
An Open-Hardware Coarse-Grained Reconfigurable Array for
Edge Computing

Rubén Rodríguez Álvarez, Benoît Denkinger, Juan Sapriza, José Miranda Calero, Giovanni Ansaloni,
and David Atienza Alonso

EPFL
Lausanne, Switzerland

ruben.rodriguezalvarez@epfl.ch

ABSTRACT
In this work, we propose an open-hardware low-power coarse-
grained reconfigurable array connected to a lightweight microcon-
troller and enclosed in an application mapping framework. The
latter provides complete support to configure kernels in the recon-
figurable array, execute applications, and measure performance.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
CGRA, edge computing, open source, open hardware

ACM Reference Format:
Rubén Rodríguez Álvarez, Benoît Denkinger, Juan Sapriza, José Miranda
Calero, Giovanni Ansaloni, and David Atienza Alonso. 2023. An Open-
Hardware Coarse-Grained Reconfigurable Array for Edge Computing. In
20th ACM International Conference on Computing Frontiers (CF ’23), May
9–11, 2023, Bologna, Italy. ACM, New York, NY, USA, 2 pages. https://doi.
org/10.1145/3587135.3591437

1 INTRODUCTION
Coarse-grained reconfigurable arrays (CGRAs) are composed of a
mesh of processing elements, each typically embedding an arithmetic-
logic unit (ALU) and a small register file. They can efficiently host
computational kernels derived from the Data Flow Graph (DFG) of
applications. Since they are reconfigurable at the operation level,
they present a much lower area for control logic and require little
time for reconfiguration. Herein, we introduce an open-hardware
and low-power CGRA design and its companion framework for
application mapping,1 developed at the Embedded Systems Labo-
ratory (ESL) of EPFL. The CGRA can be integrated into a system
as a memory-mapped accelerator connected to the system bus. In-
deed, we provide an example of its integration with the X-HEEP
microcontroller,2 which creates a platform able to execute complete

1The RTL code and its integration into an open-source microcontroller can be down-
loaded at https://github.com/esl-epfl/cgra_x_heep.
2X-HEEP is an open-source RISC-V based microcontroller for building edge computing
platforms https://github.com/esl-epfl/x-heep.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’23, May 9–11, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0140-5/23/05.
https://doi.org/10.1145/3587135.3591437

S
oC

 b
u
s

in
te

rc
on

n
ec

ti
on

C
O

N
TE

X
T

M
E
M

O
R
Y

(2
K
iB

)

DMA

SYNCHRONIZER

RC0

RC1

RC2

RC3

COL0

RC8

RC9

RC10

RC11

COL2

RC12

RC13

RC14

RC15

COL3

CGRA

COL1

RC4

RC5

RC6

RC7

M (4x)

S

SCGRA CONTROLLER

PC PC PC PC

RECONFIGURABLE ARRAY

K
er

n
el

 c
on

fi
g
.

Figure 1: CGRA architecture (M: master port, S: slave port).
All RCs have a nearest neighbours interconnection torus, but
for simplicity, it is only shown for a few cells (RC0-RC12 and
RC12-RC15).

applications where some specific kernels can be accelerated by the
CGRA.

Completing the CGRA framework is a firmware library, written
in C, enabling to interface applications with the accelerator. The
full system can be simulated for testing and validation using Ver-
ilator, Questasim, or VCS. The reconfigurable array size (i.e., the
number of reconfigurable cells and their layout) can be changed for
design exploration depending on the specific application domain.
This reconfigurability will be further simplified in the future and
the testing environment extended to also support an FPGA-based
emulation platform, which will enable even faster prototyping and
validation in a physical device.

2 CGRA ARCHITECTURE
A block scheme of the CGRA architecture is shown in Figure 1.
Its default configuration features a four-by-four array of identical
reconfigurable cells (RCs), which are interconnected with the four
nearest neighbours in a torus configuration to enable data move-
ment within the reconfigurable mesh. Each RC is composed of one

This work has been partially supported by the Swiss NSF ML-Edge Project (GA No.
200020 182009), in part by the InnosuisseWaSTeLeSS Innovation project (GaNo. 51864.1
IP-ENG) and in part by the RESoRT Project (GA No. REG-19-019) from Fondation
Botnar.

https://doi.org/10.1145/3587135.3591437
https://doi.org/10.1145/3587135.3591437
https://github.com/esl-epfl/cgra_x_heep
https://github.com/esl-epfl/x-heep
https://doi.org/10.1145/3587135.3591437

CF ’23, May 9–11, 2023, Bologna, Italy Rodríguez Álvarez, et al.

Table 1: RC 32-bit word instruction format

Field muxAsel muxBsel aluOp rfSel rfWe muxFsel imm
Bits 31:28 27:24 23:18 17:16 15 14:12 11:0

ALU, two multiplexed inputs, one output register, a four-element
register file, and a 32 words private program memory. It is time-
multiplexed —each RC executes at each clock cycle the instruction
indexed by the column program counter (PC)— enabling the execu-
tion of modulo-scheduled loops [2]. Moreover, each RC can use its
own internally stored values or the output value of any of its four
closest neighbours (top, left, bottom, or right).

The proposed accelerator is connected directly to the main mem-
ory through four master ports (one per column), which are con-
trolled by direct memory access (DMA). Additionally, these can
access the data in parallel if the system bus allows multiple master-
slave transactions simultaneously (this is the default bus configura-
tion for the X-HEEP instantiation provided as a proof-of-concept).
Each column stores the addresses for reading and writing, which
can be configured from the CPU.

The CGRA instruction set allows computing a wide variety of
kernels using 32-bit basic arithmetic and logical operations. Ad-
ditionally, conditional and unconditional jumps are supported, al-
lowing the mapping of kernels with if statements and for loops.
Note also that jumps are managed by the hardware on a column-
by-column basis, as several kernels can be mapped or executed
concurrently, and each can require one or multiple columns.

Input/output transfers are managed by direct and indirect loads
and stores. Direct loads/stores access to the position in memory con-
figured with the read andwrite addresses, and it is auto-incremental.
Conversely, indirect loads/stores encode the address to be used as
part of the instruction, which is then stored in a dedicated register.

The CGRA instruction word format has static bit fields for all the
instructions (see Table 1). Fields are linked with the multiplexers
that control the operation executed in the ALU and the operands
sources. This arrangement waives the need for a decoder and al-
lows the hardware to execute one instruction per cycle for simple
operations. The cycle latency of loads and stores depends on the
system bus, while multiplications are performed in 3 cycles in order
to relax the critical path.

The CGRA comprises a context memory of 2 KiB that stores the
instructions describing kernels that can be loaded at run-time in
the RCs according to the application requirements. This memory is
connected to the system bus, and it is programmed by the CPU. A
CGRA synchronizer schedules the acceleration request from the
CPU on the available columns of RCs by copying and executing the
instructions in the RCs, as detailed in [1]. If a kernel request can be
executed in the columns available at run-time, the instructions from
the kernel are copied from the context memory to the private mem-
ory of the corresponding RCs and the execution is initiated. Other-
wise, the synchronizer stalls the request until enough resources are
present. Hence, kernels are mapped into specific columns inside the
RCs mesh at run-time instead of compile time, resulting in a flexible
use of resources. The synchronizer incorporates a set of 32 control
slave registers to configure and launch the kernel’s execution. A
set of these registers also provide performance counters that allow
measuring the performance and utilization of kernel execution.

Table 2: Post-synthesis area breakdown of a 4 × 4 CGRA in-
stance. Total area is ∼0.4mm2 in 65nm technology.

Block Ctx &
kernel Sync. Ctrl. DMA Program

mem.
ALU &
Muxes

Data
regs.

Area (%) 7 4 1 2 39 43 4

Finally, the kernel configuration memory (with 15 elements)
is used to describe the kernels stored in the context memory. It
specifies for each kernel the number of columns required, the start
position of the instructions in the context memory, and the number
of instructions that the kernel encodes and need to be copied into
the RCs private memory.

This CGRA was included in the first ASIC implementation of
X-HEEP using the 65 nm low-power LVT TSMC technology node.
The area occupied by the CGRA after synthesis is 402 985 µm2. The
area breakdown in Table 2 shows that most of the area is occupied
by the datapath and the program memories, while the control logic
only represents a minor portion of the total area, as opposed to
other reconfigurable arrays with greater granularity such as FPGAs.
The context memory is built with SRAM macros while the program
memories use registers implemented with standard cells, which
explains the difference in area size, although both have the same
memory size. The clock speed achieved for the complete system is
250MHz (same clock used by the CGRA).

3 CGRA ASSEMBLER AND FIRMWARE
An assembler is provided to generate binary configuration words
from a description of mapped/scheduled operations. The framework
eases the programming effort for governing the CGRA execution,
as operations can be described in human-readable form. Implemen-
tations of benchmark kernels, described as mapped operations in
assembly language, are provided within the framework. These ker-
nels are divided into two sets: manually mapped kernels and kernels
obtained from the SAT-MapIt [3] modulo scheduling compiler3.

Also part of the CGRA companion software suite are utilities
for the generation of test C code functions, which allow launching
kernels from an application to validate the CGRA functionality
and to compare performance with respect to software run-time on
the host processor, for example. Several kernels can be configured
within the same context memory as far as the instructions generated
fit in the context memory. In the proof-of-context designwe provide,
the number of instructions per RC times the number of columns of
the kernel for all kernels has to be lower than 128.

REFERENCES
[1] Loris Duch, Soumya Basu, Rubén Braojos, David Atienza, Giovanni Ansaloni,

and Laura Pozzi. 2016. A multi-core reconfigurable architecture for ultra-low
power bio-signal analysis. In 2016 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 416–419.

[2] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. 2003. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. IEE Proceedings-Computers and Digital
Techniques 150, 5 (2003), 255–261.

[3] Cristian Tirelli, Lorenzo Ferretti, and Laura Pozzi. 2023. SAT-MapIt: A SAT-based
Modulo Scheduling Mapper for Coarse Grain Reconfigurable Architectures. In To
appear in DATE’23.

3SAT-MapIt is an open-source, SAT-based compiler for CGRAs, available at https:
//github.com/CristianTirelli/SAT-MapIt.

https://github.com/CristianTirelli/SAT-MapIt
https://github.com/CristianTirelli/SAT-MapIt

	Abstract
	1 Introduction
	2 CGRA architecture
	3 CGRA assembler and firmware
	References

