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1 INTRODUCTION
X-HEEP (eXtendable Heterogeneous Energy-Efficient Platform) is
an open-source1, configurable, and extensible single-core RISC-V
microcontroller developed at the Embedded Systems Laboratory
(ESL) of EPFL for edge-computing platforms. X-HEEP can be used
standalone as a low-cost microcontroller, or it can be integrated
into existing platforms to act like a peripheral subsystem, or it
can be extended and customized with external peripherals and
accelerators nimbly. The latter is particularly appealing for novel
accelerators, memories, or peripherals designers who desire a sim-
ple controller to drive their IP and communicate with the external
world using software functions. X-HEEP is built on top of existing,
mature open-source IPs such as CPUs, peripherals, and many other
building blocks from the OpenHW Group, the PULP team from
ETH Zurich and the University of Bologna, and lowRISC. Its con-
tribution includes its expandability, configurability, and agile use,
targetting a large number of users to take one step further towards
the democratization of open-source hardware.

X-HEEP is designed to support simulation with open-source and
commercial simulators and target both FPGA and ASIC flows. The
FPGA support can be useful for rapid prototyping and testing. X-
HEEP comes with both the standalone implementation and the

1X-HEEP is freely downloadable at https://github.com/esl-epfl/x-heep under a permis-
sive license
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Figure 1: X-HEEP architecture.

ARM-hosted implementation. The latter exposes peripherals ports
such as GPIOs, UART, JTAG, and SPI to the ARM subsystem, so that
users can use the Linux subsystem running on the ARM CPU to
emulate peripherals in SW without the need for external physical
boards and cables, but still leveraging a large part of the X-HEEP
SW stack and applications.

The X-HEEP architecture is presented in Figure1. It is composed
of RISC-V CPU, a system bus, SRAM memories, and two periph-
eral domains. It can be configured to select which CPU deploys
among three (as of today) OpenHW Group CPUs as the cv32e40p
[3], cv32e2 [5], and cv32e40x. The reason why X-HEEP employs
such CPUs is that they are open-source, mature, verified, imple-
mented in silicon several times, and designed to target edge devices.
Depending on the target applications, the users can select the CPU
that fits best the energy, area, power, and performance figures. The
users can leverage X-HEEP to benchmark the core against their
application profiles to better select their cores [5]. The CPUs are
connected to 19 interrupts, compatible with the RISC-V CLINT
spec: the 3 RISC-V machine-mode interrupts, and 16 custom events
called FAST. In addition, a RISC-V PLIC peripheral collects a larger
number of events which are then sent to a single CLINT line. Those
interrupts are called SLOW as the CPU would first jump to the
CLINT ISR, then reads the PLIC registers to figure out which pe-
ripheral raised the event, and only then serves it. Another X-HEEP
knob the user can configure is the bus. As of today, X-HEEP offers
two flavours: a fully-connected crossbar, and a one-at-a-time topol-
ogy, both compatible with the OpenBus Interface, allowing each
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slave to drive its own ready/valid signal to control its latency. The
former bus flavour allows all the masters to access in parallel to
different slaves, and the latter allows only one master at a time to
access the slaves, so whenever two masters access concurrently two
different slaves, one is stalled. The former is highly performant and
large, as there are as many address decoders as masters, and the
latter is low-cost and less performant. One of the most important
parts of the microcontroller is the on-chip memory, which can rep-
resent up to 91% of the area of a chip [4]. Therefore it is important
to let the user tune the memory size. As of today, X-HEEP can be
configured to have a number of configurable 32kB memory banks,
which are instantiated as bus slaves. Thus, the more memory banks,
the more slaves, and the higher parallelism. The X-HEEP team is
working on making the BUS topology and memory subsystemmore
configurable, allowing for different addressing modes (contiguous
or interleaved), and the memory configurations knobs as the bank
size. In addition to the CPU, bus, and memories, X-HEEP includes a
wide range of peripherals, such as timers, PLIC and CLINT, a power
manager, bootrom, DMA, JTAG, SPIs, UART, I2C, and GPIOs, mostly
taken from the lowRISC OpenTitan and PULP project. The bootrom
contains instructions to either wait for the JTAG to load the binary
on the chip, or to load instructions from an external flash via SPI. In
addition, X-HEEP embeds a BUS2SPI IP built on top of the Yosys SPI
IP which translates memory read-operations to SPI, e.g. to allow
the CPU to fetch instructions or load data from flash transparently,
giving SW a lot of flexibility. The CPU can execute the program
sitting directly on flash without first loading it on-chip at the cost
of slower performance. This mode is particularly appealing for very
small controllers with very limited on-chip memory, or to store
wake-up routines during deep-sleep operations. As X-HEEP targets
ultra-low-power applications, it employs a power manager respon-
sible for implementing power-saving strategies such as operand
isolation, clock-gating, and power-gating. X-HEEP is divided into
power domains as always-on, CPU, peripheral, and one for each
memory bank. The always-on domain is shown in grey in Figure1,
and includes components that control the chip externally, acquire
data from external peripherals such as ADCs, and wake-up events.
The peripherals’ (green) and memory banks’ (multi-colour) power
domains can be switched on and off by means of register configu-
rations written by SW, whereas the CPU power domain (blue) can
be switched off by register configurations in SW, and switched on
by DMA, SPI, TIMER, GPIOs, and SW events.

One of the key advantages of the X-HEEP microcontroller is that
it is designed to be easily extensible with heterogeneous processing
elements. Users can add their own custom peripherals and accelera-
tors to it, allowing them to tailor the platform to their specific needs.
For example, developers building a machine learning application
may want to add a custom accelerator to the microcontroller to
speed up matrix-matrix computations or a RISC-V Vector compat-
ible co-processor to the CPU. To make extensions agile, X-HEEP
exposes master and slave ports that have access to the main BUS, as
well as the core-v-x interface that allows agnostic extensions to the
cv32e40x CPU. The advantages are that the users can create their
own system where X-HEEP is instantiated next to their custom
blocks, without the need of forking and modifying X-HEEP. This
prevents allocating extra human resources to maintain the X-HEEP
forked version (as bug tracking, new features, etc), and to modify

the microcontroller HDL and framework infrastructure. We tested
the agility of the extendability feature in the first ASIC implementa-
tion (in tsmc 65nm) deploying X-HEEP configured with the cv32e2
core and with 256kB of memory, called HEEPocrates. HEEPocrates
instantiates X-HEEP as the main microcontroller driving a CGRA
[2], an In-Memory Computing macro [6], and it is clocked by an
FLL [1]. There was no need to modify X-HEEP for this specific
tapeout, and the developers of the custom blocks inherit a whole
microcontroller, saving time and resources in building one. The X-
HEEP chip occupies an area of 2.3mm2, has a maximum frequency
of 250MHz, and consumes 28µW/MHz post-place-and-route.

X-HEEP flow is based on the lowRISC OpenTitan, using vendor
to handle 3rd-party IPs, regtool to create peripherals, mako tem-
plates for highly configurable HDL files generation, and FuseSoc for
describing the manifest file and generating tool-dependent scripts
(e.g. Verilator, Questasim, Vivado, Design Compiler, etc.).

X-HEEP is fully compliant with RISC-V, thus the standard RISC-V
GCC or LLVM can be used for compiling applications. It includes
several application examples, a HAL, and FreeRTOS support, which
is the most used open-source real-time operating system.

X-HEEP is a work in progress, and we expect to expand the
number of configuration knobs, as well as expand the peripheral
and CPUs supported.

In conclusion, the X-HEEP microcontroller is a powerful and
flexible platform for building embedded systems. Its open-source
design, easy configurability, and ability to support custom exten-
sions make it an attractive option for SoC designers. With its set of
peripherals and expansion headers, X-HEEP is well-suited for use
in a wide range of applications, from simple sensors to complex
control systems.
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