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Abstract

This thesis presents advancements in the understanding of the plasma conditions leading

to the excitation and saturation of the Edge Harmonic Oscillations (EHOs) observed during

QH-mode operation in tokamak plasmas. Such operations represent a safer alternative with

respect to H-mode due to the absence of Edge Localised Modes (ELMs) while retaining high

energy confinement and pedestal height. In this work, EHOs have been assumed to be the

nonlinear evolution of linearly unstable external infernal (exfernal) modes. It is consistently

found that exfernal modes can be excited and nonlinearly saturated in wide regions of the

parameter space. Such regions have been identified through the use of various analytical and

numerical tools developed within the ideal MHD model, including linear analytical modelling,

linear stability software, and nonlinear equilibrium and initial value simulations. An expanded

set of large aspect ratio equations describing the linear stability of exfernal modes is derived

analytically, including higher order terms in the expansion of the safety factor around the

rational surface, which allows for the effects of finite edge magnetic shear. Numerical solution

of the equations provides the linearly unstable exfernal mode parameter space with respect

to pedestal pressure gradient, pedestal width, edge safety factor and edge magnetic shear.

Nonlinearly saturated exfernal modes calculated with the 3D VMEC free boundary code are

found in regions of the parameter space where the exfernal modes are linearly unstable to the

2D VMEC neighbour state. The obtained critical value of the edge magnetic shear in the VMEC
simulations is also recovered by the linear stability analysis. The parameter space is found to be

reduced by the presence of a plasma separatrix due to a partial stabilisation of the external kink

current-driven branch of the exfernal mode. An analytical estimation of the critical magnetic

shear for the excitation of exfernal modes in diverted plasmas is also presented. Finally, it is

shown that the parameter space for the saturation of external modes can be expanded through

the application of non-axisymmetric Magnetic Perturbations (MPs). This is done analytically

using a linear time-invariant perturbation of the 2D equilibrium assuming an external helical

magnetic perturbation, and also in the VMEC code by the inclusion of non-axisymmetric coils

in the calculation of the vacuum field. The approaches were applied to saturated external

kink and exfernal modes. For the external kink case, quantitative agreement is found in the

saturated amplitude obtained with the linear model and with the VMEC code for cases where

the external kink is stable in the absence of MPs. For the case of saturated exfernal modes, only
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Abstract

qualitative agreement is found, possibly due to the approximations taken in the calculation of

the analytical model. Nevertheless, a significant expansion of the parameter space of saturated

exfernal modes is obtained via the introduction of symmetry breaking coils, resulting in an

appealing route for future reactor operations.

Key words: exfernal, infernal, Edge Harmonic Oscillations, QH-mode, MHD, 3D, stability,

equilibrium, nonlinear, magnetic perturbations.
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Résumé

Cette thèse présente les avancées dans la compréhension des conditions du plasma menant à

l’excitation et à la saturation des Oscillations Harmoniques de Bord (EHOs) observées pendant

le fonctionnement en QH-mode dans les plasmas de tokamak. Ces opérations représentent

une alternative plus sûre par rapport au H-mode en raison de l’absence de Modes Localisés de

Bord tout en conservant un confinement d’énergie et une hauteur de piédestal élevé. Dans ce

travail, les EHO ont été supposés être l’évolution non linéaire des modes ’infernal’ externes

linéairement instables (exfernal). On constate systématiquement que les modes exfernal

peuvent être excités et saturés de manière non linéaire dans de larges régions de l’espace

des paramètres. Ces régions ont été identifiées par l’utilisation de divers outils analytiques

et numériques développés dans le cadre du modèle MHD idéal, y compris la modélisation

analytique linéaire, de logiciel de stabilité linéaire et les simulations non linéaires d’équilibre

et de valeur initiale. Un ensemble élargi d’équations décrivant la stabilité linéaire des modes

exfernal est dérivé analytiquement, y compris les termes d’ordre supérieur dans l’expansion

du facteur de sécurité (q) autour de la surface rationnelle, qui permet les effets du cisaillement

magnétique de bord fini. La solution numérique des équations fournit l’espace des paramètres

des modes exfernal linéairement instables en ce qui concerne le gradient de pression du

piédestal, la largeur du piédestal, le facteur de sécurité du bord et le cisaillement magnétique

du bord. Des modes exfernal saturés de façon non linéaire, calculée avec le code 3D VMEC avec

des conditions aux bord libres, sont trouvés dans les régions de l’espace des paramètres où

les modes exfernal sont linéairement instables par rapport à l’état voisin 2D VMEC. La valeur

critique obtenue du cisaillement magnétique de bord dans les simulations VMEC est égale-

ment retrouvée par l’analyse de stabilité linéaire. On constate que l’espace des paramètres

est réduit par la présence d’une séparatrice du plasma en raison d’une stabilisation partielle

de la branche du kink externe du mode exfernal. Une estimation analytique du cisaillement

magnétique critique pour l’excitation des modes exfernal dans les plasmas avec une sépa-

ratrice du plasma est également présentée. Enfin, il est montré que l’espace des paramètres

pour la saturation des modes externes peut être étendu par l’application de perturbations

magnétiques (MPs) non-axisymétriques. Ceci est réalisé analytiquement en utilisant une per-

turbation linéaire invariante dans le temps de l’équilibre 2D en supposant une perturbation

magnétique hélicoïdale externe, et également dans le code VMEC par l’inclusion de bobines
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non-axisymétriques dans le calcul du champ de vide. Ces approches ont été appliquées à des

modes saturés de type kink externe et exfernal. Pour le cas du kink externe, un accord quanti-

tatif est trouvé dans l’amplitude saturée obtenue avec le modèle linéaire et avec le code VMEC
pour les cas où le kink externe est stable en l’absence de MPs. Pour le cas des modes exfernal

saturés, seul un accord qualitatif est trouvé, peut-être en raison des approximations prises

dans le calcul du modèle analytique. Néanmoins, une expansion significative de l’espace des

paramètres des modes exfernal saturés est obtenue via l’introduction de bobines de rupture

de symétrie, ce qui constitue une voie intéressante pour l’exploitation future des réacteurs.

Mots clefs : exfernal, infernal, Oscillations Harmoniques de Bord (EHOs), QH-mode, MHD,

3D, stabilité, équilibre, non linéaire, perturbations magnétiques.
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1 Introduction

1.1 Magnetic confinement fusion as an energy source

The technological advancements in the production of clean energy should be able to keep

pace with the increased global energy demands if we want to maintain the living standards

of modern society without producing enormous amounts of greenhouse gases. The current

model in most countries produces most of its electricity ‘on demand’ due to the lack of energy

storage capacity1, meaning that large-scale, continuous source of electricity is always needed.

Right now, that spot is occupied by a combination of fossil fuel and nuclear fission power.

The use of fossil fuels needs to be reduced to the minimum possible for environmental and

public health reasons, as discussed at length in reference [Man22]. The positive use of nuclear

fission power is, on the other hand, debated in some countries. As of today, fission power is

the single available option that could replace the use of fossil fuel for on demand electricity

production, but it still has some caveats. Firstly, the fuel used is not renewable nor available for

every country, is highly radioactive and can in principle be used to increase the proliferation

of nuclear weapons, meaning that strict regulations need to take place in order to guarantee

a safe use of the resource. Secondly, while the risk of an accident is very low in novel fission

reactors, the consequences can be catastrophic 2.

1The most popular ways to store energy are in hydroelectric damps, batteries and hydrogen cells. Though all
of them promising, they still have issues. The first one depends on geographical conditions and is not available
everywhere, the second one is very expensive to do in large scale and has potential environmental issues, and the
technology of the third one is not mature enough to be economically viable.

2Contrary to popular belief, nuclear fission is one of the safest ways to generate electricity, even accounting for
all nuclear accidents [Mana]. Moreover, as of 2011 it was estimated that nuclear power saved 1.84 million of lives
and avoided 64 Gigatonnes of CO2 emission [KH13].
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A promising alternative for a large-scale continuous energy source is nuclear fusion power.

Fusion is the reaction that powers the stars, where light nuclei fuse together to create a heavier

elements. During the process, some of the mass of the reactants is transformed into energy

through Einstein’s equation ∆E = (mr −mp )c2, where mr and mp are the mass of the reactants

and of the products respectively, and c is the speed of light. The most promising fusion fuel for

energy production (at least for the first generation of reactors) is the Deuterium-Tritium (DT)

mix, that fuse through the following reaction

D +T −→ n(14.1 MeV )+4 He(3.5 MeV ). (1.1)

Note that the difference in energy goes to the reaction products as kinetic energy, where

the energy carried by the neutron is what is ultimately transformed into electricity through

heat exchange3. No radioactive products are produced from the fusion reaction, but the

highly energetic neutrons activate the reactor walls, making them radioactive. Low-activation

materials such as steel and concrete are currently under development, with the goal of fully

disposing or recycling the components of a fusion power plant within 100 years [Gor15]. Taking

this into account, hundreds of tons of medium time-scale radioactive waste are expected when

closing a fusion power plant. Nevertheless, the level of radioactivity would be several orders

of magnitude smaller than in fission power plants, where both the fuel and the products are

highly radioactive, with a half-life of thousands of years. Deuterium occurs vastly on Earth,

as it can be found in sea water in a concentration of 1 Deuterium per 6700 protons [Fri53].

Tritium however is extremely rare on Earth, but it can be bred from Lithium4 "on site" using

the neutrons produced by DT burn through one of the following reactions

6Li +n −→ T +4 He(2.05 MeV )+T (2.75 MeV )

7Li +n −→4 He +T +n −2.46 MeV.
(1.2)

3Other ideas to produce electricity from fusion are considered, including the use of hydrogen cells.
4Note that a starting amount of Tritium is required in a power plant, which might not be available following

current Tritium production trends [Cle22]. This however can be solved by breeding the Tritium for the first fusion
power plants in fission power plants.
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According to reference [US 22], it is estimated that the total land reserves of Lithium that

can potentially be mined in the near term are ∼ 8.8x107 t. Assuming 10% of recirculating

energy, 40% of fusion-to-electricity power conversion efficiency and a conversion of 1% of the

Lithium atoms into Tritium, the DT reaction could power the Earth for roughly ∼ 500 years

taking into account everyone in the current population consuming ∼ 7MW h/year (European

energy consumption level). Lithium is also diluted in sea water (∼ 2.24×1011 t [För81]), and

methods to extract it are expected to be exploited in the coming years due to the increased

Lithium global demand [Liu+20]. It is therefore clear that fusion fuel is widely available and

may potentially last for thousands of years5.

While fusion reactions can be produced with relatively simple methods (for example: [Glu20]),

the only way to get fusion energy gain is through thermonuclear reactions due to the relatively

small fusion cross section. In a thermonuclear process, the fuel must be heated to very high

temperatures (∼ 10−50 KeV for DT reactions in fusion reactors) and confined so that fusion

reactions can happen randomly over a period of time. At such high temperatures the atoms

in the fuel are in a ionised state, known as plasma state6. A sustained fusion reaction occurs

when the plasma is confined for long enough so that the energy produced by nuclear fusion

(carried by the 4He particle as the neutron cannot continue to heat the fuel) overcomes the

losses from all the other mechanisms, where the confinement time τE is given by the Lawson

criteria [Law57] for DT fuel

nTτE > 3×1021m−3keV s, (1.3)

where n and T are respectively the density and temperature of the plasma. In contrast with a

nuclear fission reactor, where a chain reaction needs to be controlled to maintain a manageable

amount of output power, in a nuclear fusion reactor the fuel needs to be confined so that the

reactions can take place. If confinement is lost, the fuel gets cold and the reactions stop, so

no major accidents (beyond damaging the reactor) can occur. A few methods exist to confine

5This figure is only related to the availability of D and T. Other materials related to fusion energy production
such as neutron multipliers to increase Tritium breeding impose a more severe restriction on the availability of
fusion power.

6A plasma is characterised by globally quasi-neutrality and by exhibiting collective particle behaviour, particu-
larly in response to electric and magnetic fields.
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Figure 1.1: Schematic diagram of a tokamak. The toroidal coils (blue) produce the magnetic
field in the toroidal direction (blue arrows), while the a time-varying current in the central
solenoid (green) induce a toroidal current (single green arrow) in the plasma producing a
magnetic field in the poloidal direction (green arrows). The superposition of the two magnetic
fields creates magnetic flux surfaces with helical field lines (black). Also in the figure are shown
the outer poloidal field coils, which are used for plasma shaping and control. Obtained from
EUROfusion.

fusion plasmas. This thesis is focused on the magnetic confinement approach, where the

main idea is to magnetically levitate the super-hot plasma inside of a vacuum chamber to

avoid both cooling the fuel and damaging the walls of the container. The most successful

magnetic confinement configuration up to date is the tokamak, presented schematically in

figure 1.1. A tokamak is a toroidal device where the particles in the plasma are confined by

two superimposed sources of magnetic field. The first one is produced by toroidal coils, which

provide a magnetic field in the symmetry axis of the torus, herein referred to as the toroidal

direction. The second one is a magnetic field in the poloidal direction, created by driving a

toroidal electrical current in the plasma itself. Such current can be driven by injecting energy

into the plasma in one preferential direction (by either microwave power heating or injection

of highly energetic neutral particles), with the aid of a central solenoid acting as an inductive

transformer, or through a kinetic mechanism known as bootstrap current generation [Pee00].

The resulting magnetic field lines revolve helically around the plasma with a certain pitch

angle. As will be discussed later in Chapter 2, the pitch angle defines the strength at which

4



1.1 Magnetic confinement fusion as an energy source

magnetic field lines bend in response to a plasma perturbation. The macroscopic interplay

between the plasma pressure, current and external magnetic field can be described by the

Magneto-hydrodynamics (MHD) model, where the plasma is assumed to be an electrically

conductive fluid. In this thesis, the MHD model is used to assess equilibrium and stability of

tokamak plasmas in advanced operational scenarios with optimised confinement properties.

As we have seen, fusion power is in many ways the ideal energy source. Energy production

is carbon-neutral, the fuel is abundant and widely available to most countries, it produces a

much lower amount of radioactive waste compared to fission, and is intrinsically safe. The

caveat with fusion power is that it is extremely difficult to achieve. After more than 60 years

of experiments, as of 2022 the world record on fusion energy produced is held by the Joint

European Torus (JET) tokamak, which in 2021 produced 59 Mega Joules over 5 seconds during

its second DT experimental campaign [Gib22]. The ratio of the output power with respect

to the input power (denominated as the Q factor) on the aforementioned discharge was of

Q = 0.33. For electricity production, it is projected that a power plant should have at least Q = 10,

which is the goal of the International Thermonuclear Experimental Reactor (ITER), expected

to start DT operations around 2035. Even if ITER is successful in achieving Q = 10, it is still an

experiment and will not produce electricity. The European road map considers that the DEMO

reactor, which is the next step after ITER, will be the first-of-a-kind power plant, but operation

is expected to start around the year 2050. Countries as the United Kingdom [Manb], China

and South Korea [LNL19] also plan to have their own first-of-a-kind fusion power plants in

operation between 2040 and 2050. It is therefore clear that the current road map for including

fusion power into the electrical grid does not match the goals for lowering carbon emissions 7.

The main reason for such long timelines is that the most conservative scaling laws provided

by empirical data on present-day tokamaks suggest that the plasma volume in a power plant

should be between ∼ 1000−3500 m3. Building such a large reactor requires a huge monetary

investment and strong international collaboration. ITER for example, which is ∼ 800 m3, is

being built by the European Union, United States, India, Japan, Russia, North Korea and China,

with an estimated cost of $ 22 billion US dollars [Gib22]. While the cost of future power plants

is expected to drop as the industrial processes related to the construction of fusion reactors

are optimised [LLK16], it is not yet clear when (if ever) fusion power will be commercially

competitive with other sources of electricity due to the current uncertainties on its feasibility

7Many private companies have now entered the race for fusion energy, promising to deliver electricity around
the year 2030. It is however unclear if they will be able to achieve it.
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as an energy source.

Such uncertainties are related to the management of power exhaust from the plasma, Tritium

breeding technology, wall and magnet damage due to neutron irradiation, steady state op-

eration and plasma disruption avoidance. These issues are experimental targets of the ITER

project, and most of the fusion-related research done in the world is dedicated to the solution

of these problems. The focus of the present thesis is related to the plasma disruption avoid-

ance, particularly on the study of disruption-free tokamak operational modes. The importance

of this topic relies on the fact that disruptions can release large portions of the confined energy

and particles into the Plasma-Facing Components (PFC) and seriously damage some of the

components (e.g. superconducting coils) due to the large electromagnetic forces associated

with the disruption. Regular maintenance of the PFC and other components due to disruption

damage will limit the operational time of the reactor, having a direct impact on the cost of

electricity of a power plant.

In summary, fusion power offers a clean source of continuous electricity, but the complexity of

the technology and cost of electricity might make it out of reach to be deployed in large-scale,

especially in developing countries. Research and development is therefore needed to solve

these problems and make fusion energy a reality in the near future.

1.2 Tokamak modes of operation, safety limits and other concerns

In tokamak devices, the combination of the toroidal and poloidal magnetic fields creates

toroidaly axisymmetric nested magnetic surfaces (a detailed description is given in Chapter 2).

The movement of plasma particles along the magnetic field lines remains well confined to the

surfaces thanks to the toroidal symmetry of the device8. Particle transport across magnetic

surfaces occurs due to different types of particle collisions, but is ultimately dominated by

turbulence. Depending on how well the particles are confined in their magnetic surfaces, two

basic families of tokamak operation can be defined: the low-confinement mode (L-mode)

and the high-confinement mode (H-mode) families. In the L-mode family, the density and

temperature are normally higher at the plasma core and monotonically decrease towards the

edge without sharp gradients. Energy, particle and impurity transport are relatively high, and

8In magnetic confinement configurations without toroidal symmetry (such as stellarators), confinement along
the magnetic field direction is not guaranteed.

6
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heat exhaust across the last closed magnetic surface is continuous and manageable.

The H-mode family of tokamak operation is characterised by the presence of edge Transport

Barriers (TB), which are regions of steep density and temperature gradient that are associated

with reduced turbulent transport across magnetic surfaces. It is believed that the TB is created

due to an increased deepness in the radial electric field (Er ) well at the plasma edge formed by

a self-reorganisation in the plasma when a threshold on injected external power is crossed

[FFH92; Wag07]. The core plasma density and temperature profiles sit on top of the TB

(commonly denominated as the ‘pedestal’), reaching higher values with respect to L-mode

confinement, as shown schematically in figure 1.2. Energy, particle and impurity confinement

is improved by a factor of∼ 2 [Wag07] with respect to L-mode, but the large gradients associated

with the TB make the plasma equilibrium prone to MHD instabilities such as Edge Localised

Modes (ELMs). ELMs are short-lived, periodic, violent bursts of plasma that release a fraction

of the confined heat and particles from the plasma locally. Because the fusion power yield

scales favourably with plasma pressure, H-mode has become the operational baseline for

nearly all tokamaks today and for future reactors like ITER and DEMO. Nevertheless, the

periodic confinement degradation and the heat load deposited on the PFC caused by ELMs

might significantly shorten the lifetime of reactor-size tokamaks. In addition to this problem,

H-mode might confine impurities coming from the wall ’too well’, which in JET, ITER and

future reactors must be made of high-Z metals to avoid Tritium retention inside the walls.

Accumulation of high-Z impurities inside the plasma decreases the temperature and can lead

to radiative termination of the discharge due to Bremsstrahlung radiation [Püt+13; Las+21].

Figure 1.2: Diagram of the radial pressure profiles observed in L-mode and H-mode. Note that
P ∼ nT , where P , n and T are the plasma pressure, density and temperature respectively.
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Because of this, an increased effort has been devoted to develop ELM-free operational modes

that could be scaled up to power plant scale. Two modes of operation stand out within the

L-mode family, the so-called I-mode [Why+10] and negative triangularity [Por+] operation.

In I-mode, a TB is formed in the temperature profile but not in the density profile, thus

providing continuous transport of particle exhaust and impurities while maintaining high

energy confinement and avoiding ELMs. Negative triangularity plasmas do not exhibit a

TB, but the energy confinement is improved due to the shape-related partial stabilisation

of trapped electron modes, which is the dominant drive for turbulence transport in such

plasmas [Mar+09]. Within the H-mode family, ELM control (and avoidance) can be achieved

by applying Resonant Magnetic Perturbations (RMPs) from a set of non-axisymmetric external

coils [Eva+04]. It is thought that the local destabilisation of MHD modes at the plasma edge

together with the stochatisation of the magnetic field lines induced by the RMPs enhance the

particle transport, thus avoiding crossing the threshold of ELMs onset [Ora+17]. A good review

of the H-mode operational regimes with no ELMs is given in reference [Vie18].

An additional intrinsically ELM-free operational mode exists within the H-mode family: the

Quiescent H-mode (QH-mode). Temperature and density TBs are formed during QH-mode

operation, but ELMs are avoided by operating on an ‘ELM-stable’ region of the parameter

space, accessed in plasmas with low edge collisionality and in the presence of sheared poloidal

plasma flows. The precise access conditions to QH-mode are discussed in Chapter 3. Un-

der such conditions, ELMs are replaced by long-wavelength MHD instabilities called Edge

Harmonic Oscillations (EHOs) that saturates at the plasma edge and enhances the particle

transport across the last closed magnetic surface. While QH-mode has been obtained in some

tokamaks today [Bur+01; Sol+10; Sut+04; Oya+06], robust QH-mode operation in present-day

machines with metallic walls has not been very successful so far, which is crucial to prepare

operations for ITER and DEMO. Therefore, a careful revision of the parameter space of exci-

tation and saturation of EHOs is required. The exploration of such parameter space using

numerical modelling and analytical methods is the main focus of this thesis.

1.3 Thesis contribution and outline

The study of QH-mode plasmas and the conditions leading to the excitation and saturation of

Edge Harmonic Oscillations is undertaken in this thesis within the frame of the ideal MHD

model. Because of this, Chapter 2 is dedicated to the description of the model, the fundamental
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equations and their validity to describe the dynamics of fusion plasmas. The mathematical

formalism used to describe the magnetic field in toroidal devices is presented along with

the straight field line coordinate system, which is used throughout the thesis to perform

calculations and analysis. The ideal MHD equilibrium equation and the perturbed MHD

momentum equation are the two pillars on which this thesis rests. A description of these

equations and methods to solve them analytically and numerically are discussed for different

configurations of interest.

In Chapter 3 a detailed review of the physics related to the access of QH-mode and the

excitation conditions of EHOs is presented. The linear theory of exfernal modes, proposed

as the mechanism for the excitation of EHOs in [ZHS12; ZKV13a], and fully developed in

[Bru+18b; Bru+19b] is also introduced. Exfernal modes can be excited by the combined

effect of large pressure gradient in the pedestal region and low magnetic field line bending

stabilisation. The latter effect occurs due to an increased drive on the edge bootstrap current,

which can potentially make the edge magnetic shear9 weak over an extended region of the

plasma. The parameter space with respect to these two effects is calculated using the linear

theory, reproducing the results of previous analytical and numerical work [ZKV13a; Bru+18b].

The nonlinear saturation of exfernal modes is associated to the observed EHOs. Therefore, an

example on the calculation of nonlinearly saturated exfernal modes in DEMO is presented.

Due to the complexity of the problem, such a calculation is performed numerically with the

aid of a suit of MHD equilibrium and stability codes, which are presented in appendix A. Since

EHOs are saturated instabilities that perturb the plasma boundary, free boundary simulations

were needed to recover the measured edge corrugations. An integrated tool composed of

different MHD codes was developed during the thesis in order to calculate the necessary

vacuum field to produce the desired free boundary QH-mode equilibrium. This work was

part of a EUROfusion work package to assess the effect of EHOs on fast particle transport

in DEMO. The full report is given in reference [BSG20]. Finally, in this chapter we present

a comparison of the saturated states calculated numerically in JET-like plasmas using two

different nonlinear approaches, provided by the VMEC [HW83] and JOREK [Hoe+21] codes. The

work was done during this thesis in collaboration with R. Ramasamy and M. Hoelzl, from the

Max Plank Institute for Plasma Physics. The obtained results led to the publication: Modeling of

saturated external MHD instabilities in tokamaks: A comparison of 3D free boundary equilibria

9The magnetic shear is proportional to the gradient of the ‘safety factor’, which is defined as the inverse magnetic
field line pitch angle. A detailed description is given in Chapter 2.
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and nonlinear stability calculations by R. Ramasamy, G. Bustos-Ramirez, et. al. in Physics

of Plasmas [Ram+22]. The author’s contributions to this paper included the calculation of

the VMEC 2D and 3D equilibria, help in the related VMEC numerical diagnostics, help on the

design of the input parameters of the JOREK simulations, and help on the interpretation and

comparison of the JOREK results with VMEC.

Chapter 4 further explores the parameter space for the excitation of exfernal modes, consid-

ering that the magnetic shear does not completely vanish at the plasma edge. To include

such effects in the linear theory of exfernal modes, new stability equations that include higher

order corrections on the field line bending stabilisation contribution were derived. While

such equations are applied to the case of exfernal modes, they are general and can be used

also for internal modes by applying the appropriate boundary conditions. A generalisation

of the equations including plasma resistivity effects is given by J. P. Graves et. al. in reference

[GCW22]. The equations were solved numerically for simplified profiles that qualitatively

reproduce the key aspects observed during QH-mode operation, which led to the calculation

of the parameter space of exfernal modes with respect to edge magnetic shear. A comparison

of the obtained linear results with well established MHD codes is also presented in this chapter.

Finally, the modification of the parameter space due to the presence of a plasma separatrix

(defined in Chapter 2) is explored, and numerical and analytical solutions are presented. The

findings in this chapter were published in Edge harmonic oscillations in plasmas with a sepa-

ratrix and the effect of edge magnetic shear by G. Bustos-Ramirez, J. P. Graves and D. Brunetti

in the Plasma Physics and Controlled Fusion Journal [BGB21].

In Chapter 5 we present an analytical linear model to describe the saturated states of external

modes in the presence of 3D vacuum magnetic perturbations. The model is applied first

to the case of saturated external kink modes (defined in Chapter 2). It is found that such

magnetic perturbations can induce saturated external kink modes in stable regions of the

parameter space. The saturated states obtained analytically are compared with the ones

obtained numerically using the fully nonlinear VMEC free boundary equilibrium code. To

make a proper comparison between the two approaches, the geometry of the 3D vacuum

perturbations in VMEC is fully characterised. It is found that saturated states in VMEC agree well

with the analytical model for cases where the external kink mode is stable in the absence of

the externally applied 3D perturbations. Next, the analytical model was applied to saturated

exfernal modes and was again compared to the saturated states obtained numerically with
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the VMEC code. In this case the agreement is limited due to the approximations taken in

the derivation of the analytical model, but induced saturated exfernal modes were found in

both approaches for cases where the exfernal mode is stable in the absence of the magnetic

perturbations. Finally, the amplification of the parameter space for the saturation of exfernal

modes in the presence of 3D vacuum magnetic perturbations is explored. The results presented

in this chapter are under preparation for publication in the Plasma Physics and Controlled

Fusion journal: ‘The effects of non-axisymmetric magnetic perturbations on non-resonant

external modes’, by G. Bustos-Ramirez, J. P. Graves and D. Brunetti.

A final contribution of this thesis is the development of the VENUS-MHDpy code, presented

in appendix C. VENUS-MHDpy is suite of Python modules designed to discretise and solve

general eigenvalue problems in toroidal geometry, and is based on a previous Fortran version

written by S. Lanthaler [Lan20]. The code uses a mixed discretisation scheme, with Fourier

discretisation in the toroidal and poloidal directions, and finite element discretisation with

arbitrary order B-spline elements in the radial direction. For the Python code to be efficient,

a novel numerical approach was designed to take advantage of vector operations. Several

MHD linear stability models were implemented and benchmarked against the KINX linear

stability code [Deg+97]. One of these models considers the inclusion of strong plasma flows in

the MHD equilibrium equations, which are calculated using the upgraded flow version of the

VMEC code [Coo+14]. Up to now, the models cannot handle vacuum boundary conditions. The

code is currently being upgraded to handle such conditions in order to asses the stability of

exfernal modes in the presence of strong toroidal flows.

Finally, Chapter 6 offers some general conclusions of the thesis and provides an outlook for

future work.
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2 The ideal MHD model

The goal of this chapter is to introduce the ideal MagnetoHydroDynamics (MHD) model along

with the analytical and numerical tools that will be used throughout the rest of the thesis. This

is done first by providing a description of the ideal MHD equations and their region of validity,

particularly concerning their use on describing fusion plasmas. Later, the representation of the

magnetic field in generalised flux coordinates is discussed in detail, as well as the quantities

describing the magnetic field that are used in analytical and numerical calculations throughout

the thesis. Next, the concept of MHD equilibria in tokamaks is presented, which is used in

the calculation of 2D and 3D saturated plasma states in Chapters 3, 4 and 5. Unstable 2D

equilibria might evolve into 3D saturated states, so the concept of linear MHD stability along

with the mathematical formalism leading to the perturbed MHD equations is also introduced

in this chapter. Finally, the relation between linear MHD unstable plasmas and nonlinear 3D

saturated states is addressed.

2.1 Description and validity of the ideal MHD model

The trajectories of the plasma particles in phase space can be described by the distribution

function of each of the particle species. The dynamics of the distribution function depends on

the interaction between the particles and electromagnetic fields (through Maxwell’s equations)

and between the particles themselves (through particle collision operators). The electric

and magnetic fields change according to the particle dynamics, and need to be calculated

self-consistently along with the evolution of the distribution function. While this procedure
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should in principle provide an accurate description of the plasma dynamics, it is extremely

complicated to perform. Because of this, several simplifications exist whose purpose is to

resolve only a fraction of the physics, one of them being the ideal MHD model.

Ideal MHD aims to describe low-frequency, long-wavelength phenomena in a plasma, which

is itself modelled as a single superconducting fluid. Such phenomena includes the equilibrium

states of multidimensional configurations found in fusion plasmas, as well as some of the most

important instabilities observed experimentally. The MHD regime of interest is characterised

by the macroscopic motion of the plasma, which occurs over the time the thermal ions move

across the whole plasma volume: τM HD = a/VT i (where a is the characteristic plasma length

and VT i =
p

2Ti /mi is the ion thermal velocity, with Ti and mi the ion temperature and mass

respectively). In fusion relevant scenarios this corresponds to a few microseconds.

Several approximations are made in the ideal MHD model to target the length and time scales

of interest. The first one neglects the displacement current in Ampere’s law (∂E/∂t ∼ 0), which

implies that the phase velocity of the electromagnetic waves and the thermal velocity of the

particles are non-relativistic (i.e. ω/k,VT i ,VTe ≪ c). The second one neglects the net charge

density (ρ = ϵ0∇·E ∼ 0) and electron inertia (me → 0), implying that the electrons move on a

time scale much faster than the MHD time (τpe ≪ τM HD ) to cancel any charge imbalance that

appears as a result of a macroscopic charge separation. This leads to global quasi-neutrality

(ne = ni = n, where ne ,ni are the electron and ion number density respectively). As a result,

ideal MHD describes phenomena on a length scale much larger than the Debye length (λD ≪ a,

where λD = VTe /ωpe ) and that occurs with a frequency much smaller than the electron plasma

frequency (ωM HD ≪ωpe , where ωpe = τ−1
pe =

√
ne2/meϵ0, with e the electron charge). These

initial assumptions are well satisfied for most processes in fusion plasmas, and allow to

introduce the following fluid quantities:

ρ = mi n

u = vi

J = en(vi −ve )

P = Pi +Pe = 2nT

T = (Ti +Te )/2,

(2.1)
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where ρ is the mass density, u is the fluid bulk velocity, vi and ve are the ion and electron veloc-

ities, J is the current density, P the total plasma pressure and T the total plasma temperature.

The ideal MHD model relates these quantities through the following equations [GP04; Fre14]:

∂ρ

∂t
+∇· (ρu) = 0, (2.2)

ρ
du

d t
− J×B+∇P = 0, (2.3)

d

d t

(
P

ρΓ

)
= 0, (2.4)

E+u×B = 0, (2.5)

∇×E+ ∂B

∂t
= 0, (2.6)

∇×B−µ0J = 0, (2.7)

∇·B = 0, (2.8)

where d
d t ≡ ∂

∂t
+u ·∇ is the convective derivative, B and E are the magnetic and electric fields

respectively and Γ is the ratio of specific heats.

Important to the derivation of the momentum equation (2.3) is the assumption that the plasma

is collision-dominated, meaning that the particle collision time (∼ τi i ) is much smaller than

the characteristic MHD time. Then, the particle distribution function can be considered

as Maxwellian and the pressure isotropic. Moreover, the adiabatic equation of state (2.4),

which provides closure to the system of equations, requires the energy equalisation time

(τeq ∼ (mi /me )1/2τi i ) being much smaller than MHD time so that Te ∼ Ti ∼ T . Unfortunately,

plasmas of interest for fusion are nearly collisionless and therefore neither of these condi-

tions are satisfied. Nevertheless, near marginal stability and for many MHD instabilities the

plasma motion is incompressible and the dynamics parallel to the magnetic field becomes

unimportant. On the other hand, the dynamics perpendicular to the magnetic field can be

considered "pseudo-collisional" because particles are confined in the vicinity of the field

lines while executing their gyromotion orbit motion. Under this condition, equations 2.3 and

2.4 provide an accurate description of phenomena in fusion plasmas in the perpendicular

direction to the magnetic field, which is enough to describe long time-scale MHD equilibrium
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conditions and some of the most important plasma instabilities near marginal stability. It is

worth pointing out that instabilities that are significantly modified by plasma compression

or pressure anisotropy area also frequent in fusion experiments, and the physics needed to

describe these phenomena needs an accurate model of the parallel dynamics. Such dynamics

is more accurately modelled by kinetic theory, which is beyond the scope of this thesis.

The rest of the ideal MHD equations are the conservation of mass (equation 2.2), ideal Ohm’s

law (equation 2.5) and the pre-Maxwellian electrodynamics laws (equations 2.6-2.8). These

equations are well satisfied for fusion plasmas, but leave out the effect of magnetic diffusion.

This is important for closed field lines (B ·∇ ∼ 0) where resistivity is of the same order as the

other terms in the equations, so that in practice magnetic islands are allowed develop through

tearing and reconnection. Plasma resistivity (η) can be introduced into the equations via

Ohm’s law by substituting the right-hand-side of equation 2.5 with ηJ, giving rise to the resistive

MHD model. Nevertheless, time scales for resistive instabilities are much longer than the

characteristic MHD times, so it has little effect on ideal MHD times.

In summary, ideal MHD can accurately model slow (τpe ≪ τM HD ), macroscopic (λD ≪ a)

highly collisional ((mi /me )1/2τi i ≪ τM HD ) ideal (η∼ 0) plasma phenomena. For collisionless

plasmas, ideal MHD still provides a good description of equilibrium and stability perpendicular

to the magnetic field and long time-scale non-linear behaviour.

2.2 Flux coordinate systems and representation of the magnetic field

The most efficient way to confine a plasma is if it lies on closed magnetic surfaces. This

minimises the losses due to parallel particle and energy transport. Topologically speaking,

a torus allows the existence of closed magnetic surfaces because it can be fully covered by a

non-vanishing vector field. To represent the magnetic field in a torus it is useful to introduce

the concepts of stream functions and flux functions. A stream function is defined as a scalar

field f (r) such that B ·∇ f (r) = 0. If the stream function is constant not only along the field line

but also defines closed magnetic surfaces, then it is known as a flux function. The name of the

later derives from the fact that the magnetic flux in both poloidal and toroidal directions define

nested toroidal magnetic surfaces. The magnetic field in a torus can be written in Clebsch

form [Dha+91]
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B = ∇s ×∇G , (2.9)

where s and G are stream functions and equation 2.8 is automatically satisfied. ∇s is cho-

sen to be perpendicular to the magnetic surfaces and ∇G lies on magnetic surfaces but is

perpendicular to the magnetic field (see figure 2.1a). Note that any function that depends

solely on the variable ‘s’ is automatically a flux function, while in general stream functions

can have the form of f (s)g (G). It is very convenient to define the coordinate system (s,θ,φ)

which follows the alignment of field lines. Here, s is any function that labels flux surfaces (for

example the poloidal or toroidal magnetic flux), θ is a measure of the poloidal angle and φ is

the geometrical toroidal angle. The most general form to write the stream function G in this

set of coordinates is [Dha+91]:

G = a(s)θ+b(s)φ+ λ̃(s,θ,φ), (2.10)

where λ̃(s,θ,φ) is periodic in both angles. It follows that the contravariant components of the

magnetic field are Bθ = B ·∇θ = (a +∂θλ̃)/
p

g and Bφ = B ·∇φ = (b +∂φλ̃)/
p

g , where
p

g is the

Jacobian of the coordinate system. The functions a(s) and b(s) are obtained by calculating

the magnetic flux passing through the toroidal and poloidal surfaces in the torus. To start the

calculation, consider the integral

∫
dV B ·∇φ =

∫
dV ∇(φB) =

∫
φB ·dS

where dV is the differential volume integral and the first equality follows from equation 2.8.

Considering the flux passing through an open torus cut at a poloidal plane in the angle φ = 2π,

then its possible to write dS = n̂dSsur f +dSp (φ = 0)+dSp (φ = 2π). Since B ⊥ n̂ by definition

and φ is evaluated at 0 and 2π, the integral reduces to
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∫
dV B ·∇φ = 2π

∫
Sp

B ·dSp = 2πΨt (s), (2.11)

where the toroidal flux Ψt (s) is a flux function that only depends on the coordinate ‘s’. Using

similar arguments, the poloidal flux Ψp (s) is calculated as

∫
dV B ·∇θ = 2π

∫
St

B ·dSt = 2πΨp (s). (2.12)

where dSt is the differential element of a toroidal cut of the torus. Taking the derivative of

equations 2.11 and 2.12 with respect to ‘s’ and substituting the contravariant components of

the magnetic field give

dΨt

d s
=

1

2π

d

d s

∫
dVp

g
(a +∂θλ̃) =

1

2π

∫ 2π

0

∫ 2π

0
dθdφ(a +∂θλ̃) = 2πa(s)

dΨp

d s
= − 1

2π

d

d s

∫
dVp

g
(b +∂φλ̃) = − 1

2π

∫ 2π

0

∫ 2π

0
dθdφ(b +∂φλ̃) = −2πb(s),

(2.13)

where we have used∇s×∇θ·∇φ = 1/
p

g and the fact that λ̃ is periodic so that
∫ 2π

0

∫ 2π
0 ∂i λ̃dθdφ =

0. The magnetic field can therefore be written as

B =ψ′
t [1+∂θλ]∇s ×∇θ−ψ′

p

[
1−q(s)∂φλ

]∇s ×∇φ, (2.14)

where Ψt = 2πψt , Ψp = 2πψp and f ′ → d f /d s. Note the normalisation of the function λ = λ̃/ψ′
t .

The representation of the magnetic field given in equation 2.14 will be used later in the thesis

as it is adapted in the VMEC code [HW83]. The toroidal winding number q(s) =ψ′
t /ψ′

p (also

known as the ’safety factor’) has been substituted in equation 2.14. It represents the average

change in the toroidal angle with respect to the poloidal angle when moving along the field

line. It can also be interpreted as the number of times a magnetic field line performs a toroidal
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(a) (b) (c)

Figure 2.1: Representation of the magnetic field and magnetic field lines. (a) Surfaces defined
by Clebsch stream functions, (b) magnetic field lines in the θ−φ plane (also in SFL coordinates)
and (c) 3D representation of the field lines. Note that in figure (b) the field line gives 3 turns in
the toroidal direction for one poloidal turn, which can be seen in figure (c) by the 3 intersections
in the poloidal cut. Therefore, the safety factor of this particular magnetic surface is q(s0) = 3.

loop for each poloidal loop. A simple calculation of the local winding number can be directly

obtained from the equation of the magnetic field lines B×dr = 0, where dr is the differential

line element parallel to the field. The ‘s’ component of the equation can be arranged to give

ql oc (s,θ,φ) =
dφ

dθ
=

B ·∇φ
B ·∇θ = q(s)

1+∂θλ

1−q(s)∂φλ
. (2.15)

Under the change of variables θSF L = θ+λ the expression above reduces to

q(s) =
1

2π

∫ 2π

0
qloc (s,θSF L ,φ)dθSF L =

B ·∇φ
B ·∇θSF L

. (2.16)

In the set of coordinates (s,θSF L ,φ) it is easy to see from equation 2.15 that φ = q(s)θSF L +θ0,

meaning that the magnetic field lines are straight lines in the φ−θSF L plane with a pitch angle

equal to q(s) (see figure 2.1b). The set of coordinates (s,θSF L ,φ) is therefore known as Straight

Field Line (SFL) coordinate system. Note that the VMEC code does not in general use SFL

coordinates. The magnetic field is written in the more conventional Clebsch form
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B = ∇ψP (s)×∇(
q(s)θSF L −φ

)
. (2.17)

This reflects an important property of the magnetic field in a torus: field lines lie on surfaces

defined by the stream functions ψP (s) and q(s)θSF L −φ. When taking a constant s = s0, the

functionψP (s0) defines a toroidal magnetic surface. Therefore, hereon the ∇ψP ∝∇s direction

is referred to as the ‘radial direction’. On the other hand q(s)θSF L −φ defines a surface that

revolves helically around the torus. The intersection, given by q(s0)θSF L −φ, defines the

magnetic field lines that lie on surface s0 (see figure 2.1a).

A final remark is that the flux coordinate representation of the magnetic field is particularly

useful for closed flux surfaces, but not so much for open surfaces. In magnetic confinement

fusion devices one normally can have 2 configurations: limited and diverted. In the limited

one, the flux surfaces are closed from the core to the edge, where the last flux surface is

intercepted by a piece of material called a limiter that separates the plasma from the vacuum

chamber. In diverted configurations, the magnetic surfaces are closed from the core to almost

the edge, and they are separated from the vacuum by an open flux surface called the separatrix.

The magnetic field lines of the separatrix cross at one or more locations forming x-points, then

continue their trajectory towards a specific part of the machine called divertor, which has been

engineered to stand high heat flux. A property of diverted configurations is that the poloidal

magnetic field vanishes at the x-points, in which case field align coordinates are singular (note

that q →∞), and pose a problem for numerical computations. Normally, codes that are able

to calculate MHD equilibrium with separatrix use approximations to represent the singularity

or switch to a coordinate system that is not singular at the x-points, like Cartesian coordinates.

2.3 MHD equilibria in toroidal devices

Macroscopic equilibria in plasmas is described by equations 2.2-2.8 with ∂
∂t

→ 0. In particular,

the equilibrium momentum equation reads

ρ(u ·∇)u− J×B+∇P = 0, (2.18)
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which describes how the magnetic force
(

1
µ0

(∇×B)×B
)

balances the fluid forces
(
ρ(u ·∇)u+∇P

)
.

The order of the pressure gradient relative to the magnetic force is

∇p

J×B
∼ 2µ0P

B 2 ≡β, (2.19)

where the plasma parameter β has been defined as the ratio between the fluid pressure over

the magnetic pressure. It can be interpreted as the ‘amount’ of magnetic field needed to

confine a certain plasma pressure in equilibrium. Since the pressure is monotonically related

to fusion power, and increased magnetic field strength normally scales up the cost of the

fusion reactor, ideally it is aimed for β to be as large as possible. In reality, MHD instabilities

set an upper limit to the attainable value of β, which is of a few percent depending on the type

of magnetic configuration.

The order of the inertia term with respect to the pressure gradient is

ρ(u ·∇)u

∇p
∼ Ω2R2

2T /mi
≡ M 2

i , (2.20)

where Ω is the plasma rotation frequency and Mi is the ion Mach number, defined as the ratio

between the plasma flow velocity (∼ΩR) over the ion thermal velocity VT i . The equilibrium

equations can be solved in the rotating frame of reference taking into account the force

exerted on the plasma due to the non-inertial reference frame. As it turns out, in most fusion

experiments without external momentum input, the plasma flow is strongly subsonic (M 2
i ≪ 1).

This means that for those experiments inertial forces are negligible compared to the pressure

gradient force. Then, the momentum equation is reduced to

J×B = ∇P. (2.21)

Equation 2.21 is known as the static ideal MHD equilibrium equation. An important property

of MHD equilibria can be immediately derived from the projection of equation 2.21 on B and J
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to give

B ·∇P = 0

J ·∇P = 0.
(2.22)

In equilibrium, the magnetic and current density fields lie on nested surfaces of constant

pressure. It is pointed out here that it is common in experiments to have Mi ∼ 1, for instance

when external momentum is added to the plasma by neutral beam injection in spherical

tokamaks1. Moreover, certain instabilities are particularly sensitive to the plasma rotation

even when Mi ≪ 1 [Bru+14a; GHH00; WCG09], in which case equation 2.22 is not valid and

the pressure does not longer define magnetic surfaces (see appendix B.1 for details). Such

cases are not considered in the scope of this thesis.

2.3.1 The Grad-Shafranov equation with toroidal rotation

A great simplification in the analysis of plasma equilibria is to consider axisymmetry, meaning

that the physical quantities are independent from the variable representing a symmetry axis,

in this case, the toroidal angle: ∂/∂φ→ 0. It follows naturally to define a coordinate system

where one basis vector points in the direction of the symmetry (êφ), while the other two basis

vectors lie on the poloidal plane. This is the case for the set of coordinates defined in section §

2.2. Another common choice of coordinates is the cylindrical set (R, Z ,φ), where φ moves in

clockwise direction to preserve a right-hand system. The magnetic field in equation 2.14 can

be simplified by using the property of the coordinate basis êφ = R2∇φ =
p

g∇s ×∇θ to write

B =ψ′
p∇φ×∇s +F∇φ, (2.23)

where F = Bφ = ψ′
t [1+∂θλ] R2p

g . Taking now the toroidal contravariant component of the

momentum equation

1Currently there are no fusion reactors designed for putting energy on the electrical grid that use neutral beam
injection, which is the main heating scheme introducing angular plasma momentum.
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2.3 MHD equilibria in toroidal devices

ρ∇φ · (u ·∇)u = B · (∇φ× J)−∇P ·∇φ

−ρRΩ2∇R ·∇φ =
1

µ0R2 B i (∂φBi −∂i Bφ)

0 = −B ·∇F

µ0R2 ,

(2.24)

where it has been assumed that the plasma velocity only flows in the toroidal direction, so

(u · ∇)u = −1
2Ω

2(s)∇R2, with Ω the toroidal frequency rotation (see appendix B.1). Since in

axisymmetry any stream function is a flux function ( (B ·∇) f = Bθ∂θ f +Bφ∂φ f = Bθ∂θ f = 0),

equation 2.24 shows that F = F (s) is a flux function. An immediate consequence is that the

radial contravariant component of the current density is zero

J s = J ·∇s =
1

µ0
(∂θBφ−∂φBθ) = 0, (2.25)

where the first term vanishes because Bφ = F (s) and the second due to axisymmetry. This

means that the current density still flows along well defined magnetic flux surfaces even in

plasmas with equilibrium toroidal flow.

Equilibrium perpendicular to the flux surfaces is given by the Grad-Shafranov equation [GR58;

Sha58]. It is derived by simply projecting equation 2.18 on the radial covariant vector ês

−pU ês ·∇R2 = ês · (J×B)− ês ·∇P

−pU∂sR2 = ês ·
[
J× (∇φ×∇ψp +F∇φ)

]−∂sP

−pU∂sR2 = ês ·
[−∇ψp Jφ+F J×∇φ]− [

P̂ ′+ P̂ (R2 −R2
0)∂sU + P̂U∂sR2]eU (R2−R2

0 )

ψ′
p Jφ = − F F ′

µ0R2 − [
P̂ ′+ P̂ (R2 −R2

0)U ′]eU (R2−R2
0 ),

(2.26)

where the pressure has been substituted using equation B.5. The calculation of Jφ in general

coordinates follows from Ampere’s law (2.7)
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µ0 Jφ = (∇×B)φ =
[∇× (∇φ×∇ψp +F∇φ)

] ·∇φ
=

[∇φ(∇·∇ψp )+ (∇ψp ·∇)∇φ− (∇φ ·∇)∇ψp
] ·∇φ

=
1

R2 ∇·∇ψp +∇ψp ·∇
(

1

R2

)
= ∇·

(∇ψp

R2

)
.

(2.27)

Defining the operator ∆∗ψp ≡ R2∇·
(∇ψp

R2

)
and setting the coordinate s =ψp gives the classical

form of the Grad-Shafranov equation with toroidal flow [MP80]

∆∗ψp = −F
dF

dψp
−µ0R2

[
dP̂

dψp
+ P̂ (R2 −R2

0)
dU

dψp

]
eU R2

. (2.28)

Equation 2.28 is an elliptical second order non-linear differential equation forψp . The solution

requires the free functions p(s), F (s) and U (s) (or equivalent functions) to be provided exter-

nally along appropriate boundary conditions, which are normally extracted from experimental

data or physical intuition. Particularly, one can show that the functions F (s) and q(s) are

related using equation 2.15:

q(s) =
1

2π

∫ 2π

0

B ·∇φ
B ·∇θ dθ =

F (s)

2πψ′
p

∫ 2π

0

J (s,θ)

R2 dθ, (2.29)

where J is the Jacobian and the prime again denotes derivative with respect to ‘s’. Note that

comparing the equation above with equation 2.16, it follows that the magnetic field will trace

straight field lines in the φ−θ plane if the Jacobian is proportional to R2, in which case

q(s) =
FJ (s,θSF L)

R2ψ′
p

. (2.30)
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2.3 MHD equilibria in toroidal devices

Due to its nonlinear nature, equation 2.28 is normally solved numerically (see for example the

CHEASE code [LBS96] or FreeGS code [Dud]). Analytical solutions exist for particular functions

of P (ψp ) and F (ψp ) whose dependency on ψp is simple enough. Most notable, Solov’ev

proposed a set of linear profiles for the pressure and current density with zero rotation, for

which an exact analytical solution is found [Sol68]. While the solution gives incredibly useful

physical insight and is used routinely for code benchmark, it is not realistic for certain magnetic

configurations. Generalisations to include rotation [MP80] or other high−β configurations in

the presence of a separatrix [CF10] have been also obtained throughout the years.

2.3.2 The tokamak ordering

Solving equation 2.28 analytically in toroidal geometry is not a trivial task, but it can be

simplified considering different limits. A particularly useful one is the tokamak ordering

[WH66; GJW71], where the plasma is treated as a large aspect ratio torus: ϵ≡ a/R0 ≪ 1, where

ϵ−1 is the tokamak aspect ratio and a and R0 are the minor and major radius respectively.

Other quantities describing the equilibrium are ordered with respect to ϵ as

β∼ 2µ0P

B 2
0

∼ ϵ2,
Bp

Bt
=
ψ′

p |∇φ×∇s|
|F∇φ| ∼ ϵ, q(s) ∼ 1. (2.31)

These conditions describe (at least qualitatively) the physical phenomena required for MHD

equilibrium and stability in most experimental scenarios and have been used extensively

(the present thesis included) to gain physical insight on MHD phenomena. The equilibrium

solution is normally found by expanding the cylindrical map on flux coordinates as [GJW71]

R(r,θ) = R0

(
1+ϵ r

R0
cosθ− ϵ2

R0

[
∆(r )+

∞∑
m=2

Sm(r )cos(m −1)θ

]
+O (ϵ3)

)
Z (r,θ) = R0

(
ϵ

r

R0
− ϵ2

R0

∞∑
m=2

Sm(r )si n(m −1)θ+O (ϵ3
)

,

(2.32)

where the coefficients Sm(r ) describe the plasma shape, ∆(s) is the Shafranov Shift2 and the

2The inner magnetic surfaces are shifted along the êR axis due to a combination of the hoop force and tyre tube
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artificial tag ϵ labels the ordering of the terms. In this mapping, r has been chosen as the radial

coordinate with units of length, where the transformation is given by

r 2 = 2R0

∫ s

0

ψ′
p q

F
d s. (2.33)

Substituting the mapping in the Grad-Shafranov equation (2.28) in the flux coordinate system

(r,θ,φ) gives to leading order

1

2r 2 (r 2ψ2
p )′+R2

0µ0P̂ ′+F F ′ = 0, (2.34)

which describes the force balance between the plasma pressure gradient ∼ P ′ and the toroidal

(∼ F F ′) and poloidal (∼ ψp ) magnetic pressures in the êr direction. At the next order the

following independent equations are found for each harmonic

∆′′+
(

2
ψ′′

p

ψ′
p
+ 1

r

)
∆′− 1

R0
+2

r R0

(ψ′
p )2

[
P̂ (1+R2

0U )
]′

= 0.

S′′
m +

(
2
ψ′′

p

ψ′
p
+ 1

r

)
S′

m + 1−m2

r 2 Sm = 0,

(2.35)

where F F ′ has been substituted using equation 2.34. The first equation solves for the Shafranov

shift, and describes the force balance in the êR direction considering the plasma pressure

gradient, poloidal magnetic field and the centrifugal force due to toroidal rotation. The second

equation describes the penetration of shaping from the edge to the core. Note that equation

2.35 is homogeneous, while equation 2.34 can be solved in terms of the given functions F , P

and U along with appropriate boundary conditions.

force. The hoop force appears as a consequence of the toroidal current, similar to how a loop of wire expands
when carrying current. The tyre tube force arises due to the difference in the surface area between the inner and
outer parts of the torus on a magnetic surface with constant pressure.
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2.4 Linear MHD fluctuations and stability

If an axisymmetric MHD equilibria has been achieved in a plasma, it may not stay in the same

state for a long time. In experiments, the axisymmetric equilibrium might be perturbed by

external changes on the plasma, such as fuelling, heating, operation errors, etc. Moreover, ideal

MHD equilibria only assures that the sum of the slow macroscopic forces acting on the plasma

is zero, but fast and microscopic forces which are not present in the fluid description can

very well disturb the MHD equilibrium. The stability of the plasma is determined by how the

ideal MHD forces evolve in response to a perturbation. If the forces push the plasma towards

its initial equilibrium state, then the equilibrium is stable. Conversely, if the forces evolve

in such a way that the perturbation is amplified, the equilibrium is unstable. To elaborate

a mathematical formalism for the MHD stability theory, physical quantities describing the

plasma are written as

f (r, t ) = f0(r)+δ f (r, t ), (2.36)

where f0 is the equilibrium quantity and δ f the perturbation. The evolution of the perturba-

tion is described by equations 2.2-2.8, where all quantities are expressed in the same form

as equation 2.36. The focus of this section is to study linear stability, i.e. study the evolution

of a perturbation that is small compared to the equilibrium quantity (δ f / f0 ≪ 1) so that the

equations can be linearised. As discussed in section §2.3, it is a good approximation to neglect

equilibrium plasma flows if the ion Mach number is small: M 2
i << 1, which is the case for

many experimental situations of interest. In the analytical work performed on this thesis the

equilibrium flow is neglected, and is only considered in the numerical formulation of the MHD

problem implemented in the VENUS-MHDpy code. The perturbed quantities are expressed in

terms of the Lagrangian 3 plasma displacement

∂tξξξ = δu. (2.37)

3In a Lagrangian description of fluid dynamics, physical quantities are attributed to a unit of fluid volume,
which is followed in time. In contrast, in a Eulerian description physical quantities are described as functions fixed
in the coordinate space.

27



The ideal MHD model

so that the perturbed momentum equation can be written as

ρ∂2
tξξξ = δF(ξξξ) (2.38)

δF(ξξξ) = −∇δP + 1

µ0
(∇×B)×δB+ 1

µ0
(∇×δB)×B. (2.39)

where the sub index ‘0’ has been removed from equilibrium quantities for convenience and

δP = −ξξξ ·∇P −ΓP∇·ξξξ
δB = ∇× (ξξξ×B),

(2.40)

are obtained after perturbing and integrating in time equations 2.4 and 2.5. Note that the

equations are only valid if the perturbation is small, and exact in the limit of infinitesimal

perturbations. A generalisation of the stability equation including the effect of equilibrium

plasma flows is given by Frieman and Rotenberg [FR60].

2.4.1 Paths into solution

Equation 2.38 can be solved as an initial value problem using the initial conditionsξξξ(r, t = 0) = 0

and ∂tξξξ(r, t = 0) ≪ 1 ̸= 0. Alternatively, assuming that the perturbed quantities have a normal

mode time dependency as δ f (r, t ) = δ̂ f (r)eλt , equation 2.38 takes the form of an eigenvalue

problem

λ2ρξξξ = δF(ξξξ), (2.41)

which can be solved with spectral methods for the eigenvalue λ2 and the eigenvectors ξ̂̂ξ̂ξ. An

important property of the operator δF is self-adjointness4 [Fre14; Ber+58], which consequently

4An operator F is self-adjoint if two vector fields ηηη and ξξξ which belong to a particular vector space V with inner
product < .|. > fulfil < Fηηη|ξξξ>=<ηηη|Fξξξ>. In the case of Ideal MHD, the inner product is given by the integral relation
< Fηηη|ξξξ>=

∫
F(ηηη)∗ ·ξξξdV =

∫
ηηη∗ ·F(ξξξ)dV =<ηηη|Fξξξ>.

28
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means that the eigenvalue λ2 is purely real. Therefore, if λ2 < 0, then λ = ±i |λ| and the

perturbed quantities have oscillatory solutions. If λ2 > 0, then λ = ±|λ| and the perturbed

solution grows exponentially. If λ2 = 0 then the plasma state is located at the stability boundary,

and it is said to be marginally stable.

The eigenvalue problem can be posed in integral form by taking the inner product < .|. > of

equation 2.41 with ξξξ∗ and multiplying by a factor of 1/2 [Ber+58]

λ2 1

2

∫
ρ|ξξξ|2dV − 1

2

∫
ξξξ∗F(ξξξ)dV =λ2K (ξξξ)+δW (ξξξ) = 0 (2.42)

⇒λ2 = −δW (ξξξ)

K (ξξξ)
(2.43)

where δW and λ2K are interpreted as the change in potential and kinetic energy respectively

due to the perturbation. It is immediately seen from equation 2.43 that since K ≥ 0, the plasma

will only be stable if δW (ξξξ) > 0, giving rise to the energy principle, which roughly states [Ber+58]

"A plasma is unstable if, and only if, there exist some displacement ξξξ which makes the change in

potential energy δW negative".

It is possible to show (see for example [Ber+58; Fre14]) that equation 2.42 constitutes a varia-

tional principle, and so all allowable functions ξξξ that produce an extrema in the eigenvalue

will correspond to actual solutions of equation 2.41. To find the function ξξξ that produces

an extrema one can formally apply the Euler-Lagrange equations on the variational integral

with respect to each of the variables (ξ1,ξ2,ξ3), giving 3 partial differential equations. Then,

the solution can be substituted back into δW (ξξξ) and check if the sign is positive or negative,

according to the energy principle. This procedure is equivalent to taking projections of the

perturbed momentum equation 2.41 to obtain the differential equations describing (ξ1,ξ2,ξ3),

which is what is done in the analytical work presented in Chapter 4.

Due to the geometry of the system, it is natural to Fourier decompose the perturbed variables

along the poloidal and toroidal directions
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δ̂ f (s,θ,φ) =
∑
n

∑
m
δ̂ f mn(s)e i (mθ−nφ). (2.44)

Note that due to the symmetry in the toroidal direction in axisymmetric devices, linear toroidal

modes ‘n’ will be decoupled. This can be seen by expressing ξξξ∼∑
n e i nφ and ξξξ∗ ∼∑

n̄ e−i n̄φ

and noticing that the only non-vanishing integrals in equation 2.42 occur when n = n̄. In

a cylindrical plasma there is symmetry in the poloidal direction as well, and consequently

poloidal modes ‘m’ are also decoupled.

2.4.2 Field Line Bending and the magnetic operator

A strong stabilising mechanism in the plasma is the magnetic Field Line Bending (FLB), which

is related to the perpendicular perturbation of the magnetic field δB⊥. In the coordinate

system (r,G ,b) where r labels flux surfaces, G = qθ−φ as in equation 2.10 and êb = B/B , one

can write the perturbed perpendicular field in contravariant form as

δB⊥ = δB r ∇G ×B

B 2 +δBG B×∇r

B 2 (2.45)

where δB l = B ·∇(ξ⊥ ·∇l ) with l = r,G . Using the SFL coordinate system (r,θ,φ) to express the

magnetic operator (B ·∇) and the component ξG
⊥ = q ′θξr

⊥+qξθ⊥−ξφ⊥ gives

δB r =
∑
n

∑
m

i mF

R2

(
1

q
− n

m

)
ξr
⊥

δBG =
∑
n

∑
m

[
i mF

R2

(
1

q
− n

m

)
ξG
⊥+ F s

r R2 ξ
r
⊥

]
,

(2.46)

where s = r
q

d q
dr is the magnetic shear. While this representation is not often used due to the

linear dependency of ξG
⊥ on θ, equations 2.45 and 2.46 reveal an important aspect of MHD

stability: the FLB stabilisation mechanism (∼ δB2
⊥) of a perturbation related with the mode

number (m,n) almost entirely vanishes at q(rr ) = m/n, where r = rr is known as a rational
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surface. This means that the regions in the plasma at more risk of becoming unstable are

located at (or close to) rational surfaces, and the reason why q(r ) is known as the ‘safety factor’

has become clear. The present thesis is mostly focused on advanced tokamak scenarios where

an extended region of the plasma has low magnetic shear and is located near a rational surface,

such that δB⊥ ≪ 1. This constraint will be relaxed in Chapter 3 for the case of exfernal modes.

2.4.3 Vacuum physics and external modes

This thesis is focused on the analysis of instabilities that occur at the edge of the plasma. To

properly model the interaction of the perturbation at the plasma-vacuum interface (located at

r = a), it is necessary to apply the following jump conditions [Gla60; Fre14]:

�δP +B ·δB�a = 0 (2.47)

�n̂ ·δB�a = 0. (2.48)

The current density in the vacuum region must be zero (∇×δBV = 0), which allows us to write

δBV = ∇Φ and ∇2Φ = 0. The solution for Φ in general torodial geometry is not a trivial task

and must be performed numerically. For example, the KINX [Deg+97] code solves the stability

problem in free boundary calculating the function Φ using the Green function technique. An

approximate analytical boundary condition at the plasma-vacuum interface can be obtained

following the tokamak ordering (§ 2.31). Assuming Φ(r,θ,φ) = Φ̂(r )e−i (mθ−nφ), the leading

order equation for Φ̂(r ) is described by

d

dr

[
r

dΦ̂

dr

]
−m2Φ̂ = 0. (2.49)

The solution is

Φ̂(r ) = A
[
(r /b)m + (r /b)−m]

, (2.50)
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where the boundary condition at the ideal wall n̂ ·δBV = 0|b located in r = b has been applied.

Assuming no equilibrium skin currents, the equilibrium vacuum magnetic field equals the

plasma magnetic field at the interface, BV (a) = B(a). To leading order in the vacuum side of

the interface (r = a +δ):

B(a) ·δBV (a) = −A
i B0

R0qa
(m −nqa)

[
(a/b)m + (a/b)−m]

(2.51)

n̂ ·δBV (a) = A
m

a

[
(a/b)m − (a/b)−m]

, (2.52)

and in the plasma side of the interface (r = a −δ):

δP (a)+B(a) ·δB(a) = − aB0

m2qaR3
0

(m −nqa)

[
(m −nqa)a

dξr
(m)

dr
(a)− (m +nqa)ξr

(m)(a)

]
(2.53)

n̂ ·δB(a) = − i

R2
0 qa

(m −nqa)ξr
(m)(a). (2.54)

Taking δP (a)+B(a)·δB(a)
n̂·δB(a) = B(a)·δBV (a)

n̂·δBV (a) eliminates the constant A and ultimately gives [Wes78;

Fre14; Bru+18b]

r

ξr
(m)

dξr
(m)

dr

∣∣∣∣∣
a−δ

=
2m

m −nqa
− m +1+ (m −1)(a/b)2m

1− (a/b)2m . (2.55)

2.4.4 Ideal instabilities at the plasma edge

The question of plasma stability is an important one in the context of the present thesis. The

dynamics that follows the onset of an instability can either disrupt the plasma or lead to the

formation of a new equilibrium. Therefore, the plasma conditions leading to the avoidance

(or triggering) of certain instabilities define the parameter space of safe operation against

ideal MHD plasma motion, or the route to enter an optimised confinement regime. The
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present thesis focuses on the study of instabilities that are observed at the plasma edge during

the Quiescent-High confinement (QH-mode) regime, and the plasma parameters which are

related to the onset Edge Harmonic Oscillations (EHOs) and the avoidance of Edge Localised

Modes (ELMs). A comprehensive review of the plasma conditions observed during QH-mode

operation and the physics of EHOs is given in chapter 3. The relevant ideal instabilities

leading to EHOs and ELMs that are treated in the following chapters are the external kink,

peeling, infernal and ballooning modes, which can be understood with respect to the physical

mechanism driving the stabilisation (or destabilisation) of the plasma. Magnetic FLB, magnetic

field compression and plasma compression lead to stable plasma motion in the form of shear

Alfven waves, compressional Alfven waves and sound waves respectively. Fluid pressure

gradient, current gradients and total parallel plasma current can drive instabilities. In the

following, a short description of the physics driving each of these modes is provided.

External kink modes

External kink modes are long-wavelength (low-n) current-driven plasma instabilities. The

perturbed vacuum energy provides an unstable drive for the Fourier mode component (m,n)

if the rational surface lies in the vacuum region, meaning that external kink modes are unstable

when qa < m/n. The mode can be stabilised by the averaged FLB stabilisation mechanism

of the whole plasma region. The typical radial structure of the plasma displacement of an

external kink mode vanishes at the magnetic axis and peaks at the plasma edge. External kink

modes are described to the lowest order (in ϵ, following the tokamak ordering) by a single

Fourier component of the radial plasma displacement
(
ξr

m

)
, which is a solution of Newcomb’s

equation [New60]

d

dr

{
r 3

[(
1

q
− n

m

)2

+ I

]
d

dr
ξr

(m)

}
+

{(
1−m2)[(

1

q
− n

m

)2

+ I

]
+ r

d

dr
I

}
rξr

(m) = 0, (2.56)

where I = λ2

ω2
A

1+2q2

m2 is the plasma inertia,λ is the growth rate andωA is the Alfven frequency. The

equation above follows from the minimisation of the perturbed plasma energy
(
λ2K (ξξξ)+δW (ξξξ)

)
by applying Euler-Lagrange equations with respect to the normal plasma displacement ξr

m

with mode number (m,n). Finally, casting equation 2.55 as a Robin boundary condition for
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Newcomb’s equation 2.56 completes the formulation of the external kink problem.

At this order, only cylindrical and current-driven effects appear, with toroidal and pressure

effects appearing at higher orders of ϵ. If the magnetic shear is small, or if there is an extended

region of the plasma where q −m/n ≪ 1, then equation 2.56 is of higher order in ϵ and

other physics of similar order need to be considered to assess stability. This situation will be

considered in section 3.2.

Peeling modes

Peeling modes are instabilities mainly driven by the parallel current flowing at the very edge

of the plasma, near the plasma-vacuum interface. Contrary to external kink modes, pure

(high-n) peeling modes are very localised at the plasma edge and are not very sensitive to

the core conditions. Indeed, it is possible to formulate the stability condition against peeling

modes only from the perturbed energy of the vacuum region and the perturbed surface energy

[Wil+99; WG09]. Stabilisation of peeling modes is achieved by increasing the magnetic well

at the plasma edge, which can be done by increasing the edge pressure gradient or by strong

plasma shaping. The stability criteria of pure peeling modes in a large aspect ratio tokamak is

given by equation 4.21 in chapter 4.

Ballooning modes

Ballooning modes are short-wavelength (high-n) pressure-driven instabilities excited due

to the alternation of the magnetic field lines between regions of ‘good’ and ‘bad’ magnetic

curvature within a single flux surface5, corresponding to the high-field side and the low-field

side of the torus respectively. The resulting structure of the mode localises the instability in

the bad curvature region, making the plasma mode to ‘balloon’ outwards in the low-field

side. Equation 4.20 describes infinite-n ballooning modes, which are stabilised by magnetic

shear and destabilised by plasma pressure gradient. Nevertheless, at high values of pressure

gradient, the local magnetic shear in the bad curvature region can become negative and large

(while the average magnetic shear is maintained low). Since the stabilisation mechanism is

proportional to the square of the local magnetic shear, a second region of stability opens up in

5When the magnetic curvature vector is parallel (anti-parallel) to the plasma pressure gradient, the change in
the perturbed energy provides an unstable (stable) contribution.
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the parameter space for high-pressure gradient and low average magnetic shear. As will be

shown in chapter 4, ideal exfernal modes are unstable in this region of the parameter space.

Infernal modes

As introduced in section 2.4.2, a region of low magnetic shear has weak FLB stabilisation in

response to a perturbation with Fourier mode number (m,n), which occurs when the safety

factor is close (though an exact resonance is not required) to a rational surface (q ∼ m/n) for

an extended region of the plasma. Under such conditions, long-wavelength (low-n) pressure-

driven infernal instabilities can develop providing that the pressure gradient is large enough

in the low-shear region. The typical mode structure of the (m,n) Fourier component expands

over the low-shear region of the plasma, though strong toroidicity-induced poloidal coupling

with neighbouring sidebands (where the number of relevant sidebands ‘l ’ depends on the

geometry of the plasma) can excite the (m ± l ,n) Fourier components of the mode. If the

low-shear, high-pressure gradient region is located near the plasma boundary, the upper

sidebands (m + l ,n) connection to the vacuum region provide a drive to excite external kink

modes, giving rise to a new kind of instability called exfernal mode [Bru+18b; Bru+19a]. As will

be presented in detail on Chapter 3, the conditions for the appearance of an exfernal instability

can be fulfilled during QH-mode tokamak operation. The equations describing the stability of

infernal (and exfernal) modes are presented in section 3.2

2.5 Nonlinear stability and 3D saturated modes

According to the analysis on the previous section, an unstable mode will grow exponentially

at a certain speed given by the linear growth rate. However, once the instability becomes

large enough, the assumptions made by the linear analysis break down, and nonlinear physics

is required to describe the dynamics that follows. Two main scenarios are possible, either

the nonlinear forces reinforce the unstable mode and it continues to steadily grow until the

plasma disrupts, or the nonlinear forces damp the growth rate and push the plasma towards a

new saturated equilibria in 3D. In the latter scenario, it is possible that the discharge continues

without disrupting the plasma, particularly if the instability saturates at low amplitude. This is

often desired since the new equilibria might offer better confinement properties. For example,

the instability can help to expel impurities from the core [Ödb+98] or regulate the plasma
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density at the pedestal and thus avoid to cross a hard stability limit [Bur+01; Gar+15; Che+16].

On the other hand, it has been recently shown that a 3D saturated internal kink in combination

with strong flows can lead to impurity accumulation at the magnetic axis, followed by radiative

termination of the discharge [JN22]. Because of this, it is important to explore the plasma

conditions that allow the existence of favourable saturated instabilities with optimal plasma

performance.

2.5.1 Nonlinear approaches to equilibrium

Dynamic approach

The path from a linearly unstable 2D state to a non-linearly saturated 3D state can be obtained

via initial value nonlinear MHD codes, like XTOR [LL10] and JOREK [Hoe+21]. Such simulations

require the introduction of diffusive parameters (such as fluid viscosity) to achieve numer-

ical convergence, which are hard to prescribe accurately and might lead the simulation to

evolve to different physical states. Moreover, full nonlinear dynamic simulations are very

demanding numerically due to the need to evolve several physical effects at different time

scales. Nevertheless, when used carefully such codes can in principle provide the complete

nonlinear evolution of the MHD plasma parameters and guarantee that the final saturated

state is physically accessible. This methodology has been used extensively to calculate the

plasma response to Resonant Magnetic Perturbations (RMPs) [Ora+17; Tur12; Tur+13].

Equilibrium approach

The final saturated state in the ideal limit must satisfy the nonlinear MHD force balance

equation J×B−∇p = 0, whose solution can be found by equilibrium codes. The ‘equilibrium

approach’ bypasses the nonlinear evolution of the system and directly calculates the final

equilibrium state in 3D by other means, for example by minimising the plasma energy as

done by the VMEC [HW83] and SPEC [Hud+12] codes. The main advantages of this approach is

that the computational demands are strongly relaxed, and no dissipative effects are required

to find the solution. The disadvantage however, is that while the calculated equilibrium is

physical, there is no guarantee that the initial 2D unstable state will evolve to the solution

found by the equilibrium code, or that the equilibria is physically accessible. To relate the

2D and 3D equilibrium states, a good approach is to find a physical or topological constraint
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(i.e. a conserved quantity) that is fulfilled throughout the minimisation process from the 2D

axisymmetric equilibrium to the 3D final saturated state. As it turns out, it can be shown that by

maintaining the rotational transform fixed, global magnetic helicity is conserved throughout

the energy minimisation process in VMEC simulations [Ram+22]. Other constraints fulfilled

by VMEC include conservation of mass and conservation of nested flux surfaces. But even

then, the solution can be stuck at a local minima which doesn’t correspond to a 3D saturated

state nor possibly to the lowest energy state. Modelling of 3D saturated instabilities using the

VMEC code for the case of a saturated helical core [Coo+10; Coo+11] show that the accessible

equilibrium solutions exist in a bifurcated state, where the equilibrium can either result in a

standard axisymmetric state or in a 3D state, with a very low energy difference between the

two. This means that both equilibrium configurations in the bifurcation are neighbour states,

and suggest that the 3D equilibria corresponds to the nonlinear evolution of his neighbouring

2D axisymmetric unstable state. To verify this, one can follow the nonlinear evolution of the

unstable state using an initial value nonlinear MHD code. In reference [Bru+14b] a saturated

internal kink calculated in VMEC was recovered by XTOR when approaching the ideal MHD

limit (no resistivity, diamagnetism or neoclassical effects). More recently, saturated external

kink modes calculated in VMEC [Kle+19] were also recovered by JOREK for current driven cases

where the edge resistivity does not play an important role [Ram+22].

The two methods are therefore complementary, and serve different purposes. Since nonlinear

dynamic codes can in principle recover the ideal equilibrium solution, one can proceed

with confidence to add non-ideal effects to analyse more complex scenarios in the dynamic

approach. The fact that VMEC can produce physically accessible 3D saturated states gives

confidence to perform extensive parameter scans given the relaxed computational demands,

as was done for the internal kink case [Coo+10], external kink [Kle+18], JET snakes [Coo+15b;

Coo+11], kink/peeling modes [Coo+16; Coo+15a] and exfernal modes [Kle+19].

Since comparing the 3D VMEC equilibrium solution with an equivalent saturated state in

XTOR or JOREK for each parameter scan is computationally expensive, a different diagnostic

is proposed to link the axisymmetric unstable equilibrium with the 3D saturated state. The

methodology was first introduced in reference [Kle+18], but repeated here for convenience

as since it is heavily used in this thesis. Linearly unstable axisymmetric equilibria can be

characterised by a set of eigenfunctions which describe the plasma displacement. Here, an

equivalent nonlinear plasma displacement is calculated, which corresponds to the normal
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(a)

(b)

(c)

Figure 2.2: Calculation of the radial nonlinear saturated amplitude of a 3D configuration. (a)
First, the distance between the 3D and the 2D surface is measured in the normal direction of
the 2D surface at each poloidal angle. (b) Transformation to SFL is applied through the VMEC
stream function λ(s,θ,φ) (eq. A.3). (c) Reconstruction of the radial profiles for each Fourier
mode (only n = 1 modes are plotted in the figure).

distance from the 3D surface with respect its 2D neighbour surface

η(s,θ,φ)N(s,θ,φ) = S3D (s,θ3D ,φ)−S2D (s,θ2D ,φ) (2.57)
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where N is the normal vector unitary vector of the 2D surface. Note that since the coordinates

are aligned with the magnetic surfaces, the poloidal angle is different in both equilibria i.e.

θ2D ̸= θ3D . The VMEC poloidal angle is optimised to ensure fast and accurate convergence

of the steepest descent numerical scheme, but is not optimal for analysis and can lead to

misleading interpretations [Kle+18]. Therefore, transformation to a SFL poloidal angle of the

2D equilibria is performed using equation A.3. Repeating this calculation at all flux surfaces

and finally Fourier decomposing into poloidal and toroidal components, the radial profile

of each mode can be reconstructed. The method is graphically outlined in figure 2.2. The

resulting nonlinear ‘eigenfunction’ can be qualitatively compared with the linear eigenfunction

of the mode obtained analytically or numerically e.g. using the KINX code.
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3 Exfernal modes as a model for EHOs

The goal of this chapter is to clarify the connection between the experimentally observed

Edge Harmonic Oscillations and the linearly unstable exfernal modes. First, a review of

the experimental results of the QH-mode is presented and the key observed parameters are

analysed, where different theories on the origin of EHOs are discussed. Next, a description

of the linear theory of exfernal modes is presented in preparation for the next chapters. The

plasma profiles related to the excitation of exfernal modes are used to obtain an equilibrium

configuration in the DEMO QH-mode baseline. Linear stability analysis performed with

the KINX code and nonlinear saturated states calculated with the VMEC code are presented

and discussed for this particular case. Later, a comparison between the dynamic (using the

JOREK code) and equilibrium (using the VMEC code) approaches to compute saturated states

is presented for the case of external kink and exfernal modes. It is found that the agreement

between the two approaches varies due to the different physics included both codes. Finally,

the prospects for the investigation of the parameter space to excite and saturate EHOs will be

presented.

3.1 Experimental observation of EHOs

3.1.1 The nature of EHOs

Within the family of intrinsically ELM-free operational regimes, the Quiescent H-mode (QH-

mode) is one of the most promising possibilities. As observed in DIII-D [Bur+01], JET [Sol+10],

ASDEX-U [Sut+04] and JT-60U [Oya+06], QH-mode discharges avoid ELMs and exhibit instead
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Edge Harmonic Oscillations (EHOs), which provide enough particle transport to avoid crossing

a hard stability limit while sustaining high pedestal pressure. Contrary to ELMs, EHOs do

not deposit very large heat loads on the divertor. EHOs are continuous long-wavelength

MHD modes which saturate at finite amplitude, typically dominated by a n = 1,2 though the

subsequent harmonics (from n = 1 up to n ∼ 8) are also observed. The harmonic spectrum

corresponds to a rigidly rotating mode, since the signal in the magnetic diagnostics show the

same wave form at different toroidal locations [Sut+05]. The magnetic fluctuation from EHOs

is accompanied by electron density fluctuations, as measured experimentally by the electron

cyclotron emission (ECE) diagnostic. Indeed, the rotation frequency observed in the Mirnov

coils closely matches the oscillation frequency in the ECE channels whose line-of-sight is

aligned with the pedestal region [Sut+04; Che+16; Bru+22], meaning that EHOs are highly

localised in the pedestal.

The poloidal structure of EHOs is difficult to measure experimentally and therefore not usually

reported. In the DIII-D tokamak, EHOs are robustly accessed in a wide range of q95
1 values

[Bur+05], meaning that resonant conditions at the edge don’t seem to be required and therefore

no particular poloidal structure is favoured. This is however not what is observed in the other

machines. EHO saturation in JT-60U do favour values of q95 near the q = 4 surface [Oya+06]. In

JET, an analysis on the H-mode and QH-mode discharge database shows that ELMy and EHO

discharges have different values of q95 when other pedestal parameters (electron pressure,

collisionality and triangularity) are similar [Bru+22]. In ASDEX-U, EHOs are seen strongest at

the ECE channels near the q = 4 or 5 surfaces [Sut+04]. Note that these surfaces correspond to

the steep-gradient region of the pedestal, and not to the q95 surfaces. Therefore, the poloidal

structure of EHOs and its relation to the rational surface location is not clear and requires

further attention.

Figure 3.1a shows the time evolution of a typical QH-mode discharge in DIII-D. EHOs are

captured in the magnetic diagnostic by the Mirnov coils with a frequency f ∼ nΩped , where

Ωped is the toroidal plasma rotation at the pedestal top. The integrated plasma density and

the density at the pedestal are maintained at a constant value due to the enhanced transport

driven by the EHOs, which is seen by Dα light at the lower divertor. Note that at around 1500

ms a single ELM is observed following a short period without EHOs and an associated increase

on pedestal electron density. The distance between the LCFS and the wall is reported in the

1q95 is defined as the value of the safety factor at 95 % of the magnetic surfaces.
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(a) (b)

Figure 3.1: DIII-D discharge 157102, obtained from [Che+16]. (a) Time evolution of different
plasma parameters. From top to bottom, injected and radiated power, electron density,
pedestal electron density, Mirnov coil signal spectrogram, Dα emission line measured in the
divertor and plasma distance from the wall to the last closed flux surface in the high-field
side. (b) Electron temperature and density fluctuation as measured by the Electron Cyclotron
Emission (ECE) and Beam Emission Spectroscopy (BES) diagnostics respectively (black). The
red curve corresponds to the modelling using the M3D-C1 code. For more information, refer to
reference [Che+16].

last plot, showing a variation in this gap of about ±2 cm, or ∼ 3% of the minor radius. Figure

3.1b shows the radial localisation of the electron density and temperature perturbation of the

main harmonic as observed by the ECE and Beam Emission Spectrometer (BES) diagnostics.

3.1.2 Access to QH-mode and key drivers

QH-mode is accessed in the low collisionality regime, normally obtained in low density and

high temperature discharges. Nevertheless, the pedestal pressure is of similar height as in

a standard H-mode discharge, giving rise to a large bootstrap current in the pedestal and

pushing the equilibrium towards the peeling stability boundary. Indeed, QH-mode discharges

are always observed near (but below) the peeling boundary limit of the peeling-ballooning
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stability diagram [Sny+07]. The large bootstrap current at the plasma edge also weakens the

magnetic shear over the pedestal region, which combined with the destabilising effect of the

large pressure gradient can excite instabilities of infernal nature [ZKV13a].

QH-mode is more easily accessed in discharges with strong flows, though the interaction

between EHOs and plasma rotation is not yet well understood. One interpretation is that the

toroidal flow sets the frequency at which low-n modes are observed and its influence on the

stability is weak, though normally a certain threshold needs to be reached in order to avoid the

mode locking to the wall [Gar+15]. Sheared flow of E×B origin (ωE ∝ Er ) has been identified

as the key mechanism to access QH-mode and therefore to the observation of EHOs [Gar+11],

where its main effect on the ideal MHD modes is to stabilise high-n perturbations, as predicted

by analytical [Bru+19a] and numerical modelling [Che+16; Ram+22]. E×B shear flow also

destabilises low-n kink/peeling modes [Che+17a], but due to the complex mechanism played

by the well deepness of the radial electric field (Er ) in creating the edge transport barrier in

standard H-mode discharges, it is difficult to conclude that the role of E×B shear flow on

EHOs is to merely destabilise an ‘otherwise stable’ kink/peeling mode. Moreover, numerical

simulations suggest that the nonlinear interaction of the growing EHOs with the plasma flows

pushes the equilibrium to a more stable domain by either damping or accelerating the flow

[Don+19]. In more recent numerical modelling, plasma rotation is found to have a stabilising

effect also for low-n modes if the ion diamagnetic drift effects are included in the calculations

[Aib+21]. Therefore, the role of E×B flow and its shear remains an open question, though it

appears, at least from the experimental results in the DIII-D tokamak, that a critical amount of

it is necessary both to access QH-mode and to sustain it [Che+16].

We can imagine the trajectory of QH-mode equilibria in a similar way as the ELM cycle in

standard H-mode discharges, as depicted in figure 3.2. Once the edge transport barrier is

formed at high pedestal pressure, the equilibrium goes from the ballooning-side to the peeling-

side (located in the second region of ballooning stability) as the collisionality decreases by

cryopumping from the divertor. Note that in figure 3.2 the pedestal pressure gradient is

proportional to the parameter α∼ P−′. Just before reaching the peeling boundary, low-n MHD

modes become unstable and start to grow. If a certain threshold in the E×B shear rotation

is not reached, the plasma will cross the stability boundary resulting on ELM onset. In fact,

some experimental findings in JET have observed MHD activity similar to EHOs as precursors

to ELMs [Bru+22]. If the rotation threshold is reached however, medium-n peeling-ballooning
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Figure 3.2: Cartoon of QH-mode access, inspired by the ELM cycle given in [Wil+06]. The
plasma follows the blue arrow towards the peeling boundary as bootstrap current rises due to
decrease in collisionality. Once in the ‘low-n mode onset’ region, the plasma will follow the
dark red arrow and be trapped in an ELM cycle if the threshold in ωE×B is not reached. If it
is, then the plasma will follow the green arrow, allowing low-n modes to saturate to a new 3D
equilibrium state without destabilising medium-to-high-n peeling-ballooning modes.

modes are stabilised and the low-n modes will be allowed to grow and saturate to form a new

3D equilibrium state near the peeling boundary. Note that in ELMy discharges, EHOs are not

excited either because the discharge is not located on the low-n mode onset region of the

parameter space (closer to ballooning boundary). The EHOs in the new state will provide

enough transport to maintain the equilibrium at the same location in the stability diagram.

Such low-n MHD modes have been theorised to be either kink/peeling [Sny+07] or edge

infernal modes [ZKV13a], depending on the plasma conditions at the pedestal (safety factor,

current density, pressure, temperature, rotation, etc.). In this work we explore the conditions

in which the low-n mode corresponds to an edge infernal (exfernal) mode, where the drive

requires toroidicity induced coupling of the main harmonic with the neighbouring sidebands,

vanishing field line bending stabilisation contribution due to weak magnetic shear and prox-

imity to a rational surface, and a vacuum region between the plasma surface and a metallic

wall.

Several experimental findings hint towards the possibility that EHOs correspond to the nonlin-

ear saturated state of exfernal modes. First, the mode is highly localised in the pedestal region

where the temperature and density gradients associated with the edge transport barrier are
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strongest, suggesting that a pressure-driven component is necessary. Indeed, analysis on the

parameter space of a set of QH-mode discharges in JET, the electron plasma β at the pedestal

is always above a certain threshold [Bru+22]. Second, citing Zheng et. al. [ZKV13b], ‘[...]

Since multiple inertial layers are involved in determining the mode frequency in kink/peeling

modes, and since the rotation frequency varies radially, the mode frequency may not follow the

n-multiplying rule. However, this frequency n-multiplying rule can become ensured if one of

the Fourier components becomes dominant, as occurs in the infernal mode case’. Third, JET

[Bru+22], ASDEX-U [Sut+04] and JT-60U [Oya+06] do observe a dependency on the value of q

at the pedestal, meaning that a resonant (or quasi-resonant) component is needed to excite

EHOs, consistent with the infernal drive. Moreover, the poloidal structure measured in ASDEX-

U by a set of poloidally distributed Mirnov coils identifies a m = 4,n = 1 and a m = 5,n = 1

mode when the EHOs are seen near the q = 4 and q = 5 surfaces respectively [Sut+04]. Fourth,

as shown by numerous studies [Huy05; WG09; Kle+19], current-driven modes are strongly

stabilised by the presence of a separatrix, and particularly the peeling-branch of peeling-

ballooning modes is completely stabilised [SKK11]. As will be shown in detail in chapter 4,

exfernal modes are still unstable in the presence of a plasma separatrix, with the instability

sustained by the infernal pressure-driven branch. Fifth, the linear analytical model of exfernal

modes is able to recover many of the experimentally observed features of EHOs and QH-mode

access [Bru+19a]. This model will be introduced in the next section.

Recent experimental campaigns in the DIII-D tokamak have found a bifurcation in QH-mode

operation denominated as ‘wide pedestal QH-mode’ [Bur+16; Che+17b]. In wide pedestal

discharges, EHOs are replaced by broadband edge turbulence, which assume the same role of

enhancing particle transport across the transport barrier. Since the excitation and saturation

of EHOs is the main focus of this work, the physical mechanism leading to wide pedestal

QH-mode operation is not discussed in the present thesis.

3.2 Linear theory of exfernal modes

This section discusses the main characteristics of the linear stability of exfernal modes. For

simplicity, the summary presented here only considers the effects within the static ideal

MHD model [Bru+18a], since effects such as toroidal rotation [Bru+18b], sheared helical flow

[Bru+19b], and diamagnetic and sheared parallel E×B flows [Bru+19a] have been considered

in previous work. The stability analysis will be generalised in the next chapter to allow the
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(a) (b)

Figure 3.3: (a) Cartoon of the profiles considered in the equilibrium model. The parameter
α ∼ −P ′ is defined in the text. (b) α−∆q stability diagram, obtained from the numerical
solution of equations 3.2 and 3.3 with extended vacuum boundary conditions (equation 2.55)
on the sidebands.

inclusion of finite edge magnetic shear. Since the procedure and equations are similar, only

the main assumptions and results of previous work will be discussed in this section.

The equilibrium under consideration models the key aspects observed during a QH-mode

discharge, as seen in a simplified cartoon in figure 3.3a. The pressure profile sits on a pedestal

located near the plasma edge, creating a region of high pressure gradient. The safety factor

monotonically increases from the core up to the pedestal top, where it flattens as a conse-

quence of the large bootstrap current generated in the low collisionality regime. The value of

the safety factor plateau is located near a rational surface, i.e. q = m/n +∆q , where |∆q|≪ 1.

It is pointed out that ∆q can be positive or negative. The full magnetic equilibrium is given by

the solution to the Grad Shafranov equation 2.28, which is solved order by order considering a

large aspect ratio tokamak with circular cross sections and applying the tokamak ordering (§

2.3.2).

The stability is investigated by separating the plasma in two regions: a high-shear and low-

shear region. The high-shear region extends from the core to roughly the pedestal top, just

before the magnetic shear starts to vanish. Mode coupling between poloidal Fourier harmonics

in this region is weak in the large aspect ratio approximation for small pressure gradient, so

the dynamics of each individual harmonic is given by Newcomb’s equation (2.56) introduced

in section § 2.4.2. The physical mechanism driving the exfernal modes is located in the low

shear region, which extends from the pedestal top to the plasma-vacuum interface. Due to the
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closeness to the rational surface on an extended region of the plasma, the FLB stabilisation is

now of the same order as the pressure gradient instability drive, resulting in coupling between

neighbouring poloidal Fourier harmonics through toroidicity in the geometric components.

The combination of large pressure gradients and weak FLB stabilisation provides an infernal

stability drive [WH88; MPT87]. For a circular cross section large aspect ratio tokamak, only the

upper and lower sidebands are necessary to determine stability [HH88; GHH96]. The plasma

displacement is therefore written in this region as

ξr (r,θ,φ) =
m+1∑

l =m−1
ξr

(l )(r )e i (lθ−nφ), (3.1)

where ξr
(m)/ξ

r
(m±1) ∼ ϵ. As outlined in section 2.4.1, one possible way to obtain the stability of a

mode is through the energy principle [Ber+58]. Substituting the equilibrium and geometric

quantities to relevant order in ϵ into equation 2.42, the following equations describing the main

mode (m,n) and sidebands (m ±1,n) are obtained in the limit of q ∼ m/n [HH88; GHH96]
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where I = λ2

ω2
A

1+2q2

m2 the plasma inertia and α = −2µ0P ′q2

B 2
0

is the ballooning α parameter. The left

hand side in equation 3.2 corresponds to the cylindrical equation calculated by Newcomb

[New60]. The first term in the right hand side is the Mercier term with a toroidal correction,

and the last term couples the main modes with the neighbouring sidebands. Equations 3.2

and 3.3 are valid only on the low-shear region since they assume ∆q ≪ 1, particularly because
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the cylindrical corrections to FLB due to magnetic shear in the sideband equations are not

complete. First order FLB corrections to equation 3.3 are given in appendix B.2. Boundary

conditions for each mode are required to solve this system of equations, which in the plasma

side (at the interface with the high-shear region) are given by the solution of equation 2.56 for

each individual mode in the high-shear region. At the plasma-vacuum interface, boundary

conditions are applied as discussed in section § 2.4.3. More details on the application of

boundary conditions will be given in chapter 4.

Figure 3.4a shows the numerical solution to equations 3.2, 3.3 (in the low-shear region) and

equation 2.56 (in the high-shear region) for the plasma profiles described in figure 3.3a. Figure

3.4b shows the numerical eigenfunctions calculated with the KINX code, which considers

full MHD physics and a much larger spectrum of poloidal Fourier Harmonics. As can be

seen, the solution is very similar for both cases, meaning that the physics relevant in the

ideal KINX simulations is most likely captured by the simplified equations presented above.

The dominant mode (m,n) of the plasma displacement is a ‘bell-shaped’ pressure-driven

perturbation localised in the pedestal that expands over the region where the safety factor

is flat. Note that this shape is in agreement with the density perturbations observed in the

pedestal during the onset of EHOs [Bur+04; Che+16] (see figure 3.1b). The infernal drive of the

main mode couples with the external kink current-driven upper sideband (m +1,n), which

perturbs the plasma edge in the absence of a separatrix. The lower sideband is a little further in

the core, roughly constant from its rational surface (around r ∼ 0.8) until the pedestal region,

where it drops at the same place where the main mode peaks.

The numerically calculated growth rate is plotted in figure 3.3b. As expected by physical

intuition, the mode is driven unstable by pressure gradient (∼α) and stabilised by bending of

the magnetic field lines (∼∆q). There is a slight asymmetry towards positive ∆q due to the

stronger coupling with the upper sideband external kink drive. The system of equations 3.2

and 3.3 can also be solved analytically for simplified profiles of the pressure and safety factor.

Particularly, for step-like pressure and density profiles, with the step in the pedestal region

(r = rp ), an analytical dispersion relation has been obtained by Brunetti et. al. [Bru+18b]
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(a) (b)

Figure 3.4: Eigenfunctions of the eigenvalue stability problem corresponding to the poloidal
Fourier components of the normal displacement, calculated (a) numerically from equations
2.56, 3.2, 3.3 and (b) using the full MHD KINX code. The safety factor is plotted in dashed lines
in both figures.

where β̂ = 2µ0P (rp )q2/B 2
0 , ϵp = rp /R0, ∆ = 2(a − rp ), a and R0 are the minor and major radius,

and Λ is a factor containing the coupling and boundary conditions of the sidebands. The

dispersion relation recovers the dependencies observed numerically on the parameters α and

∆q (note α∝ β̂). Moreover, in the marginal stability limit (γ→ 0), the dispersion relation

yields the marginal conditionα∼ |∆q/q|, which is also roughly reproduced by the numerically

calculated stability limit.

3.3 Nonlinear saturated EHOs

Now that the linear mechanism for the excitation of exfernal modes has been laid out, the

nonlinear saturation mechanism will be discussed. As presented in section 2.5, two different

but complementary methods can be used to explore 3D saturated states in tokamak plasmas.

The first one starts with an axisymmetric equilibrium, and then evolves the plasma non-

linearly in time until a saturated state is reached (labelled as ‘dynamic approach’), and the

second one consists on directly calculating the final 3D saturated state which is a solution

of the ideal MHD equilibrium equation (labelled as ‘equilibrium approach’). The nonlinear

saturated states calculated in the present thesis mainly focus on the ‘equilibrium approach’

using the VMEC 3D free boundary code. An example of such calculation is given in section §
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3.3.1, where saturated EHOs are obtained for the DEMO1 QH-mode baseline.

Both the ‘dynamic’ and ‘equilibrium’ approaches have been independently reported in the

literature for certain types of saturated EHOs. For example, Liu et. al. [Liu+18] performed

JOREK initial value simulations of DIII-D QH-mode plasmas and obtained saturated low-n

MHD structures similar to those observed in experiments. Kleiner et. al. [Kle+19] calculated

3D saturated equilibrium states using the VMEC code for QH-mode plasma profiles in JET-like

geometry. Two types of saturated structures were identified, one current-driven (external kink

type) and one pressure-driven (exfernal type). Both types of saturated instabilities will be

explored in this thesis. In Dong et. al. [Don+19] quasi-linear initial value simulations using

the MARS-Q code were performed to study the nonlinear interaction between exfernal modes

and different types of plasma flows. It was found that exfernal modes can either damp or

accelerate the plasma flows with both scenarios leading to mode saturation, meaning that the

saturated state could be independent of the final flow profile. A direct comparison between

the ‘equilibrium’ and ‘dynamic’ approaches for external kink and exfernal modes is presented

in section § 3.3.2.

3.3.1 Equilibrium approach to EHO numerical modelling: application to DEMO

EHOs have been robustly obtained in TCV, JET and DEMO geometries using the VMEC free

boundary code. The resulting equilibria has the advantage that the Fourier decomposition

of the magnetic field and geometric components can be calculated with very high accuracy,

often up to machine precision. These quantities can be used for advanced analysis of fast

particle and impurity transport using guiding-centre codes such as VENUS-LEVIS [Pfe+14].

Poor fast particle confinement can occur during QH-mode operation. While EHOs provide the

necessary particle transport to sustain high pedestal pressure without incurring into ELMs

[Bur+01; Gar+15; Che+16], their 3D magnetic structure might deteriorate the confinement of

highly energetic NBI particles or fusion-born alpha particles. Because of this, an assessment of

fast ion confinement on the QH-mode DEMO baseline was performed under a EUROFusion

Enabling Research work package, which is reported in reference [BSG20].

The DEMO tokamak should be the first-of-a-kind European demonstration power plant to

produce electricity from fusion reactions, breed tritium and recirculate energy to operate the

machine. It is envisaged to be operational around the middle of the century, but with many of
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the current problems in fusion technology not yet solved, the design of DEMO is not yet agreed

upon. The calculations presented here are based on the 2019 QH-mode baseline described

in a EUROfusion report by Roberto Ambrosino [Amb19], where an equilibria was calculated

using the CREATE-NL code [AAM15] on the DEMO1 design. The final goal of this section is to

recreate a similar equilibrium in the free-boundary VMEC code, which has the advantage of

being able to calculate 3D magnetic equilibria, a characteristic that will be essential to obtain

non-linearly saturated instabilities. The procedure on how to obtain and classify saturated

external modes will be outlined in detail, from the computation of the fixed and free boundary

equilibrium, to the linear and nonlinear stability properties. The calculation also helps to

exemplify the concepts of equilibrium developed in chapter 2 and the suite of codes that are

used in the next chapters of this thesis. The methodology described here is depicted in figure

3.5. First, a fixed boundary axisymmetric VMEC equilibria is calculated with the desired 2D

edge geometry and plasma profiles. The resulting equilibria together with the coil geometry is

given to the FreeGS code [Dud] to calculate the necessary coil currents that would produce an

equivalent axisymmetric free boundary VMEC equilibria. In order to obtain edge corrugations,

the free boundary VMEC code is run using the current in the coils calculated by FreeGS and

allowing higher toroidal harmonics in the VMEC Fourier expansion (equation A.2).

Free boundary axisymmetric magnetic equilibrium

Figure 3.5: Diagram of the codes used to obtain a VMEC free-boundary equilibria. First, a
fixed-boundary VMEC equilibria is calculated. The resulting profiles are used as an input to
free-boundary VMEC and FreeGS. The later code uses the coil set to calculate the necessary
currents for free boundary equilibria, which are then used as an input to VMEC.

First, a VMEC axisymmetric equilibria in fixed-boundary conditions needs to be calculated.
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Due to the better convergence properties of VMEC when imposing stellarator symmetry2, the

equilibrium is constrained to be up-down symmetric. The description of the plasma boundary

is given by

R(θ) = R0 + r0cos(θ)−Ecos(θ)+T cos(2θ)

Z (θ) = r0si n(θ)+E si n(θ)−Tsi n(2θ),
(3.5)

where R0 = 9.338m is the major radius, r0 = 4.0m is the minor radius, E = 1.0m and T = 0.33m

are the elongation and triangularity coefficients respectively. This representation is compatible

with the VMEC Fourier expansion assuming stellarator symmetry (equation A.4). The plasma

boundary is plotted in figure 3.6a together with the boundary from the CREATE-NL baseline

for comparison.

(a) (b) (c)

Figure 3.6: Input parameters for VMEC and FreeGS simulations: (a) Comparison between LCFS
in VMEC (solid line) and extracted from CREATE-NL simulation reported in [Amb19] (dashed
line), (b) pressure and safety factor profiles and (c) DEMO coils modified to fulfil stellarator
symmetry.

The pressure and safety factor profiles are chosen as the free functions to calculate the equilib-

rium. The pressure monotonically decreases from the core until the edge, where a pedestal

is added to the plasma so to emulate H-mode-like operation. The safety factor increases

monotonically up to the pedestal, where a flat region is added between 0.95 < s < 0.99. Finally,

2A discussion on the constraints imposed by stellarator symmetry is given in appendix A.1
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the total enclosed toroidal magnetic flux can be calculated by solving the differential equation

for the safety factor q(s) = dψt /dψp

ψt (s)−ψt (0) = [ψp (1)−ψp (0)]
∫ s

0
q(s′)d s′

ψt (1)−ψt (0) = 261.29[W b],

(3.6)

where ψp (0) and ψp (1) are extracted from Ambrosino’s report [Amb19]. The VMEC code is first

used to obtain an axisymmetric equilibrium solution with fixed-boundary conditions. This

is achieved by restricting the VMEC Fourier expansion to have only n = 0 toroidal modes. The

simulation was calculated with a radial discretisation of 500 flux surfaces and a spectrum of

0 ≤ m ≤ 16 poloidal Fourier modes.

(a) (b)

Figure 3.7: Resulting flux surfaces in FreeGS (a) and VMEC (b) simulations

The computation of free-boundary equilibria requires the description of the vacuum magnetic

field, which in VMEC is calculated through the Biot-Savart law by a set of one dimensional

filaments carrying current. As pointed out in appendix A.1, the magnetic field will only be

stellarator symmetric if the coil system is as well. A rough description of the coil system in

DEMO baseline 2019 is reported in reference [Amb19], which is slightly modified so that the

coils are stellarator symmetric. The final set is plotted in figure 3.6c, consisting on 16 toroidal
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coils, 6 poloidal coils and a central solenoid, where the later is divided on 5 sections and each

coil is formed by 4 filaments carrying 1/4 of the coil current. The current in the coils that would

produce the required magnetic field to obtain an equivalent free-boundary equilibria are

calculated using the FreeGS code [Dud] (see appendix A.2 for more details on the code). The

input parameters required by FreeGS are extracted from the fixed-boundary VMEC solution

so that the equilibrium calculated in the two free boundary codes is as close as possible. The

calculation in VMEC is repeated but now in free-boundary conditions. To that end, the vacuum

magnetic field is calculated using the MAKEGRID code and the current in the coils calculated

by FreeGS. Note that 16 toroidal planes in the VMEC numerical grid are used to avoid aliasing

the frequency of the toroidal ripple3. The resulting flux surfaces in both codes are plotted in

figure 3.7. Up to this point, 3D effects were not allowed in the calculation for either fixed or

free boundary VMEC calculations.

Linear departure from axisymmetric equilibrium

The stability of the DEMO QH-mode baseline equilibria is studied using the KINX code

[Deg+97]. The safety factor shown in figure 3.6b is flat in two regions of the plasma, the

core and the edge, hinting that the equilibrium might be unstable to both internal and external

infernal modes. Moreover, the value of the safety factor is close to a rational surface in both

cases ( m/n = 1 in the core and m/n = 4 in the edge). The safety factor profile exhibits a spike

at the plasma edge that takes the value of qa just above the rational surface, which stabilises

the external kink contribution of the (m/n = 4) mode and at the same time serves as a model

of the transition between the plasma edge and the vacuum region in a diverted configuration.

A detailed investigation on the effect of the spike on the stability of exfernal modes is given in

chapter 4.

A KINX calculation considering 128 × 128 grid points in the radial and poloidal direction

was performed in free boundary conditions, with an ideal wall located at a distance b = 10a,

where a is the minor radius. The normal plasma displacement for a toroidal mode number

n = 1 is plotted in figure 3.8a, where the normalised growth rate calculated by the code is

γ̂2 = (γ/ωA)2 = 4.25×10−3. As can be seen, the displacement is strongest at the core and at the

edge. A clearer picture of the instability is given by the Fourier spectrum of the eigenfunction

3Such effect happens when the frequency of a measured signal is higher than two times the sampling rate,
violating the Nyquist criterion. Aliasing is the shift in the frequency of the signal to an observable signal within the
sampling rate. Details on this effect applied to the toroidal ripple are given in detail Chapter 5
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(a) (b)

Figure 3.8: n = 1 Normal plasma displacement for DEMO QH-mode baseline. (a) Plasma
displacement in toroidal cross section and (b) Fourier decomposition in SFL poloidal angle. In
figure (b) the numbers in the solid lines correspond to the poloidal mode number. The safety
factor is also plotted in dashed lines.

in SFL coordinates, plotted in figure 3.8b. The dominant mode is a core infernal (m = 1,n = 1)

mode, which expands roughly over the region of low shear, along with its upper sideband

(m = 2,n = 1) which is of similar amplitude. Also visible is the exfernal (m = 4,n = 1) mode,

localised on the pedestal region where the safety factor is flat. The upper sideband (m = 5,n = 1)

is associated with the external kink drive, which couples with the infernal drive and perturbs

the plasma edge. Both core and edge infernal modes are exited independently, but coupling

between the two is observed on the small shoulder of the (m = 4,n = 1) mode at around ρ ∼ 0.8.

While this calculation in DEMO geometry considers ad-hoc profiles with the qualitative

components of QH-mode operation, a very similar case has been reported in the literature

where a core and an edge infernal mode are excited independently in a DIII-D QH-mode

discharge (reference [Gar+15], figure 8).

Figure 3.9a shows the normalised growth rate for torodial mode numbers n ∈ [1,10], where

it can be seen that larger toroidal harmonics are more unstable. Low-n instabilities have

infernal-like features, as can be seen in figure 3.10, where the eigenfunctions with toroidal

mode numbers n = 2 and n = 3 show that the infernal m/n = 4 modes and their respective

sidebands dominate the spectrum. In both cases, the core infernal mode m/n = 1 is no longer

dominant, but still present.
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(a) (b)

Figure 3.9: (a) Growth rates and (b) nonlinear saturated amplitude for toroidal Fourier modes
in DEMO QH-mode baseline equilibria.

(a) (b)

Figure 3.10: Poloidal Fourier components of the radial plasma displacement for the toroidal
mode number (a) n = 2 and (b) n = 3. The safety factor is plotted with dashed lines.

Nonlinearly saturated EHOs

The effort of calculating a free-boundary DEMO equilibria pays off in this section, as now the

restriction of using only n = 0 modes in the VMEC Fourier expansion is relaxed, allowing for the

saturation of 3D external modes. The VMEC 3D free boundary simulation is performed with 500

flux surfaces and a spectrum of −6 ≤ n ≤ and 0 ≤ m ≤ 16 toroidal and poloidal Fourier modes.

57



Exfernal modes as a model for EHOs

A 3D saturated state is found, with the normal plasma displacement amplitude calculated

through equation 2.57 peaking at the core and edge, as shown in figure 3.11a. The structure of

the mode is quite similar to the n = 1 linear plasma displacement in figure 3.8a, even though

the nonlinear plasma displacement contains all the toroidal components. This is because the

nonlinear plasma displacement in VMEC is dominated by the n = 1 component, as shown by

the toroidal Fourier decomposition of the displacement shown in figure 3.9b. Recalling that

high-n modes dominate the linear phase (figure 3.9a), these modes are non-linearly damped

in VMEC. Nonlinear damping of high-n modes has been previously observed numerically in

nonlinear simulations [Liu+15; Kle+19; Ram+22; Pan+20] and experimentally in the TCV

tokamak [Wen+13]. Finally, Fourier decomposition of the plasma displacement in toroidal

and poloidal modes gives the radial spectra of the nonlinear plasma displacement (figure

3.11b shows the n = 1 component of the displacement), showing the very same qualitative

trails as the linear eigenfunction spectra for n = 1. This is a strong indication that the 3D

state calculated by VMEC is the non-linear extension of the linear perturbation of the 2D

neighbouring equilibrium state described earlier.

(a) (b)

Figure 3.11: Nonlinear plasma displacement for DEMO QH-mode baseline. (a) Plasma dis-
placement in torodial cross section and (b) Fourier decomposition in SFL poloidal angle. In
figure (b) only the toroidal mode number n = 1 is plotted, with the numbers in the solid lines
corresponding to the poloidal mode number.

The 3D magnetic structure presented in this section was used by the VENUS-LEVIS code
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[Pfe+14] to simulate the losses of fast particles due to edge corrugations, then later compared

with the losses of its neighbouring axisymmetric state. While this investigation was only a

first approximation and more research is needed to assess the full problem, it was observed

that the presence of EHOs increases the fast ion first orbit losses by a factor smaller than

0.1 % of the total ion population. In addition, EHOs modify the pattern of the fast particle

deposition which might translate in a local increase of the thermal loads on the plasma facing

components. For a detailed description of the results, refer to reference [BSG20].

3.3.2 Comparison of the external saturated states in VMEC and JOREK

The nonlinear 3D equilibrium state calculated by the VMEC code and the saturated state ob-

tained in a JOREK nonlinear initial value simulation were compared for two types of saturated

external instabilities: current-driven external kink and pressure-driven exfernal modes. This

section provides a brief summary of the important aspects of the work and the significance of

the results. For a detailed description of the results, refer to reference [Ram+22].

Code assumptions and initial conditions

VMEC and JOREK have a few fundamental differences that can make the comparison of sat-

urated states challenging, even when JOREK is executed close to the ‘ideal’ limit (vanishing

resistivity). As this limit is approached, JOREK nonlinear simulations require higher numerical

resolution and computational power, so it is common practice to set the resistivity such that

the Lundquist number is 10-100 times smaller than the experimental values. These differences

are more noticeable particularly when analysing external perturbations that corrugate the

plasma boundary. The LCFS in VMEC defines the computational domain, which is free to move

and calculated self-consistently with the vacuum magnetic field. The boundary conditions

at the plasma-vacuum interface are given by the ideal jump conditions of the magnetic field,

therefore defining a sharp division between the plasma and the vacuum region. In contrast,

the computational boundary in JOREK is fixed by the imposed Dirichlet boundary conditions

on the velocity field, while the magnetic field has the correct jump conditions at the compu-

tational boundary4. To obtain edge corrugations in JOREK, an artificially high resistivity is

enforced in the region of the computational domain outside of what is defined as the plasma

region, where the pressure profile vanishes. The thin layer of sharp increase in the resistivity

4For these boundary conditions to be applied, the JOREK code is coupled to the STARWALL code [Höl+12]
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emulates, by damping currents, the vacuum transition that is assumed in the VMEC code. In the

simulations presented in [Ram+22], the ratio between core and edge resistivity is ∼ 105. While

the fluid boundary conditions in the two codes are remarkably different, in some cases they

yield similar interface conditions, as it is shown when comparing the saturated external kink

mode case. Note that in the nonlinear phase of JOREK simulations, the relaxation of the profiles

and thermal losses modify the resistivity at the interface, which can produce stochatisation of

the magnetic field lines at the plasma edge, where the dynamics in which we are interested is

most important. It is worth noting that this effect cannot be reproduced in VMEC due to the

enforced existence of nested flux surfaces. Nevertheless, the resistive dynamics is expected

to occur over a longer time scale than ideal dynamical time scales, making the separation

between resistive and ideal effects possible and thus permitting a the comparison between

the ideal behaviour of two codes.

(a) (b)

Figure 3.12: Equilibrium profiles used in VMEC free boundary calculation for the (a) external
kink and (b) exfernal cases. Obtained from [Ram+22]

In the VMEC equilibrium approach, the input profiles are consistent with the saturated equi-

librium state. In a more consistent comparison, the plasma profiles of the final saturated

JOREK state would be used as input in the VMEC equilibrium calculation, but the absence

of well defined magnetic surfaces due to the ergodisation of the magnetic field lines in the

saturated state (especially at the edge) makes it difficult to define the radial plasma profiles.

Instead, a neighbouring VMEC axisymmetric equilibrium is used as the initial state in the JOREK

simulation, and it is assumed that the nonlinear evolution of the JOREK profiles is weak and

will not significantly change the final saturated state. The profiles used in the VMEC and JOREK

simulations are plotted in figure 3.12 for the external kink and exfernal cases. For the external
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(a) (b)

Figure 3.13: Poloidal Fourier spectrum of the n = 1 radial linear eigenfunction calculated in
the linear phase in JOREK (top) and of the nonlinear normal plasma displacement calculated
in VMEC (bottom) for the (a) external kink case and for the (b) exfernal case. Obtained from
[Ram+22]

kink case the pressure gradient is constant and the safety factor monotonically increases from

the core to the edge, with qa ≲ 5. For the exfernal case, the profiles contain the qualitative

characteristics of a QH-mode discharge discussed earlier in this chapter. As will be shown in

chapter 4, either a complete or a partial flattening of the safety factor can lead to the excitation

of exfernal modes. A completely flat safety factor is thus avoided to keep the JOREK simulation

more empirically realistic. Still, the magnetic shear in the pedestal region for the exfernal

case is kept low (s ∼ 1). The pressure and safety factor are conserved throughout the VMEC

energy minimisation process, while the toroidal current is calculated self-consistently for the

corresponding equilibrium. The exfernal case exhibits an increased edge current density with

respect to typical H-mode discharges due to the large bootstrap current associated with the

steep pedestal pressure gradient in the low collisionality regime. This contribution is absent

in the external kink case. Two toroidal current profiles calculated in free boundary VMEC are

shown in figure 3.12, one corresponding to an axisymmetric calculation (labelled as j̄i ni t i al )

and one where 3D effects were allowed (labelled as j̄per tur bed ). It can be seen that both profiles

match closely except at the edge, where the perturbed current density has a peak in external
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kink case, but is only weakly modified in the exfernal case. It is pointed out that VMEC does not

evolve the plasma state and therefore an ‘initial’ equilibrium has no meaning, so the labelling

corresponds to the initial profiles used in the equivalent JOREK initial value simulation.

Figure 3.14: (a) Toroidal spectrum of the perturbed magnetic energy in VMEC and JOREK. (b)
Perturbed poloidal flux in JOREK at the beginning of the saturated phase. (c) Perturbed poloidal
flux in VMEC saturated state. Obtained from [Ram+22].

External kink case

Very good agreement between the saturated states calculated in both codes was found for

the external kink case. The nonlinear normal plasma displacement in the VMEC simulation

calculated through equation 2.57 exhibits a clear (m = 5,n = 1) dominant external kink mode,

as shown in figure 3.13a. The qualitative characteristics of the nonlinear poloidal spectrum

agree with the JOREK radial eigenfunctions in the linear phase, reproducing the previous

results obtained by Kleiner et. al. [Kle+18]. In the nonlinear phase, the JOREK n = 1 mode

quickly becomes the only dominant component and saturates within ideal time scales, with

very weak stochatisation of the magnetic field lines. A comparison of the perturbed poloidal

flux and of the toroidal spectrum of the perturbed magnetic field energy (figure 3.14) shows

quantitative agreement between the saturated states calculated in both codes. This result

indicates that the final saturated state obtained in VMEC does correspond to an equilibrium

state that is accessible by the physical nonlinear evolution of the unstable axisymmetric

equivalent equilibria, at least for this simple case. Another way to interpret this result is that

the JOREK simulation does converge to a physical equilibrium state despite the fact that the
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dissipative parameters in the simulation might not correspond to real experimental values.

Note that the energy in JOREK is expected to be slightly lower than in VMEC due to the inclusion

of resistivity near the edge.

Figure 3.15: (a) Toroidal spectrum of the perturbed magnetic energy in VMEC and in JOREK
at different times of the simulation, corresponding to dominant n = 1 and n = 2. Perturbed
poloidal flux at the beginning of the saturated phase when (b) n = 2 and (c) n = 1 are the
dominant modes in JOREK. (d) Perturbed poloidal flux in VMEC saturated state. Obtained from
[Ram+22].

Exfernal case

For the saturated exfernal case the agreement between JOREK and VMEC is limited. Figure

3.13b shows that the saturated normal plasma displacement calculated in VMEC through

equation 2.57 again agrees with the eigenmode structure of the n = 1 mode obtained during

the linear phase in JOREK, reproducing the results obtained in reference [Kle+19]. Toroidal

mode numbers n = 2−5 are also linearly unstable due to the exfernal drive, but which mode

becomes dominant in the saturation phase is dictated by nonlinear dynamics. Note that in

JOREK such dynamics is extremely sensitive to diffusion parameters, such as resistivity, while

in VMEC the dynamics is bypassed. Indeed, in [Ram+22] it is shown for the external kink case

that an increase of resistivity in the core (Spitzer like) and a softer transition to vacuum leads to

an early stochatisation of the edge magnetic field lines and a higher-n mode (ballooning-like)

dominating the nonlinear plasma dynamics.

Early in the nonlinear phase of the JOREK simulation, a n = 2 mode saturates and dominates

the dynamics, contrary to the dominant n = 1 saturated mode observed in the perturbed VMEC
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equilibrium solution. Nevertheless, in both saturated equilibria the instability is of exfernal

kind, with a (m,n) mode localised in the pedestal and a (m+1,n) mode perturbing the plasma

edge, though considerable stochatisation of the magnetic field lines at the edge is observed

even in the early nonlinear saturation phase. Stronger toroidal coupling is seen in the JOREK

calculations, as shown by the toroidal spectrum of the perturbed magnetic energy in figure

3.15. It is speculated that the nonlinear energy transfer between the two modes through

quadratic coupling stabilises the n = 1 mode [Kre+13], allowing the more unstable n = 2 to

grow and saturate. The n = 1 mode grows on the resistive time scale, dominating over the

n = 2 in its much later saturation phase. However, this state can not be directly compared with

VMEC because the dynamics leading to its saturation were dictated by resistive effects, which

are not included in VMEC. Still, there is a reasonably good qualitative agreement between the

saturated magnetic field structure found in VMEC and the resistive n = 1 saturated mode found

in JOREK, as shown by the perturbed magnetic flux in figure 3.15. Moreover, Poincaré analysis

of the saturated modes in JOREK show that there is considerable stochatisation of the magnetic

field lines in the plasma edge, with the stochastic structure roughly following a similar edge

perturbation as the one observed in VMEC (figure 13 of [Ram+22]). These nonlinear resistive

structures may not necessarily be remotely connected to the saturated exfernal mode observed

in VMEC, regardless of the similarities. However, they could point towards the possibility that

the ideal exfernal drive still influences the global magnetic structure on resistive time scales.

These issues could be resolved by improvements on the initial value models (see limitations of

JOREK mentioned above) and/or improved nonlinear analytic theory.

3.4 Prospects for the EHOs parameter space

The link between the linearly unstable exfernal modes and the nonlinearly saturated EHOs

observed during QH-mode operation has been discussed in this chapter. One of the contribu-

tions of this thesis is the exploration of the parameter space where these type of instabilities

can be excited. Up to now, it has been shown that the pressure gradient and the distance to the

rational surface in equilibria with vanishing edge magnetic shear define a relatively narrow

parameter space for the excitation of exfernal modes. The goal of the following chapter is

to study this parameter space in more detail. Since exfernal modes are coupled current and

pressure driven instabilities which are localised at the pedestal, it is convenient to define the

parameter space with respect a few physical quantities evaluated in the pedestal region. Weak
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FLB stabilisation is necessary to provide the infernal drive of exfernal modes, but it does not

necessarily require vanishing magnetic shear over the pedestal. Moreover, the critical shear at

which exfernal modes can be excited can provide an estimation of the critical current density

needed to access QH-mode. Pedestal width is also expected to modify the parameter space

since the infernal drive depends on the radial extension of the weak FLB region. Finally, in a

realistic diverted plasma, the safety factor diverges as the flux surfaces approach the separatrix.

Such divergence has an influence on external kink modes, and therefore on exfernal modes.

The parameter space for the excitation of exfernal modes with respect to these three physical

quantities (edge magnetic shear, pedestal width and value of qa , including qa →∞) is studied

in Chapter 4.

Robust access to QH-mode in different plasma conditions might need expansion of the

parameter space for the excitation and saturation of exfernal modes. The application of

non-axisymmetric magnetic perturbations is extensively used for ELM control and avoid-

ance, where the physical mechanism involved is thought to be related to the amplification

of the applied field through its interaction with external kink modes [Ora+17]. Therefore,

non-axisymmetric magnetic perturbations might influence the parameter space of saturated

exfernal modes. This is shown to be the case in Chapter 5.
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4 Effect of edge magnetic shear on the

excitation mechanism of exfernal

modes

This chapter presents an extension of exfernal mode theory, where the effects of edge magnetic

shear and plasma separatrix are investigated and applied to Edge Harmonic Oscillations

(EHOs). Linear analytical modelling is performed on a large aspect ratio tokamak with circular

cross section, from which a set of three coupled differential equations describing the dispersion

relation are derived. To correctly assess the effect of edge shear on exfernal modes, higher

order corrections need to be retained in the expansion of the safety factor around the rational

surface. The equations are solved numerically for equilibrium pressure and safety factor

profiles containing the key features for the excitation of exfernal modes, including a model

of a plasma separatrix. The current-driven branch of the instability is significantly reduced

by the inclusion of the separatrix, but the mode remains unstable through coupling with the

pressure-driven infernal drive. The obtained parameter space for the instability without the

effect of the separatrix is compared with the growth rates calculated using the KINX code,

and with the nonlinear plasma displacement calculated using the VMEC free-boundary code.

From the comparison it was found that the edge shear can be of order unity and still excite

exfernal modes, implying that EHOs can be excited even with weak flattening of the local

safety factor at the edge, which is in line with some current experimental observations, but

contrary to the previous simpler analytic theory presented in chapter 3. The work presented

in this chapter was published in reference [BGB21].
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4.1 Introduction

As introduced by the previous chapter, under QH-mode equilibrium conditions low-n external

infernal (exfernal) modes can grow and saturate. These modes arise from the coupling of

external kink and infernal drives, where the latter comes from the combination of low magnetic

shear and high pressure gradient over the pedestal region. Linear analytic [Bru+18a; Bru+18b;

Bru+19a] and numerical [ZKV13b; Kle+19; Don+17] modelling suggests that EHOs might

correspond to the nonlinear saturated state of exfernal modes when a plateau in the safety

factor is observed. However, other numerical studies and experimental observations [Gar+15;

Cfe+20] have found MHD structures similar to EHOs in cases where the magnetic shear over

the pedestal region is of order unity. This means that analytical exfernal mode theory requires

the inclusion of finite edge magnetic shear in order to offer a robust explanation for the

excitation of EHOs.

The present chapter investigates the effect of finite magnetic shear in the pedestal on the

excitation mechanism of low-n exfernal modes. This is done using a semi-analytical approach

which extends previous work on exfernal modes [Bru+18a] in a large aspect ratio tokamak,

where now the assumption of having vanishing magnetic shear near the edge is relaxed. This is

achieved by expressing the safety factor in the pedestal region as q(r ) = qs(1+∆q(r )/qs), where

qs = m/n with m and n integers and ∆q(r )/qs ≪ 1. An expansion in ∆q(r )/qs is performed

including terms of order O (∆q1/qs) which account for finite magnetic shear contributions.

Note that in previous work such terms are not present [Bru+19a; Bru+18b; Bru+18a; GHH96].

Numerical solution of the equations allows us to solve the exfernal problem for more realistic

profiles, while using a simplified large aspect ratio model allows us to keep track of the relevant

physics in the equations. Both approaches will be performed in this chapter.

Access to the QH-mode regime is often considered to be related to the presence of toroidal

rotation and in particular E×B poloidal plasma sheared flow. Experimental evidence [Gar+11]

shows that E×B flow shear rather than net toroidal flow is what determines the accessibility

to QH-mode, which is somewhat recovered by analytical [Bru+19a] and numerical [Che+17a;

Liu+15; Che+16; Xu+17] modelling. The direct impact of toroidal rotation on low-n modes is

mainly an empirically measurable Doppler shift of the eigenfrequency, i.e. the introduction of

a mode frequency which is proportional to the plasma bulk rotation Ω according to the rule

f ∝ nΩ, provided Ω is high enough. In such conditions, locked modes that would otherwise
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terminate the discharge are avoided [Gar+15]. In the nonlinear regime, saturated exfernal

modes calculated in VMEC show that the derivative of the perturbed poloidal magnetic field

(which is what is measured in experiments) persist for various toroidal harmonics. When

the correct Doppler shift is taken into account (dδBθ/d t ∝ nΩδBθ) the associated VMEC

spectrogram agrees well with experiments [Kle+19]. Hence, in our study we drop toroidal

rotation in the equilibrium, bearing in mind that the eigenvalue should be Doppler shifted

post-calculation if one wishes to treat the EHO dynamics in the laboratory frame. Continuum

damping, plasma resistivity, the interaction with resistive external structures, and kinetic

effects which all may affect the dynamics of a rotating mode are not treated in this work, and

so are left for a more refined analysis. The combined effect of ion diamagnetic and E×B

poloidal flow shear, which results in net-zero ion poloidal flow, influences the mode structure

of the instability by damping high-n modes while allowing low-n modes to grow, with a modest

effect on their growth rate. For simplicity, such effects are also neglected in the present work

as they have been already treated analytically [Bru+19a] and numerically [Ram+22], so their

effect is assumed to be independent from the effect of edge magnetic shear in the excitation

mechanism of low-n modes.

Separatrix effects are also modelled in this work by assuming that each resonant surface lies

within the plasma by taking q → ∞ as r → a. Such divergence in the safety factor in this

simplified model of the separatrix has a strong stabilising influence on edge current driven

modes (e.g. peeling modes) [WG09; Huy05; HC07]. However, for instabilities driven both

by pressure and current (e.g. peeling-ballooning and exfernal modes) the modes remain

unstable in the presence of a separatrix [SKK11]: the current-driven branch disappears, while

the pressure-driven branch can persist. This is indeed what is observed in the present study,

though as q →∞ the exfernal mode formally becomes an internal infernal mode with no

connection to the vacuum region within the approximations of our analytical model.

The chapter is organised as follows: Section § 4.2 describes the equilibrium configuration.

Using a large aspect ratio expansion, stability equations for the equilibrium configuration are

derived in section § 4.3 by taking projections of the vorticity operator applied to the linearised

momentum equation. Three coupled differential equations that describe the linear evolution

of a main mode (m,n) and its sidebands (m ±1) are obtained. These equations are solved

numerically in section § 4.4 and various cases of interest are analysed. Section § 4.5 compares

the obtained analytical results with well established codes, first against full 3D nonlinear
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simulations in JET-like geometry using the VMEC free boundary code, and later against the

KINX linear stability code. In section § 4.6 we introduce and implement a simple model of the

plasma separatrix, and the exfernal equations are again solved numerically. Finally, section §

4.7 summarises the work and offers conclusive remarks.

4.2 Analytical expansion of the equilibrium equations

The plasma equilibrium is expanded analytically with respect to small inverse aspect ratio

(a/R0 ∼ ϵ≪ 1) assuming shifted circular cross sections, where a and R0 are the minor and

major radii respectively. The analysis is performed on a right-handed coordinate system

(r,θ,φ), where r is a flux coordinate with units of length, θ(ω) = F (r )
q(r )

∫ ω Jω

R2 dω is the straight

field line poloidal angle and φ the toroidal angle. Here, ω and r define the transformation to

cylindrical coordinates

R(r,ω) = R0 + r cos(ω)−∆(r )−P (r )cos(ω)

Z (r,ω) = r si n(ω)−P (r )si n(ω),
(4.1)

where R0 is the major radius, ∆(r ) is the Shafranov shift, P (r ) = r 3

8R2
0
+ r∆(r )

2R0
, and Jω is the

Jacobian in the (r,ω,φ) coordinate system. Standard tokamak ordering is assumed (§ 2.3.2):

BP ∼ ϵBT andβ = 2µ0P/B 2 ∼ ϵ2 , with BP = ∇φ×∇ψ the poloidal field, BT = F (ψ)∇φ the toroidal

field, P the plasma pressure, F (ψ) = RBφ and 2πψ the poloidal magnetic flux.

Equilibrium profiles are chosen so that they reproduce the key aspects of QH-mode operation

[Bur+05] qualitatively. The pressure profile has an edge pedestal close to the vacuum region,

where the pressure gradient associated with the pedestal drives a strong bootstrap current

in the low collisionality regime. To separate the driving mechanism of pressure gradient and

current density we model the safety factor and magnetic shear to monotonically increase

from the core, then the magnetic shear gets weaker in the pedestal region as a consequence

of the bootstrap current (Figure 4.1). Variations in the edge safety factor (or equivalently

the edge current density) can be seen as variations in the edge collisionality at constant

pressure gradient, thus avoiding the difficulty of accurately modelling a bootstrap current that

is consistent with the pressure profile at constant collisionality. A convenient safety factor
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4.2 Analytical expansion of the equilibrium equations

Figure 4.1: Model of the radial profiles of the safety factor, pressure and density. The weakening
of the magnetic shear covers the pedestal region going from rp to a. Note that the model and
analysis do not require the resonance m/n to be at r∗.

profile with the required characteristics is:

q(r ) =


m−1

κ[1−(r /r−)µ]+n if r ≤ rp

q∗ [1− s∗(1− r /r∗)] if r ≥ rp

(4.2)

where r− is the radius of the lower sideband resonance, µ is a constant that defines how fast q

grows in the core region, rp roughly denotes the radius of the pedestal shoulder (which we

choose to roughly coincide with the region where the shear starts to vanish), κ is a constant

that guarantees continuity of the safety factor at rp , s∗ is the magnetic shear at r∗, r∗ = 1
2 (rp +a)

and q∗ = q(r∗).

It is worth to mention at this point that within our ordering the stability properties in the

region [0,rp ] are mostly determined by current effects rather than pressure or inertial effects.

Therefore, for simplicity we are free to consider the pressure (and density) to be roughly

constant in that region, then model a large gradient in the pedestal region. A suitable analytical

expression is given by:
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P (r )

P0
=
ρ(r )

ρ0
=

1

2

[
1− t anh

(
4(r − r∗)

d

)]
(4.3)

with P0 and ρ0 the pressure and density at the magnetic axis and d a measure of the pedestal

width.

With the pressure profile described above, we may have the ballooning parameterα = −Rq2β′ ∼
1 in the pedestal region. Nevertheless, the total β can still be of order ϵ2 if the pedestal region

only covers a narrow region of width ∼ d ≪ r , so that β′ ∼ β/d ∼ ϵ. In such a scenario, the

assumption of concentric flux surfaces still holds [Bru+18b; GC81; CHT78], and one can con-

sistently use the low-β expansion of the equilibrium equations. We point out that the profiles

described above are consistent with these approximations, and that the low-β equations used

in this work yield good results when compared with numerical modelling using QH-mode-like

equilibrium profiles [Bru+19a; Bru+18a; Kle+19; Ram+22]. In the limit of high-β or large pres-

sure gradient over a wide section of the tokamak, the model does not hold anymore, and new

equilibrium equations have to be derived. This has been done in Ref. [Bru+18b] for exfernal

modes, where no major differences in the solutions where found in cases where the pressure

gradient is large only on a narrow region.

4.3 Derivation of the stability equations

For the stability analysis we separate the plasma domain into three intervals, delimited by

the newly introduced parameters r1 and r2, with 0 ≤ r1 < r2 ≤ a. We regard the intervals

[0,r1]∪ [r2, a] as ‘high shear’ regions, where poloidal coupling is neglected due to the Field

Line Bending (FLB) stabilisation dominating in the absence of strong pressure gradients. The

interval [r1,r2] (roughly, but not exactly equal to [rp , a] in figure 4.1) is regarded as a ‘low shear’

region, where poloidal coupling with neighbouring sidebands is induced through the effect of

toroidicity in the geometrical coefficients. The parameters r1 and r2 are allowed to vary, but

it is pointed out that their values don’t change the equilibrium in any way, and their role is

to delimit the regions in which each set of stability equations is to be used. The definition of

what can be considered as ‘low shear’ and ‘high shear’ is in general vague, more so because

now finite edge magnetic shear is allowed. One way to set r1 and r2 is to identify values which

72



4.3 Derivation of the stability equations

maximise the growth rate, as was done for example in reference [HH88] for infernal modes.

4.3.1 High Shear region

In the high shear region all modes are independent, and the equation describing the ra-

dial plasma displacement for any Fourier harmonic with mode numbers (m′,n) is given by

Newcomb’s equation [Fre14; New60], introduced in section § 2.4.2, but repeated here for

convenience

1

r

d

dr

[
r 3

(
1

q
− n

m′

)2 d

dr
ξr

(m′)

]
− (m′2 −1)

(
1

q
− n

m′

)2

ξr
(m′) = 0. (4.4)

This equation also corresponds to the leading order marginal stability equation in a straight

cylinder away from the rational surface. The singularity at q = m′/n can be removed by

adding finite inertia [Mik17], as in equation 2.56. The present study neglects inertia effects

in the high shear region, and the singularity is avoided by imposing the solution to be finite

at its own rational surface. Residual inertia effects in the high-shear region where studied

in reference [Bru+18b] which concluded that the effect on the growth rate is small close to

marginal stability.

4.3.2 Low Shear region

The driving mechanism for exfernal modes lies within this region, where there is combination

of a large pressure gradient over an extended region of low magnetic shear close to the plasma

edge, and the safety factor is close to a rational surface at q ∼ qs = m/n. A main helical mode

(n,m) develops in this region, and couples with the corresponding upper and lower sidebands

(n,m±1). The analytical treatment follows the standard tokamak ordering described in section

§ 2.31. Stability equations are derived from the linearised ideal MHD perturbed momentum

equation:

L(ξξξ) = δF(ξξξ)+ργ2ξξξ = 0, (4.5)
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where ξξξ(t ,r,θ,φ) =ξξξ(r,θ,φ)e iγt is the Lagrangian fluid displacement and ρ is the mass fluid

density. The force operator δF(ξξξ) is given in its covariant form by [Fre14]:

δFi = δB k∂k Bi +B k∂kδBi −Γ j
i k

(
δB k B j +B kδB j

)
−∂i

(
δB k Bk

)
+∂i

(
ξk∂k P + ΓP

J
∂k (Jξk )

)
,

(4.6)

where Γ
j
i k are the Christoffel symbols of second kind. The first five terms correspond to the

expansion of the terms J×δB+δJ×B, with δJ = ∇×δB the perturbed current and δB = ∇×(ξ×B)

is the perturbed magnetic field (we have normalised µ0 = 1). The last two terms correspond to

the gradient of the perturbed pressure ∇δP .

Following Bussac [Bus+75] we separate the fluid displacement as ξ(r,θ,φ) = ξB +ζB, where

ξB ·∇φ = 0, ξ(r ) = FξB ·∇r and ξ(θ) = r FξB ·∇θ. Different toroidal harmonics denoted by the

toroidal mode number n are decoupled because of toroidal symmetry in the equilibrium,

so we can write ξ(r,θ,φ) = ξ(r,θ)e i nφ. For simplicity we remove the φ dependency in our

equations by substituting ∂φ→ i n. We expand the Bussac variables in our large aspect ratio

parameter ϵ and Fourier expand in the poloidal direction as

ξ(r )(r,θ) =
[
ξ(m)

r 0 (r )+ϵ
(
ξ(m+1)

r 1 (r )e−iθ+ξ(m−1)
r 1 (r )e iθ

)]
e−i mθ (4.7)

ξ(θ)(r,θ) =
[
ξ(m)
θ0 (r )+ϵ

(
ξ(m+1)
θ1 (r )e−iθ+ξ(m−1)

θ1 (r )e iθ
)
+ϵ2ξ(m)

θ2 (r )
]

e−i mθ (4.8)

ζ(r,θ) = ζ(m)
0 (r )+

(
ζ(m+1)(r )e−iθ+ζ(m−1)(r )e iθ

)
e−i mθ. (4.9)

The Fourier decomposition considers a dominant harmonic component with poloidal mode

number m, and its two sidebands m ±1 which are formally one order smaller. The higher

order O (ϵ2) helical component of the poloidal displacement contains corrections to the lower

order O (ϵ0) radial displacement ξ(r ). The parallel plasma displacement also considers a main

harmonic perturbation and its two smaller sidebands, though the main harmonic vanishes to

leading order. It can be shown that this expansion completely describes the perturbation to

relevant order [GHH96]. For full expansion including order O (ϵ3) terms, see [GCW22].
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Expressions relating ξ(θ) and ξ(r ) are found by taking the appropriate Fourier components of

equation 4.5 at each order, resulting in [Gra+19]

O (ϵ0) → ξ(m)
θ0 = − i

m

d

dr

(
rξ(m)

r 0

)
(4.10)

O (ϵ1) → ξ(m±1)
θ1 = − i

m ±1

d

dr

(
rξ(m±1)

r 1

)
O (ϵ2) → ξ(m)

θ2 =
i r 2

mR2
0

[
n2

m2

d

dr

(
rξ(m)

r 0

)
+ R0α

2r
ξ(m)

r 0 + ξ(m)
r 0

q

(
n

m
− 2

q

)
+ r

q2

(
ξ(m)

r 0 q ′−q
n

m
ξ(m)

r 0

)]

where we have made use of the ballooning parameter α = −2q2
s R0P ′

B 2
0

, with B0 the magnetic field

at the magnetic axis. The relation between ζ and ξ(r ) is found by projecting the momentum

equation in the equilibrium magnetic field
(
L(ξξξ) ·B = 0

)
, then taking Fourier components of

the resulting equations order by order. We adopt the following ordering for the growth rate:

r 2

R2
0

(
γ

ωA

)2

∼ ϵ4 ,

(
ωs

ωA

)2

∼ ϵ2 ,
γ2

ω2
s
≪ 1, (4.11)

where ω2
A =

B 2
0

ρR2
0

is the Alfven frequency and ωs = 5P
3ρR2

0
is the sound frequency. The leading

order contribution to ζ(r,θ) is (it is found that the lowest order ζ(m)
0 = 0):

ζm±1(r ) = ±i
qω2

s (m −nq ±1)
(
(1∓m)ξ(m)

r 0 + r (ξ(m)
r 0 )′

)
B 2

0 mR0
(
ω2

s (m −nq ±1)2 −γ2q2
) . (4.12)

Now that the poloidal and parallel components of the plasma displacement have been written

as functions of the radial component, the eigenvalue equations for the radial components of

the main mode and sidebands in the low shear region are derived by Fourier analysing the

torodial component of the vorticity equation J∇× L(ξξξ)
Bφ [Bru+19a; Mik17], with J the Jacobian

in our straight field line coordinate system. This can be written in terms of the covariant

components of the momentum equation as:
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V φ(ξ, p) =
1

2π

∫ 2π

0
dθ

[
∂r

(
Lφ

Bφ

)
+ i p

Lr

Bφ

]
e i pθ. (4.13)

Equations are found order by order for the main mode and sidebands via V φ(r,m) and

V φ(r,m±1) respectively. At order O (ϵ2) we recover the cylindrical equation 4.4, which describe

the main mode of the plasma displacement to relevant order as long as q −qs ∼ 1.

The equations at O (ϵ4) include toroidal coupling and pressure. The full O (ϵ4) equations,

derived from equation 4.13, are reported in Appendix B.3. Nevertheless, according to our

ordering such effects are only relevant in the vicinity of a rational surface. To formally apply

this condition, we write the safety factor as q(r ) = qs +∆q(r ), where qs = m/n and ∆q/qs ≪ 1.

This allows us to introduce a second ordering in ∆q/qs . We adopt the ordering notation

O (ϵ,∆q/qs) to make the distinction between small terms due to the tokamak ordering in large

aspect ratio (ϵ) and the small terms due to proximity to the rational surface (∆q/qs). The

resulting equation for the main mode to order O (ϵ4,∆q/qs) is then: (see also the ideal limit of

Ref. [GCW22])

V φ
4 (ξB ,m) =

1

r

d

dr

[
r 3

(
1

q
− 1

qs

)2 d

dr
ξ(m)

r 0

]
− (m2 −1)

(
1

q
− 1

qs

)2

ξ(m)
r 0

+ α

q2
s

[
r

R0

(
1

q2
s
−1

)
− α

2

]
ξ(m)

r 0 + α

2q2
s

[
r−(1+m)

1+m

d

dr
(r 2+mξ(m+1)

r 1 )+ r−(1−m)

1−m

d

dr
(r 2−mξ(m−1)

r 1 )

]
−∆q

q3
s

{
∆′r

d

dr

[
r−(1+m)

1+m

d

dr
(r 2+mξ(m+1)

r 1 )+ r−(1−m)

1−m

d

dr
(r 2−mξ(m−1)

r 1 )

]
+

[
2(1+m)

r

R0
+ (1+m)α− (4+3m)∆′

]
r−(1+m)

1+m

d

dr
(r 2+mξ(m+1)

r 1 )−
(

r

R0
+α−4∆′

)
(2+m)ξ(m+1)

r 1

+
[

2(1−m)
r

R0
+ (1−m)α− (4−3m)∆′

]
r−(1−m)

1−m

d

dr
(r 2−mξ(m−1)

r 1 )−
(

r

R0
+α−4∆′

)
(2−m)ξ(m−1)

r 1

}

+
{
∆q

q3
s

[
4r 2

R2
0

(
2− 1

q2
s

)
+ 3r

R0
α−∆′

(
6r

R0
+7α− rα′

)
+12(∆′)2

]
−∆q ′

q3
s
αr∆′

}
ξ(m)

r 0 ,

(4.14)

where the safety factor dependency on the ballooning parameter has also being expanded,
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leading to the redefinition α→−2q2
s R0P ′

B 2
0

. The notation V φ
4 (ξB ,m) specifies that we have taken

into account only terms coming from the perpendicular plasma displacement. Inertia and

compression terms, which are related to the parallel displacement ζ, are considered in the

analysis below. Here we have included the order O (ϵ2) terms (first line), which enter this

equation when q −qs ≪ 1 (equivalently, when q −qs ∼ ϵ). Therefore, these cylindrical terms

are expected to dominate the behaviour of the main mode when q − qs ∼ 1. The terms in

the second line correspond to the Mercier contribution and the sideband coupling to order

O (ϵ4,∆q0/qs). Order O (ϵ4,∆q/qs) corrections to the main mode component of the plasma

displacement appear in the last line of equation 4.14. The remaining terms couple the main

mode with the sidebands at order O (ϵ4,∆q/qs), and can be linked directly to toroidicity

(through the r /R0 parameter), to plasma pressure gradient (through the α parameter) and to

magnetic pressure gradient (through the Shafranof shift ∆′).

We proceed with the calculation of the sideband equations in the low-shear region (see also

the ideal limit of Ref. [GCW22])

V φ
4 (ξB ,m ±1) =

d

dr

[
r−(1±2m) d

dr

(
r 2±mξ(m±1)

r 1

)]
−2(1±m)

{
d

dr

[
∆q

qs
r−(1±2m) d

dr

(
r 2±mξ(m±1)

r 1

)]
− (2±m)r∓mξ(m±1)

r 1

∆q ′

qs

}

− 1±m

2

d

dr
(r∓mαξ(m)

r 0 )+ (1±m)2(2±m)r−(1±m)
(

r

R0
+α−4∆′

)
∆q

qs
ξ(m)

r 0

−(1±m)
d

dr

{
r∓m∆′r

d

dr

(
∆q

qs
ξ(m)

r 0

)
−r∓m

[
(1±2m)

r

R0
±mα−3(1±m)∆′)

]
∆q

qs
ξ(m)

r 0

}
.

(4.15)

We note that the terms proportional to ξ(m±1)
r 1 and derivatives correspond to the expansion in

the safety factor of the cylindrical equation 4.4, keeping corrections up to order O (∆q1/qs). As

such, they contain the FLB stabilisation contribution of the sidebands. Contrary to the main

mode equation, all of the terms are formally order O (ϵ4), meaning that the cylindrical contri-

bution does not dominate the equation even when pushing ∆q to larger values. Moreover,

because of this the equation gradually loses its validity in the high shear region, or in other

words, r1 must remain relatively close to rp .
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To finalise the derivation of the equations we consider the inertial and compression terms

at order O (ϵ4). Inertial effects are only important in the near vicinity of the rational surface,

where ∆q ≪ 1. Therefore, higher order ∆q corrections could in principle be neglected, but

for the present work such corrections are included for completeness. Using the expansion of

the safety factor and retaining terms up to order O (ϵ4,∆q/qs) gives

V φ
4

(
γ2(ζ+ξB ),m

)
=
γ2

m2

{(
1+2q2

s

)[1

r

d

dr

(
r 3

ω2
A

d

dr
ξ(m)

r 0

)
+ξ(m)

r 0

(
1−m2

ω2
A

+ r
d

dr

1

ω2
A

)]

+4qs

[
1

r

d

dr

(
∆qr 3

ω2
A

d

dr
ξ(m)

r 0

)
+ξ(m)

r 0

(
1−m2) d

dr

(
r∆q

ω2
A

)]}
. (4.16)

These terms should be added to the resulting vorticity equation in the low shear region

(equation 4.14) giving an eigenvalue problem for γ2:

V φ
4 (ξB ,m)+V φ

4

(
γ2(ζ+ξB ),m

)
= 0 (4.17)

V φ
4 (ξB ,m ±1) = 0

where we note that since these equations are to be used in a region close to the main mode

rational surface, the inertia of the sidebands can be neglected. Equation 4.17 can be reduced

to a single equation in terms of ξ(m)
r 0 by substituting the sideband equations into the main

mode equation, as exemplified in appendix B.2. It is finally emphasised that by neglecting

O (ϵ4,∆q/qs) terms (which for the remaining of this chapter are referred to as ‘∆q corrections’),

the equations derived in previous papers [Bru+18a; GHH96] are recovered. The higher order

terms associated with ξ∼O (ϵ3) were formally found to exactly vanish [GCW22].

4.3.3 Boundary conditions

Equations 4.17 can be solved given appropriate boundary conditions. To obtain the eigen-

values (growth rates) and eigenfunctions in the low shear region it is sufficient to know the

logarithmic derivative B(r ) = r d
dr ln

[
ξ(m′)

r

]
at the boundaries between the high shear and low

shear regions (r = r1,r2), as well as at the plasma-vacuum interface (r = a). The logarithmic
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derivatives are cast as Robin boundary conditions for equations 4.17

r
d

dr
ξ(m′)

r (r )−B(r )ξ(m′)
r (r ) = 0. (4.18)

Sidebands

The logarithmic derivative of the upper sideband at the boundary between the high shear

and low shear regions can be obtained by solving equation 4.4 with m′ = m +1 from [0,r1]

assuming that the perturbation at the magnetic axis does not diverge. The rational surface

of the lower sideband lies in the high shear region, meaning that equation 4.4 with m′ =

m −1 is singular at the rational surface. To avoid the singularity, the equation for the lower

sideband is solved in the open interval (r−,r1], where we recall that r− is the radius of the

rational surface. For the profile defined in equation 4.2 analytical solutions exist and are

given in terms of hypergeometric functions [Bru+18b; Mik17], from which the logarithmic

derivative can be directly calculated. If r1 > rp the logarithmic derivative needs to be calculated

numerically by solving equation 4.4 with the Dirichlet boundary condition for the upper

sideband (ξ(m+1)
r 1 (δ) = δm = const ant , with δ≪ 1) and Neumann boundary condition for the

lower sideband

(
d

dr ξ
(m−1)
r 1

∣∣∣
r−

= 0

)
. This procedure leaves a degree of freedom in the solution,

which is removed when taking the logarithmic derivative.

Main mode

We consider the main mode perturbation localised in the low shear region, which requires

ξ(m)
r 0 (r1) ≈ 0. This follows from multiplying equation 4.4 with m′ = m by ξ(m)

r 0 and integrating

from 0 to r1 [Bru+18a; Bru+18b; GHH96]. This boundary condition at r1 forces the main mode

to be localised to the low shear region. This is a valid approximation since shear is known to

localise the mode, and as will be seen later in the results section, even when q(r1) is well below

the rational surface the main mode remains localised in the pedestal region.
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Vacuum boundary conditions

The plasma is separated from an ideal metal wall by a vacuum region. The logarithmic

derivative at the plasma-vacuum interface is given by [Wes78; Fre14; Bru+18b] (see also

section § 2.4.3)

r

ξ(m′)
r

dξ(m′)
r

dr

∣∣∣∣∣
a

=
2m′

m′−nqa
− m′+1+ (m′−1)(a/b)2m′

1− (a/b)2m′ , (4.19)

where a is the minor radius of the plasma and b the radius of the ideal wall (see figure 4.1). This

equation can be cast as a Robin boundary condition for the sidebands m′ = m ±1. While this

equation applies as well to the main mode perturbation m′ = m, we will usually have qa ∼ m/n,

which can make the logarithmic derivative arbitrarily large, and so we can approximate

ξ(m)
r 0 (a) = 0. This boundary condition can equivalently be derived by extending the definition

of the plasma perturbation into the vacuum region (δBV = ∇× (ξξξ×B)) and noticing that it

can be written in a similar form as equation 4.4 [Bru+18a; Bru+18b]. One can then follow the

same procedure as at the boundary between the high shear and low shear regions, namely

multiplying by ξm
r 0 and integrating from a to b.

4.4 Numerical solutions

In this section equations 4.17 are solved numerically. The differential operators are written

in weak form, then discretised using a linear finite element scheme. The resulting matrix

equations correspond to a generalised eigenvalue problem, which is solved using the Implicitly

Restarted Arnoldi method built in the ARPACK [Leh+97] software package.

To empirically determine the relevance of the corrections in the safety factor, we compare

three models

• Original Exfernal model, developed in previous work [Bru+19a; Bru+18a; Bru+18b].

• Corrected Exfernal model, presented in this work (equations 4.14-4.17).

• Reference model.
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The relation between the 3 models is as follows. The Reference model is derived in the large

aspect ratio approximation, obtaining equations up to order O (ϵ4). Note that no assumption

on the shape of the safety factor is made for the Reference model, and thus is valid in the whole

plasma domain. The full equations for the Reference model are reported appendix B.3. This

model is the most complete of all, and provides a benchmark of the safety factor expansion

done for the other two models. The Corrected Exfernal model assumes relatively low shear

close to the rational surface. It is obtained by expanding the Reference model equations in the

small variable ∆q(r )/qs up to order O (ϵ4,∆q(r )1/qs) (see section 4.3). Finally, the Original

Exfernal model is obtained by neglecting order O (ϵ4,∆q(r )1/qs) terms in equations 4.14-4.17.

The equations in all the models are solved in the interval [r1,r2], where r1 and r2 can be varied

in order to maximise the growth rate [GHH96], and we remind the reader that r1 and r2 only

define the region where the high- and low-shear equations are solved, and therefore do not

modify the equilibrium. It is consistently found that the three models maximise the growth

rate at r2 = a independently of the shear. Growth rates with respect to variations in r1 are

shown in figure 4.2. Two main things happen when moving r1 towards zero: (1) the region

where the effect of mode coupling is allowed increases (destabilising) and (2) the average

magnetic shear in the region where such effects are allowed is also increased (stabilising). The

stability of the mode upon variations of r1 is a competition between these two effects. Note

that the stabilisation effect will be weaker if the necessary FLB effects are not included in the

equations.

In the limit of zero shear it is found that the Original Exfernal model (red curve) quickly gives

unphysical growth rates if r1 < rp , which is expected since the equations are only valid in the

region where q is constant and close to a rational surface. Moreover, as shear is increased

(Figure 4.2b) the Original Exfernal model diverges even at r1 ≥ rp . The Corrected Exfernal

model (blue curve) remains close to the Reference model at small variations of r1 even at

modest shear, but as r1 shifts to the left it slowly diverges from the Reference model (purple

curve). In the Reference model the growth rate increases with r1 moving towards zero, then

saturates at around a normalised radius of r /a ∼ 0.4−0.6. Remembering that in the interval

[0,r1] the modes are taken to be independent and obey equation 4.4, saturation means that

coupling and order O (ϵ4) effects can effectively be neglected in that interval.

Note that the Reference model is valid in the whole plasma, which means that the most

accurate prediction of the growth rate must be obtained by setting r1 = 0. This coincides with
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Figure 4.2: Growth rate as a function of the parameter r1 at (a) s = 0 and (b) s = 1. The vertical
dashed line indicates the value of rp . The calculations adopt α = 3, m = 4, n = 1, q∗ = 3.99,
r2 = a = 1, b = 1.3, a/R0 = 1/10, d = 0.075 and rp = a −d . Black vertical dashed line indicates the
value of rp .

the maximisation of the growth rate, as decreasing r1 increases the region over which coupling

can occur, and coupling between the modes is destabilising. Nevertheless, to be consistent

when comparing the different models we set r1 = rp and r2 = a, which corresponds to the

pedestal region interval.

4.4.1 A comparative test: zero shear cases

Firstly, we study the impact of ∆q corrections in the limit of zero shear by performing a

parameter scan on the value of the safety factor plateau (q∗). As shown in figure 4.3 (a)

instability is found for positive and negative ∆q close to the rational surface, as previously

demonstrated by numerous analytical and numerical studies [Bru+18b; Bru+18a; Bru+19a;

Kle+19; Don+17; WG07]. ∆q corrections at zero shear have only a weak impact in the growth

rate, especially where the upper sideband external kink drive is weak, for q∗ < qs where the

main harmonic is non-resonant. For q∗ > qs the upper sideband external kink drive is stronger,

enhanced through toroidal coupling with the main mode infernal drive (whose resonance is

inside the plasma), as reflected by the slight asymmetry in the growth rate parameter space

towards positive ∆q [Kle+18; ZKV13b]. This behaviour is confirmed through analysis of the

plasma displacement radial profiles in figures 4.3 (c) and (d). For ∆q < 0 the main mode is

clearly dominant over the pedestal region. The opposite is true for ∆q > 0, where the upper
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Figure 4.3: Growth rates as a function of q∗ for (a) α = 3 and (b) α = 5. Radial component of the
plasma displacement of the main mode (ξ0) and sidebands (ξ±) at (c) non-resonant case with
∆q = −0.05 and (d) resonant case with ∆q = 0.05. For illustration purposes we have set r1 = 0
and used the Reference model in figures (c) and (d). Note that the main mode displacement
remains localised within the pedestal region. The calculations adopt m = 4, n = 1, b = 1.3,
a/R0 = 1/10, pedestal width d = 0.075 and rp = a −d .

sideband is as large as ξ0. In the latter case, the main mode becomes broader and expands

into the high shear region through its interaction with the upper sideband. For high enough

∆q the FLB contribution of the main mode eliminates the instability completely.

We now increase the infernal drive by increasing the pressure gradient in the pedestal (figure

4.3b). The coupling is now strong enough to maintain the instability even for reasonably high

values of ∆q . When finally ∆q is sufficiently high to stabilise the infernal drive, the external

kink drive dominates and maintains the instability through coupling with the main mode. It

should be pointed out that even when ∆q > 0 the instability exists due to the coupling with
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the infernal drive, noting that an independent (m +1)/n external kink mode would be stable

for the parameters used in these calculations. We finalise this discussion by reaffirming that

∆q corrections have a weak effect in the exfernal modes at very low shear, which indicates

that the Original Exfernal model provides a precise description of the instability where there is

an extended region of very low magnetic shear.

4.4.2 The role of magnetic shear

We continue our analysis by performing a parameter scan in the magnetic shear. For this

scan, stability is determined by a competition between the stabilising effect of shear and the

destabilising effects of infernal and kink drives, where the kink drive is strongly influenced

by the value of qa . The computed growth rates are reported in figure 4.4 (a). The Original

Exfernal mode fails to correctly assess the effect of edge shear due to a simplification of FLB

stabilisation physics in the sideband equations. Moreover, the value of qa (and so the external

kink instability drive) increases with shear, which for the Original Exfernal model results in

the mode not being stabilised by the FLB contribution of the main mode. A comparison with

the results obtained using a flat safety factor confirms that the FLB stabilisation of the main

mode is stronger when displacing a low-shear q-profile from the rational surface than when

increasing magnetic shear.

Figure 4.4 (a) shows that the Corrected Exfernal model gives an excellent match to the Ref-

erence model, and thus recovers the role of magnetic shear on exfernal modes. We expect

the FLB contribution of the sideband to have an important role on the stabilisation of the

external kink drive. To investigate further, we neglect all ∆q corrections in the equations that

are not related with the effect of FLB stabilisation in the sidebands. This can be somewhat

justified by noting that all but one of the safety factor corrections in the main mode equation

4.14 are proportional to ∆q and not shear (s ∼ r∆q ′/qs). For q∗ ∼ qs our model of the safety

factor maintains a constant average ∆q ∼ 0 over the pedestal region upon variations of the

magnetic shear, suggesting that terms proportional to ∆q in the main mode equation 4.14 can

be neglected. The resulting growth rates reproduce the main characteristic of the Reference

model (green line in figure 4.4 (a), labelled as ‘+FLB’), showing that FLB corrections in the

sidebands are indeed what stabilises the external kink drive, and therefore the exfernal model.

Even though the average ∆q is constant over the pedestal region upon variations in the shear,
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the Corrected Exfernal model includes the effect of the local variation of ∆q in the coupling

terms. The resulting imbalance is destabilising, shifting the peak of the growth rates to s ∼ 0.2.

The effect is quickly overtaken by magnetic shear in the FLB contributions, which stabilises

the mode at a limiting value of s ∼ 1.4. The role of shear in exfernal modes is quite intuitive by

analysing the radial profiles of the plasma displacement in figures 4.4 (b) and (c). For relatively

low shear (s = 0.5) the obtained eigenfunctions are quite similar to the case without shear, the

weakening of the infernal drive being compensated by the increase of the external kink drive.

Further increasing the shear reduces the infernal drive by localising the main mode around

the rational surface, which in turn weakens the coupling with the sidebands and stabilises the

mode.

Figure 4.4: (a) Growth rates as a function of magnetic shear, where the line labelled as ‘+FLB’
corresponds to the Original Exfernal model + Field Line Bending corrections to the safety
factor expansion. Radial component of the plasma displacement of the main mode (ξ0) and
sidebands (ξ±) at (b) s = 0.5 and (c) s = 1.3. For illustration purposes we have set r1 = 0 and
used the Reference model in figures (b) and (c). The calculations adopt α = 3, q∗ = 4, m = 4,
n = 1, b = 1.3, a/R0 = 1/10, pedestal width d = 0.075 and rp = a −d .

4.4.3 Stability diagrams

Now that we have investigated the validity of the models and determined the important

parameters in the equations, we proceed to calculate stability diagrams with physical relevance.

To this end, we use the Reference model with r1 = 0 and r2 = a, as it is the most complete

semi-analytical model. Indeed, this is the model that should compare best against the KINX

and VMEC simulations shown later. We start by producing an ’exfernal’ s −α diagram, with s

and α evaluated in the middle of the pedestal region, where α peaks. The resulting diagram is

shown in figure 4.5a. It is found that exfernal modes can support substantial shear without

being stabilised, and that it increases linearly with pedestal pressure. We observe the same

85



Effect of edge magnetic shear on the excitation mechanism of exfernal modes

Figure 4.5: (a) s −α exfernal stability diagram with d = 0.05 and (b) s −d exfernal stability
diagram with α = 3 at pedestal width d = 0.06. The dashed black line indicates in both cases
the stability boundary, obtained when the numerical solution of the stability equations result
in γ2 = 0. The calculations adopt m = 4, n = 1, b = 1.3, a/R0 = 1/10 and rp = a −d .

behaviour as in figure 4.4, where the growth rate peaks at non-zero shear. The peak shifts to

larger values of shear with increasingα due to the stronger coupling between the neighbouring

harmonics.

Figure 4.6 shows the exfernal unstable region in the more familiar infinite-n ballooning stability

diagram, where the ballooning stability limit is a solution of equation [Wil+99]

d

dχ

{[
1+h2] d y

dχ

}
+α(cosχ+hsi nχ+dM )y = 0, (4.20)

where χ is the ballooning angle, h(χ) = sχ−αsi nχ and dM ≂ ϵ(q−2−1) is related to the Mercier

coefficient. The exfernal instability is located in the second region of ballooning stability,

meaning that exfernal and infinite-n ballooning modes are excited in different regions of

the parameter space. This result agrees with previous ballooning analysis on VMEC simula-

tions which found that QH-mode-like plasma profiles were stable against ballooning modes

[Ham+21], and is consistent with the experimental observations where QH-mode is accessed

at the peeling boundary of the peeling-ballooning stability diagram. Therefore, we speculate

that very high-n ideal modes are not excited during QH-mode operation simply because the

plasma is located on a stable region of the parameter space against such modes. However,
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Figure 4.6: s −α stability diagram for exfernal, peeling and ballooning modes

medium-n coupled peeling-ballooning modes might be unstable, and are assumed to be

stabilised by sheared E×B flow [Bru+19a] as discussed in section § 3.1. Also plotted in figure

4.6 is the peeling stability boundary, obtained by expanding the peeling-ballooning equation

(eq. 4 in reference [Wil+99]) around a single vacuum rational surface next to the plasma edge,

resulting in the instability condition [Wil+99]

α>−2(2− s)

dM
. (4.21)

The peeling and exfernal modes are superimposed on a large part of the stability diagram,

though the mechanism for the excitation of each mode are very different as briefly discussed

in section 3.1. An important difference between exfernal and peeling modes is that peeling

modes are only driven by edge current density and are stabilised by the presence of a plasma

separatrix [SKK11; WG09], while exfernal modes are current and pressure driven and the

instability can be sustained in diverted plasmas, as will be shown in section § 4.6. Finally,

we stress that peeling-ballooning and exfernal s −α diagrams are different in nature. The
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shear and pressure gradient for exfernal modes are evaluated over the pedestal region, while

infinite-n ballooning is dependent on the local shear and α values at each flux surface, and

for pure peeling modes these quantities are evaluated at the plasma edge. A comparison with

the parameter space of coupled peeling-ballooning modes was not investigated in this work.

However, figure 4.6 provides a notion of where in the parameter space the exfernal modes are

located.

QH-modes have been experimentally observed with H-mode-like pressure pedestals [Bur+05],

and most recently in the wide pedestal domain [Dii+17]. We now investigate the critical shear

that can be achieved for a certain pedestal width. Reducing the size of the pedestal increases

the localisation of the mode, which weakens the coupling and therefore has a stabilising effect.

On the other hand reducing the pedestal width for a given pressure increases the pressure

gradient, which has a destabilising effect. To vary the pedestal width in our model we perform

a scan in the parameter d , setting rp = a −d while maintaining the pressure gradient such

that α = 3 at a pedestal width of d = 0.06. The stability diagram is shown in figure 4.5 (b). It is

found that for a very narrow pedestal width the modes are less unstable and the critical shear

is larger. Exfernal modes are more unstable for wide pedestals, but more easily stabilised by

magnetic shear. This has an important implication because the current drive that weakens the

shear in the pedestal region has its origin in the bootstrap current, which is proportional to the

pressure gradient. A wide pedestal is associated with a lower bootstrap current, which results

in higher magnetic shear over the region. On the contrary, a narrow pedestal is associated with

a higher bootstrap current, which results in lower magnetic shear over the region.

4.5 Comparison with linear (KINX) and nonlinear (VMEC) codes

As discussed in Chapter 3, nonlinear saturated exfernal modes in the absence of strong equi-

librium flows can be obtained by solving the 3D MHD equilibrium equation using the VMEC

code. Boundary conditions are calculated from the interaction of the vacuum field with the

plasma, where the vacuum field is computed through the Biot-Savart law from a set of JET-like

filament coils carrying current. As it has been assumed throughout the thesis, we consider that

such saturated modes correspond to the EHOs observed during QH-mode tokamak operation.

For the 3D corrugation to develop, the equivalent axisymmetric equilibria must be linearly

unstable. As done in section § 3.3.1, the KINX code is again used to assess the linear stability of

2D axisymmetric equilibria. The plasma profiles under consideration are shown in figure 4.7,
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Figure 4.7: α and safety factor profiles used in VMEC simulations as a function of the squared
root of the normalised torodial flux.

where we note that the edge safety factor has finite magnetic shear and the pedestal width is

roughly d ≈ 0.05.

To isolate the effect of the infernal pressure-driven branch of the main mode, VMEC compu-

tations remove the current-driven branch of the main mode by setting qa > qs [Kle+19]. For

q∗ < qs this is usually achieved by adding a spike to the safety factor at the edge, taking the

value of qa just above the rational surface of the main mode [Kle+19; ZKV13b]. It is argued that

the spike also provides a more realistic transition between the low-shear and vacuum regions

in diverted plasmas, which exhibit a sharp increase when approaching the separatrix [Kle+19].

The effect of such a spike on stability (including the spike going to infinity) will be discussed

later in section 4.6.

Following the methodology described in section § 2.5.1 and exemplified in section § 3.3.1, we

define the nonlinearly saturated radial displacement η as the normal distance between the

flux surfaces of the 3D corrugated state and an equivalent neighbouring axisymmetric state,

where the latter is obtained by removing all toroidal modes except n = 0 in the VMEC Fourier
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expansion. The function η(r,θ,φ) is mapped to a straight coordinate system and Fourier

decomposed in toroidal and poloidal modes, giving a radial profile of the nonlinear perturbed

amplitude contribution of each Fourier mode.

We perform two almost identical VMEC simulations, one with a flat safety factor at the edge

(solid line in figure 4.8a, yielding γ2/ω2
A = 0.0039), and one with positive magnetic shear

(dashed line in figure 4.8a, yielding γ2/ω2
A = 0.0024). The resulting Fourier decomposition

of the radial nonlinear displacement is plotted in figure 4.8b for both cases, where the solid

and dashed lines correspond to the equilibria with flat edge and sheared edge safety factor

respectively. Axisymmetric equivalent VMEC equilibria were then used as the basis of linear

MHD stability calculations using the KINX code [Deg+97], and the linear eigenfunctions for

both cases are plotted in figure 4.8c. For consistency in the comparison between VMEC, KINX

and our model, the KINX simulations were performed without the presence of the plasma

separatrix. The linear growth rates and saturated amplitudes are quite similar for the two

choices of q-profiles. Linear and nonlinear simulations show that the same mode is excited,

confirming the notion that exfernal modes can be excited even in the presence of modest edge

magnetic shear. Notice again that the linear eigenfunctions and radial profiles of the nonlinear

plasma displacement with finite edge shear exhibit the same characteristics as the ones found

by our simplified large aspect ratio model.

Figure 4.8: (a) Flat edge safety factor (solid line) and sheared safety factor (dashed line). (b)
Fourier decomposition of the normalised nonlinear radial displacement calculated in VMEC.
(c) Linear radial eigenfunctions calculated in KINX.

Finally, a series of simulations were performed for a broad scan of edge safety factor shapes.

The average shear over the pedestal region was calculated and plotted in figure 4.9 against

the KINX linear growth rate and VMEC nonlinear saturated amplitude of the (m +1)/n mode

at the edge . Even though the plasma profiles and geometry is more realistic in the VMEC and
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Figure 4.9: Amplitude of the m+1/n saturated mode calculated with VMEC (left axis) and linear
growth rates (right axis) calculated with KINX. It is consistently found that the limiting shear is
around unity.

KINX simulations, it is encouraging to find roughly the same limiting shear s ∼ 1.2 as in our

simplified analytical model for similar α∼ 3 and d ∼ 0.05.

4.6 Model of the plasma separatrix

QH-mode plasmas operate in diverted configuration, where the formation of an x-point in the

edge makes the poloidal field vanish locally. The effect of such localisation is included in our

model in the poloidal average of the safety factor1, which is taken to go to infinity at the LCFS.

This has an important implication on the upper sideband external kink drive, whose rational

surface now lies inside the plasma [WG09; Huy05; SKK11].

It is clear that the exfernal mode excitation mechanism is mostly determined by the coupling

of infernal and external kink drives, with the external kink drive strongly depending on the

value of qa . The effect of qa on edge modes has been previously studied in reference [ZKV17],

where it was found that if qa lies just above or just below a rational surface (|qa −m′/n′| << 1,

1The poloidal localisation of the divergence in the safety factor is not modelled in this work.
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where m′ correspond to an arbitrary (m,n) mode) the plasma becomes highly unstable and

dominated by a peeling mode. Otherwise, the plasma is more stable and dominated by kink

or infernal type modes. Our simplified analytical model considers three coupled poloidal

harmonics. The peeling-like instability associated with the main mode (m,n) is removed by

setting ξ(m)
r 0 (r2) = 0 at the boundary of the low shear region, as discussed in section § 4.3.3.

We note that we may still reach the peeling-like instability of the (m +1,n) mode, although

the growth rate should saturate before qa is too close to (m +1)/n as qa is increased towards

infinity [ZKV17].

As a first approach to model the separatrix, the safety factor in the edge region is taken to be

q(r ) = 1−s∗(r /r∗)
A[1−(r /a)λ]+B

, where A = 1−q∗B
q∗[1−(r∗/a)λ] , B = 1−s∗(1−a/r∗)

qa
and λ≫ 1. For comparison with

section § 4.4, we use the Reference model with r1 = rp and r2 = 0.99, where r2 is close to the

location of sharp increase of the magnetic shear for 1 ≪λ = 500. Poloidal coupling is avoided

in the separatrix region due to the presence of large shear and low pressure gradient, so it is

assumed that the modes obey equation 4.4. The boundary conditions at the plasma-vacuum

interface are given by equation 4.19.

Figure 4.10: (a) Growth rate as a function of magnetic shear and qa and radial component
of the plasma displacement of the main mode (ξ0) and sidebands (ξ±) with (b) qa = 4.2 and
(c) qa = 4.8. The calculations adopt α = 3, m = 4, n = 1, q∗ = 4., b = 1.3, a/R0 = 1/10, d = 0.075,
r 2 = 0.99 and rp = a −d . The separatrix region is indicated in figures (b) and (c) by the vertical
red dashed line.

Figure 4.10 (a) shows the effect of qa as a function of magnetic shear in the pedestal region.

The external kink drive of the upper sideband gets reduced due to the increased magnetic

shear over the separatrix region, with the growth rate saturating at qa ∼ 4.70. The effect of qa

on the radial components of the plasma displacement can be appreciated in figures 4.10 (b)

and (c), where an increased value of qa reduces the external kink drive of the upper sideband.

Note that since qa < (m +1)/n, the external current-driven mode has not been completely
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removed.

A logarithmic divergence of the safety factor is considered empirically realistic in tokamaks

[Web09]. Therefore, to study the limit of qa →∞ the separatrix is modelled as:

q(r ) =


m−1

κ[1−(r /r−)µ]+n if r ≤ rp ,

q∗ [1− s∗(1− r /r∗)] if rp ≤ r ≤ rx ,

A ln(a − r ) if rx ≤ r ≤ a,

(4.22)

where rx is the radius at which the safety factor starts diverging, r∗ = (rp + rx )/2 and A =
q∗[1−s∗(1−rx /r∗)]

ln(a−rx ) guarantees continuity at rx . The dispersion relation is obtained by solving the

equations in the low-shear region, where the effect of the separatrix only enters in the form

of boundary conditions at the interface with the separatrix region. For the lower sideband,

the boundary condition at rx is obtained by solving equation 4.4 with m′ = m −1 subject to

the vacuum condition (equation 4.19) in the limit of q →∞. The upper sideband rational

surface is now contained within the interval [rx , a], so the boundary condition is obtained by

solving equation 4.4 with m′ = m +1 in the interval [rx ,r+], where r+ is the radii of the upper

rational surface at which a Neumann boundary condition is applied : dξ(m+1)
r 1 /dr

∣∣∣
r+

= 0. A

second method to cast the boundary condition for the upper sideband is to solve equation 4.4

analytically in the interval [rx , a]. The solution in the large shear limit can be written as sum

of exponential integrals of logarithmic functions, but in the limit of very small inertia within

the rational layer the solution reduces to a step function. Then, the boundary condition for

the upper sideband in the low shear region could be approximated as a Neumann condition

at r2: dξ(m+1)
r 1 /dr

∣∣∣
r2

= 0. It has been verified that both methods yield the same physics, with

negligible difference in the growth rates or eigenfunctions.

We now investigate the effect of the safety factor corrections in the presence of a plasma

separatrix by comparing the three different models analysed in section 4.4. For consistency in

the comparison, we set r1 = rp and r2 = rx . Figure 4.11 (a) shows the effect of the separatrix in

the cases with flat safety factor (compare with figure 4.3 (a) with no separatrix). It is clear that

the separatrix reduces the parameter space for excitation of the mode as well as the value of the

growth rates. Now that the external kink drive has been drastically reduced, the instability drive
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comes exclusively from the infernal contribution. Since the external kink drive on the Original

Exfernal model is now constant for any value of ∆q (as the equations are now independent of

qa) the growth rates are symmetric with respect to qs independently of the pressure gradient.

The Corrected Exfernal and Reference models continue to have a slight asymmetry towards

positive ∆q as a result of the higher order toroidal coupling contributions. Stronger coupling

induced by an increase of the pressure gradient enhances the instability and expands the

excitation parameter space (figure 4.11 (b)). Finally, an analysis of the eigenfunctions in figures

4.11 (c) and (d) shows that the main mode is clearly dominant independently of the sign of

∆q , though for ∆q > 0 the upper sideband is larger than for ∆q < 0.

An interesting thing to note is that if the safety factor goes towards infinity at the edge (or in

fact, if qa > (m +1)/n), then vacuum physics only enters the equations through the boundary

condition of the lower sideband, whose effect at the plasma edge is weak. Figures 4.11 (c)

and (d) show that the value of the lower sideband is almost zero at the edge, meaning that

in principle a Dirichlet boundary condition could be approximated for the lower sideband, i.

e. ξ(m−1)
r 1 (a) = 0. As expected, applying such condition has negligible effects on the stability

of exfernal modes with separatrix, which means that these modes are formally internal (i.e.

infernal) since no vacuum physics is needed to excite it. Nevertheless, the argument only

applies when the safety factor has a very sharp increase at the edge which takes qa > (m+1)/n,

in which case the plasma can be considered to be in a diverted configuration. For a limited

configuration where qa < (m + 1)/n, an ideal wall at the plasma interface would stabilise

exfernal modes [Bru+18a; Bru+18b]. This means that an unstable mode requires either a

vacuum contribution from the upper sideband and/or the upper sideband rational surface

being inside the plasma domain. This is because an ideal wall at the plasma edge completely

stabilises the external kink drive, and therefore the exfernal mode. On the other hand, within

the approximations of our model, the separatrix isolates the unstable infernal drive from the

wall stabilisation effect.

A case of the excitation of exfernal modes in the presence of a separatrix has been previously

reported in reference [Kle+19], where the KINX code was used to calculate the stability of

QH-mode discharges in single-null diverted configuration. Even though our model of the

separatrix is simplified, it reproduces all the reported characteristics in [Kle+19], namely: 1)

The mode remains unstable, 2) the main mode is more localised in the pedestal than for the

cases without separatrix, 3) the upper sideband has a sharp decay in the separatrix region
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4.6 Model of the plasma separatrix

Figure 4.11: Growth rates as a function of q∗ for (a) α = 3 and (b) α = 5 including a plasma sepa-
ratrix. Radial component of the plasma displacement of the main mode (ξ0) and sidebands
(ξ±) at (c) ∆q = −0.05 and (d) ∆q = 0.05 calculated with the Reference model and r1 = 0. The
vertical dashed line indicates the location of the separatrix at rx , which has been removed only
graphically for illustration purposes. The results take m/n = 4, b = 1.3, a/R0 = 1/10, d = 0.075,
rx = r2 = 0.99 and rp = a −d .

(modelled by our step function solution), and 4) the upper sideband is slightly larger for

∆q > 0. Note that the model of the separatrix presented on this thesis only includes the effect

of the relevant sidebands rational surfaces being inside the plasma, as well as the effect of

very high edge (off-pedestal) magnetic shear. The agreement with previous work could mean

that that these effects are responsible for at least part of the observed physics. Nevertheless, a

proper divergence on the safety factor or the 2D geometric effects related to the formation of

the x-point are not modelled, which could both modify the stability conditions and stability

limits of exfernal modes.

Figure 4.12a shows that the overall effect of magnetic shear is stabilising. It is obtained once
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Figure 4.12: (a) Growth rates as a function of magnetic shear including a plasma separatrix.
Radial component of the plasma displacement of the main mode (ξ0) and sidebands (ξ±) at
(b) s = 0.35 and (c) s = 0.7 calculated with the Reference model and r1 = 0. The vertical dashed
line indicates the location of the separatrix at rx , which has been removed only graphically
for illustration purposes. The results take α = 3, q∗ = 4, m/n = 4, b = 1.3, a/R0 = 1/10, d = 0.075,
rx = r 2 = 0.99 and rp = a −d .

again that without the enhancement factor of the external kink drive the parameter space for

exciting exfernal modes is reduced, with a critical marginal stability shear of s ∼ 0.75. Since

the destabilising sideband contributions are significantly reduced by the separatrix, the FLB

contribution of the main mode in the Original Exfernal model is enough to stabilise the mode.

We can see that the Corrected Exfernal model has excellent agreement with the Reference.

The role of shear is not affected by the presence of the separatrix, as reflected by the obtained

eigenfunctions (figures 4.12 (b) and (c)): magnetic shear localises the main mode around the

rational surface, weakening the infernal drive and the coupling with the sidebands.

One can note that the critical shear obtained with the ’spike’ model of the safety factor satu-

rates at qa < (m +1)/n, and coincides with the critical shear obtained with the logarithmic

divergence. This suggests that the sharp increase of magnetic shear is enough to significantly

reduce the instability drive of the current driven branch, as suggested by previous studies

[SKK11; WG09]. One can conclude that a spike in the safety factor does provide a good model

for the transition between the plasma and the vacuum region in ideal MHD calculations of

exfernal modes, so that more sophisticated separatrix modelling may not be needed.

4.6.1 Modification of the parameter space with a separatrix

We analyse the exfernal s −α and pedestal width stability diagrams, now introducing a sepa-

ratrix using our simplified model (figures 4.13 a) and b)). The calculations use the Reference
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4.6 Model of the plasma separatrix

Figure 4.13: a) s −α exfernal stability diagram with d = 0.05 and b) s −d exfernal stability
diagram with α = 3 at pedestal width d = 0.06. A model of the plasma separatrix is now
included. The dashed black line indicates in both cases the stability boundary. The solid red
line corresponds to the analytical estimation of the critical shear (equation 4.27) calculated
in section 4.6.2 for a linear pressure dependence in the pedestal. The results take m/n = 4,
b = 1.3, a/R0 = 1/10, rx = r2 = 0.99 and rp = a −d .

model, setting r1 = 0 and r2 = rx . Since the separatrix has not killed the infernal drive of the

mode, the stability diagrams show a similar behaviour as figure 4.5, but with the limiting

shear and growth rates reduced due to the absence of the upper sideband external kink drive

enhancement. Additional to the stability limit obtained numerically (dashed black line), the

red solid line in figures 4.13 (a) and (b) show an analytical estimation of the marginal magnetic

shear. The derivation is obtained with a simple model presented in the next subsection.

4.6.2 Analytical estimation of edge critical shear with a separatrix

For simplicity we consider the Original Exfernal model, which has been shown to describe the

main effects of magnetic shear in a diverted plasma, and to give a good estimate of its critical

value for instability in plasmas with separatrix. Recalling that the Original Exfernal model

neglects corrections of order O (ϵ4,∆q1), we can readily integrate equation 4.15 and substitute

into equation 4.14 to obtain [Bru+18b; Bru+18a; GHH96]:
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d

dr

[
r 3Q2 d

dr
ξ(m)

r 0

]
−r (m2−1)

[
Q2 + r

d

dr
γ̄2

]
ξ(m)

r 0 + r 2α

R0q2
s

(
1

q2
s
−1

)
ξ(m)

r 0 + α

2q2
s

∑
±

r 1±m

1±m
L± = 0,

(4.23)

where Q2 = (1/q −1/qs)2 + γ̄2, γ̄2 = γ2(1+2q2
s )/(ω2

Am2) and L± are the constants of integration

that account for the coupling with the neighbouring sidebands. L± = Λ±
∫ rx

rp
αr 1±mξ(m)

r 0 dr ,

where Λ± are defined in a similar way as in refs. [Bru+18a; Bru+18b; GHH96]

Λ± =
(1±m)2[2±m +B±(rp )][2±m +B±(rx )]r−2(1±m)

x

(±m −B±(rx ))[2±m +B±(rp )]−
(

rp

rx

)2(1±m)
(±m −B±(rp ))(2±mB±(rx ))

, (4.24)

where B±(r ) = r d
dr l n

[
ξ(m±1)

r 0 (r )
]

. Let us define h = d/(2r∗) ≪ 1 and assume that in the pedestal

region the pressure and mass density profiles depend linearly on r so that α is constant. Thus,

we approximate
∫ rx

rp
αr 1±mξ(m)

r 0 dr ≈αr 1±m∗
∫ rx

rp
ξ(m)

r 0 dr . For the sake of convenience, we impose

the normalisation
∫ rx

rp
ξ(m)

r 0 = 1, which consequently formally yields ξ(m)
r 0 /a ∼ h−1.

By introducing the variable x = (r − r∗)/r∗ and expanding around x = 0, the mass density and

pressure are written as ρ/ρp = P/Pp = (h − x)/(2h), where ρp = ρ(rp ) and Pp = P (rp ) are the

values at the pedestal top. Taking q(r∗) = qs = m/n and expanding equation 4.23 around x = 0

reduces to

d

d x

[
f

d

d x
ξ(m)

r 0

]
+ rα

R0

(
1

q2
s
−1

)
ξ(m)

r 0 + α

2

∑
±

r±m∗
1±m

L± = 0 (4.25)

where f = s2∗x2 +γ2τ2
A

(
h−x
2h

)
with s∗ = r q ′/q|r∗ and τ2

A = 1
(ωA(rp )n)2 (1+2q2

s ). Let us define the

constant U = α
2

∑
±

r±m
∗ L±
1±m . A rough estimate of the critical magnetic shear can be obtained by

balancing the field line bending and coupling terms in the equation above, in the limit of γ→ 0

and under the assumption that the Mercier contribution is small (this will be proven later).

Hence, assuming that d
d x ∼ 1

x ∼ 1
ah and using the normalisation condition for ξ(m)

r 0 , the critical
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magnetic shear scales as s2∗ ∼ ahU . The solution to equation 4.25 can be written in terms of

hypergeometric functions (see Ref. [Mik17]). Requiring that ξ(m)
r 0 vanishes at x = ±h, imposing

the normalisation condition for ξ(m)
r 0 in the solution and taking the limit of γ→ 0 yields the

condition for marginal stability

1 =
2hr∗U

D

1− 1

2

Γ
(

1
4 + 1

4

√
1+ 4D

ŝ2

)
Γ

(
5
4 + 1

4

√
1+ 4D

ŝ2

)
 , (4.26)

where D = r∗α
R0

(
1− 1

q2
s

)
is the Mercier contribution and Γ is the Gamma function. We note that

the Mercier contribution is proportional to ϵαξ(m)
r 0 , whereas the coupling contribution scales

as α2. Assuming ϵξ(m)
r 0 /a ∼ ϵh−1 ∼ 1, it turns out that for sufficiently large pressure gradients

the coupling contribution dominates over the weakly stabilising Mercier term, allowing us to

expand equation 4.26 in the limit of D ≪ 1, finally giving

s∗ =
√

2hr∗U − D√
2hr∗U

. (4.27)

This expression has the very same dependencies on the rough scaling obtained previously,

balancing field line bending and coupling contributions. Evaluating U requires expressions for

the constants Λ±. It is later shown that U ≈ 7
12r∗

mα2, so that s∗ ≈α
√

7
6 hm− D

α
√

7
6 hm

. Recalling

that D ∝α, this expression immediately recovers the linear dependency of the critical shear

on pedestal pressure obtained numerically by the Reference model (figure 4.13 (a)). Note that

in the limit of α→ 0, the only stabilising effect at zero shear comes from the Mercier term,

meaning that without it, any pedestal pressure would excite an infernal instability for the case

of q∗ = qs and zero shear. This result was verified by removing the Mercier contribution in the

Corrected Exfernal model and solving the equations numerically.

Substituting the parameters used in the calculations above gives the marginal magnetic shear

s∗ = 0.382α−0.233 (solid red line in figure 4.13 (a)), whose dependence upon the parameter α

is remarkably close to the one obtained by a linear fit of the numerical results shown in figure

4.13 (a) (s∗ = 0.368α−0.447). Note that the numerical results in figure 4.13 (a) were obtained
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with a t anh-like pressure profile (α corresponding to the peak value within the pedestal),

while the analytical estimation assumes a constant α. This results in an overestimation of the

critical shear by equation 4.27. Solving the Original Exfernal equations numerically using a

linear pressure profile in the pedestal region gives a better match to our analytical estimation,

as seen in figure 4.14.

Expressing α in terms of h allows a study into the critical shear as a function of pedestal width

at constant pedestal pressure. Since α∼ 1/h and thus ŝ ∼ h−1/2, our simple analytical formula

recovers as well the correct dependency of critical shear on pedestal width in figure 4.13 (b),

except for small pedestal widths.

A final analytical estimation links the toroidal current density to the critical shear through

the relation in cylindrical limit Jtor = B0
r R0

d
dr

(
r 2

q

)
. Expanding this expression and plugging the

value for the magnetic shear computed in equation 4.27, we obtain the following value of the

required pedestal current density for the EHO excitation

Jtor ≈ 2B0

q∗R0

1−
√

hr∗U

2
+ P

2
√

2hr∗U

 . (4.28)

We stress that equation 4.28 is valid in a cylindrical limit and variations are expected for more

accurate toroidal diverted geometry.

Analytical estimation of U

From previous computations performed with a simplified step-model for the current density

and a sufficiently distant wall [Bru+18a; Bru+19a], we have B+(rp ) ≈ 3m +2, B−(rp ) ≈ m/6−
1/4 and B+(rx ) ≈ 2−3m. The Neumman boundary condition for the upper sideband at the

interface between the pedestal and separatrix regions means B+(rx ) = 0. It is worth pointing

out that a more refined computation with a diffuse current profile does not give significantly

different results [Bru+14a]. This specifies completely the coupling coefficient U through the

constants L±, so that
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r∗U ≈α2

[
(m +1)(m +2)

2m + (2+m)Y

(
r∗
rx

)2(1+m)

+ (m −1)(m −2)

m −2+3mZ

(
r∗
rx

)2(1−m)
]

, (4.29)

where Y = (rp /rx )2(1+m) and Z = (rp /rx )2(1−m). In the limit of m not too large and narrow

pedestal width, we may approximate r∗U ≈ 7
12 mα2. Figure 4.14 shows the analytical esti-

mation obtained by inserting this expression into equation 4.27, and is compared with the

numerical solution using the Original Exfernal and Corrected Exfernal models. In this case,

a linear pressure profile in the pedestal region was adopted in the numerical calculations to

have a better comparison with the analytical solution. The excellent match in the critical

shear between the Original Exfernal model and the analytical estimation confirms that the

approximations taken in the derivation of equation 4.27 are valid in these simplified cases.

The Corrected exfernal model prediction of the critical shear is close to the analytical estima-

tion for low α. As pressure gradient increases the destabilising order O (ϵ4,∆q/qs) coupling

corrections (which are not included in the analytical estimation) become stronger, separating

the analytical estimation from the one of the Corrected Exfernal model.

4.7 Conclusions

This chapter presents the effect of finite edge shear on the excitation mechanism of exfernal

modes has been investigated by deriving new differential equations describing infernal modes

at the edge of a large aspect ratio tokamak plasma expansion. Such equations correspond

to an extension of the original exfernal model, where we have included higher order ∆q/qs

terms in the safety factor expansion. The equations were solved numerically for equilibrium

profiles containing key physical elements observed during QH-mode operation. The obtained

solution was compared with the Original Exfernal model and with a Reference model, where

the later was obtained by retaining the full safety factor in the leading order stability equations.

Except for the cases where a separatrix is present, we find that the parameter space for the

excitation of exfernal modes depends mainly on the interplay between the edge infernal

drive of the main mode and the external kink drive of the upper side band. The Original

Exfernal model includes all the relevant physics to properly resolve the instability for the case

of very low shear, but fails to predict the effect of edge magnetic shear due to the absence
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Figure 4.14: Comparison of the critical shear obtained the Original Exfernal model (blue line),
Corrected Exfernal model (green line) and the analytical estimation (equation 4.27) using a
linear pressure profile in the pedestal (P/P0 = (h − x)/(2h)). Note that the dynamics of the
instability is of an infernal mode since the connection to the vacuum is no longer necessary.
The calculations adopt m = 4, n = 1, b = 1.3, d = 0.06, a/R0 = 1/10, rp = a −d , rx = 0.988,
r1 = rx −d and r2 = rx .

of FLB cylindrical corrections in the sideband equations. Adding such corrections gives a

good qualitative picture of the shear dependency of the instability, while higher order ∆q/qs

toroidal corrections have a weakly destabilising effect on the mode.

A comparison between our model and linear (KINX) and nonlinear (VMEC) codes was per-

formed. It was found that exfernal modes can be unstable in the presence of finite edge shear,

and the critical shear for exciting such modes agrees well with the one found by our simplified

large aspect ratio model. We can conclude that while exfernal modes are stabilised by magnetic

shear, but the excitation of the mode is nevertheless possible at modest edge magnetic shear

in QH-mode-like pedestals. This relaxes the previous assumption of having a flat safety factor

in the near vicinity of a rational surface at the edge.

The vacuum boundary conditions were later modified to include a plasma separatrix. Our

simplified model finds that the presence of an x-point is stabilising by essentially nullifying the
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external kink drive of the upper sideband. In this case the ∆q/qs corrections in the sideband

equations can be neglected, and the Original Exfernal model gives a good estimation of the

growth rates and critical shear. Nevertheless, the excitation of the mode is robust and sustained

by the infernal drive, though the growth rates and the instability parameter space are reduced.

Even then, we find that the mode can support a magnetic shear of order unity at modest values

of pressure gradient (α∼ 4) and a typical pedestal width of d ∼ 0.06. It is important to point

out that a more accurate model of the separatrix might change this behaviour. For example,

the infernal drive can be enhanced by the presence of kink-tearing modes, which have been

found to be unstable in the presence of a separatrix [Huy05]. Lastly, in cases with and without

separatrix, the Corrected Exfernal model presented in this chapter gives an excellent match to

the reference case, meaning that the equations presented here should be sufficient to describe

the stability of exfernal modes in the large aspect ratio approximation.

We stress again that our calculations neglect flows associated with the equilibrium electric

field, arguing that it weakly affects low-n modes [Che+16], assuming also that its effect is

independent of that of edge magnetic shear. In a more refined study the latter assumption

might be relaxed. For example, as shown in reference [Che+17a], flow stabilisation of high-n

modes is stronger for large edge current density (or equivalently low edge magnetic shear),

which might impose a more severe constraint on the critical shear for marginal stability than

the one calculated in this thesis.

EHOs are found to have a broad radial structure [Che+16] covering the whole pedestal. Even

though the presence of magnetic shear localises the main mode around the rational surface,

we have found that at moderate edge shear (s ∼ 0.5−1.) the broad radial structure is sustained

by coupling with the upper sideband kink drive. When the localisation of the mode is strong

such as in high edge shear cases (s ≳ 1.5) or in the presence of a plasma separatrix, another

mechanism is required to maintain the broadening of the main mode. In this respect, it has

been found that E×B flow shear can cause radial expansion of the mode structure [Xu+17].
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5 The effect of non-Axisymmetric Mag-

netic Perturbations on non-resonant

external modes

Non-axisymmetric Magnetic Perturbation (MP) coils are typically used in tokamak plasmas

to avoid the triggering of dangerous instabilities such as ELMs [Eva+04] and resistive wall

modes (RWMs) [Oka+05]. With the installation of RMP systems in many of today’s tokamaks

(including ITER), MP coils can be used for other purposes, particularly, to widen the parameter

space of weakly 3D tokamak configurations with optimised confinement properties. A good

understanding of the plasma response to the MPs is required to robustly access such states.

Modelling and simulations of MPs using linear and nonlinear techniques has been extensively

studied in the past decades [LN88; LKN10; Yad+14; Coo+15b; Kin+15; Ora+17; Fit18]. A good

comparison between the most used numerical modelling approaches is presented in [Tur12;

Tur+13]. Similar to the instability-driven 3D saturated states, as investigated in Chapters 3

and 4, the plasma response can be studied in a dynamic or in an equilibrium manner, and

each of them can be developed using linear or nonlinear physics. In this chapter we explore

the linear and non-linear equilibrium approaches, the linear one from the analytic point of

view, and the nonlinear one using the VMEC free-boundary code. Both approaches presented

here are based on solving the linear (or nonlinear) equilibrium ideal MHD equations in the

presence of a non-axisymmetric magnetic component, so agreement in the limit of very small

saturated amplitude is expected. Given the similarities of the linear eigenmode spectrum and

the VMEC nonlinear radial saturated spectrum observed for some external instabilities (see

[Kle+18; Kle+19] and Chapters 3 and 4), it is perhaps not surprising that agreement can found
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even at moderate amplitude.

Three important physical effects are left out in the VMEC approach that could modify the

plasma response to MPs: plasma resistivity, rotation and the presence of a resistive wall. In a

typical discharge with resonant MPs, magnetic islands at the rational surfaces can interact

with the resistive wall and slow down the plasma rotation, eventually leading to locked wall

modes (if the island is large enough) and to the termination of the discharge. Previous studies

comparing the equilibrium plasma response between linear MHD codes and the VMEC code

concluded that the fundamental differences in the obtained results are mainly attributed to

the insufficient resolution of the VMEC code to properly resolve the localised singular currents

appearing at rational surfaces, which in turn would shield the plasma perturbation from going

further into the plasma [Tur+13; Kin+15; Laz+16]. The work presented in this chapter is focused

on saturated external modes whose physical drive does not rely on an exact resonance within

the plasma, thus avoiding the limitations in the VMEC code. The goal of this chapter is twofold.

Firstly, we show that VMEC is a useful tool to study the plasma response to non-axisymmetric

external perturbations if the physics studied is independent of the induced current at rational

surfaces. This is done by comparing a very simple analytical external kink model with the 3D

saturated states calculated in VMEC. Secondly, and once the first goal is achieved, we study the

modification of the parameter space on saturated exfernal modes, which have been assumed

in this thesis to be the Edge Harmonic Oscillations observed during QH-mode operation

in tokamak plasmas. This corresponds to an important application since robust access to

QH-mode in future machines could be aided by the application of MPs.

The chapter is structured as follows. Section § 5.1 presents the analytical and numerical

models of the applied non-axisymmetric MPs. Section 5.2 applies both approaches to the

case of saturated external kink modes, where a quantitative comparison is presented and

shown to be in good agreement. Section 5.3 presents the application of MPs to the case of

saturated exfernal modes, where a comparison between the two approaches is presented and

the expansion of the parameter space for saturated exfernal modes is explored. Finally, section

5.4 presents a summary and conclusions of the work.
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5.1 Models for the non-axisymmetric magnetic perturbations

Figure 5.1: Diagram of the plasma system with an antenna at r = b.

5.1 Models for the non-axisymmetric magnetic perturbations

5.1.1 The antenna time-invariant linear model

The analytical model under consideration is a subset of the one reported in reference [LN88],

where an external non-axisymmetric magnetic perturbation is introduced through a surface

current located in the vacuum region, as shown in figure 5.1. The coordinate system (r,θ,φ) is

again used, where r labels flux surfaces, θ is the SFL poloidal angle and φ is the geometrical

toroidal angle. The plasma region (∈ [0, a]) is separated from an ideally conducting wall

(located at r = c) by a vacuum region (∈ [a,c]). At radius r = b (a < b < c), an antenna with

a current I A ∝ e i (mθ−nφ) provides a static helical perturbed magnetic field. The equation

describing the perturbed vacuum magnetic flux for each independent poloidal mode is [LN88]

∇2
⊥Ψm(r,θ,φ) =

µ0

b
I Aδ(r −b)e i (mθ−nφ). (5.1)

Applying the tokamak ordering (§ 2.3.2), the solutions in the regions a < r < b and b < r < c

are given respectively by
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Ψ(1)
m (r ) = Am(r /b)m +Bm(r /b)−m

Ψ(2)
m (r ) = Cm(r /c)m +Dm(r /c)−m ,

(5.2)

where the constants are determined by the boundary conditions at the interfaces and current

carrying layers, which read

Ψ(2)(c) = 0

Ψ(1)
m (a +δ) =

B0

m

r

R0
k∥(r )ξm(r )

∣∣∣∣∣
a−δ

Ψ(1)
m (b −δ) =Ψ(2)

m (b +δ)�
r

d

dr
Ψm

�
b

=µ0I A ,

(5.3)

where k∥ = m/q −n is the dimensionless parallel wave number, B0 and R0 are the plasma

magnetic field and major radius respectively evaluated at the magnetic axis, and ξm(r ) is the

radial saturated plasma displacement with the same helicity as the antenna. The first condition

corresponds to the vanishing of the perturbed normal magnetic field at the ideal conducting

wall. The second and third conditions are derived invoking the continuity of the normal

magnetic field at the plasma-vacuum interface and at the antenna respectively. The fourth

condition is found by integrating equation 5.1 across the antenna, which is the equivalent

jump condition of the tangential perturbed field δBθ
m = −Ψ′

m . The constants Am ,Bm ,Cm and

Dm are respectively given by
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Am = − (b/a)m
[
Hm Iξ+2ϵ(a/c)2mk∥a

]
2m

[
1− (a/c)2m

] B0ξm(a)

Bm =
(b/a)−m

[
Hm Iξ+2ϵk∥a

]
2m

[
1− (a/c)2m

] B0ξm(a)

Cm =
(b/c)m

[
(a/b)2m −1

]
Iξ+2ϵ(a/c)mk∥a

2
[
(a/c)2m −1

]
m

B0ξm(a)

Dm = − (b/c)m
[
(a/b)2m −1

]
Iξ−2ϵ(a/c)mk∥a

2
[
(a/c)2m −1

]
m

B0ξm(a)

(5.4)

where ϵ = a/R0, Iξ = I Aµ0

B0ξm (a) and Hm =
[
1− (b/c)2m)

]
(a/b)m . Note that the perturbed magnetic

field is composed of two sources. The first one corresponds to the perturbed field generated

by the saturated edge plasma corrugation (ξm(a)), and the second one corresponds to the

non-axisymmetric field imposed externally. Therefore, the finite amplitude mode ξm(a) which

is in force balance with the applied non-axisymmetric field already contains the plasma

response. In the limit of ξm(a) → 0, the perturbed vacuum field corresponds to that of a helical

winding current between two ideally conducting toroidal surfaces. Finally, we point out that

the perturbed magnetic field from the antenna considers a single helical harmonic (m,n). In

reality, non-axisymmetric coils used in fusion experiments contain a spectrum of harmonics,

and coupling between them and the plasma perturbation is possible. Nevertheless, previous

work shows that a single helical harmonic in straight field line coordinates quite reasonably

describes the plasma response [Kin+15]. That characteristic is also shown in this chapter for

saturated external kink and exfernal modes. Note that the validity of the linear model is limited

to cases where the axisymmetric plasma in the absence of MPs is stable. This is because the

absence of inertial forces in the linear model that would drive the plasma out of force balance,

as discussed in section 5.2.

5.1.2 The VMEC nonlinear model

The calculation of external saturated states in the VMEC free boundary equilibrium code

requires a description of the vacuum magnetic field. Such field is calculated through the Biot-

Savart law from a series of one dimensional filaments carrying current using the MAKEGRID

code from the STELLOPT package. Since VMEC is a 3D code, the filaments are not restricted to
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Figure 5.2: JET-like coil system, consisting on 32 toroidal coils (red), 6 poloidal coils (purple,
green and blue) and 4 Error Field Correction Coils (black).

axisymmetry and MPs can easily be included by just adding a set of non-axisymmetric coils.

The plasma equilibrium in VMEC is calculated self-consistently with the MPs, and therefore the

plasma response is already included in the solution. A JET-like set of coils is used as illustrated

in figure 5.2, consisting of 32 toroidal coils, 6 poloidal coils and 4 Error Field Correction Coils

(EFCCs), where the later ones provide the non-axisymmetric perturbation. Toroidal and

poloidal coils are made by 4 filaments carrying 1/4 of the current, while the EFCCs are made

by a single filament. In the JET tokamak, each EFCC contains 16 turns with a current capacity

of 3 kA per turn [Bar+], resulting in a total of 48 kA per coil. Before calculating the saturated

plasma states, it is useful to characterise the vacuum magnetic perturbations generated by the

EFCCs. This section is also used to discuss two important numerical effects in VMEC related to

3D geometry that can influence the calculation of the equilibria and could lead to errors if not

treated carefully. These effects are stellarator symmetry of the non-axisymmetric coils, and

the inclusion (or exclusion) of the toroidal ripple.

While the VMEC code is able to calculate MHD equilibria without assuming any special sym-

metry, stellarator symmetry is chosen because the calculations are faster and have better

convergence. In axisymmetric devices, stellarator symmetry is reduced to up-down symmetry,

which is satisfied by the poloidal and toroidal coils in our set in figure 5.2 (refer to appendix

A.1 for details). This coil set represents an up-down symmetric approximation of the real set of

JET coils. If the EFCC coils are not correctly located with respect to the VMEC axis of symmetry,
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5.1 Models for the non-axisymmetric magnetic perturbations

stellarator symmetry could be broken, so the geometry of the coils and the current applied to

them require careful treatment. Figure 5.3a shows schematically the location of the EFCC coils

in the tokamak system. Stellarator symmetry requires all scalar quantities, including current in

the coils, to be mirrored about the φ = 0 and Z = 0 planes. The current applied to coil number

1 (4) will be mirrored in coil number 2 (3), meaning that coils 1 and 2 (or 3 and 4) will flow

in opposite directions, as shown in figure 5.3b. With such coil configuration it is possible to

apply a dominant nEFCC = 1 or nEFCC = 2 vacuum magnetic perturbation without breaking

stellarator symmetry by changing the current pattern in coils 1 and 4, as shown in figure 5.3b.

(a) (b)

Figure 5.3: (a) Diagram of the EFCC of the JET-like set in VMEC. Stellarator symmetry means
that the currents are mirrored with respect to the φ = 0 plane (in red) and the Z = 0 plane (in
black). Applied currents (in purple) in coils 1 and 4 are mirrored in coils 2 and 3 respectively
(in blue). (b) Current patterns producing nEFCC = 1 (top) or nEFCC = 2 (bottom) dominant
toroidal vacuum perturbations.

The perturbed toroidal spectrum is dominated by a nEFCC = 1 or nEFCC = 2 mode due to the

EFCCs, but a second source of non-axisymmetric field exist because of the finite number of

toroidal coils, denominated as ‘toroidal ripple’. In our JET-like coil set, the toroidal ripple has

nr i ppl e = 32 dominant toroidal mode number. In the VMEC free-boundary code, the numerical

grid considers a user-specified number of toroidal planes where the vacuum magnetic field
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is to be calculated. To correctly resolve such toroidal ripple the sampling points must satisfy

the Nyquist criterion, so at least 64 toroidal planes are necessary along with the inclusion of

65 toroidal modes in the VMEC Fourier expansion (equation A.2). Note that 65 toroidal modes

in a VMEC equilibrium calculation corresponds to the toroidal spectrum −32 < nV MEC < 32.

The present study is not addressed to resolve the toroidal ripple nor the physics related with

high-n modes. Moreover, simulations with a large number of toroidal modes generally do not

converge well in VMEC and are extremely time consuming, so special care must be taken in

deciding the appropriate number of toroidal planes used in the vacuum field calculation. For

our JET-like set of coils, if the number of planes used is smaller than 64 (with the exception

of 32,16,8,4,2), then the toroidal ripple will shift to an observable frequency due to aliasing.

Figure 5.4 shows the toroidal spectrum of the radial perturbed magnetic field given by the

toroidal field coils plus the EFCCs with 25, 32 and 80 planes in the VMEC numerical grid. It

can be seen that using 25 coils shifts the toroidal ripple to nr i ppl e = 32−25 = 7, and that this

mode is of the same order than the nEFCC = 1,2 produced by the EFCCs with 100kA at the

LCFS. Contrary to the perturbation produced by the EFCCs, the toroidal ripple decays quite

fast when going towards the magnetic axis, where the ripple is negligible compared to the

EFCCs perturbed field (as seen in figure 5.4). It is noted that these modes exist on the vacuum

field, but whether they will be captured by the VMEC equilibrium calculation will depend on

the number of toroidal modes included in the VMEC Fourier expansion. For example, in a VMEC

simulation with 30 toroidal planes, a ‘fictitious’ nr i ppl e = 32−30 = 2 vacuum perturbation will

be included in the equilibrium calculation if −2 < nV MEC < 2 toroidal modes are allowed in

the VMEC Fourier expansion. Here relies the importance to carefully choose the number of

toroidal planes in the calculation of the vacuum field, specially when studying the effect of

externally applied MPs. The most sensible choice for our study is to completely eliminate the

toroidal ripple, which is done by choosing 32 (or 16) toroidal planes in the VMEC numerical grid

so that each plane coincides with a toroidal coil, giving the effect of an axisymmetric vacuum

field coming from the toroidal field coils (as shown in figure 5.4).

The antenna model described in the previous section only considers a single helical mode

(m,n), while the EFCCs in our JET-like coil set have a wider toroidal and poloidal spectrum.

To make a proper comparison with the analytical model, the poloidal vacuum spectrum in

the VMEC simulations must be resolved in SFL coordinates. This is done by calculating the

perturbed vacuum field from the EFCC coils alone using the MAKEGRID code. The cylindrical

components of the obtained field
(
δB R ,δB Z ,δBφ

)
are extracted at the location of the LCFS of
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5.1 Models for the non-axisymmetric magnetic perturbations

Figure 5.4: Toroidal Fourier decomposition of the vacuum magnetic field perturbation at the
magnetic axis (up) and at the last closed flux surface (b) using different number of poloidal
planes in the VMEC numerical grid. Note that the toroidal ripple shifts to an observable
frequency if not enough planes are used. Also note that the toroidal ripple disappears if
32 planes are used. The current at the EFCCs was set to 100 kA for the calculation.

the neighbouring axisymmetric VMEC equilibria (R(S = 1,θSF L), Z (S = 1,θSF L)), where θSF L is

the SFL poloidal angle in VMEC. The components of the perturbed vacuum magnetic field in

flux coordinates are calculated through the transformation


δB s

δBθ

δBφ

 =


∂sR ∂θR 0

∂s Z ∂θZ 0

0 0 R


−1 

δB R

δB Z

δBφ

 , (5.5)

so that the vacuum EFCC field in the normal direction to the plasma

δB r
EFCC =

R

J

[
∂Z

∂θ
δB R − ∂R

∂θ
δB Z

]
d

dr
S (5.6)
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can be Fourier decomposed and compared to the analytical vacuum field from the antenna in

the absence of a plasma

δB r
antenna = −i

Hm

2a
μ0I A . (5.7)

(a) (b)

Figure 5.5: Poloidal and toroidal spectrum of the perturbed vacuum radial magnetic field
δB r

EFCC in SFL coordinates for (a) nEFCC = 1 and (b)nEFCC = 2 externally applied modes. Note
that 32 toroidal planes in the VMEC numerical grid were used to eliminate the toroidal ripple.

In equations 5.5 and 5.6, R and Z describe the flux surfaces in the neighbouring axisymmetric

VMEC equilibria, J is the corresponding Jacobian and S = ψ/ψed g e is the radial VMEC flux

function, which can be either the normalised toroidal or poloidal flux (see appendix A.1

for details). Figure 5.5 shows the spectrum of δB r
EFCC in SFL coordinates at the LCFS for a

nEFCC = 1 and a nEFCC = 2 mode applied by the EFCCs. As can be seen, the amplitude of the

mode decays with increasing poloidal mode number, although the m = 1 mode is dominant in

both cases. Even though the spectrum of the vacuum MP contains many harmonics, when

comparing the VMEC results with analytic model it is assumed that only the vacuum component

with the same helicity in SFL as the saturated edge mode has an effect in the final equilibrium

state.
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5.2 MP-induced saturated external kink modes

A non-resonant saturated external kink mode constitutes a good case of study for our analysis

with the VMEC code and for the comparison with the analytical work because no singular

‘screening’ currents nor magnetic islands are formed in response to the MPs. It is also the

simplest experimentally relevant external mode to analyse. It has been observed theoretically

that marginally stable external kink modes grow and saturate in the presence of MPs [Boo01],

and thus they might be related to the avoidance of ELMs in AUG and DIII-D discharges

[Ora+17]. Finally, external kink modes are intrinsically connected with the exfernal modes

discussed in the previous chapters and in the following section of the present chapter.

5.2.1 Linear equilibrium equation for the analytic treatment of external kink

modes with MP

The ideas on this chapter were partially discussed in section 2.5.1. Ideal MHD saturated

instabilities typically exist in a plasma as a consequence of the nonlinear evolution of an

unstable mode. Regardless of the dynamics that leads to saturation, the final plasma state

is a solution of the ideal MHD 3D equilibrium equation. For certain types of modes, the

equilibrium solutions can be found using the linearised ideal MHD equilibrium equation. To

lowest order, a time invariant perturbation with mode number (m,n) satisfies Newcomb’s

equation (2.56), introduced in section § 2.4.2 and repeated here once more for convenience,

d

dr

[
r 3k2

∥
d

dr
ξm

]
− r (m2 −1)k2

∥ξm = 0, (5.8)

where ξm(r ) inside the plasma is fully determined by adequate boundary conditions, given by

equations 5.2 and 5.3. Integrating equation 5.8 across the plasma-vacuum interface gives

�
k2
∥

d

dr
ξm

�
a

= 0, (5.9)

where we note that ξ′m is discontinuous across the boundary sinceδBθ
m =ψ′

m ∼ ξ′m corresponds
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to the jump of the tangential magnetic field. On the other hand, ξm is continuous across the

boundary due to the continuity of the normal field (ξm(a) ∼ δB r
m), so we can divide the whole

equation by the non-zero mode amplitude ξm(a). On the vacuum side of r = a, we substitute

ξm = −i R0
B0k∥

δB r
m

∣∣
a+δ, giving the equilibrium condition

k2
∥ (a)

(
r

a
[l n(ξm)]′

∣∣∣∣∣
a−δ

−
[

ln

(
δB r

m

k∥

)]′ ∣∣∣∣∣
a+δ

)
= 0, (5.10)

with two independent solutions

q(a) = m/n

Bm = r

[
ln

(
δB r

m

k∥

)]′ ∣∣∣∣∣
a+δ

.
(5.11)

where Bm = r [ln(ξm)]′|a−δ is typically calculated numerically from equation 5.8. The first

solution is independent from the applied MP and corresponds to k∥(a) = 0, giving a resonance

at the plasma edge. For such a solution, the plasma response to a helical displacement

will drive a singular current at the boundary to screen the magnetic perturbation, which as

discussed in the introduction to this chapter, is not well represented in the VMEC code [Laz+16;

Rei+15]. Moreover, the assumed boundary conditions neglect surface currents, so the physics

included in the present model is incomplete 1. For these reasons, this work will not focus on

the first equilibrium solution. The second equilibrium solution correspond to the parenthesis

term in equation 5.10 equal to zero, where we note that δB r
m contains both the perturbed field

due to the saturated edge plasma corrugation and from the antenna. Substituting the solution

to the perturbed vacuum field (5.2) gives an equation for the function Iξ

Hm Iξ = −ϵ
[
m

(
m −1+Bm + (a/c)2m(m +1−Bm)

)− (a/c)2m(m −1−Bm)nqa − (m +1+Bm)nqa
]

mqa
,

(5.12)

1A generalisation to include surface currents can be made without much difficulty by applying the boundary
conditions described by Friedberg [Fre14], p. 356-358.
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Figure 5.6: Necessary current in the antenna to obtain a saturated external kink mode of
different amplitudes as a function of the edge safety factor qa .

where the right hand side only depends on equilibrium parameters without the application of

the MPs. Note that if Iξ = 0, then equation 2.55 is exactly recovered. Equation 5.12 contains

the solution to equations 5.1 and 5.8, and represents a plasma in equilibrium with a finite

perturbation at the edge ξm(a) when applying a current I A to the antenna. One of the goals

of this study is to verify this relation in the VMEC code, which will be achieved in section §

5.2.2. Though in this chapter we solve only for equilibrium states, it is useful to think of the

problem in terms of the stability of the plasma in the absence of MPs. If the axisymmetric

plasma is at marginal stability, then I A = 0 is the only solution to equation 5.12 because the

plasma is already in equilibrium to lowest order for an arbitrary perturbation amplitude. If

the plasma is stable, then equation 5.12 will give the necessary current such that a saturated

plasma perturbation with finite amplitude ξm(a) remains in equilibrium with the perturbed

field coming from the antenna. If the plasma is unstable, the linear analytical model predicts

that the MPs would restore the plasma to force balance by creating a small amplitude external

kink in equilibrium with the applied field perturbation. Note however that such scenario is

not physical because the inertial forces that are in action when a finite growth rate is present

are not captured by the linear equilibrium model [Tur12].

Let us consider a Wesson-like current density profile jφ(r ) = j0[1− (r /a)2]ν [Wes78], which

gives q(r ) = qa (r /a)2

1−[1−(r /a)2]ν and qa/q0 = 1+ν. For such profile, equation 5.8 has to be solved
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numerically in order to evaluate Bm . By choosing q0 = 1.2 an external kink with mode number

(m = 3,n = 1) is unstable in the region 2.95 < qa < 3 in the absence of MPs. Figure 5.6 shows

the evaluation of equation 5.12, where the necessary current to obtain a plasma equilibrium

with saturated amplitude ξm(a) is calculated as a function of the safety factor at the plasma

boundary. It is found that a small amplitude saturated external kink mode can be induced

with a modest current in the antenna over a region of the parameter space where an external

kink is stable in the absence of MPs. Note that at marginal stability (qa ∼ 2.95) all curves

converge to zero current, which is the only equilibrium solution for an arbitrary amplitude

mode, consistent with the linear theory. The parameters used in the calculation are a = 1.09m,

b = 3.8m, c →∞, R0 = 3.02m and B0 = 2.3T , which roughly correspond to the JET-like plasma

discussed in the next section.

5.2.2 Comparison with 3D states calculated with the VMEC code

Now that we have calculated the saturated amplitude of external kinks in the presence of an

antenna producing a single helicity MP, we proceed to verify numerically that the physics

included in our linear estimation can describe some of the main features of the saturated

external kink modes. This is done by calculating the equilibrium states using the VMEC code

under the application of MPs.

The calculation of 3D saturated states in VMEC follows the procedure outlined in section § 2.5.1,

and exemplified in section § 3.3.1. In summary, a free boundary VMEC equilibria is calculated

in 3D geometry along with its neighbouring axisymmetric state, where the later is obtained by

restricting n = 0 toroidal modes in the VMEC Fourier expansion. Then, the nonlinear normal

saturated plasma displacement is calculated by subtracting the 3D surface from the 2D surface

at each location in the normal direction of the 2D surface. We point out that saturated external

kink modes have already been successfully obtained using the VMEC code [Kle+18].

Following the analytical example outlined above, we use a Wesson-like current profile, with

q0 = 1.2 so that a cylindrical plasma would be external kink unstable in the interval 2.95 <
qa < 3. The pressure profile is given by P (s) = P0(1− s2), where P0 =β0B 2

0 /(2µ0) with β0 = 0.02

and B0 = 2.7T . Here, s =
√
ψt /ψted g e . Both the safety factor and pressure profiles are plotted

in figure 5.7b. An almost circular cross section (weak triangularity and elongation) is used to

improve the comparison with the analytical results. Figure 5.7a shows the LCFS at different
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(a) (b)

Figure 5.7: (a) Last closed flux surface of a VMEC equilibria with a Wesson-like current density
profile at different toroidal angles. Note that there is a weak 3D perturbation visible by the
mismatched surfaces. (b) Corresponding safety factor and pressure profiles.

toroidal angles for the case of qa = 2.8, where we note that there is a weak 3D perturbation. The

necessary currents in the coil set that are needed to produce this particular equilibrium are

calculated using the VMEC fixed-boundary and FreeGS codes, as described in section § 3.3.1.

Figure 5.8a shows the saturated amplitude of the (m = 3,n = 1) nonlinear displacement as a

function of qa . A small saturated displacement exists between 2.7 < qa < 3.1 in the absence of

MPs. This corresponds to a somewhat broader region than the range over which the analytical

cylindrical model is unstable. Therefore, a comparison with the analytical model should

consider qa < 2.7. It can be seen that the amplitude of the saturated plasma displacement

increases with the current applied to the EFCCs, and moreover, the parameter space where

such equilibrium modes can be obtained is also expanded with the application of the non-

axisymmetric MPs, consistent with our linear equilibrium theory (figure 5.6). We clarify that the

saturated states calculated without MPs adopt a completely axisymmetric vacuum magnetic

field, but an initial perturbation on the magnetic axis guess is necessary to steer VMEC towards

a converged 3D state [Coo+10; Coo+11]. The Fourier decomposition of the nonlinear saturated

displacement is plotted in figure 5.8b for qa = 2.8 without the application of MPs, showing that

the 3D state does indeed correspond to a saturated external kink. Note in particular that the

coupling between poloidal modes is very weak, as the main (m = 3,n = 1) external kink strongly
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dominates the spectrum. This makes our comparison with the analytical model more viable.

(a) (b)

Figure 5.8: (a)(m = 3,n = 1) Fourier component of the nonlinear saturated plasma displacement
calculated in VMEC at different applied currents as a function of the value of the edge safety
factor qa . (b) Poloidal spectrum of the nonlinear saturated plasma displacement with n = 1 for
a Wesson-like current density profile, with q0 = 1.2 and qa = 2.8.

To make a quantitative comparison between the analytical model and the 3D saturated states

obtained in VMEC, we plot the amplitude of the saturated (m = 3,n = 1) mode as a function of

the vacuum radial perturbed magnetic field calculated through equation 5.7 for the linear

equilibrium analytical model, and through equation 5.6 for the full nonlinear VMEC equilibria.

As shown in figure 5.9, good agreement between the two approaches is obtained for cases

where the axisymmetric equilibrium is stable in the absence of MPs. Three important implica-

tions can be derived from this result. The first one is that it seems that non-resonant saturated

external perturbations can be accurately modelled with linear theory in the frame of ideal

MHD provided that the mode is stable or only weakly unstable in the absence of MPs. The

second one is that MPs could be used to expand the parameter space for the saturation of

external instabilities. The third one is that since good agreement is found between the full

nonlinear solution and the simplified one in cylindrical geometry, poloidal coupling of the

plasma response with different harmonics of the MPs does not seem to be important, at least

when the effect of the MPs is dominant. Finally, we point out that agreement between the

analytical model and VMEC for cases where the equilibrium is external kink-unstable in the
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absence of MPs was not obtained, which is in line with our previous prediction that the linear

equilibrium model is inconsistent due to the absence of plasma inertia and the 3D nonlinear

corrections associated with nonlinear saturation in the absence of the antenna. Instead, the

MPs seem to enhance amplitude of the existent saturated external kink, as shown in figure

5.8a.

(a) (b)

Figure 5.9: (a) Saturated amplitude of the external kink mode at the plasma edge as a function
of the single helicity radial perturbed magnetic field. VMEC calculation (shown by the markers)
is compared with the analytical estimation of our linear model (dashed lines) in equation 5.12.
(b) Zoom over the region where the saturated amplitude is small, and thus where the analytical
model is more valid.

5.3 MP-induced saturated exfernal modes

As discussed at length during this thesis, an exfernal mode couples an infernal instability drive

located in the pedestal region with its upper sideband external kink drive. It has been shown in

the previous section that saturated external kink modes can be induced by the use of externally

applied MPs, so it is expected that MPs have a similar effect on exfernal modes as well.
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5.3.1 Linear equilibrium equation for exfernal modes with MP

The analytical model of the plasma considers equilibrium profiles containing the key aspects

observed during QH-mode, as described in section § 3.2, figure 3.3a. The safety factor mono-

tonically increases in the region r ∈ [0,rp ], where rp is the radius of the pedestal top. Then the

safety factor is flat in the region r ∈ [rp , a]. For simplicity, only the case of zero magnetic shear

is discussed, though a description of the equations with finite shear is given in appendix B.2.

The antenna is again placed in the vacuum region, between the plasma boundary and the ideal

wall. As discussed in section § 3.2, we separate the plasma into two regions, a high-shear and a

low-shear region. The physics involving the exfernal drive is on the low-shear region, located

at the plasma pedestal. The equation describing an exfernal time-invariant perturbation with

mode number (m,n) is given by [HH88; GHH96; Bru+18b]

d

dr

[
r 3

(
1

q
− 1

qs

)2 d

dr
ξm

]
+

[
(1−m2)

(
1

q
− 1

qs

)2

+ α

q2

r

R0

(
1

q2 −1

)]
rξm

+ α

2q2

[
r 1+m

1+m
L++ r 1−m

1−m
L−

]
= 0, (5.13)

where qs = m/n and the constants L± appear after integration and substitution of the sideband

equations

(
r 2±mξm±1

)′
= L±r 1±2m + 1±m

2
r 1±mαξm . (5.14)

Note that the saturated amplitude of the main mode and of the sidebands is in force balance

with the applied external MP. The solution to equation 5.13 gives the linear equilibrium

amplitude of the main mode in terms of the applied current in the antenna, which is embedded

in the constants L± = L±(I A). It is therefore necessary to calculate the constants L± in terms of

the saturated amplitude of the main mode ξm(r ). Evaluation of equation 5.14 at r = rp and

r = ra gives
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ξm±1(rp ) =
r±m

p L±
2±m +C±

ξm±1(a) =
a±mL±

2±m +B±
,

(5.15)

where C± = rpξ
′
m±1(rp )/ξm±1(rp ) is calculated from the cylindrical solution of the sideband

equations in the low-shear region: r ∈ [0,rp ]. Assuming Dirichlet boundary conditions for the

main mode at r = rp and r = a [Bru+18b; BGB21], the function B± = aξ′m±1(a)/ξm±1(a) takes

the same form as equation 5.11. Note that the vacuum MP is now assumed to be composed

of two different harmonics corresponding to the upper and lower sideband helicities. The

main harmonic is only affected by the MPs through coupling with the sidebands since the

Dirichlet boundary condition at r = a prohibits a direct effect from the vacuum perturbation.

Integrating equation 5.14 in the interval [rp , a] gives

r 2±mξm±1

∣∣∣a

rp

=
r 2(1±m)L±
2(1±m)

∣∣∣a

rp

+ 1±m

2

∫ a

rp

αr 1±mξmdr. (5.16)

Finally, equations 5.11, 5.15 and 5.16 are solved for the constants L±

L± =
a−2(1±m)(1±m)2(2±m +C±)

[
(2±m +B±)ϵD±±2a2±m H±

I Aµ0

B0

]
ϵ
[
(2±m +C±)(±m −B±)− (r∗/a)2(1±m)(±m −C±)(2±m +B±)

] (5.17)

where D± =
∫ a

rp
αr 1±mξmdr and we have redefined

H± =

[
1− (b/c)2(m±1)

]
(a/b)m±1[

(m ±1)/qa −n
][

1− (a/c)2(m±1)
]

B± = lim
I A→0

a
ξ′m±1(a)

ξm±1(a)
.

(5.18)

It is noted that in the limit of I A → 0, the definition of the constant L± from previous papers
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is recovered [HH88; GHH96; Bru+18b]. The amplitude of the antenna-driven, linearised

equilibrium exfernal mode is obtained by the solution of equation 5.13, which is an integro-

differential equation for ξm(r ) in the region r ∈ [rp , a]. Such an equation would typically be

solved numerically. Nevertheless, a rough estimate of the linear equilibrium amplitude can

be obtained by assuming a simplified pressure profile [Bru+18b]: α∝ P ′ = −Ppδ(r − r∗) with

rp < r∗ < a. We then have D± = β̂∗ϵ−1∗ r 2±m∗ ξm(r∗), with β̂∗ = 2P∗q2/B 2
0 and ϵ∗ = r∗/R0. By

writing the constants L± and Iξ as

Iξ =
I Aµ0

B0ξm(r∗)

L± = (1±m)r∓m
∗ ϵ−1

∗ ξm(r∗)
(
Λ±β̂∗+G±H±Iξ

)
,

(5.19)

where we note that the constants Λ± are identical to those obtained in section 4.6.2 (equation

4.24), equation 5.13 can be integrated across r∗ to give

Iξ = − 2ϵ2∗
(H+G++H−G−)β̂∗

(
1

2ϵ2∗
β̂∗

2
(Λ++Λ−)+

�
rξ′m
ξm

�
r∗

∆q2

q2
s

+
(

1

q2 −1

)
β̂∗

)
. (5.20)

It is pointed out that in the limit of I A → 0, equation 5.20 satisfies the marginal stability

equation for exfernal modes [Bru+18b]. In the open intervals [rp ,r∗) and (r∗, a], the equation

for ξm 5.13 reduces to Newcomb’s equation (5.8) with k∥ = const ant , and the solution takes a

very simple form (equation 5.8 in [Bru+18b]), leading to

�
rξ′m
ξm

�
r∗

=
2m

[
(r∗/rp )2m − (r∗/a)2m

][
(r∗/rp )2m −1

][
(r∗/a)2m −1

] ∼−2(a + rp )

a − rp
. (5.21)

To evaluate equation 5.20 it is necessary to solve Newcomb’s equation in the high-shear region

to calculate the constants C±. For that purpose, the following shape of the safety factor profile

is used
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5.3 MP-induced saturated exfernal modes

q(r ) =


q0(κ+n)

κ[1−(r /r−)µ]+n if r ∈ [0,rp ],

qp if rp ≤ r ≤ a
(5.22)

where m,n are the poloidal and toroidal mode numbers of the main infernal mode, r− roughly

defines the radius of the lower sideband rational surface, q0 is the safety factor at the magnetic

axis, µ defines how peaked is the profile, and the constant κ guarantees the continuity of the

profile at r = rp .

(a) (b)

Figure 5.10: Necessary current in the antenna to obtain a saturated exfernal mode of different
amplitudes as a function of (a) the distance to the rational surface in the pedestal (∆q) and (b)
the value of β̂∗. Figure (a) considers β̂∗ = 0.045, and figure (b) considers ∆q = −0.12.

Figure 5.10 shows the antenna current as a function of the value of ∆q and β̂∗, corresponding

to the evaluation of equation 5.20 for different values of the linearised equilibrium amplitude.

It is pointed out that all curves converge to zero at ∆q ∼−0.1 in figure 5.10a, and at β̂∗ = 5.2%

in figure 5.10b. These points in the parameter space correspond to the marginally stable points

in the absence of MPs. The parameters used in this calculations were a = 1.14 m, b = 2.40

m, c = ∞, ϵ∗ = 0.40, rp /a = 0.95, r−/a = 0.85, B0 = 2.5 T, µ = 0.6 and q0 = 1.2, which roughly

correspond to the JET-like QH-mode plasma calculated in the next section.
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5.3.2 Comparison with 3D states calculated with the VMEC code

Once more, we follow the procedure outlined in section § 2.5.1 to calculate the 3D saturated

states in VMEC. For the comparison in this section, a more realistic QH-mode-like equilibria

is investigated, which is plotted in figure 5.11. Note that the safety factor is the same as in

the analytical model given by equation 5.22, with the exception of the spike at the edge that

takes the value of qa above the (m = 4,n = 1) rational surface. The effect of such a spike on the

stability of the plasma was discussed in section § 4.6, and the particular consequences of the

spike on the interaction with external MPs will be discussed below. Figure 5.11a shows the

LCFS of the 3D saturated equilibria at different toroidal angles in the absence of MPs, revealing

a strong 3D distortion of the plasma edge. Such 3D distortion corresponds to a saturated

exfernal mode, which is speculated to be the EHOs observed during QH-mode operation.

The large amplitude of the saturated mode found by VMEC is similar to what is was found in

previous studies of QH-mode operation in JET-like plasmas [Kle+18; BGB21].

(a) (b)

Figure 5.11: (a) LCFS at equally spaced toroidal angles in QH-mode equilibrium with qp = 3.98
and without the application of MPs. (b) Pressure and safety factor profiles in VMEC.

A quantitative comparison between the analytical equilibrium model and the VMEC results

is more challenging for this more advanced case because of a number of reasons. Firstly,

due to all the simplifications in the derivation of equation 5.20 (step-like pressure profile,
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flat safety factor, etc.). Secondly, the vacuum perturbed magnetic field affecting each of the

sideband harmonics scales differently in both approaches, i.e.
δB r

EFCC (m−1,n)
δB r

EFCC (m+1,n) ̸=
δB r

antenna (m−1,n)
δB r

antenna (m+1,n) .

This is because in the analytical model the vacuum perturbed magnetic field scales with the

poloidal mode number m as given by equation 5.7, while in VMEC it follows the EFCC poloidal

geometry (figure 5.5). Nevertheless, examination of the linear eigenfunctions of marginal

cases without the application of MPs show that the lower sideband vacuum connection is also

weak. Therefore, we can neglect the effect of MPs on the lower sideband and only consider

the (m +1,n) Fourier component of the vacuum radial perturbed field in both approaches.

Thirdly, the value of the safety factor at the boundary is different in both approaches since

the analytical model does not require a spike at the plasma edge. Note that the coupling

between the upper sideband external kink drive with the MPs is highly sensitive to the value

of qa . While some of these difficulties could be avoided by numerically solving the integro-

differential equation 5.13, a direct evaluation of our analytical estimation (5.20) gives a rough

approximation of the saturated amplitude.

In order to compare the two approaches we need to analyse an equilibrium that is linearly

stable in the absence of MPs. We choose qp = 3.88, which corresponds to a point with vanishing

nonlinear amplitude of the plasma displacement in the absence of MPs (see figure 5.13a). The

comparison is shown in figure 5.12. The saturated amplitude in VMEC has a linear dependency

on the (m = 5,n = 1) component of the vacuum radial perturbed field, similar to the analytical

model. Moreover, the calculated saturated amplitude of the plasma displacement in both

approaches is of the same order of magnitude. The difference in the slope between the two

approached could be due to the reasons mentioned above. We point out that the vacuum

radial perturbed field in the nonlinear numerical approach is only the one corresponding to

the upper sideband helicity (m = 5,n = 1). In the linear analytical approach, the current I A in

equation 5.20 is substituted by δB r
m+1 using equation 5.7. Then it is assumed that G+/G− ≪ 1

(which for our case is ∼ 10−2) to isolate δB r
m+1 from the amplitude of the mode ξm(r∗).

5.3.3 Beyond linear modelling: The extended parameter space of saturated exfer-

nal modes

One of the main goals of this work is to verify that EHOs (or saturated exfernal modes) can

be induced over a wider parameter space with the assistance of externally applied magnetic

perturbations. In the previous section it was shown using analytical and numerical approaches
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Figure 5.12: Saturated amplitude of the main infernal mode (m = 4,n = 1) at the pedestal
calculated in VMEC and in the analytical model as a function of the (m = 5,n = 1) Fourier
component of the vacuum radial perturbed magnetic field. The value of the safety factor
plateau is qp = 3.88, where the mode is stable and very close to marginal stability in the
absence of MPs.

that MPs can indeed be used for such purposes. Now we go beyond the validity of the linear

model and analyse the effect of MPs also in cases where the plasma is exfernal-unstable in the

absence of MPs. Figure 5.13a shows the saturated amplitude of the main infernal (m = 4,n = 1)

mode at the pedestal as a function of the value of the safety factor plateau qp and magnetic

shear s over the pedestal region. A significant expansion of the parameter space is observed for

both parameter scans. Since the amplitude of the saturated modes is not small anymore, the

validity of the linear model is limited even for the cases where the exfernal modes were induced

only by the MPs (i.e. cases that are exfernal-stable in the absence of MPs). Still, it is possible

to check that the same exfernal mode is excited with and without MPs at different regions

of the parameter space by analysing two equilibria with similar amplitude with and without

MPs. Figure 5.13b shows the poloidal Fourier spectrum of the nonlinear saturated plasma

displacement for qp = 3.98 at 0 kA, and for 3.90 at 100 kA. As can be seen, the exact same mode

is observed, confirming that the parameter space of static exfernal modes is expanded by the

application of MPs.
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(a) (b)

Figure 5.13: (a) Peak of the (m = 4,n = 1) Fourier component of the nonlinear plasma displace-
ment evaluated at the pedestal as a function of the value of the safety factor plateau (up) and
(b) of the magnetic shear (bottom). (b) Poloidal Fourier spectrum (with n = 1) of the nonlinear
plasma displacement with flat safety factor and qp = 3.98 and 0 kA (up), and with qp = 3.90 and
100 kA (bottom).

5.4 Summary and conclusions

In this chapter we have presented two approaches to model non-axisymmetric magnetic per-

turbations in tokamak plasmas. The first one invokes the analytical model developed in [LN88],

which corresponds to an antenna located in the vacuum region in between the plasma surface
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and an ideal wall. The current in the antenna produces a perturbed helical magnetic field,

which modifies the boundary conditions of the linearised ideal MHD equilibrium equations.

The second method uses a set of non-axisymmetric coils, where the vacuum magnetic field

is evaluated numerically through Biot-Savart law. The vacuum field is then used to calculate

a nonlinear equilibrium state in the VMEC free boundary code. We point out that in both

approaches the obtained plasma displacement is in force balance with the applied MPs, so the

plasma response is automatically included in the solution. To make a quantitative comparison

of the applied MP, in the nonlinear VMEC approach the radial perturbed vacuum field is Fourier

decomposed in SFL coordinates using the geometry of the axisymmetric equilibria. Then, the

amplitude of the helical component of interest is compared with the radial vacuum field of the

antenna calculated in the absence of a plasma.

On a first instance, both approaches to model the MPs were applied to the case of a saturated

external kink. It was found that such saturated modes can be induced by the application of

MPs, and the saturated amplitude of the plasma displacement is in quantitative agreement

in both approaches for parameters for which the plasma is linearly stable in the absence of

MPs. This means that, within the approximations of the ideal MHD model, there is a good

understanding of the mechanism that describes the effect of the applied perturbed field

on non-resonant external modes. On a second instance we also model equilibrium states

with MPs for the case of saturated exfernal modes. For this complex case, the quantitative

agreement was limited, but the order of magnitude of the saturated plasma displacement,

as well as the linear dependency of the amplitude on the applied MP was observed in both

approaches.

Finally, the VMEC code was used to estimate the increase of the parameter space of saturated

EHOs with the application of MPs. An extensive parameter scan was performed with respect

to the value of the safety factor at the plateau and the magnetic shear in the pedestal. In both

cases it was found that a significant increase in the parameter space can be achieved by the

application of MPs. By analysing the Fourier spectrum of the saturated amplitude in equilibria

with and without the application of MPs at different locations of the parameter space, it was

concluded that the same mode can be excited with the help of MPs.
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This thesis has investigated the parameter space for the excitation and saturation of Edge

Harmonic Oscillations (EHOs). This has been done under the frame of the ideal MHD model

using both linear and nonlinear approaches, aided with both analytical and numerical tools.

Two main theories on the origin of EHOs exist in the literature, either the EHOs correspond to

kink/peeling modes driven unstable by plasma flows, or they correspond to exfernal modes

driven unstable by the coupling of large pressure gradient in a region with weak FLB stabil-

isation. This thesis mainly focused on the second theory. Throughout the chapters of the

thesis it has been found that linearly unstable and nonlinearly saturated exfernal modes can

be consistently obtained in plasmas containing the key elements observed during QH-mode

operation. In Chapter 3 it was found using linear KINX stability calculations and nonlinear

VMEC equilibrium calculations that such saturated modes can be obtained within the QH-

mode baseline scenario on the DEMO1 tokamak design. Guiding centre orbit calculations

using the VENUS-LEVIS code found that the 3D magnetic structure created by the EHOs in

DEMO weakly increase (< 0.1%) the fast ion first orbit losses, but alters the pattern in which

the particles are deposited into the PFC. An immediate extension of this work is to characterise

the parameter space of the saturation of exfernal modes in DEMO in order to eventually obtain

larger amplitude edge corrugations, which could drive larger fast ion losses. Concerning the

study of fast ion confinement, additional loss mechanisms other than first orbit losses could

be considered in the VENUS-LEVIS simulations.

Later in Chapter 3 it was found that saturated external kink modes obtained in VMEC equilib-

rium calculations can successfully be recovered by initial value nonlinear JOREK simulations.
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This provides a cross-validation between the ‘equilibrium’ and ‘dynamic’ approaches for the

calculation of saturated external modes. However, for the saturated pressure-driven exfernal

modes, VMEC and JOREK simulations obtained a different dominant toroidal harmonic of the

initially unstable exfernal mode. Nevertheless, the physical drive of the saturated instability

was apparently the same for both codes. The reason for the disagreement is not fully resolved,

but is speculated to be due to the different physics models at and near the plasma-vacuum

interface adopted by the two codes. While VMEC enforces closed magnetic flux surfaces that

are free to move, with ideal boundary conditions at the plasma-vacuum interface, in JOREK

the vacuum region is defined by a sharp increase in plasma resistivity. Such a difference does

not seem to have an important effect on the current-driven external kink case over ideal time

scales. Future work would look into resolving this issue in order to make the comparison

between the codes more accurate. Alternatively, a different set of nonlinear codes that use the

same plasma-vacuum boundary conditions could be used for the comparison between the

‘equilibrium’ and the ‘dynamic’ approaches.

Since QH-mode plasmas are observed experimentally without a complete flattening in the

safety factor profile, Chapter 4 explored the parameter space for the excitation of linear exfernal

modes with respect to edge magnetic shear. This was done by solving a newly derived set

of exfernal mode equations that include higher order corrections in ∆q/qs , where qs = m/n,

q(r ) = qs +∆q(r ) and ∆q(r )/qs ≪ 1. As a result, an ‘s −α’ exfernal instability diagram was

produced. It was found that exfernal modes are located in the second region of stability of

infinite-n ballooning modes, although it was concluded the exfernal-unstable region of the

parameter space could be also shared with unstable medium-n peeling-ballooning modes.

Such modes are expected to be stabilised by equilibrium poloidal and diamagnetic sheared

flow in experiments (and more refined models), as described in reference [Bru+19a]. Upon

analysis of the obtained parameter space, it was found that the edge magnetic shear can be of

order unity and still excite an instability of exfernal kind. This result was recovered in linear

stability calculations using the KINX code, and in nonlinear equilibrium calculations using

the VMEC code. Later, a simple model of the plasma separatrix (with the safety factor having

logarithmic divergence at the plasma boundary) was implemented and solved. Since the upper

sideband rational surface lies inside the plasma for this case, the connection with the vacuum

region is no longer needed for the mode to be unstable, which is now formally an internal

(infernal) mode. It was concluded that either a vacuum region or a separatrix are needed for

the mode to be unstable. Absence of the two effects results on the mode being stable. An
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obvious extension of the work is the inclusion of flows associated with the equilibrium radial

electric field (Er ), the inclusion of plasma resistivity and plasma shaping. This is because flow

stabilisation of high-n modes is stronger for low edge magnetic shear [Che+17a], which might

impose a more severe constraint on the critical edge magnetic shear than the one calculated

in this work. Coupling of the infernal drive with a resistive external kink drive coming from the

upper sideband in cases with a plasma separatrix can enhance the instability and therefore

increase the parameter space of exfernal modes in diverted configurations. A more detailed

model of the plasma separatrix, including a proper local divergence of the safety factor as

well as the shaping effects leading to the formation of the x-point is also needed. Finally, it

has been experimentally observed that the parameter space of QH-mode access is wider for

strongly shaped plasmas [Bur+05]. Therefore, the role of plasma shaping in the excitation of

exfernal modes should be explored.

Finally, Chapter 5 studied the interaction between non-resonant external instabilities and non-

axisymmetric magnetic perturbations (MPs). This was undertaken using two approaches: first,

using an analytical linear model of an antenna which produces a static helical perturbation,

and second, through nonlinear calculations using the VMEC code. For the two cases of study

(external kink and exfernal modes) it was found both in the analytical model and in VMEC

simulations that MPs can extend the parameter space where saturated external instabilities

can be found. A comparison between the two approaches was performed, finding quantitative

agreement for the external kink case, but only qualitative agreement for the exfernal mode

case. It was concluded that the differences found in the exfernal case might be originated

on the many approximations taken in the derivation of the analytical model. Future work

would improve such approximations in order to obtain a better analytical estimation of the

saturated amplitude of exfernal modes in the presence of MPs. We point out that agreement

was only obtained in cases where the mode was stable in the absence of MPs. This is because

the linear perturbed equilibrium model does not capture the effect of inertia that would be

present if there is a finite growth rate, meaning that the obtained linear ‘saturated states’ are

not in force balance if the mode is unstable in the absence of the antenna. A further outlook of

this work is the implementation of the linear analytical model in VENUS-MHDpy in the form of

an inhomogeneous forcing function added to the eigenvalue problem, as explained in [Tur12;

Tur+13].

The findings presented in this thesis have advanced the present understanding into the excita-
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tion and saturation mechanism of exfernal modes, which could be helpful for the development

of QH-mode scenarios in current and future tokamaks. Other important plasma parameters

are still open for exploration to fully discover the parameter space of exfernal modes, such as

equilibrium flows, plasma resistivity, plasma shaping, and further physics beyond-MHD.
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A Numerical tools

A.1 The VMEC code

The Variational Moments Equilibrium Code (VMEC) [HW83; HRM86] finds a static ideal MHD

equilibria in 3D by minimising the total plasma energy (magnetic + fluid + vacuum) through

the functional

W =
∫

P

( |B|2
2µ0

+ P

Γ−1

)
d x3 −

∫
V

|BV |2
2µ0

d x3. (A.1)

The minimisation procedure is performed through a variational principle of the energy func-

tional using a steepest-descent iteration method, where the states of minimal energy corre-

spond to MHD equilibrium solutions [KK58]. Particularly, the minimisation is constrained by

the assumption of nested magnetic flux surfaces, which is consistent with ideal MHD theory.

The minimisation stops when the static force balance equation (2.21) is satisfied in every

direction up to a user-defined level of accuracy. The VMEC code has recently been updated to

include the effect of toroidal equilibrium flow [Coo+14].

Equilibrium calculations can be performed assuming either fixed or free boundary. Note that

for fixed boundary, the second integral on equation A.1 vanishes. In free boundary simulations

a vacuum field must be provided externally, and the energy of the plasma is minimised together

with the energy of the vacuum field. Normally, the vacuum magnetic field is calculated from
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a set of current-carrying filaments through the Biot-Savaart law. The code MAKEGRID from

the STELLOPT package performs such calculation on a rectangular (R, Z ) at a fixed number of

toroidal planes, where R and Z are the cylindrical coordinate variables.

The energy integral is discretised using a double Fourier decomposition in the poloidal and

toroidal directions, while the integration in the radial direction is performed using a discrete

mesh of the radial variable. The coordinate system used by the VMEC code is similar to the

one described in section 2.2, with the radial variable defined as either the poloidal or toroidal

flux normalised to its value at the plasma edge (s =ψ/ψ(s = 1)). The physical quantities are

connected to the 3D space through the mapping of orthogonal cylindrical coordinates (R,φ, Z )

into flux coordinates (s,θ,φ). It is worth noticing that in VMEC the covariant basis vector êφ in

both coordinate systems points counter-clockwise when looking the torus from the top (figure

1 in [HW83]), meaning that the cylindrical set is right handed but the flux coordinate set is

left-handed. The mapping is given by

R(s,θ,φ) =
∑
mn

[
Rmn

c (s)cos(mθ−nφ)+Rmn
s (s)si n(mθ−nφ)

]
Z (s,θ,φ) =

∑
mn

[
Z mn

c (s)cos(mθ−nφ)+Z mn
s (s)si n(mθ−nφ)

]
λ(s,θ,φ) =

∑
mn

[
λmn

c (s)cos(mθ−nφ)+λmn
s (s)si n(mθ−nφ)

]
,

(A.2)

where λ is the function that makes the field lines straight, as discussed in section 2.2. This is of

particular importance because the flux coordinate system used in the VMEC code is not a SFL

system, but can be easily transformed by the change of variable

θSF L = θ+λ(s,θ,φ). (A.3)

The magnetic field is given in the same form as in equation 2.14, so it can be fully expressed

in terms of the Fourier expansion in equation A.2 and the poloidal and toroidal magnetic

fluxes. VMEC requires as an input the flux functions p(s) and < Jφ > (s) (or ι(s)), where p(s) is

the plasma pressure, < Jφ > (s) is the surface average of the toroidal current and ι(s) = 1/q(s)
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is the rotational transform. Boundary conditions are also required, i.e. a description of the

plasma boundary and the total enclosed toroidal flux, where the later is used to calculate the

toroidal magnetic field strength in fixed boundary simulations. In free boundary simulations,

the description of the boundary is taken as the first guess, and the enclosed toroidal flux is

used to calculate the area of the poloidal cross section. Through the minimisation of the

energy, the volume of the magnetic surfaces is varied until the desired equilibrium is reached.

VMEC then outputs the full equilibrium decomposed in Fourier components in the same form

as expressed in equation A.2.

A.1.1 Stellarator symmetry

The number of acquirable states that can be obtained by VMEC can be reduced by exploiting

what is called stellarator symmetry [DH98]. General 3D plasma configurations posses such

symmetry if the scalar functions describing the equilibrium in cylindrical coordinates fulfils

the relation f (R,−φ,−Z ) = ± f (R,φ, Z ), i.e. quantities are mirrored with respect to the planes

Z = 0 and φ = 0. Vector field components also need to fulfil V(VR ,Vφ,VZ ) = V(−VR ,Vφ,VZ ).

In flux coordinates, this symmetry reads f (s,−θ,−φ) = ± f (s,θ,φ), and the coordinate map

results in R(s,−θ,−φ) = R(s,θ,φ) and Z (s,−θ,−φ) = −Z (s,θ,φ). Considering this parity and

equation A.2, VMEC’s mapping of the coordinates assuming stellarator symmetry reduces to

R(s,θ,φ) =
∑
mn

Rmn
c (s)cos(mθ−nφ)

Z (s,θ,φ) =
∑
mn

Z mn
s (s)si n(mθ−nφ)

λ(s,θ,φ) =
∑
mn

λmn
s (s)si n(mθ−nφ).

(A.4)

This greatly simplifies VMEC calculations and increases the convergence of the algorithm. If a

coil set producing the equilibrium vacuum field has stellarator symmetry, then the magnetic

field will also have stellarator symmetry [DH98]. This is of particular importance when using

3D coils on inherently 2D plasma configurations, such as the application of resonant magnetic

perturbations discussed in Chapter 5. As it turns out, most stellarators are designed to have

stellarator symmetry, and in tokamaks stellarator symmetry reduces to up-down symmetry.

In reality, both types of design will not have this kind of symmetry exactly due to the toroidal
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ripple. Most notably, tokamaks that operate with a single null divertor (only one x-point, like

JET or ITER) break stellarator symmetry.

A.2 The FreeGS code

The FreeGS code [Dud] is a python library that solves the static (non-rotating) Grad-Shafranov

equation in free boundary using a nonlinear Picard iteration method. The code was particularly

useful for this thesis because given a certain set of coils, FreeGS uses a feedback control routine

to calculate the required current in the coils that would produce the desired equilibrium. The

calculation of the currents is constrained by either the location of the x-points, the value of

the poloidal flux at a certain locations, or both. Note that depending of how many constraints

and coils are specified, there might be more unknowns than degrees of freedom, or conversely,

more degrees of freedom than unknowns. This results on an ill-posed problem, as there

might be infinite solutions, or no solution at all. The FreeGS code fixes this issue by using the

Tikhonov regularisation method to produce a unique solution, but still unrealistically large

currents can be obtained. To avoid this, a good strategy is to set one the coil currents equal to

a realistic value, then the rest of the coil currents will be calculated ‘normalised’ to that value.

Apart from the description of the coil set, the plasma profiles d p/d s and F dF /d s are needed as

an input, where s =ψp (s)/ψp (1) is the normalised poloidal flux. These profiles are constructed

by providing the value of the pressure at the magnetic axis (P (0)) and the total toroidal current

(Ip ). This sets the toroidal current density to

Jφ = L

[
β0R + 1−β0

R

]
(1− sαm )αn (A.5)

where L is a proportionality constant, β0 = 2µ0P (0)/B 2
0 , αm and αn are parameters that can be

set by the user, and R is the normalised major radius. The value of L and β0 are obtained from

the following integrals
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P (0) = −Lβ0R
∫

(1− sαm )αn dψp

Ip = L
∫ [

β0R + 1−β0

R

]
(1− sαm )αn dRd Z .

(A.6)

Alternatively, the shape of the profiles can be arbitrarily specified as function of s, but the

convergence of the numerical method can be affected by the complexity of the functions.

A.3 The KINX stability code

The KINX code [Deg+97] solves the ideal MHD linear stability problem in axisymmetric plas-

mas surrounded by a vacuum region and delimited by a metallic wall. The formulation of the

stability problem is based on the weak form of the ideal MHD perturbed equations, corre-

sponding to the sum of the perturbed potential and kinetic energies (equation 2.43). A flux

coordinate system is used, where an hybrid finite element scheme is used to discretise the

MHD operator in both radial and poloidal directions to avoid spectral pollution [Gru+81b;

Gru+81a]. The numerical equilibrium required in KINX is computed by the CAXE code, which

has the advantage of calculating MHD equilibria on a grid adapted to magnetic surfaces which

can include a separatrix with an x-point. In this thesis, the equilibria is first calculated in

CHEASE [LBS96], then later interfaced to KINX through the CAXE code. A stability calculation in

KINX gives the growth rates and eigenvectors, which correspond to the different projections of

the plasma displacement ξξξ, given by

ξξξ = ξψ
∇G ×B

B 2 +ξG B×∇ψ
B 2 +ξB B

B
, (A.7)

where the magnetic field is represented in Clebsch form as B = ∇ψ×∇G and ψ is the poloidal

flux.
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B Mathematical derivations

B.1 Equilibrium torodial flow

It is considered that the plasma field velocity only flows in the toroidal direction, which is

somewhat justified because the poloidal flow is strongly damped due to neoclassical effects

[CBT87] (i.e. uθ ≪ uφ). Moreover, the lowest order plasma flow must lie on flux surfaces in

order for the plasma to be confined (i.e. u ·∇s = 0). Therefore, the equilibrium flow can be

expressed as

u = R2Ω(s)∇φ (B.1)

where the toroidal angular frequency uφ = Ω(s) is a flux function. This restriction requires

further assumptions on the geometry of the system. Substituting ideal Ohm’s law (2.5) into

equilibrium Faraday’s law (2.6) and taking the toroidal contravariant component gives

0 = [∇× (u×B)] ·∇φ
= ∇· [∇φ× (B×u)

]
= (B ·∇)uφ−Bφ∇·u− (u ·∇)Bφ,

(B.2)
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where in the last equality equation 2.8 has been used. Note that Ω will only be a flux function if

ρ, Bφ and Ω are independent of the toroidal variable φ, which is the case or axisymmetry (see

section §2.3.1). Then it follows from the mass conservation equation (2.2) that the equilibrium

toroidal flow is incompressible: ∇·u = 0. Also due to axisymmetry the last term on equation

B.2 vanishes: (u ·∇)Bφ =Ω∂φBφ = 0. The equation finally gives B ·∇Ω = ∂θΩ = 0, implying that

Ω is a flux function. It is now straightforward to obtain

(u ·∇)u = −1

2
Ω2(s)∇R2, (B.3)

which means that the force derived from toroidal rotation is only centripetal. An expression

for the pressure is derived from the parallel equilibrium equation

ρB · [(u ·∇)u] = −B ·∇P

B ·∇
(

mi

4T (s)
Ω2(s)R2

)
= B ·∇ (ln(P ))

(B.4)

where the plasma density ρ has been substituted using equation 2.1 and it has been assumed

that (B ·∇)T = 0 due to the fast thermal transport along the field lines. Equation B.4 can be

integrated along the field lines to give

P (s,R) = P̂ (s)eU (s)(R2−R2
0 ) (B.5)

with U (s) = mi
4T Ω

2 and P̂ (s) is the pressure without the effect of rotation. Comparing this result

with equation 2.22, it is clear that pressure is no longer constant in plasmas with toroidal

rotation: the centrifugal force pushes the plasma radially outwards producing a mismatch

between the pressure surfaces and flux surfaces.

The variation of the energy functional (equation A.1) needs to be consistent with the MHD

equilibrium equation with flow (2.18), which is the case if Ω′(s) ≃ 0 in regions with signifi-

cant 3D distortion [Coo+14]. This formulation is not valid for general 3D geometry, but the
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approximation holds well enough for small 3D perturbations and is exact in axisymmetry.

B.2 Corrected sideband equations with shear

As found in Chapter 4, the physics of edge magnetic shear is well captured by the inclusion of

the first order O (∆q/qs) corrections in the sideband equations related to field line bending

stabilisation. To ease the notation from Chapter 4, we rename ξ(m)
r 0 → ξ0 and ξ(m±1)

r 1 → ξ±. The

equations for the sidebands are then

d

dr

[
r−(1±2m) d

dr

(
r 2±mξ±

)]
=

1±m

2

d

dr

(
r∓mαξ0

)
+2(1±m)

[
d

dr

[
∆q

qs
r−(1±2m) d

dr

(
r 2±mξ±

)]− (2±m)r∓m ∆q ′

qs
ξ±

]
(B.6)

Integrate the equation from r1 to r

r−(1±2m) d

dr

(
r 2±mξ±

)
=

1±m

2
r∓mαξ0

+2(1±m)

[
∆q

qs
r−(1±2m) d

dr

(
r 2±mξ±

)− (2±m)
∫ r

r1

r∓m ∆q ′

qs
ξ±dr

]
+C±

0 +C±
1 (B.7)

Note that taking a definite integral sets the constants of integration C±
0 and C±

1 to be:

C±
0 = r∓m

1 ξ±(r1)
(
2±m +B±(r1)

)
(B.8)

C±
1 = −2(1±m)

∆q(r1)

qs
C±

0 (B.9)

where B±(r ) = rξ′±(r )/ξ±(r ). The order (∆q/qs)0 is
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r−(1±2m) d

dr

(
r 2±mξ±

)
=

1±m

2
r∓mαξ0 +C±

0 (B.10)

when integrating from r1 to r we get

ξ± =
1±m

2
r 2±m ξ̂0

±+C±
0

r±m

2(1±m)
+D±

0 r−(2±m) (B.11)

with ξ̂0
± =

∫ r
r 1 r 1±mαξ0dr . We note once again that since this is a definite integral, the constant

D±
0 is determined, and equal to D±

0 = r 2±m
1 ξ±(r1)−C±

0
r 2(1±m)

1
2(1±m) . We use equation B.8 to get:

D±
0 = C±

0 r 2(1±m)
1

±m −B±(r1)

2(1±m)(2±m +B±(r1))
(B.12)

We substitute equations B.10 and B.11 into the order O (∆q/qs) terms of equation B.7 (right

hand side) to get:

r−(1±m) d

dr

(
r 2±mξ±

)
=

1±m

2
αξ0

[
1+2(1±m)

∆q

qs

]
−r±m(1±m)2(2±m)

∫ r

r1

r−2(1±m)∆q ′

qs
ξ̂0
±dr

+C±
0 r±m

[
1±m

∆q −∆q(r1)

qs
− r 2(1±m)

1

(2±m)(±m −B±(r1))

2±m +B±(r1)

∫ r

r1

r−2(1±m)∆q ′

qs
dr

]
= 0

(B.13)

Equation B.13 is to be substituted into the main mode equation (3.2).
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B.2.1 Calculation of the constants of integration

First, we evaluate equation B.13 at r2 to obtain

ξ±(r2)
(
2±m +B±(r2)

)
= −r±m

2 (1±m)2(2±m)
∫ r2

r1

r−2(1±m)∆q ′

qs
ξ̂0
±dr

+C±
0 r±m

2

[
1±m

∆q(r2)−∆q(r1)

qs
− r 2(1±m)

1

(2±m)(±m −B±(r1))

2±m +B±(r1)

∫ r2

r1

r−2(1±m)∆q ′

qs
dr

]
(B.14)

Also note that evaluation equation B.13 at r1 gives identically zero. Finally, integrate equation

B.13 from r1 to r2 to give

r 2±m
2 ξ±(r2)− r 2±m

1 ξ±(r1) =
1±m

2

∫ r2

r1

r 1±mαξ0

(
1+2(1±m)

∆q

qs

)
dr

− (1±m)2(2±m)
∫ r2

r1

r 1±2m
[∫ r

r1

r−2(1±m)∆q ′

qs
ξ̂0
±dr

]
dr

+C±
0

∫ r2

r1

r 1±2m
[

1±m
∆q −∆q(r1)

qs
− r 2(1±m)

1

(2±m)(±m −B±(r1))

2±m +B±(r1)

∫ r

r1

r−2(1±m)∆q ′

qs
dr

]
dr

(B.15)

Equations B.8, B.14 and B.15 are used to determine uniquely C±
0 , ξ±(r1) and ξ±(r2). We have

then

C±
0 =

T ±
1 +T ±

2 +T ±
3

T ±
4 +T ±

5 +T ±
6 +T ±

7

(B.16)

where we have defined the following terms
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T ±
1 = 2qs

[
2±m +B±(r1)

][
2±m +B±(r2)

]
(1±m)3(2±m)

∫ r2

r1

r 1±2m
[∫ r

r1

r−2(1±m)∆q ′

qs
ξ̂0
±dr

]
dr

T ±
2 = −qs

[
2±m +B±(r1)

][
2±m +B±(r2)

]
(1±m)2

∫ r2

r1

r 1±mαξ0

[
1+2(1±m)

∆q

qs

]
dr

T ±
3 = −2qs

[
2±m +B±(r1)

]
(1±m)3(2±m)r 2(1±m)

2

∫ r2

r1

r−2(1±m)∆q ′

qs
ξ̂0
±dr

T ±
4 = −2qsm

[
2±m +B±(r1)

][
2±m +B±(r2)

]
(1±m)

∫ r2

r1

r 1±2m ∆q −∆q(r1)

qs
dr

T ±
5 = −2qs

[±m −B±(r1)
][

2±m +B±(r2)
]

(1±m)(2±m)r 2(1±m)
1

∫ r2

r1

r 1±2m
[∫ r

r1

r−2(1±m)∆q ′

qs
dr

]
dr

T ±
6 = 2qs

[±m −B±(r1)
]

(1±m)(2±m)r 2(1±m)
1 r 2(1±m)

2

∫ r2

r1

r−2(1±m)∆q ′

qs
dr

T ±
7 = qs

([±m −B±(r1)
][

2±m +B±(r2)
]

r 2(1+m)
1 − [±m −B±(r2)

][
2±m +B±(r1)

]
r 2(1+m)

2

)
∓2m

[
2±m +B±(r1)

]
(1±m)(∆q(r2)−∆q(r1))r 2(1±m)

2

(B.17)

Note that the zero order O ((∆q/qs)0) (which makes T ±
1 = T ±

3 = T ±
4 = T ±

5 = T ±
6 = 0) recovers

the results from previous papers [GHH96; HH88].

B.3 Reference model in Chapter 4

The Reference model is obtained in large aspect ratio tokamak following the tokamak ordering

(§ 2.3.2), keeping terms up to order O (ϵ4) and without any assumptions on the order of the

magnetic shear or safety factor. This model serves as a benchmark of the expansion of the

safety factor performed for equations 4.14 - 4.17. The equation for the main mode is
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1

r

d

dr

[
r 3

(
1

q
− n

m

)2 d

dr
ξ(m)

r 0

]
− (

m2 −1
)
ξ(m)

r 0

(
1

q
− n

m

)2

1

4m4q6R2
0

{
n2 ( ( 2m2R0

(
−(

R0α
2 +4rα+2∆

)
m2 − (

7m2 +5
)

R0
(
∆′)2 +2∆+2

((
m2 +2

)
r + (

2m2 +1
)
αR0

)
∆′

)
−3

(
5m4 −3m2 +4n2)r 2 )ξmr0(r )+ r (

(
2R0

(
6∆+ (

4r +R0
(
2α−3∆′))∆′)m2 +5

(
3m2 −4n2)r 2)ξ′mr0(r )

+ r
(
2R0

(
R0

(
∆′)2 +2∆

)
m2 + (

3m2 −4n2)r 2
)
ξ′′mr0(r ) ) ) q6 +2mn ( (

(
15m4 +7m2 +4n2)r 2

+2mR0 ( R0
(
m

(
7m2 +17

)+2
(
2m2 +1

)
nr q ′)(∆′)2 −m ( 2r

(
m2 +2nr q ′m +5

)
+R0

(
α

(
4m2 +2nr q ′m +9

)− rα′) )∆′+2m
(
m2 −1

)
∆+α(

m
(
4m2 +3

)
r + (

m3 +m
)
αR0

)
) )ξmr0(r )

− r (
(
5
(
3m2 −4n2)r 2 +2mR0

(
6m∆+∆′ (4mr +R0

(
2mα− (

3m +2nr q ′)∆′))))ξ′mr0(r )

+ r
(
2R0

(
R0

(
∆′)2 +2∆

)
m2 + (

3m2 −4n2)r 2
)
ξ′′mr0(r ) ) ) q5 +m ( r ( ( 4R0

(
∆

(
3m +2nr q ′)+2mr∆′)m2

+2R2
0∆

′ (2mα−3
(
m +2nr q ′)∆′)m2 + (

3m2 −4n2)r 2 (
5m +2nr q ′) )ξ′mr0(r )+mr ( 2R0

(
R0

(
∆′)2 +2∆

)
m2

+ (
3m2 −4n2)r 2 )ξ′′mr0(r ) )−m (

(
15m4 +23m2 +6nr q ′m −36n2)r 2 +2R0 ( n2α′r 2 + (

4m4 +8m2 +n2)αr

+2m
(
m

(
m2 −1

)
∆− r

(
m

(
m2 +8

)+2
(
4m2 +3

)
nr q ′)∆′) )+2mR2

0 ( m
(
m2 +3

)
α2 −2( 2m

(
m2 +4

)
+ (

4m2 +5
)

nr q ′ )∆′α+∆′ (2mrα′+∆′ (m
(
7m2 +29

)+2nr
(
q ′ (8m2 +2nr q ′m +19

)−2r q ′′))) ) )ξmr0(r ) ) q4

−2m2r ( ( 2m∆′ (q ′ (2m
(
m2 +3

)
α− (

m
(
4m2 +17

)+4
(
m2 +1

)
nr q ′)∆′)+2mr∆′q ′′)R2

0

+2
(
2m2 (

2m2 +3
)

r q ′∆′−n
(
3mα+nr q ′α+mrα′))R0 + r

(
32mn + r

(
2n2r q ′′−3

(
m2 −6n2)q ′)) )ξmr0(r )

+ r q ′
((

3m2 −4n2)r 2 −2m2R0

(
R0

(
∆′)2 −2∆

))
ξ′mr0(r ) ) q3 −2m2r ( 4m2 (

m2 +2
)

r R2
0

(
q ′)2 (

∆′)2

+mR0
(
3α

(
m +2nr q ′)+mrα′)−2r

(
8m2 +nr

(
3nr

(
q ′)2 +22mq ′+2mr q ′′

))
)ξmr0(r )q2 −4m3r 2 ( mq ′′r 2

+q ′ (r
(
13m +8nr q ′)−2mαR0

)
)ξmr0(r )q +20m4r 4 (

q ′)2
ξmr0(r )

}

+ 1

2(m −1)mq4R0

{
n2 (

(
2(m −2)(m −1)r +R0

(
α− (m −1)rα′+2(m −2)m∆′))ξ(m−1)r1(r )+ r ( ( R0 ( (3−2m)α

+2(2m −1)∆′ )−4(m −1)r )ξ′(m−1)r1(r )+2r R0∆
′ξ′′(m−1)r1(r ) ) ) q4 −2n ( ( (m −1)r

(
2m2 −5m +nr q ′+2

)
+R0

(
α

(
m + (m −1)nr q ′)− (m −1)mrα′+∆′ ((m −1)nq ′′r 2 + (2m −1)

(
(m −2)m −nr q ′))) )ξ(m−1)r1(r )

− r (
(
2(m −1)(2m −1)r +R0

(
(2(m −2)m +1)α+ (

(3−2m)nr q ′− (1−2m)2)∆′))ξ′(m−1)r1(r )

+ (1−2m)r R0∆
′ξ′′(m−1)r1(r ) ) ) q3 + ( ( 2(m −1)r

(
(m −2)(m −1)m +nr q ′)+R0 ( − (m −1)rα′m2

+2(m −1)α
(
nr q ′+1

)
m +2∆′ ((m −2)(m −1)m2 +nr

(
q ′ (−2m2 +m − (m −1)nr q ′)+2(m −1)mr q ′′)) ) )ξ(m−1)r1(r )

+ r (
(
(1−m)m (4(m −1)r + (2m −3)αR0)+2R0

(
(m −1)m(2m −1)+ (

4m2 −6m +1
)

nr q ′)∆′)ξ′(m−1)r1(r )
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+2(m −1)mr R0∆
′ξ′′(m−1)r1(r ) ) ) q2 +2(m −1)mr 2 ((

(m −1)q ′−mR0∆
′q ′′)ξ(m−1)r1(r )+ (1−2m)R0q ′∆′ξ′(m−1)r1(r )

)
q

+2(m −1)m2r 2R0
(
q ′)2

∆′ξ(m−1)r1(r )

}

+ 1

2m(m +1)q4R0

{
n2 (

(
2(m +1)(m +2)r +R0

(
α+ (m +1)rα′+2m(m +2)∆′))ξ(m+1)r1(r )+ r ( ( 4(m +1)r

+R0
(
(2m +3)α−2(2m +1)∆′) )ξ′(m+1)r1(r )+2r R0∆

′ξ′′(m+1)r1(r ) ) ) q4 +2n ( ( (−m −1)r
(
(m +2)(2m +1)−nr q ′)

−R0
(
α

(
m − (m +1)nr q ′)+m(m +1)rα′+∆′ ((2m +1)

(
m(m +2)+nr q ′)− (m +1)nr 2q ′′)) )ξ(m+1)r1(r )

− r (
(
2(m +1)(2m +1)r +R0

(
(2m(m +2)+1)α− (

(2m +1)2 + (2m +3)nr q ′)∆′))ξ′(m+1)r1(r )

+ (2m +1)r R0∆
′ξ′′(m+1)r1(r ) ) ) q3 + ( ( 2(m +1)r

(
m(m +1)(m +2)+nr q ′)+R0 ( (m +1)rα′m2

−2(m +1)α
(
nr q ′−1

)
m +2∆′ ((m +1)(m +2)m2 +nr

(
q ′ (m(2m +1)+ (m +1)nr q ′)−2m(m +1)r q ′′)) ) )ξ(m+1)r1(r )

+ r (
(
4mr (m +1)2 +R0

(
m(m +1)(2m +3)α−2

(
m(m +1)(2m +1)+ (

4m2 +6m +1
)

nr q ′)∆′))ξ′(m+1)r1(r )

+2m(m +1)r R0∆
′ξ′′(m+1)r1(r ) ) ) q2 −2m(m +1)r 2 (

(
(m +1)q ′−mR0∆

′q ′′)ξ(m+1)r1(r )

+ (−2m −1)R0q ′∆′ξ′(m+1)r1(r ) ) q −2m2(m +1)r 2R0
(
q ′)2

∆′ξ(m+1)r1(r )

}
= 0.

The equation for the upper sideband is

1

r

d

dr

[
r 3

(
1

q
− n

m +1

)2 d

dr
ξ(m+1)r1(r )

]
−m(m +2)

(
1

q
− n

m +1

)2

ξ(m+1)r1(r )

1

2m(m +1)q4R0

{
n2q4 ( ξmr0(r )

(
R0

(
α+2

(
m2 −1

)
∆′−mrα′)+2(m −1)mr

)+ r ( ξ′mr0(r ) ( R0 ( α(1−2m)

+2(2m +1)∆′ )−4mr )+2r R0∆
′ξ′′mr0(r ) ) )−2nq3 ( ξmr0(r ) ( R0 ( ∆′ ((2m +1)

(
m2 −nr q ′−1

)+mnr 2q ′′)
+α(

mnr q ′+m +1
)−m(m +1)rα′ )+mr

(
(m −1)(2m +1)+nr q ′) )+ r ( ξ′mr0(r ) ( R0 ( α−2αm2

+∆′ ((2m −1)nr q ′+ (2m +1)2) )−2m(2m +1)r )+ (2m +1)r R0∆
′ξ′′mr0(r ) ) )

+q2 ( ξmr0(r ) ( R0 ( 2∆′ (nr
(
2m(m +1)r q ′′−q ′ (2m2 +mnr q ′+3m +1

))+ (m −1)m(m +1)2)
+2αm(m +1)

(
nr q ′+1

)−m(m +1)2rα′ )+2mr
(
m3 −m +nr q ′) )+ r ( ξ′mr0(r ) ( 2R0∆

′ (
(
4m2 +2m −1

)
nr q ′

+m(m +1)(2m +1) )−m(m +1)(4mr +α(2m −1)R0) )+2m(m +1)r R0∆
′ξ′′mr0(r ) ) )

+2m(m +1)qr 2 (
ξmr0(r )

(
mq ′− (m +1)R0∆

′q ′′)+ (−2m −1)R0∆
′q ′ξ′mr0(r )

)+2m(m +1)2r 2R0∆
′ (q ′)2

ξmr0(r )

}
= 0,

and for the lower sideband

148



B.3 Reference model in Chapter 4

1

r

d

dr

[
r 3

(
1

q
− n

m −1

)2 d

dr
ξ(m−1)r1(r )

]
− (m −2)m

(
1

q
− n
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1
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′((4m2 −2m −1)nr q ′+ (m −1)m(2m −1)))

+2(m −1)mr R0∆
′ξ′′mr0(r )))−2(m −1)mqr 2(ξmr0(r )(mq ′− (m −1)R0∆

′q ′′)+ (1−2m)R0∆
′q ′ξ′mr0(r ))

−2(m −1)2mr 2R0∆
′(q ′)2ξmr0(r )

}
= 0.

Writing the safety factor as q(r ) = qs +∆q(r ), with ∆q(r )/qs ≪ 1, we can expand the equations above with respect to the

small variable ∆q(r )/qs . Keeping only terms of order O ((∆q/qs)0) in the expansion recovers the Original exfernal model.

Keeping terms of order O ((∆q/qs)1) recovers the Corrected exfernal model.
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C VENUS-MHDpy code

C.1 Motivation and numerical method

Following the ‘beta’ version of the VENUS-MHD code written in Fortran by S. Lanthaler [Lan20],

VENUS-MHDpy is a Python adaptation of the code created to address the known problems of the

original version. Among those problems stand out the normalisation of the physical quantities,

implementation of vacuum boundary conditions, and portability of the code outside of the

Swiss Plasma Centre. Since the VENUS-MHDpy code is to be upgraded to include kinetic effects,

one of the goals was to optimise simplicity and modularity without sacrificing efficiency1.

VENUS-MHDpy runs in Python3, the basic version uses only standard Python libraries (numpy,

scipy and matplotlib), does not need to be compiled and can be installed locally as a Python

library.

The VENUS-MHDpy code is a suit of Python modules designed to discretise second order dif-

ferential operators using a Fourier-finite element method in 3 dimensions. The differential

operator is applied to a vector of numerical variables as A X, where A = A (s,θ) is a N ×N ma-

trix of differential operators and X = (X 1, X 2, ..., X N ) is a N−dimension vector. Each component

(X i ) of the vector depends on the variables (s,θ,φ) as

X i (s,θ,φ) =
m+∑

m=m−
X i

m(s)e i (mθ+nφ), (C.1)

1The code is in fact ∼ 5 times faster than the Fortran equivalent in single core tests.
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where n and m are integer numbers. The Fourier decomposition of the vector components is

suitable to describe a toroidal system, with s a measure of the inner radii of the torus (which is

often normalised), θ a measure of the angle in the poloidal direction, and φ the toroidal angle.

It is assumed that the vector X can be described by a single toroidal mode number n. The vector

X is then composed by N ×Mtot variables which depend only on s, with Mtot = m+−m−. The

application of the VENUS-MHDpy code to the MHD stability problem requires the discretisation

of the problem

Nt∑
σ=0

A(σ)
∂σ

∂tσ
X(s,θ,φ, t ) = 0 (C.2)

where the differential operators A(σ) depend on the MHD model that is to be used. For

example, the ideal MHD model considers X = (ξr ,ξθ,ξφ), A2 = ρI and A0 = δF(ξξξ) as given by

equation 2.39. Once the operators are discretised, the VENUS-MHDpy code can in principle

evolve an initial plasma state using an explicit (or implicit, depending of the MHD model)

time integration method. Up to now, a normal mode time dependency on time is assumed:

X(s,θ,φ, t ) = X̃(s,θ,φ)eλt , so that equation C.2 can be written as a general eigenvalue problem.

The discretisation of each of these operators is undertaken using a finite element method for

the variable s. First, each of the operators applied to the vector X are written in weak form as

A (Y,X) =
∫

Y∗ ·A XdV , (C.3)

where Y = (Y 1,Y 2, ...,Y N ) is a test function that exists in the same space as the vector X and

has the same form as equation C.1, and dV is the volume of the computational domain.

The discretisation of the radial variable s is performed following the Galerkin method by

decomposing the functions X i
m(s) into finite elements as

X i
m(s) =

Ns∑
k=1

X i
(m,k)Λ

(ν)
k (s), (C.4)
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whereΛ(ν)
k is the k th B-spline of order ν. In VENUS-MHDpy, the finite elements can be defined by

the user to arbitrary order (ν) for each of the vector components X i . This mixed representation

is implemented to avoid a numerical problem called ‘spectral pollution’ [Gru+81b]. Such

phenomena occurs in the ideal MHD model if for example the divergence of the perturbed

field does not exactly vanish numerically (∇·δB ̸= 0), which can happen if there is a mismatch

in the polynomial representation of the relevant numerical variables. The mixed Fourier-finite

element discretisation method implemented in VENUS-MHDpy is also adopted by the Erato

[Gru+81b], MISHKA [Mik98], CASTOR [Ker+98; Str+05], and MINERVA [Aib+09] MHD stability

codes. Substituting equations C.1 and C.4 into equation C.3 gives the explicit integral form of

the discretised matrix A (Y,X)

A (Y,X) = 2π
N∑
i , j

m+∑
mX ,mY =m−

Ns∑
k,l

A(i , j ,mX ,mY ,k,l )Y
i

(mY ,k)X j
(mX ,l ) (C.5)

with

A(i , j ,mX ,mY ,k,l ) =
1∑

p,q=0

∫
d p

d sp Λ
(νi )
k (s)

d q

d sq Λ
(ν j )
l (s)

[∫
A(i , j ,p,q)(s,θ,mX ,mY )e i (mX −mY )θdθ

]
d s,

(C.6)

where the coefficients A(i , j ,p,q)(s,θ,mX ,mY ) depend on the model under consideration. Be-

cause of the Fourier decomposition of the numerical variables and test functions, the deriva-

tives with respect to θ and φ can be replaced by ∂θX i → i mX , ∂θ(Y i )∗ →−i mY , ∂φX i → i n

and ∂φ(Y i )∗ →−i n. Note that the integral in φ was performed in advance since there is no

dependence on the toroidal angle (X (Y )∗ ∼ e i nφe−i nφ), giving the factor 2π.

The VENUS-MHDpy code is a flexible tool to discretise different MHD stability models including

various physical effects. Continuing the work presented in [Lan20], the implementation of

the models uses Mathematica to perform extensive algebraic manipulations to obtain the

coefficients A(i , j ,p,q)(s,θ,mX ,mY ), which are automatically converted into Python code. Up to

now, the static and stationary ideal MHD models are implemented in the VENUS-MHDpy code

as linear general eigenvalue problems, which are solved by the function eigs from the scipy
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sparse linear algebra library.

C.2 Numerical implementation: A finite element implementation

for vector languages

Building such a large matrix requires the use of at least 6 loops performing different inte-

grals over the indexes i , j ,mX ,mY ,k and l as described by equation C.5. Since Python is a

high-level programming language, such procedure would be extremely inefficient. Instead,

VENUS-MHDpy computes the integrals by blocks of (i , j ) pairs, which are the only 2 loops that

are not vectorised within the code2. The discretisation loops roughly resemble the following

structure:

1 for i,j in range(IJpair):

2

3 Mpol = FFT_Mpol(i,j)

4 Bsplines = BsplineGauss(i,j)

5 Mrad = InterpGauss(Mpol)

6

7 for d in Diagonals:

8 Matrix[d] = Mrad*Bsplines

For each (i , j ) pair, the integral with respect to the poloidal angle θ is performed numerically

using a single Fast Fourier Transform (FFT), then the (mX ,mY ) Fourier components are used

to build the local Mtot ×Mtot matrix block (function FFT_Mpol(i,j)). Such procedure has

been extremely optimised by using the fftn function built within the scipy python library,

which performs a FFT at each radial location in a vectorised manner. The integrals with

respect to the radial variable s are performed using the Gaussian quadrature rule. The loop

over the radial variable (k, l ) is replaced by a loop over the matrix diagonal arrays, where

the number of arrays depends on the B-spline order of the (i , j ) pair of numerical variables

(For example, if νi = ν j = 1, then only 3 diagonal arrays are present in the matrix: Lower off-

diagonal, diagonal and upper off-diagonal arrays). The B-splines (k, l ) are calculated only at the

Gaussian nodes that give a no-null contribution to the integrals for each diagonal array, which

also depends on the order of the B-splines considered (function BsplineGauss(i,j)). The

Fourier components of the poloidal integral are interpolated at the same Gaussian nodes and

build into a matrix (function InterpGauss(Mpol)). Such interpolation is performed taking

2These loops can be easily parallelised since each (i , j ) block is independent.

154



C.3 Normalisation in VENUS-MHDpy

advantage of vectorised operations. The full matrix for each (i , j ) pair is finally calculated

by multiplying the B-spline array times the poloidal integral matrix and summing over the

appropriate Gaussian nodes. Such matrix operations are carried out in an optimised way

by taking advantage of the vector operations in the numpy Python library, and can be GPU

parallelised with relative ease using the cupy Python library.

C.3 Normalisation in VENUS-MHDpy

The MHD models implemented into the VENUS-MHDpy code calculate the stability of an ax-

isymmetric equilibrium plasma. Such equilibrium is currently obtained numerically using

the VMEC fixed boundary code in axisymmetric configuration. An interface between VMEC and

VENUS-MHDpy was created in order to normalise the relevant physical quantities and to map

the equilibrium into a right-handed straight field line coordinate system. The normalisation

adopted by VENUS-MHDpy is

∇ =
∇̂
R0

, B = B̂B0, f = B0R2
0 f̂ , ρ̂ =

ρ

ρ0
=

P

P0

T0

T

F = B0R0F̂ , δA = R0B0δ̂A, P =
B 2

0 P̂

µ0
, ω =ωAω̂

u = uAû, ωA =
B0

R0
p
µ0ρ0

, uA = R0ωA =
B0p
µ0ρ0

, T̂ =
T

uA
=
µ0P0

2B 2
0

(
T

T0

)

Ω̂ =
Ω

ωA
=

M0

2

√
µ0P0

B 2
0

(
Ω

Ω0

)
, Û = R2

0U =
M 2

0

2

(
Ω

Ω0

)2 T0

T
, M 2

0 =
Ω2

0R2
0

2T0

(C.7)

where the normalised quantities have a hat (ˆ). In equation C.7, R0, B0, T0, Ω0, P0, ρ0, M0,

ua and ωA are the major radius, magnetic field, temperature, toroidal rotation frequency,

pressure, density, Mach number, Alfven speed and Alfven frequency evaluated at the magnetic

axis in SI units. The quantities F and f define the magnetic field as B = f ∇φ×∇s +F∇φ, and

the quantity U (s) is defined in section B.1. Note that in VMEC with flow [Coo+14], the rotation

frequency Ω and temperature T are only given as normalised profiles with respect to its value

on axis.
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C.4 Benchmark and convergence test

In order to test the convergence of the VENUS-MHDpy code, we implemented the Laplacian

Disk differential equation ∇2X =λX , where ∇2X = ∂2
s X +∂s X /s +∂2

θX /s2. Analytical solution

to this problem is given by the Bessel functions. Application of the boundary conditions

X (s = 0) < |∞| and X (s = 1) = 0 gives the solution to the eigenvalues, which are roots of the

Bessel functions of the first kind. We obtain a convergence order of 2ν (figure C.1a), where ν is

the order of the B-spline used for the discretisation.

(a) (b)

Figure C.1: (a) Convergence of the VENUS-MHDpy code for the Laplace disk eigenvalue problem.
The error in the calculation of the eigenvalues converges with an order of 2ν, with ν the B-
spline order used in the discretisation. (b) Benchmark of the VENUS-MHDpy code against the
KINX code for the case of an internal kink mode.

The VENUS-MHDpy code was benchmarked against the KINX [Deg+97] ideal MHD stability code.

An internal (m = 1,n = 1) kink mode parameter scan, varying the value of the β0 = 2µ0P0

B 2
0

was

selected for the test. Two static ideal MHD models implemented in the VENUS-MHDpy code

were used, the full ideal MHD model and the perpendicular ideal MHD model. As it is well

known from theory, the growth rates in the perpendicular MHD model are scaled by a known

factor γ⊥ =
√

1+2q2γ close to marginal stability. Therefore, the perpendicular growth rates

were multiplied by the enhancement factor
p

3. The result of the benchmark is reported in

figure C.1b, showing good agreement between the two codes.
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C.5 Future prospects

The goal of the VENUS-MHDpy code is to have a general and flexible tool to compare different

physics models under the same numerical environment. Analytical models can also be imple-

mented with relative ease using specialised Mathematica scripts, so the code could be used to

benchmark analytical approximations including different physical effects. Soon, the code will

be upgraded to include vacuum boundary conditions and plasma resistivity with strong flows.

A major upgrade to the code is the inclusion of kinetic effects (tentatively called VENUS-KMHD),

which is being undertaken by the following generation of students at the Swiss Plasma Centre.

To necessary velocity space dimensions related to the calculation of the perturbed distribution

function moments are added to the code as components in the vector X. For example, for the

ideal MHD perpendicular model, the vector has the following form

X =
(
ξs ,ξ⊥,δ f (v⊥0, v∥0),δ f (v⊥0, v∥1), ...,δ f (v⊥0, v∥N∥),δ f (v⊥1, v∥0), ...,δ f (v⊥N⊥ , v∥0), ...,δ f (v⊥N⊥ , v∥N∥)

)
,

(C.8)

where N∥ and N⊥ give the grid size of the velocity space variables, and each component

depends on the spatial coordinates (s,θ,φ) as given in equation C.1. This representation

uses the same structure as VENUS-MHDpy with fluid models, but increases the number of

variables from N ∼ 10 (in the most complex fluid models) to N ∼ 103. The implementation

required some parallelisation on the building matrix blocks of the code, which has been

successfully implemented and tested. A following scaling-up of the code will be the use of the

SLEPc4py Python library to solve the eigenvalue problem, which includes tools of massive

parallelisation.

157





D Acronyms

MHD: Magnetohydrodynamics

SFL: Straight Field Line

FLB: Field Line Bending

MP: Magnetic Perturbations

RMP: Resonant Magnetic Perturbations

EFCCs: Error Field Correction Coils

VMEC: Variational Moments Equilibrium Code

ELM: Edge Localised Modes

PFC: Plasma Facing Components

H-mode: High-confinement mode

QH-mode: Quiescent High-confinement mode

TB: Transport Barrier

EHOs: Edge Harmonic Oscillations

LCFS: Last Closed Flux Surface

NBI: Neutral Beam Injection

ECE: Electron Cyclotron Emission

BES: Beam Emission Spectroscopy

ITER: International Thermonuclear Experimental Reactor

JET: Joint European Torus

JT60: Japan Torus 60

ASDEX-U: Axially Symmetric Divertor Experiment - Upgrade

MAST: Mega Ampere Spherical Tokamak
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