
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Spectral and thermodynamic properties of interacting 
electrons with dynamical functionals

Tommaso CHIAROTTI

Thèse n° 10 201

2023

Présentée le 2 mai 2023

Prof. A. Mortensen, président du jury
Prof. N. Marzari, Dr A. Ferretti, directeurs de thèse
Prof. L. Reining, rapporteuse
Prof. M. Capone, rapporteur
Prof. G. Carleo, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de théorie et simulation des matériaux
Programme doctoral en science et génie des matériaux 





Acknowledgments

I am very grateful to Andrea and Nicola for having walked with me on this journey.

And to all my friends, I say thank you.

i





Abstract

Empowered by ever-increasing computational power and algorithmic developments, electronic-
structure simulations continue to drive research and innovation in materials science. In this
context, ab-initio calculations offer an unbiased platform for the understanding, development,
design, and discovery of materials. The treatment of the electron interactions is at the core
of any ab-initio method, with the accuracy of its solution affecting the final result. Here,
dynamical functionals can play a crucial role in allowing the accurate prediction of spectral
and thermodynamic properties of materials.

In this thesis we develop a framework to deal with dynamical quantities, and a novel dynamical
functional to address the electronic structure of correlated materials.

We design the so-called sum-over-poles representation for dynamical propagators to perform
accurately the calculations in dynamical frameworks. Then, we draw a link between the funda-
mental equation of Green’s function formalism, the Dyson equation, and nonlinear eigenvalue
problems, also highlighting that the Dyson equation is the (nonlinear) generalization of the
Schrödinger equation for embedded systems. Notably, the sum-over-poles representation of
the dynamical potential allows for an exact solution of the nonlinear problem by mapping the
interacting system to a non-interacting “fictitious” system with augmented degrees of freedom
and having the same Green’s function of the interacting system, with the spurious degrees
of freedom traced away. The (linear) diagonalization of the effective Hamiltonian for the
“fictitious” system yields the Dyson orbitals of the material as the eigenvectors of the nonlinear
problem, and the poles of the Green’s function, i.e., the excitation energies of the material, as
the eigenvalues. Also, the sum-over-poles representation of the Green’s function is known and
allows for the computation of accurate spectroscopic and thermodynamic quantities.

Furthermore, we introduce a novel approximation to the exchange-correlation part of the
Luttinger-Ward functional, that generalizes the energy functional of DFT+U to host a dy-
namically screened potential U (!). Exploiting a localized-GW approach, we combine the
precision of DFT+U for ground-state properties with the accuracy of GW for spectroscopic
quantities and design the so-called dynamical Hubbard (Luttinger-Ward) functional. This
yields a localized-GW self-energy as derivative, and simplifies to DFT+U in the case of a static
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screening.

To test the approach, we use the algorithmic-inversion method on sum over poles to calculate
the spectroscopic and thermodynamic quantities of the homogeneous electron gas at the GW
level, finding very good agreement with previous results.

Finally, we combine the algorithmic inversion method on sum over poles with the dynamical
Hubbard functional to study the electronic structure of correlated materials. We apply the
framework to compute the spectral, thermodynamic, and vibrational properties of SrVO3.
We find results in excellent agreement with experiments and state-of-the-art computational
methods, but with negligible simulation costs.
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Sommario

Potenziate dalla sempre maggiore capacità di calcolo e dai progressi degli algoritmi, le simu-
lazioni di struttura elettronica continuano a guidare la ricerca e l’innovazione nella scienza
dei materiali. In questo contesto, i calcoli ab-initio offrono una piattaforma imparziale per la
comprensione, lo sviluppo, la progettazione e la scoperta di nuovi materiali. Il trattamento
delle interazioni elettroniche è al centro di qualsiasi metodo ab-initio, con l’accuratezza della
sua soluzione che influisce sul risultato finale. Qui, i funzionali dinamici possono svolgere un
ruolo cruciale nel permettere la previsione accurata delle proprietà spettrali e termodinamiche
dei materiali.

In questa tesi sviluppiamo un metodo teorico e computazionale per gestire le quantità di-
namiche e un nuovo funzionale dinamico per calcolare la struttura elettronica dei materiali
correlati.

Rappresentiamo i propagatori dinamici in somme di poli al fine di eseguire con precisione i
calcoli nei metodi dinamici. Successivamente, stabiliamo un collegamento tra l’equazione fon-
damentale per le funzioni di Green in materia condensata, l’equazione di Dyson, e i problemi
agli autovalori non lineari, evidenziando che l’equazione di Dyson è la generalizzazione (non
lineare) dell’equazione di Schrödinger per sistemi aperti. In particolare, la rappresentazione
di somma di poli di un potenziale dinamico consente la soluzione esatta del problema non
lineare grazie a una mappa del sistema interagente su un sistema “fittizio” non interagente
con gradi di libertà aumentati e avente la stessa funzione di Green del sistema interagente,
con i gradi di libertà spurii tracciati via. La diagonalizzazione (lineare) dell’hamiltoniana
effettiva per il sistema “fittizio” restituisce gli orbitali di Dyson del materiale come autovettori
del problema non lineare e i poli della funzione di Green, cioè le energie di eccitazione del
materiale, come autovalori. Infine, la procedura determina la rappresentazione in somma di
poli della funzione di Green, rendendo possibile il calcolo accurato di quantità spettroscopiche
e termodinamiche.

Inoltre, introduciamo una nuova approssimazione per la parte di scambio-correlazione del
funzionale di Luttinger-Ward, generalizzando il funzionale energia di DFT+U per trattare un
potenziale schermato dinamicamente, U (!), invece che statico. Sfruttando un approccio GW
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Sommario

localizzato, combiniamo la precisione di DFT+U per le proprietà di stato fondamentale con
l’accuratezza di GW per le grandezze spettroscopiche e progettiamo il cosiddetto funzionale
di Hubbard dinamico (Luttinger-Ward). La derivata di questo restituisce una self-energia
GW localizzata, ma contemporaneamente si semplifica al funzionale DFT+U nel caso di uno
screening statico.

Per testare l’approccio, utilizziamo il metodo di inversione algoritmica su somma di poli per
calcolare le grandezze spettroscopiche e termodinamiche del gas omogeneo di elettroni a
livello GW , trovando un accordo molto buono con i risultati precedenti.

Infine, combiniamo il metodo di inversione algoritmica su somma di poli con il funzionale
di Hubbard dinamico, per studiare la struttura elettronica dei materiali correlati. Applichia-
mo il metodo per calcolare le proprietà spettroscopiche, termodinamiche e vibrazionali di
SrVO3, trovando risultati in ottimo accordo con gli esperimenti e i metodi computazionali
all’avanguardia, ma a un costo di simulazione di molto inferiore.
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1 Introduction and overview

Computational materials science is a major driving force for understanding, modeling, and
discovering materials [1]. Ab initio simulations, enabled by ever-increasing computational
power and algorithmic advances, offer a platform for unbiased prediction of material prop-
erties that can be useful for understanding materials [2], making accurate comparisons with
experiments [3], or even designing new materials [4].

The computational simplicity and accuracy of density functional theory has contributed mas-
sively to these areas, improving upon ab initio simulations in the context of phase diagrams,
molecular dynamics, vibrational properties, but also contributing to spectroscopic and optical
predictions, as shown in Refs. [5, 6, 7, 8].

The interaction between electrons in the Schrödinger equation is at the core of the difficulty
of the problem, making it analytically unsolvable and numerically very expensive to treat.
Differently than for atoms and small molecules, where an exact treatment of the interaction
between the electrons is computationally feasible, in solids the situation is much different
since in principle at least an Avogadro number of electrons are present.

Density-functional theory (DFT) maps the search of the ground-state wave function to the
minimization of an energy functional of the density, effectively passing from a problem with
an almost infinite number of variables to a problem with only the space x, y, z variables. The
price to pay is the knowledge of the functional. In the Schrödinger formulation of quantum
mechanics the functional of the N -particle wave function is known, in density functional
theory it is not [9]. The celebrated local-density approximation [9], together with its generaliza-
tions, e.g., by Perdew, Burke, and Ernzerhof [10], are common approximate density functionals
used for calculations on solids nowadays.

Importantly, for practical applications of density functional theory, the interacting system
of electrons is mapped to a non-interacting “fictitious” system where the electrons feel an
effective modified external potential. This Kohn-Sham mapping guarantees that the ground-
state density is the same as that of the interacting “true” system. Most naturally, the (charged)
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Chapter 1. Introduction and overview

excitations of the non-interacting Kohn-Sham system, i.e., the band structure in solids, are
interpreted as the excitations of the material, and its stationary states as the quasiparticles
even though this is not really accurate [11].

Though density-functional theory has provided a major step forward, it remains challenging
to improve on existing approximate functionals [12], often resulting in incorrect predictions
for complex or strongly-correlated systems [13]. Also, addressing spectroscopic quantities
from the Kohn and Sham band structure can lead to incorrect predictions even on the most
simple materials [14, 15, 16, 17].

As discussed in Chapter 2, Green’s function dynamical formalisms can improve these limita-
tions. Not only designed for spectroscopics [18], the existence of variational energy functionals
of the Green’s function [19] leads to an effective simplification of the many-body problem.
This can be at the base of a new computational revolution as it was for DFT.

While the different Green-function-based frameworks differ, a common element is the ap-
pearance of dynamical potentials. For example, many-body perturbation theory (MBPT)
reduces the multi-particle electronic degrees of freedom to a single particle subjected to a
non-local and dynamical potential, which is the electron-electron self-energy [20]. Dynamical
mean-field theory (DMFT) couples a real-space impurity with the rest of the system, requiring
self-consistency between the impurity and the bath [21, 22, 23]. Coherent electronic-transport
theories use a Green’s function embedding to calculate the electronic conductance of, for
example, a conductor between two semi-infinite leads, coupling the three systems dynami-
cally [24, 25]. Thus, properly handling frequency-dependent potentials is of central interest in
the field.

As far as total energies are concerned, the Luttinger-Ward (LW) and Klein functionals [19, 26,
27, 20, 28] are variational energy functionals of the Green’s function that result in conserving
dynamical potentials at self-consistency. Although the© term is explicitly known diagrammat-
ically, it is computationally inaccessible and needs to be approximated [29, 30]. The choice
of approximation for © determines the physics accessible to the functional, ranging from
long-range plasmonic effects, as in GW [31, 18], to strongly correlated local interactions, as
in DMFT [21, 32]. The stationarity condition of the functional yields the Dyson equation,
involving the interacting propagator G and the dynamical self-energy (as a derivative of ©
with respect to G) [20, 28]. Therefore, the functional and its derivative determine the quality
of the predictions of the thermodynamic and spectral properties of a material, allowing, at
self-consistency, the computation of ground-state quantities such as forces and phonons
through the Hellmann-Feynman theorem [32].

In this thesis we propose a novel theoretical and computational framework to obtain accurate
spectroscopic and thermodynamic properties of materials based on interacting-electrons
formulations and dynamical potentials.

First, in Chapters 3 and 4, we introduce a novel “algorithmic inversion method on sum over
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poles” (AIM-SOP) to deal with dynamical potentials.

Specifically, in Chapter 3, we develop a representation suited for a dynamical potential as a
“sum over poles” (SOP). In this framework, we study how to transform a propagator from the
frequency domain to a SOP form. Furthermore, we develop an improved basis set called the
n-th order Lorentzians to improve the accuracy and decay properties of the resulting SOP.

Then, in Chapter 4, we discuss the Dyson equation as a nonlinear eigenvalue problem and
show a way to solve it using the algorithmic-inversion method. Similar to Kohn and Sham DFT,
the SOP representation of the dynamical potential allows us to exactly map the interacting
system into a non-interacting “fictitious” system with augmented degrees of freedom, i.e.,
the poles of the self-energy. This non-interacting system allows us to compute the Green’s
function via a matrix diagonalization of a larger effective (exact) Hamiltonian. The exact SOP
representation of the interacting Green’s function is found by tracing away the fictitious degrees
of freedom, granting access to the Dyson orbitals and the excitation energies of the system.
Additionally, the SOP form for the Green’s function allows for the accurate computation of
the thermodynamic properties, i.e., the frequency-integrated ground-state properties of the
system.

Having set up the computational framework, in Chapter 5, we introduce a novel approximation
to the exchange-correlation part of the Luttinger-Ward functional. By exploiting a localized-
GW approach, we generalize the energy functional of DFT+U to host a dynamical screening
U (!). The so-called “dynamical Hubbard functional” features a localized-GW self-energy as
a derivative while maintaining DFT+U-like accuracy for the thermodynamics. In particular,
when a static screening U is used, the dynamical Hubbard functional yields the Dudarev et al.
form of DFT+U [33].

As a test case study for AIM-SOP, in Chapter 6, we investigate the homogeneous electron gas
(HEG) in the GW approximation. We implement the method in a computer code, enabling
accurate numerical computations of spectral and thermodynamic quantities simultaneously.
We compare the results with previous literature and find very good agreement in terms of the
spectral function, effective mass, renormalization factor, and total energy at several densities
of the HEG.

By combining AIM-SOP with the dynamical Hubbard functional, we develop a framework
capable of accurately tackling the electronic structure of correlated materials in Chapter 7.
We implement the formalism in a PYTHON code, taking advantage of the DFT results for the
starting electronic structure and the random-phase approximation (RPA) for the screening.
We apply the formalism to study the correlated metal SrVO3, and find results in very good
agreement with experiments and state-of-the-art methods for the spectrum, bulk modulus,
and vibrational properties, at a greatly reduced computational cost compared to established
approaches.

This thesis is mainly based on my two publications in Refs. [34] and [35], which were published
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during my doctorate.

1.1 Organization of the work

The rest of the thesis is organized as follows:

• In Chapter 2, we provide an overview of the general framework of Green’s functions.
Specifically, in Sec. 2.1, we introduce the many-body problem and explain how one-
particle Green’s functions can simplify it. In Sec. 2.2, we show how the self-energy is
related to embedding theory. In Sec. 2.3, we discuss energy functionals in both DFT and
Green’s function formalisms. In Sec. 2.4, we compare Green’s function theories with
linear response. In Sec. 2.5, we focus on the analytic structure of the Green’s function. In
Sec. 2.6, we elaborate on dynamical propagators for describing interacting systems. In
Sec. 2.7, we draw a link between the Green’s functions and angle-resolved photoemission
spectroscopy.

• In Chapter 3, we introduce the sum-over-poles method to represent dynamical prop-
agators. Specifically, in Sec. 3.1, we provide an overview of the AIM-SOP approach,
discussing its main goals and the SOP form for propagators and self-energies. In Sec. 3.2,
we discuss the connection between a propagator and its spectral function. In Sec. 3.3,
we provide the numerical procedure to transform a propagator sampled on a frequency
grid to a SOP representation. In Sec. 3.4, we introduce several useful expressions when
dealing with propagators on SOP, like analytic convolutions and moments. In Sec. 3.5,
we provide numerical examples of the representation on SOP for a test propagator.

• In Chapter 4, we introduce the algorithmic inversion method to solve Dyson-like equa-
tions. Specifically, in Sec. 4.1, we discuss the Dyson equation in the context of non-
linear eigenvalue problems, drawing a link between the physical and mathematical
frameworks. In Sec. 4.2, we design the algorithmic inversion method in the scalar
(homogeneous) case. In Sec. 4.3, we extend the method to a general operatorial (non-
homogeneous) case to apply it to real systems.

• In Chapter 5, we introduce a novel approximation to the exchange-correlation part
of the Klein functional, termed the dynamical Hubbard functional. Specifically, in
Sec. 5.1, we discuss the need for the Hubbard manifold to separate short- and long-
range interactions. In Sec. 5.2, we propose a way to localize GW . In Sec. 5.3, we present
the novel functional. In Sec. 5.4, we elaborate on the double counting needed for the
final form of the functional.

• In Chapter 6, we apply the AIM-SOP method to the homogeneous electron gas at the GW
level. Specifically, in Sec. 6.1, we elaborate on the problem of computing spectral and
thermodynamic quantities jointly, and explain how AIM-SOP addresses the problem.
In Sec. 6.2, we discuss the application of AIM-SOP to the HEG for spectral quantities.

4



1.1 Organization of the work

In Sec. 6.3, we discuss the thermodynamics. In Sec. 6.5, we present the results on the
electron gas. In Sec. 6.6, we provide a summary of the chapter.

• In Chapter 7 we combine the AIM-SOP method with the dynamical Hubbard functional
to address the electronic structure of correlated materials. Specifically, in Sec. 7.1 we
discuss the screening U (!) as an averaged RPA screened potential. In Sec. 7.2 we
elaborate on its application to compute the spectroscopics of real crystals. In Sec. 7.3
we move to the thermodynamic quantities. In Sec. 7.5 we show the results on SrVO3. In
Sec. 7.6 we give a recap of the Chapter.

• In Chapter 8 we give the conclusions together with some future perspectives.

We use the “we” throughout almost the whole thesis, also highlighting how this work is the
result of the collaboration and supervision of A. Ferretti and N. Marzari. When the first person
is used it refers to T. Chiarotti.
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2 Green’s functions, embedding, and
energy functionals

In this chapter, we start by introducing one-particle Green’s functions. Then, we discuss self-
energies in the context of embedding theory. Additionally, we show that energy functionals can
be used to find good approximations for solving the many-body problem. Furthermore, we
provide an overview of the differences between Green’s function methods and linear response
theories, highlighting the importance of time-ordering and the dynamical nature of the self-
energy. Finally, we point out the link with experimental observables. Throughout the thesis,
we assume that we are at zero temperature and are dealing with spinless fermions, i.e., the
spin-unpolarized case. The contents of this chapter are adapted from Refs. [20, 28, 36].

2.1 Green’s function: general theory

In this section, we introduce the one-particle Green’s function starting from the many-body
Hamiltonian.

In physics, it is fundamental to approach a problem based on the quantity one wants to predict.
This allows for a reduction of information and helps in understanding the fundamental vari-
ables, designing experiments, and finding a cost-effective (or even possible) way of computing
the desired quantities using a computer. In electronic-structure methods for computational
condensed matter physics, the aim is to predict the dynamics of electrons within a solid. By
means of the Born-Oppenheimer approximation, the nuclear degrees of freedom (DOF) are
decoupled from the electronic DOF and fixed at some positions [37]. As a consequence, the
kinetic energy of the nuclei can be neglected, and one can focus on the electronic part of the
many-body Hamiltonian, which, in position space and atomic units, is given by

H =°
X

i

r2
i

2
°

X

i ,I

ZI

|ri °RI |
+

X

I<J

ZI ZJ

|RI °RJ |
+

X

i< j

1
|ri ° r j |

, (2.1)

where the sums run over N electrons and M nuclei. The first term represents the kinetic
energy of the electrons, the second term represents the interaction between electrons and
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Chapter 2. Green’s functions, embedding, and energy functionals

nuclei, the third term is the nucleus-nucleus interaction (just a shift of the total energy since
nuclear positions are frozen), and the fourth term represents the electron-electron interaction.
Upon diagonalization of the Hamiltonian, one obtains the stationary modes of the system as
eigenvectors and the corresponding energies as eigenvalues. In the absence of perturbations,
the system stays in its least energetic eigenmode, the ground-state, represented as a vector
|GSi in the N -particle Hilbert space. It is worth noting that neglecting the interacting term,
the eigenvectors of the above Hamiltonian are Slater determinants [38] composed of the
eigenvectors of the single-particle Hamiltonian. This follows from the fact that in a non-
interacting system the total energy is the sum of the single-particle energies, and takes into
account that the many-electron wave function is antisymmetric since we deal with fermions.
However, when we switch on the interaction between electrons, the problem cannot be
factorized anymore, and a full diagonalization of the many-body Hamiltonian is required. This
scales almost with a cubic law with the dimension of the Hilbert space. Considering a basis
of Slater determinants (e.g., the eigenstates of the non-interacting Hamiltonian), we see that
the dimension of the Hilbert space is equivalent to the binomial coefficient with on top the
number of elements in the basis of the single-particle Hilbert space and on the bottom the
number of particles. All in all, this results in an exponential scaling of the space dimension
with the number of particles in the system, which is unfeasible for classical computers even
with a small number of electrons.

To simplify the problem, instead of predicting the full dynamics of the system, one can
focus just on computing the expectation values of observables to directly compare them with
experiments. For single-particle properties (operators), if one knows the density matrix of the
system (in the Schrödinger picture), i.e.,

ñ(r, t ;r0, t ) =
Z

dr2 . . .drn™(r,r2, . . . ,rN ; t )™§(r0,r2, . . . ,rN ; t ), (2.2)

the expectation value of one-particle operators can be computed effectively as

h™|O|™i=
Z

drdr2 . . .drn dr0™(r,r2, . . . ,rN ; t )O(r,r0)™§(r0,r2, . . . ,rN ; t )

=
Z

drdr0 ñ(r, t ;r0, t )O(r,r0).
(2.3)

This represents a major simplification to the problem, since we avoid the calculation of the
N -particle wave function, and only the much simpler ñ(r, t ;r0, t) is needed. Furthermore, if
the operator O is diagonal in the position representation, i.e. O(r,r0) =O(r)±(r° r0) (as for an
external potential and its derivatives), the expectation value depends only on the diagonal
part of the density matrix, i.e., the density of the system, ñ(r, t ;r, t ) = ñ(r, t ).

If the system is in the ground state and a time-independent Hamiltonian is considered, as
in Eq. (2.1), the ground-state density matrix and the density of the system (denoted here as
n(r, t ;r0, t ) and n(r, t ), respectively) do not depend on time, along with the expectation value
of single-particle operators. It can be seen that if one is able to predict the ground state density
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2.1 Green’s function: general theory

and density matrix without diagonalizing the many-body Hamiltonian or computing the
N -particle ground-state wave function, single-particle observables can be easily calculated.

In this thesis, our aim is to go beyond the ground state and address the spectroscopic properties
of materials. These processes involve adding or removing an electron at two different times
and spaces while allowing for internal relaxation. A useful way to approach these problems is
through the language of Green’s functions. Since Green’s functions are formulated within a
second quantization framework, they provide a natural approach to address the addition and
removal of identical particles.

As mentioned before, the diagonal of the density matrix gives the density of the system, which
is the probability of finding an electron at position r. The off-diagonal elements represent
the probability of finding an electron at positions r and r0 at the same time. 1 That said, the
expression for the density matrix in second quantization is simply given by

n(r, t ;r0, t ) = hGS|√̂†(r, t )√̂(r0, t )|GSi , (2.4)

where the operator √̂(r0, t) destroys a particle at position r0 and time t to the ground state
(while √̂† creates a particle), and the field operators fulfill

©
√̂(r, t ),√̂†(r0, t )

™
= i±(r° r0). If we

account for the time for the particle to move from r0 to r, we obtain the one-particle Green’s
function of the system:

iG(r, t ;r0, t 0) = hGS|√̂(r, t )√̂†(r0, t 0)|GSiµ(t ° t 0)° hGS|√̂†(r0, t 0)√̂(r, t )|GSiµ(t 0 ° t ), (2.5)

where we consider the possibility of first creating a particle at
ØØr0, t 0

Æ
and destroying it at

|r, ti or vice versa. The first term (without the theta) on the right-hand side is called the
“addition” Green’s function, iG> = hGS|√̂(r, t )√̂†(r0, t 0)|GSi, and is related to the propagation
of an electron inside the material. The other °iG< = hGS|√̂†(r0, t 0)√̂(r, t )|GSi is the “removal”
Green’s function and is the propagation of a hole. We will further justify this later on in the
chapter. Since it is a complex quantity, the Green’s function is not a physical observable of the
system. Conversely, the real and imaginary parts separately are: in particular, the imaginary
part of the Green’s function is related to the photoemission spectrum of the system (see Sec. 2.7
for an in-depth discussion).

In a non-interacting system, we can write the addition Green’s function on the eigenvectors of
the Hamiltonian H as

iG>
0,i j =

≠
GS(t )

ØØâi e°i Ĥ0(t°t 0)â†
j

ØØGS(t 0)
Æ
= ei EN (t°t 0)e°i E i

N+1(t°t 0)±i j = e°i≤0
i (t°t 0)±i jµ(≤i °µ),

(2.6)
where we add the factor µ(≤i °µ) to take into account that G>

0,i j is non-zero only for empty
states. Thus, °iG>

0 solves the “homogeneous” Schrödinger equation (i@t °h0)G>
0 (t ° t 0) = 0,

where h0 is the single-particle Hamiltonian of the system. The removal Green’s function

1This is a purely quantum property since, in classical mechanics, we either find a particle in r or in r0.
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Chapter 2. Green’s functions, embedding, and energy functionals

solves the same equation but for occupied states. Since we want to solve the same equation
for different time zones—specifically, we want to propagate electrons (t > t 0) with G<

0 and
holes (t < t 0) with G>

0 —we can combine the two solutions of the homogeneous equation with
the theta function and obtain the Green’s function for the system. Thus, the time-ordered
non-interacting Green’s function solves (i@t °h0)G0(t ° t 0) = ±(t ° t 0) and is a Green’s function
for the non-interacting system.

In the thesis, we will deal with Green’s functions in frequency space since it is the “natural”
space for looking at the spectrum of a system. The Fourier transform of the time-ordered
Green’s function of Eq. (2.5) yields (see Appendix A.1 for details)

G(r,r0,!) =hGS|√̂(r)
1

!° (Ĥ °EGS)+ i¥
√̂†(r0)|GSi

+hGS|√̂†(r0)
1

!° (EGS ° Ĥ)° i¥
√̂(r)|GSi ,

(2.7)

where ¥ is understood to always vanish, ¥! 0+. 2 We call the first term on the right-hand side
the electron Green’s function Gel(!) and the second term the hole Green’s function Ghl(!).
Importantly, we obtain the density matrix by the anti-Fourier transform:

n(r,r0) =
Z

d!
ei!0+

2ºi
G(r,r0,!) =

Z
d!

ei!0+

2ºi
hGS|√̂†(r0)

1

!° (EGS ° Ĥ)° i¥
√̂(r)|GSi , (2.8)

which corresponds to integrating over the electronic (occupied) part only. Thus, obtaining the
total number of particles in the system amounts to

N =
Z

drn(r,r) =
Z

dr
Z

d!
ei!0+

2ºi
G(r,r0,!), (2.9)

The Lehmann representation for the Green’s function is obtained by inserting the projector
over the eigenstates of the (N +1)-particle Hamiltonian for the addition Green’s function and
the projector over the eigenstates of the (N °1)-particle Hamiltonian for the removal Green’s
function. The Lehmann representation of the time-ordered propagator reads

G(r,r0,!) =
X

s

hGS|√̂(r)|s, N +1i hs, N +1|√̂†(r0)|GSi
!°≤s + i¥

+
X

s

hGS|√̂†(r0)|s, N °1i hs, N °1|√̂(r)|GSi
!°≤s ° i¥

,

(2.10)

where ≤s = E s
N+1°EN >µ for the electron-addition energies (first term), and ≤s = EN °E s

N°1 <µ
for the removal energies (second term). The orbital ¡s(r) = hs, N °1|√̂(r)|GSi is called the
Dyson orbital and represents the probability for the removal process to happen, and the same

2We assume ¥! 0+ in all the equations of the thesis unless stated otherwise. Furthermore, for integrals like
R

d! ei!0+

2ºi , it is understood that
R

d! ei!0+

2ºi = lim¥!0+
R

d! ei!¥

2ºi .
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2.1 Green’s function: general theory

holds for the electron addition. Throughout the thesis, we refer to poles below the Fermi energy
as occupied poles and above as empty poles. Note that this terminology is only inherited from
single-particle (free or mean-field) theories. With interacting particles, “occupied” should be
read as “less than the Fermi energy” or “above the real axis”, while “unoccupied” should be
read as “greater than the Fermi energy" or "below the real axis" (see Secs 2.5 and 2.7 for further
discussions).

From its definition in Eq. (2.7) or the Lehmann representation of Eq. (2.10), at a fixed frequency
!, it is possible to consider G(r,r0,!) as the representation, in the position basis, of an operator
G(!) acting on the one-particle Hilbert space, i.e., G(r,r0,!) =

≠
r
ØØG(!)

ØØr0
Æ

. A rotation in the
Fock space, √̂†(r) =P

n hn|ri ĉ†
n , induces the same change of representation for the operator

G(!). To see this, we take Gel(!) for simplicity and write

Gel(r,r0,!) = hGS|√̂(r)
1

!° (Ĥ °EGS)+ i¥
√̂†(r0)|GSi

=
X

n,n0
hr|ni hGS|ĉn

1

!° (Ĥ °EGS)+ i¥
ˆcn0†|GSi

≠
n0ØØr0

Æ
=

X

n,n0
hr|niGel

nn0(!)
≠

n0ØØr0
Æ

,

(2.11)

where indeed hr|ni represents the change of basis in the one-particle Hilbert space. The same
analysis holds for Ghl(!) and thus for G(!).

Conveniently, using the fact mentioned above, it is possible to rewrite propagators as acting
on the one-particle Hilbert space. For example, the the Lehmann representation of the Green’s
function of Eq. (2.10) can be rewritten as:

G(!) =
X

s

ØØ¡s
Æ≠
¡s

ØØ
!°≤s + i¥ sgn(≤s °µ)

, (2.12)

where
ØØ¡s

Æ
are the Dyson orbitals of the system. Using the completeness of |s, N +1i and

|s, N °1i, one can see that the Dyson orbitals span the entire one-particle Hilbert space,
P

s
ØØ¡s

Æ≠
¡s

ØØ= 1. Their number is equal to all the possible excitations of the N +1 and N °1
system—infinitely many in the thermodynamic limit—, and thus, the Dyson orbitals cannot
be orthogonal or linearly independent.

A very important quantity directly related to the Green’s function is the spectral function of
the system, which is defined as

A(r,r0,!) =
X

s
¡s(r)¡§

s (r0)±(!°≤s), (2.13)

and is related to the Green’s function through

A(!) = 1
º

sgn(!°µ) ImG(!), (2.14)

where the imaginary part of the matrix G is given by ImG(!) = 1
2i

£
G(!)°G†(!)

§
.
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Chapter 2. Green’s functions, embedding, and energy functionals

Importantly, the sum rule for the normalization of the spectral function is given by

Z
d!A(!) = I , (2.15)

which follows from the completeness relation of the Dyson orbitals,
P

s
ØØ¡s

Æ≠
¡s

ØØ = I . Addi-
tionally, by combining Eq. (2.8) with the definition of the spectral function in Eq. (2.13), it is
possible to obtain the density matrix of the system:

n(r,r0) =
Z

d!
ei!0+

2ºi
G(r,r0,!) =

X
s

Z
d!

ei!0+

2ºi

¡s(r)¡§
s (r0)

!°≤s + i¥ sgn(≤s °µ)
=

Zµ

°1
d!A(r,r0,!).

(2.16)
Using Eq. (2.9), the number of particles is found to be

N =
Zµ

°1
d! Tr A(!)., (2.17)

where Tr denotes the trace operation.

Differently from the one-particle non-interacting Green’s function G0, the one-particle Green’s
function G is not a Green’s function for the interacting system since it does not satisfy (i@t °
H)G(t ° t 0) = ±(t ° t 0), or equivalently (I!°H)G(!) = I in Fourier space. We can define the
“total” Green’s function for the system as

Gtot(!) = (!°H)°1, (2.18)

which can be made time-ordered by adding ±i¥.

2.2 Embedding and self-energy

Let us suppose we have a system S embedded in a bath B . The two systems S and B interact
with each other via a coupling Hamiltonian HSB . The Schrödinger equation for the total
Green’s function, Eq. (2.18), can be written as:

√
IS!°HS HSB

HBS IB!°HB

!√
GS GSB

GBS GB

!
=

√
IS 0

0 IB

!
(2.19)

This is a system of four equations and four variables. Focusing on the two equations:

(IS!°HS)GS +HSBGBS = IS , (2.20)

HBSGS + (IB!°HB )GBS = 0, (2.21)

we can use the second to rewrite the first, resulting in:

G°1
S (!) = I!°HS °HSB

1
!IB °HB

HBS . (2.22)
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2.2 Embedding and self-energy

By introducing the self-energy for the system S, ßS(!) = HSB (I!B °HB )°1 HBS , we arrive at
the Dyson equation:

G°1
S (!) =G°1

0 (!)°ß(!), (2.23)

where G°1
0 (!) =!°HS is the propagator for the system S decoupled from the bath. In the

thesis, we will analyze this equation in depth. Here, we limit the discussion to saying that
solving Eq. (2.23) is not equivalent to solving the full system, i.e. Eq. (2.19). Indeed, the
knowledge of the exact self-energy ß(!) is sufficient to obtain the exact Green’s function of
system S (we always assume that we know G0(!)), but not enough to obtain Gtot since we have
discarded Eq. (2.21) in the process. In fact, with Eq. (2.21) and the hypothesis of the hermiticity
of the coupling, we can reconstruct Gtot.

Moving to the one-particle Green’s function, the above construction can be used to embed
a mean-field electron—an electron subject to a mean field—in the sea of the other N ° 1
electrons. The Hamiltonian for the system HS is a mean-field Hamiltonian, i.e., the kinetic
energy plus the external potential created by the background of nuclei, the Hartree term [39],
and others if needed. In this way, we are specializing in the Dyson equation for the one-particle
Green’s function:

G°1(!) =G°1
0 (!)°ß(!), (2.24)

where, as stated already, G0(!) comes from a mean-field approximation of the electronic
problem, and the self-energy ß(!) takes care of all the “rest” of the correlation. From this
approach, it is clear why we need a frequency-dependent self-energy to accurately describe
correlations.

The Dyson equation can be seen as a geometric summation as

G(!) =G0(!)+G0(!)ß(!)G0(!)+G0(!)ß(!)G0(!)G0(!)ß(!)G0(!)+ . . . . (2.25)

Furthermore, the Dyson equation can be seen as a Volterra equation for G :

G(!) =G0(!)+G0(!)ß(!)G(!), (2.26)

together with its adjoint:
G(!) =G0(!)+G(!)ß(!)G0(!). (2.27)

It is useful to perform the anti-Fourier transform of the Dyson equation. Specifying the real-
space indexes, and using a compact notation, 1 = (r1, t1), the equations above can be written
as

G(1,2) =G0(1,2)+G0(1,3)ß(3,4)G(4,2),

G(1,2) =G0(1,2)+G(1,3)ß(3,4)G0(4,2),
(2.28)

where repeated contiguous indexes are summed over. By subtracting the second equation
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Chapter 2. Green’s functions, embedding, and energy functionals

from the first, one obtains 3

G°1
0 (1,2)G(2,1+)°G(1,2)G°1

0 (2,1+) =ß(1,4)G(4,1+)°G(1,3)ß(3,1+). (2.29)

Recalling that G°1
0 (1,2) =

°
i@t1 °h

¢
±(t1 ° t2)—since it is defined by (i@t °h0)G0(t ° t 0) = ±(t °

t 0)— the equation above simplifies to

∑
i
°
@t1 +@t1+

¢
+ 1

2

°
r2

1 °r2
1+

¢∏
G(1,1+) =ß(1,4)G(4,1+)°G(1,3)ß(3,1+), (2.30)

where the external potential in h was dropped since it is diagonal and continuous in the limit
1 = 1+. Calling t1 ! t and r1 ! r, the first term on the LHS of the equation above is:

i (@t +@t+)G(r, t ;r+, t+) = (@t +@t+)
D
√̂†(r, t )√̂(r+, t+)

E
= @n(r, t )

@t
, (2.31)

and the second term is:

1
2

≥
r2 °r+2

¥
G(r, t ;r+, t+) = 1

2

°
r+r+¢

·
°
r°r+¢

G(r, t ;r+, t+) =r · J(r, t ) (2.32)

where J(r, t) = °1
2

°
r°r+¢

G(r, t ;r+, t+) represents the current. Finally, if the source term
ß(1,4)G(4,1+)°G(1,3)ß(3,1+) = 0, then Eq. (2.30) becomes:

@n(r, t )
@t

+r · J(r, t ) = 0, (2.33)

which is known as the “continuity” equation.

Eq. (2.33) is fundamental in field theories. When integrated, it ensures the conservation of the
number of particles between G0 and G . Indeed, by switching on interactions, the number of
particles cannot change, and if G0 obeys the continuity equation—which can be easily proven
by writing down the equation of motion for G0 and the adjoint—so must G .

When ß results from the derivative of a (scalar) functional of the Green’s function, which is
invariant under scalar gauge transformations, i.e.

±©[G]
±G(2,1+)

=ß(1,2), (2.34)

the source term Z
d2 ß(1,2)G(2,1+)°G(1,2)ß(2,1+) (2.35)

is zero. Indeed, the invariance of © implies ±© = 0 = ß(1,2)±G(2,1+), where the variation
corresponds to G(1,2) ! ei§(1)G(1,2)e°i§(1) for any scalar function§. Then,

Z
d1d2 §(1)

£
ß(1,2)G(2,1+)°G(1,2)ß(2,1+)

§
= 0, (2.36)

31+ = (r1, t+1 ) = lim¥1!0+ (r1, t1 +¥1)
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2.3 Energy functionals

which yields the condition in Eq. (2.35) for the arbitrariness of§. If a functional is diagram-
matic, i.e., it can be written as a diagrammatic expansion, this gauge invariance is guaranteed.
Since at each vertex of the diagram, labeled by (r1, t1), there is an incoming G(. . . ;1+) and an
outgoing G(1; . . . ), internal phases like ei§(1) cancel out. Since © is a scalar, diagrams have
to be closed “bubbles”, and consequently, all phases cancel out and the continuity equation
is fulfilled. Similarly to what has been shown above, diagrammatic functional theories also
provide the conservation of linear and angular momentum, total energy, and particle-hole
symmetry. Those go beyond the scope of this thesis so are not treated here. In a later chapter,
we will use the argument above to show that even if not diagrammatic the so-called dynamical
Hubbard functional preserves particle symmetry.

2.3 Energy functionals

As seen before, the solution to the many-body problem via diagonalization of the N -particle
Hamiltonian is a formidable task, providing not only the ground-state wave function of the
system, but also all neutral excitations. To simplify the problem, we may rewrite it in terms
of the density n(r), the density matrix n(r,r0), and the two-particle pair-correlation function
n2(r,r0), and minimize the energy functional

E =
Z

dr lim
r0!r

µ
°r2

2
n(r,r0)

∂
+ 1

2

Z
drdr0

n2(r,r0)
|r° r0| +

Z
drn(r)vext(r). (2.37)

To obtain the equation above, it is sufficient to write the Hamiltonian in Eq. (2.1) in second
quantization

Ĥ =
Z

dr√̂†(r, t )
µ
°r2

2
+ vext(r)

∂
√̂(r, t )+1

2

Z
drdr0 √̂†(r0, t )√̂†(r, t )

1
|r° r0| √̂(r, t )√̂(r0, t ), (2.38)

and take the expectation value over the ground-state wave function to get the total energy,
E = hGS|Ĥ |GSi. Finally, Eq. (2.37) holds by recognizing the three aforementioned quantities:
the density matrix n(r,r0) = hGS|√̂†(r0, t )√̂†(r, t )|GSi, the density n(r) = n(r,r), and the two-
particle pair-correlation function

n2(r,r0) = hGS|√̂†(r0, t )√̂†(r, t )√̂(r, t )√̂(r0, t )|GSi . (2.39)

Although the reduction in complexity provided by the minimization of the energy functional
in Eq. (2.37) is impressive, the procedure is still impractical due to the constraints that have to
be imposed on the variables.

On this matter, one should recall that the quantities n(r,r0), n(r), and n2(r,r0) are contractions
of ™§(r01, . . . ,r0N )™(r1, . . . ,rN ), which, e.g., integrates to N and must originate from an anti-
symmetric wave function.

For example, how to impose this latter N -representability condition on n2(r,r0) is a matter of

15



Chapter 2. Green’s functions, embedding, and energy functionals

current research [40].

The simplest of the three variables is the density. Apart from depending only on r, it has
been found that its “N ” representability conditions are that it should integrate to N , with its
gradient being normalizable, and that it should be positive [41]. The problem is that the total
electronic energy E is not readily a functional of the density. Nevertheless, it can be shown
that (for non-degenerate ground states) there is an invertible map between the density, the
N -particle wave function, and the external potential, i.e., n(r) √! vext(r) √! |™i. This means
that if one takes a random wave function,

ØØ™0Æ√! n0(r), it is valid that

E 0 =
≠
™0ØØH

ØØ™0Æ=
≠
™0[n0]

ØØH
ØØ™0[n0]

Æ
> E . (2.40)

In other words, this shows that the total energy E [n] is variational with respect to the density,
i.e., E [n] = EGS () n(r) is the ground-state density of the system. The one-to-one rela-
tionship between the wave function and the density, together with the reformulation of the
variational principle in terms of the density, constitutes the content of the Hohenberg-Kohn
theorems [9].

It is natural to divide the energy functional into

E [n] = T [n]+W [n]+
Z

dr vext(r)n(r), (2.41)

where the first two addends sum to the internal energy of the system, and the last is the
coupling between the density and the external potential. The price to pay for reducing the
problem of finding the ground state of the system to the minimization of a functional of
the density is the explicit form of the functional. While h™|H |™i is explicit in |™i, one does
not know the form for the kinetic energy T [n] and the interaction energy W [n]. A huge
simplification is brought by Kohn and Sham [42], who suppose that for each physical (N -
representable) density, there is an external potential that reproduces them in a non-interacting
system (v-representability condition), the so-called Kohn and Sham system. Then, the total
energy is rewritten as

E [n] = T0[n]+EHxc[n]+
Z

dr vext(r)n(r), (2.42)

where T0 is the internal energy, and EHxc[n] is split into the electrostatic contribution to
the internal energy EH [n] = 1

2

R
drdr0 n(r)n(r0)

|r°r0| and the rest, EHxc[n] = EH[n]+Exc[n]. Since
the minimization is performed by varying the density of non-interacting systems, n(r) =
P

i
ØØ¡i (r)

ØØ2, where the sum is performed over the occupied states, the minimization of E [n] is
equivalent to solving

hKS[n]¡(r) =
µ
°r2

2
+ vext(r)+

Z
dr0

n(r0)
|r° r0| + vxc[n](r)

∂
¡(r) = ≤K S¡(r), (2.43)

where hKS[n] = ±E
±n .4 In other words, one can minimize with respect to each of the N -orbitals

4Note that the functional derivative is not constrain to have particle fixed. Indeed, with the variationality
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¡§
i (r) the functional E [¡1,¡§

1 , . . . ]°PN
i=1∏i

°≠
¡i

ØØ¡i
Æ
°1

¢
, and the stationarity condition—or

Euler equation—for the problem gives Eq. (2.43).

Up to now, only a rewriting of the entire problem has been presented. In fact, an explicit func-
tional that can be minimized requires the explicit form for Exc[n]. Describing the numerous
approximations and exact constraints in the exchange-correlation functionals employed in
computational materials science is beyond the scope of this thesis. The DFT calculations
in this thesis employ Exc[n] from the Perdew-Burke-Ernzerhof exchange-correlation func-
tional [10].

It is natural to ask whether one can build a variational energy functional for the one-particle
Green’s function G(r,r0,!). This was accomplished by Luttinger and Ward in Ref. [19], and
subsequently by Klein [19] (see Appendix A.3 for details). To illustrate this, one can start with
the expression for the energy as the integration of the coupling constant,

E = E0 +
Z1

0

d∏
∏

h™∏|∏Vee|™∏i , (2.44)

which follows directly from the Hellmann-Feynman theorem, dE
d∏ = 1

∏ h™∏|∏Vee|™∏i, for a
Hamiltonian H = H0 +∏Vee.

It is possible to rewrite the interaction term in Eq. (2.44). We can start by writing the equation
of motion for the field operator

i@t √̂(r, t ) = h0(r)√̂(r, t )+
Z

dr0 vc(r,r0)√̂†(r0, t )√̂(r0, t )√̂(r, t ), (2.45)

which solves the Heisenberg equation for the operators i ˙̂√(r, t ) =
£
√̂(r, t ), Ĥ

§
. Then, multiply-

ing by
R

dr√̂†(r, t) on the left, and bracketing with the ground state of the system hGS|·|GSi,
we find:

2hVeei=
Z

dr lim
t 0!t+
r0!r

[@t + i h0(r)]G(r, t ;r0, t 0) =
Z

dr lim
r0!r

Z
d!

ei!0+

2ºi
(!°h0(r))G(r,r0,!). (2.46)

Thus,

h™∏|∏Vee|™∏i=
1
2

Z
d!

ei!0+

2ºi
Tr{(!°h0)G∏} = 1

2

Z
d!

ei!0+

2ºi
Tr{ß∏(!)G∏(!)}, (2.47)

where in the last equality, we have used that G°1
0 = !°h0, and the Dyson equation for the

exact Green’s function interacting with a coupling constant ∏, G°1
∏

=G°1
0 °ß∏.

should be imposed on the functional E [n]°µ
R

drn(r), with µ a Lagrange multiplier and also equal to the chemical
potential of the system.
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Chapter 2. Green’s functions, embedding, and energy functionals

To further our analysis, we can expand the self-energy in ∏ as follows:

ß(!) =
X
n
∏nß(n)[G∏, vc ](!), (2.48)

Note that the dependence on ∏ has been extracted only from the Coulombic potential and
not from the Green’s function. This expansion, however, is not a standard Taylor expansion.
Instead, it is related to a "dressed-propagator" expansion of the total energy with respect to
the interaction. The idea of expanding the interaction energy (E °E0) in terms of the Green’s
function of the system originates from Luttinger and Ward’s seminal paper [19] in particle
physics.

In the paper, Feynman rules are derived for diagrammatic perturbation theory in the context
of a two-particle interacting fermionic system. Here, we assume the Feynman rules to be valid.
In the expansion of the two-point propagator G with respect to the electric charge e2, the n-th
order term is the sum of all possible ways to connect the two points using 2n vertices. Each
vertex has a non-interacting propagator in G in

0 and out Gout
0 , and an interaction line vc . These

n-th order diagrams can be categorized into two groups: those that by cutting a continuous
(G0) line give two lower-order propagator diagrams (improper), and those that do not (proper).

An improper diagram is always given by

G0ßG0, (2.49)

where we have called the internal part ß. Then, the entire propagator can be written as

G =G0 +G0ßG0 +G0ßG0ßG0 + . . . , (2.50)

which, when summed, gives the Dyson equation and shows that ß is equal to the self-energy
of the system. Furthermore, from Eq. (2.49), one can see that an n-th order diagram ß(n) for
the self-energy is a closed loop (bubble) diagram with a continuous line removed. Calling
skeletonic the diagrams formed with propagators that do not contain bubbles inside (i.e., the
ones formed only with G0), the self-energy (which has to contain those plus the ones that
have) can be written as the sum of all possible diagrams with G0 replaced by G .

What we have explained in the last paragraph is exactly the expansion of the self-energy in
Eq. (2.48). ß(n)[G∏, vc ] is the skeletonic diagram of order n for the self-energy. This piece
is crucial since it can be seen that ß(n) does not depend on G0; we have traded it to have a
skeletonic partition of the diagrams. By combining Eq. (2.44) with Eq. (2.47) and Eq. (2.48),
the total energy of the system reads

E = E0 +
X
n

Z1

0
d∏

∏n

2
Tr

£
ß(n)[G∏, vc ]G∏

§
, (2.51)

where Tr=
R

d! ei!0+

2ºi .
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2.3 Energy functionals

Using integration by parts,

E = E0 +©[G]°
X
n

Z1

0
d∏

∏n

2n
d

d∏
Tr

£
ß(n)[G∏, vc ]G∏

§
. (2.52)

The term
©[G] =

X
n

1
2n

Tr
£
Gß(n)[G , vc ]

§
, (2.53)

is termed the© functional.

The beauty is that
±©

±G
=ß . (2.54)

To see this, first consider deriving a self-energy skeleton diagram of order n, ß(n), with respect
to G . Since there are 2n vertices each paired with two Green’s functions, there must be 2n °1
(dressed) Green’s functions connecting the points—recall that ß(n) comes from a closed linked
bubble with 2n Green’s functions, where one has removed a line. In the bubble, there are 2n°1
ways of removing a line, all giving the same diagram Dn , thus ßn =GDn . Counting correctly
the multiplicities, the operation of removing a line is equivalent to a derivative. Indeed, in
position representation, skeletonic diagrams are (matrix) polynomials of G . Thus, using the
Leibniz rule, ±ß

(n)

±G = (2n °1)Dn .

This said, the derivative of the© functional reads

±©

±G
=

X
n

1
2n

∑
ß(n) +G

±ß(n)

±G

∏
=ß, (2.55)

where the equality line is obtained by summing and using Eq. (2.48) at full interaction, ∏= 1

For the same reasons, the second term of Eq. (2.52) can be rewritten

X
n

Z1

0
d∏

∏n

2n
d

d∏
Tr

£
ß(n)[G∏, vc ]G∏

§
=

X
n

Z1

0
d∏

∏n

2n
Tr

"
dG∏

d∏

√
±ß(n)

∏

±G∏
G∏+ß(n)

∏

!#

=
Z1

0
d∏Tr

∑
ß∏

dG∏

d∏

∏

=Tr [ß∏G∏]°
Z1

0
d∏Tr

∑
dß∏
d∏

G∏

∏
,

(2.56)

where in the last equality, integration by parts has been used. Taking advantage of the Dyson
equation at each ∏, one can rewrite the full energy Luttinger-Ward-Klein functional as

E = E0 +©[G]°Tr [ß[G]G]+Tr ln(1°G0ß[G]). (2.57)
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Chapter 2. Green’s functions, embedding, and energy functionals

Taking into account Eq. (2.54), the derivative of the LW functional yields

±E
±G

=°±ß
±G

£
G ° (1°G0ß)°1 G0

§
, (2.58)

and the stationary condition ±E
±G = 0 gives the Dyson equation,

G°1 =G°1
0 °ß[G]. (2.59)

Thus, the LW functional is stationary when G , G0, and ß obey the Dyson equation, assuring
that if the self-energy is the derivative of a © functional, the self-consistent solution of the
Dyson equation (2.59) comes from a variational principle. Also, as shown in Sec. 2.2, if © is
written in a diagrammatic way—following Feynman’s rules—, then G that solves the Dyson
equation (2.59) obeys several conservation laws.5 n passing, it is relevant to note that the
Dyson equation is not obeyed during the stationarization of the functional; instead, it is by
obeying the Dyson equation that the functional becomes stationary.

It is interesting to compare the Luttinger-Ward functional with the energy functional of density
functional theory. From Eq. (2.41), the DFT functional can be rewritten as

E [n] = EHxc[n]°
Z

dr vHxc(r)n(r)+EKS[n], (2.60)

where one has summed and subtracted
R

dr vHxc(r)n(r) to get the energy of the (non-interacting)
Kohn and Sham system EKS. Simply rewriting the two equations with the terms aligned can
help the analysis:

E [n] = EHxc[n] °
R

dr vHxc(r)n(r) + EKS[n]

E [G] = ©[G] ° Tr [ß[G]G] + E0 +Tr ln(1°G0ß[G]).
(2.61)

As said, the DFT functional is a functional of the electron density, while the LW functional is
a functional of the one-particle Green’s function. The Hartree-exchange-correlation term of
DFT, EHxc, is replaced by the© functional in the LW. The term contains all the (exchange and)
correlation effects of the system and has to be approximated. While the functional form of the
exchange correlation functional is unknown,© as a functional of the Green’s function (and the
bare interaction) is known perturbativelydiagrammatically—as seen before, for a given order
of the approximation one must draw all the bubble skeletonic diagrams following Feynman
rules and replacing the non-interacting propagator with the Green’s function G . The terms EKS

and E0 +Tr ln(1°G0ß[G]) are the energy of the non-interacting Kohn and Sham system, and
the energy of a system having a Green’s function G taken as if it were non-interacting, since
at the variational point, it holds E0 +Tr ln(1°G0ß[G]) = Tr lnG , as shown in Appendix A.3.
Finally, the terms

R
dr vHxc(r)n(r) and Tr [ß[G]G] remove a double counting of the interaction.

5Though in Sec. 2.2, only the continuity equation is proven, one can show that also conservation of linear and
angular momentum, along with the total energy, are respected by G .
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2.4 Green’s function theories vs linear response

Having analyzed the functional, we now focus on its derivative, the Dyson equation (2.59).
This is an equation that can be solved self-consistently once the functional form ß[G], or
equivalently of©[G], is determined. The same thing happens for the potential vHxc[n] in DFT.
As soon as its dependence with respect to the density is known, one can solve the Kohn and
Sham Eq. (2.43) self-consistently. Thus, as seen in the previous sections, the Dyson equation
replaces a Schrödinger-type equation in the context of Green’s functions.

Up to now, a perturbative diagrammatic theory has been used to construct©.However, this
is not strictly necessary. Indeed, if we consider ß as the derivative of the © functional, it is
enough to guarantee the stationarity condition and, hence, the Dyson equation for G . Since
it is not diagrammatic, one cannot be assured to have, for example, the continuity equation
fulfilled. In the thesis, a novel approximation to the© functional is introduced, and particle
conservation for the functional is also discussed.

2.4 Green’s function theories vs linear response

In this section, we compare the dynamical origin of Green’s functions with the frequency
dependence of linear response quantities. It is argued that although both are dynamical
frameworks, the frequency dependence has a very different origin.

In linear response, we are interested in the time evolution of states governed by a time-
dependent Hamiltonian of the (second-quantized) form

Ĥ(t ) = Ĥ0 +F (t )B̂ , (2.62)

where F is a scalar (time-dependent) coupling between Ĥ0 and B̂ .

Contrary to what happens for Green’s function theory, in which one derives the propagator to
compute expectation values of operators, in linear response, we focus directly on the operator
for which we need the expectation values. Since this thesis does not focus on linear response,
the full derivation of linear-response theory is referred to one of the many textbooks, e.g.,
Refs [20, 43].

The linear response function in (the Heisemberg picture in) time domain is

¬(1,2) =°iµ(t1 ° t2)hGS|
£

Â(1), B̂(2)
§
|GSi ., (2.63)

where µ is the Heaviside step function. The Fourier transform in time of this object reads

¬(!) =
X
nm

Pn °Pm

!°!nm + i¥
AmnBnm , (2.64)

where !nm = E N
n °E N

m , and Pn is equal to 1 for the occupied states and 0 for the unoccupied
ones (at zero temperature). Here, E N

n are the energies of the system with N particles.
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Chapter 2. Green’s functions, embedding, and energy functionals

Figure 2.1: Analytic structure of the Green’s function on the complex plane. Poles are located
above the real axis for occupied states, below the chemical potential µ. Above µ, empty poles
are located below the real axis. This can be seen from the Lehmann representation of the
Green’s function in Eq. (2.10). For a continuum of poles, the Green’s function presents a branch
cut above and below the real axis, following the poles’ structure. Figure adapted from Ref. [20].

Thus, the response function ¬ can be calculated only by knowing the system of N particles and
its neutral excitations. This comes from the fact that any operator (Â or B̂) depends on time
via an even combination at equal time of √̂†(r, t )√̂(r0, t ), in the position representation.

In summary, in linear response theory, the system never reaches an intermediate state with N±
1 particles but rather conserves the number of particles throughout the dynamics. Conversely,
in the one-particle Green’s function, excitations involve changes in the number of particles
since the system transitions from N to N ± 1 particles. From a free-particle perspective,
negative frequencies correspond to ionizing the system from different valence levels, while
positive frequencies correspond to adding an electron to the conduction band.

2.5 Time-ordering from an embedding perspective

In Green’s function theories, time-ordering is a crucial property of dynamical propagators.
The need for time-ordering arises from expressing the non-interacting Green’s function
G0(r1, t1; . . . ;r2n , t2n) with 2n +1 points using the one-particle non-interacting G0(r, t ;r0, t 0).
This is accomplished by Wick’s theorem, which, in the context of Fermions, proves that the
(time-ordered) 2n+1-point Green’s function can be expressed as the Slater determinant of the
one-particle (time-ordered) Green’s function.

Although this perspective highlights the deep connection between time-ordered Green’s
functions and wave function theory, in this thesis, we will focus on how time-ordering is linked
to embedding.

As mentioned earlier, the Dyson equation describes a system embedded in a bath, effectively
replacing the Schrödinger equation as the fundamental equation of motion for the system.
The nature of the embedding is irrelevant, and, as previously shown, embedding degrees of
freedom to arrive at a single-particle problem from a many-body interacting Hamiltonian is
allowed.
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2.6 Can the self-energy be static, real, or local?

In frequency space, the Dyson equation yields a non-linear eigenvalue problem (as introduced
in Ch. 4) that has solutionsat the resonant frequencies of the system, which are the poles of
the Green’s function. To each pole, only one state is assigned and termed the Dyson orbital for
the system. The n stationary eigenstates of a non-interacting system are replaced by infinitely
many Dyson orbitals, which cannot be (all) orthogonal to each other. Complex poles play
the role of the eigenvalues. As in the non-interacting Schrödinger case, the Dyson orbitals
can be occupied or empty. The sign of the imaginary part of the pole determines whether
the orbital (or the pole) is occupied. From Eq. (2.5), one can see that (quasi)particles, i.e.,
occupied states, propagate forward in time, and the imaginary part of the poles is positive. For
holes, the imaginary part is negative.

Over the complex plane, the analytic structure of the Green’s function (in frequency) is shown
in Fig. 2.1. Poles that describe occupied states lie in the upper part of the complex plane,
whereas those describing holes lie in the lower part and occur after the chemical potential or
Fermi energy.

2.6 Can the self-energy be static, real, or local?

As explained in Sec. 2.2, the Dyson equation arises from an embedding procedure that reduces
the N -particle degrees of freedom to one in the context of interactions. This leads to a
dynamic one-particle Dyson equation for the Green’s function, with the self-energy serving as
a complex-valued non-local potential. It is interesting to consider whether the self-energy can
be simplified, such as by making it static, real, local, or some combination thereof.

A static one-particle self-energy would imply a Dyson equation of the form

G(!)°1 =!°h0 °ß(0), (2.65)

i.e., a Schrödinger-like equation for the one-particle Green’s function. As stated in Sec. 2.1, this
equation of motion is satisfied only by non-interacting Green’s functions for closed systems.
Since the interaction is responsible for the self-energy, it is not possible for it to be static.
Interestingly, and conversely, this thesis shows a way to write a Dyson equation with a static
effective Hamiltonian that yields the exact Green’s function of the system. The trick here is to
introduce effective degrees of freedom. Thus, a more precise reformulation of the statement
above is: for a closed interacting system, the Dyson equation for the one-particle Green’s function
yields a dynamic self-energy that operates on the same degrees of freedom as h0.

In principle, a real self-energy would seem like a reasonable assumption. However, in non-
interacting theories, complex Hamiltonians are present, e.g., to describe non time-reversal
physics. In Green’s function theories, a complex self-energy is needed to describe the finite
lifetimes of quasi-particles (see also Sec. 2.7 for a discussion on quasi-particles). In an inter-
acting system, since single particles do not exist, wave functions describing quasi-particles
must decay in time, and a dynamic picture must be adopted. In such systems, quasi-particles
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Chapter 2. Green’s functions, embedding, and energy functionals

are continuously created and destroyed, and they are not stationary states of any Hamiltonian
with real eigenvalues.

Before making any arguments about locality, it is best to introduce its meaning. As an example,
both correlation and exchange interactions are in principle non local. Even at the Hartree-
Fock level, where there is no correlation, non-locality is brought about by the exchange term.
Though true, the exchange potential is not long-range when bracketed between far apart (in
space) wave functions. The simplest way to see this is to represent the Hartree and exchange
term in position:

≠
r
ØØV̂H

ØØr0
Æ
= vH(r)±(r° r0),

≠
r
ØØV̂ex

ØØr0
Æ
= n(r,r0)

|r° r0| , (2.66)

where n̂ is the density matrix of the system. Thus, while the Hartree term is purely local, the
exchange is regulated by the density matrix, which is non-local but short-range for

ØØr° r0
ØØ. In

insulators, the density matrix decays exponentially, making
≠

r
ØØV̂ex

ØØr0
Æ

short-range. In metals,
the decay of the density matrix is polynomial, thus

≠
r
ØØV̂ex

ØØr0
Æ

does not strictly decay as an
exponential, though faster than 1

r . In realistic metals, this defiance of Hartree-Fock is cured by
screening, which modifies the bare Coulomb potential into a short-range one. Early works of
Thomas and Fermi suggest a Yukawa-type screened potential for metals, and from that, many
works confirm that screening makes the interaction to become short-range [36].

On more general grounds, in a seminal paper, Kohn inferred that even in the quantum theory
of solids, there is a principle of “near-sightedness”, i.e., (effective) interactions decay fast in
space [44, 45]. A very successful example of the application of these findings is the local density
approximation for the exchange-correlation functional in density functional theory [9]. As
mentioned in Ch. 2, the exact form for the exchange-correlation functional is unknown.6

The concept of near-sightedness may also apply to dynamical potentials, such as the self-
energy in an interacting system. This was initially explored by Sham and Kohn in Ref. [48], but
has since been revived, proven, and applied by Georges and coworkers to give rise to dynamical
mean-field theory. In Ref. [49], Georges and Kotliar prove that, in infinite dimensions—that is,
with an ever-increasing number of neighbors between the interacting particles–the self-energy
is a local quantity. In materials, this effectively decouples a short-range “strongly correlated”
region near the atom–termed impurity–from a long-range part which can be treated by a
mean-field theory—called the bath. Similarly to the local density approximation of density
functional theory, in dynamical mean-field theory the material is partitioned into a “sum of
equivalent” impurities, that are embedded in a weakly interacting bath. Impurities and the

6For materials in which the density is slowly varying, the material can be partitioned into vanishing volumes,
where the density is thought to be constant. If these small cubes are not interacting (near-sightedness), then
the energy is the sum of the exchange and correlation energy of the electron gas at that particular density of the
small volume. In a seminal article, Ceperley and Alder calculated the energy of the electron gas via a very accurate
method, i.e., quantum Monte Carlo [46], and Perdew and Zunger fit it to a functional form [47]. After many years,
these results are used in everyday DFT ab initio calculations, where the local density approximation is improved,
e.g., by a semi-local approximation used in this thesis [10].
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2.7 Linking the spectral function to angle-resolved photoemission spectroscopy

bath communicate via an effective dynamical potential, the hybridization function. Since
the short-range part–describing strong correlation—of the self-energy has to be the same
between the material and the impurity, a self-consistent cycle between the two is imposed
and used to find the Green’s function of the system. The problem of excluding interactions
that are present both in the impurity and the mean-field, and that must not be counted twice,
is termed the double counting problem, and is a matter of ongoing research [50]. Also, solving
exactly the impurity embedded in the rest of the medium is still a very active branch of this
theory [21]. Modern formulations of dynamical mean-field theory include DFT+DMFT or
GW +DMFT, where the long-range interactions are accounted for by an approximate Kohn
and Sham potential, or by a GW self-energy.

From this analysis, it is evident that to describe the full one-particle Green’s function, a
dynamical, complex, non-local self-energy is needed. A natural question arises: what if one
does not want to describe the full one-particle Green’s function but only “a part of it” exactly?
In Ref. [51], Casida supposes to constrain the self-energy in the Luttinger-Ward functional to
be static, real, and local. Interestingly, he finds that such a constraint leads to an approximate
version of the Kohn and Sham potential, and thus is able to reproduce G(r, t ;r, t+), i.e., the
ground-state density of the system. In Ref. [52], a dynamical, real, and local self-energy has
been shown to be flexible enough to describe the spectral density of the system, |ImG(r,r,!)|.

In summary, it should be clear that to describe the full one-particle Green’s function of a
system, a dynamical, complex, and non-local self-energy has to be employed. One can reduce
the complexity of the problem by either making approximations, e.g., DMFT, or by aiming to
reproduce only a part of the full Green’s function.

2.7 Linking the spectral function to angle-resolved photoemission
spectroscopy

In this section, we will draw a link between spectral functions in the frequency domain and
angle-resolved photoemission/absorption spectroscopy.

As can be seen from Eq. (2.13), the spectral function is peaked at the removal energies for
occupied poles or additional energies for empty poles in the system. Thus, for example, in
a molecule, the lowest energy to remove an electron is equal to the energy of the highest
occupied pole (also called the highest occupied molecular orbital, HOMO), at which the
spectral function is peaked. Furthermore, the amplitudes modulating the Dirac deltas in
the diagonal part of the spectral function in Eq. (2.13) give the probability for the process to
happen. For a deeper understanding of this, it is best to look at the spectral function in terms
of creation-annihilation operators. By writing A as a function of G using Eq. (2.14), and using
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Chapter 2. Green’s functions, embedding, and energy functionals

the definition of G

≠
r
ØØA(!)

ØØr0
Æ
= A(r,r0,!) =

ØØImG(r,r0,!)
ØØ=

sgn(!°µ)
∑Z+1

0
døei!ø hGS|√̂(r,ø)√̂†(r0,0)|GSi°

Z0

°1
døei!ø hGS|√̂†(r0,0)√̂(r,ø)|GSi

∏
,

(2.67)

where µ is the chemical potential. The quantity

Im
Z0

°1
døei!ø hGS|√̂†(r0,0)√̂(r,ø)|GSi , (2.68)

describes the process of a sample in its ground state hGS|, removing an electron at time 0
and position r0, and returning to the equilibrium state after some time ø, having recovered an
electron somewhere else. This has to be resonant at all electron removal energies and thus
peaked at those, with a weight regulated by the probability of the process.

In a real angle-resolved photoemission experiment (ARPES), one does not control the position
of the electron to be removed, but more realistically, the momentum (angle) of the electron
that comes out. This is very convenient for crystals since momenta with values in the first
Brillouin zone of added particles or holes are conserved. Indeed, the probability amplitude
of momentum change in the addition or removal process is zero. This can be seen from the
fact that the spectral function A(!) is diagonal in the momentum space, i.e.,

≠
k
ØØA(!)

ØØk0Æ=
±k,k0 A(k,!), where it is clear that the added or removed electron to the initial state has the
same momentum as the one removed or added to the final state.

With non-interacting electrons, the proof of this would be the Bloch theorem [36]. In fact,
the theorem states that the non-interacting Dyson orbitals in the Lehmann representation of
Eq. (2.12), i.e., the eigenstates of the Hamiltonian, are also eigenstates of the translations of
the material, making k a quantum number:

G(!) =
X

k,l

ØØ¡kl
Æ≠
¡kl

ØØ
!°≤kl + i¥ sgn(≤kl °µ)

, (2.69)

where l is the band index.

For interacting electrons, the proof is more complex since, in general, the total Hamiltonian of
the system Ĥ does not commute with the lattice translations of single electrons, but with all
the electrons together. The problem is actually the same when analyzing the commutation
between the Hamiltonian for a multi-electron atom, e.g., Helium, and the angular momentum
operators for the two electrons. Indeed, due to the electron-electron interaction, the Hamilto-
nian commutes with the sum of the operators (total angular momentum) and not with each
one singularly.

To prove the diagonality of the spectral function in momentum space, we start by writing the
Green’s function in the momentum basis. Taking into account Eq. (2.10) and Eq. (2.11), we
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2.7 Linking the spectral function to angle-resolved photoemission spectroscopy

have

G(k,k0,!) =
X

s

hGS|ĉk|s, N +1i hs, N +1|ĉ†
k0 |GSi

!°≤s + i¥

+
X

s

hGS|ĉ†
k0 |s, N °1i hs, N °1|ĉk|GSi

!°≤s ° i¥
.

(2.70)

The Bloch theorem for a many-particle system states that an eigenstate of the Hamiltonian for
a fixed number of particles has to obey

©K(r1 +R, . . . ,rN +R) = TR©K(r1, . . . ,rN ) = ei K·R©K(r1, . . . ,rN ), (2.71)

since the Hamiltonian commutes with all the translations of the lattice,

TRHN = HN TR. (2.72)

The total momentum K is then a good quantum number, and we can use it to label the
|s, N +1i and |s, N °1i states, having |K, i , N +1i and |K, i , N °1i, respectively. By using the
anti-commutation relations, it is possible to prove that

TR ĉk |K, i , N +1i= ei (K°k)R ĉk |K, i , N +1i , ) ĉk |K, i , N +1i= |K°k, i , N +1i , (2.73)

and that

TR ĉ†
k |K, i , N °1i= ei (K+k)R ĉ†

k |K, i , N °1i , ) ĉ†
k |K, i , N °1i |K+k, i , N °1i . (2.74)

Assigning a total momentum K0 to the ground state |GSi and using the orthonormality be-
tween eigenstates of different eigenvalues (of the unitary operators TR), the Green’s function is
rewritten as:

G(k,k0,!) =
√
X

i

hGS|ĉk|K0 +k, i , N +1i hK0 +k, i , N +1|ĉ†
k|GSi

!°≤i + i¥

+
X

i

hGS|ĉ†
k|K0 °k, i , N °1i hK0 °k, i , N °1|ĉk|GSi

!°≤i ° i¥

!
±k,k0 =G(k,!) ±k,k0 ,

(2.75)

where k is restricted to the first Brillouin zone due to periodic boundary conditions. As a
consequence, the spectral function A(!) is diagonal in the crystal momentum space.

Equation (2.75) is basically the Bloch theorem for many-particle systems translated into the
language of Green’s functions. Before delving into the ARPES experiments, there is one final
remark to be made. In a later section, we will analyze in depth the solution of the Dyson
equation and the fact that, in general, the number of poles of the Green’s function does
not need to be constrained by the dimension of the Hilbert space of the Kohn and Sham
Hamiltonian. In fact, the occupied poles for a non-interacting Green’s function, e.g., of
Eq. (2.69), have to be equal to the number of particles. In an interacting system, it is clear that

27



Chapter 2. Green’s functions, embedding, and energy functionals

(a) Spectral function example (b) ARPES on aluminum.

Figure 2.2: Panel (a). Example of momentum-resolved spectral function at fixed momentum.
The Solid line represents the spectral function. The circles represent the self-energy, while the
triangles represent the inverse of the Green’s function. The main peak for the spectral function
is at the quasi-particle energy ≤k, which is shifted by the self-energy from ≤0

k. The other peak is
termed a satellite and has a purely dynamical origin. Figure taken from Ref. [20]. Panel (b).
Angle-resolved photoemission experiment on aluminum. The color map goes from high (red)
to low (green and blue). Figure taken from Ref. [3].

the number of occupied poles is equal to the number of excitations of the system with N °1
particles. At the thermodynamic limit, this is infinite and results in an infinite and infinitely
dense set of poles in the Green’s function for an interacting system. This is the heuristic reason
why Green’s functions develop a branch cut above the real axis for occupied states and below
for unoccupied ones. For a nice and complete review of the exact mathematical details and
implications, see Ref. [53]. Since there are some parts of the spectrum in which there is an
accumulation of poles, the peaked structure of the spectral function from Eq. (2.13) is summed
and becomes a smoother function with broad peaks.

The single element of the momentum-resolved spectral function Ai i (k,!)—with i labelling a
state of the non-interacting Bloch Hamiltonian at k, same as in Eq. (2.75)—is shown by the
solid line in Fig. 2.2a. The main peak is the quasi-particle peak and is centered at ≤k, shifted
from the non-interacting energy ≤0

(i )k. The lifetime of the quasi-particle is long but not infinite,
expressed by the broadening of the peak which originates from the accumulation of poles of
the Green’s function around ≤k. The other, more broadened peak is termed the satellite and
has a purely dynamical origin. In a non-interacting theory, Ai i (k,!) can only have one delta
peak, whereas in an interacting system, due to the linear dependence of the Dyson orbitals,
Ai i (k,!) can have multiple peaks.

In an ARPES experiment, the different elements of the spectral function at fixed momentum
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2.7 Linking the spectral function to angle-resolved photoemission spectroscopy

are not resolved, and thus the function to be studied is A(k,!) =P
i Ai i (k,!). Due to the sum

rule
R

d!A(!) = 1 (see Sec. 2.1 for details), the equality
R

d!A(k,!) = 1 holds at each fixed
momentum. For a particular path in the Brillouin zone, the spectral function A(k,!) looks as
in Fig. 2.2b. This is a real ARPES experiment on Aluminum along the °°L path of the Brillouin
zone. The red quasi-particle (free-like) band is evident along with the satellite with much less
dispersion.
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3 SOP for dynamical operators

In this Chapter we introduce the sum-over-poles representation for dynamical operators.
Since frequency is crucial in this framework, finding a suitable representation of dynamical
(frequency-dependent) operators is hard by construction. Taking for example the Green’s
function, from the Lehmann representation of Eq. (2.12), it can be deduced that it is “at best”
diverging on a finite number of poles along the real axis. Thus, performing integrals on the
real axis is challenging. The content of this Section is based on my article [34]. In Ref. [34]all
operators are diagonal in the same basis because homogeneous systems are treated, i.e., the
plane-wave basis. This said, the scope of the thesis is to address both homogeneous and non-
homogeneous (crystalline) systems, thus we make the distinction from scalars to matrices
only when needed

Throughout the whole Chapter we use the symbols G to indicate a generic (time-ordered)
propagator and A for its spectral function.

3.1 Introducing the sum over poles representation

In this Section we introduce the sum-over-poles representation for dynamical propagators.
The goal is to find a suitable representation over frequency that takes into account their pole-
like analytic structure (see Sec. 2.5), respects the properties of dynamical propagators, e.g.,
the sum rules, and ease the computation of frequency integrated quantities.

For this purpose, we express frequency-dependent propagators and self-energies, as well as
polarizabilities or screened Coulomb interactions, in a sum-over-poles (SOP) form:

G(!) = A0 +
NX

i=1

Ai

!° zi
, (3.1)

where the constant term A0 may be present for self-energies and potentials. We consider the
residues Ai as operators acting on the Hilbert space of G , and the scalar poles zi = ≤i + i±i

where ≤i ,±i 2R. To ensure the correct analytical structure respecting time-ordering, we take
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Chapter 3. SOP for dynamical operators

±i ? 0 when ≤i 7µ, where µ is the effective chemical potential of the propagator. For a Green’s
function, µ is the Fermi energy of the system; for a polarizability or a screened potential,
µ = 0. The parameter N is the number of poles and is treated as a convergence parameter.
This is well-discussed in Ref. [54], where the authors show that time-ordered propagators can
always be written as a continuous fraction, for which the SOP representation with a finite N
corresponds to a truncation. The procedure for choosing a representative SOP for a given
propagator, i.e., the number of poles, poles, and amplitudes, is the subject of the next sections.

3.2 Spectral representations

Following Ref. [55], we consider the spectral representation of a propagator (here the Green’s
function for simplicity), where G is expressed in terms of its spectral function A as:

G(!) =
Z

C

A(!0)
!°!0 d!0. (3.2)

This is done by performing a time-ordered Hilbert transform (TOHT), where C is a time-
ordered contour which is shifted above/below the real axis for !0 7µ (see also Sec. 2.5), and
the shift is sent to zero after the integral is computed. Accordingly, the inverse relation to go
from G to A is given by:

A(!) = 1
2ºi

h
G(!)°G†(!)

i
sgn(µ°!). (3.3)

To represent the spectral function on a finite basis set {b j (!)}1,...,M , we have:

A(!) =
MX

j=1
a j b j (!)sgn(µ°≤ j ) =

MX

j=1
a j

ØØb j (!)
ØØ. (3.4)

Here, b j (!) is centred on ≤ j and is positive (negative) for ≤ j 7µ. The matrices a j are positive
definite (a j > 0), acting on the Hilbert space of A.

We can induce a representation of G by introducing a discrete time-ordered Hilbert transform
(D-TOHT) as:

G(!) =
MX

j=1
a j

Z ØØb j (!0)
ØØ

!°!0 ° i 0+ sgn(µ°≤ j )
d!0. (3.5)

The sign chosen for b j in Eq. (3.4) gives, by construction, the time-ordered analytic structure
of the Green’s function.

In the case where all b j become Dirac delta functions and M becomes infinitely large (contin-
uum representation limit), Eq. (3.5) becomes the standard TOHT of Eq. (3.2) (with C shifted
by ±i 0+).

A natural choice is to use a basis of Lorentzian functions centered at different frequencies ≤ j ,
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3.2 Spectral representations

given by:

|b j (!)| =L± j (!°≤ j ) = 1
º

ØØ± j
ØØ

(!°≤ j )2 +±2
j

, (3.6)

where the D-TOHT for the single element is analytical, yielding a pole function 1/(!° z j )
with z j = ≤ j + i± j . The sign convention for ± j is defined as discussed above according to time
ordering. Thus, choosing b j as in Eq. (3.6) induces a SOP representation for G according to
Eq. (3.1), with Ai = ai 2R and N = M . Once the SOP representation of G is known, i.e. poles
and amplitudes are known, the grid evaluation (inverse of the above) is trivial and amounts to
performing the finite sum in Eq. (3.1). This approach ensures a full-frequency treatment of the
propagator (approaching the continuum representation limit when Lorentzians become delta
functions), while preserving an explicit knowledge of the analytical structure and continuation
of G .

One drawback of using Lorentzians to represent G is related to the slowly decaying tails (1/!2

for !!1) induced in the spectral function when using finite broadening values ± j . In order
to improve on this, we introduce here n-th order generalized Lorentzians to obtain fast-decay
basis functions. These are defined as:

ØØb j (!)
ØØ=L n

± j
(!°≤ j ) = 1

Nnº

ØØ± j
ØØ2n°1

(!°≤ j )2n + (± j )2n , (3.7)

where Nn =
£
n sin

°
º

2n

¢§°1 is the normalization factor (see Appendix B.1). The D-TOHT of L n
±

remains analytic and still yields a SOP representation for G (see Appendix B.1):

Z

C
d!0

L n
± j

(!0 °≤ j )

!°!0 ° i 0+ sgn(µ°≤ j )
=

n°1X

m=0

Æm

!°≥ j ,m
, (3.8)

with residues Æm and poles ≥ j ,m given by:

Æm = 1
i Nnn

ei º
2n (1+2m), (3.9)

≥ j ,m = ≤ j +ei º
2n (1+2m)± j . (3.10)

Importantly, Æm are complex and the residues in the SOP representation of Eq. (3.1) become
Ai = a jÆm , i being a combined index and N = M £n. Thus, the spectral function of this SOP
has a contribution from both the real and imaginary parts of each Lorentzian pole 1/(!°≥ j ,m),
resulting in an overall decay faster than each single Lorentzian. Also, it is worth noting that, as
for standard Lorentzians, a normalized n-th order Lorentzian approaches a Dirac delta for
± j ! 0+.

Owing to their fast decay and the aforementioned property, using a SOP for G0 in terms of n-th
order Lorentzians provides faster convergence for ±! 0+ compared to a SOP representation
built on ordinary Lorentzians, as will be shown later.
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Chapter 3. SOP for dynamical operators

While using n-th order generalized Lorentzians to represent the spectral function A(!) pro-
vides faster decay in the imaginary part of the propagator, it results in a multiplication of the
number of poles in the SOP for G (by the degree of the Lorentzian). As shown in Sec. 3.4, the
decay properties are useful for evaluating the moments of a SOP representation, ensuring
absolute convergence up to order 2(n °1).

Alternatively to n-th order Lorentzians, one could consider using Gaussian functions to rep-
resent A(!), and consequently G(!), as done in Refs. [56, 55]. Gaussian functions also allow
for an analytical expression of the D-TOHT. However, this comes at the cost of invoking the
Dawson [57] or Faddeeva [58] functions to evaluate the real part of the propagator. As a result,
SOP expressions are not available, and basic operations involving propagators (such as those
described in Sec. 3.4) cannot be evaluated analytically and need to be worked out in other
ways, such as numerically or by recasting the expressions in terms of propagator spectral
functions [56]. Furthermore, the algorithmic inversion method discussed in Sec. 4.2 is not
available when using Gaussian basis sets to describe A(!).

3.3 Transforming to a sum over poles

After introducing the SOP representation, the next important step is to numerically determine
the SOP coefficients Ai in Eq. (3.1), given an evaluation of the propagator on a frequency grid
G(!). Since in this thesis, we mainly perform the transformation to scalar propagators of the
HEG—such as P or ß, as detailed in Chapter 6—or U (!)—an average of the matrix elements
of W (!), as detailed in Ch. 5—we limit the treatment to scalar propagators. The extension of
the algorithms to the matrix case can be easily done by applying them element-wise, while
keeping the same poles for all elements to handle scalar poles only.1

3.3.1 SOP from the spectral function

According to the discussion in Sec. 3.2, the SOP representation can be equivalently viewed as
a representation for either the propagator G(!) or the spectral function A(!).

As a first case, we consider representing the spectral part of the propagator A(!) according
to Eq. (3.4) and using the basis of n-th order generalized Lorentzians introduced in Eq. (3.7).
To obtain the coefficients a j of the representation, we perform a non-negative least squares
(NNLS) fit [59, 58], which ensures the positivity (or positive definiteness for operators) of all
a j . We then use Eqs. (3.9) and (3.10) to obtain the SOP representation for the propagator.

Although the position and broadening (≤ j ,± j ) of the n-th order Lorentzians could also be
optimized by means of a non-linear NNLS fit, we consider them centered at ≤ j = 1

2

°
! j +! j°1

¢

and broadened with ± j =
ØØ! j °! j°1

ØØ, and we only linearly optimize a j . For numerical reasons,

1This is not strictly necessary for the algorithmic inversion method, but considering such cases goes beyond the
scope of this thesis.
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3.4 Analytical expressions

we prefer to work with the bare imaginary part of G instead of the actual spectral function
A(!), without imposing the sign factor of Eq. (3.3), as this function is smoother near the Fermi
level. We illustrate this approach in Sec. 3.5.1 and use it for the calculations on the HEG.

3.3.2 SOP from the propagator

Alternatively, one could consider the basis representation induced on the propagator directly,
via Eq. (3.1), in order to obtain the Ai and zi coefficients (residues and poles). Here, we obtain
the coefficients using a mixed linear and non-linear least square minimization of the cost
function given by:

C =
X

j

ØØØØØU (! j )°
X

l

Al

! j ° gl

ØØØØØ

2

. (3.11)

At each step of the minimization, we find the real coefficients Al using a generalized linear least
square approach [60], and the complex (time-ordered) poles gl using simulated annealing on
C with the newly found amplitudes. Due to its non linearity, this algorithm requires an initial
guess of the real (position) and imaginary (broadening) parts of the poles, and, at each step,
moves them at most by 10% of their value. This algorithm is demonstrated in Sec. 3.5.2 and
used in the calculations on SrVO3.

Interestingly, the SOP representation in Eq. (3.1) is a special case of a Padè approximant,
written as the ratio of polynomials of order N °1 and N , respectively. Because of this, one can
exploit Padè-specific approaches to determine (Ai , zi ), such as, for instance, Thiele’s recursive
scheme [61]. We found that this leads to a very efficient method when few tens of poles are
considered, becoming numerically unstable beyond. For a recent exploitation of Padè and
related techniques in the context of GW using a multi-pole approximation, see also our work
on Ref. [62]. Moreover, since the residues are not constrained to be real and positive (in fact,
Ai are complex), there is no control over the time-ordered position of the poles, and the
procedure is non-trivial to extend to the case of n-th order Lorentzians.

3.4 Analytical expressions

Once the SOP representation of a dynamical propagator is available, several analytical ex-
pressions hold. For instance, the convolution of propagators, such as those involved in the
evaluation of the independent-particle polarizabilities in terms of the Green’s functions, can
be directly evaluated using Cauchy’s residue theorem:

Z+1

°1

d!0

2ºi
G(!+!0)G̃(!0)d!0 =

X

i , j

Z+1

°1

d!0

2ºi
Ai

!+!0 ° zi

Ã j

!0 ° z̃ j

=
X

i , j
Im{zi }<0
Im{z̃ j }>0

Ai Ã j

!+ z̃ j ° zi
°

X

i , j
Im{zi }>0
Im{z̃ j }<0

Ai Ã j

!+ z̃ j ° zi
,

(3.12)
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Chapter 3. SOP for dynamical operators

where Ai and Ã j are matrices.

Using the SOP for G , the following integrals can also be computed explicitly:

Em[G] =
I

°

d z
2ºi

ei z0+
zmG(z) =

X

i
Im{zi }>0

Ai zm
i , (3.13)

where we refer to the term Em[G] as the m-th (regularized) moment of G . Here, ° is a closed
contour in the upper-half complex plane that includes the real axis plus the enclosing arc.
We note that for the m = 0 and m = 1 moments, ° can be reduced to the real axis by using
propagators G that decay as O(1/!). We underline that if one uses an n-th order Lorentzian
basis to represent G(!) on SOP, the first 2(n ° 1) regularized moments coincide with the
moments of its occupied spectral function

Rµ
°1 d!!2(n°1) A(!). For higher moments the the

integral
Rµ
°1 d!!l A(!), with l > 2(n °1), diverges, while the corresponding regularized m-th

moment in Eq. (3.13) converges. This analysis is deepened in Appendix B.2.

3.5 Examples of representation on SOP

In this section, we present example cases in which we use either the algorithm in Sec. 3.3.1,
which exploits the spectral part to obtain a SOP for the propagator, or the algorithm in Sec. 3.3.2,
which finds a SOP for a propagator on a grid directly.

3.5.1 Algorithm using the spectral function

We consider a target propagator G with a spectral function A(!) = g1(!)+ 1
5 g1(!+4)+ 1

3 g1(!°5),
where gæ(!) is a normalized Gaussian centered at zero with variance æ2. The propagator G
can be obtained using the expression for the Faddeeva function [58], assuming the Fermi level
to be far enough that the retarded HT be used.

The goal of this validation is to represent the target G as a sum-over-poles and compare the
results obtained using 1st and 2nd order Lorentzian basis elements. Additionally, we will study
the mean-square error of the SOP-represented G as compared to the exact G , as a function of
the number of poles used for the SOP. We will also examine the absolute error of the mean and
variance.

Following Sec. 3.3, we represent the spectral function A via a non-negative least squares
(NNLS) fit on 1st (ordinary) and 2nd order Lorentzian basis and use Eqs. (3.9) and (3.10) to
obtain the sum-over-poles representation of G . Here, we use the n-th Lorentzian centered
on an equally spaced grid with a broadening equal to the distance between two subsequent
centers. In Figs. 3.1 (a) and (b), we use 50 basis elements to represent the target G sampled
on 50 points. The real (panel (a)) and imaginary (panel (b)) parts of the target propagator are
represented as black dots. The continuous lines represent the SOP obtained for G using 1st

order (orange) and 2nd order (green) Lorentzian basis elements. Qualitatively, it is possible
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3.5 Examples of representation on SOP

Figure 3.1: Numerical example of a transformation to a SOP form. The target propagator
is chosen to have a spectral function as a linear combination of three Gaussians, sampled
using 50 points (black dots). We represent the trial spectral function on 1st (orange) and 2nd

(green) order Lorentzian basis elements —each centred on the midpoint between adjacent
grid points and broadened with the size of the interval—, and get real and imaginary parts
of the propagator analytically afterward (see Sec. 3.3 for details). We plot the result in the
panels (a) and (b). In panel (c) we study the mean-square error (MSE) of the fitted propagator
against the target as a function of the number of basis elements used for the representation.
The last value on this graph represents the MSE of the (sum of the) panels (a) and (b) between
the fitted and the target values. All the other points in panel (c) are obtained placing the
Lorentzians uniformly in the given interval with a broadening equal to the distance between
two consecutive functions. In the panels (d), (e), and (f) the same study is repeated for the
absolute difference between the normalization of the target function and the one of the fitted
propagator, its mean, and its variance. The y-scales of the graphs (c), (d), (e), and (f) are
logarithmic.

to see that 2nd order Lorentzians perform better. To obtain a more quantitative comparison,
Fig. 3.1 (c) shows the mean square error as a function of the number of basis elements used in
the representation (and consequently in the SOP). In Figs. 3.1 (d), (e), and (f), we consider the
absolute difference between the exact moment, mean, and variance of A and those obtained
from the SOP. In all the graphs, a basis made of second order Lorentzians is found to perform
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Chapter 3. SOP for dynamical operators

Figure 3.2: Real and imaginary part of the localized screened interaction U (!) (for details
see Ch. 5) calculated on a frequency grid using the random-phase approximation (black line)
compared to its representation in a sum-over-poles form (green line) obtained the algorithm
describe in the Section.

better.

It is worth noting that in order to represent the spectral function, we use a NNLS minimization
to obtain the coefficients (amplitudes) of the n-th Lorentzian basis set. This results in the need
to solve a linear system of equations with a positive constraint on the solution. It is possible
to improve this approach by using a non-linear least squares minimization of the center and
broadening of the n-th Lorentzians, optimizing not only the coefficients but also the basis
(similarly to what we do in Sec. 3.3.2 and 3.5.2).

3.5.2 Algorithm using the propagator

We consider a target propagator U (!) in the frequency domain. The details on how to obtain
such a screened interaction and how to exploit it in the big scheme of the algorithmic-inversion
method on sum over poles, combined with the novel dynamical Hubbard functional, are
discussed in Ch. 7. In contrast to Sec. 3.5.1, here we find the SOP directly by minimizing the
cost function in Eq. (3.11).

In Fig. 3.2, we show the real (left) and imaginary (right) parts of the calculated RPA screened
interaction (black lines) compared to the result of the fitting procedure (green lines) with 10
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3.6 Pole condensation

(a) Not condensed (b) Condensed

Figure 3.3: Comparison between not condensed 3.3a and condensed 3.3b spectral functions
projected on the t2g (blue) and eg (orange) orbitals for SrVO3. The threshold for the condensa-
tion is fixed at the value of the broadening of the merged pole. The number of poles is reduced
to 1/6 of the initial number.

poles for the fit. The agreement is excellent at lower energies (!< 25 eV) and slightly worsens
afterwards. Still, the error in the two limits !! 0 and !!1 (300 eV) is of the order of 10 meV,
and thus quite low with respect to the energy scales of the plots in the figure. The algorithm
takes minutes to run using a Python implementation.

3.6 Pole condensation

In this section, we describe an algorithm for reducing the number of poles in a SOP. Suppose
we have obtained the SOP representation of a generic dynamical (time-ordered) propagator,
i.e., we know the matrix residues Ai and the scalar poles zi , but we want to reduce them to
ease computational cost, as the cost of the operations scales with the number of poles in the
SOP. The algorithm we design is essentially a pole condensation, as it merges poles based on
certain criteria and provides a new residue from the merging.

Inevitably, when condensing the poles, some information is lost. This loss can be directly
evaluated by representing both the original propagator and the condensed propagator on a
frequency grid and evaluating the difference in errors, as we did in Sec. 3.5.1. Additionally,
we can perform this error analysis directly on the momenta of the propagator, as we did in
Sec. 3.5.1. In Ch. 7, we assess the loss in precision by examining the error in the total energy of
the calculation.

Importantly, the pole condensation algorithm preserves the first moment and occupied
momenta (see Sec. 6.3) of the propagator. This is very desirable since, in Ch. 7, we condense
the Kohn and Sham Green’s function of SrVO3 — projected onto the Hubbard manifold (see the
related Chapter for details) — without altering either the normalization of the spectral function
or the number of particles in the system (see Sec. 2.1). Here, we limit the treatment of SOPs to
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Chapter 3. SOP for dynamical operators

standard Lorentzians, although the generalization for n-th order generalized Lorentzians (see
Sec. 3.3 for their definition) can be readily done since we consider only the spectral function
and we use its center and broadening in the algorithm, weather coming from a simple or an
n-th order Lorentzian makes no conceptual difference.

In order to condense the poles, we adopt a strategy inspired by the weighted mean of N random
variables. Each j -th Lorentzian in the representation of the spectral function (which yields
the SOP for the propagator after the D-TOHT) of Eq. (3.4) can be considered a distribution
function for a random variable. This is centered around ≤ j and has a variance of ± j .2 If the
overlap of two Lorentzians is greater than a threshold, the two poles can be regarded effectively
as one.

In particular:

• We sequentially browse the (ordered) pole array.

• We compare the weighted-mean of the first two (real part of the) poles — having a weight
equal to each broadening — with the first.

• If the separation between the position (real part) of the two poles is less than a threshold,
we replace them with a newly defined pole, with a position equal to the weighted mean,
broadening as the weighted mean variance, and residue (or amplitude [34]) as the sum
of the two.

• We continue with the rest of the poles.

We perform this procedure separately for the four quarters of the complex plane, defined by
the real axis and the position of the chemical potential. 3 Please note that this procedure
preserves the normalization of the Green’s function — since we are summing the amplitudes
—, and preserves the total number of particles since we are doing it for occupied and empty
poles separately.

In Fig. 3.3, we compare the spectral functions projected onto the t2g orbitals (3dx y ,3dy z ,3dzx

of Vanadium) and eg orbitals (3dz2 ,3dx2°y2 of Vanadium). The condensation reduces the
number of poles from 3286 to 512, i.e., 1/6 of the initial number. The value of the threshold
corresponds to the broadening of the merged pole. As detailed in Sec. 7, this threshold already
guarantees an accuracy of the order of 10 meV per atom on the total energy calculated with
the dynamical Hubbard functional introduced in Ch. 5.

2It should be noted that a Lorentzian is not a distribution function due to its diverging variance. To perform the
weighted mean we use the variance of the distribution, in the method we use the broadening of the Lorentian.

3Taking into account the analytic form of the propagator (Sec. 2.5) would be sufficient to perform the algorithm
separately, before and after the Fermi level, since there are no poles in the bottom/above parts of the complex
plane below/after the chemical potential. Here, we consider having poles also on the “forbidden” parts of the
spectrum because we apply a smearing to the Green’s function (see Sec. D.2 for details).
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4 Algorithmic inversion of dynamical
potentials

As seen multiple times in this thesis, dynamical potentials are needed to predict accurate
spectral, transport, and embedding properties of materials. The frequency fundamentally
changes the problem to be solved, transitioning from the diagonalization of an operator, such
as the Kohn and Sham Hamiltonian in density-functional theory, to a Dyson inversion of a
self-energy. In this chapter, we develop a novel treatment of frequency-dependent potentials
capable of solving Dyson-like equations.

First, we discuss Dyson-like equations involving dynamical potentials as a nonlinear gener-
alization of the Schröedinger equation for open embedded systems, drawing a link with the
mathematical formulation of nonlinear eigenvalue problems.

On this basis, we introduce the algorithmic-inversion method to solve the Dyson equation by
mapping the interacting system into a non-interacting “fictitious” system, with augmented
degrees of freedom. The sum-over-poles representation of the self-energy, together with the
static contribution to the Hamiltonian, is used to build a (larger) effective Hamiltonian. This
effective Hamiltonian has the excitation energies of the system as eigenvalues and the Dyson
orbitals as a projection of the eigenvectors. Furthermore, the fictitious and real systems share
the same Green’s function once the spurious degrees of freedom are traced away. Thus, the
sum over poles for the Green’s function of the system is obtained, allowing for the computation
of the spectral and thermodynamic properties.

We treat the homogeneous (scalar) case first in Sec. 4.2, and then we extend the method to a
general operatorial case to be applied to crystals in Sec. 4.3.

The content of Section 4.2 is based on my article in Ref. [34], while Sections 4.1 and 4.3 are
mainly based on my article in Ref. [35].
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Chapter 4. Algorithmic inversion of dynamical potentials

4.1 The Dyson equation as a nonlinear eigenvalue problem

In this section, we introduce a general framework to solve the Dyson equation G(!) = [!I °
h0 °ß(!)]°1. This task can be seen as the generalization to embedded (open) systems of
the diagonalization of a Hamiltonian for closed systems. Assuming ß to be analytical in a
connected subset of the complex plane, one can exactly map [63] the solution to the Dyson
equation into the nonlinear eigenvalue problem (usually shortened as NLEP):

£
h0 +ß(!)

§ØØ√RÆ
=!

ØØ√RÆ
, (4.1)

where (zs ,√R
s ) are the corresponding (discrete) eigenvalues and right eigenvectors. In particu-

lar, it is possible to show that the eigenvalues zs are the poles of the resolvent G(!), and, when
poles are first-order (not granted in general), the right/left eigenvectors

ØØ√R
s
Æ≠
√L

s

ØØ provide
their residues.

Under the above hypotheses, which are fully treated in Ref. [63] and its references, we prove
the above statement by showing that:

[!°h0 °ß(!)]°1 =
X

s

ØØ√R
s
Æ≠
√L

s

ØØ
!° zs

+R(!), (4.2)

where R(z) is a smooth function without poles, and

[zs °h0 °ß(zs)]
ØØ√R

s
Æ
= 0, (4.3)

with the corresponding left equation for
≠
√L

s

ØØ.

We start by expanding the operator [!°h0 °ß(!)] around zs :

!°h0 °ß(!) = zs °h0 °ß(zs)+
£
1°ß0(zs)

§
(!° zs)+o(!° zs), (4.4)

where it is understood that the coefficient of each order of o(!° zs) is a linear operator (or
matrix in a basis).

Using the definition of the inverse

≠
√̄L

i

ØØ[!°h0 °ß(!)]°1 [!°h0 °ß(!)]
ØØ√̄R

s
Æ
=

≠
√̄L

i

ØØ√̄R
s
Æ

, (4.5)

where we denote √̄R
s the nonlinear eigenvectors normalized to the unity, i.e.,

≠
√̄L

s

ØØ√̄R
s
Æ
= 1.

Note that the vectors
ØØ√̄R

s
Æ

, together with
≠
√̄L

s

ØØ, form a complete non-orthogonal set since
they solve a different eigenvalue problem at each zs . By inserting the completeness of the
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(nonlinear) eigenvectors into the above equation

≠
√̄L

i

ØØ√̄R
s
Æ
=

X

j
[!°h0 °ß(!)]°1

i j [!°h0 °ß(!)] j s

=
X

j
[!°h0 °ß(!)]°1

i j
£
zs °h0 °ß(zs)+

£
1°ß0(zs)

§
(!° zs)+o(!° zs)

§
j s

=
X

j
[!°h0 °ß(!)]°1

i j
£
1°ß0(zs)

§
j s (!° zs)

£
1+O j s(!° zs)

§
,

(4.6)

where we used Eq. (4.3) to arrive to the last line. Multiplying by
£
1°ß0(zs)

§°1
sl and summing

over s we get

≠
√̄L

i

ØØ[!°h0 °ß(!)]°1ØØ√̄R
l

Æ
=

≠
√̄L

i

ØØX
s

ØØ√̄R
s
Æ≠
√̄L

s

ØØ£1°ß0(zs)
§°1

!° zs
+O(!° zs)

ØØ√̄R
l

Æ
, (4.7)

and consequently

[!°h0 °ß(!)]°1 =
X

s

ØØ√̄R
s
Æ≠
√̄L

s

ØØ£1°ß0(zs)
§°1

!° zs
+

X
s

O(!° zs). (4.8)

Finally, by defining ØØ√R
s
Æ≠
√L

s

ØØ£1°ß0(zs)
§
=

ØØ√̄R
s
Æ≠
√̄L

s

ØØ (4.9)

we have proven Eq. (4.2).

Also, in agreement with Ref. [63], by performing the trace over Eq. (4.9), the definition for
ØØ√R

s
Æ

(and
≠
√L

s

ØØ) implies the (generalized) normalization

≠
√L

s

ØØ1°ß0(zs)
ØØ√R

s
Æ
= 1 (4.10)

4.2 Scalar case for homogeneous systems

In this Section we introduce the algorithmic-inversion method for homogeneous systems.
Here, we suppose all propagators are diagonal on the same basis, thus the framework is limited
to scalars. As an example, all one-particle propagators—like the polarizability P , the screened
potential W , the self-energy ß, and the Green’s function G— are diagonal in the plane wave
basis for the homogeneous electron gas. The extension to the general (non-homogeneous)
operatorial case is presented in Sec. 4.3.

Though the operatorial case is general, as it includes scalars, it is useful to treat the simpler
homogeneous case as an introduction to the framework and formalism. As it is more natural,
we draw the link to nonlinear eigenvalue problems (see Sec. 4.1) only in the general case of
Sec. 4.3, although a similar analysis can be done here.

Let us suppose to have the SOP representation of the self-energy ß(!) and the non-interacting
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Chapter 4. Algorithmic inversion of dynamical potentials

Green’s function G0(!) given by

ß(!) =
NX

i=1

°i

!°æi
, G0 =

1
!°≤0

, (4.11)

where any static part of the self-energy has been adsorbed in ≤0 for simplicity. Taking advantage
of these expressions, the Dyson equation can be rewritten as

G(!) =
£
G°1

0 (!)°ß(!)
§°1 = 1

!°≤0 °ß(!)
= (!°æ1) · · · (!°æN )

TN (!)
, (4.12)

in which the N +1 roots of the polynomial

TN (!) = (!°≤0)
Y

i=1,N
(!°æi )°

X

j=1,N
° j

Y

i=1,N
i 6= j

(!°æi ) (4.13)

are the N +1 poles of the Green’s function (as expected when the self-energy has N poles).

The key statement of this Section is that the roots of TN can be obtained as the eigenvalues of
the (N +1)£ (N +1) matrix

HAIM =

0
BBBBB@

≤0
p
°1 . . .

p
°Np

°1 æ1 0 0
... 0

. . . 0
p
°N 0 . . . æN

1
CCCCCA

. (4.14)

We prove this statement by observing that the characteristic polynomial of HAIM is TN (!),
and we proceed by induction. Since the N = 1 case is trivial we move to the N -th case: using
the Laplace expansion on the last line, the characteristic polynomial of the N -th case can be
written as

pHAIM (!) =

ØØØØØØØØØØØ

!°≤0 °
p
°1 . . . °

p
°N

°
p
°1 !°æ1 0 0

... 0
. . . 0

°
p
°N 0 . . . !°æN

ØØØØØØØØØØØ

=

= (!°æN )TN°1(!)+ (°1)N
p
°N £

ØØØØØØØØØØØ

°
p
°1 . . . °

p
°N°1 °

p
°N

!°æ1 0 0 0

0
. . . 0 0

0 . . . !°æN°1 0

ØØØØØØØØØØØ

(4.15)

where we have used the induction hypotheses in the first term of the rhs. Applying the same
procedure to the last column of the second term, and making use of the definition in Eq. (4.13),
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4.2 Scalar case for homogeneous systems

we obtain
pHAIM (!) = (!°æN )TN°1(!)°°N

Y

i=1,N°1
(!°æi ) = TN (!),

which completes the proof.

Labelling zi the poles of G , we calculate the residues by equating

G(!) =
N+1X

i=1

Ai

!° zi
= (!°æ1) · · · (!°æN )

(!° z1) · · · (!° zN+1)
, (4.16)

and performing the limit lim!!zi (!° zi ) on both sides (Heaviside cover-up method [64]), we
obtain:

Ai =
QN

k=1(zi °æk )
QN+1

j=1, j 6=i (zi ° z j )
. (4.17)

We have thus proven that by knowing ß(!) represented in SOP, we can find the SOP expres-
sion of G by diagonalizing the AIM-SOP matrix HAIM and then evaluating the residues using
Eq. (4.17).

It is worth noting that the HAIM matrix can be made Hermitian under special conditions. This
happens, for example, when we solve the Dyson equation for the retarded/advanced case in
which the self-energy has poles with the same imaginary part ®±, real and positive residues,
and an equal broadening ®± for G0 is assumed. Then, it is possible to include the imaginary
part of the poles in the frequency variable !, and solve the Dyson equation on the resulting
complex path ∞0 (shifted by ®±), yielding a symmetric HAIM. After having found the SOP for
G on ∞0, to obtain G(! 2R) we analytically continue the solution to the real axis, obtaining
Im(zi ) =®± for the retarded (°) or advanced (+) case.

We also stress that, given a self-energy represented on SOP, the solution provided by the
algorithmic-inversion procedure is exact at all frequencies. This ensures that the Green’s func-
tion fulfills all the sum-rules implied by the Dyson equation, including e.g. the normalization
of the spectral weight, and the first and second moment sum rules of the spectral function
derived in Ref. [56]. This result is crucial when evaluating frequency-integrated quantities of a
Green’s function, such as the number of particles or the total energy (see Sec. 6.3).

Besides the solution of the Dyson equation for G , the AIM-SOP can also be used to solve the
Dyson equation for the screened Coulomb interaction W (!),

W (!) = vc + vc P (!)W (!) = 1
1° vc P (!)

vc = ≤°1(!)vc ,

i.e., to compute the SOP representation of W (!) once a SOP for the irreducible polarizability
P (!) is provided. Here vc is the Coulomb potential (recalling that we are suppressing the
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Chapter 4. Algorithmic inversion of dynamical potentials

Figure 4.1: Numerical example for the algorithmic inversion method on sum over poles. Upper
panel: Real (blue) and imaginary (green) part of a time-ordered self-energy, including 8 poles
(the occupied pole of G0 is not shown). Lower panel: Dyson-inverted propagator G obtained
with a numerical inversion on a grid (dotted) compared with the SOP representation obtained
using AIM-SOP and evaluated on the same grid (solid line). Same color code for real and
imaginary parts as in the upper panel.

momentum dependence for simplicity). By letting P (!) =P
i

Si
!°gi

, we can write:

!vc P (!) =
X

i
!

vc Si

!° gi
= vc

X

i
Si +

X

i

vc gi Si

!° gi
:= c0 °C (!), (4.18)

and following Eq. (4.18) (multiplied by !
! ) we have

≤°1(!) = 1
1° vc P (!)

= !

!° c0 °C (!)
, (4.19)

for which the AIM-SOP matrix can be used to find the poles of ≤°1(!) and W (!). The ampli-
tudes of W are easily found using Eq. (4.17), where we note that Eq. (4.16) has to be modified
taking into account frequency-constant shift of W by vc , i.e., substituting W (!)°vc for G . Note
that by multiplying ≤°1 by !

! in Eq. (4.19), we have inserted an extra zero in the denominator
(at != 0) which we need to discard from the eigenvalues of the AIM matrix (before applying
the residue formula of Eq. (4.17)) since it simplifies with the ! factor at the numerator of
Eq. (4.19). Consequently, P , ≤°1, and W all have the same number of poles, in contrast to the
solution of the Dyson equation for G , where the number of poles of G is increased by one with
respect to ß.

As a numerical test for AIM-SOP, we consider the Dyson equation for G within an example of a
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4.3 General operatorial case for crystals

time-ordered self-energy built with 8 poles, as shown in the upper panel of Fig. 4.1 (the single
pole of G0 is not shown). In the lower panel, we compare the Green’s function G obtained
from the numerical Dyson inversion on the grid (which involves evaluating ß on the grid
and then inverting) against the Green’s function obtained with the algorithmic inversion and
evaluated on the frequency grid. The results are identical to the precision of the calculated
eigenvalues of the AIM-SOP matrix, since the amplitude calculation of Eq. (4.17) is typically
very well-conditioned. Notably, this procedure has been tested in cases where hundreds of
poles are used for the self-energy without any numerical instabilities.

4.3 General operatorial case for crystals

In this section, we generalize the algorithmic-inversion method to the non-homogeneous
operatorial case. In contrast to Section 4.2, where we dealt with scalars, i.e., commutative
objects, here we handle non-commutative operators. These operators include the Hamiltonian
h0, the self-energy ß(!), and the Green’s function G(!).

Mathematically, the algorithmic-inversion method can be viewed as a special case of the
linearization treatment of NLEP using rational functions [63]. Note that, in this context,
linearization is not used in a perturbative sense. This term is borrowed from the NLEP
literature and means building a linear problem that yields the exact solution of the nonlinear
one. Although general algorithms to solve the NLEP problem exist, we consider here the
self-energy to be meromorphic (with isolated poles) over the entire complex plane and to have
only first-order poles.

This amounts to writing the dynamical part of the self-energy (the static contribution being
included in h0) as a sum over poles (SOP):

ß(!) =
NX

m=1

°m

!°≠m
, (4.20)

as done in Sec. 4.2.

In Eq. (4.20), the amplitudes °m are operators that act on the one-particle Hilbert space
defined by h0, and≠m =!m + i±m are scalars that satisfy the time-ordering condition ±m ? 0
when≠m ?µ. Here, µ denotes the chemical potential of the system. Under these assumptions,
G(!) can also be expressed exactly as a SOP, and the algorithmic inversion method (AIM) will
enable us to compute the coefficients of this representation.

Introducing a factorization of the self-energy residues °m = V̄ †
mVm , the Dyson equation for

the Green’s function reads:

G(!) =
∑
!I °h0 °

X
m

V̄ †
m (!°≠m)°1 Vm

∏°1

. (4.21)
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Chapter 4. Algorithmic inversion of dynamical potentials

This equation corresponds to embedding a non-interacting system h0 and N non-interacting
fictitious degrees of freedom (baths), each having a Hamiltonian ≠i Ii —with Ii being the
identity on the i -th bath—and coupled to h0 byV̄ †

i and Vi .

In order to see this, we introduce the vectorial representation

V = (V1, . . . ,VN ) , V̄ † =

0
BB@

V̄ †
1
...

V̄ †
N

1
CCA , HB =

0
BB@

≠1I1 . . . 0
...

. . .
...

0 . . . ≠N IN

1
CCA , (4.22)

and Eq. (4.21) is rewritten as

G(!) =
h
!I °h0 ° V̄ † (!IB °HB )°1 V

i°1
, (4.23)

with IB defined as the identity matrix for HB . The above equation is formally identical to
Eq. (2.22). In fact, the first element of the Green’s function matrix in Eq. (2.19), there noted as
Gs , is the one-particle Green’s function for the system G .

Consequently, the total Hamiltonian for the “fictitious” non-interacting system

HAIM =

0
BBBBB@

h0 V1 . . . VN

V̄ †
1 ≠1I1 0 0
... 0

. . . 0

V̄ †
N 0 . . . ≠N IN

1
CCCCCA

, (4.24)

yields the Green’s function of the interacting system by G(!) = P0(!Itot °HAIM)°1P0, with P0

projecting onto the h0 Hilbert space.

Notably, the factorization of °m is not unique. A natural choice for this is Vm = V̄ †
m = °1/2

m ,
and in this case Ii = I for all the baths. Alternatively, the factorization can be provided by the
singular value decomposition (SVD) of °m . Importantly, the freedom in the factorization of
°m can be exploited to minimize the dimension of the subspaces corresponding to I1, . . . , IN

(i.e., making Vm and V̄m as rectangular as possible, e.g., via SVD), thereby reducing the overall
dimension of the HAIM matrix.

At this point, even though G(!) can be expressed exactly as a SOP, it may still have higher-order
poles. This is directly related to whether HAIM is diagonalizable (i.e., whether it admits a
complete spectral representation). In the language of nonlinear eigenvalue problems, the
eigenvalues of Eq. (4.1) need to be semisimple, i.e., the algebraic and geometric multiplicities
are always equal [63], for the GF to have only simple poles. This, in turn, depends on the
nature of the self-energy. For instance, when the poles of the self-energy ≠m are real (with
an infinitesimal offset from the real axis), and their residues °m are Hermitian, the AIM
matrix is Hermitian, which is a sufficient (but not necessary) condition for diagonalizability.
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4.3 General operatorial case for crystals

Throughout the thesis, the latter is assumed.

Thus, the diagonalization of HAIM yields the desired SOP expression for the Green’s function:

G(!) =
N+1X

s=1

ØØ√R
s
Æ≠
√L

s

ØØ
!° zs

, (4.25)

where |√R/L
s i are the right/left eigenvectors of Eq. (4.1), computed, according to the above

discussion, as the projections of the linear HAIM eigenvectors on the P0 manifold, zs being
their eigenvalues. We have turned a nonlinear eigenvalue problem into a linear one in a larger
space. Hence, starting from the poles and residues of the self-energy this procedure—the
algorithmic inversion method—provides the excitation energies, lifetimes, and amplitudes
(Dyson orbitals) of the system, i.e., the real and imaginary part of the poles and their residues.
Furthermore, the knowledge of the Green’s function as SOP allows for the analytic calculations
of its moments and thus for the evaluation of integrated thermodynamic quantities [34].

Importantly, in Ref. [65] a similar construction was used to efficiently invert the Dyson equa-
tion in the context of DMFT, with applications in Refs. [32, 66, 67]. Though the building of
the effective Hamiltonian HAIM starting from the poles of the self-energy is similar, in the
references the connection with nonlinear eigenvalue problems is only hinted. Conversely,
in Sec. 4.1, we establish a clear connection between this formalism and the framework of
nonlinear eigenvalue problems. This connection also allows for exploring other strategies to
tackle the solution of the Dyson equation. Related approaches have also appeared recently to
efficiently compute the GW self-energy and solve the Bethe-Salpeter equation [68, 69]. For
example, in Ref. [68], the authors exploits the algebraic structure of the GW equations to
construct a “super-matrix” H that has the same structure as the HAIM presented in this work.
Although the case in the reference seems relevant to the GW formalism, we have shown here
that this approach is entirely general and essentially requires the self-energy to be represented
as a SOP.

As already mentioned for the scalar case, the solution of the Dyson equation using the
algorithmic-inversion method guarantees the exact solution of the equation given a self-
energy summed over poles. This translates to a Green’s function fulfilling all the sum rules
implied by the Dyson equation, such as the correct normalization of the spectral function
A(!). Moreover, knowing the sum over poles for the Green’s function allows us to analytically
compute all the integrals necessary to calculate the frequency-integrated thermodynamic
properties (see Secs. 3.4, 6.3, and 7.3 for further details and applications). Indeed, these
integrals are very difficult to compute numerically, as the spectral function is a peaked func-
tion on the real axis and requires a fine sampling of frequencies. Thus, inverting the Dyson
equation at each frequency can suffice to calculate accurate spectral properties [70], but it is
computationally unfeasible for obtaining precise frequency-integrated properties.

Similarly to Sec. 4.2, we provide a numerical example of the extension of the AIM to the
operatorial case in this section. We construct a time-ordered self-energy with four poles
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Chapter 4. Algorithmic inversion of dynamical potentials

(a) (b)

Figure 4.2: Numerical example of the extension of the algorithmic inversion method on sum
over poles to the operatorial case. In panel 4.2a the spectral part of the self-energy matrix
element having 4 poles. In panel 4.2b the matrix elements of the solution of the Dyson
equation on grid (dotted) compared to the SOP form found with the algorithmic-inversion
method and then represented on grid (continuous line).

and display its matrix elements in Fig. 4.2a. In Fig. 4.2b, we compare the matrix elements of
the spectral function A obtained from the numerical (matrix-based) inversion of the Dyson
equation on a grid, which is done by evaluating ß on the grid and then inverting it, with the
Green’s function obtained through the algorithmic-inversion method and evaluated on the
frequency grid. As in Sec. 4.2, the results are identical.

As a final note, the procedure for solving the Dyson equation for the polarizability to obtain the
screened potential of Sec. 4.2 readily generalizes to the operatorial case, with scalars becoming
matrices. Also, as discussed in Sec. 4.2, the AIM solves the Dyson equation exactly and thus
respects all the sum rules implied by the equation.
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5 Dynamical Hubbard functional

In this chapter, we introduce a novel functional of the Green’s function that combines the
precision of DFT for ground-state properties with the accuracy of GW for spectroscopic
predictions. In particular, we design an approximation to the exchange-correlation part
of the Klein functional that is the dynamical generalization of DFT+U to host a frequency-
dependent screening U (!). Furthermore, we show that the resulting self-energy comes from
a localization of GW plus a double counting term. In Ch. 7, we make use of the algorithmic
inversion method on the sum over poles to implement the functional form for © and ß to
compute the spectrum and thermodynamics of SrVO3. The content of this chapter is mainly
adapted from my article in Ref. [35]. Also, please note that in Ch. 2.1, we introduced the
Luttinger-Ward functional. Here, we switched to the Klein functional and provide a summary
of the differences in Appendix A.3. For an introduction to the DFT+U functional, please see
Appendix A.5.

5.1 Hubbard manifolds

As in DFT+U, the functional that we introduce has arbitrariness in the choice of the Hubbard
manifold. Indeed, the functional that we are going to design will not directly depend on the
Green’s function but on the projection of the Green’s function onto the Hubbard manifold,
G = PHGPH , where PH projects down to the manifold. Here, there is an exact analogy to the
density matrix for DFT+U, whereas the DFT+U energy functional does not depend on the full
density matrix but only on the occupations of the orbitals in the manifold.

Another important remark is that we want to maintain the rotational invariance of the func-
tional. As mentioned in Appendix A.5, this is crucial to ensure that the functional’s dependence
is on the manifold and not on the specific orbitals we use to span the manifold. The easiest
way to maintain such gauge is to build the functional as the trace over the degrees of freedom
of the manifold, such that it is invariant under any rotation within the manifold.

The fact that the functional can only be defined if one has identified a localized manifold in the
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Chapter 5. Dynamical Hubbard functional

material can be seen as a pro or a con, depending on the point of view. As also pointed out in
Appendix A.5, the a priori knowledge of a region of space in which short-range interactions will
be stronger than other parts of the material can be used to simplify the many-body problem.
Much in the spirit of DMFT, addressing the interactions in the Hubbard (correlated) region
differently from the rest of the (weakly correlated) material can improve the accuracy of the
prediction while keeping the cost of the overall procedure feasible.

On the contrary, the fact that there must be a localized sub-space limits the range of application
of the functional. For example, in Sec. 5.2 we see that the self-energy (of the functional) comes
from a localization of GW if we can discard long-range interactions between the manifold and
the rest of the material, i.e., if the (occupied) orbitals in the manifold are sufficiently localized.
In practice, like in DFT+U, we apply the dynamical Hubbard functional to solids that have
partially occupied d or f shells, which contribute mostly to the frontier bands 1. Indeed, as
mentioned in Appendix A.5, bands with d or f character are usually flatter compared to the
others, possibly indicating that the subspace spanned is correlated, and the electrons within it
are localized.

5.2 From GW to localized-GW

In this Section we want to derive a localized form for the GW self-energy starting from GW .
This approach has been adapted from Ref. [71] and is similar to Refs. [72, 73].

In Appendix A.4, we derived the functional form for the GW self-energy. From Eq. A.17, we
have

ßGW (r ,r
0,!) =°

Z
d!0 ei!00+

2ºi
G(r ,r

0,!+!0)W (r ,r
0,!0). (5.1)

Now, we aim to obtain a localized form of this self-energy. For simplicity, we limit the treatment
to a single Hubbard site I , and the extension to multiple Hubbard sites will be discussed at the
end.

Let’s start by rewriting with explicit space index the Lehmann representation of the Green’s
function (see Sec. 2.1),

G(r ,r
0,!) =

X
s

√s(r )√§
s (r

0)

!°≤s ± i 0+ , (5.2)

where√s(r ) are the Dyson orbitals, ≤s the charged excitations of the material, and±i 0+ provide
the correct time ordering of the propagator. On a localized basis around a site I (labelled here
with Greek letters like Æ, Ø, ∞) the self energy reads

≠
Æ

ØØß(!)
ØØØ

Æ
=°

X
s

Z
d!0

2ºi
ei!00+

Z
dr dr

0 √s(r )Æ§(r )W (r ,r
0,!)Ø(r

0)√§
s (r

0)

!+!0 °≤s ± i 0+ . (5.3)

1By frontier bands, we mean the bands around the Fermi surface or the gap of the material.
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5.2 From GW to localized-GW

Introducing the four-point notation for the screened potential [20]

W ss
ÆØ(!) =

≠
Æs

ØØW (!)
ØØsØ

Æ
=

Z
dr dr

0Æ§(r )√§
s (r

0)W (r ,r
0,!)√s(r )Ø(r

0), (5.4)

the self-energy can be rewritten as

≠
Æ

ØØß(!)
ØØØ

Æ
=°

X
s
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2ºi
ei!00+ W ss

ÆØ
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!+!0 °≤s ±0+ . (5.5)

Then, as in Refs. [71, 73, 72], we separate each Dyson orbital into an itinerant (delocalized)
component and a localized one,

ØØ√s
Æ
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ØØ∞
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Æ
. The screened potential is separated

in
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ÆØ
(!)+W sit∞

ÆØ
(!)

i
+

X

∞,∞0
W ∞∞0

ÆØ
(!), (5.7)

where, since we suppose the screened interaction to be short-range, we discard the first three
terms. Owing to the localization of the basis of the site, we can approximate the fourth term
as [73]:

W ∞∞0

ÆØ
(!) =

Z
dr dr

0Æ§(r )∞§(r
0)W (r ,r

0)∞0(r )Ø(r
0) º ±Æ∞0±∞ØW ØÆ

ÆØ
(!). (5.8)

Discarding the first three terms in Eq. (5.7), and using Eq. (5.8), we can write the localized form
of the self-energy from Eq. (5.5)

≠
Æ

ØØßGWLoc (!)
ØØØ

Æ
=°

X
s

Z
d!0

2ºi
ei!00+ hÆ|si

≠
s
ØØØ

Æ

!+!0 °≤s ± i 0+W ØÆ
ÆØ

(!). (5.9)

By specifying explicitly the site-orbital dependence, |Æi= |I ,mi and
ØØØ

Æ
=

ØØJ ,m0Æ, and focusing
on on-site contributions—off site contributions would give a +V -like term [71]—, the equation
above can be rewritten as

≠
I ,m

ØØßGWLoc (!)
ØØI ,m0Æ=°

X
s

Z
d!0

2ºi
ei!00+ hI ,m|si

≠
s
ØØI ,m0Æ

!+!0 °≤s ± i 0+ W Im0,Im
Im,Im0 (!). (5.10)

Similarly to the context of DFT+U of Refs. [73, 71], by introducing the average

U (!) = 1
(2l +1)2

X

m,m0
W Im0,Im

Im,Im0 (!), (5.11)

the above equation reads approximately:

≠
I ,m

ØØßGWLoc (!)
ØØI ,m0Æ=°

X
s

Z
d!0

2ºi
ei!00+ hI ,m|si

≠
s
ØØI ,m0Æ

!+!0 °≤s ± i 0+ U (!). (5.12)
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Chapter 5. Dynamical Hubbard functional

Finally summing over the s-index and recalling the Lehmann representation for the Green’s
function, for a single site the localized-GW self-energy reads

ßGWLoc =°
Z

d!0

2ºi
ei!00+

U (!0)G(!+!0), (5.13)

where Gmm0 =
≠

I ,m
ØØG

ØØI ,m0Æ or G = PHGPH , as in the rest of the Chapter.

5.3 Functional for Localized GW

In this section, we introduce the localized-GW functional designed in this thesis. We focus on
building a© functional that yields the localized-GW self-energy derived in Sec. 5.2.

As explained in Sec. 2.3 and Appendix A.4, the© functional is such that

±©

±G(!)
= 2ºiß(!). (5.14)

If we partition the space into a Hubbard manifold and an orthogonal remainder, in full
generality, the Green’s function operator can be written as

G =
√

PHGPH 0

0 PRGPR

!
. (5.15)

Due to the orthogonality between the two spaces, any variation over G of a functional f is split
into

± f
±G(!)

= PH
± f
±G

PH +PR
± f

± (PRGPR )
PR , (5.16)

where we have used the definition of G = PHGPH in agreement with the rest of the chapter.
Thus, a functional© that depends only on G yields a self-energy which is nonzero only in the
manifold,

±©[G]
±G(!)

= PHßPH . (5.17)

From the argument above and a direct derivation, the functional

©̃GWLoc [G] =°1
2

Z
d!
2ºi

d!0

2ºi
ei!0+

ei!00+
U (!0)Tr

©
G(!+!0)G(!)

™
(5.18)

yields the localized-GW self-energy of Eq. 5.13 within the manifold and zero outside.

Notably, the functional ©̃GWLoc is particle-conserving since it reduces to GW0 (see Appendix A.4
for details) within the Hubbard manifold and is zero outside. Furthermore, the continuity
equation derived in Sec. 2.2 is a local property.

Though true, if we want to use this functional as a corrective term for semi-local DFT, we face
a double counting problem. Both the approximate DFT functional and the localized-GW
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5.4 Adjusting the double counting

self-energy model the electron-electron interaction in the Hubbard manifold. This is similar
to, e.g., DFT+U, as shown in Appendix A.5. Thus, the strategy to estimate a double counting
term is to make a mean-field approximation to the functional we have designed, as we did in
Appendix A.5 for the Hubbard functional.

To make the functional static, we may consider a static screening U (!) =Uc . By performing
the integrations,©̃GWLoc with a static screening reduces to:

©̃GWLoc [G] º°Uc

2
Tr

©
n

2™, (5.19)

where, as in Appendix A.5, n is the projection of the density matrix on the Hubbard manifold,
i.e., n =

R d!
2ºi ei!00+

G(!). By direct comparison to the definition of the double-counting for the
DFT+U functional from Equations (A.21) and (A.22), the double counting for the localized-GW
functional is:

E dc
GWLoc

º Uc

2
Trn. (5.20)

Writing the above term as the integral of the Green’s function of the manifold, the full localized-
GW functional reads

©GWLoc [G] = 1
2

Z
d!
2ºi

d!0

2ºi
ei!0+

ei!00+
U (!0)Tr

©
G(!+!0) [±(!° c)I °G(!)]

™
, (5.21)

where c is the constant that adjusts the double counting.

Please note that this functional:

(i) is rotationally invariant,

(ii) with a static screening it simplifies to the DFT+U functional of Dudarev, et al., of Ref. [33],

(iii) yields a localized-GW self-energy plus a double counting term.

For all these reasons we call©GWLoc a dynamical Hubbard functional.

The full derivative of the dynamical Hubbard functional reads:

ßc
GWLoc

(!) =°
Z

d!0

2ºi
ei!00+

U (!0)G(!+!0)+ 1
2

U (c)I , (5.22)

where U (c) helps to adjust the double counting, and we have put a label c to distinguish it
from ßGWLoc of Eq. (5.13), which is the same but without the double counting term.

5.4 Adjusting the double counting

In this section, we provide a final expression for the Dynamical Hubbard functional and its
self-energy,©GWLoc and ßGWLoc , by fixing the gauge for the double counting.
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Chapter 5. Dynamical Hubbard functional

As stated in Sec. 5.3, we can estimate the double counting by calculating the average of the
mean-field limit of the functional, either on©GWLoc or on ßGWLoc . Since it is a GW approxima-
tion on the manifold, as can be verified by inspection from Eq. (5.12) the mean-field limit for
ßGWLoc (!), defined as !!1, is the Fock term,

ßGWLoc (!) °°°°!
!!1

nU1. (5.23)

Then, the average, ≠
ßGWLoc

Æ
º hniU1, (5.24)

would yield an approximately mean-field double counting with U1 as the U coupling.

To see this, we perform the limit c !1 in the expression for©GWLoc of Eq. (5.21):

©̄GWLoc =©c!1
GWLoc

= U1
2

Trn + ©̃GWLoc . (5.25)

Calling n = Trn, in agreement with Appendix A.5, and adding and subtracting an n2 term, the
equation above becomes

©̄GWLoc =
µ

U1
2

n2 + ©̃GWLoc

∂
°Edc, (5.26)

with Edc = U1
2 n(n ° 1). Thus, as mentioned in Appendix A.5, if we replace the 1 with the

average hni, we obtain the around mean-field double counting.

Indeed, the derivative of the functional ©̄AMF
GWLoc

where we have used an around mean field
double counting, E AMF

dc , yields the self-energy:2

ßGWLoc (!)+U1hni I . (5.27)

In this thesis, we have chosen the fully localized limit double counting. Nevertheless, we
have understood that a good choice to fix the c gauge of©GWLoc is c !1 or U (c) =U1. This
amounts to a double counting of Fock-like interactions, as seen from the fully localized limit
perspective.

Finally, the functional that we use in this thesis is ©̄GWLoc =©c!1
GWLoc

as defined in Eq. (5.25) and
its self-energy,

ß̄GWLoc (!) =°
Z

d!0

2ºi
ei!00+

U (!0)G(!+!0)+ 1
2

U1I . (5.28)

2taking into account the 1/2 difference in the derivative wrt the fully localized limit, as in the note in Ap-
pendix A.5.
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6 AIM-SOP for homogeneous systems in
GW

In this chapter, we use the algorithmic inversion method on the sum over poles (AIM-SOP) to
compute spectroscopic and thermodynamic quantities of the homogeneous electron gas at
the G0W0 level for several densities of the gas.

Drawing a parallelism with standard implementations of semi-local DFT for materials science,
where numerically accurate spectral and thermodynamic quantities are computed, the funda-
mental goal of the AIM-SOP approach is to provide a similar framework in a Green’s function
(dynamical) formalism.

A test case example of how the AIM-SOP framework can be shaped and applied to the study of
the homogeneous electron gas is the scope of the next sections, also highlighting the difference
from the other approaches in the field. We stress that the AIM-SOP framework is designed to
be applied to any type of Green’s function formalism and is not limited to G0W0 calculations.
Here, we do not make use of the functional developed in Ch. 5, which is instead used for the
calculations on a real crystal in Ch. 7.

As already stated in the thesis, the electron gas is a simplified case study for the AIM-SOP since
all one-particle (dynamical) operators are diagonal on the plane-wave basis, resulting in a
treatment of scalar functions over frequency instead of operators.

Since we calculate propagators on the real axis, we can easily access spectral (frequency-
dependent) properties (see Sec. 6.4.1). The calculation of frequency-integrated ground-state
quantities, such as occupation numbers, total energies, and thermodynamic quantities in
general, can be obtained directly from the SOP representation of the spectral quantities com-
puted in the procedure (see Sec. 6.4.2). While thermodynamic properties are usually obtained
via additional calculations on the imaginary axis [74, 75, 76], here spectral properties and inte-
grated quantities are obtained simultaneously using the SOP representation of propagators
computed on the real axis (see Sec. 6.1).

Although some quantities computed using the free-propagator G0 have known analytical
expressions, such as the irreducible polarizability P0 expressed via the Lindhard function [77,
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Chapter 6. AIM-SOP for homogeneous systems in GW

43], here we explicitly recompute all the quantities needed to evaluate the GW self-energy,
making the treatment suitable also for self-consistent calculations. Therefore, in the following,
the only assumption we make is to consider the Green’s function as represented on SOP.

The content of this Chapter is mainly taken from my article [34].

6.1 Computing spectral and thermodynamic quantities jointly

We would like to point out that due to the complexity of dealing with dynamical quanti-
ties, different methodological approaches have been developed for calculating spectral and
thermodynamic quantities (such as energies, number of particles, and chemical potentials).
Real-axis calculations are commonly used to compute frequency-dependent spectral proper-
ties [78, 79, 80], while imaginary-axis formalism is typically employed for computing frequency-
integrated thermodynamic properties [76, 81, 30, 82, 83, 84].

The difference between the two approaches originates from the analytical structure of the
Green’s function, specifically its branch cuts on the real axis [53]. This results in the spectral
function varying strongly for real frequencies and making its integration difficult. Thus, real-
axis approaches are often limited to predicting spectral properties. Conversely, sampling the
Green’s function along the imaginary axis (i.e., away from its poles) is a good way to obtain fast-
converging frequency integrals, but has drawbacks when attempting to obtain the function on
the real axis by analytic continuation.

In this context, methods for performing analytic continuation range from the use of Padè
approximants [74, 85, 84, 62] to maximum-entropy methods [86, 87], usually with a stochastic
sampling of the Green’s function in the latter case.

As an example, in a recent work on the homogeneous electron gas [43], Kutepov et al. [85] man-
aged to obtain a precise quasi-particle band using Padè approximants (although with larger
error bars on the position of satellites). Additionally, in a series of papers [56, 55, 88, 89], von
Barth and coworkers have proposed a formalism that can handlespectra and thermodynamics
together for the homogeneous electron gas by modeling the spectral function in frequency-
momentum space using Gaussians with k-parametrized centers (quasi-particle energies),
broadening (weights), and satellites. However, due to its model nature, the approach does
not easily offer the flexibility to target realistic systems or extend it to embedding problems in
general.

As mentioned, in this chapter, we use the algorithmic-inversion method on sum over poles
to address the simultaneous calculation of accurate spectral and thermodynamic quantities.
Within AIM-SOP, dynamical (frequency-dependent) self-energies are represented as a sum
over poles (see Ch. 3), and the exact solution of the Dyson equation at all frequencies is
found via a matrix diagonalization (see Ch. 4). The transformation of a frequency-dependent
propagator into a SOP via a representation of its spectral function on a target basis set is
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6.2 HEG propagators on the real frequency axis

Figure 6.1: Flow chart representing different strategies for the calculation of the self-energy
given a Green’s function G on SOP as input for the heg_sgm.x code. The strategy used in this
article is highlighted with green lines.

greatly improved with the use of n-th order generalized Lorentzians as a basis with improved
decay properties (Sec. 3.3). The SOP form allows one to compute convolutions and moments
of propagators analytically for the calculation of spectral and thermodynamic properties
(Sec. B.2). Due to the fulfillment of all sum rules implied by the Dyson equation (Sec. 4.2),
we show that the AIM-SOP method is crucial for obtaining accurate frequency-integrated
quantities in a real-axis (spectrally oriented) formalism. We consider the paradigmatic case
of the homogeneous electron gas (HEG), treated at the G0W0 level for rs ranging from 1 to
10 [90, 91, 92].

6.2 HEG propagators on the real frequency axis

In order to solve a one-shot G0W0 cycle for the spin-unpolarized HEG, we first need to compute
the irreducible polarizability at the independent-particle (or RPA) level, according to the
integral (see also Appendix A.4 for an introduction to GW ):

P (q,!) = 2
Z

dk
(2º)3

Z
d!0

2ºi
G(

ØØk+q
ØØ,!+!0)G(k,!0), (6.1)

where k = |k| and q = |q| are the moduli of the electron and transferred quasi-momenta,
respectively.

To compute Eq. (6.1), the frequency integral (convolution) is performed analytically according
to Eq. (3.12). Then, we integrate numerically in spherical coordinates by performing the
variable change x =

ØØk+q
ØØ on the azimuthal angle of k:

P (q,!) = 2
q(2º)2

Z+1

0
dk k

Z|k+q|

|k°q|
d x x

Z
d!0

2ºi
G(x,!+!0)G(k,!0), (6.2)

which allows for the pre-calculation of the analytical convolutions on the two-dimensional
(x,k) grid, instead of on the three-dimensional (k, q,µ) space. Exploiting the parity of P (!),
it is also possible to limit the k integration to the occupied states (see Appendix C.2). The
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Chapter 6. AIM-SOP for homogeneous systems in GW

numerical integration on the momentum is performed using the trapezoidal rule, which,
despite its simplicity, ensures exponential convergence for decaying functions [93].

In order to have a SOP representation for the screened potential W , we transform the po-
larizability calculated on a frequency grid (at a fixed momentum q) to a SOP using a NNLS
fitting, following the procedureoutlined in Sec. 3.3. We then solve the Dyson equation using
the algorithmic inversion for the polarizability (see Sec. 4.2) to obtain a SOP for W and use it
for the GW integral.

An alternative approach would be to solve the Dyson equation on a grid (which, due to homo-
geneity, is an algebraic inversion) and then transform W to a SOP representation. However,
even assuming an exact interpolation for the SOP of W on the calculated frequencies (where
the Dyson equation is solved on th grid), this SOP would suffer from not having solved the
Dyson equation for all other frequencies. Instead, the SOP obtained from the algorithmic
inversion provides an exact solution of the Dyson equation at all frequencies (see Ch. 4). Thus,
the sum rules implied by the Dyson equation (e.g., moments of the spectral function) are all
obeyed by the SOP obtained from the algorithmic inversion, being the exact solution at all
frequencies. Conversely, this is not true for the grid inversion where the solution is exact only
for isolated frequencies.

Concerning the self-energy integral

ß(k,!) =ßx (k)+ 1
(2º)3

Z
dq

Z+1

°1

d!0

2ºi
G(

ØØk+q
ØØ,!+!0)Wcorr(q,!0), (6.3)

where Wcorr =W ° vc , we can still use Eq. (3.12) since we have the SOP representation of W .
Again, in Eq. (6.3), we perform the x =

ØØk+q
ØØ change of variable, obtaining

ß(k,!) =ßx (k)+ 1
k(2º)2

Z+1

0
d q q

Z|k+q|

|k°q|
d x

Z
d!0

2ºi
G(x,!+!0)Wcorr(q,!0), (6.4)

which allows for fewer convolutions (as for the polarizability integral) and uses trapezoidal
weights as in Eq. (6.2) for the momentum integration. The solution of the Dyson equation
for the Green’s function using the algorithmic inversion, and the calculation of frequency-
integrated (thermodynamic) quantities, is discussed in the next section.

In Fig. 6.1, we show the overall flow chart that describes the process of going from the knowl-
edge of the initial Green’s function to the calculation of the corresponding self-energy (for
the HEG in the GW approximation) as implemented in the heg_sgm.x program of the AGWX
suite [94], using the SOP approach. In the red path, the Dyson equations are solved on grids,
while in the green path, we highlight the protocol followed in the present work. The crucial
difference between the two approaches is the use of the algorithmic-inversion method to solve
the Dyson equation exactly
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6.3 Frequency-integrated quantities and thermodynamics

Figure 6.2: Flow chart representing different strategies for the calculation of the total-energy
given a self-energy ß, or a spectral function A, on a frequency grid as input for the heg_sgm.x
code. The strategy used in this article is highlighted with green lines.

6.3 Frequency-integrated quantities and thermodynamics

Having obtained the self-energy on a frequency grid following the procedure described in
Sec. 6.2, we can evaluate the Green’s function together with some related frequency-integrated
quantities. As mentioned, the SOP approach plays a central role here, enabling the possibility
of performing analytical integrals for the moments of G , such as those involved in the Galitskii-
Migdal expression for the total energy [see Eq. (6.5) below], and thus obtaining accurate
thermodynamic (frequency-integrated) quantities. Moreover, the use of the algorithmic-
inversion method allows for the exact solution of the Dyson equation for the Green’s function
at all frequencies. Indeed, the conservation of all sum rules (implied by the Dyson equation,
see Sec. 3.1) guaranteed by the AIM-SOP is fundamental when calculating the occupied
moments of the spectral function.

As an example, the normalization condition of the spectral function is automatically satisfied
when G on SOP is obtained using the algorithmic inversion, and this allows us to avoid fitting
constraints that would be required if a grid inversion were used. Moreover, the exact solution
of the Dyson equation provided by the algorithmic inversion yields an equality between the
renormalization factor Z calculated via the derivative of the self-energy at k = k f and != ≤ f ,
and the value obtained using the discontinuity of the occupation factor nk at k = k f , given by
the moment of the occupied spectral function.

In order to use the AIM-SOP to obtain G represented as SOP, we obtain the SOP representation
of the self-energy by performing a NNLS fitting of Imß(!) (see Sec. 3.3). Then, to compute
the total energy from the knowledge of the Green’s function G , we use the Galitski-Migdal
expression (see Appendix A.2 for details),

E
V

=
Z

dk
(2º)3

∑Zµ

°1
d! !A(k,!)+ k2

2

Zµ

°1
d!A(k,!)

∏

=
Z

dk
(2º)3

∑
h≤ki+

k2

2
nk

∏
, (6.5)

in Hartree units. In this expression, the frequency integrals are performed using the SOP for G ,
and exploiting Eq. (3.13) with m = 1 and m = 0 for the first and second terms, respectively. Here,
nk is the k-resolved occupation function, which sums to the total number of particles when
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Chapter 6. AIM-SOP for homogeneous systems in GW

integrated over momentum, and h≤ki is the occupied band energy, i.e., the first momentum of
the occupied spectral function.

For both m = 0 and m = 1 moments, the equality between the moments of the Green’s function
and the moments of the occupied spectral function, Eq. (3.13) and Eq. (B.5), is assured by
having used the algorithmic inversion when obtaining the SOP for the Green’s function. Indeed,
the knowledge of the self-energy on SOP and the use of the algorithmic inversion for solving
exactly the Dyson equation ensures that the spectral function

A = 1
º

|Imß(!)|
[!°≤0 °Reß(!)]2 + [Imß(!)]2 , (6.6)

decays at least as Imß
!2 = o(!°3), thereby making the first two occupied moments (see Sec. 3.4)

converge. Additionally, even if we do not use the algorithmic inversion method to get G from
ß, the use of 2nd-order Lorentzians from the representation of the spectral function A provides
the identity between Eq. (3.13) and Eq. (B.5), as the zeroth and first moments are well-defined
(see Sec. 3.4 for further reference).

Similarly to the discussion in Sec. 6.2, the SOP approach combined with the algorithmic
inversion allows one to follow the workflow highlighted by the green path in Fig. 6.2. The
results presented in Sec. 6.4 are obtained using an implementation of the above approach in
the heg_sgm.x program of the AGWX suite [94].

6.4 Results at rs = 4

In this section, we discuss the results obtained by applying the SOP approach to the one-shot
G0W0 calculation in the HEG. First, we extensively discuss the rs = 4 case, which is also one of
the most studied in the literature. Then, in Sec. 6.5, we provide results for densities ranging
from rs = 1 to rs = 10.

6.4.1 Spectral propagators on the real axis

We start by considering the screened potential W (q,!) computed at the G0 level. In Fig. 6.3, we
compare the imaginary part of W (divided by º and taken without sign), calculated following
the procedure described in Sec. 6.3 (right panel), with its analytic expressions at zero broaden-
ing (±= 0, left panel) and at finite Lorentzian broadening (±= 10°5 ≤ f , center panel). While for
±= 0 the analytic expression for the polarizability (and consequently for W ) is well-known [77],
at finite ±, the derivation of an analytic time-ordered form for W is given in Sec. C.1 of the
Appendix. Notice that at ±= 0, the plasmonic band for small q-vectors (dashed line) has to be
calculated numerically since it comes from a set of delta functions [95]. The computation of
the plasmonic band of Fig. 6.3 for q/k f < 1 is obtained by numerically finding the roots of the
plasmonic equation (e.g., Eq. 15.11 of Ref. [77]), using the analytic form for the polarizability
at zero broadening.
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6.4 Results at rs = 4

Figure 6.3: Imaginary part (divided by º and taken without sign) of the screened potential
of the HEG at rs = 4 in a one-shot G0W0 calculation. Momenta are in units of the Fermi
momentum and energies in units of the plasma frequency of the gas at the specified density.
The color map is logarithmic, and values < 10°6 and > 103 are mapped to 10°6 and 103,
respectively. Left panel: analytic result at zero broadening (±= 0). The functional form for the
color plot is taken from Ref. [77]. The plasmonic band (dashed line) is calculated numerically,
see Sec. 6.4.1 for details. Central panel: analytic result at finite (Lorentzian) broadening
(±= 10°5 ≤ f ), see Sec. C.1 of the Appendix for details. Right panel: numerical results obtained
using SOP with 2nd order Lorentzians (±= 0.000741 ≤ f ), following the flow chart of Fig. 6.1,
and then representing it on grid.

Overall, based on the plot comparison, we can qualitatively infer that the SOP approach,
along with its numerical implementation, is effectively computing and representing the
dynamical screened potential across a range of different values of q . The plot also shows that
the numerically calculated W using second-order Lorentzians (± = 0.000741 ≤ f ) is sharper
than the analytic form with a simple Lorentzian broadening (±= 10°5 ≤ f ), despite the latter
having a smaller ±. This further emphasizes that the use of second-order Lorentzians for G0

can be viewed as a convergence accelerator to the ±! 0 limit (see Sec. 3.2).

Next, we examine the numerical procedures for the self-energy by directly looking at the G0W0

spectral function in Fig. 6.4. This is obtained by evaluating Eq. (6.4), which represents the self-
energy on SOP with 2nd order Lorentzians, using the algorithmic inversion for the self-energy,
and then evaluating the Green’s function on a frequency grid. Focusing on the lower satellite
as well as the quasi-particle band, we can see that Fig. 6.4 compares well with Refs. [95, 83].
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Chapter 6. AIM-SOP for homogeneous systems in GW

Figure 6.4: Spectral function of the HEG at rs = 4 from a G0W0 calculation. The Fermi energy

is ≤ f =
k2

f

2me
with k f the Fermi momentum. µ= ≤ f (1°0.0545) is the chemical potential. The

scale of the color-map is logarithmic.

Note that, unlike Ref. [83], we use a logarithmic scale to represent the intensity of the spectral
function to highlight its structure. The plasmaron peak [95] is very visible for small momenta
where the quasi-particle band broadens, while the satellite band in the occupied-frequency
range (!<µ) is sharper. As k approaches k f , the plasmaron broadens, and the quasi-particle
band becomes more peaked. At k = k f , the spectral function presents the typical metallic
divergence along the quasi-particle band, and occupied and empty satellites are almost of the
same weight (see also Fig. 6.6 for details of the spectral functions at selected k), in agreement
with Ref. [56]. For k > k f , satellites coming from empty states (!>µ) become dominant along
with the quasi-particle band.

6.4.2 Frequency integrated quantities and thermodynamics

We now study the convergence and stability of the total energies. Following the prescription
of Sec. 6.3, we use the spectral function on SOP obtained in Sec. 6.4.1, Eq. (3.13), to get
analytically the occupation number nk and the occupied-band energy ≤k (see Sec. 6.3). Finally,
we numerically integrate the momenta of Eq. (6.5) to obtain the total energy.

To perform the convergence study on the total energy, we follow the approach described in
Appendix C.4, which consists of converging all parameters for the calculation separately. Being
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6.4 Results at rs = 4

Figure 6.5: Selected frequency integrated quantities from a G0W0 calculation of the HEG at
rs = 4. Panel (a): the occupation number in arbitrary units as a function of the momentum
k together with the renormalization factor (discontinuity of nk ). Panel (b): the occupied
band energy h≤ki as a function of k (see Sec. 6.3 for details). Panel (c): the Galitzki-Migdal
total-energy resolved over k-contributions ek , according to the rhs of Eq. (6.5) as function of
the momentum k. k f and ≤ f are the Fermi momentum and energy respectively.

the HEG a metal, the use of the algorithmic-inversion method to obtain a spectral function
that obeys all sum rules (implied by the Dyson equation, see Sec. 4.2 for details), including
the normalization condition for the spectral function, is crucial for obtaining well-converged
results. Indeed, the Luttinger discontinuity of nk makes the value of the total energy from the
Galitzki-Migdal very sensitive to the converging parameters.

In Fig. C.3, we show the convergence study for the correlation energy per particle (total
energy minus Fock-exchange): the convergence value for rs = 4 is 0.0381± 0.0003 Ha, in
agreement with Refs. [76] (with a difference of 0.0003 Ha), where calculations were done
along the imaginary axis. In panel (a) of Fig. 6.5, we plot nk , and in panel (b), h≤ki (as defined
in Sec. 6.3). The occupation number nk presents a sharp Luttinger discontinuity, which
indicates that the broadening used in Eq. (6.4) is well-controlled and does not spoil the quality
of the results. The renormalization factor in panel (a), Z = 0.6305, (calculated using the
frequency derivative SOP self-energy at k = k f and != ≤ f , see Sec. 6.3) compares well with
Refs. [90, 56, 88, 96] (where we extrapolate Z from graphs when necessary).

In panel (c) of Fig. 6.5, we plot the total energy resolved over k-contributions ek [rhs of Eq. (6.5)].
As previously mentioned, due to the presence of the Luttinger discontinuity, this function
is sharp and thus difficult to integrate, in contrast to, for example, the RPA-Klein-energy
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Chapter 6. AIM-SOP for homogeneous systems in GW

Figure 6.6: Spectral functions of the HEG at selected k points (indicated on top) for rs = 2 and
rs = 4. Energies are in units of ≤ f and momenta of k f .

Figure 6.7: Spectral functions of the HEG at several densities. At the top rs specifies the density.

The Fermi energy is ≤ f =
~2k2

f

2me
with k f the Fermi momentum. µ is the chemical potential. The

color map is logarithmic.

functional, which is expected to be smoother [29]. Additionally, we made attempts to obtain
the total energy via a frequency-grid (brute-force) strategy to perform the integral of Eq. (6.5),
but we found the grid-spacing parameter to be critical. We accounted for this numerical
instability as being due to the non-smooth structure of the spectral function, especially near
the chemical potential at k f , where it has a discontinuity. Nevertheless, in Refs. [97, 98], the
authors obtain an accurate frequency integration of the GM formula on the real axis, with
results in very good agreement with this work and with the literature already cited.
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6.5 G0W0 for a broad range of HEG densities

Figure 6.8: Occupation factors in arbitrary units for several densities (rs from 1 to 10). k f is
the Fermi momentum. In the inset we display the band-width b.w. in units of ≤ f , the effective
mass m§

e in units of 2me , the plasmaron frequency !pp in units of ≤ f , and the renormalization
factor in arbitrary units at each density.

HEG: G0W0 Correlation Energies |Ecorr|
rs This work Ref. [89] Ref. [76]

1 0.0749 (±0.0015) 0.0722 0.0690
2 0.0545 (±0.0003) 0.0539 0.0530
3 0.0451 (±0.0008) 0.0448 -
4 0.0381 (±0.0003) 0.0382 0.0378
5 0.0333 (±0.0002) 0.0355 0.0331
6 0.0297 (±0.0002) - -
7 0.0268 (±0.0002) - -
8 0.0245 (±0.0002) - -
9 0.0226 (±0.0002) - -

10 0.0210 (±0.0002) - 0.0207

Table 6.1: Correlation energies as function of rs for the HEG at the G0W0 level. Energies are in
Hartree units.

6.5 G0W0 for a broad range of HEG densities

In this section, we report results for the HEG with rs ranging from 1 to 10 studied at the G0W0

level, following the same approach used for rs = 4. In Fig. 6.6, we show the computed data
for the spectral function obtained with the AIM-SOP approach for specific momenta k and
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∞ Ø1 Ø2

°0.1929 1.1182 0.4609

Covariance matrix of the fit

0.00022 °0.00277 °0.00011
0.03497 0.00123

0.00014

Table 6.2: Parameters of the correlation energy fit in Hartree, Eq. (6.7) (same functional form
as in [47]), using the data of Table 6.1, and the covariance matrix of the fit. The fitted function
is plotted in Fig. 6.9.

Figure 6.9: Correlation energy in Hartree units for several densities within the G0W0 approxi-
mation in the HEG. In green we show the results found in this work (see Sec. 6.5) compared
with those found in [89] in blue, and with [76] in orange. In green we plot the correlation energy
fit of Eq. (6.7) (same functional form as in [47]) on the present (green) data. For reference, in
dashed grey we add also the Quantum Monte Carlo data obtained by Ceperley and Alder [46]
in the fit made by Perdew and Zunger [47].

densities (
:::::::
rs = 2,4). For k = 0, we take the actual grid point k = 0.0028k f since the exact zero

point is forbidden in our implementation of Eq. (6.4). At the available momenta k/k f = 0.5, 1.0,
and 1.5, and density rs = 4, the spectral function compares qualitatively well with Refs. [56, 88].

In Fig. 6.7, we show the computed data for the spectral function obtained with the AIM-SOP
approach. In the chosen units (≤ f for the energy and k f for the momentum), the spectral
function for increasing rs shows an increase in the separation between the quasi-particle band
and the satellite occupied and empty bands. Indeed, in these units, rs controls the interaction
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strength – see Eq. (3.24) of Ref. [77] – with the limits of the non-interacting gas obtained for
rs ! 0, and the strongly interacting gas corresponding to rs !1. Accordingly, the plasmaron
peak of the satellite band at small momenta is weakened for smaller rs . The same behavior
can be observed in the occupation factors of Fig. 6.8 for the different densities. For rs ! 0, the
HEG approaches the non-interacting limit, and the occupation number drops from 1 to 0 at
k f . Going towards rs = 10, the jump becomes smaller since the quasi-particle is reduced due
to the more evident satellite bands, as can be seen in Fig. 6.7.

The resulting renormalization factors Z are displayed in the last column of the inset of Fig. 6.8
and compare well with the literature [96]. In addition, in the same inset, we show the band-
width (b.w.), effective mass (me ), and plasmaron frequency (!pp ) at each density, all in units
of ≤ f . We calculate the bandwidth, effective mass, and plasmaron frequency from the spectral
function on the (k,!) grid at each density, using a simple algorithm to find local maxima of
the function at fixed momentum. At k = 0, we start the local optimization from °10 ≤ f to find
the plasmaron peak frequency, !pp . The quasi-particle band is obtained by collecting opti-
mization results from the different momenta k, each started at µ. Then, a symmetric parabola
(for k < 0.6k f ) is fitted to estimate the curvature (effective mass, m§

e ) and the y-intercept
(bandwidth, b.w.).

In Table 6.1, we report the corresponding total energies computed at the different densities,
together with some available results in the literature. Moreover, results not explicitly reported
in Table 6.1, e.g., from Refs. [97, 98], are overall in very good agreement with

:::::
those computed

in this work. Since calculations in Ref. [76] were done on the imaginary axis, we consider
them to be the most accurate for comparison. We refer to Sec. C.3 of the Appendix for the
convergence studies of total energies for different densities. We find the largest discrepancy
(0.0059 Ha) with respect to the data of Ref. [76] at rs = 1. This can be rationalized by noting, e.g.,
that nk is a steeper function, thereby enhancing the numerical issues of the Galitzki-Migdal
expression discussed in Sec. 6.3. To deepen the understanding of this numerical discrepancy,
aside the convergence study of Fig. C.2 provided in the Appendix, we performed an additional
calculation increasing the refinement parameter ¢ by 20%, aiming at increasing the accuracy
in the integral grids, to target the steeper character of that density. The result, 0.0736 Ha
(against 0.0749 Ha of Tab. 6.1), is acceptable, considering the error of 0.0015 Ha reported in
the table. Most importantly, we stress that, in contrast to Ref. [76], our procedure provides not
only accurate frequency-integrated quantities (e.g., the total energy) but also precise spectral
properties on the real axis (key quantities for spectroscopy).

In Fig. 6.9, we plot the correlation energy of Table 6.1 as a function of rs , including the Perdew-
Zunger (PZ) fit of the Quantum Monte Carlo (QMC) Ceperley-Alder data as a reference [47, 46].
We also use the same functional form as PZ to fit our data, providing ∞, Ø1, and Ø2 for the
fitting function of the correlation energy in the HEG (in Hartree) in Table 6.2:

Ecorr(rs) = ∞

1+Ø1
p

rs +Ø2rs
, (6.7)
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Chapter 6. AIM-SOP for homogeneous systems in GW

together with the covariance matrix of the fit. In Fig. 6.9, we plot the result of the fit as a green
line. Given the fit accuracy in Table 6.2, this may be considered an effective parametrization of
the G0W0 correlation energy of the electron gas.

6.6 Summary of the work on the HEG

In order to provide a working example of the AIM-SOP approach, we apply it to the paradig-
matic case of many-body perturbation theory at the G0W0 level for the HEG at several densities
(rs from 1 to 10). With AIM-SOP, we are able to obtain accurate spectra and precise frequency-
integrated quantities (such as occupation numbers and total energies). At the available
densities, we find very good agreement with Refs. [95, 83] for the spectral function. In addition,
we provide an in-depth study of the stability and convergence of our results for the total energy,
finding quantitative agreement with Ref. [76] for the available rs , where the calculations were
performed on the imaginary axis.

Although in this work, we study a homogeneous system as a test case, the AIM-SOP approach
aims to treat realistic non-homogeneous systems in the more general framework of dynamical
embedding theories. In Ch. 7 we apply the AIM-SOP approach to a real crystal, thus exploiting
the generalization to the operatorial case of the algorithmic-inversion method of Sec. 4.3.
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7 AIM-SOP for crystals using dynamical
Hubbard

In this chapter, we combine the algorithmic-inversion method for the sum over poles and the
dynamical Hubbard functional, both developed in this thesis, to compute accurate spectro-
scopic and thermodynamic quantities of materials.

We make use of the localized-GW Klein functional, introduced in Ch. 5, which generalizes
the DFT+U energy functional of Dudarev et al. [33] to host a dynamical screened potential
U (!), rather than a static U . The resulting Dyson equation is treated as a nonlinear eigenvalue
problem and is solved via an exact mapping to a non-interacting system, exploiting the non-
homogeneous version of the algorithmic inversion method on the sum-over-poles for the case
of real crystals (see Ch. 4 for details). Within this approach, the single-particle Green’s function,
along with the Dyson orbitals and excitation energies of the system, are obtained and used
to calculate accurate spectral and thermodynamic properties of the material. Owing to the
exactness of the solution of the Dyson equation and the SOP representation, the framework
does not suffer from problems with avoided crossing in the quasi-particle solution of the
Dyson equation [70] or numerical difficulties when integrating the Green’s function to obtain
thermodynamic quantities [34].

We develop an in-house PYTHON code to implement the exchange-correlation part and the
resulting self-energy,©GWLoc and ßGWLoc [Eqs. (5.25) and (5.28)].1 We solve the resulting Dyson
equation using the algorithmic-inversion method.

We apply the framework to the paradigmatic case study of SrVO3, finding results in very good
agreement with experiments and state-of-the-art methods for the spectrum, bulk modulus,
and phonons, at a greatly reduced computational cost compared to established approaches.

The contents of this chapter are based on my article in Ref. [35].

1For simplicity of notation, we lose the upper bar for the quantities©GWLoc and ßGWLoc , even though they refer
to having fixed the gauge for the double counting with the prescription of Sec. 5.4, i.e., c !1.
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Chapter 7. AIM-SOP for crystals using dynamical Hubbard

Figure 7.1: Real and imaginary parts of the average screened interaction U (!) on the localized
t2g+eg manifold of SrVO3, calculated on a frequency grid using the random-phase approx-
imation (black line). The solid green line shows its SOP representation computed with the
algorithm in Sec. 3.3.2. Frequencies are limited to 20 eV with respect to Fig. 3.2.

7.1 Dynamical screening U (!) from RPA

In this Section we compare the choice of an RPA screening with another from c-RPA.

Given the localized-GW nature of the functional, we calculate the screening U (!) in the RPA
approximation. Although appealing, using the c-RPA approximation to calculate the screening
U (!), as in GW +DMFT [99], is not a perfect fit in the dynamical Hubbard framework. In
GW +EDMFT, the screened potential is partitioned into short and long-range, and both are
calculated separately. Since the solver already takes into account the excitations inside the
localized manifold, the additional screening that one should apply must come from the other
electrons, thus implying a c-RPA-type screening that must be calculated for the GW region of
the material. In the dynamical Hubbard, we calculate the screening only once, and this has
to take into account all the excitations of the material. In particular, the excitations within
the manifold are crucial since they depend on the low-energy plasmons that are the origin of
interesting physics in correlated metals like SrVO3 (see also Sec. 7.5.1).

In Fig. 7.1, we show the RPA screening for SrVO3 localized on the t2g+eg manifold (the d-
orbitals of the vanadium), U (!). The low-energy plasmon at ' 4 eV comes from excitations
within the manifold, while the big peak (in the imaginary part) at ' 10 eV describes a major
(collective) plasmon for the material. As mentioned earlier, the c-RPA, where one has removed
the t2g+eg excitations, would look similar to Fig. 7.1, but without the 4 eV peak in the imaginary
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part.

The value of the unscreened potential on the localized orbitals averages to U1 ª 18 eV, as can
be seen from the asymptotic behavior of the real part of U (!) in the right panel of Fig. 3.2.

7.2 Spectral quantities using AIM-SOP for dynamical Hubbard

In this section, we provide a detailed explanation of the calculation of the self-energy ßGWLoc

as a SOP expression, as well as the solution of the Dyson equation to obtain G using the
algorithmic-inversion method.

Since the framework is designed for self-consistent calculations, we can assume that we are
at any level of the self-consistent cycle with Green’s function Gs , and evaluate ßGWLoc [Gs].
Without loss of generality, we can use the SOP form for Gs in the framework. At any level of
self-consistency, the SOP representation of Gs is known: starting the cycle with the Kohn and
Sham Green’s function GKS, we can calculate the SOP form of the self-energy as shown below. 2

We can then solve the resulting Dyson equation using the algorithmic-inversion method to
obtain a SOP for G . This cycle can be repeated until self-consistency is achieved.

From Eq. (5.28), the self-energy ßGWLoc is given by:

ßGWLoc [Gs](!) =°
Z

d!0

2ºi
ei!00+

U (!0)Gs(!+!0)+ 1
2

U1I , (7.1)

where Gs = PHGsPH , and PH are the projectors over the Hubbard manifold, in agreement with
Ch. 5. We use the expression for the SOP convolution in Eq. (3.12), where the right propagator
is a matrix (on the Hubbard manifold) and the left one is a scalar.

Then, we calculate the full self-energy of the crystal using

ßGWLoc =
X

m,m0

ØØ¡m
Æ
ßmm0

GWLoc
(!)

≠
¡m0

ØØ=
X

p,m,m0

ØØ¡m
Æ
°mm0

p
≠
¡m0

ØØ

!°≠p
+ U1

2
PH =

X
p

°p

!°≠p
+ U1

2
PH ,

(7.2)
where

P
m

°p

!°≠p
is the SOP form found for ßGWLoc °

U1
2 I .

The Dyson equation for the full crystal,

G(!) =
"
!I °

µ
hKS +

U1
2

PH +µI
∂
°

X
p

°p

!°≠p

#°1

, (7.3)

can be solved using the generalization to the operatorial case of the algorithmic-inversion
method of Sec. 4.3, where h0 = hKS + U1

2 PH , I the identity of the Hilbert space of h0, and µ the
chemical potential.

2For this step, we also use the SOP representation for U (!), discussed in Sec. 7.1.
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Chapter 7. AIM-SOP for crystals using dynamical Hubbard

Since the chemical potential is not known but should obey Eq. (2.17), we first solve the Dyson
equation in (7.3) with µ= 0. Then, we calculate µ by solving Eq. (2.17),

N =
Zµ

°1
d!Tr A(!), (7.4)

where µ is unknown. Importantly, using the formula for the occupied moments of Eq. (B.5),
the above expression can be easily calculated in SOP. 3 Finally, we solve the Dyson equation
in (7.3) again with the chemical potential found.

This strategy has proven effective for the one-shot calculations performed here. However, at
self-consistency, any strategy would suffice since µ is known from the previous self-consistent
step and should not change its value when performing further steps.

7.3 Thermodynamics using AIM-SOP for dynamical Hubbard

In this section, we detail the calculation of©GWLoc . Similar to Sec. 7.2, we assume that we are at
any step of the self-consistent cycle and, in particular, we know the SOP of the Green’s function
Gs of the current step.

To calculate©GWLoc [Gs] (at any step of the cycle), we rewrite Eq. (5.25) as follows:

©GWLoc [Gs] = U1
2

Tr!Gs °
1
2

Tr!
£
ßGWLoc [Gs]Gs

§
, (7.5)

where Tr! =
R d!0

2ºi ei!00+
Tr.4 The quantities Gs and ßGWLoc [Gs] are calculated as described in

Sec. 7.2.

Since the product of two SOPs is a SOP, we can use the formula for the moment 3.13 (with
m = 0) to calculate the second term analytically, and thus accurately.

For a generic Green’s function, the evaluation of the total energy requires the calculation of
the full Klein functional:

EGWLoc [G] = EH [Ω]+Exc [Ω]+©GWLoc [G]°Tr!
£
G°1

0 G
§
+Tr!Log G°1

0 G +Tr![h0G0]. (7.6)

Here, Ω(r ) =
R d!

2ºi ei!0+
G(!,r ,r ), G0 =GKS and G =Gs . In particular, the last three terms must

also be evaluated. 5

In this thesis, we limit the approach to one-shot calculations, i.e., a single step in the station-

3Note that, differently from the calculation for the HEG in Ch. 6, throughout the whole chapter, we have found
it sufficient to consider SOPs built with simple (first-order) Lorentzians.

4Note that, unlike in Ch. 2, we change the notation for Tr to Tr! =
R d!0

2ºi ei!00+ , highlighting the dynamical
nature of the functional.

5Note that, in contrast to Chapter 6, we use the Klein functional to evaluate the total energy instead of the
Galitskii-Migdal formula. In general, due to the variational nature of the functional, this should be preferred in
one-shot calculations as it ensures quadratic errors.
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arization of EGWLoc , using as the starting propagator the self-consistent Kohn-Sham Green’s
function computed with standard semi-local DFT.

Thus, we need to evaluate the energy functional at EGWLoc [G =GKS]. At this level, the localized-
GW Klein energy functional simplifies to

EGWLoc [GKS] = EDFT[Ω]+©GWLoc [GKS], (7.7)

with©GWLoc [GKS] given by Eq. (5.25), which corrects the DFT energy with a generalized dynam-
ical Hubbard energy term.

7.4 One-shot calculations with AIM-SOP for Dynamical Hubbard

In this section, we describe how to perform one-shot calculations using the dynamical Hub-
bard functional together with the AIM-SOP method. The procedure can be considered a
single step in the self-consistent procedure to stationarize the dynamical Hubbard energy
functional EGWLoc , defined in Eq. (7.6), and does not rely on the simplifications brought by a
non-interacting propagator G0 to perform the calculations, as in common G0W0 implemen-
tations. Additionally, the use of the AIM-SOP guarantees accurate calculations of the total
energy (see Sec. 7.3 for details) as well as the spectroscopic quantities (Sec. 7.2).

In particular, the strategy adopted is as follows:

• Compute the electronic structure for the material within a chosen approximation of
DFT.

• Identify the Hubbard manifold.6 See Sec. 7.1 for details. For simplicity, here we consider
having only one site I .

• Compute the RPA screening on the localized orbitals that span the manifold to obtain
W Im0,Im

Im,Im0 and average on the orbitals to obtain U (!) of Eq. (5.11). See Sec. 7.1 for details.

• Transform U (!) to a SOP form. See Sec. 3.3.2 for details.

• Calculate the self-energy ßGWLoc on SOP using Eq. (5.28). See Sec. 7.2 for details.

• Use the algorithmic-inversion method for operators (Sec. 4.3) to get the Green’s function
on SOP and compute the spectrum. See Sec. 7.2 for details.

• Use the functional©GWLoc [G], Eq. (5.25), to compute the energetics of different atomic
configurations to get bulk modulus and vibrational properties of the material. See
Sec. 7.3 for details.

6As pointed out in Ch. 5 for the dynamical Hubbard functional and Appendix A.5 for DFT+U, to apply the
framework the underlying atomic structure has to have partially filled empty d or f orbitals that build up the
bands around the Fermi level.
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Figure 7.2: Spectral function of SrVO3 from this work (color plot) compared to PBEsol (solid
white line) and PBEsol+U (dashed white line). Only the t2g bands are displayed. The chemical
potential is shifted to 0 in all the three cases. The thin black band shows the analytic divergence
of the spectral function in a metal at the chemical potential. The color map is logarithmic.

7.5 Results on SrVO3

In this section, we apply the formalism described in Sec. 7.4 to the paradigmatic example
of SrVO3, where the localized-GW approach has already been shown to give qualitatively
good spectral results [100] for the quasi-particle band structure. We not only provide the
spectral properties of the material but also integrated quantities such as the total energy
and its derivatives (lattice parameter, bulk modulus, phonons), obtained from the functional
EGWLoc [G].

7.5.1 Spectroscopic quantities

In Fig. 7.2, we show the spectral function resulting from the calculation. Contrary to what
happens in DFT (PBEsol) and DFT+U (PBEsol+U), which only shift the chemical potential, the
spectral function originating from ßGWLoc shows a reduction of the bandwidth along with a
renormalization of the full width of the t2g bands. In Tab. 7.1, we report the bandwidth (BW),
the mass enhancement factor (m§/mPBEsol), and the positions of the lower/upper satellites
(LS/US). While PBEsol, PBEsol+U, and GW [100] fail to overestimate the occupied bandwidth
and full bandwidth, the present results are in very good agreement with experiments [104, 105]
and DMFT [102, 103, 101]. While the quasi-particle band structure calculated with our method
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Method BW m
§/mPBEsol LS US

PBEsol 1.0 1
PBEsol + U 0.92 1.1
GW [100] 0.8 1.4 - -

GW+DMFT [101] 0.5 2 °1.6 2
GW+DMFT [102] 0.6 2 °1.5 2.5
GW+EDMFT [103] °1.7 2.8

This work 0.6 2
°1.7
°3.0

2.2
3.9

exp. [104] 0.7 1.8 °1.5
exp. [105] 0.44 2 °1.5

Table 7.1: Occupied bandwidth (BW) of the t2g bands, the mass enhancement factor
(m§/mPBEsol), and energy of the lower (LS) and upper satellites (US) from experiments and
different theoretical frameworks. Results from the generalized dynamical Hubbard functional
introduced in this work are estimated from the spectral function in Fig. 7.2. m§/mPBEsol is
estimated using the ratio of the full bandwidths (LDA and PBEsol coincide). All energies are in
eV.

coincides with the one from the localized-GW method of Ref.[100], the satellites are different.
This difference may be due to the different choice for the double counting. In Ref.[100], the
localization of GW is performed directly from the GW self-energy, which effectively treats the
double counting problem in a different way. At variance with other methods, our approach
clearly shows that the low-energy satellites shown in Fig. 7.2 are plasmonic since they originate
from the 4.7 eV peak of the imaginary part of U (!). This can be simply demonstrated by
manually taking out the 4.7 eV pole in the SOP for U (!) and recomputing the spectral function,
which will not show the satellites.

7.5.2 Thermodynamics

In Fig. 7.3, we compare different methods for calculating the equation of state for SrVO3. The
legend reports the estimated values for the equilibrium volume V and the bulk modulus B ,
which are obtained by fitting a Birch-Murnaghan third-order function to the data [107]. The
present approach provides a better prediction for the bulk modulus, but it overcorrects the
equilibrium lattice parameter, which may be attributed to the lack of self-consistency in the
calculations. In Appendix D, we discuss the softening of the bulk modulus in terms of charge
rearrangement.

Finally, using the relaxed structures, and taking advantage of the inexpensive computational
cost of the present method, we report in Tab. 7.2 the zone-center phonons for SrVO3, using
PHONOPY [109, 110]. Since the Hellmann-Feynman theorem does not apply due to the lack
of self-consistency, we evaluate the forces for the different displacements of the atoms with
finite total energy differences. Analogous to the softening of the bulk modulus, the first two
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Figure 7.3: The equation of state for SrVO3 is calculated using PBEsol (blue), PBEsol+U
(orange), and the present approach (green). The data (crosses) are fitted with the Birch-
Murnaghan curve (in solid), and the L values and errors obtained using the fit are displayed in
the legend. For reference, the experimental volume is marked in dashed black, and the bulk
modulus is reported in the legend. Experimental values are taken from [106].

(THz) PBEsol LDA+EDMFT [108] This work

!0 -0.01 0 0.1
!1 4.86 4.3 3.9
!2 10.3 9.0 9.4
!3 11.0 11.2 12.1
!4 17.3 18.9 19.4

Table 7.2: Zone center phonons for SrVO3 calculated with different approaches; the last column
shows the results obtained using the generalized dynamical Hubbard functional introduced
in this work (on top of PBEsol). The data from Ref. [108] have been estimated from the plot.

frequencies are lowered compared to PBEsol calculations. Additionally, similar to state-of-the-
art methods such as LDA+EDMFT [108], the remaining optical modes are shifted to higher
frequencies. Interestingly, the lack of self-consistency in our method did not significantly alter
the results.

7.6 Summary of the work on SrVO3

In this chapter, we provide a Green’s function framework for studying the electronic structure
in correlated materials using dynamical potentials. We utilize a novel approximation to
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the exchange-correlation © part of the energy Klein functional, which yields a localized-
GW self-energy and provides a dynamical generalization of DFT+U, as introduced in Ch. 5.
Furthermore, we solve the resulting Dyson equation using an extension of the algorithmic-
inversion method on sum-over-poles (AIM-SOP) to realistic materials, as discussed in Ch. 4.

We combine the novel functional with the AIM-SOP method to study the paradigmatic case
of SrVO3, obtainig results similar state-of-the-art computational approaches, such as DMFT
or EDMFT. However, our approach has a very modest computational cost and allows us to
access spectral and thermodynamic properties simultaneously, including total energies and
differences.
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8 Conclusions and future perspectives

In this thesis, we introduce a novel approach to address the electronic structure of correlated
materials. Though not aiming to treat strong correlation, we have designed a framework that
is able to deliver spectroscopic and thermodynamic quantities of condensed matter systems
accurately and efficiently.

Focusing on a dynamical formalism based on Green’s functions, we exploit its flexibility to
deliver spectral properties and thermodynamics for a material. First, we provide a suitable
representation for dynamical quantities of interacting systems. Termed sum-over-poles rep-
resentation, we show its effectiveness in performing all the operations of Green’s function
theories—such as convolutions for spectral quantities and moments for thermodynamics—
along with studying the transformation to sum-over-poles forms. See Chapter 3 for details on
the work.

Empowered by the framework to deal with dynamical quantities, we address the solution of the
Dyson equation. We discuss the Dyson equation as a non-linear eigenvalue problem, showing
it is the generalization of the Schrödinger equation to embedded systems, and drawing a link
to the mathematical framework. Also, we find a solution for the equation when the dynamical
potential is represented as a sum over poles. Within the algorithmic-inversion method, the
non-linear problem is mapped into the diagonalization of a Hamiltonian with augmented
degrees of freedom, i.e., the poles of the dynamical potential. Similarly to Kohn and Sham
DFT, we build a “fictitious” non-interacting system sharing the exact Green’s function of
the interacting “true” system, when the fictitious degrees of freedom are traced away. The
method gives access to the Dyson orbitals as the non-linear eigenvectors, together with the
excitation energies of the system as the poles of the Green’s function. Furthermore, the sum-
over-poles form of the Green’s function allows the calculation of accurate spectroscopic and
thermodynamic quantities. See Chapter 4 for details on the work.

In order to have an efficient yet accurate energy functional for correlated systems, we combine
the precision of DFT+U for ground state properties with the accuracy of GW for the spectrum.
Exploiting a localized-GW approach, we generalize the DFT+U functional to host a dynamical
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screening U (!), thus obtaining the so-called “dynamical Hubbard functional”. This yields
a localized-GW self-energy and allows for the calculation of the full spectral function of a
correlated material while keeping the precision of DFT+U for the charge density, energetics,
bulk-modulus, equilibrium lattice constants, phonons, etc. See Chapter 5 for details on the
work.

To test the effectiveness of the AIM-SOP for the joint computation of spectral and thermo-
dynamic quantities, we study the homogeneous electron gas at the G0W0 level for several
densities. We obtain very good agreement with the previous literature when available. See
Chapter 6 for details on the work.

To address the electronic structure of correlated real crystals, we combine the AIM-SOP with
the dynamical Hubbard functional, and study the paradigmatic test case of SrVO3. We com-
pute the spectral, thermodynamic, and vibrational properties of the correlated metal, showing
results similar to state-of-the-art computational approaches, such as DMFT or EDMFT, but
with a very modest computational cost, and accessing simultaneously spectral and thermody-
namic properties (total energies and differences). See Chapter 7 for details on the work.

In addition, as argued in this thesis, the AIM-SOP method, together with the dynamical
Hubbard functional, offers the flexibility to perform self-consistent calculations. The AIM-SOP
method is flexible enough to handle interacting propagators at any level of the self-consistent
cycle. Moreover, the existence of a Klein functional guarantees variationality, which is a
crucial aspect in computing forces or energy derivatives in general via the application of the
Hellmann-Feynman theorem.

In general, the computation of material properties with dynamical functionals has yet to
demonstrate its predictive power and significant impact on materials science. Along with
other applications of the algorithmic-inversion method, allowed by the clear link between the
Dyson equation and non-linear eigenvalue problems and solutions, this thesis paves the way
for the computation of the spectrum, energy, forces, equilibrium, and vibrational properties
of correlated materials with dynamical functionals.
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A Details in Green’s function theory

A.1 Fourier transform of the Green’s function

In this section, it is shown how to perform the Fourier transform of the Green’s function from
the time to frequency domain. Although lengthy, it is instructive to see how this transformation
is performed, giving insights into the reason for a vanishing ¥, e.g., in Eq. (2.7), and also
answering why the Green’s function is a complex quantity even in systems that are time-
reversal, i.e., when the Hamiltonian is real. Starting from its definition of Eq. (2.5), i.e.,

iG(r, t ;r0, t 0) = hGS|√̂(r, t )√̂†(r0, t 0)|GSiµ(t ° t 0)° hGS|√̂†(r0, t 0)√̂(r, t )|GSiµ(t 0 ° t ), (A.1)

the simplest way of obtaining the Fourier transform is by writing the integral representation of

the theta function, µ(t ° t 0) =° lim¥!0+
R d!

2ºi
e°i!(t°t 0)

!+i¥ . Then, the equation above reads

G(r, t ;r0, t 0) = lim
¥!0+

Z
d!
2º

≥
hGS|√̂(r)

ei (EGS°Ĥ°!)(t°t 0)

!+ i¥
√̂†(r0)|GSi

+hGS|√̂†(r0)
ei (Ĥ°EGS°!)(t°t 0)

!° i¥
√̂(r)|GSi

¥
,

(A.2)

where the Ĥ |GSi = EGS |GSi is used for both the first and the second addend, while in the
second addend, the change of variable ! ! °! is employed to take into account for the
presence of µ(t 0 ° t ), instead of µ(t 0 ° t ). Since the integral has boundaries at infinity, we can
make the change of variable !! EGS ° Ĥ +! for the first addend and !!°EGS + Ĥ +! for
the second and write:

G(r, t ;r0, t 0) = lim
¥!0+

Z
d!
2º

≥
hGS|√̂(r)

ei (EGS°Ĥ°!)(t°t 0)

!+ i¥
√̂†(r0)|GSi

+hGS|√̂†(r0)
ei (Ĥ°EGS°!)(t°t 0)

!° i¥
√̂(r)|GSi

¥
,

(A.3)
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The Fourier transform reads as in Eq. (2.7),

G(r,r0,!) =hGS|√̂(r)
1

!° (Ĥ °EGS)+ i¥
√̂†(r0)|GSi

+hGS|√̂†(r0)
1

!° (EGS ° Ĥ)° i¥
√̂(r)|GSi .

(A.4)

A.2 Galitskii-Migdal formula

The energy functionals presented in Chapter 2 are not the only functionals of the Green’s
function that can give the total energy. The Galitskii-Migdal formula [111] gives the exact total
energy of a system if the Green’s function is exact. To derive it, we add the term h0(r)√̂(r, t ) to
Eq. (2.45). Recalling the second quantized form of the Hamiltonian in Eq. (2.38) and Eq. (2.45),

Z
dr

h
√̂†(r, t )i@t √̂(r, t )+ √̂†(r, t )h0(r)√̂(r, t )

i
= 2 Ĥ , (A.5)

bracketing on the ground state gives the Galitskii-Migdal formula for the Green’s function

E = 1
2

Z
dr lim

t 0!t+
r0!r

[@t + i h0(r)]G(r, t ;r0, t 0) = 1
2

Z
dr lim

r0!r

Z
d!

ei!0+

2ºi
(!+h0(r))G(r,r0,!), (A.6)

which differs from the interaction energy, Eq. (2.46), only by the sign of the second term. This
functional is not variational, i.e., the derivative of the functional does not need to be zero at
the exact Green’s function. Thus, it cannot be used to find the Green’s function of a system as a
variational condition.

A.3 From the Luttinger Ward to the Klein functional

The stationarity condition, i.e., the Dyson equation, can be used to rewrite the Luttinger
Ward functional. This gives rise to other possible functionals of the Green’s function, such as
the Klein functional. However, care must be taken to not change the derivative to keep the
functional variational. For example, using the Dyson equation G°1 =G°1

0 °ß, the last term in
the Luttinger Ward functional of Eq. (2.57) can be rewritten as:

E0 +Tr ln(1°G0ß[G]) = E0 +Tr lnG0G°1. (A.7)

For the sake of the argument of Sec. 2.3 one may also point out

E0 +Tr lnG0G°1 = E0 +Tr lnG0 °Tr lnG =°Tr lnG . (A.8)
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In the last equality, we have used E0 =Tr [h0G0] =°Tr lnG0.1 This follows fromTr
£
G°1

0 G0
§
= 0,

since the trace in frequency,
R

d! ei!0+

2ºi , counts the occupied poles of the function, and the
Galitskii-Migdal formula. Note that the two lines in the last equation are for demonstration
purposes or should be regularized before writing. Indeed, in a continuous system, one can
show that Tr lnG diverges, while E0 +Tr lnG0G°1 does not.

This said, the functional

©[G]°Tr [ß[G]G]+E0 +Tr ln(1°G0ß[G]). (A.9)

is not variational anymore.

Rewriting also the second addend by using the Dyson equation restores the variationality,

EK[G] =©[G]°Tr
£
G°1

0 G
§
+E0 +Tr ln(1°G0ß[G]), (A.10)

as can be seen by taking the variation of this functional. The latter is termed the Klein
functional and differs from the Luttinger Ward only outside of the stationary points, i.e., where
the Dyson equation for the Green’s function does not hold.

A.4 GW

In this section, we introduce the GW approximation to the© functional and the respective self-
energy. In fact, there are mainly two ways of introducing the GW approximation. Historically,
the first way is to write Hedin’s equations and neglect vertex corrections [112]. The GW self-
energy can also be derived from an approximation to the© functional. Here, we take the latter
approach.

Following Ref. [29] the©GW functional reads:

©GW = 1
2
TrḠvḠ ° 1

2
TrGvG + 1

2
(Tr ln[I ° vP0]+ vP0) , (A.11)

where v is the Coulomb potential, Ḡ consider only the diagonal of the matrix G , and the
matrices products, e.g., GG conserve energy and momentum. 2 The first term is the Hartree
term of the energy as it can be proven by direct integration in frequency

EH = 1
2
TrḠvḠ = 1

2

Z
drdr0 n(r)v(r° r0)n(r0). (A.12)

1Please note that this equality is valid only if G0 is of a non-interacting closed system.
2The momentum-energy conservation is clearer from the diagrammatic expressions of the different terms for©.

Here, since only the© in terms of matrices and traces are given, one should consider that those are simple (not
matrix) products in time-space space, and that G depends only on time differences.
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The second addend is the Fock exchange energy

Ex =°1
2
TrGvG =°1

2

Z
drdr0 n(r,r0)v(r° r0)n(r0,r). (A.13)

P0 is the polarizability in the random-phase approximation [113]

P0(!) =
Z

d!0 ei!0+

2ºi
G(!+!0)G(!0), (A.14)

where the space indexes are omitted for simplicity. The derivative over G(!) of the term
1
2Tr ln[I ° vP0] yelds

1
2
± (Tr ln[I ° vP0])

±G(!)
= i

2º
[I ° vP0]°1 Gv = i

2º
GW, (A.15)

where W is the screened potential in the RPA approximation

W (r,r0,!) = v(r° r0)+ v(r° r0)P0(r,r0,!)W (r,r0,!). (A.16)

In full indexes, the overall derivative of©GW reads

2ºi
±¡GW

±G(r,r0,!)
= ±(r° r0)

Z
dr1 n(r1)v(r° r1)°

Z
d!0 ei!00+

2ºi
G(r,r0,!+!0)W (r,r0+!0), (A.17)

which is the Hartree potential (first term) and the GW self-energy ßGW (!) (second term).

It is not clear whether the success of the GW approximation is due to its derivability from a©
functional or because it is a very good starting point for solving Hedin’s equations. There is a
physical advantage to both.

The GW self-energy features a Fock-like term, with a screened interaction instead of a bare one.
This is particularly important for solids, especially metals, where the presence of electrons
near the Fermi surface increases screening.

Looking instead to the functional in Eq. (A.11), one can see that the term TrvP0 takes into
account long-range polarization effects and thus van der Waals interactions.

Since GW is variational, it is possible to solve the underlying Dyson equation self-consistently
to find the stationary point. Multiple authors have shown, first for the HEG [88], and then for
molecules, that self-consistency improves the results on the total energy, while worsening the
spectrum of the material. One could infer that the improvement in the total energy is due to
the validity of particle conservation at self-consistency (see Sec. 2.2 for details) and the other
conservation rules implied by a functional at its stationary point. To account for the loss in
the accuracy of the spectral properties, the fact that P0 is not a good approximation for the
polarizability of the system at self-consistency, since it no longer obeys the f -sum rule [88],
can play a role.
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This is also confirmed by the partial self-consistent GW0 calculations on the HEG in Ref. [56],
where self-consistency is carried out only on G , and spectral results do not seem to worsen.
Importantly, also for the GW0 approach, there is a generating functional, i.e.,

©GW0 =
1
2
TrḠvḠ ° 1

2
TrGvG + 1

2
TrGGW, (A.18)

with a given screened potential W0(!). Also, e.g., in Ref. [81], it is shown that©GW0 is particle-
conserving and holds the continuity equation.

A.5 DFT+U

In this section, we introduce a correction to semi-local DFT that can be applied to materials
having partially occupied bands with strong d or f atomic character. Interestingly, the funda-
mental idea is similar to dynamical-mean field theory. Let’s suppose we adopt a quasi-particle
picture and know that there are some bands that have a predominant atomic character. In gen-
eral, these bands are not really dispersive, and thus the electrons are localized in the orbitals
contributing to them.3 The idea of DFT+U is to use this knowledge to improve approximate
local or semi-local DFT functionals.

In Mott insulators, the localization of electrons is strong enough to turn a crystal with an odd
number of electrons in the unit cell—which, according to band theory, has to be a metal—
into an insulator [115]. The Hubbard model is a simple lattice model that captures the Mott
transition [116, 117, 118, 119, 120, 121]. The Hamiltonian for this model, the so-called Hubbard
Hamiltonian, reads:

HU = t
X

i ,æ

≥
ci ,æc†

i+1,æ+ c.c.
¥
+U

X

i
ni ,"ni ,#, (A.19)

where the sum runs over all the sites of the lattice, and æ is the spin index. The first term in
HU is a first-neighbor tight-binding term that represents the hopping between the sites (with
spin conservation in the hopping). The second term is a 4-point term—since ni ,æ = ci ,æc†

i ,æ—
that mimics the on-site Coulomb repulsion (with different spins, since we suppose i ,æ is a
complete label for the fermions). The transition between the Mott insulator and a normal
metal or an insulator is controlled by the ratio between the on-site U term and the band term
t . With U ¿ t , electrons are localized on the sites, and the material is in the Mott regime. Vice
versa, with U ø t , the crystal is in a “standard” weakly interacting state, and electrons are
delocalized, as in band theory.

The idea of DFT+U is to consider the band term given by a semi-local DFT functional and
add a “+U ” term. This is to correct a failure of semi-local DFT that tends to over-delocalize
electrons [13]. This deficiency of semi-local functionals has consequences in ground state
predictions such as lattice parameters or metallic ground states. Here, we note that these

3Note that the localization of the electrons into such atomic bands can be a signature of correlation. Indeed, one
can infer that the wave function describing those electrons is composed of a linear combination of determinants
that compete in energy. This is a signature of "static" correlation that local or semi-local DFT fails to predict [114].
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are just failures of approximate DFT, in this case semi-local. The exact exchange-correlation
functional of the density or the spin-density (for spin-DFT) would give accurate results for all
ground-state properties. The fact that in KS-DFT, by looking at the KS spectrum, the bands
would be metallic should not mislead since the KS system is fictitious and does not need to
reproduce the spectroscopic properties of the system [11].

Historically, to introduce the DFT+U, a parallelism is made between the Hubbard Hamiltonian
and the “+U” correction to the energy, given by:

X

I

UI

2

X

m,æ6=m0,æ0
nIæ

m nIæ0

m0 , (A.20)

where nIæ is the spin-resolved density matrix projected onto a “Hubbard” site, i.e., nIæ =
PI næPI . The “Hubbard site” defines the Hubbard space, where it is assumed that “strong
interactions” play a role. Moreover, since we are using the +U term to correct an approximate
DFT functional, we should take into account that the interactions inside the Hubbard manifold
are now counted twice. We can approximate the double-counting term by UI

2 nI (1°nI ), with
nI =P

æTrnIæ, which is a mean-field approximation to the correction n"n# that we gave before,
respecting the rule that on average n"+n# = 1 for a single (spinless) orbital.

In this section, we take a different approach to explaining the DFT+U functional by showing
its link to the issues of “local” piece-wise linearity and delocalization, which are problematic
for semi-local DFT. Neglecting spin for simplicity, the functional of the density matrix given by

EU =
X

I

UI

2

h°
nI ¢2 °Tr

h°
nI ¢2

ii
+Edc[nI ] (A.21)

is composed of a term that resembles the variance with respect to a mean nI of the variable nI ,
with Tr being the mean estimator operator, and a double counting term. Thus, EU measures
the “localization” of the Hubbard manifold. The more uniformly the manifold is occupied
around its mean (nI ), the lower the variance, and so is the +U correction. Conversely, the
more the Hubbard manifold tends to have different values for the single orbital occupation,
the greater the correction.

A good idea for the double counting is to design a function that is peaked around one half.
Since we already know that the semi-local DFT functional tries to put on average one half in all
the orbitals, the double counting has to be maximum for those occupation values. A function
that respects all the requirements is

Edc[nI ] = UI

2
nI (1°nI ). (A.22)
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Putting all together, the Dudarev functional of DFT+U is

EPBE+U[Ω,nI ] = EPBE[Ω]+
X

I

UI

2
Tr[n(1°n)] , (A.23)

where 1 is the identity in the Hubbard manifold, and we have specialized to a semi-local
functional for notation purposes, as described in [33].

Curing the over-delocalization of PBE gives the functional form in Eq. (A.23), composed
of a negative quadratic part and a positive linear one. Since semi-local DFT functionals
are known to be convex [122] with respect to particle addition/removal, instead of being
piece-wise linear [123], the fact that we have a negative concave quadratic term and a linear
term means that—with the correct UI —one can restore a “local” piece-wise linearity for the
addition/removal of electrons from the Hubbard manifold to the rest of the solid. In fact,
since we are adding an electron from the manifold to the solid, or vice versa, it is better to
speak about charge transfer, i.e., moving a charge within the solid from one place to another.
Since one requires the DFT functional to exhibit the correct convex behavior, and U multiplies
a quadratic n

2 term minus a linear one, it is natural to interpret U as the curvature of the
functional with respect to populating/depopulating the Hubbard manifold Therefore, we set
U = ¬°1 °¬°1

0 , where ¬ is the response function of the system for such charge transfer, and
¬0 is the response of the KS system for the same process. We consider a single site here for
simplicity.4 This has been the work of Cococcioni and De Gironcoli in Ref. [124]. A ready-
to-read review by Cococcioni on all these aspects can be found in Ref. [114], and references
therein.

As a final note, the double counting used to obtain Eq. (A.23), which allows us to interpret
U as the charge-transfer linear response, is based on the fully localized limit and is given by
Eq. (A.22). However, this is not the only possible choice for the double counting of DFT+U.
Another option is the around-mean-field approach given by

E AMF
dc [nI ] = UI

2
nI °≠

nI Æ°nI ¢ , (A.24)

where we have replaced the constant 1 with the average occupation of the manifold
≠

nI Æ.5

This will be useful when we discuss our dynamical generalization to the Hubbard functional
in Ch. 5.

4The need to subtract from the full response ¬ the response of the independent KS electrons ¬0 is because U
has to cure the spurious (concave) dependence on the number of particles (in the manifold) due to interactions,
and not the response of independent electrons to a perturbation of the charge.

5Note that this is true for the energy. For the potential, we need to replace 1
2 with

≠
nI Æ because of the derivative.
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B Details in dynamical operators

B.1 Sum-over-poles representation of an n-th order Lorentzian

In this appendix, we obtain the SOP representation of a Green’s function that features a spectral
function described by a single n-th order Lorentzian. Recalling Sec. 3.2, we use the discrete
time-ordered Hilbert transform [Eq. (3.5)] of a (not normalized) n-th order Lorentzian centered
at ≤ j :

Z
d!0

º

1
!°!0 ° i 0+ sgn(µ°≤ j )

ØØ± j
ØØ2n°1

(!0 °≤ j )2n + (± j )2n . (B.1)

This expression induces a SOP representation for the Green’s function, as described in Sec. 3.2.

We can compute Eq. (B.1) explicitly using the residue theorem. By closing the contour in the
lower/upper plane for ≤ j 7µ, the poles of the integrand,

≥ j ,m = ≤ j +ei º
2n (1+2m)± j , (B.2)

come only from the spectral function A. Using L’Hôpital’s rule, we can reduce the residues of
the integrand to:

R j ,m =° 1
2nº

ei º
2n (1+2m)

!°≥ j ,m ° i 0+ sgn(≤ j )
. (B.3)

Thus, taking the limit for C on the real axis, the poles and residues of the SOP for G are those
in Eqs. (3.10) and (3.9). We can compute the normalization of the n-th order Lorentzian by
summing Æm of Eq. (3.9) and using the geometric sum:

Nn =° i
n

n°1X

m=0
ei º

2n (1+2m) = 1

n sin
°
º

2n

¢ . (B.4)
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B.2 Moments of a propagator and occupied moments of its spectral
function

In this Appendix, we discuss the equality between the (regularized) moments of a propagator,
defined in Eq. (3.13), and the occupied moments of its spectral function. For simplicity of
notation, we restrict to the case of a spectral function A composed of a single n-th Lorentzian
L n

± j
, as defined in Eq. (3.7), and focus on the case m ∑ 2(n °1):

Em[G] =
I

°

d z
2ºi

Z
d!

ei z0+
zmL± j (!°≤ j )

z °!° i 0+ sgn(µ°≤ j )

=
Z

d!L± j (!°≤ j )£ (B.5)

I

°

d z
2ºi

ei z0+
zm

z °!° i 0+ sgn(µ°≤ j )

=
Z+1

°1
d!!mL± j (!°≤ j )µ(µ°≤ j ),

where ° is defined as in Eq. (3.13) and the integral on the last line is well-defined since
L± j ª 1

!2n for large frequencies, and m ∑ 2(n°1). Also, the integrals extend over the whole real
axis because we are dealing with a single basis element (a single n-th Lorentzian), taken here
as retarded. Time-ordering is accounted for by the µ(µ°≤ j ) factors. In fact, in the continuum
limit of a complete basis representation (defined in Sec. 3.2), the last line of Eq. (B.5) becomesRµ
°1 d!!m A(!).

For higher-order moments, m > 2(n °1), the above equalities are not valid, with the rhs of
Eq. (3.13) becoming complex, and the last line of Eq. (B.5) diverging. While the divergence
of the rhs of Eq. (B.5) can be understood by looking at the decay of the overall integral, the
imaginary contribution to the moment of Eq. (3.13) may be seen explicitly by inserting poles
and amplitudes of L n

± j
and using the binomial expansion. Thus, Eq. (3.13) can be rewritten as

Em[G] = 1°e
iº
2

2

mX

k=0

√
m
k

!
≤m°k

j ±k
j e

iºk
2n

n°1X

p=0
e

iº(k+1)
n p , (B.6)

which is in general complex, and reduces the real number

Em[G] = 1
nNn

mX

k=0
even

√
m
k

!
≤m°k

j ±k
j [sin

º(k +1)
2n

]°1 , (B.7)

if m ∑ 2(n °1). In the case of m > 2(n °1), we can still use Eq. (3.13) to calculate the occupied
moment, and improve on the result by lowering the broadening of the Lorentzian(s), which in
turn reduces the spurious imaginary part of the targeted moment.
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C Details in AIM-SOP for homogeneous
systems in GW

C.1 Time-ordered G0G0 polarizability at finite (Lorentzian) broaden-
ing

In this Appendix we calculate the time-ordered G0G0 polarizability at finite (Lorentzian)
broadening ±. Note that usually, e.g., in Ref. [77], the calculation is carried out at ±= 0. The
time-ordered G0G0 polarizability can be calculated from [77]:

P 0(q,!) = 2
(2º)3

Z
d 3k

µ(
ØØq+k

ØØ°k f )µ(k f °k)

!+≤k °≤|k+q| + i¥

°
µ(k f °

ØØq+k
ØØ)µ(k °k f )

!+≤k °≤|k+q|° i¥
,

(C.1)

where the second addend can be obtained by changing the sign of the frequency in the first.

kz

kx

O
qq

2

kf

Figure C.1: 2D-projection of ≠ onto the (kz ,ky ) plane. ≠ can be seen as the volume of
revolution around the kz axis of the region delimited by the red line.
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Measuring the momenta in units of k f , the energies in units of ≤ f , and exploiting the free-
particle energy dispersion ≤k = k2, it is possible to rewrite the first addend of Eq. (C.1) as

I (q, z) = 1
2q

Z

≠
d 3k

1
z +kz

, (C.2)

assuming a the reference system with q along the kz axis and z = !
2q ° q

2 + i ¥q . The integral
domain≠ can be seen as the volume of revolution around the kz axis of the region delimited
by the red line in Fig. C.1. We calculate I by integrating over the whole sphere (≠sph) of radius
k f and then subtracting the remainder part (≠R). The result on the whole sphere is

I≠sph (q, z) = 2º
q

≥ z
2
+ 1° z2

4
ln

z +1
z °1

¥
, (C.3)

and for the remainder part it reads:

I≠i nt (q, z) = º

2q

h
(1° q

2
)(2z +q)° ((z +q)2 °1)log

µ
z +q/2

z +q °1

∂
° (z2 °1)log

µ
z +1

z +q/2

∂i
. (C.4)

Finally, the expression for the G0G0 polarizability is

P 0(q,!) =
4k f me

(2º)3~

"
I
µ
!/≤ f

2q/k f
°

q/k f

2
+ i

¥/≤ f

q/k f

∂
+ I

µ°!/≤ f

2q/k f
°

q/k f

2
+ i

¥/≤ f

q/k f

∂#
, (C.5)

where I = I≠sph ° I≠R . In addition, the analytic continuation of this function can be done
substituting the real ! with a complex one.

C.2 Exploiting parity of the RPA-polarizability integral

In this appendix, we show how it is possible to exploit the parity of the polarizability P (q,!)
at fixed momentum q. As explained in Sec. 3.4, the SOP approach allows us to compute
analytically the convolution of Eq. (6.1). Using Eq. (3.12) in Eq. (6.1), the polarizability may be
rewritten as:

P (q,!) = 2
Z

dk
(2º)3 £

"
X

i , j
Im{zi (|k+q|)}<0

Im{z j (k)}>0
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, (C.6)

where we have not yet restricted to the G0 case in which only one pole is present. Defining
I (

ØØk+q
ØØ
unocc,kocc,!) as the first term in the right-hand side (where kocc labels the occupied

states with momentum k, while
ØØk+q

ØØ
unocc refers to empty states), and setting k+q !°k in
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Figure C.2: Convergence studies for the total energy at rs = {1,2,3,5,6,7,8,9,10} following the
protocol detailed in Sec. C.4.

the second term,

P (q,!) = 2
Z

dk
(2º)3

h
I (

ØØk+q
ØØ
unocc,kocc,!)+ I (

ØØk+q
ØØ
unocc,kocc,°!)

i
, (C.7)

it is possible to limit the calculation to the first term. For the case of G =G0 of Sec. 6.2, the
occupied states at momentum k are all within the Fermi sphere, and thus we can limit the
momentum integration to the sphere of radius k f , i.e. k ∑ k f in Eqs. (6.1) and (6.2).

C.3 Total energy convergence studies for several densities of the
HEG

In Fig. C.2, we report the convergence studies obtained for the total energy at all densities
following the protocol detailed in Sec. C.4. We omit the density corresponding to rs = 4 since
it has already been treated in the main text. Similar considerations to the rs = 4 case can be
drawn for these cases.
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Figure C.3: Convergence study for the correlation energy per particle Ecorr from a G0W0

calculation for the HEG at rs = 4. The parameters to converge are described in Sec. C.4. For
each convergence curve (represented by a single line), we study the value of Ecorr by varying
the corresponding parameter, fixing all the others at the convergence point (called baseline
calculation). At each step, we vary the target parameter by 20% in the convergent direction
and observe a plateau in Ecorr.

C.4 Numerical details

Here we discuss and report the parameters that control the numerical accuracy of the quanti-
ties (polarizability, self-energy, total energy) computed by means of Eqs. (6.2), (6.4), and (6.5).
For the spectral quantities, this corresponds to going from left to right in the flow diagram of
Fig. 6.1 following the green path, performing all calculations mentioned in the boxes.

The first quantity to be computed is the polarizability P (q,!). For each momentum q and
frequency !, we perform the integral of Eq. (6.2). We choose an initial free-particle Green’s
function having a 2nd order Lorentzian pole at each k broadened by ±P . The k-momentum
integral of Eq. (6.2) is limited by k f (see Sec. 6.2), and we denote the spacing of the k- and x-
grids by¢kP and¢xP , respectively. We call the spacing of the (q,!) grid¢q and¢!P and build
the q grid from 0 to qmax and the polarizability frequency grid from [°!max

P ,!max
P ]. Note that

we will need to converge all the grid spacing parameters to zero, ±P ! 0, and qmax,!max
P !1.

Due to the frequency structure of the polarizability, for this calculation, it is best to pass to
energy units that depend on the specific q-point, following the law f (q) =p

q +q2. Thus, in
these units, the maximum of the frequency grid!max

P scales with q and specifically goes to 0 as
q ! 0 and to infinity as q !1. The scaling of the frequency grid allows for the polarizability to
decay to 0 at the different momenta q , without having large frequency grids at small momenta,
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and was designed looking at the !/q dependence of the RPA-polarizability (e.g., from Eq. (C.5)
of Sec. C.1 of the Appendix).

Moving to the central part of the flow chart in Fig. 6.1, we obtain the SOP representation of
the polarizability using the method described in Sec. 3.3. We place the center of the 2nd order
Lorentzians on the midpoints of the frequency grid with a broadening equal to the spacing of
the grid, and with this choice, the accuracy of the fit improves as ¢!P ! 0. Next, we use the
algorithmic-inversion method to obtain the SOP of the screened potential W from the SOP
representation of the polarizability.

Using the SOP representation of W (and of G), the self-energy integral (right part of Fig. 6.1),
Eq. (6.4), is formally identical to the integral in Eq. (6.2) for the polarizability. Therefore, the
remaining parameters to converge are ±ß, ¢xß, ¢k, ¢!ß, kmax, and !max

ß (using the same
notation adopted above).

As for the polarizability P , we obtain the SOP representation of the self-energy following
the method described in Sec. 3.3. We place the center of the 2nd order Lorentzians on the
midpoints of the frequency grid with a broadening equal to the spacing of the grid. Finally, we
obtain the SOP representation of the Green’s function by employing the algorithmic-inversion
method.

Using the resulting Green’s function, we compute the thermodynamic quantities following the
flow chart in Fig. 6.2 and study the numerical stability of the computational procedure with
respect to all the aforementioned parameters. In this work, we choose to converge the total
energy, as obtained in Sec. C.4, which is sensitive enough to guarantee reasonable convergence
for the other spectral properties of interest. By changing individually each parameter (increase
or decrease by 20% of its value towards convergence), we study the stability of the total energy
against the selected parameter, keeping the values of all the others fixed at a reference point
(baseline calculation of Fig. C.3). Each target parameter is then converged separately We
continue the convergence until a plateau for the subsequent values of the computed quantity
is observed. We evaluate the error in the result by considering the two most distant values
among those in the plateau.

Importantly, it is possible to reduce the number of parameters to converge from 13 to 5, by
linking all the grid-spacing and broadening of the initial G0 parameters together into a single
variable, ¢, which ensures convergence for ¢! 0+. Specifically, we bind those parameters
together by setting ¢ = ¢kP /k f = 5¢xP /k f = 1

6¢!P /≤ f = 1
9¢q/k f = 1

25¢!ß/≤ f = ¢xß/k f =
1
3¢kß/k f = 5

4±P /≤ f = 1
100±ß/≤ f .

Together with ¢, the grid-limit parameters are converged separately, following the strategy
designed above. The converged values obtained for all the calculated densities are: ¢= 0.00133,
qmax = 7.292 k f , kmax = 3.60 k f , !max

P = 5.0 ≤ f , and !max
ß = 10.985 ≤ f , where k f is the Fermi

momentum and ≤ f is the Fermi energy.
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To give a sense of how many poles are needed in our approach—recalling that the number
of poles is equal to the number of points in the frequency mesh times the degree of the
Lorentzians—we highlight that at convergence we use for the polarizability and screened
potential 2£ !max

P
±P

/ º 2400 poles, and for the self-energy 2£ !max
ß

±ß
/ º 660 poles. Furthermore,

most of the computational time is spent performing the convolutions of Eqs. (6.2) and (6.4),
even if a linear scaling is implied in the number of poles of the propagators by exploiting
Eq. (3.12).

As a last point, we stress that all of our calculations are performed with the electron-electron
self-energy shifted by µ, i.e., G(k,!) = [!°≤0

k °ß(k,!)+µ]°1.

This choice ensures that all energy scales are aligned with the chemical potential for all
propagators, and in particular, that evaluating ß(k f ,!= 0) means evaluating the self-energy
at k = k f and at the chemical potential.

In this sense, we define the chemical potential µ as µ= ≤ f +ß(k f ,0) and update it after the
G0W0 cycle.

This manual shift forµ originates from the non-self-consistent nature of the G0W0 calculations
and helps to conserve the number of particles and the analytic structure of the propagator G ,
including, for example, the analytic divergence of the spectral function A at k = k f and !=µ.
A similar approach is also used in Refs. [56, 88, 125].
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dynamical Hubbard

D.1 Charge rearrangement

To get a qualitative picture of the lowering of the bulk modulus of SrVO3 when applying the
localized GW approach, in Fig. D.1 we compare charge-density differences from different
methods along the (100) plane. On the plane, vanadium atoms are on the corners, and oxygen
atoms are on the midpoint of each edge of the cell. The color-coding in the plots is red-green-
blue, with red being positive, green zero, and blue negative. In panel D.1a, one can see the
comparison between the DFT and DFT+U charge densities. Looking at the left corner, one can
see that there is no qualitative change in the charge density at the middle of the bond between

(a) ΩDFT °ΩDFT+U (b) ΩDFT °ΩGWLoc (c) ΩDFT+U °ΩGWLoc

Figure D.1: Comparison between charge-density differences from different methods along the
100 plane on SrVO3. In the cell, vanadium atoms are on the corners, oxygen atoms are on the
midpoint of each edge, and strontium is at the center of the cell and cannot be seen from the
plot since it is in the center of the cell and we are cutting with a plane on the surface of the
cell. All calculations are done at the experimental equilibrium (T = 0 limit) lattice parameter
of SrVO3. See the text for more details. The color-coding is red-green-blue, with red being
positive, green zero, blue negative. Same colors for different plots correspond to the same
value. For example, in panel (b) the zone where it is red, ΩDFT is higher than ΩGWLoc , where it is
blue, it is vice versa, and where it is green, the system has the same electronic charge density.
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the vanadium and oxygen atoms. Conversely, in the other two plots, the DFT (panel D.1b)
or the DFT+U (panel D.1c) charge in the middle is pulled toward the atoms. Effectively, this
can account for a lowering of the bulk modulus obtained by the localized-GW approach with
respect to DFT and DFT+U. Also, since the Hubbard manifold is around the vanadium atom,
no changes in the charge density on the strontium atom are observed.

D.2 Numerical details

All DFT and DFT+U calculations were performed using the QUANTUM ESPRESSO distribu-
tion [126]. The energy, self-energy, Green’s function, and spectral function were computed
with a (private) PYTHON implementation of the generalized Hubbard approach described in
the main text. The localized screened-potential U (!) was calculated using RESPACK [127].
The pseudopotentials used for all the calculations are optimized norm-conserving pseudopo-
tentials [128] (PBEsol standard-precision, nc-sr-04) from the PSEUDO DOJO library [129]. The
sum-over-poles form for U (!) was obtained using an in-house PYTHON implementation of
the algorithm described in Sec. 7.4.

For the calculations in Figs. 7.2 (main text) and D.1 (Supp. Mater.), and Table 7.1 (main text),
i.e., all but those for the equation of state (EOS), we use a simple cubic cell having a lattice
parameter of a = 3.824 Å. This value is the extrapolated value at the zero-temperature limit of
the experimental value a = 3.841 Å from Refs. [106] and [130], considering an average linear
thermal expansion coefficient Æl = 1.45£10°5K °1 from Ref. [106].

For all electronic structure calculations, we use a Marzari-Vanderbilt [131] smearing of ª 0.27
eV. For the generalized Hubbard calculations involving GKS, we shift the poles above and below
the real axis with an effective amount of i¥± = ±i 0.1 eV, depending on whether the pole is
occupied (+) or empty (°). To implement the smearing in GKS, we double each pole to be both
above and below the real axis, multiplying its occupation—1 in the Kohn and Sham basis—by
a factor of f ±(1° f ±), where + is the sign of ¥±. Here, f + is the Marzari-Vanderbilt smearing
function, and f ° = 1° f +.

For all total energy and ground-state density calculations, including DFT, DFT+U, and gener-
alized Hubbard, we use a 12£12£12 k-point Monkhorst-Pack grid. Specifically, this k-grid is
used to compute Etot in the lines "DFT, DFT+U, This work" of Table 7.1, as well as the equation
of state in Fig. 7.3 and the charge-density differences in Fig. D.1. With the chosen values, we
ensure a convergence of 10 meV (or better) for the total energy in DFT.

Due to the k-point sampling, the localized-GW approach requires an additional "pole-condensation"
procedure. The issue arises from the number of poles of the self-energy, which scales linearly
with the dimension of HAIM, which we need to diagonalize. The self-energy poles are calcu-
lated from Eq. (7.2), using the SOP form for G and U . Specifically, the number of poles of
ß equals the number of poles of G multiplied by those of U . While U introduces a number
of poles on the order of 10, the projected KS Green’s function has poles at all KS states with
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residues as projections over the Hubbard manifold,

GKS
mm0(!) =

X

k,n

≠
m

ØØ√nk
Æ≠
√nk

ØØm0Æ

!°≤nk + i¥±
, (D.1)

where |mi span the Hubbard manifold, and √nk,≤nk are the Kohn-Sham orbitals and eigen-
values. The sum is performed over all Kohn-Sham states. Thus, with a 12£12£12 grid and
25 orbitals in the calculation, one obtains more than 10,000 poles (without point-group sym-
metries). As with the density of states, in the localized representation, most of these poles
effectively overlap, resulting in a structure that can be represented with many fewer poles.

In order to condense the poles, we use the algorithm described in Sec. 3.6. We check that
the value chosen for the threshold changes the total energy by less than 10 meV. With this
procedure, we are able to reduce the number of poles to a few hundred (without symmetries),
making the diagonalization of HAIM computationally much cheaper.
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