 1−1)2
i

= min
i

‖xk,i‖2 · ‖VkV >
k 1−1‖2. (2.50)

Therefore, given a prescribed ν, ensuring mini ‖xk,i‖ ≥ ν guarantees (2.9). When the algorithm
is initialized close enough to the constraint set, there is indeed no need to separately enforce
(2.50). In practice, often n exceeds the number of true clusters and a more intricate analysis is
required to establish (2.9) by restricting the argument to a particular subspace of Rn .

2.11 Additional Experiments

2.11.1 Basis Pursuit

Basis Pursuit (BP) finds sparsest solutions of an under-determined system of linear equations by
solving

min
z

‖z‖1 s.t. B z = b, (2.51)

where B ∈Rn×d and b ∈Rn . Various primal-dual convex optimization algorithms are available
in the literature to solve BP, including [TDAFC18, CP11]. We compare our algorithm against
state-of-the-art primal-dual convex methods for solving (2.51), namely, Chambole-Pock [CP11],
ASGARD [TDFC18] and ASGARD-DL [TDAFC18].

Here, we take a different approach and cast (2.51) as an instance of (2.1). Note that any z ∈Rd

can be decomposed as z = z+− z−, where z+, z− ∈ Rd are the positive and negative parts of
z, respectively. Then consider the change of variables z+ = u◦2

1 and z− = u◦2
2 ∈ Rd , where ◦

denotes element-wise power. Next, we concatenate u1 and u2 as x := [u>
1 ,u>

2 ]> ∈R2d and define
B := [B ,−B ] ∈Rn×2d . Then, (2.51) is equivalent to (2.1) with

f (x) =‖x‖2, g (x) = 0, s.t. A(x) = B x◦2 −b. (2.52)
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Figure 2.2 – Basis Pursuit

We draw the entries of B independently from a zero-mean and unit-variance Gaussian distribution.
For a fixed sparsity level k, the support of z∗ ∈Rd and its nonzero amplitudes are also drawn from
the standard Gaussian distribution. Then the measurement vector is created as b = B z +ε, where
ε is the noise vector with entries drawn independently from the zero-mean Gaussian distribution
with variance σ2 = 10−6.

The results are compiled in Figure 2.2. Clearly, the performance of Algorithm 1 with a second-
order solver for BP is comparable to the rest. It is, indeed, interesting to see that these type of
non-convex relaxations gives the solution of convex one and first order methods succeed.

Discussion:The true potential of our reformulation is in dealing with more structured norms
rather than `1, where computing the proximal operator is often intractable. One such case is the
latent group lasso norm [OJV11], defined as

‖z‖Ω =
I∑

i=1
‖zΩi ‖,

where {Ωi }I
i=1 are (not necessarily disjoint) index sets of {1, · · · ,d}. Although not studied here,

we believe that the non-convex framework presented in this paper can serve to solve more
complicated problems, such as the latent group lasso. We leave this research direction for future
work.

Condition verification:In the sequel, we verify that Theorem 2.4.1 indeed applies to (2.1) with
the above f , A, g . Note that

D A(x) = 2Bdiag(x), (2.53)
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where diag(x) ∈R2d×2d is the diagonal matrix formed by x. The left-hand side of (2.9) then reads
as

dist
(
−D A(xk )>A(xk ),

∂g (xk )

βk−1

)
= dist

(−D A(xk )>A(xk ), {0}
)

(g ≡ 0)

= ‖D A(xk )>A(xk )‖
= 2‖diag(xk )B

>
(B x◦2

k −b)‖. (see (2.53)) (2.54)

To bound the last line above, let x∗ be a solution of (2.1) and note that B x◦2∗ = b by definition.
Let also zk , z∗ ∈Rd denote the vectors corresponding to xk , x∗. Corresponding to xk , also define
uk,1,uk,2 naturally and let |zk | = u◦2

k,1 +u◦2
k,2 ∈Rd be the vector of amplitudes of zk . To simplify

matters, let us assume also that B is full-rank. We then rewrite the norm in the last line of (2.54)
as

‖diag(xk )B
>

(B x◦2
k −b)‖2

= ‖diag(xk )B
>

B(x◦2
k −x◦2

∗ )‖2 (B x◦2
∗ = b)

= ‖diag(xk )B
>

B(xk −x∗)‖2

= ‖diag(uk,1)B>B(zk − z∗)‖2

+‖diag(uk,2)B>B(zk − z∗)‖2

= ‖diag(u◦2
k,1 +u◦2

k,2)B>B(zk − z∗)‖2

= ‖diag(|zk |)B>B(zk − z∗)‖2

≥ ηn(Bdiag(|zk |))2‖B(zk − z∗)‖2

= ηn(Bdiag(|zk |))2‖B zk −b‖2 (B z∗ = B x◦2
∗ = b)

≥ min
|T |=n

ηn(BT ) · |zk,(n)|2‖B zk −b‖2, (2.55)

where ηn(·) returns the nth largest singular value of its argument. In the last line above, BT is the
restriction of B to the columns indexed by T of size n. Moreover, zk,(n) is the nth largest entry of
z in magnitude. Given a prescribed ν, (2.9) therefore holds if

|zk,(n)| ≥
ν

2
√

min|T |=n ηn(BT )
, (2.56)

for every iteration k. If Algorithm 1 is initialized close enough to the solution z∗ and the entries
of z∗ are sufficiently large in magnitude, there will be no need to directly enforce (2.56).

2.11.2 Generalized Eigenvalue Problem

Generalized eigenvalue problem has extensive applications in machine learning, statistics and
data analysis [GJN+16]. The well-known non-convex formulation of the problem is [BVB16]
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(i) C : Gaussian iid (ii) C : Polynomial decay (iii) C : Exponential decay
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Figure 2.3 – (Top) Objective convergence for calculating top generalized eigenvalue and eigenvector of
B and C . (Bottom) Eigenvalue structure of the matrices. For (i),(ii) and (iii), C is positive semidefinite;
for (iv), (v) and (vi), C contains negative eigenvalues. [(i): Generated by taking symmetric part of iid
Gaussian matrix. (ii): Generated by randomly rotating diag(1−p ,2−p , · · · ,1000−p )(p = 1). (iii): Generated
by randomly rotating diag(10−p ,10−2p , · · · ,10−1000p )(p = 0.0025).]

given by min
x∈Rn

x>C x

x>B x = 1,
(2.57)

where B ,C ∈ Rn×n are symmetric matrices and B is positive definite, namely, B Â 0. The
generalized eigenvector computation is equivalent to performing principal component analysis
(PCA) of C in the norm B . It is also equivalent to computing the top eigenvector of symmetric
matrix S = B−1/2C B 1/2 and multiplying the resulting vector by B−1/2. However, for large values
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of n, computing B−1/2 is extremely expensive. The natural convex SDP relaxation for (2.57)
involves lifting Y = xx> and removing the non-convex rank(Y ) = 1 constraint, namely, min

Y ∈Rn×n
tr(C Y )

tr(BY ) = 1, X º 0.
(2.58)

Here, however, we opt to directly solve (2.57) because it fits into our template with

f (x) =x>C x, g (x) = 0,

A(x) =x>B x −1. (2.59)

We compare our approach against three different methods: manifold based Riemannian gra-
dient descent and Riemannian trust region methods in [BAC16] and the linear system solver
in [GJN+16], abbrevated as GenELin. We have used Manopt software package in [BMAS14] for
the manifold based methods. For GenELin, we have utilized Matlab’s backslash operator as the
linear solver. The results are compiled in Figure 2.3.

Condition verification:Here, we verify the regularity condition in (2.9) for problem (2.57). Note
that

D A(x) = (2B x)>. (2.60)

Therefore,

dist

(
−D A(xk )>A(xk ),

∂g (xk )

βk−1

)2

= dist
(−D A(xk )>A(xk ), {0}

)2
(g ≡ 0)

= ‖D A(xk )>A(xk )‖2

= ‖2B xk (x>
k B xk −1)‖2 (see (2.60))

= 4(x>
k B xk −1)2‖B xk‖2

= 4‖B xk‖2‖A(xk )‖2 (see (2.59))

≥ ηmin(B)2‖xk‖2‖A(xk )‖2, (2.61)

where ηmin(B) is the smallest eigenvalue of the positive definite matrix B . Therefore, for a
prescribed ν, the regularity condition in (2.9) holds with ‖xk‖ ≥ ν/ηmi n for every k. If the
algorithm is initialized close enough to the constraint set, there will be again no need to directly
enforce this latter condition.
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2.11.3 `∞ Denoising with a Generative Prior

The authors of [SKC18, IJA+17] have proposed to project onto the range of a Generative Adver-
sarial network (GAN) [GPM+14], as a way to defend against adversarial examples. For a given
noisy observation x∗+η, they consider a projection in the `2 norm. We instead propose to use
our augmented Lagrangian method to denoise in the `∞ norm, a much harder task:

min
x,z

‖x∗+η−x‖∞
s.t. x =G(z).

(2.62)

al

Figure 2.4 – Augmented Lagrangian vs Adam and Gradient descent for `∞ denoising

We use a pretrained generator for the MNIST dataset, given by a standard deconvolutional neural
network architecture [RMC15]. We compare the succesful optimizer Adam [KB14] and gradient
descent against our method. Our algorithm involves two forward and one backward pass through
the network, as oposed to Adam that requires only one forward/backward pass. For this reason
we let our algorithm run for 2000 iterations, and Adam and GD for 3000 iterations. Both Adam
and gradient descent generate a sequence of feasible iterates xt =G(zt ). For this reason we plot
the objective evaluated at the point G(zt ) vs iteration count in figure 2.4. Our method successfully
minimizes the objective value, while Adam and GD do not.

2.11.4 Quadratic assginment problem

Let K , L be n ×n symmetric metrices. QAP in its simplest form can be written as

max tr(K PLP ), subject to P be a permutation matrix (2.63)

A direct approach for solving (2.63) involves a combinatorial search. To get the SDP relaxation
of (2.63), we will first lift the QAP to a problem involving a larger matrix. Observe that the
objective function takes the form
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tr((K ⊗L)(vec(P )vec(P>))),

where ⊗ denotes the Kronecker product. Therefore, we can recast (2.63) as

tr((K ⊗L)Y ) subject to Y = vec(P )vec(P>), (2.64)

where P is a permutation matrix. We can relax the equality constraint in (2.64) to a semidefinite
constraint and write it in an equivalent form as

X =
[

1 vec(P )>

vec(P ) Y

]
º 0 for a symmetricX ∈S(n2+1)×(n2+1)

We now introduce the following constraints such that

Bk (X ) = bk, bk ∈Rmk (2.65)

to make sure X has a proper structure. Here, Bk is a linear operator on X and the total number of
constraints is m =∑

k mk . Hence, SDP relaxation of the quadratic assignment problem takes the
form,

max 〈C , X 〉
subject to P1 = 1, 1>P = 1, P ≥ 0

trace1(Y ) = I trace2(Y ) = I

vec(P ) = diag(Y )

trace(Y ) = n

[
1 vec(P )>

vec(P ) Y

]
º 0, (2.66)

where trace1(.) and trace2(.) are partial traces satisfying,

trace1(K ⊗L) = trace(K )L and trace2(K ⊗L) = K trace(L)

trace∗1 (T ) = I ⊗T and trace∗2 (T ) = T ⊗ I

1st set of equalities are due to the fact that permutation matrices are doubly stochastic. 2nd set
of equalities are to ensure permutation matrices are orthogonal, i.e., PP> = P>P = I . 3r d set of
equalities are to enforce every individual entry of the permutation matrix takes either 0 or 1, i.e.,
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X1,i = Xi ,i ∀i ∈ [1,n2 +1]. . Trace constraint in the last line is to bound the problem domain. By
concatenating the Bk’s in (2.65), we can rewrite (2.66) in standard SDP form as

max 〈C , X 〉
subject to B(X ) = b, b ∈Rm

trace(X ) = n +1

Xi j ≥ 0, i , j G

X º 0, (2.67)

where G represents the index set for which we introduce the nonnegativities. When G covers
the wholes set of indices, we get the best approximation to the original problem. However, it
becomes computationally undesirable as the problem dimension increases. Hence, we remove
the redundant nonnegativity constraints and enforce it for the indices where Kronecker product
between K and L is nonzero.

We penalize the non-negativity constraints and add it to the augmented Lagrangian objective since
a projection to the positive orthant approach in the low rank space as we did for the clustering
does not work here.

We take [FKS18] as the baseline. This is an SDP based approach for solving QAP problems
containing a sparse graph. We compare against the best feasible upper bounds reported in
[FKS18] for the given instances. Here, optimality gap is defined as

%Gap= |bound−optimal|
optimal

×100

We used a (relatively) sparse graph data set from the QAP library. We run our low rank algorithm
for different rank values. rm in each instance corresponds to the smallest integer satisfying the
Pataki bound [Pat98, Bar95]. Results are shown in Table 2.1. Primal feasibility values except for
the last instance esc128 is less than 10−5 and we obtained bounds at least as good as the ones
reported in [FKS18] for these problems.

For esc128, the primal feasibility is ≈ 10−1, hence, we could not manage to obtain a good
optimality gap.
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Optimality Gap (%)

Data Optimal Value Sparse QAP [FKS18]
iAL

r = 10 r = 25 r = 50 r = rm rm

esc16a 68 8.8 11.8 0 0 5.9 157
esc16b 292 0 0 0 0 0 224
esc16c 160 5 5.0 5.0 2.5 3.8 177
esc16d 16 12.5 37.5 0 0 25.0 126
esc16e 28 7.1 7.1 0 14.3 7.1 126
esc16g 26 0 23.1 7.7 0 0 126
esc16h 996 0 0 0 0 0 224
esc16i 14 0 0 0 14.3 0 113
esc16j 8 0 0 0 0 0 106
esc32a 130 93.8 129.2 109.2 104.6 83.1 433
esc32b 168 88.1 111.9 92.9 97.6 69.0 508
esc32c 642 7.8 15.6 14.0 15.0 4.0 552
esc32d 200 21 28.0 28.0 29.0 17.0 470
esc32e 2 0 0 0 0 0 220
esc32g 6 0 33.3 0 0 0 234
esc32h 438 18.3 25.1 19.6 25.1 13.2 570
esc64a 116 53.4 62.1 51.7 58.6 34.5 899
esc128 64 175 256.3 193.8 243.8 215.6 2045

Table 2.1 – Comparison between upper bounds on the problems from the QAP library with (relatively)
sparse L.
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2.12 Bibliographic notes

Figure 2.4 is due to Fabian Latorre. The initial version of Theorem 2.4.1 is mainly due to Armin
Eftekhari.
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3 Inexact Augmented Lagrangian
Method for Solving Factorized SDPs

In this chapter, we consider a canonical nonlinear-constrained non-convex problem with broad
applications in machine learning, theoretical computer science, and signal processing. We
propose a simple primal-dual splitting scheme that provably converges to a stationary point of the
non-convex problem.

We achieve this desideratum via an adaptive and inexact augmented Lagrangian method. The
new algorithm features a slow O (1/ε6) convergence rate, which it counteracted by its cheap per-
iteration complexity. We provide numerical evidence on large-scale machine learning problems,
modeled typically via semidefinite relaxations.

3.1 Introduction

We study the following non-convex optimization program:

minimize
U∈Rn×r

{
f (U ) : TU = b and U ∈U

}
(3.1)

where U is a simple bounded, convex set, such as a Frobenius norm constraint, T is a known
nonlinear operator, and b is a known vector in Rm . We assume that f has Lipschitz continuous
gradient in U with a Lipschitz constant L f ≥ 0.

Countless problems in computer science [KN12, Lov03], machine learning [MNS15, SSGB07],
and signal processing [Sin11, SS11, CKS15] naturally fall under this template, including but not
limited to maximum cut, clustering and community detection, as well as phase retrieval from
magnitude measurements.

An example of our template in (3.1) is semidefinite programming which provides a powerful
relaxation approach to the above problems

minimize
X∈Rn×n

{
g (X ) : AX = b and X ∈X

}
(P)
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where X is a simple set, formed by the trace constrained, positive semidefinite cone (i.e.,
X < 0 & X ∗ = X , tr X ≤ 1), and f is convex differentiable in X . This template clearly can be put
to the form of (3.1) by using the so-called Burer-Monteiro splitting X =UU∗ [BM03b, BM05].
The template (P) above includes the standard semidefinite programming as a special case, with
g (X ) = trD X .

Many studies (e.g., see [Rag08]) have revealed a surprising phenomenon that, for many of these
problems, one cannot obtain better approximations beyond the semidefinite relaxation, whose
optimal approximation bound is governed by the Grothendieck constant [Gro96].

Semidefinite convex optimization problems often have low-rank solutions that can be repre-
sented with O (n)-storage as they are motivated by the template (3.1). However, semidefinite
programming methods require us to store a matrix variable with size O (n2), which prevents the
application of virtually all convex methods at large scale.

Indeed, storage, and not necessarily the computation, is the main obstacle that can prevent us
from solving large-scale semidefinite problems, including the ones that are not derived from
convex relaxations. A key challenge in optimization is therefore to design algorithms whose
working space is within a constant factor of the memory required to store the problem instance
and its solution.

As a result, there is a major trend in which the literature focuses on algorithms for (3.1): cf.,
[BM03a, JNS13, Bou15, BKS16, CLS15]. For the most part, the connection to the semidefinite
programming is based on the idea of Burer-Monteiro [BM03b, BM05], which relate the matrix
variable X =UU∗ and the sets U and X .

A variety of optimization schemes can be applied to (3.1), including quasi-Newton methods,
(stochastic) gradient descent and its variants, and manifold optimization techniques. Some
methods also have the auxiliary benefit of local linear convergence under restricted cases. One key
idea, already present in [BM03b, BM05], is to set r to the Barvinok-Pataki bound [Pat98, Bar95]
to rule out the possibility of local minima. This approach ensures that any stationary point is as
good as the global minima. However, we still have the challenge of finding a stationary point.

The main difficulty in solving the template (3.4) is nonlinear constraint along with a non-convex
objective function without error bound conditions. This work precisely addresses this challenge
with a simple optimization framework relying on augmented Lagrangian (ALM) [Hes69, Pow78,
Ber14] and matrix factorization techniques without assuming convexity, linearity of constraints
and error bounds on the objective funcion.

We note that as mentioned in [BM05] and common in non-convex optimization literature [BBJN18,
JGN+17], some perturbation to the gradient or the augmented Lagrangian function is needed to
rule out saddle points and prove convergence to local minima. However, for the specific type
of non-convexity introduced by the factorization, as noted in [BM05], this perturbation is only
needed for theoretical results and in practice, it does not seem to be necessary. Motivated by this
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fact, in this work, we focused on first-order stationarity conditions, however, we note that a more
delicate analysis with perturbation might enable us to obtain second order stationarity conditions
as well.

In a nutshell, our method consists of alternating one primal and one dual update in the augmented
Lagrangian framework with a condition for the dual update. Our method is connected to both
inexact and linearized-preconditioned splitting methods. As will be made precise in the sequel,
our method can be seen as a practical version of the method suggested in [BM03b, BM05] with
stronger guarantees.

3.2 Preliminaries

Notation. For a matrices X ,Y ∈ Rn×n , we use X º 0 to denote that X is positive semi-definite.
We use ‖ · ‖F to denote the Frobenius norm and ‖ · ‖2 to denote the spectral norm. We use ∗ to
denote the conjugate transpose of a matrix and 〈X ,Y 〉 = tr X >Y to denote the matrix inner product.
We use ιU (x) to denote the indicator function for a set U , PC (X ) to denote the projection of X

to C . We also define the distance of X to C as dC (X ) = infU∈C ‖U − X ‖. B(0;ε) is the closed
ball with radius ε. For a convex function g , we denote by dom(g ) its effective domain.

We say that a differentiable function g : dom g →R has Lg -Lipschitz gradient if, ∀X ,Y ∈ dom g ,
the following holds:

‖∇g (X )−∇g (Y )‖ ≤ Lg‖X −Y ‖. (3.2)

For an operator T : X 7→Y , we sometimes abuse the notation and use TU to mean applying the
operator to input U , i.e., TU = T (U ).

Lastly, we denote the gradient mapping as

Gβ,γ(U ,Y ) = γ−1(U −U+), (3.3)

where U+ denotes the next iterate.

Assumption 1. The function g is proper, closed and convex.

(i) There exist a τX -Lipschitz continuous operator T : U 7→ T (U ) and a bounded linear
operator A such that TU = AX .

(ii) Linear operator A∗ has a trivial null space.
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3.2.1 Factorization of the problem

Given a convex semi-definite problem as (P), to remove the constraint X < 0, a factorization of
the decision variable as X =UU∗, where U ∈Rn×r , r ¿ n, gives the following formulation:

minimize
U∈Rn×r

{
f (U ) : AUU∗ = b and U ∈U

}
(3.4)

There are several well-known advantages of such a non-convex formulation, including its low
dimensionality as well as the removal of difficult-to-project nuclear or trace norm constraints.

3.2.2 Augmented Lagrangian

We follow a classical approach to use the augmented Lagrangian formulation [Hes69, Pow78,
Ber14] to split the linear constraint in (3.1) and form the saddle point problem.

max
Y ∈Rm

min
U∈U

{
Lβ(U ,Y ) := f (U )+〈Y ,TU −b〉+ β

2
‖TU −b‖2

}
,

where the term β
2 ‖TU −b‖2 is referred to as the augmented term.

The main intuition behind ALM is to apply gradient ascent to the dual problem maxY ∈Rm d(Y )

where d(Y ) := minU∈U Lβ(U ,Y ). Note that Lβ(U ,Y ) has Lipschitz continuous gradient in Y

with constant β (for a proof, see [HL17]), so the dual ascent step takes the form

Yk+1 ← Yk +βk∇d(Yk ),

where ∇d(Yk ) = (TU∗(Yk )−b) and

U∗(Yk ) = arg min
U∈U

Lβk (U ,Yk ). (3.5)

We can now see that to be able to get an estimate of the gradient of the dual function, one needs
to solve the problem minU∈C Lβk (U ,Yk ) which is often referred to as the primal update step in
ALM. Since solving this problem is not always simple in practice, several inexact and linearized
versions of ALM has been proposed in the literature.

There exists methods that are using a constant penalty parameter βk = β or adaptive βk that
changes through the iterations. For the constant penalty parameter scheme, tuning the parameter
is not always straightforward in practice. Therefore, we focus on adaptive penalty parameter βk

which both removes this drawback and is also an important component in our analysis.
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T : Linear T : NonlinearCS*: Smooth manifold CS*: Not smooth manifold Algorithm

[BM05] 3 3 3 3 Simple
[BMAS14, BAC16] 3 3 3 7 Complicated
[BGM+16] 3 3 3 3 Complicated
[WYZ15, LSG17] 3 7 3 3 Simple
Our method 3 3 3 3 Simple

Table 3.1 – A comparison with existing work. This comparison is for solving the SDP: {min f (X ) : X ∈
Sn+, A(X ) = b}, where Sn+ is the set of all symmetric positive semi-definite matrices. We use the splitting
X =UU∗ to cast this problem into template (3.1). *CS: constraint set refers to the set {X : X ∈Sn+, A(X ) =
b}

3.2.3 Characterization of a stationary point

Following the ALM literature, we call {U?,Y ?} as a stationary point if

0 ∈∇Lβ(U?,Y ?)+∂ιU (U?) =∇ f (U?)+ A∗Y ?U?+∂ιU (U?) (3.6)

0 = TU?−b (3.7)

For finding a stationary point, in our analysis, we will show the convergence of both the gradient
mapping and the feasibility to 0. In the sequel, we assume that such a saddle point exists. Note
that these conditions are also referred as the Karush-Kuhn-Tucker (KKT) conditions.

Related works. Augmented Lagrangian based methods are first proposed in [Hes69, Pow78]. In
the convex setting, ALM is studied extensively [Ber99, Ber14, LM16, NNTD14]. There exists
inexact and linearized versions of ALM which aims at solving (3.5) more efficiently. Some works
also considered the application of ALM/ADMM to non-convex problems [WYZ15, LSG17].
These works assume that the operator in (3.1) is linear, therefore, they do not apply to our setting
since we have a nonlinear constraint in addition to a non-convex objective function.

Series of influential papers from Burer and Monteiro [BM03b, BM05] proposed using the splitting
X = UU∗ and they also suggested solving the problem using ALM. First, they did not have
any inexact analysis. In other words, their analysis requires primal subproblems to be solved
exactly which is not practical. Their practical stopping condition is also not analyzed theoretically.
Secondly, they have to put an artificial bound to the primal domain which will be ineffective in
practice which is impossible to do without knowing the norm of the solution and their results do
not extend to the case where projection in primal domain are required in each iteration. Lastly,
their results are for convergence, without any rate guarantees.

The authors focused on the special case of SDPs without linear constraints in [BKS16]. They
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prove the convergence of gradient descent on Burer-Monteiro factorized formulation. In their
followup work [PKB+16], the authors considered projected gradient descent, but only for strongly
convex functions. Their results are not able to extend to linear constraints and general convex
functions, therefore not applicable to general SDPs in the form of (P).

Another line of work focused on solving a specific kind of SDPs focused on applying gradient
descent or trust regions methods on manifolds [BMAS14, BAC16]. The authors show that they
can apply gradient descent on manifolds to satisfy the first order stationarity conditions in O (1/ε2)

iterations. In addition, they apply trust regions methods on manifolds to satisfy the second
order stationarity conditions in O (1/ε3) iterations. Firstly, these methods have to assume that the
problem will be on a smooth manifold, which holds for Maximum Cut and generalized eigenvalue
problems, but is not satisfied for other important SDPs such as clustering, quadratic programming
(QAP) and optimal power flow. Secondly, as noted in [BAC16], the per iteration cost of their
method for Max-Cut problem is O (n6) for solving (3.1) which is astronomically larger than our
cost of O (n2r ) where r ¿ n.

Another recent line of work [CMV19] focused on solving the nonlinear constrained non-convex
problem template (3.4) by adapting the primal-dual method of Chambolle and Pock [CP11]. The
authors proved the convergence of the method with rate guarantees by assuming error bound
conditions on the objective function. They do not apply to the general semidefinite programming
since f (U ) = 〈C ,UU∗〉.

[BBJN18] focused on the penalty formulation of (3.1) and studied the optimality of second order
stationary points of the formulation. However, their results are for connecting the stationary points
of the penalty formulation of (3.1) to the penalty formulation of (P) and not to the constrained
problem itself.

The method presented in [BGM+16] can also handle the same problem but their algorithm is
much more complicated than ours.

Table 3.1 provides a comparison of our work with the related methods in the literature which we
have summarized in this subsection.

3.3 Algorithm & Convergence

In this section, we present our algorithm along with its convergence guarantees. We denote the
Lipschitz constant of ∇U Lβ(U ,Y ) as Lβ.
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Algorithm 2
Input: Choose β−1,β1 > 0,α> 1,c10 ≥ 10β0‖TU0 −b‖2, γk = 1

Lβk
, where Lβk is given in (3.10)

and U0 ∈U ,Y0 = 0.

1: for k ← 0,1, · · · ,kmax do
2: s = 1

3: while
(
βk−1

2 + βk,s

2

)
‖TUk −b‖2 ≥ 2

4γk
‖Uk+1,s −Uk‖2 + ck,s

(k+1)α do
4: Uk+1,s ←PC (Uk −γk∇Lβk,s (Uk ,Yk ))

5: Update βk,s+1 ≤βk,s , ck,s , as in Remark 1.
6: s ← s +1

7: end while

8: Assign βk =βk,s and Uk+1 =Uk+1,s , ck,s = ck

9: Yk+1 ← Yk +βk (TUk+1 −b).

10: Update βk+1 such that βk+1 ≥βk as in Remark 1.
11: end for

Remark 1. The precise updates for βk parameter does not affect in our analysis as long as the
condition in the while loop holds. In practice, we observed that in the inner loop, decreasing
βk with a small linear factor as βk,s+1 = 1

1.1βk,s and in the outher loop, increasing beta in the

order of Θ
(

1
k1/3

)
works well. We start with βk,0 > βk and ck,s = ck , then decreasing βk,s and

increasingck,s with a linear factor as βk,s+1 = 1
ω1
βk,s and ck,s+1 =ω2ck,s for some fixed ω1 ∈ ]1,2[

and ω2 ∈ [1,2[. We observe that in our experiment, the inner loop terminates after finite number
steps even if ω1 = 1.

When the while loop condition in our algorithm is satisfied, our algorithm can be viewed as a
linearized and preconditioned ALM applied to solve the non-convex and nonlinear problem (3.1).
When the condition is not satisfied, our algorithm requires to perform more primal update steps.
This behaviour resembles inexact ALM. Thus, our method can be considered as a mix between
these two methods.

We now present the convergence analysis of our method. We firstly need the following lemma
which shows that Lβ(U ,Y ) has Lipschitz gradient in a bounded domain.

Lemma 3.3.1. Suppose Lβ(U ,Y ) is differentiable function in U with gradient:

∇Lβ(U ,Y ) =∇ f (U )+DT (U )∗Y +βDT (U )∗(TU −b)

=∇ f (U )+ A∗Y U +βA∗(A(UU>)−b)U ,
(3.8)

where DT (U ) is the jacobian of the nonlinear operator T at U and A(·) is a linear operator such
that A(UU>) := TU . Suppose that U is bounded, ∀U ∈U ,‖U‖F ≤ τ, then, for all U ,V in U , we
have

‖∇Lβ(U ,Y )−∇Lβ(V ,Y )‖F ≤ (L f +Lβ)‖U −V ‖F , (3.9)
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where
Lβ = 6τ2β‖A‖2 +2‖A∗(Y +βb)‖. (3.10)

Proof. Let us first define

gβ(U ,Y ) = β

2
‖TU −b‖2 +〈Y ,TU −b〉;and that Lβ(U ,Y ) = gβ(U ,Y )+ f (U ). (3.11)

For each V ∈U , set W =V V ∗. We have

1

2
‖∇gβ(U ,Y )−∇gβ(W,Y )‖F = 2‖∇gβ(X ,Y )U −∇gβ(W,Y )V ‖F

= ‖∇gβ(X ,Y )U −∇gβ(X ,Y )V +∇gβ(X ,Y )V −∇gβ(W,Y )V ‖F

≤ ‖∇gβ(X ,Y )U −∇Fβ(X ,Y )V ‖F +‖∇Fβ(X ,Y )V −∇Fβ(W,Y )V ‖F

≤ ‖∇gβ(X ,Y )‖2‖U −V ‖F +‖∇gβ(X ,Y )−∇gβ(W,Y )‖2‖V ‖F

≤ ‖∇gβ(X ,Y )‖2‖U −V ‖F +τ‖∇gβ(X ,Y )−∇gβ(W,Y )‖F . (3.12)

Since ∇Lβ is β‖A‖2-Lipschitz continuous in X , we have

τ‖∇gβ(X ,Y )−∇gβ(W ;Y )‖F ≤ τβ‖A‖2‖X −Y ‖F

= τβ‖A‖2‖UU∗−UV ∗+UV ∗−V V ∗‖F

≤ 2βτ2‖A‖2‖U −V ‖F . (3.13)

By the same manner, we also have

‖∇gβ(X ,Y )‖2 ≤ ‖∇gβ(X ,Y )‖F ≤ ‖∇gβ(X ,Y )−∇gβ(0,Y )‖F +‖∇gβ(0,Y )‖F

= ‖∇gβ(X ,Y )−∇gβ(0,Y )‖F +‖∇gβ(0,Y )‖F

≤βτ2‖A‖2 +‖∇gβ(0,Y )‖F . (3.14)

Inserging (3.13) and (3.14) into (3.12), we get the result.

We next recall the relation between the gradient mapping and function value Lβ in the following
lemma which relies on Lemma 3.3.1.

Lemma 3.3.2. Let U ∈ U . Suppose that ∇Lβ(·,Y ) is L f +Lβ-Lipschitz continuous, for any
γ ∈]0, (1−0.5)/(Lβ+L f )[, we also have

‖Gβ,γ(U ,Y )‖2
F ≤ 4

3γ
(Lβ(U ,Y )−Lβ(U+,Y )) ≤ 4

3γ
(Lβ(U ,Y )−Lβ(U?,Y )), (3.15)

where U+ = PU (U −γ∇Lβ(U ,Y )).

Proof. We refer the reader for the proof of Lemma 3.3.2 to [GLZ16]
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Lemma 3.3.3. Suppose that

Gβk ,γk (Uk ,Yk ) ≤ ε and ‖TUk+1 −b‖ ≤ ε.

Then (Uk+1,Yk+1) is 2ε-saddle point, i.e ‖TUk+1 −b‖ ≤ 2ε and −A∗Yk+1Uk+1 ∈ ∇ f (Uk+1)+
∂ιU (Uk+1)+B(0,2ε).

Proof. By the definition of PU , we have

(Uk −Uk+1)/γk −∇Lβk (Uk ,Yk ) ∈ ∂ιU (Uk+1). (3.16)

Adding ∇Lβk (Uk+1,Yk ) to both sides, we obtain

(Uk −Uk+1)/γk −∇Lβk (Uk ,Yk )+∇Lβk (Uk+1,Yk ) ∈ ∂ιU (Uk+1)+∇Lβk (Uk+1,Yk ). (3.17)

Using the Lipschitz continuous of ∇Lβk (·,Yk ), we get

‖∇Lβk (Uk ,Yk )−∇Lβk (Uk+1,Yk )‖ ≤ (Lβk +L f )‖Uk+1 −Uk‖ ≤ ‖Uk+1 −Uk‖/γk ≤ ε, (3.18)

which implies that

‖(Uk −Uk+1)/γk −∇Lβk (Uk ,Yk )+∇Lβk (Uk+1,Yk )‖ ≤ 2ε. (3.19)

Moreover,

∇Lβk (Uk+1,Yk ) =∇ f (Uk+1)+ A∗(Yk +βk (TUk+1 −b))Uk+1

=∇ f (Uk+1)+ A∗Yk+1Uk+1. (3.20)

Therefore, we derive from (3.17) that

−A∗Yk+1Uk+1 ∈∇ f (Uk+1)+∂ιU (Uk+1)+B(0,2ε). (3.21)

This together with ‖TUk+1 −b‖ ≤ ε, imply that (Uk+1,Yk+1) is 2ε-saddle point.

Now, we present our main theorem which characterizes the convergence analysis of Algorithm 2.

Theorem 3.3.4. Assumption 1 is satisfied and |〈Ẏk | AXk −b
〉 | = O (βs

k ) for some s ≥ 0, and
(kβ−s

k γk,min) →∞, where γK ,min = min0≤i≤K γi . In addition, (βk )k∈N is bounded. Then

min
0≤k≤K

‖Gβk ,γk (Uk ,Yk )‖2 =O

(
1

Kβ−s
K γK ,min

)
→ 0. (3.22)

and

min
0≤k≤K

‖AXk −b‖2 ≤O

(
1

Kβ−s
K γK ,min

)
+ c

βk (1+K )α
→ 0. (3.23)
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Proof. Based on the inner loop termination rule of our algorithm:(
βk−1

2
− βk

2

)
‖TU −b‖2 ≤ 1

2γk
‖Uk+1 −Uk‖2 + c

(k +1)α
(3.24)

For any k, we set Ak = TUk −b = AXk −b where Xk =UkU∗
K . For any k, it follows from Lemma

3.3.2 that

(3γk /4)‖Gβk ,γk (Uk ,Yk )‖2 ≤ (
Lβ(Uk ,Yk )−Lβk (Uk+1,Yk )

)
= f (Uk )− f (Uk+1)+ βk

2
‖Ak‖2 − βk

2
‖Ak+1‖2 +〈Yk , Ak − Ak+1〉. (3.25)

Rearranging and using Assumption 1, we obtain

1

2
‖Ak+1‖2 ≤ 1

2
‖Ak‖2 − (3γk /4βk )‖Gβk ,γk (Uk ,Yk )‖2

+ 1

βk
( f (Uk ))− f (Uk+1))+ 1

βk
〈Yk ,TUk −TUk+1〉

= 1

2
‖Ak‖2 − (3γk /4βk )‖Gβk ,γk (Uk ,Yk )‖2

+ 1

βk
( f (Uk ))− f (Uk+1))+ 1

βk
〈Yk , Ak − Ak+1〉. (3.26)

Focusing on the last term, we get

1

βk
〈Yk , Ak − Ak+1〉−‖Ak − Ak+1‖2 = 1

βk
〈Yk −βk (Ak − Ak+1), Ak − Ak+1〉

= 1

βk
〈∇gβk (Xk+1,Yk ), Xk −Xk+1〉−〈Ak , Ak − Ak+1〉

= 1

βk
〈∇gβk (Xk+1,Yk ), Xk −Xk+1〉−‖Ak‖2 +〈Ak , Ak+1〉,

(3.27)

which, by using the elementary inequality 〈a | b〉 = 1
2‖a‖2 + 1

2‖b‖2 − 1
2‖a −b‖2, implies that

1

βk
〈Yk , Ak − Ak+1〉−

1

2
‖Ak+1‖2 + 1

2
‖Ak‖2

≤ 1

βk
〈∇gβk (Xk+1,Yk ), Xk −Xk+1〉+

1

2
‖Ak+1 − Ak‖2. (3.28)

It follows from the convexity of gβk that

1

βk
〈∇gβk (Xk+1,Yk ), Xk −Xk+1〉+

1

2
‖Ak − Ak+1‖2

≤ 1

βk
gβk (Xk ,Yk )− 1

βk
gβk (Xk+1,Yk ) (3.29)
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Now we change the dual variable:

1

βk
gβk (Xk ,Yk )− 1

βk
gβk (Xk ,Yk−1) = 1

βk
〈Yk −Yk−1, AXk −b〉

≤ (βk−1/βk )〈AXk −b | AXk −b〉
= (βk−1/βk )‖AXk −b‖2, (3.30)

We combine (3.25), (3.29) and (3.30) to get,

gβk (Xk+1,Yk ) ≤ gβk (Xk ,Yk−1)+ ( f (Uk ))− f (Uk+1))

+βk−1‖AXk −b‖2 − (3γk /4)‖Gβk ,γk (Uk ; Ẏk )‖2

= gβk−1 (Xk ,Yk−1)+ ( f (Uk ))− f (Uk+1))

+ (
βk−1

2
+ βk

2
)‖AXk −b‖2 − (3γk /4)‖Gβk ,γk (Uk ; Ẏk )‖2

≤ gβk−1 (Xk ,Yk−1)+ ( f (Uk ))− f (Uk+1))+ c

(k +1)α
− (γk /4)‖Gβk ,γk (Uk ,Yk )‖2.

(3.31)

which implies that

K min
1≤i≤K−1

γi‖Gβi ,γi (Ui ,Yi )‖2 ≤Lβ1 (X1,Y0)−LβK (XK ,YK−1)+
K−1∑
i=1

c

(i +1)α
(3.32)

≤ S −〈YK , AXK −b〉, (3.33)

where S =Lβ1 (X1,Y0)− f (Uk )+∑K−1
i=1

c
(i+1)α .

Hence,

min
0≤k≤K

‖Gβk ,γk (Uk ,Yk )‖2 ≤ S −〈YK , AXK −b〉
K

=O

(
1

Kβ−s
K γK ,mi n

)
(3.34)

The second conclusion follows from (3.24).

Remark 2. The choice of s determines the strictness of our assumptions. Choosing s = 0 gives
the best rate in theory, however it requires boundedness of the dual domain. Choosing s = 1 gives
a growth condition in the dual variable by guaranteeing O

(
1

k1/3

)
rate for both gradient mapping

and feasibility by choosing βk =Θ
(

1
k1/3

)
. In the presentation of our algorithm and the numerical

experiments, we use s = 1 everywhere without loss of generality.

As we will also observe in the experimental results, dual update step is crucial for a practically
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fast algorithm. Our theory also supports the importance of that dual variable updates.

Extension to general constraints. For clarity, we presented our algorithm and guarantees for
the linear equality constraints. Note however, our algorithm and convergence guarantees can be
extended to general constraints, including bounded convex sets or convex cones to solve

minimize
U∈Rn×r

{
f (U ) : TU −b ∈K and U ∈U

}
(3.35)

where K is a convex set. Our results can be extended to general constraints in a straightforward
manner using a similar approach as in Section 5.3 of [TDFC18].

3.4 Numerical experiments

In this section, we consider the application of our algorithm to semidefinite programming. We
consider generalized eigenvalue and clustering problems. For the former, we compare our
algorithm to ManOpt [BMAS14, BAC16] and Burer-Monteiro’s algorithm [BM03b, BM05].
ManOpt does not apply to the latter. Hence, we compare against Burer-Monteiro(abbreviated as
BM) and a recently proposed storage efficient convex method HCGM [YFLC18].

An important note here is that our algorithm works with U ∈Rn×r variable which has reduced
dimension and we only apply matrix matrix multiplications with at most O (n2r ) cost. In contrast,
ManOpt involves solving linear systems at each iteration which is handled by Matlab’s backslash
operator for solving generalized eigenvalue problem. For numerical experiments, we used
ManOpt’s open source software package for Matlab. BM and our algorithm are also implemented
on MATLAB. We refer the reader to [BM03b] for the BM algorithm. Subproblems in the
BM-algorithm are terminated as indicated in [BM05].

3.4.1 Maximum Cut

Given a graph, a cut is any partition of the nodes to two disjoint subsets. The size or weight of
the cut is defined by the edges that are connecting the nodes in two sets. Max-Cut is an NP-hard
problem where the aim is to find the cut with the maximum size or weight. Convex semidefinite
relaxation of this problem can be stated as:

min
X∈Sn×n

〈C , X 〉 s.t. diag(X ) = 1,tr X = n, X º 0 (3.36)

Introducing non-convex splitting X =UU∗ we use the following relaxed problem,

min
U∈Rn×r

〈C ,UU∗〉 s.t. diag(UU∗) = 1,‖U‖F ≤p
n. (3.37)
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Figure 3.1 – Performance of 3 algorithms for solving Max-Cut on 6 datasets. From top-left to bottom-right:
G50, G54, G56, G59, G62, G67

For this test, we use benchmark sparse graph data from [DH11] which is used in the litera-
ture [BVB16]. The dimensions of the graphs we used are given in the following table:

Table 3.2 – Datasets used for Max-Cut.

Datasets G50 G54 G56 G59 G62 G67

n 3,000 1,000 5,000 5,000 7,000 10,000

In this experiment, we compare Burer-Monteiro’s method, ManOpt and our method. We use the
implementation of ManOpt from [BMAS14] and implemented Burer-Monteiro and our method
in MATLAB. Among these, ManOpt has a per iteration cost of O (n6) [BAC16] whereas the other
two methods has the cost of O (n2) As can be seen from the plots, we consistently outperform
Burer-Monteiro’s method both in terms of feasibility and objective residual in terms of the
iterations. Even though ManOpt has faster convergence in terms of iterations, because of its
dimension dependence, our method is faster in terms of overall time cost.
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Figure 3.2 – Performance of 3 algorithms for solving generalized eigenvalue problem. Problem sizes from
top to bottom: n = 6000, n = 7000, n = 10000

3.4.2 Generalized eigenvalue problem

Generalized eigenvalue problem has extensive applications in machine learning, statistics and
data analysis [GJN+16]. The well-known non-convex formulation of the problem is [BVB16].

min
x∈Rn

x>C x s.t. x>B x = 1, (3.38)

where B ,C are symmetric matrices. Semidefinite relaxation of this problem gives

min
X∈Sn×n

〈C , X 〉 s.t. 〈B , X 〉 = 1, X º 0. (3.39)

Another common assumption is B Â 0. Due to the invertibiilty of B , we have 〈U ,BU 〉 ≥ ‖U‖2
F

‖B−1‖ ,
which implies the constraint ‖U‖2

F ≤ ‖B−1‖. Using Burer-Monteiro splitting with this fact gives
the problem

min
U∈Rn×r

〈U ,CU 〉 s.t. 〈U ,BU 〉 = 1,‖U‖F ≤ ‖B−1‖(1/2). (3.40)

We randomly generated the matrices C and B . We then set ||B ||F = 1 . For different problem
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Figure 3.3 – Left: Clustering result of our algorithm. Right: Performance of 3 algorithms for solving
clustering on MNIST dataset.

sizes, we tuned the β1 in Algortihm 2 and initial penalty parameter for BM’s algorithm.We used
ManOpt’s open source software package. We refer the reader to [BM03b, BM05] for the Burer-
Monteiro algorithm. As can be seen from Figure 3.2, our algorithm consistently outperforms BM.
Also note that ManOpt involves solving linear systems in B at each iteration.

3.4.3 Clustering

We would like to solve the following semidefinite relaxation of model-free k-means clustering:

min
X∈Sn×n

〈C , X 〉 s.t. X 1 = 1, X ≥ 0,tr X = ρ, X º 0 (3.41)

where C is the `2-distance metric. For non-convex factorization of this problem, we have a
few choices. Firstly, one can join the linear constraints X 1 = 1 and X ≥ 0. However, in convex
relaxation, X ≥ 0 constraint is required because of the nonnegativity of factors U . Therefore, we
choose to require U ≥ 0 even though it does not map directly to the convex problem, it seems to
be tighter. Next, tr X = k constraint is translated to ‖U‖F =p

k. However, this constraint is not
convex, therefore we cannot directly project to it. We can either join these constraints to nonlinear
constraints or use a relaxation ‖U‖F ≤p

k. In the formulation below, we decided to use the latter.

min
U∈Rn×r

〈C ,UU∗〉 s.t. (UU∗)1 = 1,U ≥ 0,‖U‖F ≤ ρ, (3.42)

For this problem, we have used a synthetic dataset in addition to the classical MNIST dataset.

For the test with MNIST data, similar to [YFLC18], we use the test setup and the preprocessed
data by [MVW17]. For the preprocessing details, please see [MVW17]. 1000 data points are
used for the test which means n = 1000 in our template. Elements of matrix C is composed of
the pairwise Euclidean distances of the data points.
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3.5 Bibliographic notes

The initial version of this chapter appeared in Workshop on Modern Trends in Non-convex
Optimization for Machine Learning, ICML, 2018. It has been revised by the author of this
dissertation to show that approximate stationary points in terms of gradient mapping implies
approximate saddle points under mild assumptions. Theorem 3.3.4 is in part due to Bang Cong
Vu.
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4 Linearized ADMM for Non-convex
Problems with Nonlinear constraints

This chapter studies an increasingly important problem of minimizing two sets of variables with
the separable non-convex composite objective with nonlinear constraints.

We introduce a linearized alternating direction method of multipliers (ADMM) framework that
only requires two consecutive proximal gradient steps on the primal variables and a gradient
ascent step in the dual. The proposed scheme achieves ε−first order stationarity by reducing the
feasibility and gradient mapping at a rate Õ ( 1

ε4 ) subject to a regularity condition on the constraints.
We also establish the same complexity result to ε approximate KKT points of the constrained
problem. Our analysis allows us to recover the known convergence rates with a single loop
algorithm, which is simpler than the inexact Augmented Lagrangian variants.

Our framework also handles the linearized augmented Lagrangian as a special case. Numerical
evidence on large-scale non-convex machine learning problems (such as continuous relaxation
of causal learning problem, SDP relaxation of clustering and Max-Cut problems) show that the
algorithm is scalable and accurate while requiring very little tuning.

4.1 Introduction
Many important problems in machine learning [MNS15, SSGB07], signal processing, communi-
cation [Sin11, SS11, LTHC20] and theoretical computer science [KN12, Lov03, ZKRW98] can
be captured by the following non-convex optimization template

min
x∈Rd

f (x)+ g (x) s.t. A(x) = 0, (4.1)

where f : Rd → R is a twice differentiable function whose gradient is given by ∇ f (x) ∈ Rd ;
g :Rd →R∪ {∞} is a proximal-friendly, (possibly) non-differentiable, proper, closed and convex
function; A :Rd →Rm is a twice-differentiable mapping whose Jacobian is denoted as DA(x) ∈
Rm×d . We additionally assume f and A satisfies the smoothness property such that

‖∇ f (x)−∇ f (x ′)‖ ≤λ f ‖x −x ′‖, ‖DA(x)−DA(x ′)‖ ≤λA‖x −x ′‖, (4.2)
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for λ f ,λA ≥ 0 and every x, x ′ ∈Rd .

The augmented Lagrangian method [Hes69] provides a powerful framework to solve (4.1).
Indeed, for β> 0, the first order stationarity conditions of the constrained problem (4.1) coincides
with

min
x

max
y

Lβ(x, y)+ g (x) := f (x)+〈A(x), y〉+ β

2
‖A(x)‖2 + g (x), (4.3)

where y ∈Rm is the dual variable and Lβ(x, y) is the augmented Lagrangian corresponding to
(4.1). The equivalent reformulation in (4.3) naturally suggests the following iterative algorithm

xk+1 ∈ argmin
x

Lβ(x, yk )+ g (x), yk+1 = yk +σk A(xk+1), (4.4)

to solve (4.1), where σk is the dual step size parameter. Every primal update requires to (exactly)
solve an unconstrained minimization problem to first (or second) order stationarity. Even in the
convex case, calculating the exact solution of the primal subproblem in (4.4) is not practical.
Hence, there is a line of work to develop inexact version of this conceptual algorithm both in the
convex [NNTD14, TDFC18] and non-convex [SAL+19, LCL+21] optimization setting.

When f is convex and A is linear, certain linearization techniques can be used to approximate
the augmented Lagrangian function in the subproblem in 4.4. This allows to obtain a closed
form solution to primal minimization problem making the algorithm fully implementable while
preserving the global convergence guarantees [YY13]. [LSG19] used similar approaches to
obtain a linearized augmented Lagrangian method for a non-convex f and linear A. To our
knowledge, this is the first work which studies the hard problem of convergence and complexity
of a linearized AL method for non-convex optimization with nonlinear constraints.

The classical alternating direction method of multipliers (ADMM) has received significant
attention due to its success in solving large scale problems by splitting them into series of
subproblems, each of which is much easier to solve. The classical ADMM has been extensively
studied for optimization problems with convex constraints [LSG19, BN18, HLR16]. However,
many important problems require to handle nonlinear constraints, such as k-means clustering
[SAL+19], causal learning [ZARX18] and robustness verification of neural networks [BIL+16,
LAL+21]. In this paper, we extend the classical ADMM to handle nonlinear constraints where
there are two blocks of variables which are nonlinearly coupled to each other.

We summarize our contributions in the sequel: (i ) As the basis of our analysis, we first introduce
the Linearized Augmented Lagrangian algorithm (LAL), which, to our knowledge, is the first
single loop algorithm for this template subject to a regularity condition. (i i ) We then prove that
LAL achieves the first-order stationarity for (4.1) at the rate of 1/k

1
4 . The resulting algorithm

is simple to implement and has only one tuning parameter, making it practical for large scale
applications.(i i i ) Then, we extend the same convergence guarantees for the alternating direction
method-of-multipliers (ADMM) variant, which is better suited for a variety of problems that
require variable splitting. (i v) The success of LAL relies on a geometric regularity condition,
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detailed in Section 4.2, which is closely related to Polyak-Lojasiewicz [KNS16], Mangasarian-
Fromovitz [Ber14], and other existing conditions in the literature of non-convex programming
[BST18, XY17, Roc93, FBFBV12]. We also verify this regularity condition in several important
examples.

Roadmap. We first give the necessary notations and preliminaries in Section 4.1.1. Section 4.2
introduces the geometric regularity condition which is vital for the success of our algorithm.
Section 4.3 studies the linearized Augmented Lagrangian algorithm along with the convergence
rates. In section 4.4, we introduce the linearized ADMM algorithm and its convergence results.
Section 4.5 is devoted for literature review.

4.1.1 Preliminaries

Notation.For a cone C , we denote its polar by C∗, namely, C∗ = {x : 〈x, x ′〉 ≤ 0, ∀x ′ ∈C }. For a
set C ′, its conic hull is defined as cone(C ′) :=⋃

α≥0{αx : x ∈C ′}.

Optimality conditions. Necessary optimality conditions for (4.1) are well-understood. Indeed, x

is a first-order stationary point of (4.1) if there exists y ∈Rm for which

−∇ f (x)−DA(x)>y ∈ ∂g (x), and A(x) = 0. (4.5)

Recalling (4.3) and for any β> 0, we observe that (4.5) is equivalent to

−∇xLβ(x, y) ∈ ∂g (x), and A(x) = 0, (4.6)

which is in turn the first-order optimality condition for (4.3).

Definition 2 (ε-KKT points). x ∈Rd is an ε-KKT point if there exists a vector y ∈Rm such that

dist
(
0,∇ f (x)+DA(x)>y +∂g (x)

)≤ ε, ‖A(x)‖ ≤ ε (4.7)

Feasible set of the problem is given as F := {x ∈Rd : A(x) = 0}. Inspired by [BST18], Definition
2, we define the slightly modified variant of the information zone with additional norm constraint;

Definition 3. (Bounded information zone) Given the feasible set F , the bounded information
zone for the model problem (4.1) is

F ⊂ {x : ‖A(x)‖ ≤ ρ,‖x‖ ≤ ρ′} := Xρ,ρ′ ⊂Rd (4.8)

Note that Xρ,ρ′ is the enlargement of the feasible set and a subset of Rd . This is the region where
the assumptions we made hold. [BST18] proposes a finite time algorithm to reach such a region.
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Chapter 4. Linearized ADMM for Non-convex Problems with Nonlinear constraints

Technical lemmas.The following technical result shows that the augmented Lagrangian, defined
in (4.3), is strongly smooth, see Section 4.12.

Lemma 4.1.1 (Smoothness). Assume Lβ(., y) is twice continuously differentiable. For all
x, x ′ ∈ Xρ,ρ′ and fixed y ∈Rm and β,ρ,ρ′ ≥ 0, it holds that

‖∇xLβ(x, y)−∇xLβ(x ′, y)‖ ≤λβ‖x −x ′‖, (4.9)

where λ f ,λA were defined in (4.2), and

λβ :=λ f +
p

mλA
(‖y‖+βρ)+βdλ′2

A , λ′
A := max

‖x‖≤ρ′ ‖DA(x)‖. (4.10)

For a sufficiently small step size γ, the gradient mapping controls the descent in the objective
function of (4.3). The following standard result from [BST14] (see remark 4(i )) formalizes this
notion. Section 4.13 contains the proof of the lemma for completeness.

Lemma 4.1.2 (Sufficient decrease property). For x ∈Rd and y ∈Rm , let x+ = Pγ,g (x−γ∇xLβ(x, y)),

where γ< 1/λβ, see (4.9). For x, x+ ∈ Xρ,ρ′ and ρ,ρ′ ≥ 0, it holds that

‖Gβ,γ(x, y)‖2 ≤ 2

γ
(Lβ(x, y)+ g (x)−Lβ(x+, y)− g (x+)). (4.11)

In practice, determining λβ (and thus the step size γ) by computing the right-hand side of (4.10)
is often intractable, since λ f ,λA ,λ′

A are usually unknown. Instead, we can resort to the line
search technique, reviewed below and proved in Section 4.14.

Lemma 4.1.3 (Line search). Fix θ ∈ (0,1) and γ0 > 0. For γ′ > 0, let x+
γ′ = Pγ′,g (x−γ′∇xLβ(x, y)),

and define

γ := max
{
γ′ = γ0θ

i : Lβ(x+
γ′ , y) ≤Lβ(x, y)+

〈
x+
γ′ −x,∇xLβ(x, y)

〉
+ 1

2γ′
‖x+

γ′ −x‖2
}

. (4.12)

Then, (4.11) holds and we moreover have that γ≥ θ
λβ

.

4.2 Geometric Regularity

Regularity conditions play a key role in the primal dual analysis of nonlinear optimization
problems. Indeed, they are necessary to draw the connection between the KKT conditions and
the optimal points of the constrained problem [MF67]. Examples include linear independence
constraint qualification (LICQ) and Mangasarian-Fromovitz constraint qualification (MFCQ)
[Ber14]. In particular, LICQ implies that gradient vector of each constraint is linearly independent
at the primal optimal point x?. Even in the convex case, KKT conditions are not sufficient for
optimality. In other words, a KKT point is not necessarily optimal for the constrained optimization.
For example, Slater’s condition is sufficient condition for strong duality [BBVP04] in the convex

54



4.3. Linearized AL Algorithm

case which ensures optimality of the KKT points.

Similarly, to successfully solve problem (4.1) in the presence of nonlinear constraints, we require
the following condition which is inspired by the Slater’s condition and extended to the non-convex
setting.

Definition 4. (Geometric regularity) In problem (4.1) with m ≤ d , for a subspace S ⊂Rd , let

ν‖A(x)‖ ≤ ∥∥PSPcone(∂g (x))∗(DA(x)> · A(x))
∥∥ (4.13)

where ν ∈R+, cone(∂g (x) is the conic hull of the subdifferential ∂g (x) and Pcone(∂g (x))∗ projects
onto the polar of this cone, see section 4.1.1. Moreover, DA(x) is the Jacobian of A. We say that
(4.1) satisfies the geometric regularity if ν> 0.

A similar regularity condition is assumed in [SAL+19] and [LCL+21] and it can be obtained as
an application of Definition 4. We believe 4.13 is a more compact and more general version of
that condition which allows us to draw certain connection to the Slater’s condition as well as
other regularity conditions in the non-convex programming (see Section 4.8).

Subspace S.Role of the subspace S in (4.13) is also to broaden the applicability of the geometric
regularity. In particular, when S =Rd , the Moreau decomposition [Mor62] allows us to simplify
(4.13) as

ν‖A(x)‖ ≤ dist
(
DA(x)> · A(x),cone(∂g (x))

)
(4.14)

where dist(·,cone(∂g (x))) returns the Euclidean distance to cone(∂g (x)).

We may think of the geometric regularity in Definition 4 as a local condition, which might hold
within a neighborhood of the constraint set {x : A(x) = 0} rather than everywhere in Rd . To recap,
let us point out that, unlike the bulk of the non-convex programming literature, we can verify the
geometric regularity in Definition 4 for a number of important examples. In this work, we will
focus on instances of problem (4.1) that satisfy the geometric regularity.

4.3 Linearized AL Algorithm

To solve the equivalent formulation of problem (4.1) presented in (4.3), we propose a Linearized
Augmented Lagrangian algorithm (LAL), summarized in Algorithm 3. At every iteration,
Algorithm 3 takes proximal gradient descent step in the primal followed by an ascent step in the
dual. The increasing sequence of penalty weights {βk }k in Step 1, and the dual updates in Steps 6
and 7 are responsible for continuously enforcing the constraints in (4.1).

As we will see in the convergence analysis, the particular choice of βk in Algorithm 3 strikes a
balance between reducing the objective of (4.1) and enforcing its constraints. In the k th iteration,
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Chapter 4. Linearized ADMM for Non-convex Problems with Nonlinear constraints

if the primal step size γk is sufficiently small, it is natural to expect Step 3 of Algorithm 3 to
reduce the objective of (4.3). Perhaps less obviously, the geometric regularity in Definition 4
ensures that this primal update also reduces the feasibility gap of (4.1). This intuition is the key
to the analysis of Algorithm 3, as formalized below and proved in Section 4.15.

Algorithm 3 LAL
Input: β1,σ1,ρ,τ> 0, x1 ∈Rd with ‖A(x1)‖ ≤ ρ, y1 ∈Rm .
For k = 1,2, . . .

1. βk ←β1
p

k log(k +1)/log2

2. Let γk ← γ by (4.12) with x = xk , y = yk ,β=βk

3. xk+1 ← Pγk ,g (xk −γk∇Lβk (xk , yk ))

4. If γk‖Gβk ,γk (xk , yk )‖2 +σk‖A(xk )‖2 ≤ τ;
return xk+1

5. σk+1 ←σ1 min
(

1p
k+1

, ‖A(x1)‖
‖A(xk+1)‖ ·

log2 2
(k+1)log2(k+2)

)
.

6. yk+1 ← yk +σk+1 A(xk+1).

Lemma 4.3.1. For integers k0 < k1, consider the integer interval K = [k0 : k1]. Suppose that
problem (4.1) satisfies the geometric regularity in Definition 4 with

ν≥ 2λA max
k∈K

γk‖Gβk ,γk (xk , yk )‖, (4.15)

where λA was defined in (4.2) and

• ρ ≥ maxk∈K ‖A(xk )‖, ρ′ ≥ maxk∈K ‖xk‖,

• S ⊇⋃
k∈K Pcone(∂g (xk+1))∗

(
DA(xk+1)>A(xk+1)

)
.

Then, for every k ∈ K , it holds that

‖A(xk )‖ ≤ 2

νβk

(
‖Gβk ,γk (xk , yk )‖+λ′

f +λ′
A‖yk‖

)
, (4.16)

where λ′
f := max‖x‖≤ρ′ ‖∇ f (x)‖, λ′

A := max‖x‖≤ρ′ ‖DA(x)‖.

With the aid of Lemma 4.3.1, we can derive the convergence rate of Algorithm 3 to first-order
stationarity, with the proof deferred to Section 4.10. For the convergence metric, we will use a
linear combination of the gradient mapping and the feasibility gap of problem (4.1), as motivated
earlier by the discussion after Definition 1.

Before stating the theorem, we summarize the assumptions on the problem (4.1) in the sequel:
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Assumptions:For ρ,ρ′ > 0 , let Xρ,ρ′ be the information zone in Definition (3), we assume;
- Problem (4.1) is geometrically regular over Xρ,ρ′ ;
- ∇ f (x) is λ f -Lipschitz continuous over Xρ,ρ′ ;
- D A(x) is λA-Lipschitz continuous over Xρ,ρ′ ;
- A(x) and f (x) are twice continuously differentiable.

Theorem 4.3.2 (Convergence rate of LAL). For sufficiently large integers k0 < k1, consider the
interval K = [k0 : k1], and consider the output sequence {xk , yk }k∈K of Algorithm 3. Suppose that

µ :=−min(0, inf
k

f (xk )+ g (xk )+〈A(xk ), yk0〉) <∞.

For ρ′ > 0, in addition to the strong smoothness of f and A quantified in (4.2), let us define

λ′
f = max

‖x‖≤ρ′ ‖∇ f (x)‖, λ′
A = max

‖x‖≤ρ′ ‖DA(x)‖, (4.17)

to be the (restricted) Lipschitz constants of f and A, respectively.1 Suppose also that problem (4.1)
satisfies the geometric regularity in Definition 4 with

ν&max

(
λA max

k∈K

p
γkµ,

λ′
f +λ′

Ap
µ

)
, (4.18)

where

• ρ&
p
µ, ρ′ ≥ maxk∈K ‖xk‖, S ⊇⋃

k∈K Pcone(∂g (xk+1))∗
(
DA(xk+1)>A(xk+1)

)
.

Then the output sequence of Algorithm 3 satisfies

min
k∈K

1

λ f +
p

mλAρ+dλ′2
A

· ‖
àGβK ,γk (xk , ˜yk−1)‖2√

k1 log(k1 +1)
+‖A(xk )‖2 .

1

k1 −k0

(
λ′2

f +λ′2
A

ν2 +µ
)

, (4.19)

where .,& above suppress the dependence on constants for the sake of clarity.

Geometric regularity.Geometric regularity in Definition 4 plays a key role in Theorem 4.3.2 by,
broadly speaking, ensuring that the primal updates of Algorithm 3 reduce the feasibility gap as
the penalty weight βk grows. We will verify this condition for several examples in Section 4.9.
As confirmed by (4.19), the larger ν, the more regular (4.1), and the faster Algorithm 3 would
converge to stationarity. In fact, for Algorithm 3 to succeed, Theorem 4.3.2 requires ν to be
sufficiently large, see (4.18). We do not know if (4.18) is necessary or rather an artifact of
the proof technique, but it is naturally expected for the convergence rate to at least slow down
when ν decreases, as corroborated by (4.19). The right-hand side of (4.18) also depends on the

1The restricted Lipschitz continuity assumption for f , A in (4.17) is mild. Indeed, we have already assumed in
(4.2) that f , A are both continuously differentiable and, by compactness of the domain in (4.17), λ′f ,λ′A <∞.
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Chapter 4. Linearized ADMM for Non-convex Problems with Nonlinear constraints

largest primal step size maxk∈K γk . Since γk is found by line search in Algorithm 3, we are
unable to upper bound this quantity unless we make further assumptions on problem (4.1), or
slightly modify the algorithm to cap primal step sizes. Indeed, in the experimental section, we
experimentally showed that we can find a ν asatisfying both (4.18) and (4.13) However, recall
that the augmented Lagrangian Lβk (·, yk ) is λβk Lipschitz gradient in its first argument and thus
typically γk ∝ 1/λβk , namely, γk ∝ 1/

p
k.

Smoothness.The smoother f , A are in the sense of (4.2,4.17), the faster convergence would be,
see (4.18,4.19). Indeed, as f , A becomes smoother, problem (4.1) more and more resembles a
convex program, at least locally. Note, however, that it is often not straightforward to compute
the local Lipschitz constants λ′

f ,λ′
A of (4.17) in practice, but it is in general possible to loosely

upper bound them. For us, it is necessary to work with λ′
f ,λ′

A to translate any descent in the
augmented Lagrangian (see Lemma 4.1.2) to reducing the feasibility gap (see Lemma 4.3.1).

Subspace S.The freedom over the choice of subspace S in Theorem 4.3.2 is meant to further
strengthen the result One might simply set S =Rd in the first reading.

Faster rates.Assuming restricted strong convexity and smoothness for f in (4.1) and near-
isometry for A, (approximate) linear convergence of Algorithm 3 to a global minimizer of
problem (4.1) can be established [LC+19].

4.4 Linearized Alternating Direction Method of Multipliers

In convex optimization, whenever applicable, Alternating Direction Method of Multipliers
(ADMM) [GM75, GM76, BPC+11] often outperforms the augmented Lagrangian method. In
addition, ADMM often more efficiently handles non-smooth terms.

In light of the success of ADMM in convex optimization, in this section we develop and study a
(linearized) ADMM variant of Algorithm 3. More specifically, consider the program

min
x,z

f (x)+ g (x)+h(z)+ l (z) A(x)+B(z) = 0, (4.20)

where f ,h : Rd → R and A,B : Rd → Rd are smooth in the sense described later in this section.
Above, g , l :Rd →R are proximal-friendly convex functions which might not be differentiable.
For penalty weight β≥ 0, the augmented Lagrangian corresponding to problem (4.20) is

Lβ(x, z, y) = f (x)+h(z)+〈A(x)+B(z), y〉+ β

2
‖A(x)+B(z)‖2, (4.21)
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and problem (4.20) is therefore equivalent to the minimax program

min
x,z

max
y

Lβ(x, z, y). (4.22)

To solve the equivalent formulation in (4.22), we propose the linearized ADMM in Algorithm 4.
Most remarks about Algorithm 3 apply to Algorithm 4 as well and, in particular, note that
Algorithm 4 performs two consecutive primal updates, one on x and then one on z.

Algorithm 4 Linearized ADMM
Input: β1,σ1,ρ,τ> 0; x1, z1 ∈Rd with ‖A(x1)+B(z1)‖ ≤ ρ; y1 ∈Rm .
For k = 1,2, . . .

1. βk ←β1
p

k log(k +1)/log2

2. γk ← γ by (4.26) with x = xk , z = zk , y = yk ,β=βk

3. xk+1 ← Pγk ,g (xk −γk∇xLβk (xk , zk , yk ))

4. ιk ← ι by (4.27) with x = xk+1, z = zk , y = yk ,β=βk

5. zk+1 ← Pιk l (zk − ιk∇zLβk (xk+1, zk , yk ))

6. If γk‖Gβk ,γk (xk , zk , yk )‖2 + ιk‖Gβk ,ιk (xk+1, zk , yk )‖2 +σk‖A(xk )+B(zk )‖2 ≤ τ;
return xk+1, zk+1.

7. σk+1 ←σ1 min( 1p
k+1

, ‖A(x1)+B(z1)‖
|A(xk+1)+B(zk+1)‖ ·

log2 2
(k+1)log2(k+2)

)

8. yk+1 ← yk +σk+1(A(xk+1)+B(zk+1)).

To parse the details of Algorithm 4, we need to slightly change the gradient map in Definition 1
and the line search procedure in Lemma 4.1.3 to match the new augmented Lagrangian Lβ in
(4.21). More specifically, the corresponding gradient maps are defined as

Gβ,γ(x, z, y) = x −x+

γ
, Hβ,ι(x, z, y) = z − z+

ι
, (4.23)

where

x+ = Pγ,g (x −γ∇xLβ(x, z, y)), z+ = Pι,l (z − ι∇zLβ(x, z, y)), (4.24)

and γ, ι > 0 are the primal step sizes. Above, Pγ,g and Pι,l are the corresponding proximal
operators. The line search procedure too is similar to Lemma 4.1.3 and we set

x+
γ′ = Pγ′,g (x −γ′∇xLβ(x, z, y)), z+

ι′ = Pι′,l (z − ι′∇zLβ(x, z, y)), (4.25)
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γ := max
{
γ′ = γ0θ

i : Lβ(x+
γ′ , z, y) ≤Lβ(x, z, y)+

〈
x+
γ′ −x,∇xLβ(x, z, y)

〉
+ 1

2γ′
‖x+

γ′ −x‖2
}

, (4.26)

ι := max
{
ι′ = ι0θi : Lβ(x, z+

ι′ , y) ≤Lβ(x, z, y)+〈
z+
ι′ − z,∇zLβ(x, z, y)

〉
+ 1

2ι′
‖z+

ι′ − z‖2
}

. (4.27)

The analysis of Algorithm 4 is similar to that of Algorithm 3, involving also a similar version of
Lemma 4.3.1. The convergence rate of Algorithm 4 is detailed below and proved in Section 4.11.
To present the result, let us introduce some additional notation. We let

u =
[

x>z>
]>

, p(u) = f (x)+h(z), q(u) = g (x)+ l (z), D(u) = A(x)+B(z), (4.28)

and assume that p,D are smooth in the sense that

‖∇p(u)−∇p(u′)‖ ≤λp‖u −u′‖, ‖DD(u)−DD(u′)‖ ≤λD‖u −u′‖, (4.29)

for every u,u′ ∈R2d .

Theorem 4.4.1 (Convergence rate of linearized ADMM). For sufficiently large integers k0 < k1,
consider the interval K = [k0 : k1], and consider the output sequence {xk , zk , yk }k∈K of Algorithm 3
with κk := min(γk , ιk ) for short. After recalling (4.28), suppose that

µ :=−min(0, inf
k

p(uk )+q(uk )+〈D(uk ), yk0〉) <∞.

For ρ′ > 0, in addition to the strong smoothness of p and D quantified in (4.29), let us define

λ′
p = max

‖u‖≤ρ′ ‖∇p(x)‖, λ′
D = max

‖u‖≤ρ′ ‖DD(x)‖, (4.30)

to be the (restricted) Lipschitz constants of p and D , respectively. Suppose also that problem (4.20)
satisfies the geometric regularity in Definition 4 with

ν&max

(
λD max

k∈K

p
κkµ,

λ′
p +λ′

Dp
µ

)
, (4.31)

where

• ρ&
p
µ, ρ′ ≥ maxk∈K ‖uk‖, S ⊇⋃

k∈K Pcone(∂q(uk+1))∗
(
DD(uk+1)>D(uk+1)

)
.
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Table 4.1 – Comparison of the complexity results of several methods in the literature to the KKT points of
(4.1).

Method type constraint assumption complexity simplicity
ADMM

extension

iPPP [LMX19] penalty
non-convex A(x0) = 0 Õ(ε−4)

Double-loop 7
non-convex Def. 4 Õ(ε−3)

iALM [SAL+19] AL non-convex Def. 4 Õ(ε−4) Double-loop 7

improved-iALM [LCL+21] AL
convex Def. 4 Õ(ε−

5
2 )

Triple-loop 7
non-convex Def. 4 Õ(ε−3)

GDPA [Lu22] AL non-convex Def 4 Õ(ε−3) Single-loop 7

LAL (this work) AL non-convex Def. 4 Õ(ε−4) Single-loop 3

Then the output sequence of Algorithm 3 satisfies

min
k∈K

C1 ·
‖àGβK ,γk (xk , ˜yk−1)‖2 +‖�HβK ,ιk (zk , ˜yk−1)‖2√

k1 log(k1 +1)
+‖A(xk )‖2 +‖B(zk )‖2 .

1

k1 −k0

(
C2 +µ

)
,

(4.32)

where C1,C2 are constants; .,& suppress the dependence on constants for the sake of clarity.

4.5 Related Works

In this section, we summarize the existing works in the context of our contributions.

Constrained optimization and ALM.[LX20] studies an hybrid (AL+penalty based) method
to solve 4.1 with a linear operator. They achieve Õ(ε−

5
2 ) rate of convergence under Slater’s

condition. However, their theory does not apply when the operator is not linear. Similar
approaches with convex constraints appear in [KMM19, LMX19, LX20]. [MLY20] proposes a
subgradient framework for weakly convex functions with weakly convex functional constraints.
Their algorithm requires the knowledge of primal domain radius, as well as the weak convexity
constants of the objective and the constraints which are often not known. Hence, this introduces 3

more tuning parameters to algorithm. [LMX19] uses an inexact proximal point method and proves
Õ(ε−4) complexity. They improve this rate to Õ(ε−3) with the additional regularity assumption
[SAL+19] introduces an inexact AL based algorithm and proves Õ(ε−4) rate of convergence under
the same regularity assumption. Later, this convergence rate is improved to Õ(ε−3) in [LCL+21]
by using a different solver for the inner problems. All these methods has more than one loop. To
our knowledge, this is the first work which uses a single loop algorithm to solve the constrained
problem in 4.1. There is also a concurrent work who established Õ(ε−3) convergence rate under
the same assumption on the constraint set. However, it should be noted that their method is not
applicable in ADMM setting. Table 4.1 summarizes these results.
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Smooth min-max optimization.There is a surge of interest in algorithms for solving min-max
optimization problems of the form;

min
x

max
y
φ(x, y), (4.33)

where the function φ(·, ·) is smooth. This template has several applications in machine learning,
including generative adversarial networks [GPM+14]. When the function φ(x, y) is non-convex
in x and concave in y , this template is able to handle 1.4 with g (x) = 0. [LJJ20a] proposes a single
loop gradient descent-ascent algorithm with O (ε−2) complexity to solve 4.33. The framework
assumes a bounded dual domain which eliminates many important applications. Instead, we use
a special step-size rule to control the growth in the dual and remove the boundedness assumption.
[LJJ20b] proposes near-optimal algorithms for a broad class of optimization problems. They
obtain O (ε−2.5) convergence rate to the stationary point of 4.33. However, the algorithm requires
to set the final accuracy in advance and has a triple loop structre. Moreover, it is not obvious if
these rates would trivially translate to ε−KKT points of problem (4.1) since the metrics to prove
convergence in these algorithms are not the same as ours.

Non-convex ADMM.We note that the convergence but not the rate of a linearized and non-convex
variant of ADMM for (4.1) has been studied in [LSG19], yet it is for the linearly constrained
problems. Other variants of linearized ADMM in more limited settings have appeared in [BN18,
HLR16]. [WZ21] extends the classical ADMM approach to solve nonlinear equality constraint
problems but they do not study the convergence of the method. Hence, to our knowledge, this is
the first work which studies the convergence of the ADMM for nonlinear constraints subject to a
verifiable regularity condition.

4.6 Numerical evidence on k-means Clustering

We solve the BM factorization of SDP clustering problem presented in [PW07], where

f (x) =
n∑

i , j=1
Di , j

〈
xi , x j

〉
, g = δC ,

A(x) = [x>
1

n∑
j=1

x j −1, · · · , x>
n

n∑
j=1

x j −1]>,

where D ∈Rn×n is the Euclidean distance matrix, C is the intersection of the positive orthant in
Rd with the Euclidean ball of radius

p
s. , s is the number of clusters and 1 ∈Rn is the vector of

all ones.

To be able to solve the clustering problem with Linearized ADMM, we can rewrite the same
problem in the form of 4.20 and apply the Algorithm 4;
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f (x) =
n∑

i , j=1
Di , j

〈
xi , x j

〉
, g = δC1 ,

h(z) = 0, l = δC2

B1(z) = [z>
1

n∑
j=1

z j −1, · · · , z>
n

n∑
j=1

z j −1]>,

A(x)+B2(z) = [x11 − y11, · · · , xi j − zi j , · · · , xnr − znr ]>,

for i = 1, · · · ,n and j = 1, · · · ,r,

where C1 is the Euclidean ball of radius
p

s and C2 is the nonnegative orthant in Rd . We verify
the regularity condition for clustering in the Section 4.9.1.

We devote this section to (i ) analyze the performance of our algorithms; to (i i ) empirically
validate that the regularity assumption we make indeed hold in practice (see Figure 4.1) and to
(i i i ) showcase the practicality and tuning efficiency of our methods. The result of (i i i ) is deferred
to Section 4.9.1. We solve the non-convex Burer-Monteiro (BM) factorization of SDP clustering
problem presented in [PW07]. In our simulations, we compare our two proposed algorithms
LAL and Linearized ADMM against iALM in [SAL+19] and improved-iALM [LCL+21]. At
each iteration of the iALM, we are required to solve the subproblem up to an accuracy predefined
by the user. We use a first order accelerated method (apgm) for subproblems. We initialize all
methods from the same near feasible point obtained by running a least squares algorithm for
consistency. Then, we tune all the methods and compare them in terms of the k-means clustering
value obtained by a rounding procedure. For iALM, there are 3 different tuning parameters
which affects the performance of the algorithm significantly, which are β1, b and m0. β1 is the
initial penalty weight, b is the rate at which penalty weight increases and m0 is the number of
initial iterations for the inner solver which also increases linearly with b [SAL+19]. For LAL and
Linearized ADMM, on the other hand, there is only one tuning parameter which we have to tune.
For Linearized ADMM, we set σ1 = 10∗β1 for each corresponding β1. For iALM and LAL,
we set σ1 = 102 ∗β1. For improved-iALM, we use the suggested values given in [LCL+21]We
use the same setup as explained in [SAL+19] with fashion MNIST (and additionally MNIST for
condition verification) datasets. We refer the readers to [SAL+19] and references therein. We ran
the experiments on MacBook Pro with 8-Core Intel Core i9 processor and 32 GB of RAM.

Table 4.2 compiles the experimental results and we can see that our framework is flexible in the
sense that it can also solve the ADMM formulation and both of the algorithms performs similarly.
The main power of our framework comes from the tuning efficiency of the methods which are
depicted through Table 4.3 in the Section 4.9.1. Moreover, Figure 4.1 provides an experimental
validation to the assumptions we made in the theorems, particularly (4.13) and (4.15).
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Table 4.2 – Comparison of practical performance of algorithms for solving non-convex relaxation of
kmeans SDP problem on fashion MNIST (fMNIST) and MNIST datasets. Primal feasibility, kmeans value
after the rounding, and time.

fMNIST MNIST
method pfeas kmeans time(secs) pfeas kmeans time (secs)

iALM [SAL+19] 5.26e-1 28.726 11.03 3.5e-2 33.42 9.12
improved-iALM [LCL+21] 4.10e-2 29.412 8.220 6.1e-3 42.53 6.93

LAL (this work) 7.53e-1 28.726 6.726 2.7e-2 33.42 4.33
Linearized ADMM (this work) 3.52e-3 28.726 7.08 5.9e-4 32.96 5.65
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Figure 4.1 – Experimental validation showing that assumptions on the value of ν does not contradict
each other. We need green line to be always larger than or equal to the maximum point of the red line
which is denoted by Lower bound. Indeed, as the algorithm converges, the redline goes to zero, while
the green line converges to a constant value. We require: dist(−D A(xk )>A(xk )),∂g (xk ))/||A(xk )|| ≥ ν≥
2λA maxk γk ||Gβk ,γk

(xk , yk )||

4.7 Convergence rates

Loosely speaking, Theorem 4.3.2 states that Algorithm 3 achieves first-order stationarity for by
reducing the gradient map and the feasibility gap at the rates

min
k∈K

‖�Gβk ,γk (xk , ỹk−1)‖2 = 1

Õ(
√

k1)
, min

k∈K
‖A(xk )‖ = 1

Õ(
√

k1)
, (4.34)

where Õ suppresses logarithmic terms above. For comparison, if f was convex and A was affine
in (4.1), both rates in (4.34) would have improved to 1/k, see [Xu17a],Theorem 2.5, for the
details. Note that Theorem 4.3.2 states a stronger result than just 4.34 since we need the sum
of both terms go to zero for convergence. Equation 4.34 does not guarantee this claim. Similar
arguments hold for Theorem 4.4.1.

4.8 Further Discussion on Geometric Regularity

As discussed previously, we only require this regularity condition to hold near the feasible set
of the problem, i.e., on the bounded information zone. Hence, we can re-write the regularity
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condition on this zone as follows.

Definition 5. (Geometric regularity-reformulated) In problem (4.1) with m ≤ d , for ρ,ρ′ > 0

and subspace S ⊂Rd , let

ν :=
min

x∈Rd

‖PS Pcone(∂g (x))∗ (DA(x)>·A(x))‖
‖A(x)‖

subject to 0 < ‖A(x)‖ ≤ ρ, ‖x‖ ≤ ρ′,
(4.35)

where ν= ν(g , A,S,ρ,ρ′), cone(∂g (x)) is the conic hull of the subdifferential ∂g (x) and Pcone(∂g (x))∗

projects onto the polar of this cone, see Section 4.1.1. Moreover, DA(x) is the Jacobian of A. We
say that (4.1) satisfies the geometric regularity if ν(g , A,S,ρ,ρ′) > 0.

A few remarks about geometric regularity are in order.

Polyak-Lojasiewicz (PL) inequality.The PL inequality relates the norm of the gradient of the
objective function ‖∇ f̂ (x)‖ to function sub-optimality ( f̂ (x)− f̂ ?) for the problem minx∈Rd f̂ (x),
where f̂ is λ f̂ -smooth. PL inequality holds for some µ> 0 if

1

2
‖∇ f̂ (x)‖2 ≥µ( f̂ (x)− f̂ ?), ∀x ∈Rd .

This is often used to obtain fast rates in non-convex optimization [KNS16]. If g = 0 and
S = Rd then the regularity condition in Definition 4 reduces to PL condition for minimizing
f̂ (x) = 1

2‖A(x)‖2 with ν=√
2µ [SAL+19, KNS16].

Uniform regularity. [BST18]Let A :Rd →Rm be a continuously differentiable mapping whose
Jacobian is denoted as DA(x) ∈ Rm×d , and let Ω be a non-empty subset of Rd . Then, A is
uniformly regular on S with constant ν> 0 if the following holds true:

‖DA(x)>v‖ ≥ ν‖v‖ ∀x ∈Ω, ∀v ∈Rm .

If g = 0 and S = Rd , we can argue that If uniform regularity holds, then Definition 4 holds.
In this case, uniform regularity is a stronger assumption since it requires to hold for all v ∈Rm ,
whereas we only require it to hold for v = A(x), ∀x ∈ Xρ,ρ′ .

Similar connections under special cases can also be formed for other constraint qualifications
such as Mangasarian-Fromovitz condition [BST18] and Kurdyka-Lojasiewicz condition [XY17,
SAL+19].

Jacobian DA.Let DA(x)> QR= Q(x)R(x) be the QR decomposition of DA(x)>. As we will see
shortly, DA(x)> in (4.35) may be replaced with its orthonormal basis Q(x) to broaden the
applicability of the geometric regularity to the cases where DA(x) might be rank-deficient.
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Definition 4 avoids this additional layer of complexity and instead, whenever needed, we assume
that DA(x) is nonsingular for all x. Alternatively, a simple QR decomposition can also remove
any redundancies from A(x) = 0 in the constraints of (4.1).

Subspace S.Role of the subspace S in (4.35) is also to broaden the applicability of the geometric
regularity. In particular, when S =Rd , the Moreau decomposition [Mor62] allows us to simplify
(4.35) as

ν :=
min

x

dist(DA(x)>·A(x),cone(∂g (x)))
‖A(x)‖

subject to 0 < ‖A(x)‖ ≤ ρ,‖x‖ ≤ ρ′,
(4.36)

where dist(·,cone(∂g (x))) returns the Euclidean distance to cone(∂g (x)).

Convex case.To better parse Definition 4, let us consider the specific example where f :Rd →R is
convex, g = 1C is the indicator function for a bounded convex set C ⊂Rd , and A is a nonsingular
linear operator represented with the full-rank matrix A ∈Rm×d , allowing some abuse of notation.
We also let TC (x) denote the tangent cone to C at x [Roc15], and reserve PTC (x) :Rd →Rd for the
orthogonal projection onto this cone.

We can now study the interpretation of geometric regularity in this setting. Using the Moreau
decomposition, it is not difficult verify that

ν(1C , A,S,ρ,ρ′) ≥
min

v,x

∥∥PS PTC (x) A>v
∥∥

‖v‖
subject to 0 < ‖v‖ ≤ ρ,‖x‖ ≤ ρ′

=
min

x
ηmin

(
PSPTC (x) A>)

subject to ‖x‖ ≤ ρ′ =: ν̃(1C , A,S,ρ,ρ′), (4.37)

where ηmin(·) returns the smallest singular value of its input matrix. Then, loosely speaking,
geometric regularity ensures that the row span of A is not tangent to C , similar to the Slater’s con-
dition. One might also expect ν in Definition 4 to hold some information about the convergence
speed of an algorithm. For example, suppose in problem (4.1) that f ≡ 0, g = 1C with convex set
C specified below, and A is a linear operator. We also take m = 1, so that A can be represented
with a 1×d row-vector. For a small perturbation vector ε ∈R1×d , let

C = {x ∈Rd : (A+ε)x ≥ 0}

be a half-space. Then the Slater’s condition holds regardless of the perturbation level ‖ε‖.
However, even though positive, ν(1C , A,Rd ,∞,ρ′) can be made arbitrarily small by making ‖ε‖
very small, which in turn holds a clue to the arbitrarily slow convergence of the alternating
projection algorithm to solve (4.1).
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To recap, let us point out that, unlike the bulk of the non-convex programming literature, we can
verify the geometric regularity in Definition 4 for a number of important examples.

4.9 Additional Experiments

4.9.1 Clustering

We solve the Burer-Monteiro (BM) factorization of SDP clustering problem presented in [PW07],
where

f (x) =
n∑

i , j=1
Di , j

〈
xi , x j

〉
, g = δC , A(x) = [x>

1

n∑
j=1

x j −1, · · · , x>
n

n∑
j=1

x j −1]>,

where D ∈Rn×n is the Euclidean distance matrix, C is the intersection of the positive orthant in
Rd with the Euclidean ball of radius

p
s. , s is the number of clusters and 1 ∈Rn is the vector of

all ones. To be able to solve the clustering problem with Linearized ADMM, we can rewrite the
same problem in the form of 4.20 and apply the Algorithm 4;

f (x) =
n∑

i , j=1
Di , j

〈
xi , x j

〉
, g = δC1 , h(z) = 0, l = δC2

B1(z) = [z>
1

n∑
j=1

z j −1, · · · , z>
n

n∑
j=1

z j −1]>, A(x)+B2(z) = [x11 − y11, · · · , xnr − znr ]>,

where C1 is the Euclidean ball of radius
p

s and C2 is the nonnegative orthant in Rd . We verify
the regularity condition for clustering in the Section 4.9.1.

Condition verification.[SAL+19] studies algorithmic-dependent variant of Definition 4 and
verifies that for the clustering problem. We verify the new condition here for the same problem
without algorithmic variables.

Note that,

A(x) =V V >1−1, (4.38)
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D A(x) =


w1,1x>

1 · · · w1,n x>
1

...
wn,1x>

n · · · wn,n1x>
n



=
[

V · · · V
]
+


x>

1
. . .

x>
n

 , (4.39)

where wi .i = 2 and wi , j = 1 for i 6= j . In the last line above, n copies of V appear and the last
matrix above is block-diagonal. For x, define V accordingly and let xi be the i th row of V .
Consequently,

D A(x)>A(x) =


(V >V − In)V >1

...
(V >V − In)V >1

+


x1(V V >1−1)1

...
xn(V V >1−1)n

 , (4.40)

where In ∈Rn×n is the identity matrix. Let us make a number of simplifying assumptions. First,
we assume that ‖x‖ <p

s (which can be enforced in the iterates by replacing C with (1−ε)C for
a small positive ε in the subproblems). Under this assumption, it follows that

(∂g (x))i =
0 (x)i > 0

{a : a ≤ 0} (x)i = 0,
i ≤ d . (4.41)

Second, we assume that V has nearly orthonormal columns, namely, V >V ≈ In . This can also
be enforced in each iterate of Algorithm 3 and naturally corresponds to well-separated clusters.
While a more fine-tuned argument can remove these assumptions, they will help us simplify the
presentation here. We also set S =Rd in 4.13. Under these assumptions,

dist
(−D A(x)>A(x),cone(∂g (x))

)2

= ∥∥(−D A(x)>A(x)
)
+
∥∥2

(a+ = max(a,0))

=

∥∥∥∥∥∥∥∥


x1(V V >1−1)1
...

xn(V V >1−1)n


∥∥∥∥∥∥∥∥

2

(x ∈C ⇒ x ≥ 0)

=
n∑

i=1
‖xi‖2(V V >1−1)2

i

≥ min
i

‖xi‖2 ·
n∑

i=1
(V V >1−1)2

i

= min
i

‖xi‖2 · ‖V V >1−1‖2. (4.42)

Therefore, given a prescribed ν, ensuring mini ‖xi‖ ≥ ν guarantees that regularity condition holds.
When the algorithm is initialized close enough to the constraint set, there is indeed no need to
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Table 4.3 – K-means clustering results obtained by running each method with the corresponding set of
hyper-parameters ({β1,b,m0} for iALM and only {β1} for Linearized ADMM) for 1000 iterations for the
fashionMNIST dataset and rounding afterwards. Note that Linearized ADMM and LAL both have only 1
tuning parameter and can perform at least as good as iALM. Moreover, tuning iALM takes exponentially
longer as the tuning interval increases than tuning Linearized ADMM and LAL. This table is to show that
Linearized ADMM and LAL are both tuning efficient methods.

m0 b β1 iALM [SAL+19] Linearized ADMM LAL

10

1.1

10−2 87.89044 794.98999 28.73240
10−1 28.73417 688.78644 28.73418
1 86.64399 28.72636 28.72636
101 28.76799 93.45923 93.45923
102 28.72689 159.66110 159.66110

2

10−2 113.44376
10−1 28.73471
1 45.25990
101 28.72638
102 28.72689

4

10−2 109.74625
10−1 28.77593
1 42.90821
101 65.02499
102 28.73470

8

10−2 80.58079
10−1 45.81465
1 43.33508
101 28.72690
102 28.86121

50

1.1

10−2 93.18016
10−1 33.23707
1 28.79125
101 28.72691
102 28.79532

2

10−2 93.18016
10−1 29.41133
1 28.79125
101 28.72689
102 28.72689

4

10−2 480.24234
10−1 28.72690
1 28.79125
101 28.72689
102 28.72689

8

10−2 103.52721
10−1 28.72690
1 28.79125
101 28.72689
102 28.72689
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separately enforce (4.42). In practice, often n exceeds the number of true clusters and a more
intricate analysis is required to establish the inequality by restricting the argument to a particular
subspace of Rn .

Practicality of the approach.Table 4.3 compiles the experimental results for solving clustering
problem with Linearized ADMM and LAL. Note that Linearized ADMM and LAL both have
only 1 tuning parameter and can perform at least as good as iALM with significantly less tuning
time. Moreover, tuning iALM takes exponentially longer as the tuning parameters increase.
iALM is highly reluctant to changes in the set of tuning parameters {β1,b,m0} as depicted in
Table 4.3.

4.9.2 Maxcut

In this section, we show that regularity condition in Definition 4 holds for the maxcut problem.
Given an undirected graph G = (V ,E), maximum cut problem aims to find the set of vertices
which maximizes the weight of the edges in the cut. Here, V denotes the set of vertices, and E

denotes the edges. It is an important combinatorial problem in computer science and NP-Hard.
We solve the following SDP relaxation of the problem;

min
X∈Rn×n

1

4
〈C , X 〉 s.t. diag(X ) = 1, trace(X ) = n, X º 0, (4.43)

where 1 ∈ Rn is the vector of all ones, C ∈ Rn×n is the symmetric graph Laplacian matrix. We
solve the following BM factorization of the problem after change of variables X = Y Y >;

min
Y ∈Rn×r

1

4
trace(Y >C Y ) s.t. diag(Y Y >) = 1, ‖Y ‖2

F ≤ n. (4.44)

Note here that we relaxed the equality constraint trace(X ) = n to an inequality constraint ‖Y ‖2
F < n

while doing the factorization. Although the constraints are not equivalent, at the feasible point of
the problem, ‖Y ‖2

F = n is automatically satisfied. For every i , let xi ∈Rr denote the i th row of Y .
Let us form x ∈Rd with d = nr by vectorizing Y , namely,

x = [x>
1 · · ·x>

n ]>. (4.45)

We can therefore cast the above in the form of the original problem with

f (x) =∑
i , j

Ci , j 〈xi , x j 〉, A : x → [‖x1‖2 −1, · · · ,‖xn‖2 −1]>. (4.46)
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Condition verification.First, calculate the jacobian of the nonlinear operator;

D A(x) =


x>

1 · · · 0
...
0 · · · x>

n

 ∈Rd ′×d . (4.47)

In particular, if we take S =Rd and ρ < 1, we have Pcone(∂g (x))∗ = Id and thus

ν(g , A,S,ρ,ρ′) =
minx ηmin (D A(x))

subject to 0 < ‖A(x)‖ ≤ ρ,‖x‖ ≤ ρ′

=
minx mini ‖xi‖

subject to ‖x‖ ≤ ρ′,
∑

i |‖xi‖2 −1| > 0, |‖xi‖2 −1| ≤ ρ ∀i .

≥√
1−ρ > 0. (4.48)

Above, ηmin(.) returns the smallest singular value of its input. Consequently, condition in (4.35)
holds for the max-cut problem.

4.9.3 Continuous Optimization for Learning Structures

Learning direct acyclic graphs(DAGs) is an NP-hard problem because of the difficulty in enforcing
combinatorial acyclicity constraints [ZARX18]. DAGs have many application ranging from
biology [SPP+05] and genetics [ZGB+13] to machine learning [KF09] and causal inference
[SGSH00]. [ZARX18] proposed a new method for solving problem of learning DAGs by
converting the combinatorial problem into a nonlinearly constrained optimization problem which
perfectly fits to our template. The resulting optimization problem is as follows:

min
X∈Rd×d

F (X ) := 1

2n
‖W −W X ‖2

F +λ‖X ‖1 s.t. h(X ) = 0, (4.49)

where W ∈ Rn×d is a data matrix consisting n i.i.d. observations of random vector, ‖X ‖1 =
‖vec(X )‖1 is the `1-regularization for inducing sparsity and h(X ) = tr(e X ◦X ) − d = 0 is the
constraint for characterizing acyclicity. In h(X ), ◦ denotes the Hadamard product and e X is the
matrix exponential of X . NOTEARS algorithm in [ZARX18] forms the augmented Lagrangian
for the above problem and solves a sequence of complicated subproblems with LBFGS followed
by a dual update. Our generic Algorithm LAL does one simple proximal gradient step followed by
a dual ascent and it can learn the graph with a quality as high as NOTEARS. The learned adjacency
matrices and resulting directed graph with LAL and NOTEARS algorithm on a 20−node graph
with 1000 samples are depicted in Figures 4.2 and 4.3. Thickness of the arrow increases as the
weight of the corresponding node increases. We have used public implementation of NOTEARS
available at https://github.com/xunzheng/notears and implemented our method on this package.
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Figure 4.2 – LAL
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Figure 4.3 – NOTEARS

4.10 Proof of Theorem 4.3.2

For the reader’s convenience, let us recall the updates of Algorithm 3 in iteration k:

xk+1 = Pg (xk −γk∇xLβk (xk , yk ))

= Pg

(
xk −γk∇ f (xk )

−γk DA(xk )>
(
yk +βk A(xk )

))
, (see (4.3)) (4.50)

yk+1 = yk +σk+1 A(xk+1). (4.51)

Moreover, we will use the shorthand

Gk =Gβk ,γk (xk , yk ) = xk −xk+1

γk
, (see (1.12)) (4.52)

for gradient mapping throughout the proof. For integers k0 ≤ k1, consider the interval

K = [k0 : k1] = {k0, · · · ,k1}. (4.53)

Since the primal step size γk is determined by the line search subroutine in Lemma 4.1.3, we
may now apply Lemma 4.1.2 for every iteration in the interval K to find that

γk‖Gk‖2

2
≤Lβk (xk , yk )+ g (xk )−Lβk (xk+1, yk )− g (xk+1) (see Lemma 4.1.2)

= f (xk )+ g (xk )− f (xk+1)− g (xk+1)+〈A(xk )− A(xk+1), yk〉

+ βk

2
(‖A(xk )‖2 −‖A(xk+1)‖2), (see (4.3)) (4.54)

for every k ∈ K . On the other hand, note that

yk = yk0−1 +
k∑

i=k0

σi A(xi ), (see (4.51)) (4.55)
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which, after substituting in (4.54), yields that

γk‖Gk‖2

2
≤ f (xk )+ g (xk )− f (xk+1)− g (xk+1)

+
〈

A(xk )− A(xk+1), yk0 +
k∑

i=k0+1
σi A(xi )

〉

+ βk

2
(‖A(xk )‖2 −‖A(xk+1)‖2). (4.56)

By summing up (4.56) over k from k0 to k1, we argue that

k1∑
k=k0

γk‖Gk‖2

2

≤ f (xk0 )+ g (xk0 )− f (xk1+1)− g (xk1+1)+〈A(xk0 )− A(xk1+1), yk0〉

+
k1∑

k=k0

k∑
i=k0+1

σi 〈A(xk )− A(xk+1), A(xi )〉

+
k1∑

k=k0

βk

2
‖A(xk )‖2 −

k1∑
k=k0

βk

2
‖A(xk+1)‖2 (see (4.56))

= f (xk0 )+ g (xk0 )− f (xk1+1)− g (xk1+1)+〈A(xk0 )− A(xk1+1), yk0〉

+
k1∑

k=k0

k∑
i=k0+1

σi 〈A(xk )− A(xk+1), A(xi )〉

+
k1∑

k=k0

βk

2
‖A(xk )‖2 −

k1+1∑
k=k0+1

βk−1

2
‖A(xk )‖2. (4.57)
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By manipulating the last line above, we find that

k1∑
k=k0

γk‖Gk‖2

2

≤ f (xk0 )+ g (xk0 )− f (xk1+1)− g (xk1+1)+〈A(xk0 )− A(xk1+1), yk0〉

+ βk0

2
‖A(xk0 )‖2 +

k1∑
i=k0+1

k1∑
k=i

σi 〈A(xk )− A(xk+1), A(xi )〉

+
k1∑

k=k0+1

βk −βk−1

2
‖A(xk )‖2 − βk1

2
‖A(xk1+1)‖2

≤µ+
k1∑

i=k0+1
σi

〈
A(xi )− A(xk1+1), A(xi )

〉
+

k1∑
k=k0+1

βk −βk−1

2
‖A(xk )‖2 − βk1

2
‖A(xk1+1)‖2 (see (4.59))

=µ+
k1∑

k=k0+1

(
σk +

βk −βk−1

2

)
‖A(xk )‖2

−
k1∑

k=k0+1
σk

〈
A(xk1+1), A(xk )

〉− βk1

2
‖A(xk1+1)‖2, (4.58)

where we assumed that

µ := max

(
sup

k

(
f (xk0 )+ g (xk0 )− f (xk )− g (xk )+〈A(xk0 )− A(xk ), yk0〉

+ βk0

2
‖A(xk0 )‖2

)
,0

)
<∞, (4.59)

Given initial step sizes βk0 ,σk0 > 0, recall that the penalty weights and the dual step sizes of
Algorithm 3 are set to

βk =βk0

√
k log2(k +1)

k0 log2(k0 +1)
,

σk =σk0 min

√
k0

k
,
‖A(xk0 )‖k0 log2(k0 +1)

‖A(xk )‖k log2(k +1)

 , ∀k ∈ K . (4.60)
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For future reference, (4.60) implies that

βk −βk−1 =βk−1

(√
k log2(k +1)

(k −1)log2 k
−1

)

≤βk−1 ·
k log2(k +1)− (k −1)log2 k

(k −1)log2 k

≤βk−1

(
k log2(1+ 1

k )

(k −1)log2 k
+ 1

k −1

)

≤ 2βk−1

k −1
(k0 & 1)

≤ 2βk0

k −1

√
(k −1)log2 k

k0 log2(k0 +1)
(see (4.60))

= 2βk0 logk√
(k −1)k0 log(k0 +1)

, ∀k ∈ K , (4.61)

when k0 is sufficiently large. We can therefore further simplify the last line of (4.58) as

k1∑
k=k0

γk‖Gk‖2

2

≤µ+
k1∑

k=k0

(
σk +

βk −βk−1

2

)
‖A(xk )‖2

+
k1∑

k=k0

σk‖A(xk1+1)‖‖A(xk )‖− βk1

2
‖A(xk1+1)‖2 (see (4.58))

≤µ+
k1∑

k=k0

(
σk +

βk −βk−1 +1

2

)
‖A(xk )‖2

+ 1

2

(
k1∑

k=k0

σ2
k −βk1

)
‖A(xk1+1)‖2 (2ab ≤ a2 +b2)

≤µ+2
k1∑

k=k0

‖A(xk )‖2, (see (4.60,4.61)) (4.62)
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for sufficiently large k0. Indeed, the coefficient of ‖A(xk1+1)‖ in the second-to-last line of (4.62)
is negative because

k1∑
k=k0

σ2
k −βk1

≤
k1∑

k=k0

σ2
k0

k0

k
−βk0

√
k1 log2(k1 +1)

k0 log2(k0 +1)
(see (4.60))

≤ 2σ2
k0

k0

∫ k1

k0

d a

a
−βk0

√
k1 log2(k1 +1)

k0 log2(k0 +1)

≤ 0, (4.63)

when k0 is sufficiently large. Note that (4.62) bounds the gradient mapping with the feasibility
gap. A converse is given by Lemma 4.3.1. In order to apply this result, let us assume that the
assumptions in Lemma 4.3.1 are met. Lemma 4.3.1 is then in force and we may now substitute
(4.16) back into (4.62) to find that

k1∑
k=k0

γk‖Gk‖2

≤ 2
k1∑

k=k0

‖A(xk )‖2 +2µ (see (4.62))

≤ 2
k1∑

k=k0

(
2

νβk

(
‖Gk‖+λ′

f +λ′
A‖yk‖

))2

+2µ (see (4.16))

≤
k1∑

k=k0

24‖Gk‖2

ν2β2
k

+
k1∑

k=k0

24λ′2
f

ν2β2
k

+
k1∑

k=k0

24λ′2
A‖yk‖2

ν2β2
k

+2µ, (4.64)

where we used the shorthand ν= ν(g , A,S,ρ,ρ′) and the last line above uses the inequality(
p∑

i=1
ai

)2

≤ p
p∑

i=1
a2

i , (4.65)

for integer p and scalars {ai }i . If we set

BK =
k1∑

k=k0

‖yk‖2

k log2(k +1)
, c ≥

∞∑
k=1

1

k log2(k +1)
, (4.66)
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and, after recalling the choice of {βk }k in (4.60), the last line of (4.64) can be simplified as

k1∑
k=k0

γk‖Gk‖2 ≤ 2
k1∑

k=k0

‖A(xk )‖2 +2µ

≤
k1∑

k=k0

24‖Gk‖2k0 log2(k0 +1)

ν2β2
k0

k log2(k +1)
+

k1∑
k=k0

24λ′2
f k0 log2(k0 +1)

ν2β2
k0

k log2(k +1)

+
k1∑

k=k0

24λ′2
A k0 log2(k0 +1)‖yk‖2

ν2β2
k0

k log2(k +1)
+2µ (see (4.60,4.64))

≤
k1∑

k=k0

24‖Gk‖2k0 log2(k0 +1)

ν2β2
k0

k log2(k +1)
+ 24k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
+2µ. (see (4.66)) (4.67)

To simplify the above bound, let us assume that

24k0 log2(k0 +1)

ν2β2
k0

k log2(k +1)
≤ γk

2
, ∀k ∈ K . (4.68)

After rearranging (4.67) and applying (4.68), we arrive at

k1∑
k=k0

γk

2
‖Gk‖2

≤
k1∑

k=k0

(
γk −

24k0 log2(k0 +1)

ν2β2
k0

k log2(k +1)

)
‖Gk‖2 (see (4.68))

≤ 24k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
+2µ. (see (4.67)) (4.69)

In turn, the bound above on the gradient mapping controls the feasibility gap, namely,

k1∑
k=k0

‖A(xk )‖2 ≤
k1∑

k=k0

γk‖Gk‖2

4
+ 12k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
(see (4.67,4.68))

≤ 24k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
+µ. (see (4.69)) (4.70)

By adding (4.69,4.70), we find that

k1∑
k=k0

γk‖Gk‖2 +‖A(xk )‖2 ≤ 72k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
+5µ. (4.71)
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In order to interpret (4.71), we next estimate BK , defined in (4.66). To that end, let us first control
the growth of the dual sequence {yk }k . Recalling (4.51) and for every k ∈ K , we write that

‖yk‖ ≤ ‖yk0‖+
k∑

i=k0+1
σi‖A(xi )‖ (see (4.51))

≤ ‖yk0‖+
k∑

i=k0+1

ρσk0 k0 log2(k0 +1)

k log2(k +1)
(see Lemma 4.3.1 and (4.60))

≤ ‖yk0‖+cρσk0 k0 log2(k0 +1)

=: ymax. (4.72)

Having uncovered the growth of the dual sequence above, we evaluate BK as

BK =
k1∑

k=k0

‖yk‖2

k log2(k +1)
(see (4.66))

≤
k1∑

k=k0

y2
max

k log2(k +1)
(see (4.72))

≤ c y2
max. (see (4.66)) (4.73)

In order to interpret (4.71), it still remains to control the primal step sizes {γk }k . To invoke γ≥ θ
λβ

,
we first need to gauge how smooth the augmented Lagrangian Lβk (·, yk ) is as a function of its
first argument. For every k ∈ K , note that

λβk ≤λ f +
p

mλA
(‖yk‖+βkρ

)+βk dλ′2
A (see (4.10))

≤ (λ f +
p

mλA ymax)+βk
(p

mλAρ+dλ′2
A

)
. (see (4.72)) (4.74)

We are now in position to invoke γ≥ θ
λβ

(see Lemma 4.1.3) by writing that

γk ≥ θ

λβk

≥ θ

(λ f +
p

mλA ymax)+βk
(p

mλAρ+dλ′2
A

) (see (4.74))

≥ θ

2βk
(
λ f +

p
mλAρ+dλ′2

A

) ((4.60) and k0 & 1)

≥ θ

2βk0

(
λ f +

p
mλAρ+dλ′2

A

)√
k0 log2(k0 +1)

k log2(k +1)
(see (4.60))

=: γ

√
k0 log2(k0 +1)

k log2(k +1)
, (4.75)

for every k ∈ K . The first consequence of (4.75) is that (4.68) holds automatically when k0

is sufficiently large. Having estimated BK and {γk }k , we can also rewrite (4.71). Indeed,
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(4.71,4.73,4.75) together imply that

k1∑
k=k0

γ‖Gk‖2

√
k0 log2(k0 +1)

k log2(k +1)
+‖A(xk )‖2

≤ 72ck0 log2(k0 +1)

ν2β2
k0

(
λ′2

f +λ′2
A y2

max

)
+5µ, (4.76)

and, consequently,

min
k∈K

γ‖Gk‖2

√
k0 log2(k0 +1)

k1 log2(k1 +1)
+‖A(xk )‖2

≤ 72ck0 log2(k0 +1)

ν2β2
k0

(k1 −k0)

(
λ′2

f +λ′2
A y2

max

)
+ 5µ

k1 −k0
. (4.77)

Now we are in a position to show that Gβ,γ(xk−1, yk−1) approaches asymptotically to �Gβ,γ(xk , ˜yk−1).
Recall the definition of the displaced gradient mapping.

�Gβ,γ(xk , ˜yk−1) :=Gβ,γ(xk−1, yk−1)+∇ f (xk )−∇ f (xk−1)+ (DA(xk )−DA(xk−1))> ˜yk−1, (4.78)

≤Gβ,γ(xk−1, yk−1)+λ f ‖xk −xk−1‖+λA‖xk −xk−1‖‖ ˜yk−1‖ (4.79)

≤Gβ,γ(xk−1, yk−1)+λ f γk−1Gβ,γ(xk−1, yk−1)+λAγk−1Gβ,γ(xk−1, yk−1)
(‖ymax‖+βk−1ρ

)
(4.80)

Hence, we have the result since γk−1 ≤ 1/λβk−1 . We use the smoothness of f (·) and DA(·), bounds
we derived for yk and boundedness of A(x).

When we applied Lemma 4.3.1 earlier, we did not check whether the assumptions on ρ therein
hold. Let us revisit this assumption. We first derive a weaker but uniform bound on the feasibility
gap. For every k ∈ K , it holds that

‖A(xk )‖2 ≤
k1∑

i=k0

‖A(xi )‖2

≤ 24k0 log2(k0 +1)

ν2β2
k0

(
cλ′2

f +λ′2
A BK

)
+µ (see (4.70))

≤ 24ck0 log2(k0 +1)

ν2β2
k0

(
λ′2

f +λ′2
A y2

max

)
+µ. (see (4.73)) (4.81)

Therefore, we may replace the assumption on ρ in Lemma 4.3.1 with the stronger assumption
that

ρ2 ≥ 24ck0 log2(k0 +1)

ν2β2
k0

(
λ′2

f +λ′2
A y2

max

)
+µ, (4.82)
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which, after rearranging, can be presented as

ν2 ≥ 24ck0 log2(k0 +1)

β2
k0

(ρ2 −µ)

(
λ′2

f +λ′2
A y2

max

)
, ρ >p

µ. (4.83)

Note that, for (4.83) to hold, it is in particular necessary that ‖A(xk0 )‖ ≤ ρ
√

2/βk0 , as seen in
(4.59). That is, for Algorithm 3 to success, it must be initialized close enough to the feasible set.

Lastly, let us revisit the lower bound on ν in (4.15) of Lemma 4.3.1. First we derive a weaker but
uniform bound on the gradient mapping. For every k ∈ K , it holds that

max
k∈K

γk‖Gk‖

≤ max
k∈K

p
γk ·

√
max
k∈K

γk‖Gk‖2

≤ max
k∈K

p
γk ·

√√√√ k1∑
k=k0

γk‖Gk‖2

≤ max
k∈K

p
γk ·

(
48ck0 log2(k0 +1)

ν2β2
k0

(
λ′2

f +λ′2
A y2

max

)
+4µ

) 1
2

. (see (4.69,4.73)) (4.84)

Instead of (4.15), it therefore suffices to make the stronger assumption that

ν≥ 2λA max
k∈K

p
γk ·

(
48ck0 log2(k0 +1)

ν2β2
k0

(
λ′2

f +λ′2
A y2

max

)
+4µ

) 1
2

, (4.85)

which can in turn be replaced with the stronger assumptions

ν≥ max

(
4
p

2λA max
k∈K

p
γkµ,

4
√

ck0 log(k0 +1)

βk0

p
µ

(λ′
f +λ′

A ymax)

)
, (4.86)

where we used the inequality
p

a +b ≤ 2max(
p

a,
p

b) above. This completes the proof of
Theorem 4.3.2.

4.11 Proof of Theorem 4.4.1

For completeness, let us repeat the technical lemmas and definitions of Section 4.1.1, slightly
adjusted here for the augmented Lagrangian of problem (4.22), defined in (4.21). These standard
results are stated below without proof.

Lemma 4.11.1 (Smoothness). Given ρ,ρ′ ≥ 0, it holds that

‖∇xLβ(x, z, y)−∇xLβ(x ′, z, y)‖ ≤λβ,z‖x −x ′‖,
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‖∇zLβ(x, z, y)−∇zLβ(x, z ′, y)‖ ≤λβ,x‖z − z ′‖, (4.87)

for every (x, z), (x ′, z), (x, z ′) ∈ Xρ,ρ′ and y ∈Rm , where

Xρ,ρ′ := {(x ′′, z ′′) : ‖A(x ′′)+B(z ′′)‖ ≤ ρ,‖x ′′‖ ≤ ρ′,‖z ′′‖ ≤ ρ′}, (4.88)

λβ,x ≤λ f +
p

mλA
(‖y‖+βρ)+βdλ′2

A ,

λβ,z ≤λh +p
mλB

(‖y‖+βρ)+βdλ′2
B , (4.89)

λ′
A := max

‖x‖≤ρ′ ‖DA(x)‖, λ′
B := max

‖z‖≤ρ′ ‖DB(z)‖, (4.90)

and λ f ,λA ,λh ,λB were defined in (4.29).

Definition 6. (Gradient Mapping) Given x, z ∈Rd and γ, ι> 0, the gradient mappings Gβ,γ(·, z, y),Gβ,ι(x, ·, y) :

Rd →Rd take, respectively, x, z ∈Rd to

Gβ,γ(x, z, y) = x −x+

γ
, Hβ,ι(x, z, y) = z − z+

ι
, (4.91)

where x+ = Pγ,g (x −γ∇xLβ(x, z, y)) and z+ = Pι,l (z − ι∇zLβ(x, z, y)).

Lemma 4.11.2 (Descent lemma). For x, z ∈Rd and y ∈Rm , let x+, z+ be as in Definition 6 with
γ< 1/λβ,x and ι< 1/λβ,z . For ρ,ρ′ ≥ 0, suppose that

(x, z), (x+, z), (x, z+) ∈ Xρ,ρ′ . (4.92)

Then it holds that

‖Gβ,γ(x, z, y)‖2 ≤ 2

γ
(Lβ(x, z, y)+ g (x)−Lβ(x+, z, y)− g (x+)),

‖Hβ,ι(x, z, y)‖2 ≤ 2

ι
(Lβ(x, z, y)+ l (x)−Lβ(x, z+, y)− l (x+)). (4.93)

Lemma 4.11.3 (Line search). Fix θ ∈ (0,1) and γ0, ι0 > 0. For γ′, ι′ > 0, let

x+
γ′ = Pg (x −γ′∇xLβ(x, z, y)), z+

ι′ = Pl (z − ι′∇zLβ(x, z, y)), (4.94)

and define

γ := max
{
γ′ = γ0θ

i : Lβ(x+
γ′ , z, y)

≤Lβ(x, z, y)+
〈

x+
γ′ −x,∇xLβ(x, z, y)

〉
+ 1

2γ′
‖x+

γ′ −x‖2
}

,
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ι := max
{
ι′ = ι0θi : Lβ(x, z+

ι′ , y)

≤Lβ(x, z, y)+〈
z+
ι′ − z,∇zLβ(x, z, y)

〉+ 1

2ι′
‖z+

ι′ − z‖2
}

. (4.95)

Then, (4.93) holds and, moreover, we have that

γ≥ θ

λβ,x
, ι≥ θ

λβ,z
. (4.96)

For the reader’s convenience, let us also recall the updates of Algorithm 4 in iteration k as

xk+1 = Pg (xk −γk∇xLβk (xk , zk , yk )),

zk+1 = Pl (zk − ιk∇zLβk (xk+1, zk , yk )),

yk+1 = yk +σk+1(A(xk+1)+B(zk+1)). (4.97)

For every k ∈ K = [k0 : k1], recall that the primal step sizes γk , ιk are determined by line search in
Lemma 4.11.3. Moreover, the penalty weights and dual step sizes are set as

βk =βk0

√
k log2(k +1)

k0 log2(k0 +1)
,

σk =σk0 min

√
k0

k
,
‖A(xk0 )+B(zk0 )‖
‖A(xk )+B(zk )‖ · k0 log2(k0 +1)

k log2(k +1)

 . (4.98)

For every k ∈ K , let us set

Gk =Gβk ,γk (xk , zk , yk ) = xk −xk+1

γk
,

Hk = Hβk ,ιk (xk+1, zk , yk ) = zk − zk+1

ιk
, (4.99)

for short. The convergence analysis of Algorithm 4 only slightly differs from the one in the proof
of Theorem 4.3.2 and we therefore only present the proof sketch, somewhat informally. Similar
to the proof of Theorem 4.3.2, two applications of Lemma 4.11.2 yields that

γk‖Gk‖2

2
≤Lβk (xk , zk , yk )+ g (xk )−Lβk (xk+1, zk , yk )− g (xk+1),

ιk‖Hk‖2

2
≤Lβk (xk+1, zk , yk )+ l (zk )−Lβk (xk+1, zk+1, yk )− l (zk+1), (4.100)

for every k. By setting

uk = [ x>
k z>

k ]> ∈R2d , Qk = [ G>
k H>

k ]> ∈R2d , q(u) = f (x)+h(z),
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q(u) = g (x)+ l (z), D(u) = A(x)+B(z), κk = min(γk , ιk ), (4.101)

for every k ∈ K and after summing up the two inequalities in (4.100), we reach

κk‖Qk‖2

2
≤Lβk (uk , yk )+q(uk )−Lβk (uk+1, yk )−q(uk+1), ∀k ∈ K . (4.102)

By following the same steps as in the proof of Theorem 4.3.2, we find that

k1∑
k=k0

κk‖Qk‖2

2
≤µ+2

k1∑
k=k0

‖D(uk )‖2, (4.103)

where

µ := max

(
sup

k

(
q(uk0 )+q ′(uk0 )−q(uk )−q ′(uk )

+〈D(uk0 )−D(uk ), yk0〉+
βk0

2
‖A(xk0 )+B(zk0 )‖2

)
,0

)
<∞. (4.104)

On the other hand, the x and z updates in (4.97) imply that

Gk −∇ f (xk )−DA(xk )>yk

−βk DA(xk )>(A(xk )+B(zk )) ∈ ∂g (xk+1)

γk
⊆ ∂g (xk+1)

κk
, (4.105)

Hk −∇h(zk )−DB(zk )>yk

−βk DB(zk )>(A(xk+1)+B(zk )) ∈ ∂l (zk+1)

ιk
⊆ ∂l (xk+1)

κk
, (4.106)

which can be more compactly written as

Qk −∇q(uk )−DD(uk )>yk −βk DD(uk )>D(uk )

+βk

[
0

DB(zk )>(A(xk )− A(xk+1))

]
∈ ∂q(uk+1)

κk
. (4.107)

Note that (4.107) is similar to (4.122), except for its last term, which satisfies

βk

∥∥∥∥∥
[

0

DB(zk )>(A(xk )− A(xk+1))

]∥∥∥∥∥
=βk‖DB(zk )>(A(xk )− A(xk+1)‖
≤βkλ

′
Aλ

′
B‖xk −xk+1‖ (see (4.90))

=βkγkλ
′
Aλ

′
B‖Gk‖ (see (4.91))

≤βkγkλ
′
Aλ

′
B‖Qk‖. (see (4.101)) (4.108)
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From this point, the rest of the proof steps of Lemma 4.3.1 and Theorem 4.3.2 can be applied
directly to complete the proof of Theorem 4.4.1.

4.12 Proof of Lemma 4.1.1

If Ai denotes the i th component of the map A :Rd →Rm , note that

Lβ(x, y) = f (x)+
m∑

i=1
yi Ai (x)+ β

2

m∑
i=1

(Ai (x))2, (4.109)

which implies that

∇xLβ(x, y) =∇ f (x)+
m∑

i=1
yi∇Ai (x)+ β

2

m∑
i=1

Ai (x)∇Ai (x)

=∇ f (x)+DA(x)>y +βDA(x)>A(x), (4.110)

where D A(x) is the Jacobian of A at x. By taking another derivative with respect to x, we reach

∇2
xxLβ(x, y) =∇2

xx f (x)+
m∑

i=1

(
yi +βAi (x)

)∇2
xx Ai (x)+β

m∑
i=1

∇x Ai (x)∇x Ai (x)>. (4.111)

It follows that

‖∇2
xxLβ(x, y)‖ ≤ ‖∇2

xx f (x)‖+max
i

‖∇2
xx Ai (x)‖(‖y‖1 +β‖A(x)‖1

)+β m∑
i=1

‖∇x Ai (x)‖2

≤λh +p
mλA

(‖y‖+β‖A(x)‖)+β‖DA(x)‖2
F . (4.112)

For every x such that ‖A(x)‖ ≤ ρ and ‖x‖ ≤ ρ′, we conclude that

‖∇2
xxLβ(x, y)‖ ≤λ f +

p
mλA

(‖y‖+βρ)+β max
‖x‖≤ρ′ ‖DA(x)‖2

F , (4.113)

which completes the proof of Lemma 4.1.1.

4.13 Proof of Lemma 4.1.2

Throughout, let

G =Gβ,γ(x, y) = x −x+

γ
, (4.114)
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for short. Suppose that ‖A(x)‖ ≤ ρ, ‖x‖ ≤ ρ′, and similarly ‖A(x+)‖ ≤ ρ, ‖x+‖ ≤ ρ′. An
application of Lemma 4.1.1 yields that

Lβ(x+, y)+ g (x+) ≤Lβ(x, y)+〈x+−x,∇xLβ(x, y)〉+ λβ

2
‖x+−x‖2 + g (x+)

=Lβ(x, y)−γ〈G ,∇xLβ(x, y)〉+ γ2λβ

2
‖G‖2 + g (x+) (4.115)

Since x+ = Pg (x −γ∇xLβ(x, y)), we also have that

G −∇xLβ(x, y) = ξ ∈ ∂g (x+). (4.116)

By combining (4.115,4.116), we find that

Lβ(x+, y)+ g (x+) ≤Lβ(x, y)−γ‖G‖2 +γ〈G ,ξ〉+ γ2λβ

2
‖G‖2 + g (x+)

=Lβ(x, y)−γ‖G‖2 +〈x −x+,ξ〉+ γ2λβ

2
‖G‖2 + g (x+)

≤Lβ(x, y)+ g (x)−γ
(
1− γλβ

2

)
‖G‖2, (4.117)

where the last line above uses the convexity of g . Recalling that γ≤ 1/λβ completes the proof of
Lemma 4.1.2.

4.14 Proof of Lemma 4.1.3

By optimality of x+
γ , we note that

x+
γ −x +γ∇xLβ(x, y) =−γξ ∈−γ∂g (x+

γ ). (4.118)

By definition in (4.12), γ also satisfies

Lβ(x+
γ , y)+ g (x+

γ )

≤Lβ(x, y)+
〈

x+
γ −x,∇xLβ(x, y)

〉
+ 1

2γ
‖x+

γ −x‖2 + g (x+
γ )

=Lβ(x, y)+
〈

x −x+
γ ,ξ

〉
− 1

2γ
‖x+

γ −x‖2 + g (x+
γ )

≤Lβ(x, y)− 1

2γ
‖x+

γ −x‖2 + g (x) (convexity of g )

=Lβ(x, y)− γ

2
‖Gβ,γ(x, y)‖2 + g (x), (see Definition 1) (4.119)

which completes the proof of Lemma 4.1.3 since γ≥ θ
λβ

follows directly from (4.12).

85



Chapter 4. Linearized ADMM for Non-convex Problems with Nonlinear constraints

4.15 Proof of Lemma 4.3.1

By assumption, we have that

max
k∈K

‖A(xk )‖ ≤ ρ, max
k∈K

‖xk‖ ≤ ρ′. (4.120)

From the primal update in (4.50) and the definition of the proximal operator Pg [PB+14], it
follows that

xk+1 −xk +γk∇ f (xk )+γk DA(xk )>(yk +βk A(xk )) ∈−∂g (xk+1), (4.121)

where ∂g (xk+1) is the subdifferential of g at xk+1. After recalling the definition of gradient
mapping in (4.52), the above inclusion can be written as

−Gk

βk
+ ∇ f (xk )

βk
+ DA(xk )>yk

βk
+DA(xk )>A(xk ) ∈−∂g (xk+1)

βkγk
. (4.122)

Let cone(∂g (x))∗ denote the polar of

cone(∂g (x))) = ⋃
α≥0

α ·∂g (x) ⊆Rd . (4.123)

By projecting both sides (4.122) onto cone(∂g (xk+1))∗, we find that

Pcone(∂g (xk+1))∗

(
−Gk

βk
+ ∇ f (xk )

βk
+ DA(xk )>yk

βk
+DA(xk )>A(xk )

)
∈ Pcone(∂g (xk+1))∗

(
−∂g (xk+1)

βkγk

)
= {0}, (4.124)

where the equality above follows from the duality of cone(∂g (xk+1))∗ and cone(∂g (xk+1)).
Recall also that the subspace S ⊆Rd by assumption satisfies

S ⊇ ⋃
k∈K

Pcone(∂g (xk+1))∗
(
DA(xk+1)>A(xk+1)

)
, (4.125)

and project both sides of (4.124) onto S to reach

PSPcone(∂g (xk+1))∗

(
−Gk

βk
+ ∇ f (xk )

βk
+ DA(xk )>yk

βk
+DA(xk )>A(xk )

)
= 0. (4.126)

When K is a convex cone, recall the property that

PK (a +b) ≤ PK (a)+PK (b), (4.127)
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for a cone K and vectors a,b. Using this property, then by taking the norm and finally applying
the triangle inequality above, we argue that∥∥PSPcone(∂g (xk+1))∗(DA(xk )>A(xk ))

∥∥
≤

∥∥∥∥PSPcone(∂g (xk+1))∗

(
−Gk

βk
+ ∇ f (xk )

βk
+ DA(xk )>yk

βk

)∥∥∥∥ (see (4.126)). (4.128)

Because proximal map is non-expansive and PSPcone(∂g (xk+1))∗(0) = 0, we may upper bound the
last line above as∥∥PSPcone(∂g (xk+1))∗(DA(xk )>A(xk ))

∥∥
≤

∥∥∥∥−Gk

βk
+ ∇ f (xk )

βk
+ DA(xk )>yk

βk

∥∥∥∥
≤ 1

βk

(‖Gk‖+‖∇ f (xk )‖+‖DA(xk )>yk‖
)

. (triangle inequality)

≤ 1

βk

(
‖Gk‖+λ′

f +λ′
A‖yk‖

)
, (4.129)

where

λ′
f := max

‖x‖≤ρ′ ‖∇ f (x)‖, λ′
A := max

‖x‖≤ρ′ ‖DA(x)‖, (4.130)

are the local Lipschitz constant of f and A. To lower bound the first line of (4.129), we invoke
the restricted injectivity in Section 4.2. Indeed, recalling (4.35) and the first bound in (4.120), for
every k ∈ K , we write that∥∥PSPcone(∂g (xk+1))∗(DA(xk )>A(xk ))

∥∥
≥ ∥∥PSPcone(∂g (xk+1))∗(DA(xk+1)>A(xk ))

∥∥−∥∥(DA(xk+1)−DA(xk ))>A(xk )
∥∥

≥ ν(g , A,S,ρ,ρ′)‖A(xk )‖−‖DA(xk+1)−DA(xk )‖‖A(xk )‖, (see (4.35)) (4.131)

where the second line above again uses the non-expansiveness of PS and Pcone(∂g (xk+1))∗ . The
remaining term in (4.131) is bounded as

‖DA(xk+1)−DA(xk )‖ ≤λA‖xk+1 −xk‖ =λAγk‖Gk‖. (see (4.2,4.120)) (4.132)

Assuming that

ν(g , A,S,ρ,ρ′) ≥ 2λA max
k∈K

γk‖Gk‖, (4.133)

allows us to simplify the last line of (4.131) as

∥∥PSPcone(∂g (xk+1))∗(DA(xk )>A(xk ))
∥∥≥ ν(g , A,S,ρ,ρ′)

2
‖A(xk )‖, (4.134)
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which, after substituting in (4.129), yields that

‖A(xk )‖ ≤ 2

βkν(g , A,S,ρ,ρ′)

(
‖Gk‖+λ′

f +λ′
A‖yk‖

)
, (4.135)

and completes the proof of Lemma 4.3.1.
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5 Conclusions and future directions

In this chapter, we give an overview of our findings and provide possible future directions that
are left open.

In Chapter 2, we proposed and analyzed an inexact augmented Lagrangian method for solving
(1.1). We prove convergence to the first and second order stationary points of the augmented
Lagrangian function, with explicit complexity estimates. Even though the relation of stationary
points and global optima is not well-understood in the literature, we find out that the algorithm
has fast convergence behavior to either global minima or local minima in a wide variety of
numerical experiments. We found out our complexity results for first order stationary point to be
suboptimal.

In Chapter 3, we directed our attention to a more specialized algorithm aimed at solving semidefi-
nite programming (SDP) problems by factorizing the decision variable. The resulting optimization
problems are inherently non-convex and nonlinear. We obtain the rate of convergence with an
augmented Lagrangian method which combines aspects of both linearized and inexact augmented
Lagrangian methods.

In Chapter 4, we proposed algorithms with convergence complexity results to reach to an ε−
first order stationarity point of (4.1) and (4.20) with a simple, easy-to-implement linearized
augmented Lagrangian algorithm and its alternating direction method-of-multipliers variant
subject to a verifiable geometric regularity condition. While the condition in its form is difficult to
interpret, we believe that it acts as a constraint qualification condition helping to derive theoretical
guarantees. Fortunately, we can verify this condition for a variety of contemporary problems
in machine learning including clustering and Max-Cut. We also provide numerical evidence
on an interesting causal learning problem without verifying the condition. Finally, we find out
that the LAL algorithm and the ADMM variant require very little tuning, which should not be
underestimated for large-scale problems, while exhibiting comparable performance against the
baselines that feature more tuning parameters.

We believe that the regularity condition we proposed in this thesis has opened doors for developing
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algorithms for many interesting problems in the community ranging from multi-class Neyman-
Pearson classification [Lu22] to training logical neural networks [LKA+21]. Improving the rate
of convergence for the linearized AL is left for future work. Extending the results in this work to
the setting where both the objective function and the constraints are stochastic is a challenging
research direction which would give much more opportunities to tackle various other interesting
problems such as streaming eigenvalue problem and reinforcement learning with large state
action pairs [Lu22]. Step size is a tuning parameter for the proposed algorithms. Whether one
can adaptively choice the step-size is also an interesting research direction.
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