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1. Motivation
The hydro-mechanical response of fractures during hydraulic stimulations depends strongly on the initial stress

conditions. Tractions acting on pre-existing discontinuities depend on both depth and orientation of the fracture
planes. It is known that within certain length scales, the in-situ principal stresses vary linearly with depth. In this
work, we investigate the effect of a linear stress gradient on the growth of injection-induced frictional ruptures under
2D plane-strain conditions. We notably compare a semi-analytical solution with fully-coupled numerical simulations
using a numerical solver developed at EPFL’s Geo-Energy Lab.

2. Problem formulation

ϕ

Injection point

g
Q

x

y

h

Initial distance to failure [MPa]

de
pt

h 
[k

m
]

Figure 1. Problem set-up
We consider a planar fault embedded in a homogeneous isotropic linearly elastic solid under plane strain conditions
(Fig. 1). The fault is oriented arbitrarily with regard to the gravitational acceleration and is characterized by
a dip angle φ, constant friction coefficient f , and constant hydraulic properties (permeability k and hydraulic
diffusivity α). The injection of fluid reactivates the fault in shear and produce a frictional rupture that propagates
asymmetrically due to the stress gradient. The fluid flow inside the fault is modelled as a flow in the porous media
from a line source with a constant injection overpressure.

Initial stresses resolved on the fault. We write the initial effective stresses with respect to the fault
coordinate system (see Fig. 1): σ′(x) = σ′

o + mσ′x and τ(x) = τo + mτ x, where both the effective normal stress σ′
o

and shear stress τo are calculated at the injection point and mσ′ , mτ are the corresponding stress gradients.

Quasi-static elastic equilibrium. Under quasi-static conditions, the shear stress τ(x, t) acting on the
fault plane is equal to the sum of the initial shear stress τo(x) and the changes due to the propagation of the slipping
patch. During propagation, the shear stress τ(x, t) inside the slipping patch must equal the current value of the
local shear strength τs(x, t). Therefore, the quasi-static elastic equilibrium within the slipping patch can be written
as:

τs(x, t) = τo(x) + µ∗

2π

∫ a+(t)

−a−(t)

∂δ(ξ, t)/∂ξ

ξ − x
dξ, (1)

where τs(x, t) = f(σ′
o(x) − p(x, t)) is the fault strength equal to the product of the constant friction coefficient f

and the current effective normal stress σ′
o(x, t) = σ′

o(x)−p(x, t), with p(x, t) the current distribution of pore pressure.

Finiteness condition for the stresses near the rupture tips. The right-hand side of the elastic equi-
librium (1) does not prevent the shear stresses at the rupture tips to be infinite. In fact, the shear stress at the
rupture fronts must be equal to the shear strength which is finite. Thus, the stress intensity factors must be zero

K−a1 = 0, Ka2 = 0

These two conditions provide equations for the propagating tips. To obtain expressions for the stress intensity
factors we invert (1) for the derivative of the slip distribution and consider the slip behaviour near the propagating
tips x → −a1 and x → a2.

Fluid flow. Fluid flow along the interface in the limiting case of an impermeable rock matrix reduces to a
one-dimensional diffusion equation. The solution for the pore-pressure in the case of a point injection performed
under a constant over-pressure ∆p is

p(x, t) = po + ∆p Erfc
(

|x|√
4αt

)

3. Scaling
Two dimensionless numbers govern the propagation of such a fluid-induced frictional rupture

T = fσ′
o − τo

f∆p
= distance to failure

strength reduction
, S(t) = fmσ − mτ

σ∗
ℓ∗(t)

where the length scale ℓ∗(t) and stress scale σ∗ depend on the limiting regime.
The so-called stress-injection parameter T previously introduced in [1] for a uniform in-situ stress field is here

evaluated at the exact depth of the injection. In the case where To → 0 (which we refer to as the critically-stressed
limit), the fault is initially close to failure (or alternatively the over-pressure is large). The corresponding length
scale in this limit is ℓ∗ = a−(t) + a+(t) and the stress scale σ∗ = fσ′

o − τo. On the other hand, when To → 1
(marginally pressurized limit) the fluid pressure is “just sufficient” to activate slip on the fault by reducing the shear
strength (f(σo − (po + ∆p)) → τo). In this limit ℓ∗ =

√
4αt and σ∗ = f∆p. In general, the distance to failure in the

numerator of T increases with depth making the fault more marginally pressurized at the injection point. On the
contrary, T → 0 at lower depths: the fault becomes more critically stressed closer to the surface.

The dimensionless parameter S(t) encapsulates the influence of in-situ effective stress gradient on fault strength.
In other words, S(t) is related to the development of the rupture asymmetry. At early times S(t) << 1 (or
equivalently ℓ∗ << 1/∇T (x)), the effect of the stress gradient is negligible. The solution corresponds to the uniform
stress case and the rupture stays symmetrical. When S(t) ≈ 1, the linear dependence of the in-situ effective stress
starts to play a role and an asymmetry of the rupture is expected to develop. S(t̄) = 1 defines the characteristic
time-scale of the problem - which differs in the critically stressed vs the marginally pressurized regimes.

It is important to point out that the problem, as formulated here, eventually results in the nucleation of a
dynamic rupture. Indeed, the initial distance to failure is equal to zero at the surface. As the fluid pressure increases
along the fault and the propagating frictional rupture transfers elastic stress ahead of its tip, the fault shear strength
decreases ahead of the rupture. The combination of these perturbations with the decreasing initial distance to failure
at lower depths leads to a acceleration of the upper tip and ultimately the nucleation of a dynamic rupture. In terms
of dimensionless time S(t), (see the figure below) for critically stressed faults the solution reaches this instability
faster such that no significant rupture asymmetry has time to develop. With increasing values of T , the rupture can
propagate longer before this instability and "feel" the in-situ stress gradient.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Critically s
tressed

Marg
ina

lly
 pr

ess
uri

zed

~

~

5. Conclusions
A linear variation of initial stresses along the fault introduces an additional time scale into the propagation

of fluid-induced frictional ruptures. At early times the solution is self-similar and the rupture fronts propagate
symmetrically. When the dimensionless time approaches the characteristic time, we observe the onset of rupture
asymmetry. The tip propagating up accelerates with time which results in dynamic rupture nucleation even within
constant friction assumption.
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4. Results
Critically stressed fault. In the critically stressed limit the main role in propagating the rupture is played by
pre-injection conditions and stress transfer phenomena. The proper scaling is

σ∗ = fσ′
o − τo, δcr

∗ = f∆p
√

4αt

µ′

and the second dimensionless parameter in this limit (or equivalently dimensionless time t̂) is t̂ = S(t) =
fmσ′ − mτ

fσ′
o − τo

(a−(t) + a+(t)). The rupture does not undergo significant influence of stress gradient and develops
small asymmetry.
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Marginally pressurized fault. In the marginally pressurized case, the correct scaling is

σ∗ = f∆p, δmp
∗ = f∆p(a−(t) + a+(t))(λ− + λ+)

4µ′

and the second dimensionless parameter (or equivalently dimensionless time t̄) in this limit is
√

t̄ = S(t) =
fmσ − mτ

f∆p

√
4αt. Introduction of stress gradient leads to significant acceleration of the tip propagating upwards

until it becomes unstable.
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Will the rupture outpace/lag behind the diffusion front? We will follow [1-2] and introduce λ± = a±(t)ℓd

where ℓd =
√

4αt is the diffusion length scale. If the rupture outpaces the fluid front then λ± ≥ 1 and λ± ≤ 1 if
it lags the fluid front, respectively. In the marginally pressurized limit, the fault will always lag the diffusion front
whereas in the critically stressed limit it will always propagate faster than the fluid.
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